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RESUMO

MEDINA-TEJEDA, T. A. Uma nova abordagem da geometria diferencial de fron-
tais no espaço euclidiano. 2021. 90 p. Tese (Doutorado em Ciências – Matemática)
– Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, São
Carlos – SP, 2021.

Neste trabalho investigamos a geometria diferencial de superfícies singulares conhecidas
como frontais. Provamos um resultado semelhante ao teorema fundamental das superfí-
cies regulares na geometria diferencial clássica, que estende o teorema clássico aos frontais
no espaço Euclidiano. Além disso, caracterizamos de forma simples essas superfícies sin-
gulares e suas formas fundamentais com propriedades locais na diferencial de sua parame-
trização e decomposições nas matrizes associadas às formas fundamentais. Em particular,
introduzimos novos tipos de curvaturas que podem ser usadas para caracterizar as frentes
de onda. Por outro lado, investigamos as condições necessárias e suficientes para esten-
der e delimitar a curvatura Gaussiana, curvatura média e curvaturas principais perto de
todos os tipos de singularidades das frentes. Além disso, estudamos a convergência para
limites infinitos desses invariantes geométricos e mostramos como isso está estreitamente
relacionado a uma propriedade de aproximação de frentes por superfícies paralelas.

Palavras-chave: Frontal, Frente, Curvatura Gaussiana , Curvatura Média, Curvaturas
Principais.





ABSTRACT

MEDINA-TEJEDA, T. A. A new approach to the differential geometry of frontals
in the Euclidean space. 2021. 90 p. Tese (Doutorado em Ciências – Matemática) –
Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, São
Carlos – SP, 2021.

In this work we investigate the differential geometry of singular surfaces known as frontals.
We prove a similar result to the fundamental theorem of regular surfaces in classical
differential geometry, which extends the classical theorem to the frontals in Euclidean 3-
space. Also, we characterize in a simple way these singular surfaces and its fundamental
forms with local properties in the differential of its parametrization and decompositions
in the matrices associated to the fundamental forms. In particular we introduce new
types of curvatures which can be used to characterize wave fronts. On the other hand, we
investigate necessary and sufficient conditions for the extendibility and boundedness of
Gaussian curvature, Mean curvature and principal curvatures near all types of singularities
of fronts. Furthermore, we study the convergence to infinite limits of these geometrical
invariants and we show how this is tightly related to a property of approximation of fronts
by parallel surfaces.

Keywords: Frontal, Front, Gaussian curvature, Mean curvature, Principal curvatures.
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CHAPTER

1
INTRODUCTION

In recent years, there is a great interest in the differential geometry of a special
type of singular surface, namely, frontal. Many papers are dedicated to the study of
frontals from singularity theory and geometry viewpoints (see (SAJI, 2010; ISHIKAWA,
2018; ISHIKAWA, 2020; MEDINA-TEJEDA, 2019) and the references therein), in partic-
ular wavefronts, a subclass of these (ARNOL’D; GUSEIN-ZADE; VARCHENKO, 2012;
ARNOL’D, 1990; ISHIKAWA, 2018; MARTINS et al., 2016; MEDINA-TEJEDA, 2019;
MURATA; UMEHARA, 2009; KOSSOWSKI, 2004; SAJI; UMEHARA; YAMADA, 2009;
TERAMOTO, 2016; TERAMOTO, 2019a; TERAMOTO, 2019b). The word “front” comes
from physical fronts, bounding a domain in which a physical process propagates at a fixed
moment in time. For instance, a wave propagating in the 3-Euclidean space with constant
speed starting from each point of an ellipsoid in direction of the interior of this (the ini-
tial domain to be perturbed) creates a equidistant surface at time t bounding an interior
part of the ellipsoid that it has not been perturbed at time t. In this case, the complete
equidistant surface is called the wavefront, this changes as time passes leading to the for-
mation of singularities along the whole equidistant surface in any time (ARNOL’D, 1990).
The notion of ”frontal” emerged as a natural generalization of wavefront in the case of
hypersurfaces and a generalized definition with equivalences can be found in (ISHIKAWA,
2018).

