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“No great discovery was ever made without a bold guess.”
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RESUMO

LIMA, J.A. Sobre números de Betti para potências simétricas de módulos e aplicações.
2022. 67 p. Tese (Doutorado em Ciências – Matemática) – Instituto de Ciências Matemáticas e
de Computação, Universidade de São Paulo, São Carlos – SP, 2022.

Seja M um módulo finitamente gerado sobre um anel local (R,m). Por S j(M), denotamos a
j-ésima potência simétrica de M( j-ésima componente graduada da álgebra simétrica SR(M)).
O propósito desta tese é investigar a resolução livre minimal de S j(M) como R-módulo para
cada j ≥ 2 e determinar os números de Betti de S j(M) em termos dos números de Betti de M.
Isso tem algumas aplicações, por exemplo para ideais de tipo linear I, obtemos fórmulas dos
números de Betti de I j em termos dos números de Betti de I. Além disso, estabelecemos cotas
superiores e inferiores para os números de Betti de S j(M) em termos dos números de Betti de M.
Em particular, obtemos algumas aplicações sobre a famosa conjectura de Buchsbaum-Eisenbud-
Horrocks.

Palavras-chave: Álgebra simétrica, Potência simétrica, Tipo linear, Betti numbers, Resoluções
livres minimais.





ABSTRACT

LIMA, J.A. On Betti numbers for symmetric powers of modules and some applications.
2022. 67 p. Tese (Doutorado em Ciências – Matemática) – Instituto de Ciências Matemáticas e
de Computação, Universidade de São Paulo, São Carlos – SP, 2022.

Let M a finitely generated module over a local ring (R,m). By S j(M), we denote the jth
symmetric power of M ( jth graded component of the symmetric algebra SR(M)). The purpose
of this thesis is to investigate the minimal free resolutions S j(M) as R-module for each j ≥ 2
and determine the Betti numbers of S j(M) in terms of the Betti numbers of M. This has some
applications, for example for linear type ideals I, we obtain formulas of the Betti numbers I j

in terms of the Betti numbers of I. In addition, we establish upper and lower bounds of Betti
numbers of S j(M) in terms of Betti numbers of M. In particular, obtain some applications about
the famous Buchsbaum-Eisenbud-Horrocks conjecture.

Keywords: Symmetric algebra, Symmetric power, Linear type, Betti numbers, Minimal free
resolutions.
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CHAPTER

1
INTRODUCTION

Throughout this thesis, we assume that (R,m) be a Noetherian local ring with identity
and every R-module M is finitely generated over R. For an R-module M, we denoted S j(M) as
the jth symmetric power of M or jth graded component of symmetric algebra of SR(M).

Our main goal in this thesis is to examine some homological properties related to
the symmetric powers of a finitely generated module. More precisely, we are interested in
computing the minimal free resolution and the Betti numbers of the symmetric powers of a finitely
generated module. The motivation for this investigation came from the works (WEYMAN, 1979),
(AVRAMOV, 1981) and (MOLICA; RESTUCCIA, 2002), where they study the acyclicity of the
complexes S jF• that are associated with the symmetric powers, S j(M) . Due to the acyclicity
criteria established in (WEYMAN, 1979; AVRAMOV, 1981; MOLICA; RESTUCCIA, 2002),
we noticed that not all finite projective dimension modules allow their symmetric powers to
have a minimal free resolution coming from the minimal resolution of M. Motivated by this, the
following question naturally arise:

Question A: If the projective dimension of M is finite, then is the projective dimension of S j(M)

finite for all j ≥ 2?

Question B: Is it possible to determine the Betti numbers of S j(M) knowing the Betti numbers
of M?

A summary of the content of this work is:

In chapter 2 we present general facts of the theory used in the other chapters, as well as
fix the notation.

Chapter 3 is the heart of this work. In sections 3.1 and 3.2 we emphasize the construction
of the complex S jF• and later, in Theorem 10, we show that it produces a minimal free resolution
for jth symmetric power of a finitely generated module M. As a consequence of this fact, we
obtain the finiteness of the projective dimension of S j(M) in the case where M has a finite
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projective dimension and we explain, Corollary 4, pdR S j(M) as a function of the Betti numbers
of M. This last fact also shows that there is a finite amount of powers j, such that S jF• is a
minimal free resolution of S j(M) over a local ring of dimension d, Remark 15. And the most
important consequence of this work, Corollary 8, where we establish a formula, in particular a
criterion, that expresses the Betti numbers of S j(M) as a function of the Betti numbers of M.

Chapter 4 is dedicated to two applications. The first one is the Buchsbaum-Eisenbud-
Horrocks conjecture or as we denote in this work, conjecture (BEH). This conjecture says that if
M is a finite-length, finite-dimensional R-module over a local Noetherian ring of dimension d,
then for all i ≥ 0,

β
R
i (M)≥

(
d
i

)
.

The conjecture is not yet solved but it already has a positive answer for local rings where d ≤ 4,
see (AVRAMOV; BUCHWEITZ, 1993). What we observe here is that the symmetric powers of
M, satisfy the same inequality, for modules of projective dimension 1 such that the (SWj) and
β R

1 (M)≥ d conditions are satisfied. In other words, we get that

β
R
t (S j(M))≥

(
d
t

)
for all t = 0, 1, . . . , min{β

R
1 (M), j},

if M is a R-module of projective dimension 1, which satisfies the (SWj) and β R
1 (M)≥ d condi-

tions.

The second part of this chapter, where we use the results of (AVRAMOV, 1981) and
(FUKUMURO; KUME; NISHIDA, 2015), is motivated to find a class of modules that satisfy
the (SW j) condition. Here we can verify that modules of projective dimension 1 and that are of
linear type, that is, their Rees Algebra is isomorphic to its Symmetric Algebra, satisfy the (SWj)

condition for all j = 1, . . . , β R
1 (M). In particular, we get the equality

β
R
t (I

j) =

(
β R

0 (I)+ j− t −1
j− t

)(
β R

1 (I)
t

)
, for all t = 0, 1, . . . , min{β

R
1 (M), j}.

A more general version of the above equality is given in the Proposition 16, where we assume
pdR M > 1 and that the ideal satisfies the (SW j) condition. The reason for this is that linear ideals
that have a projective dimension greater than 1 do not always satisfy the condition (SWj), as
shown in the example 6.

In the thesis, examples are also given and are calculated with help of MACAULAY2.

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de
Nível Superior - Brasil (CAPES) - Finance Code 001.
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CHAPTER

2
PRELIMINARIES

2.1 The symmetric algebra of a finitely generated module

In this section, we will present some basic tools that involve the symmetric algebra of
a finitely generated module, found in the literature. In addition to its construction, we will see
that it is possible to interpret it when we are dealing with free modules or even finitely generated
modules. For example, using the fact that the symmetric algebra is a covariant functor, every
finitely generated R-module M can be seen as a quotient of a ring of polynomials of the form

SR(M)∼= R[X1, X2, X3, . . . , Xn]/J, where J =

(
n

∑
1=1

ai1Xi, . . . ,
n

∑
i=1

aimXi

)
.

Let be M a non-zero finitely generated R-module and suppose that M is generated by
m1, m2, . . . , ml, where mi ∈ M ∀i = 1, . . . , l. Let j an arbitrary integer non negative, we define

T j(M) =


R, if j = 0;

M, if j = 1;
j⊗

i=1
M, if j > 1.

(2.1)

and

t j(M) =



{0} ⊂ R, if j = 0;

{0} ⊂ M, if j = 1;

the submodule of T j(M)

generated by elements of form

mi1 ⊗mi2 · · ·⊗mi j −miσ(1) ⊗miσ(2) ⊗·· ·miσ( j), if j > 1,

where σ denotes a permutation on {1, . . . , l}.

(2.2)
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Then consider the R-module defined by

SR(M) :=
⊕
j≥0

S j(M)

where S j(M) = T j(M)/t j(M). Then SR(M) with the multiplication defined by:

g1 ⊗g2 ⊗·· ·⊗gr ⊗h1 ⊗h2 ⊗·· ·⊗hs

for each g1 ⊗g2 ⊗·· ·⊗gr ∈ Sr(M) and h1 ⊗h2 ⊗·· ·⊗hs ∈ Ss(M) it is an graded R-algebra.

Definition 1. The R-algebra SR(M) is called symmetric algebra of M and S j(M) is called jth

component of symmetric algebra (or symmetric power) of M.

When M is a non-zero finitely generated R-module on a Noetherian ring we one could
ask if SR(M) and its symmetric powers also acquire the same property. To answer such a question
we may observe at the following proposition.

Proposition 1. Let M be a finitely generated R-module. Then

a) For any B R-algebra and all φ : M → B R-module homomorphism there exists a unique
R-algebra homomorphism ψ : SR(M)→ B such that it commutes the following diagramm:

M
φ //

i
��

B

SR(M)

ψ

<<

Where i : M → SR(M) denotes the inclusion.

b) If B is a R-algebra then

SR(M)⊗R B ∼= SB(M⊗B).

c) For any M and N R-modules, it holds that

SR(M⊕N) = SR(M)⊗SR(N).

Demonstration. See (D.EISENBUD, 1995), Appendix 2.

Proposition 2. Let M be a finitely generated R-module. Suppose that B be a N-graded R-algebra
and f : M → B be a R-module injective homomorphism such that:

a) B is generated by f (M) as R-algebra.
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b) For every C R-algebra and any φ : M →C R-module homomorphism there exists a unique
R-algebra homomorphism ψ : B →C such that it commmutes the diagramm:

M
φ //

f
��

C

B
ψ

??

Then SR(M)∼= B.

Demonstration. See (D.EISENBUD, 1995), Appendix 2.

The next two results give us properties that characterize symmetric algebras of free and
finitely generated modules.

Proposition 3. Let M be a free R-module with rank n. Then SR(M)∼= R[X1, X2, . . . , Xn].

Demonstration. Let e1, . . . ,en be a basis for M. Consider the R-module homomorphism given
by

φ : M → R[X1, . . . , Xn]

ei 7→ Xi, ∀i = 1,2, . . . ,n.

As M is free φ is well defined. Note that φ is injective hommomorphism and that φ(M) generate
the R-algebra R[X1, . . . , Xn]. Let B be a R-algebra and ψ : M → B be a R-modulo homomorphism.
Define

∼
ψ : R[X1, X2, . . . , Xn]→ B

∼
ψ( f (X1, X2, . . . , Xn)) = f (φ(e1), φ(e2), . . . , φ(en)).

By definition of
∼
ψ and φ we have that

∼
ψ ◦φ = ψ. Therefore

∼
ψ it is uniquely determined. Now

using the proposition 2 we will be have to SR(M)∼= R[X1, . . . , Xn].

Corollary 1. Let M be a free R-module with rank n. Then SR(M) is the polynomial ring on the
"variables" Xi, and S j(M) is the free R-module of rank

(n+ j−1
n−1

)
.

Although free modules are finitely generated, we will see in the proposition below that
the condition of linear independence is very crucial when we are computing symmetric algebras
of these modules. Such cruciality can generate interesting questions such as, for example, the
symmetric algebra of a free module M over a Noetherian domain R is always a domain. But this
is not always the case when M is finitely generated R-module.

Theorem 1. Let M be a finitely generated R-module and suppose that φ = (ai j)m×n is the
presentation matrix of M. Then

SR(M)∼= R[X1, X2, . . . , Xn]/J



26 Chapter 2. Preliminaries

where J = (∑n
1=1 ai1Xi, . . . , ∑

n
i=1 aimXi).

