• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Mémoire de Maîtrise
DOI
https://doi.org/10.11606/D.55.1971.tde-28062022-095956
Document
Auteur
Nom complet
Paulo Ferreira da Silva Porto Junior
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Carlos, 1971
Directeur
Jury
Loibel, Gilberto Francisco (Président)
Qualifik, Paul
Saab, Mario Rameh
Titre en portugais
SÔBRE APLICAÇÕES ESTÁVEIS DE SUPERFÍCIES EM SUPERFÍCIES
Mots-clés en portugais
Não disponível
Resumé en portugais
Não disponível
Titre en anglais
ON STABLE MAPPINGS FROM SURFACES INTO SURFACES
Mots-clés en anglais
Not available
Resumé en anglais
The aim of this paper is to give conditions fer the structural stability of C-proper mappings from 2-Manifolds into 2 Manifolds, by using Mather's Theorem. So, we have obtained these following necessary conditions for stability of f : M2 → N2 : 1 - f must be an excellent mappinga that is, it has only regular, fold and cusp points. 2 - There is no triple singular value. 3 - A double value cannot be the image of two different cusp points. 4 - If two fold points have the same value, "f is transversal to the image of the general fold", on each of them. Then, by using "jets and singularities", it is proved that "proper" is not necessary in the above case 1. Finally, we have also proved that an excellent mapping has the property of local infinitesimal stability on a neighbourhood of each point. Remark: We were informed later, that more general results have been obtained very recently on the subject in consideration. But we are not able to give more precise information on this matter.
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Date de Publication
2022-06-28
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
CeTI-SC/STI
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2023. Tous droits réservés.