Much of the existing work focuses on a generic set (in Whitney’s topology) of these
singular surfaces that have certain good types of singularities. The geometric properties
of the generic surfaces are not necessarily satisfied for the entire class of singular surfaces.
The methods to study generic singular surfaces rely on results from the theory of singular-
ities and differential geometry, and in many cases depend upon special coordinate systems
called adapted coordinate systems. In this work we introduce tools that allow us to use
arbitrary coordinate systems and frames to investigate the geometry of singular surfaces
in a neighborhood of a singular point. Our results do not depend on genericity assump-
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tions and apply to any proper frontals or wavefronts. We are interested in exploring the
geometrical behavior near the most degenerate types of singularities.

The behavior of Gaussian curvature, mean curvature and principal curvatures
near non-degenerate singularities on wavefronts have been widely studied in (SAJI; UME-
HARA; YAMADA, 2009; MARTINS et al., 2016; TERAMOTO, 2016; TERAMOTO,
2019b). However, in the degenerate case this is unknown, as well as the convergence to
infinite limits of these invariants has been little explored. For this reason it is natural
to wonder which properties of wavefronts determine one behavior or another on general
types of singularities. Also, there is a lack of literature about the geometry of singularities
of rank 0 (or corank 2) on wavefronts and our approach here allow us to study them.

In chapter 2 we present the notation, classical terminology and basic results that
we use most and are present in books of differential geometry and singularities. Also we
introduce new additional terminology and symbols which are very related to the classical
ones of the differential geometry and can be defined on singularities without problems.
In chapter 3 we see how the fundamental forms, Christoffel symbols and classical curva-
tures in frontals are related with the new symbols and how these determine properties to
characterize wavefronts. Additionally, we use these properties to obtain some formulas of
representation for wavefronts. In chapter 4 we present a fundamental theorem for frontals
similar to the classical one for regular surfaces. At the last chapter we give necessary and
sufficient condition to the boundedness, convergence to infinite limits and extendibility of
the classical invariant near all types of singularities of wavefronts.
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CHAPTER

2
PRELIMINARIES

2.1 Fixing notation and some definitions

A smooth map x : U → R3 defined in an open set U ⊂ R2 is called a frontal if, for
all p ∈U there exists a unit normal vector field n : Vp → R3 along x, where Vp is an open
set of U , p ∈ Vp. This means, |n| = 1 and it is orthogonal to the partial derivatives of x
for each point (u,v) ∈Vp. If also the singular set Σ(x) = {p ∈U : x is not immersive at p}
has empty interior we call x proper frontal, in another case we say that x is a non-proper
frontal. Since Σ(x) is closed, this is equivalent to have the complement Σ(x)c =U −Σ(x)
being dense and open in U . We call a point p ∈ Σ(x) a singularity or singular point and a
point in the complement Σ(x)c a regular point. A frontal x is a wave front or simply front
if the pair (x,n) is an immersion for all p ∈U . There are many examples of frontals which
are not wave fronts, cuspidal Sk singularities for instance (SAJI, 2010). The existence of a
smooth normal vector field on these singular surfaces determines planes (the orthogonal
spaces) at singularities that can be understood as limiting planes of the tangent planes
on regular points around them (see Figure 1).

o

Figure 1 – The cuspidal edge (x(u,v) = (u,v2,v3),n = (0,−3v,2)(4+9v2)−
1
2 ) and the limiting tan-

gent planes.

The cuspidal edge and the swallowtail (see Figure 1 and 2) are two types of singular
points that represent the generic singularities in the space of wave fronts with the Whitney
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C∞-topology (ARNOL’D; GUSEIN-ZADE; VARCHENKO, 2012). For this reason, all the
re-parametrizations and diffeomorphic singular surfaces to these are the most studied
and there exist criterias to recognize them (KOKUBU et al., 2005; ISHIKAWA, 2020).
However, these singularities are not generic in the space of all frontals (in fact proper
frontals are not generic either)(ISHIKAWA, 2018). There are some non-proper frontals
which are not “surfaces”, x(u,v) = (uv,0,0) for instance and others whose entire image is
a surface but locally at some singular points the image of a neighborhood at these is a
constant (see example 2.5 (ISHIKAWA, 2018)). Here we treat frontals in general, but our
main result aim to proper frontals.