Demonstration. Suppose that M =< m1, m2, . . . , mn > is a non-zero finitely generated R-
module. Consider a free presentation of M, i.e, a exact sequence

Rm φ−→ Rn π−→ M −→ 0

For each j ≥ 1 we consider the R-module homomorphism given by

Π : T j(Rn)−→ T j(M)

ei1 ⊗ ei2 ⊗·· ·⊗ ei j 7→ π(mi1)⊗π(mi2)⊗·· ·⊗π(mi j)

We have that Ker(Π) is generated by products x1⊗x2⊗·· ·⊗x j such that xi ∈ Ker(π) = Im(φ) =(
n

∑
i=1

ai1ei, . . . ,
n

∑
i=1

aimei

)
for some 1 ≤ i ≤ j. Follow that the kernel of induced homomorphism

S j(Rn)−→ S j(M) (2.3)

is generated by elements of form (
n

∑
i=1

ai1ei, . . . ,
n

∑
i=1

aimei

)
.

So the R-algebra homomorphism

Γ : R[X1,X2, . . . ,Xn]∼= S(Rn)−→ SR(M)

induced of 2.3 will have kernel the ideal

J =

(
n

∑
1=1

ai1Xi, . . . ,
n

∑
i=1

aimXi

)
. (2.4)

The elements of ideal J above are called of symmetric algebra definition equations

SR(M).

In particular, it follows from the above characterizations that SR(M) is always Noetherian
when M is Noetherian R-module.

Remark 1. Several authors have investigated the case where SR(I) is a domain when I is an
ideal. And, some conditions on the R ring, (HUNEKE, 1981, p. 113) showed that when SR(M)

it is domain is equivalent to grade(It(A)) ≥ m+2− t for 1 ≤ t ≤ m, for R-modules M having
having finite free resolution given by

0 −→ Rm A−→ Rn −→ M −→ 0, A = (ai j).
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Definition 2. Let be R a ring with total fraction ring Q. The torsion of M with respect to R is the
kernel of aplication

τ : M −→ M⊗R Q,

which will be denoted by TR(M). When TR(M) = 0 we say that the R-module M is torsion-free

module. If TR(M) = M we say that M is an of torsion module.

In particular, the torsion TR(M) of torsion-free R-module M over a domain R it is a
submodule of M. We will see that over domains, the symmetric algebra is an example of a
R-module that is not necessarily torsion-free but that its torsion is still a prime ideal.

Lemma 1. Let be R a domain and M an finitely generated R-module. Then TR(SR(M)) is a
prime ideal.

Demonstration. Let be Q = S−1R the fraction field of R, where S = R−{0}. Since M is an
finitely generated R-module, then M⊗R Q is a vector space of finite dimension. Therefore, let us
suppose that M⊗R Q has dimension n. So, by Proposition 3,

SR(M⊗Q)∼= Q[X1, . . . , Xn].

Now consider the aplication
τ : SR(M)−→ SR(M)R ⊗Q.

We obtain that T (SR(M)) = Ker(τ). Hence

SR(M)/T (SR(M))∼= Q[X1, . . . , Xn].

Since Q[X1, . . . , Xn] is a domain it yields that T (SR(M)) is a prime ideal. As we wanted to
demonstrate.

Remark 2. R-modules M, in particular ideals, that satisfy the property of having torsion-free
symmetric algebras belong to a class of modules that have been extensively studied today. An
interesting characterization due to (AVRAMOV, 1981, p. 249) and later, redone in a more
elementary way, in the paper (FUKUMURO; KUME; NISHIDA, 2015, p. 106) characterizes the
condition for M belonging to that class in terms of the determinantal ideal of a certain matrix.
The R-modules M that belong to this class will be called Linear Type modules. In the chapter 5,
we will go into more detail about these modules.

2.2 A modest theory of homological algebra
In this section we introduce basic concepts of homological algebra, such as TorR

n (M,N)

and ExtnR(M,N). Next, we present a result that characterizes the exactness of a complex in terms
of the determinants of the submatrices of its maps. Finally, we exhibit the classic Hilbert-Burch
theorem that characterizes grade two perfect ideals via projective resolutions of length one.
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Definition 3. Let R be a ring, M an R-module and Q be the total ring of fractions of R. We say
that M has rank r if M⊗Q is a free Q-module of rank r. If φ : M −→ N is a homomorphism of
R-modules, then φ has rank r if Im(φ) has rank r.

Definition 4. Let R be a ring and M an R-module. The projective resolution of M is an exact
complex of R-modules

F : · · · φ3−→ F2
φ2−→ F1

φ1−→ F0
φ0−→ M −→ 0

where F0, F1, . . . are projective modules. If F0, F1, . . . are all free modules, then the resolution
is a free resolution of M. If there exists some n ≥ 0 such that Fk = 0 for all k > n (and Fn ̸= 0),
then the resolution is said to be finite of lenght n.

Remark 3. Sometimes a resolution of M is written in the following way:

F• : · · · φ3−→ F2
φ2−→ F1

φ1−→ F0 −→ 0

so the complex is exact everywhere except at F0, with the homology at F0 being:

H0(F•) := Ker(φ0)/Im(φ1) = F0/Im(φ1) = F0/Ker(φ0)∼= Im(φ0) = M.

In this case we say that F• is a deleted resolution of M.

Definition 5. Let R be a ring and M an R-module, for each R-module N, we define TorR
n (M,N)

to be the n th homology module of the complex

F•⊗R N : · · · −→ F2 ⊗R N −→ F1 ⊗R N −→ F0 ⊗R N −→ 0,

i.e.,

TorR
n (M,N) := Hn(F•⊗R N) for all n ≥ 0,

where F• is a projective resolution of M.

Definition 6. Let R be a ring and M an R-module, for each R-module N, we define ExtnR(M,N)

to be the n th homology module of the complex

HomR(F•,N) : 0 −→ Hom(F0,N)−→ Hom(F1,N)−→ ·· · −→ Hom(Fn,N)−→ ·· · ,

i.e.,

ExtnR(M,N) := Hn(HomR(F•,N)) for all n ≥ 0,

where F• is a projective resolution of M.

Proposition 4. Any module M over a given ring R possesses a free resolution.
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Demonstration. Firstly, we can choose a free R-module F0 and a map a set of generators at F0

to a set of generators of M, giving a surjective map φ0 : F0 −→ M. Now the "obstruction to
exactness" of the sequence 0 −→ F0 −→ M −→ 0 is that homology at F0 is Ker(φ0), rather 0, so
it is of interest to look at this submodule at F0.

As for M, we can choose a free module F1 and a homomorphism φ1 which maps a set
of generators of F1 to a set of generators of Ker(φ0). Continuing in this way, we build the free
resolution:

F : · · · −→ Fn+1
φn+1−→ Fn

φn−→ Fn−1
φn−1−→ ·· · φ3−→ F2

φ2−→ F1
φ1−→ F0

φ0−→ M −→ 0

where each φn surjectively maps Fn onto Ker(φn−1) (for n > 0) and φ0 surjectively maps F0 onto
M.

Remark 4. Note that it includes which are not necessarily finitely generated.

Remark 5. Set M0 = M and Mn = Ker(φn−1) for n ≥ 1. The modules Mi depend obvioulsy F.
However, M determines Mi up to projective equivalence (HOTMAN, 1979, Theorem 9.4), and
therefore it is justified to call Mi the i-th syzygy of M.

Definition 7. Let R be a ring and an finitely generated R-module M, the projective dimension (or
homological dimension) of M (denoted pdR M) is the smallest non-negative integer n for which
there exists a projective resolution of M of lenght n, i.e. the minimal n such that the projective
modules F0, . . . ,Fn exist turning the following complex an exact one:

F : 0 −→ Fn
φn−→ Fn−1

φn−1−→ ·· · φ3−→ F2
φ2−→ F1

φ1−→ F0
φ0−→ M −→ 0

In general, free modules are projective modules over a ring R, hence free resolutions are
projective resolutions. Now when R is a local ring, these concepts are equivalent. For this reason,
whenever we work with projective dimensions on local rings, we will consider free resolutions.

Among the free resolutions of a finitely generated R-module M over a local ring, we will
highlight throughout this work those that provide properties related to the minimal number of
generators of M. Such resolutions are called minimal free resolutions and can be constructed
using the Proposition 4 argument along with Nakayama’s Lemma.

Definition 8. Let (R,m) be a local ring, a free resolution of R-modules (such as below) is
minimal if Im(φn)⊆mφn−1 for all n.

F : · · · −→ Fn+1
φn+1−→ Fn

φn−→ Fn−1
φn−1−→ ·· · φ3−→ F2

φ2−→ F1
φ1−→ F0

φ0−→ M −→ 0

The number β R
n (M) := rank Fn is called the n-th Betti number of M.

The following proposition shows that minimal free resolutions are quite useful when we
need to calculate homologies TorR

n (M,k) and ExtnR(M,k).
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Proposition 5. Let (R,m,k) be a Noetherian local ring, M an finitely generated R-module, and

F : · · · −→ Fn+1
φn+1−→ Fn

φn−→ Fn−1
φn−1−→ ·· · φ3−→ F2

φ2−→ F1
φ1−→ F0

φ0−→ M −→ 0

a free resolution of M. Then the following are equivalent:

(a) F is minimal;

(b) φn(Fn)⊂mFn−1 for all n ≥ 1;

(c) rank Fn = dimkTorR
n (M,k) for all n ≥ 0;

(d) rank Fn = dimkExtnR(M,k) for all n ≥ 0.

Demonstration. See (BRUNS; HERZOG, 1993, Proposition 1.3.1).

Corollary 2. Let (R,m,k) be a Noetherian local ring, M an finitely generated R-module. Then
β R

n (M) = dimkTorR
n (M,k) for all n and

pdR M = sup{n|TorR
n (M,k) ̸= 0}.

Demonstration. See (BRUNS; HERZOG, 1993, Corollary 1.3.2).

The following Theorem, although elementary, is one of the key results for the devel-
opment of this work. It assures us that the Betti numbers of a finitely generated module are
isomorphism invariant.

Theorem 2. Let M,N be finitely generated modules over a Noetherian local ring R. Let

F : · · · φ3−→ F2
φ2−→ F1

φ1−→ F0
φ0−→ M −→ 0

F′ : · · · ψ3−→ F ′
2

ψ2−→ F ′
1

ψ1−→ F ′
0

ψ0−→ N −→ 0

be mimimal free resolutions of M and N, respectively. If M ∼= N, then Fi ∼= F ′
i for each

i ∈ {0,1,2,3, . . .}.

Demonstration. See (LEE; SONG, 2018, Theorem 3.6)

Remark 6. One sees from the above Corollary 2 that TorR
n (M,k) = 0 implies that Fn = 0, and

therefore pdR M < n, so that TorR
m(M,k) = 0 for m > n. It is conjectured that this holds in more

generality, or more precisely:

Rigidty conjecture. Let R be a Noethering ring, M and N finitely generated R-modules.
Suppose that pdR M < ∞. Then TorR

n (M,N) = 0 implies that TorR
m(M,N) = 0 for all m > n.
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This has been proved by (LICHTENBAUM, 1966, Theorem 3), if R is a regular ring, but
is unsolved in general.

Another essential invariant for the development of this thesis, which we will define next,
is the grade of a module.

Definition 9. Let R be a ring and an finitely generated R-module M. We say that x ∈ R is a
M-regular element if xz = 0 for z ∈ M implies z = 0, in other words, if x is not a zero-divisor on
M. Regular sequences are composed of successively regular elements:

A sequence x = x1, . . . , xn of elements of R is called an M-regular sequence or simply
an M-sequence if the following conditions are satisfied:

(a) xi is an M/(x1, . . . , xi−1) M-regular element for i = 1, 2, . . . , n;

(b) M/xM ̸= 0.

A regular sequence is an R-sequence.

Let R be a Noetherian ring and M an R-module. Then we obtain the strict ascendance
of the sequence (x1) ⊂ (x1, x2) ⊂ ·· · ⊂ (x1, x2, . . . , xn), if x = x1, . . . , xn is an M-sequence.
Therefore an M-sequence can be extended to a maximal such sequence, i.e., an M-sequence x is
maximal, if x1, . . . , xn, xn+1 is not an M-sequence for any xn+1 ∈ R.