Figure 2 – The swallowtail (x(u,v) = (3u4 + u2v,4u3 + 2uv,v),n = (1,−u,u2)(1+ u2 + u4)−
1
2 ), an

example of front.

From now on, we denote U and V in this work open sets in R2. Let x : U → R3 be
a frontal, and as we are interested in exploring local properties of frontals, restricting the
domain if necessary, we can suppose that we have a global normal vector field n : U → R3.
There are two possible choices of normal vector fields along x (n and −n). We are always
assuming that we have chosen one of them and we hold fixed this for all the concepts
defined using a normal vector field along x. Let f : U → Rn be a smooth map, we denote
by Df := ( ∂ fi

∂x j
), the differential of f and we consider it as a smooth map Df : U →Mn×2(R).

We write Dfx1 , Dfx2 the partial derivatives of Df and Df(p) := ( ∂ fi
∂x j

(p)) for p ∈ U . We
denote In the identity matrix n×n. Also, a vector in Rn is identified as a column vector
in Mn×1(R) and if A ∈Mn×n(R), A(i) is the ith-row and A( j) is the jth-column of A.

Definition 2.1.1. We call moving basis a smooth map ΩΩΩ : U →M3×2(R) in which the
columns w1,w2 : U → R3 of the matrix ΩΩΩ =

(
w1 w2

)
are linearly independent smooth

vector fields.

Definition 2.1.2. We call a tangent moving basis (tmb) of x a moving basis ΩΩΩ=
(

w1 w2

)
such that xu,xv ∈ 〈w1,w2〉, where 〈,〉 denotes the linear span vector space.

Example 2.1.1. For the cuspidal edge (x(u,v) = (u,v2,v3), we have xu = (1,0,0) and
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xv = (0,2v,3v2) = (0,2,3v)v, then denoting w1 := (1,0,0) and w2 := (0,2,3v),

ΩΩΩ :=
(

w1 w2

)
=

1 0
0 2
0 3v


is a tmb of x. Observe that multiplying ΩΩΩ by a matrix-valued smooth map B : R2 →
M2×2(R) with det(B) 6= 0, we have that ΩΩΩB is another tmb of x, because the columns are
still linearly independent and generate the same vector space of w1,w2.

Let x : U → R3 be a frontal with a global normal vector field n : U → R3. Denoting
the inner product by (·), ad j(A) the adjoint of a matrix A (i.e Aad j(A) = ad j(A)A =

det(A)I2) and ()T the operation of transposing a matrix, we set the matrices:

I =

(
E F

F G

)
:=

(
xu ·xu xu ·xv

xu ·xv xv ·xv

)
(2.1a)

II =

(
L M

M N

)
:=

(
n ·xuu n ·xuv

n ·xuv n ·xvv

)
(2.1b)

ΓΓΓ1 =

(
Γ1

11 Γ2
11

Γ1
21 Γ2

21

)
:=

(
1
2Eu (Fu − 1

2Ev)
1
2Ev

1
2Gu

)
I−1 (2.1c)

ΓΓΓ2 =

(
Γ1

12 Γ2
12

Γ1
22 Γ2

22

)
:=

(
1
2Ev

1
2Gu

(Fv − 1
2Gu)

1
2Gv

)
I−1 (2.1d)

ααα :=−IIT I−1 (2.1e)

The matrices I and II in a non-singular point p ∈ U coincide with the matrix repre-
sentation of the first fundamental form and of the second fundamental form respectively.
ΓΓΓ1, ΓΓΓ2 and ααα are defined in Σ(x)c, they are the Christoffel symbols and the Weingarten
matrix. Also observe that, we can compute these matrices in this way:

I = DxT Dx (2.2a)

II =−DxT Dn (2.2b)

ΓΓΓ1 = (DxT
u Dx)I−1 (2.2c)

ΓΓΓ2 = (DxT
v Dx)I−1 (2.2d)

2.2 The new symbols

Here we present the definitions of the new symbols that can be defined even on
singularities and allow us to obtain information about the classical ones near singularities
of frontals. Let ΩΩΩ =