The following Rees Theorem shows that all maximal M-sequences in an ideal I with
IM ̸= M have the same lenght if M is finitely generated.

Theorem 3 (Rees). Let R be a Noetherian ring and M a finitely generated R-module, and I an
ideal such that IM ̸= M. Then all maximal M-sequences in I have the same lenght n given by

n = min{i| ExtiR(R/I, M) ̸= 0}.

The Rees Theorem above allows us to introduce the fundamental notions of grade and
depth.

Definition 10. Let R be a Noetherian ring and an finitely generated R-module M, and I an ideal
such that IM ̸= M. The common lenght of the maximal M-sequences in I is called the grade of I

on M, denoted by

grade(I, M).

When (R,m) is a Noetherian local ring, the grade of m on M is called the depth of M,
denoted by

depth M.
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Definition 11. Let R be a Noetherian ring and an finitely generated R-module M. We define the
grade of M by

grade(M) = grade(AnnM, R).

Remark 7. It is customary to set

grade(I) = grade(R/I) = grade(I,R)

for an ideal I ◁R, and we follow this convention.

The Auslander-Buchsbaum theorem below, in addition to being an effective formula
for calculating the depth of a module, expresses an upper bound for finite projective dimension
modules.

Theorem 4 (Auslander-Buchsbaum). Let (R,m) be a Noetherian local ring and M ̸= 0 a finitely
generated R-module. If pdRM < ∞, then

pdR M+depth M = depth R.

Demonstration. See (BRUNS; HERZOG, 1993, Theorem 1.3.3).

Definition 12. Let R be a ring. We say R has finite global dimension if there exists an n ∈ Z such
that pdR M ≤ n for all R-modules M. The smallest such n is the global dimension of R, which
we will denote by gl dim R.

Theorem 5 (Serre). Let R be a Noetherian local ring. Then

R is regular⇐⇒ gl dim R = dim R ⇐⇒ gl dim R < ∞.

Demonstration. See (MATSUMURA, 1989, Theorem 19.2)

We saw in the Proposition 4 that every R-module M finitely generated module has a
free resolution (minimal or not) and in the case where R is a regular ring, by Theorem 5, such
resolution stops. What we need to know now is how to decide the exactness of a free resolution
of a finitely generated R-module M. Below we will present some results, made by Buchsbaum;
Eisenbud (1973), that help us to make this decision.

Definition 13. Let A be a m×n matrix over R where m,n≥ 0. For t = 1,2, . . . ,min{m,n} we then
denote by It(A) the ideal generated by the t-minors of A(the determinants of t × t submatrices).
For systematic reasons one sets It(A)=R for t ≤ 0 and It(A)= 0 for t >min{m,n}. If φ : F −→G

is a homomorphism de finite free R-modules, then φ is given by a matrix A with respect to bases
of F and G. Therefore we may put It(φ) = It(A).



2.2. A modest theory of homological algebra 33

Proposition 6. Let R be a Noetherian ring, and 0 −→U −→ M −→ N −→ 0 an exact sequence
of finitely generated R-modules. If two of U , M, N, have a rank, then so does the third, and
rank(M) = rank(U)+ rank(N).

Demonstration. See (BRUNS; HERZOG, 1993, Proposition 1.4.5).

Corollary 3. Let R be a Noetherian ring, and M an R-module with a finite free resolution

F• : 0 −→ Fn
φn−→ Fn−1

φn−1−→ ·· · φ3−→ F2
φ2−→ F1

φ1−→ F0.

Then rank(M) = ∑
n
j=0(−1) jrank(Fj).

Demonstration. See (BRUNS; HERZOG, 1993, Corollary 1.4.6).

Proposition 7. Let R be a Noetherian ring, and let φ : F −→ G be a homomorphism of finite
free R-modules. Then rank(φ) = r if and only if grade(Ir(φ))≥ 1 and Ir+1(φ) = 0.

Demonstration. See (BRUNS; HERZOG, 1993, Proposition 1.4.11)

The following theorem exhibit a criterion that relates the exactness of a complex F• with
the ideals generated by certain minors of the homomorphisms φn.

Theorem 6. Let F• : 0 −→ Fn
φn−→ Fn−1

φn−1−→ ·· · φ3−→ F2
φ2−→ F1

φ1−→ F0 be a complex of free
R-modules. Then F• is exact if and only if two following conditions are satisfied:

(a) rank(φk+1)+ rank(φk) = rank Fk for all k;

(b) grade(I(φk)≥ k for all k = 1,2, . . . ,n.

Demonstration. See (BUCHSBAUM; EISENBUD, 1973).

Theorem 7 (Peskine-Szpiro). Let F• : 0 −→ Fn
φn−→ Fn−1

φn−1−→ ·· · φ3−→ F2
φ2−→ F1

φ1−→ F0 be a
complex of free R-modules. Then F• is exact if and only if F•⊗Rp is exact for all p with
depth Rp < n.

Demonstration. See (BUCHSBAUM; EISENBUD, 1974, Corollary 1.3).

Let R be a Noetherian ring, and M a finite R-module. Since it is possible to compute
ExtiR(M,R) from a projective resolution of M (BRUNS; HERZOG, 1993, Theorem 1.3.3), we
have the following inequality that relates the grade of a module to its projective dimension

grade(M)≤ pdR M.

This motivates the following definition.
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Definition 14. Let R be a Noetherian ring. A non-zero finite R-module M is perfect if pdR M =

grade(M). An ideal I is called perfect if R/I is a perfect module, in which case the type of I is
defined to be the value of the last (nonzero) Betti number of I. We will use Type(I) to denote the
type of I.

Proposition 8. Let R be a Noetherian ring, and M a perfect R-module. For a prime p ∈ Supp M

the following are equivallent:

(a) p ∈ Ass M;

(b) depth Rp = grade(M). Furthermore grade(p) = grade(M) for all ideals p ∈ Ass M.

Demonstration. See (BRUNS; HERZOG, 1993, Proposition 1.4.16)

We and this chapter with the theorem of Hilbert-Burch, where it gives us a characteriza-
tion of grade two perfect ideals. In particular, it states that their Betti numbers are consecutive
integers.

Theorem 8 (Hilbert-Burch). Let R be a Noetherian ring, and I an ideal with a free resolution

F• : 0 −→ Rn φ−→ Rn+1 −→ I −→ 0.

Then there exists an R-regular element a such that I = aIn(φ). If I is projective, then I = (a), and
if pdR I = 1, then In(φ) is perfect ideal of grade 2.

Conversely, if φ : Rn −→ Rn+1 is an R-linear map with grade(In(φ))≥ 2, then I = In(φ)

has the free resolution F•.

Demonstration. See (BRUNS; HERZOG, 1993, Theorem 1.4.17).
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CHAPTER

3
SYMMETRIC POWERS AND THEIR

MINIMAL FREE RESOLUTIONS

The main objective of this chapter is to study the minimality of the complex S jF•, in
order to give affirmative answers to the Questions A and B. For example, we show that if M

is a module that satisfies the (SWj) condition and has a minimal free resolution, then S jF• is
a minimal free resolution for S j(M). As a consequence of this fact we obtain two important
invariants in homological algebra: the projective dimension and the Betti numbers of S j(M).
Furthermore, we show that such invariants depend only on the power j and the homological
information of M, i.e., from the projective dimension of M and its Betti numbers.

But before introducing the complex S jF• we need to define the jth Divided power of a F

free R-module, D j(F) (for more details see BUCHSBAUM; EISENBUD (1975)).

Definition 15 (Divided power). Let F be a free R-module of rank finite, and j ≥ 0 integer non
negative. The jth Divided power D j(F) is defined as the set of symmetric tensors in T j(F), that
is,

D j(F) := {ω ∈ T j(F) : σ(ω) = ω for all σ ∈S j},

where S j is set the permutation of order j.

By definition D j(F) is a R-module. Now suppose that F be a finite free R-module
generated by f1, f2, . . . , fl . To get a basis for D j(F) we first consider the orbits

Oa1, a2,..., al :=S j. f
⊗a1
1 ⊗ f⊗a2

2 ⊗·· ·⊗ f⊗al
l

and for a1 +a2 + · · ·+al = j consider the Divided power monomials

f (a1)
1 · · · f (al)

l := ∑
ω∈Oa1, a2,..., al

ω

they form a basis for D j(F). In other words,
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D j(F) = ⟨{∏
i

f (ai)
i |∑ai = j}⟩ (3.1)

is a free R-module.

Remark 8. For convention we will use D0(F) = R and D1(F) = F for all F free R-module.

As we will see in the following lemma, the Equation 3.1 gives us a formula for the
number of generated D j(F).

Lemma 2. Let F be a free R-module and j be a integer non-negative. If rank(F) = l, then D j(F)

has rank
(

j+ l −1
l −1

)
.

Demonstration. By Equation 3.1, the minimum number of generators of D j(F) can be seen how
the number of solutions distinct with non-negative integers satisfying the equation

a1 +a2 + · · ·+al = j

where l = rank F , i.e.
(

l + j−1
l −1

)
. Therefore we get the result.

3.1 Free resolution for symmetric powers
It can be seen in the paper above mentioned that the construction of such a complex is

produced from a free resolution of M. What we add here is that if M has a minimal free resolution
then the Lemma 3 tells us that the complex S jF•, with some assumptions, is a minimal free
resolution.

Let (R,m,k) be a Noetherian local ring and M be a finitey generated R-module. Assume
that

F• : 0 −→ Fp
φp−→ Fp−1

φp−1−→ ·· · φ1−→ F0

is a finite free resolution of M where pdRM = p. Let a0, a1, . . . , ap be a sequence of non-negative
integers. We define the functors

S(a0, . . . ,ap;F•) :=

 Da0F0 ⊗
a1
ΛF1 ⊗Da2F2 ⊗·· ·⊗

ap−1

Λ Fp−1 ⊗DapFp, for p even;

Da0F0 ⊗
a1
ΛF1 ⊗Da2F2 ⊗·· ·⊗Dap−1Fp−1 ⊗

ap

ΛFp, for p odd ,

and the differential maps as follows:

di : S(a0, . . . , ap : F•)→ S(b0, . . . , bp;F•)

is zero when (b0, . . . , bp) ̸=(a0, . . . ,ai+1,ai+1−1, . . . ,ap) for all i, and in the case (b0, . . . , bp)=

(a0, . . . , ai +1, ai+1 −1, . . . , ap),

di =

{
±1⊗·· ·⊗1⊗Aai+1,aiφi+1 ⊗1 · · · , for i odd;
±1⊗·· ·⊗1⊗Bai+1,aiφi+1 ⊗1 · · · , for i even ,

(3.2)
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where ± denotes (−1)σ ;σ = a0+2a1+ · · ·+(i+1)ai and the homomorphisms Aai+1,aiφi+1 and
Bai+1,aiφi+1 are defined as follows: Suppose that f1, f2, . . . , fr and g1, g2, . . . , gs form a basis
for Fi+1 and Fi respectively. Let

Aai+1,aiφi+1 : Dai+1Fi+1 ⊗
ai
ΛFi −→ Dai+1−1Fi+1 ⊗

ai+1
Λ Fi

Aai+1,aiφi+1( f (ai+1)1
1 . . . f (ai+1)r

r ⊗ v) =
r

∑
l=1

f (ai+1)1
1 · · · f (ai+1)l−1

l · · · f (ai+1)r
r ⊗φi+1( fl)∧ v

and

Bai+1,aiφi+1 :
ai+1
Λ Fi+1 ⊗DaiFi −→

ai+1−1
Λ Fi+1 ⊗Dai+1Fi

Bai+1,iφi+1( f(ai+1)1 ∧·· ·∧ f(ai+1)s ⊗w) =
r

∑
l=1

(−1)l f(ai+1)1 ∧·· ·∧ f̂(ai+1)l
∧·· ·∧ fis ⊗φi+1( f(ai+1)l

)∪w,

where gi ∪ g(i1)1 · · ·g(is)s = g(i1)1 · · ·g(ii+1)
i · · ·g(is)s . Here f̂il means that fil is omitted. Thus, we

define
(S jF•)t = ⊕

(a0,..., ap)

∑ai= j
∑ iai=t

S(a0, . . . , ap;F•) for all t ≥ 0.

and the differentials dt are given by

dt : (S jF•)t −→ (S jF•)t−1 where dt := (d j1
t , d j2

t , . . . , d jr
t ), for all t ≥ 1.

Thus, we get the complex

S jF• : · · · −→ (S jF•)t+1
dt+1−→ (S jF•)t

dt−→ ·· · d2−→ (S jF•)1
d1−→ (S jF•)0. (3.3)

Observe that, the notation d jr
t is to indicate the differential d jr on the tth level of the complex

S jF• with r the rth solution of equation system
p

∑
i=0

iai = t

p

∑
i=0

ai = j
(3.4)

Remark 9. Summarizing the construction above, each component of the complex S jF• is given
by:

(S jF•)t =



⊕
(a0,..., ap)

∑ai= j
∑ iai=t

Da0F0 ⊗
a1
ΛF1 ⊗Da2F2 ⊗

a3
ΛF3 ⊗·· ·⊗Dap(Fp), if p is even,

⊕
(a0,..., ap)

∑ai= j
∑ iai=t

Da0F0 ⊗
a1
ΛF1 ⊗Da2F2 ⊗

a3
ΛF3 ⊗·· ·⊗

ap

ΛFp, if p is odd.

See (WEYMAN, 1979, p. 335) for more details.
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Remark 10. Observe that, S0F• = R and S1F• = F•. In particular, if F• is a minimal free
resolution of M, then β R

i (S1(M)) = β R
i (M), for all i = 0, . . . , p. For this reason, we will always

be considering the symmetric powers S j(M) and S jF• for j ≥ 2.

An important fact that will be used a lot in the next chapters is that the complex S jF• is a
bounded complex when F• is. With this information in mind, we will be able to calculate the
projective dimension of symmetric power S j(M).

Remark 11. (WEYMAN, 1979, p. 336). Each complex S jF• in 3.3 is a bounded complex as
R-module and its lenght is given by

λ (S jF•) =

 jp, for p even;

j(p−1)+min{rank Fp, j}, for p odd

where λ (−) denote λ (F•) := sup{i|Fi ̸= 0} for some complex F•.

In the next Remark, we highlight the complex S jF• for modules of projective dimension
1.

Remark 12. Suppose that p = 1, then for each j ≥ 2 the solutions of the system of equations
3.4 are given by S = {(a0, a1) = ( j− t, t)|t = 0, 1, . . . , λ (S jF•)}. Thus

(S jF•)t = ⊕
(a0, a1)

a0+a1= j
a1=t

Da0F0 ⊗
a1
ΛF1 = D j−tF0 ⊗

t
ΛF1;

for all t = 0,1, . . . , λ (S jF•). Hence S jF• is given by

S jF• : 0 −→ D j−l(F0)⊗
l
ΛF1

dl−→ D j−l+1(F0)⊗
l−1
Λ F1

dl−1−→ ·· · d2−→ D j−1(F0)⊗
1
ΛF1

d1−→ D j(F0)⊗
0
ΛF1,

where l = λ (S jF•) = min{rank F1, j}.

After these constructions, we point out below the theorem that answers Question A.
Theorem that establishes a criteria for the exactness of S jF• in terms of the determinant ideals of
the maps that make up the free resolution (or minimal free resolution) F•.

Theorem 9. (WEYMAN, 1979, Theorem 1) Let

F• : 0 −→ Fp
φp−→ Fp−1

φp−1−→ ·· · φ1−→ F0

be a finite free resolution with coker(φ1) = M and ri =
p

∑
n=i

(−1)n−irank(Fn). Then, S jF• is exact

if and only if

(a) grade(Iri(φi))≥ ji, for all i even, where 1 ≤ i ≤ p;
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(b) grade(Iri− j+1(φi))≥ ji, grade(Iri− j+2(φi))≥ ji−1, grade(Iri(φi))≥ (i−1) j+1, for all i

odd, where 1 ≤ i ≤ p.

If S jF• is exact for each j, it is a finite free resolution of the symmetric power S j(M) for each j.

Motivated by the theorem above, (MOLICA; RESTUCCIA, 2002) defines the condition
(SWj) to simplify the criteria in items (a) and (b) of Theorem 3.

Definition 16. (MOLICA; RESTUCCIA, 2002) Let M be a R-module and let

F• : 0 −→ Fp
φp−→ Fp−1

φp−1−→ ·· · φ1−→ F0

be a finite minimal free resolution of M. For each j ≥ 2. We say that M satisfies the (SWj)

condition if S jF• is a finite free resolution of S j(M).

Thus, by Theorem 9, we say that M satisfies (SWj) condition if and only if

(a) grade(Iri(φi))≥ ji for all i even, where 1 ≤ i ≤ p;

(b) grade(Iri− j+1(φi))≥ ji, grade(Iri− j+2(φi))≥ ji−1, grade(Iri(φi))≥ (i−1) j+1 for all i

odd, where 1 ≤ i ≤ p.

The example below illustrates an ideal I that satisfies the (SW2) condition.

Example 1. Let R = k[[x, y, z]] be a ring of formal power series over a field k and let the ideal of
R given by I = (yz2, x2z, x3y2). By MACAULAY2, a minimal free resolution for I is given by

F• : 0 −→ R2 φ1−→ R3 −→ I −→ 0.

Where the map φ1 is given by matrix 3×2

[φ1] =

 −yz −xz2

x2 0
0 z

 .

We get that I1(φ1)= (−yz, x2,−xz2, z) and I2(φ1)= (x3z2, −yz2, x2z) implying that grade(I1(φ1))=

2 and grade(I2(φ1)) = 1. Hence, the ideal I satisfy (SW2) condition.

Remark 13. As we said above, the Theorem gives us a criterion for the complex S jF• to be a free
resolution of the symmetric power S j(M). In particular, it says that we can build a free resolution
of S j(M) from a free resolution of M. So we are interested to know, if the minimality of F•

is transferred to S jF•. That is, if F• is minimal and S jF• is exact, then S jF• is also minimal?
(WEYMAN, 1979) gives an affirmative answer to this fact, although he does not give explicit
proof. For this reason, we will present a demonstration of this fact. And to start with the proof,
we need the following lemma.
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Lemma 3. Let (R,m,k) be a Noetherian local ring and di be a map of free R-modules defined in
3.2. Suppose that F• is a minimal free resolution of M, then di ⊗1k = 0.

Demonstration. Let 1k : k→ k be a map defined by 1k(y)= y. By definition of di, if (b0, b1, . . . , bp) ̸=
(a0,a1, . . . ,ai + 1, ai+1 − 1, . . . , ap) for all i, then di = 0 ⇒ di ⊗ 1k = 0. And in this case, the
result follows. Now suppose that (b0, b1, . . . , bp) = (a0, a1, . . . , ai + 1, ai+1 − 1, . . . , ap) for
some i. Therefore, we need consider the following cases:

Case(1): i is odd. Let di =±1⊗·· ·⊗1⊗Aai+1,aiφi+1 ⊗1⊗·· · , where

Aai+1,aiφi+1 : Dai+1Fi+1 ⊗
ai
ΛFi −→ Dai+1−1Fi+1 ⊗

ai+1
Λ Fi

is given by

Aai+1,aiφi+1( f (ai+1)1
1 . . . f (ai+1)r

r ⊗ v) =
r

∑
l=1

f (ai+1)1
1 · · · f (ai+1)l−1

l · · · f (ai+1)r
r ⊗φi+1( fl)∧ v.

Let y ∈ k. By hypothesis F• is a minimal free resolution which implies that φi+1( fl) = x f for
some x ∈m and f ∈ Fi. Now by the linearity of the tensor product, we get

di ⊗1k( f (ai+1)1
1 · · · f (ai+1)r

r ⊗ v⊗ y) = di( f (ai+1)1
1 · · · f (ai+1)r

r ⊗ v)⊗1k(y)

=±1⊗·· ·⊗1⊗Aai+1,aiφi+1( f (ai+1)1
1 . . . f (ai+1)r

r ⊗ v)⊗1⊗·· ·⊗1k(y)

=±1⊗·· ·⊗1⊗
r

∑
l=1

f (ai+1)1
1 · · · f (ai+1)l−1

l · · · f (ai+1)r
r ⊗φi+1( fl)∧ v⊗1⊗·· ·⊗1k(y)

=±1⊗·· ·⊗1⊗
r

∑
l=1

f (ai+1)1
1 · · · f (ai+1)l−1

l · · · f (ai+1)r
r ⊗ x f ∧ v⊗1⊗·· ·⊗1k(y)

=±1⊗·· ·⊗1⊗
r

∑
l=1

f (ai+1)1
1 · · · f (ai+1)l−1

l · · · f (ai+1)r
r ⊗ f ∧ v⊗1⊗·· ·⊗1k(xy)

= 0.

Case(2): i is even. Let di =±1⊗·· ·⊗1⊗Bai+1,aiφi+1 ⊗1⊗·· · , with

Bai+1,aiφi+1 :
ai+1
Λ Fi+1 ⊗DaiFi −→

ai+1−1
Λ Fi+1 ⊗Dai+1Fi

Bai+1,iφi+1( f(ai+1)1 ∧·· ·∧ f(ai+1)r ⊗w) =
r

∑
l=1

(−1)l f(ai+1)1 ∧·· ·∧ f̂(ai+1)l
∧·· ·∧ f(ai+1)r ⊗φi+1( f(ai+1)l

)∪w.

Using again that F• is a minimal free resolution exist x′ ∈m and f ′ ∈ Fi such that φi+1( f(ai+1)l
) =

x′ f ′. Now by linearity of tensor
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di ⊗1k( f(ai+1)1 ∧·· ·∧ f(ai+1)r ⊗w⊗ y) =

=±1⊗·· ·⊗1⊗
r

∑
l=1

(−1)l f(ai+1)1 ∧·· ·∧ f̂(ai+1)l
∧·· ·∧ fir ⊗φi+1( f(ai+1)l

)∪w⊗1⊗·· ·⊗1k(y)

=±1⊗·· ·⊗1⊗
r

∑
l=1

(−1)l f(ai+1)1 ∧·· ·∧ f̂(ai+1)l
∧·· ·∧ f(ai+1)r ⊗ x′ f ′∪w⊗1⊗·· ·⊗1k(y)

=±1⊗·· ·⊗1⊗
r

∑
l=1

(−1)l f(ai+1)1 ∧·· ·∧ f̂(ai+1)l
∧·· ·∧ f(ai+1)s ⊗ f ′∪w⊗1⊗·· ·⊗1k(x′y)

= 0.

completing the proof.

Now, with Lemma 3 in the next theorem, we show that S jF• is a minimal free resolution
of S j(M).

Theorem 10. Let M be a finitely generated R-module with pdR M < ∞. If M satisfies the (SWj)

condition and F• is a minimal free resolution of M, then S jF• is a minimal free resolution of
S j(M) and pdR S j(M)< ∞.

Demonstration. Let F• : 0 −→ Fp −→ Fp−1 −→ ·· · −→ F1 −→ F0 be a minimal free resolution
of M where pdR M = p. Since M satisfies the (SWj) condition, by Theorem 9, the complex S jF•

is a free resolution for S j(M). To show that S jF• is a minimal free resolution it is enough to
show that dt ⊗1k = 0 for all t ≥ 1, where dt is a map defined by

dt : (S jF•)t −→ (S jF•)t−1, dt = (d j1
t , d j2

t , . . . ,d jr
t ).