(
w1 w2

)
be a moving basis, we denote by n := w1×w2

‖w1×w2‖ and we set
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the matrices:

IΩ =

(
EΩ FΩ

FΩ GΩ

)
:= ΩΩΩ

T
ΩΩΩ (2.3a)

IIΩ =

(
LΩ M1Ω

M2Ω NΩ

)
:=−ΩΩΩ

T Dn (2.3b)

T1 =

(
T 1

11 T 2
11

T 1
21 T 2

21

)
:= (ΩΩΩT

u ΩΩΩ)I−1
Ω

(2.3c)

T2 =

(
T 1

12 T 2
12

T 1
22 T 2

22

)
:= (ΩΩΩT

v ΩΩΩ)I−1
Ω

(2.3d)

µµµΩ :=−IIT
ΩI−1

Ω
(2.3e)

Since n ·w1 = 0 and n ·w2 = 0, then we have −nu ·w1 = n ·w1u, −nv ·w1 = n ·w1v, −nu ·w2 =

n ·w2u and −nv ·w2 = n ·w2v. Therefore,

IIΩ =

(
n ·w1u n ·w1v

n ·w2u n ·w2v

)
(2.4)

Also, as nu,nv ∈ 〈w1,w2〉, there exist real functions (µ̄i j) i, j ∈ {1,2} defined on U , such
that:

nu = µ̄11w1 + µ̄12w2

nv = µ̄21w1 + µ̄22w2

Then, Dn = ΩΩΩµ̄µµ
T , where µ̄µµ = (µ̄i j). Thus, using (2.3b) IIΩ = −ΩΩΩ

T Dn = −ΩΩΩ
T

ΩΩΩµ̄µµ
T =

−IΩµ̄µµ
T , therefore µ̄µµ =−IIT

Ω
I−1

Ω
= µµµΩ and we have:

Dn = ΩΩΩµµµ
T
Ω (2.6)

By last, w1 and w2 are linearly independent, the positive-definite quadratic form (·) re-
stricted to 〈w1,w2〉 has IΩ = ΩΩΩ

T
ΩΩΩ as its matrix representation in the basis {w1,w2} and

therefore det(IΩ) > 0. Notice that, given a frontal x, on a small neighborhood V of a
regular point, ΩΩΩ = Dx is a tmb of x|V , then the matrices IΩ,IIΩ,T1,T2 and µµµΩ coincide
with I,II,ΓΓΓ1,ΓΓΓ2 and ααα . At singular points Dx is not a tmb of x, but we will see in chapter
3 that for frontals there exists tmb locally at singularities.

2.3 The Frobenius Theorem
The following is a particular version of Frobenius theorem that can be found in

((STOKER, 1969) appendix B) or (TERNG, 2005).

Theorem 2.3.1 (Frobenius). Let ΘΘΘ,ΞΞΞ : U×V →Rn be smooth vector fields, where U ⊂R2

and V ⊂ Rn are open sets. Let (u0,v0) ∈U be a fixed point. Then for each point p ∈V the
system of partial differential equations:
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∂x
∂u

= ΘΘΘ(u,v,x(u,v)),

∂x
∂v

= ΞΞΞ(u,v,x(u,v)),

x(u0,v0) = p,

has a unique smooth solution x : U0 → Rn defined on a neighborhood U0 of (u0,v0) ∈U0 if
and only if, it satisfies the compatibility condition:

∂ΘΘΘ

∂v
+

∂ΘΘΘ

∂x
ΞΞΞ =

∂ΞΞΞ

∂u
+

∂ΞΞΞ

∂x
ΘΘΘ (2.8)

Corollary 2.3.1. Let S,T : U →Mn×n(R) be smooth vector fields, where U is an open
set in R2. Let (u0,v0) ∈U be a fixed point. Then for each point A ∈ GL(n) the system of
partial differential equations:

∂G
∂u

= SG,

∂G
∂v

= TG,

G(u0,v0) = A,

has a unique smooth solution G : U0 → GL(n) defined on a neighbourhood U0 of (u0,v0) ∈
U0 if and only if, it satisfies the compatibility condition:

∂S
∂v

− ∂T
∂u

+[S,T] = 0, (2.10)

where [S,T] = ST−TS is the Lie bracket.

Proof. Identifying Mn×n(R)≡ Rn2 and defining ΘΘΘ(u,v,X) := SX and ΞΞΞ(u,v,X) := TX for
X ∈ Mn×n(R), the compatibility condition (2.8) is equivalent to (2.10) and by theorem
2.3.1 follows the result.

2.4 The Hadamard Lemma
In the following we establish one useful fact sometimes called the Hadamard

Lemma (GIBSON, 1979).

Lemma 2.4.1 (Hadamard). Let U be a convex neighbourhood of 0 in Rn and let f be
a smooth function defined on U ×Rq which vanishes on 0×Rq. Then, there exist smooth
functions g1,g2, · · · ,gn on U ×Rq with

f = x1g1 + · · ·+ xngn
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where x1, · · · ,xn are the standard co-ordinate functions on Rn.

Proof. Denoting x = (x1, · · · ,xn) and y = (y1, · · · ,yq)

f (x,y) = f (x,y)− f (0) =
∫ 1

0

d
dt
{ f (tx,y)}dt =

∫ 1

0

n

∑
i=1

∂ f
∂xi

(tx,y)xidt

=
n

∑
i=1

xi

∫ 1

0

∂ f
∂xi

(tx,y)dt =
n

∑
i=1

xigi(x,y),

where gi(x,y) =
∫ 1

0

∂ f
∂xi

(tx,y)dt

2.5 Map-Germs

Let X and Y be two subsets of Rn containing a point p ∈ Rn. We say that X is
equivalent to Y if there exists an open set U ⊂ Rn containing p such that X ∩U = Y ∩U .
This defines an equivalence relation among subsets of Rn containing the point p. The
equivalence class of a subset X is called the germ of X at p and is denoted by (X ,p) .

Let U and V be two open subsets of Rn containing a point p ∈ Rn, and let f :
U → Rm and g : V → Rm be two smooth maps. We say that f ∼ g if there exists an open
set W ⊂U ∩V containing p such that f = g on W, that is f|W = g|W .

The relation ∼ is an equivalence relation and a germ at p of a smooth map is by
definition an equivalent class under this equivalence relation. A map-germ at p is denoted
by

[f] : (Rn,p)→ Rm

where f : U → Rm is a representative of germ [f] in a neighbourhood U of p. However, at
most of the cases we omit the brackets [ ] at germs, when there are no risk of confusion.

Sometimes we require that all the elements of the equivalence classes have the
same value at p, say q. Then we write

f : (Rn,p)→ (Rm,q) .

Let En denote the set of germs, at the origin 0 in Rn, of smooth functions (Rn,0)→
R, En ={ f : (Rn,0)→ R| f is the germ of a smooth function}.

With the addition and multiplication operations, En becomes a commutative R-
algebra with a unit. It has a maximal ideal Mn which is the subset of germs of functions
that vanish at the origin. We have

Mn = {[ f ] ∈ En| f (0) = 0}.
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Since Mn is the unique maximal ideal of En,En is a local algebra. If x1, · · · ,xn are the
standard co-ordinate functions on Rn, then by Hadamard lemma Mn is generated by the
germs of functions xi, i = 1, · · · ,n.

The set of all smooth map-germs f : (Rn,0)→ Rm is denoted by E(n,m) . It is the
direct product of m-copies of En, that is,

E(n,m) = En ×·· ·×En︸ ︷︷ ︸
m times

2.6 Left-Right Equivalence

Definition 2.6.1. Let fi : (Rn,0) → (Rm,0), i = 1, 2 be germs of smooth maps between
Euclidean spaces. They are

1. right-equivalent, if there exists a germ of diffeomorphism h : (Rn,0) → (Rn,0)
such that f2 = f1 ◦h−1;

2. left-equivalent, if there exists a germ of diffeomorphism k : (Rm,0)→ (Rm,0) such
that f2 = k◦ f1;

3. left-right-equivalent, if there exist germs of diffeomorphism h : (Rn,0)→ (Rn,0)
and k : (Rm,0)→ (Rm,0) such that f2 = k◦ f1 ◦h−1.