Now, let
f∗ = ( f j1

∗ , f j2
∗ , . . . , f jr

∗ ) ∈ ⊕
(a0,..., ap)

∑ai= j
∑ iai=t

S(a0, . . . , ap;F•) ,

where each f jr
∗ ∈ S(ar

0, ar
1, . . . , ar

p) with (ar
0, ar

1, . . . , ar
p) the r-th non negative integer solution

of system ∑ai = j,∑ iai = j. Now as F• is a minimal free resolution, by Lemma 3 we obtain
that d jr

t ⊗1k = 0, for all r. Therefore,

dt ⊗1k( f ∗⊗ y) = dt( f ∗)⊗1k(y)

= (d j1
t ( f j1

∗ ), d j2
t ( f j2

∗ ), . . . , d jr
t ( f jr

∗ ))⊗1k(y)

= (d j1
t ( f j1

∗ )⊗1k(y), d j2
t ( f j2

∗ )⊗1k(y), . . . , d jr
t ( f jr

∗ )⊗1k(y))

= 0
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for all y ∈ k. Hence dt ⊗ 1k = 0 and this show that S jF• is minimal free resolution. Now
pdR S j(M)< ∞ follows by construction of complex S jF• (see 3.3).

Remark 14. From now on, for the sake of simplicity, whenever we say that M has a finite
projective dimension, we are assuming F• is a minimal free resolution of M.

As an immediate application from Theorem 10 and Remark 11, we got a formula to
calculate the projective dimension of S j(M).

Corollary 4. Let M be a R-module finitely generated with pdR M < ∞. If M satisfies the (SWj)

condition , then

pdR S j(M) =

 jpdR M, for pdR M even;

j(pdR M−1)+min{β R
pdRM(M), j}, for pdR M odd.

Demonstration. Since pdR M < ∞, we can consider F• a minimal free resolution of M. As M

satisfies the (SWj) condition (Definition 16), we get S jF• is exact. Now, by Theorem 10, S jF• is
a minimal free resolution of S j(M). Thus, pdR S j(M) = λ (S j F•). Therefore, by Remark 11, we
obtain the result.

Remark 15. Let M a finitely generated R-module with 0 < pdR M < ∞. If M satisfies (SWj)

condition, by Theorem 10 and Auslander-Buchsbaum formula, we get pdR S j(M)≤ dim R. Thus,
by Corollary 4, we have the following cases:

(a) Case pdR M is even: j ≤ dim R
pdR M

.

(b) Case pdR M is odd: If min{β R
pdR M(M), j}= β R

pdRM(M), then j ≤
dimR−β R

pdR M(M)

pdR M−1
,

for pdR M ̸= 1 and for pdR M = 1, we get min{β R
1 (M), j} ≤ dimR. Now, if pdR M ̸= 1

and min{β R
1 (M), j}= j, then j ≤ dimR

pdR M
.

This means that the complexes S jF•, over a local ring of dimension d, do not always
produce minimal free resolutions of S jM for all j (see Example 2).

Example 2. Let R = k[[x, y, z, w]] be a ring of formal power series over a field k and let

I = (xw, xz, yw, yz) be a ideal of R. Since j = 3 >
dim R
pdR I

, the complex S3F• (in 3.3) not

produces a minimal free resolution for S3(I). Firstly, computing in MACAULAY2, the minimal
free resolutions of I and S3(I) are given respectively by

F• : 0 −→ R
φ2−→ R4 φ1−→ R4 −→ I −→ 0
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and

S3(I)• : 0 −→ R4 −→ R16 −→ R33 −→ R40 −→ R20 −→ S3(I)−→ 0,

where

[φ1] =


−y 0 −w 0
x 0 0 −w

0 −y z 0
0 x 0 z

 , [φ2] =


w

−z

−y

x

 .

Thus, pdR S3(I) = 4 = dim R.

On the other hand, now using the complex S3F• (in 3.3), we get

S3F• : 0 −→ D3(R)−→ R4 ⊗D2(R)−→
2
ΛR4 ⊗R⊕R4 ⊗D2(R)−→ R4 ⊗R⊗R4 ⊕

3
ΛR4 −→

−→ R4 ⊗
2
ΛR4 ⊕R4 ⊗R −→ D2(R4)⊗R4 −→ D3(R4)−→ 0.

Since grade(I1(φ2)) = 4 < 6, by Theorem 9, the ideal I ◁R does not satisfies (SW3) condition.
Hence S3F• is not an exact complex and consequently S3F• is not a minimal free resolution of
S3(I).

According to Remark 15 and Theorem 10, a natural question arises. Are there intervals
of j where S jF• is minimal free resolution for S j(M)? The next example illustrates that this can
happen.

Example 3. (HUNEKE, 1982, Example 1.3) The “generic" ideal of projective dimension one is
given by the ideal defined by the exact sequence

F• : 0 −→ Rn φ1−→ Rn+1 −→ I −→ 0

where [φ1] = (xrs) is a generic n by n+1 matrix over a field k, and let R= k[xrs] be the polynomial
ring over a field k. Let I be a ideal of R generated by the n by n minors of [φ1]. So, by (EAGON;
HOCHSTER, 1971, Corollary 4), we have

grade(It(φ1)) = (n− t +1)(n+2− t), t = 1, . . . , n. (3.5)

Checking the condition (b) of the Theorem 9, with n = r1, and using the equality 3.5, we get

grade(Ir1− j+1(φ1))≥ j, grade(Ir1− j+2(φ1))≥ j−1 and grade(Ir1(φ1))≥ 1.

Thus, the ideal I satisfies the condition (b). Now, if F• is a minimal free resolution, by Theorem
10 and Remark 15 item (b), S jF• is a minimal free resolution for S j(I) for j = 1, . . . , n

The elegance of the Example 3 above is that it gives us a class of ideals with a projective
dimension 1 that satisfy the (SWj) condition .
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Remark 16. Note that, by the equality 3.5, the ideal generated by the t by t minors of [φ1]

satisfies
grade(It(φ1))≥ n− t +1, for all t = 0,1, . . . , n. (3.6)

Therefore, by Example 3, we show that the ideals of projective dimension 1 that satisfy the
inequality 3.6 above also satisfy the (SWj) condition. In the following corollary, we will see that
we can obtain the same result in a more general context.

Corollary 5. Let M be a finitely generated R-module with pdR M = 1. Suppose that
grade(I j(φ1))≥ β R

1 (M)− j+1 hold for j = 1, . . . , β R
1 (M), then the complex S jF• is minimal

free resolution for S j(M) for j = 2, . . . , β R
1 (M).

Demonstration. Since pdR M = 1, by (AVRAMOV, 1981, Proposition 3), the (SW j) condition
is equivalent to grade(I j(φ1))≥ β R

1 (M)− j+1 for j = 1, . . . ,β R
1 (M). Now, from Theorem 10,

we have S jF• is a minimal free resolution for S j(M) for j = 2, . . . , β R
1 (M).

Let R be a Cohen Macaulay Noetherian domain and M be a finitely generated R-module
satisfying the grade conditions of the Corollary 5. For such modules, (HUNEKE, 1981) shows
that the grade conditions can be replaced by a relation involving the minimal number of generators
of Mp and the height(p) for all non-zero p ∈ Spec(R). In other words, we have the following
corollary.

Corollary 6. Let R be a local Cohen-Macaulay domain and M an R-module with a minimal free
resolution,

F• : 0 −→ Rm φ1−→ Rn −→ M −→ 0

Let It(φ1) denote the ideal in R generated by the t × t minors of [φ1] and µ(Mp,Rp)≤ n−m+

height(p)−1 for all non-zero primes p in R. Then, the complex S jF• is a minimal free resolution
for S j(M) for each j = 1, . . . , m.

Demonstration. Suppose that µ(Mp,Rp)≤ n−m+height(p)−1 for all non-zero primes p in R.
By (HUNEKE, 1981, Theorem 1.1), we get

height(It(φ1))≥ m+2− t for t = 1, . . . , m.

Now, since R is Cohen-Macaulay (BRUNS; HERZOG, 1993, Corollary 2.1.4),

grade(It(φ1)) = height(It(φ1))≥ m+2− t for t = 1, . . . ,m. (3.7)

Checking the condition (b) of the Theorem 9, with m = r1 and using the inequality 3.7, we get
the following inequalities

grade(Ir1− j+1(φ1))≥ j, grade(Ir1− j+2(φ1))≥ j−1 and grade(Ir1(φ1))≥ 1.
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Thus, M satisfies the condition (b). Now, by Theorem 10 and Remark 15 item (b), S jF• is a
minimal free resolution for S j(M) for j = 1, . . . , m. As we wanted to demonstrate.

Corollary 7. Let R be a local Cohen-Macaulay domain and I an ideal of R with a minimal free
resolution

F• : 0 −→ Rn φ1−→ Rn+1 −→ I −→ 0

If µ(Ip,Rp) ≤ height(p) for every non-zero prime p in R, then the complex S jF• is a minimal
free resolution for S j(I) for each j = 1, . . . , n.

Demonstration. Follow immediately of Corollary 6.

Once the minimality of free resolution S jF• is known, by the Corollary 2, we will be
able to extract information related to the Betti numbers of S j(M). And it is with this idea that we
start the next section.

3.2 On Betti numbers for symmetric powers
In the previous section, we showed that the free resolution S jF• carries the minimality of

the free resolution F•. With this, it is to be expected that something similar will happen with the
Betti numbers of M. And indeed, this is what we will see in the following proposition.

Proposition 9. Let M be a finitely generated R-module with pdR M = p < ∞. Suppose that S jF•

is a free resolution to S j(M) then S jF• is a minimal free resolution if and only if

(a) for p even,

β
R
t (S j(M)) = ∑

(a0,..., ap)

∑ai= j
∑ iai=t

(
β R

0 (M)+a0 −1
a0

)(
β R

1 (M)

a1

)(
β R

2 (M)+a2 −1
a2

)(
β R

3 (M)

a3

)
· · ·
(

β R
p (M)+ap −1

ap

)
;

(b) for p odd,

β
R
t (S j(M)) = ∑

(a0,..., ap)

∑ai= j
∑ iai=t

(
β R

0 (M)+a0 −1
a0

)(
β R

1 (M)

a1

)(
β R

2 (M)+a2 −1
a2

)(
β R

3 (M)

a3

)
· · ·
(

β R
p (M)

ap

)
;

for all t = 0, 1, . . . , l := pdR S j(M).

Demonstration. In fact, let F• : 0 −→ Fp
φp−→ Fp−1

φp−1−→ ·· · φ1−→ F0 be a minimal free resolution
for M. From (3.3) we obtain the following free finite complex

S jF• : 0 −→ (S jF•)l
dl−→ (S jF•)l−1

dl−1−→ ·· · d2−→ (S jF•)1
d1−→ (S jF•)0

for each integer j ≥ 2. Now, by Remark 9 and Lemma 2, we get that for p even
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rank(S jF•)t = ∑
(a0,..., ap)

∑ai= j
∑ iai=t

(
β R

0 (M)+a0 −1
a0

)(
β R

1 (M)

a1

)(
β R

2 (M)+a2 −1
a2

)(
β R

3 (M)

a3

)
· · ·
(

β R
p (M)+ap −1

ap

)

for all t = 0,1, . . . . , l. Similarly, for p odd, we obatin that

rank(S jF•)t = ∑
(a0,..., ap)

∑ai= j
∑ iai=t

(
β R

0 (M)+a0 −1
a0

)(
β R

1 (M)

a1

)(
β R

2 (M)+a2 −1
a2

)(
β R

3 (M)

a3

)
· · ·
(

β R
p (M)

ap

)

for all t = 0, 1, . . . , l.

Finally, the proof follows from the following fact: The free resolution S jF• is a minimal
free resolution for S j(M) if and only if dimk(TorR

t (k,S j(M))) = rank(S jF•)t t = 0, . . . , l.

Most prominent in the above Proposition 9 is that we show that the Betti numbers of
S j(M) depend on the Betti numbers of M. This leads us to think that certain properties regarding
the Betti numbers of M can be conveyed to the Betti numbers of S jF•.

Since the length of the free resolution S jF• depends on the projective dimension of
M, by the Corollary 4, we notice that a certain difficulty when trying to explain in a better
way the sum that appears in the Proposition 9 when pdR M > 2. Now when pdR M ≤ 2, we get
some interesting formulas. But before stating them, let us go to the following Corollary which
immediately follows from Theorem 10 and Proposition 9.

Corollary 8. Let M be a finitely generated R-module with pdR M = p < ∞. If M satisfies (SWj),
then

(a) for p even,

β
R
t (S j(M)) = ∑

(a0,..., ap)

∑ai= j
∑ iai=t

(
β R

0 (M)+a0 −1
a0

)(
β R

1 (M)

a1

)(
β R

2 (M)+a2 −1
a2

)(
β R

3 (M)

a3

)
· · ·
(

β R
p (M)+ap −1

ap

)
;

(b) for p odd,

β
R
t (S j(M)) = ∑

(a0,..., ap)

∑ai= j
∑ iai=t

(
β R

0 (M)+a0 −1
a0

)(
β R

1 (M)

a1

)(
β R

2 (M)+a2 −1
a2

)(
β R

3 (M)

a3

)
. . .

(
β R

p (M)

ap

)
;

for all t = 0, 1, . . . , pdR S j(M).

Corollary 9. Let M be a finitely generated R-module with projective dimension 1 such that
grade(I j(φ1))≥ β R

1 (M)− j+1, for all j = 1, . . . , β R
1 (M). Then

β
R
t (S j(M)) =

(
β R

0 (M)+ j− t −1
j− t

)(
β R

1 (M)

t

)
, for all t = 0, 1, . . . , pdR S j(M).
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Demonstration. Let F• be a minimal free resolution. By assumptions and by Corollary 5, the
complex

S jF• : 0 −→ D j−l(F0)⊗
l
ΛF1 −→ D j−l+1(F0)⊗

l−1
Λ F1 −→ ·· · −→ D j−1(F0)⊗

1
ΛF1 −→ D j(F0)⊗

0
ΛF1

is a minimal free resolution for S j(M), with l = pdR S j(M), for all j = 1, . . . , β R
1 (M). Now, by

Proposition 9 we obtain that

β
R
t (S j(M)) =

(
β R

0 (M)+ j− t −1
j− t

)(
β R

1 (M)

t

)
, for all t = 0, 1, . . . , l.

As we wanted to demonstrate.

Remark 17. Since, by the Corollary 4, pdR S j(M) = min{β R
1 (M), j} we get that the binomial(

β R
1 (M)

t

)
is well defined for all t = 0, 1, . . . , pdR S j(M).

The Corollary 9 above describes the Betti numbers of S j(M) in the case pdR M = 1. For
this case, we get a simple formula due to the complex S jF• in the Remark 12. Now for the case
where pdR M = 2, the complex S jF• already starts to present some difficulties, in the sense that
we need to unsolve the sum in 9 from a system of equations. In this case, we obtain the following
Corollary.

Corollary 10. Let M be a finitely generated R-module with pdR M = 2. If M satisfies (SWj)

condition, then

(a) for j ≥ t,

β
R
t (S j(M)) =

⌊ t
2 ⌋

∑
r=0

(
β R

2 (M)+ r−1
r

)(
β R

1 (M)

t −2r

)(
β R

0 (M)+ j− t + r−1
j− t + r

)
;

(b) for j < t,

β
R
t (S j(M)) =

min{ j,⌊ t
2⌋}

∑
r=t− j

(
β R

2 (M)+ r−1
r

)(
β R

1 (M)

t −2r

)(
β R

0 (M)+ j− t + r−1
j− t + r

)
;

for all t = 0, 1, . . . , pdR S j(M).

Demonstration. Observe that, by Proposition 9, is enough to calculate the non-negative integers
solutions of system a1 +2a2 = t

a0 +a1 +a2 = j
(3.8)

For this we consider the following cases: j ≥ t and j < t.
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(a) Case j ≥ t. Fixing a2 the system above is equivalent toa0 +a1 = j−a2

a1 = t −2a2

Whose solutions are given by a1 = t −2a2 and a0 = j− t +a2. The conditions 0 ≤ a0 ≤ j

and 0 ≤ a1 ≤ n imply that t − j ≤ a2 ≤ t, 0 ≤ a2 ≤ ⌊ t
2
⌋ and therefore the solutions of

system (3.8) above are given by triple

(a0, a1, a2) = (k− t +a2, t −2a2, a2) where 0 ≤ a2 ≤ ⌊ t
2
⌋.

Since M satisfy (SWj) condition, by Proposition 9, we obtain that

β
R
t (S j(M)) =

⌊ t
2⌋

∑
r=0

(
β R

2 (M)+ r−1
r

)(
β R

1 (M)

t −2r

)(
β R

0 (M)+ j− t + r−1
j− t + r

)
.

(b) Case j < t. Analogously, fixing a2, the conditions 0 ≤ a0 ≤ j and 0 ≤ a1 ≤ j imply that
t − j ≤ a2 ≤ min{ j,⌊ t

2
⌋}. In this case, the solutions of system (3.8) above are given by

triple

(a0, a1, a2) = ( j− t +a2, t −a2, a2) where t − j ≤ a2 ≤ min{ j,⌊ t
2
⌋}.

Follow that

β
R
t (S j(M)) =

min{ j,⌊ t
2 ⌋}

∑
r=t− j

(
β R

2 (M)+ r−1
r

)(
β R

1 (M)

t −2r

)(
β R

0 (M)+ j− t + r−1
j− t + r

)
.

As we wanted to demonstrate.

Note that we are always using the condition that M satisfies the condition (SWj). But
what happens if we do not make that assumption? We end this chapter by illustrating this in the
example below.

Example 4. Let R = k[[x1, x2, x3, y1, y2]] be a ring of formal power series over a field k and let
I = (x1x2y1, x1x3y1, x2x3y1, x1x2y2, x1x3y2, x2x3y2) be an ideal of R. By MACAULAY2, we
obtain a minimal free resolution of I given by

F• : 0 −→ R2 φ2−→ R7 φ1−→ R6 −→ I −→ 0

where φ1 and φ2 have a matrix representation given by

[φ1] =



−x3 0 0 0 −y2 0 0
x2 −x2 0 0 0 −y2 0
0 x1 0 0 0 0 −y2

0 0 −x3 0 y1 0 0
0 0 −x2 x2 0 y1 0
0 0 0 x1 0 0 y1


; [φ2] =



y2 y2

0 y2

−y1 −y1

0 −y1

−x3 −x3

x2 0
0 x1


.
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Notice that grade(I4(φ1))> 2, grade(I5(φ1))> 1 and grade(I2(φ2)) = 4. So, the ideal I satisfies
(SW2) condition. Now, by Theorem 10, we get that S2F• is a minimal free resolution of S2(I)

given by

S2F• : D2(R2)−→ R7 ⊗R2 −→
2
ΛR7 ⊕R6 ⊗R2 −→ R6 ⊗R7 −→ D2(F0).

On the other hand, by MACAULAY2, we get the minimal free resolution of S2(I)

S2(I)• : 0 −→ R3 −→ R14 −→ R33 −→ R42 −→ R21 −→ S2(I)−→ 0.

We can see that the ranks of these two minimal free resolution are the same, i. e., the Betti
numbers are the same ( see Table 1).

Similarly, we compute the minimal free resolution of S3(I). In fact, the complex S3F• is
given

S3F• : 0 −→ D3(R2)−→ R7⊗D2(R2)−→
2
ΛR7⊗R⊕R6⊗D2(R2)−→ R7⊗R2⊗R6⊕

3
ΛR7 −→

−→ D2(R6)⊗R2 ⊕R6 ⊗
2
ΛR7 −→ D2(R6)⊗R7 −→ D3(R6)−→ 0.

Note that, by Theorem 9, the complex S3F• is not a free resolution for S3(I), because the ideal
I2(φ2) satisfy grade(I2(φ2))< 6 (does not satisfy the (SW3) condition). On the other hand, by
MACAULAY2, we get a minimal free resolution of S3(I)

S3(I)• : 0 −→ R4 −→ R32 −→ R97 −→ R160 −→ R146 −→ R56 −→ S3(I)−→ 0.

We see that the ranks coming from S3F• do not coincide with the Betti numbers of a minimal
free resolution of S3(I)( see Table 1 ).

Table 1

t-th Betti Number S2(I) S3(I)
0 21 56
1 42 127
2 33 147
3 14 119
4 3 60

Source: Research data.
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CHAPTER

4
BOUNDS AND APPLICATIONS

The purpose of this chapter is to use the results obtained previously. First we show that
the Betti numbers of S j(M) are bounded from above by a binomial expression, for modules
of projective dimension p ≥ 1 that satisfy the condition (SW j). In particular, i.e. when p = 1,
we show that β R

t (S j(M)) is bounded below and above. Later we make some applications for
modules of linear type and point out a similarity with the famous Buchsbaum-Eisenbud-Horrocks
conjecture.

4.1 Lower and upper bounds
In the following Propositions, we show that there are upper bounds for the numbers

of Betti β R
t (S j(M)), which are independent of t. Furthermore, such bounds have a general

expression in the sense that they serve any projective dimension p of M.

Proposition 10. Let M be a finitely generated R-module with pdRM = p ≥ 1. If M satisfies
(SWj), then

(a) for p even,

β
R
t (S j(M))≤


p

∑
i=0

β
R
i (M)+ j(

p+2
2

)

j

 ;

(b) for p odd,

β
R
t (S j(M))≤


p

∑
i=0

β
R
i (M)+ j(

p+1
2

)

j

 ;

for all t = 0, 1, . . . , pdR S j(M).

Demonstration. Suppose that p is even, in the case p odd the proof follows similarly. By
hypothesis M satisfies (SWj) condition. So, by Corollary 8, we obtain the following equality



52 Chapter 4. Bounds and applications

β R
t (S j(M)) = ∑

(a0,..., ap)

∑ai= j
∑ iai=t

(
β R

0 (M)+a0−1
a0

)(
β R

1 (M)
a1

)(
β R

2 (M)+a2−1
a2

)(
β R

3 (M)
a3

)
· · ·
(

β R
p (M)+ap−1

ap

)

≤ ∑
(a0,..., ap)

∑ai= j

(
β R

0 (M)+a0−1
a0

)(
β R

1 (M)
a1

)(
β R

2 (M)+a2−1
a2

)(
β R

3 (M)
a3

)
· · ·
(

β R
p (M)+ap−1

ap

)
,

(4.1)

where t = 0, 1, . . . , pdR S j(M). Since ai ≤ j, for all even integer positive i between 0 and p, we
get that (

β R
i (M)+ai −1

ai

)
≤
(

β R
i (M)+ j

ai

)
. (4.2)

Of inequalities 4.1 and 4.2 we obtain that

β
R
t (S j(M))≤ ∑

(a0,..., ap)

∑ai= j

(
β R

0 (M)+ j
a0

)(
β R

1 (M)

a1

)(
β R

2 (M)+ j
a2

)(
β R

3 (M)

a3

)
· · ·
(

β R
p (M)+ j

ap

)
.

Now, using the Generalized Vandermonde’s identity, follow that

β
R
t (S j(M))≤


p

∑
i=0

β
R
i (M)+ j(

p+2
2

)

j

 .

As we wanted to demonstrate.