The advantage when the source and target are fixed is that the equivalences can
be seen as group actions. Let A = Di f f (Rn,0)×Di f f (Rm,0) be the group of pairs of
diffeomorphisms. We have an action of A on the set of germs f: (Rn,0)→ (Rm,0) , given
by

(h,k) · f = k◦ f◦h−1.

Analogously, we can consider the groups R = Di f f (Rn,0) and L = Di f f (Rp,0) and the
corresponding actions. If G =R,L or A , we say that f1, f2 are G -equivalent if they are in
the same G -orbit. In this situation, we will use the terms R,L or A -equivalences instead
of right, left or right-left equivalences, respectively. The interested reader in the study of
singularities of map-germs can consult (GIBSON, 1979; MOND; NUÑO-BALLESTEROS,
2020; IZUMIYA et al., 2015).
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CHAPTER

3
DECOMPOSITIONS OF THE

FUNDAMENTAL FORMS

In this chapter we characterize a frontal x in terms of the differential of x, its
fundamental forms through a decomposition of matrices and wave fronts in terms of
two new curvatures which are related with the Gaussian and mean curvature. As in
our corollary 3.3.1, T. Fukunaga and M. Takahashi in (FUKUNAGA; TAKAHASHI,
2019) also characterized wave fronts in terms of curvatures. The curvatures introduced
in (FUKUNAGA; TAKAHASHI, 2019), are a particular case of the relative curvatures
presented here.

3.1 Characterizing a frontal and its fundamental forms

Proposition 3.1.1. Let x : U → R3 be a smooth map with U ⊂ R2 an open set.Then, the
following statements are equivalent:

(i) The map x is a frontal.

(ii) For all p ∈U there is a tangent moving basis ΩΩΩ : Vp →M3×2(R) of x with Vp ⊂U

a neighborhood of p.

(iii) For all p ∈U there are smooth maps ΩΩΩ : Vp →M3×2(R) and ΛΛΛ : Vp →M2×2(R) with
rank(ΩΩΩ) = 2, Vp ⊂U a neighbourhood of p, such that Dx(q) = ΩΩΩΛΛΛ

T for all q ∈Vp.

Proof.

• (i⇔ ii) If x is a frontal, then for all p∈U there exists a unitary vector field n :Vp →R3

with xu · n = 0, xv · n = 0, n = (n1,n2,n3), Vp a neighborhood of p which we can
reduce in order to get ni 6= 0 on Vp for some i ∈ {1,2,3}. Without loss of generality
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let us suppose that n1 6= 0 and define ΩΩΩ :=
(

w1 w2

)
with w1 = (n2,−n1,0) and

w2 = (n3,0,−n1). Since w1 and w2 are linearly independent, orthogonal to n and
dim(n⊥) = 2 (n⊥ orthogonal space to n), we have that 〈w1,w2〉= n⊥. Therefore, ΩΩΩ :
Vp →M3×2(R) is a tangent moving basis of x. The converse, just define n := w1×w2

‖w1×w2‖
taking w1 and w2 the columns from a tangent moving basis ΩΩΩ :Vp →M3×2(R). Then,
n is orthogonal to xu and xv which belong to 〈w1,w2〉.

• (ii ⇔ iii) If we suppose (ii), for all p ∈U there is a tangent moving basis ΩΩΩ : Vp →
M3×2(R) of x with Vp ⊂U a neighborhood of p. Thus, there are coefficients λi j such
that xu = λ11w1 +λ12w2 and xv = λ21w1 +λ22w2. Therefore, Dx(q) = ΩΩΩΛΛΛ

T for all
q ∈Vp where ΛΛΛ = (λi j). Multiplying the equality by ΩΩΩ

T and as IΩ is invertible, we
have that I−1

Ω
ΩΩΩ

T Dx(q) =ΛΛΛ
T . Then, ΛΛΛ : Vp →M2×2(R) is smooth. Reciprocally, if we

have Dx(q) = ΩΩΩΛΛΛ
T for all q ∈Vp, then xu = λ11w1 +λ12w2 and xv = λ21w1 +λ22w2.