As an immediate consequence of the Proposition 10 above, we have the following
corollary.

Corollary 11 (Bound Low-Upp). Let M be a finitely generated R-module with pdRM = 1
satisfying (SWj) condition. Then the following inequalities hold

(
β R

1 (M)

t

)
≤ β

R
t (S j(M))≤


p

∑
i=0

β
R
i (M)+ j

j

 , for all t = 0, 1, . . . , pdRS j(M).

Demonstration. It follows immediately from the Corollary 9 Proposition 10 item (b) with
p = 1.

We saw in the Corollary 9 that, for modules of projective dimension 1, the (SWj)

condition can be replaced when the grade of the ideals I j(φ1) satisfies a certain inequality. In this
case, the following corollary shows that M satisfies the inequalities obtained in Corollary 11 for
all j = 1, . . . , β R

1 (M).
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Corollary 12. Let R be a local ring and M be a finitely generated R-module with pdR(M) = 1
such that grade(I j(φ1))≥ β R

1 (M)− j+1, for all j = 1, . . . , β R
1 (M). Then,

(
β R

1 (M)

t

)
≤ β

R
t (S j(M))≤


p

∑
i=0

β
R
i (M)+ j

j

 , for all t = 0,1, . . . , pdRS j(M).

Demonstration. It follows immediately from the Corollary 9.

When we consider modules of projective dimension 2, we observe that something similar
happens to the inequality obtained in the Corollary 11. As we will see in the following Corollary.

Corollary 13. Let M be a finitely generated R-module with pdRM = 2. If M satisfy (SWj)

condition, then

(a) If j ≥ t, then β R
t (S j(M))≥

(
β R

1 (M)

t

)
, for all t = 0,1, . . . , j;

(b) If j < t, then β R
t (S j(M))≥

(
β R

1 (M)

2 j− t

)
, for all t = j+1, . . . , pdRS j(M).

Demonstration. Since M satisfies (SWj) condition, by Theorem 10, S jF• is a minimal free
resolution for S j(M). So, by Corollary 10, we need consider two cases j ≥ t and j < t.

(a) For j ≥ t, we obtain that

β R
t (S j(M)) =

⌊ t
2⌋

∑
r=0

(
β R

2 (M)+ r−1
r

)(
β R

1 (M)

t −2r

)(
β R

0 (M)+ j− t + r−1
j− t + r

)

≥
⌊ t

2⌋

∑
r=0

(
β R

1 (M)

t −2r

)

≥
(

β R
1 (M)

t

)
, for all t = 0, 1, . . . , j.

(b) Similarly, for j < t, we get that

β R
t (S j(M)) =

min{ j,⌊ t
2 ⌋}

∑
r=t− j

(
β R

2 (M)+ r−1
r

)(
β R

1 (M)

t −2r

)(
β R

0 (M)+ j− t + r−1
j− t + r

)

≥
(

β R
1 (M)

2 j− t

)
, for all t = j+1, . . . , pdRS j(M).
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The Corollary 11 and Corollary 13 show that we can find lower bounds for the Betti
numbers β R

t (S j(M)) for all 0 ≤ t ≤ pdR(S j(M)), when M has projective dimension 1 or 2. On
the other hand for pdR M ≥ 3, the job of getting lower bounds becomes computationally more
difficult. This is due to the fact that, when considering such dimensions, the positive integer
solutions of the system of equations in 3.4.

In addition to obtaining lower and upper bounds, we will see in the following proposition
that the Betti numbers of two arbitrary symmetric powers satisfy the order relation β R

t (S j(M))<

β R
t (S j+1(M)) for any t = 0, 1, . . . , pdR S j+1(M). In particular, µ(S j(M))< µ(S j+1(M)).

Proposition 11. Let M be a finitely generated R-module with pdRM = 1. If M satisfies the (SWj)

and (SW j+1) conditions, then

β
R
t (S j(M))< β

R
t (S j+1(M)),

for all t = 0, 1, . . . , pdR S j+1(M).

Demonstration. As M has a projective dimension 1 and satisfies the (SWj) and (SWj+1) con-
ditions, by the Theorem 10, we obtain that the complexes S jF• and S j+1F• are finite minimal
free resolutions of S j(M) and S j+1(M), respectively. Let l = pdR S j+1(M). By the Corollary
4, we have that l = min{β R

1 (M), j + 1} and thus pdR S j(M) ≤ l. Note that if l = j + 1 then
pdR S j(M) = j and therefore β R

j+1(S j(M)) < β R
j+1(S j+1(M)). Now, for all t = 0, 1, . . . , j, by

the Corollary 8 we get that

β
R
t (S j+1(M))=

(
β R

0 (M)+ j− t
j+1− t

)(
β R

1 (M)

t

)
=

β R
0 (M)+ j− t

j+1− t

(
β R

0 (M)+ j− t −1
j− t

)(
β R

1 (M)

t

)

=
β R

0 (M)+ j− t
j+1− t

β
R
t (S j(M))

> β R
t (S j(M)).

Soon,

β
R
t (S j(M))< β

R
t (S j+1(M)),

for all t = 0, 1, . . . , pdR S j+1(M). The case where l = β R
1 (M) follows analogously.

Corollary 14. Let M be a finitely generated R-module with pdRM = 1 and n ≥ 2 be a integer. If
M satisfies (SWj) condition for all j = 2, . . . , n, then

β
R
t (S j(M))< β

R
t (Sn(M)),

for all t = 0, 1, . . . , pdR Sn(M).

Demonstration. It follows by applying the Proposition 11 inductively.
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Corollary 15. Let R be a local Cohen-Macaulay domain and I an ideal of R having a minimal
free resolution

F• : 0 −→ Rn φ1−→ Rn+1 −→ I −→ 0

If the ideal I satisfy µ(Ip,Rp)≤ height(p) for every non-zero prime p in R, by Corollary 9 and 14,
we obtain that the Betti numbers of all symmetric powers, between 2 and n, satisfy the following
decreasing relation

β
R
t (S2(I))< β

R
t (S3(I))< · · ·< β

R
t (Sn(I)),

t = 2, . . . , pdR Sn(I). For these ideals, as we will see in the next section, this same order of
descent is also satisfied when we consider the powers I j. That is,

β
R
t (I

2)< β
R
t (I

3)< · · ·< β
R
t (I

n),

for all t = 2, . . . , pdR In.

4.2 Applications
This section is dedicated to some applications. Here we show that the class of modules

of linear type of projective dimension 1 satisfies the (SWj) condition and consequently we obtain
formulas for the Betti numbers of the jth ordinary power of an ideal of linear type. Next, although
immediate, we highlight a fact similar to the Buchsbaum-Eisenbud-Horrocks conjecture, which
is satisfied for symmetric powers S j(M).

4.2.1 Linear type modules and their Betti numbers

Definition 17. (FUKUMURO; KUME; NISHIDA, 2015) Let R be a Noetherian ring with total
ring Q and let M be a finitely generated R-module with rank r. Suppose that M is torsion-free.
Then, there exists an embedding σ : M ↪→ F , where F is a finitely free generated R-module. We
define RR(M) to be the image of the homomorphism

SR(σ) : SR(M)−→ SR(F)

of R-algebras and call it the Rees algebra of M.

Let us notice that SR(F) is a polynomial ring and RR(M) is its subalgebra. Since the
R-torsion part of SR(M), which is denoted by TR(SR(M)), coincides with de kernel of SR(σ)

(SIMIS; ULRICH; VASCONCELOS , 2003), we have RR(M) ∼= SR(M)/TR(SR(M)), which
means that R(M) does not depend of choice of σ . We say M is an R-module of linear type if
TR(SR(M)) = 0, that is SR(M)∼= RR(M).

Remark 18. The above definition generalizes the idea of Rees algebra of ideals. In the context
of ideals, we can also define its Rees algebra as follows.
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Definition 18. Let R be a ring and I ⊆ R an ideal. The Rees Algebra of I, denoted by RR(I) is a
subring of R[t]

RR(I) =
∞

⊕
n=0

Intn = R+ It + · · ·+ Intn + · · · ⊆ R[t]

where t is an indeterminates.

When I is finitely generated ideal, for example I = ( f1, . . . , fk) then

RR(I) = R[ f1t, . . . , fkt]⊆ R[t].

This implies that the following sequence is exact

R[t1, . . . , tk]
ϕ−→ RR(I)−→ 0.

The Kernel of ϕ , which we denote by J , is a homogeneous ideal with standard graduation
deg(t j) = 1 for all j = 1, . . . , k. In this case J can be defined by

J = {F(t1, . . . , tk) ∈ R[t1, . . . , tk]|F( f1t, . . . , fkt) = 0}.

The ideal J is said presentation ideal of RR(I) with relation to f1, . . . , fk.

Now consider the R-modules homorphism

φ : Rk −→ I

(a1, . . . , ak) 7−→
k

∑
i=1

ai fi

We have that φ induces a R-algebras onto homomorphism

β : R[t1, . . . , tk]−→ SR(I)

Hence

SR(I)∼= R[t1, . . . , tk]/Ker(β )

On the other hand, as J = Ker(β ) is homogeneous ideal, follow that J is generated by
homogeneous F( f1, . . . , fk) such that F(t1, . . . , tk)= 0. So, we can factor φ through the following
commutative diagram

R[t1, . . . , tk]
φ //

β

��

RR(I)

SR(I)
α

88

Where α is defined by F(t1, . . . , tk) 7→ F( f1t, . . . , fkt). Hence we get the following relations

SR(I)∼= R[t1, . . . , tk]/Ker(β )−→ R[t1, . . . , tk]/J ∼= RR(I).

Definition 19. We say that an ideal I is of linear type if α is an isomorphism.
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If R is a Noetherian domain, the lemma below shows that linear type ideals can be
characterized via the freeness of torsion of its symmetric algebra.

Lemma 4. Let be R an Noetherian domain and I ̸= 0 ideal of R. Are equivalent:

(a) SR(I) is a domain;

(b) SR(I) is torsion free;

(c) I is of linear type.

Demonstration. See (MICALI, 1964).

Remark 19. In this work, we will denote the jth graded component of Rees algebra from M by
R j(M).

Remark 20. If M is of linear type module then R j(M) ∼= S j(M) for all j. Therefore, we can
explain the Betti numbers of jth graded component of R j(M) through jth symmetric power
S j(M). In other words, we have the following proposition and our first application.

Proposition 12. Let M be a linear type module of R with pdR M = p < ∞. If M satisfy (SWj)

condition, then

(a) for p even,

β
R
t (R j(M)) = ∑

(a0,..., ap)

∑ai= j
∑ iai=t

(
β R

0 (M)+a0 −1
a0

)(
β R

1 (M)

a1

)(
β R

2 (M)+a2 −1
a2

)(
β R

3 (M)

a3

)
· · ·
(

β R
p (M)+ap −1

ap

)
;

(b) for p odd,

β
R
t (R j(M)) = ∑

(a0,..., ap)

∑ai= j
∑ iai=t

(
β R

0 (M)+a0 −1
a0

)(
β R

1 (M)

a1

)(
β R

2 (M)+a2 −1
a2

)(
β R

3 (I)
a3

)
· · ·
(

β R
p (M)

ap

)
;

for all t = 0, 1, . . . , pdR R j(M).

Proof. Since M is a linear type module, we get the isomorphism RR(M) ∼= SR(M) of graded
algebra which implies that S j(M) ∼= R j(M) for all j. Thus, by Corollary 8, we obtain the
result.

Remark 21. In the case where M = I is an ideal, the isomorphism mentioned in Remark 20
give us the isomorphism I j ∼= S j(I). Therefore, through the invariance of the Betti numbers by
isomorphism, we obtain the following corollary.

Corollary 16. Let I be a linear type ideal of R with pdR I = p < ∞. If I satisfy (SW j) condition,
then
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(a) for p even,

β
R
t (I

j) = ∑
(a0,..., ap)

∑ai= j
∑ iai=t

(
β R

0 (I)+a0 −1
a0

)(
β R

1 (I)
a1

)(
β R

2 (I)+a2 −1
a2

)(
β R

3 (I)
a3

)
· · ·
(

β R
p (I)+ap −1

ap

)
;

(b) for p odd,

β
R
t (I

j) = ∑
(a0,..., ap)

∑ai= j
∑ iai=t

(
β R

0 (I)+a0 −1
a0

)(
β R

1 (I)
a1

)(
β R

2 (I)+a2 −1
a2

)(
β R

3 (I)
a3

)
· · ·
(

β R
p (I)
ap

)
;

for all t = 0, 1, . . . , pdR I j.

As already stated in the Remark 2 (AVRAMOV, 1981, p. 249), and later (FUKUMURO;
KUME; NISHIDA, 2015, p. 106), characterize linear type modules with projective dimension 1
as a function of determinantal ideals. With this idea in mind, we show in the following proposition
that such modules satisfy the (SWj) condition for a finite amount of j. In particular, we get a
class of modules that satisfy the (SWj) condition. Without further ado, we have the following
proposition.

Proposition 13. Let M be an R-module of linear type with projective dimension 1. Then

β
R
t (R j(M)) =

(
β R

0 (M)+ j− t −1
j− t

)(
β R

1 (M)

t

)
for all t = 0, 1, . . . , pdR R j(M).

Demonstration. Since pdR M = 1, we get a minimal free resolution

F• : 0 −→ Rβ R
1 (M) φ−→ Rβ R

0 (M) −→ M −→ 0,

such that rank M = β R
0 (M)−β R

1 (M). Furthermore, since M is of linear type, TR(SR(M)) = 0.
Thus, by (AVRAMOV, 1981, Proposition 3), we obtain that grade(I j(φ))≥ β R

1 (M)− j+2 for
all 1 ≤ j ≤ β R

1 (M). Therefore, by Corollary 8 and Proposition 12 follow the result.

In particular, if I is a linear ideal with a projective dimension 1, the jth ordinary power
of the ideal I has its Betti numbers explained by the formula

β
R
t (I

j) =

(
β R

0 (I)+ j− t −1
j− t

)(
β R

1 (I)
t

)
,

for all t = 0, 1, . . . , pdR I j.

Computing minimal free resolutions of powers of ideals is not an easy task. As well as
getting your Betti numbers. In this sense, the above Proposition 13 summarizes this work by just
calculating a minimal free resolution of I.
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Remark 22. Note that the above proposition was obtained through the fact that linear type
modules of projective dimension 1 satisfy the (SWj) condition. But the reciprocal does not
always happen. Below is an example of an ideal that has a projective dimension 1, and that
satisfies the condition (SW2) but is not linear type ideal.

Example 5. Let R = k[[x, y, z]] be a ring of formal power series over a field k and let the ideal
of R given by I = (yz2, x2z, x3y2) as in the Example 1. We have already seen that I satisfies the
condition (SW2). But, by Macaulay2, I is not linear type ideal.

The Example 5 above also justifies that there must be a larger class of modules that
satisfy the (SWj) condition.

Remark 23. Unfortunately, the result obtained in the Proposition 13 cannot be generalized to
any finite projective dimension p. This is due to the fact that there are linear type ideals that have
a projective dimension greater than 1 and that do not satisfy the condition (SWj). The following
example illustrates this well.

Example 6. Let R = k[[x, y, z, w, s]] be a ring of formal power series over a field k and linear
type ideal I = (zws, xyz, xyw, xys). By Macaulay2, we get a minimal free resolution of I given
by

F• :−→ R1 φ−→ R4 −→ R4 −→ I −→ 0

where the map φ have matrix representation

[φ ] =


s

−w

z

0

 .

Thus, pdR I = 2. As I1(φ) = (s, w, z), which implies that grade(I1(φ))< 4, we obtain that the
ideal I does not satisfy the (SW2) condition.

Due to the fact that linear type modules behave well under the (SWj) condition, when
they have a projective dimension 1, the corollary below shows that the inequalities obtained in
the Corollary 11.

Corollary 17. Let M be an R-module of linear type with projective dimension 1. Then

(
β R

1 (M)

t

)
≤ β

R
t (R j(M))≤


p

∑
i=0

β
R
i (M)+ j

j

 , for all t = 0, 1, . . . , pdRR j(M).

Demonstration. It follows immediately from the Proposition 13 and Corollary 12.



60 Chapter 4. Bounds and applications

In particular, by Corollary 17 above, if I is a linear ideal with a projective dimension 1
we obtain that

(
β R

1 (I)
t

)
≤ β

R
t (I

j)≤


p

∑
i=0

β
R
i (I)+ j

j

 , for all t = 0, 1, . . . , pdR I j.

To end this subsection, we leave the following question.

Question C: Is there a class larger than the class of modules of linear type so that the
condition (SW j) is satisfied?

4.2.2 Buchsbaum-Eisenbud-Horrocks conjecture Versus symmetric
powers

In order to obtain some applications let us remember the famous Buchsbaum-Eisenbud-
Horrocks conjecture (BEH).

Buchsbaum-Eisenbud-Horrocks conjecture (BEH): Let (R,m,k) be a d-dimensional
Noetherian local ring, and let M be a finitely generated nonzero R-module. If M has finite length
and finite projective dimension, then for all i ≥ 0, the Betti numbers of M over R satisfy the
inequality

β
R
i (M)≥

(
d
i

)
.

This conjecture has a positive answer for local rings with dimension ≤ 4 (see (AVRAMOV;
BUCHWEITZ, 1993)), but for larger dimensions the problem still open. Some positive answers in
certain cases are provided, for instance, in (EVANS; GRIFFITHS, 1985), (CHARALAMBOUS,
1991), (SANTONI, 1990) and (CHANG, 1997).

Despite being an immediate consequence of the results obtained in the previous sections,
we would like to highlight here an inequality similar to the inequality in the (BEH) conjecture.
When the module has projective dimension 1 and carries certain additional properties, the
following proposition states that the Betti numbers of its jth symmetric power satisfy the
inequality in the (BEH) conjecture.

Proposition 14. Let R be a local ring of dimension d and M be a finitely generated R-module
with pdRM = 1. If M satisfies (SWj) condition and β R

1 (M)≥ d, then

β
R
t (S j(M))≥

(
d
t

)
, for all t = 0, 1, . . . , pdR S j(M).

Demonstration. Since pdR M = 1 and satisfying (SWj) condition, by Corollary 8, we obtain

β
R
t (S j(M))≥

(
β R

1 (M)

t

)
, for all t = 0, 1, . . . , pdR S j(M). (4.3)
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Now by hypothesis β R
1 (M)≥ d, thus

(
β R

1 (M)

t

)
≥
(

d
t

)
. Therefore, by inequality 4.3, we obtain

the result.

The next corollary easily follows from Propositions 11 and 14.

Corollary 18. Let R be a local ring of dimension d and I be an ideal of linear type with projective
dimension 1 such that β R

1 (I)≥ d. Then, for all j = 1, . . . ,β R
1 (I),

β
R
t (I

j)≥
(

d
t

)
for all t = 0, 1, . . . , pdR I j.

Note that in the Proposition 14, in addition to the condition (SWj), we need to impose
that β R

1 (M) ≥ d to obtain the sought inequality. This motivates us to look for which types of
modules have the first Betti number greater than or equal to the ring dimension. An answer to
this was found within the fiber product which we will mention below.

Definition 20. Let (S, s, k) and (T, t, k) be commutative local rings, and let S
πS
↠ k

πT
↞ T be

surjective homomorphisms of rings. The fiber product

S×k T = {(s, t) ∈ S×T | πS(s) = πT (t)},

is a Noetherian local ring with maximal ideal s⊕ t, residual field k, and it is a subring of the
usual direct product R×S see (ANANTHNARAYAN; AVRAMOV; MOORE , 2012, Lemma
1.2). The fiber product is deemed non-trivial provided neither S nor T is equal to k.

Proposition 15. Let S×k T be a d-dimensional local ring. Let M be a finitely generated S-module
with pdS×kT M = 1. If M satisfies (SW j) condition, then

β
S×kT
t (S j(M))≥

(
β T

1 (k)
t

)
.

for all t = 0, 1, . . . , pdS×kT S j(M).

Demonstration. Since pdS×kT M = 1 and satisfying (SW j), by Corollary 8, we get

β
S×kT
t (S j(M))≥

(
β

S×kT
1 (M)

t

)
, for all t = 0, 1, . . . , pdS×kT S j(M). (4.4)

Now, by (MOORE, 2009, Theorem 1.8), one obtain that β
R×kS
1 (M) = β S

0 (M)β T
1 (k)+β S

1 (M).

Thus, β
R×kS
1 (M)≥ β T

1 (k). Therefore, by inequality 4.4, obtain the result.

We showed in the Proposition 15 above that, although we are considering a minimal free
resolution on the fiber product S×k T , we only need to take a minimal free resolution of k on one
of the pieces of the fiber product to lower the numbers β

S×kT
t (S j(M)). In particular, we will see

in the following corollary that when we consider one of the pieces of the fiber product S×k T to
be regular, we also obtain a similar inequality in the (BEH) conjecture.
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Corollary 19. Let S×k T be a d-dimensional local ring with d := dim(T )≥ dim(S) and T is
a regular local ring. Let M be a finitely generated S-module with pdS×kT M = 1. If M satisfies
(SWj) condition, then

β
S×kT
t (S j(M))≥

(
d
t

)
.

for all t = 0, 1, . . . , pdS×kT S j(M).

Demonstration. In fact, since T is a regular local ring, then β T
1 (k)≥ d. Now, by Proposition 15

the result is immediate.

Remark 24. By Corollary 19, suppose there is an ideal of linear type I in S×k T , with pdR I = 1
and d := dim(T )≥ dim(S) where T is a regular local ring. Then,

β
S×kT
t (I j)≥

(
d
t

)
.

for all t = 0, 1, . . . , pdS×kT I j.

Finally, note that the inequality β R
1 (M)≥ d occurs for modules that satisfy the (BEH)

conjecture. Adding the (SW j) condition and pdR M = 1, by Proposition 14, we get that the
inequality in the conjecture is also satisfied for the module S j(M). This is,

β
R
t (S j(M))≥

(
β R

1 (M)

t

)
, for all t = 0, 1, . . . , pdR S j(M).
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APPENDIX

A
COMPUTATIONAL RESULTS

Here are some independent results used throughout the text.

Below, we list two theorems that helped us in building examples of linear-type ideals.

Theorem 11. (LA BARBIERA; STAGLIANÒ, 2014, Theorem 3.1) Let It ⊂R= k[x1, . . . ,xn],n>

1. It is of linear type if and only if t = n−1.

Theorem 12. (LA BARBIERA; STAGLIANÒ, 2014, Theorem 3.2) Let S= k[x1, . . . ,xn;y1, . . . ,ym],

n,m > 1. The following conditions hold:

(a) L = IsJr is of linear type if and only if s = n−1 and r = m or s = 1 and r = m (resp. s = n

and r = m−1 or r = 1).

(b) L = IsJr + Is+1Jr−1 is of linear type if and only if s = n−1 and r = m.

(c) L = Jr + IsJt is of linear type if and only if r = m,s = n, t = 1 and m = n+1.

Although the theorem below is the same theorem produced by (AVRAMOV, 1981,
p. 249), we chose to reference it here because it presents a more elementary proof and with a
different perspective.

Theorem 13. (FUKUMURO; KUME; NISHIDA, 2015, Theorem 1.1) The following conditions
are equivalent:

(a) grade(I j(A))≥ m− j+2 for all j = 1,2, . . . ,m.

(b) M has rank n−m and TR(S(M)) = 0.
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