Hence xu,xv ∈ 〈w1,w2〉 and as rank(ΩΩΩ) = 2, ΩΩΩ is a tangent moving basis of x.

Remark 3.1.1. In the proof of proposition 3.1.1, observe that ΛΛΛ=DxT ΩΩΩ(IT
Ω
)−1, then ΛΛΛ is

determined by a local tangent moving basis of x. Also having a decomposition Dx = ΩΩΩΛΛΛ
T

with rank(ΩΩΩ) = 2 implies that ΩΩΩ is a tangent moving basis of x.

Example 3.1.1. For the cuspidal edge (x(u,v) = (u,v2,v3) observe that the Jacobian
matrix decomposes as in proposition 3.1.1:

Dx =

1 0
0 2v

0 3v2

=

1 0
0 2
0 3v

(1 0
0 v

)

where,

ΩΩΩ =

1 0
0 2
0 3v

 , ΛΛΛ =

(
1 0
0 v

)
,

being ΩΩΩ a tmb of x as we had seen in example 2.1.1.

Notice that, the proof of proposition 3.1.1 did not use that the set Σ(x) = {p ∈
U : x is not immersive at p} has empty interior, therefore this is valid for even non-proper
frontals. However we need this condition at the moment that we consider to relate different
tangent moving bases. If we have a proper frontal x : U → R3 with a tmb ΩΩΩ =

(
w1 w2

)
,

inducing a normal vector field n and Ω̄ΩΩ =
(

w̄1 w̄2

)
is another tmb of x, we have that

for p ∈ Σ(x)c, 〈w1,w2〉= 〈xu,xv〉= 〈w̄1, w̄2〉, then we have ni · w̄i = 0, for i = 1,2 on Σ(x)c.
By continuity and density of the regular points, it is also satisfied on U , thus 〈w1,w2〉=
〈w̄1, w̄2〉 on U ensured that every tmb generate the same vector space at each point. From
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this, we have that for all p ∈ U , ΩΩΩ(p) = Ω̄ΩΩ(p)B(p), where B(p) is a non-singular 2× 2
matrix, which seen as a map is smooth because B = I−1

Ω̄ΩΩ
Ω̄ΩΩ

T
ΩΩΩ. For non-proper frontals,

the latter is not always valid, for example the non-proper frontal x = (uv,0,0) has the
following different tangent moving bases which not generate the same vector space at
every point:

ΩΩΩ =

1 0
0 1
0 u

 , Ω̄ΩΩ =

1 0
0 v

0 1

 .

From now on, as we want to describe local properties and tangent moving bases
exist locally, we can suppose that we have a global tangent moving basis for a frontal
restringing the domain if necessary.

Definition 3.1.1. Let x be a frontal and ΩΩΩ a tangent moving basis of x, we denote
ΛΛΛΩ = (λi j) := DxT ΩΩΩ(IΩ)

−1, λΩ := det(ΛΛΛΩ) and TΩ(U) as the principal ideal generated by
λΩ in the ring C∞(U,R) (smooth real functions on U).

Thus, we have globally Dx = ΩΩΩΛΛΛ
T
Ω, Σ(x) = λ

−1
Ω

(0) and rank(Dx) = rank(ΛΛΛΩ). With
a given tangent moving basis ΩΩΩ =

(
w1 w2

)
, we always choose as unit normal vector

field along x, the induced by ΩΩΩ (i.e n = w1×w2
‖w1×w2‖). Also, we are going to write simply TΩ,

ΛΛΛ = (λi j) and µµµ = (µi j) instead of TΩ(U), ΛΛΛΩ and µµµΩ when there is no risk of confusion.

Definition 3.1.2. Let x : U → R3 be a frontal, ΩΩΩ a tmb of x, p ∈ Σ(x), we say that p is
a non-degenerate singularity if DλΩ(p) 6= (0,0), in another case it is called degenerate.

Remark 3.1.2. This definition does not depend on the chosen tmb ΩΩΩ. If x is proper
frontal with another tmb Ω̄ΩΩ, we have λ

Ω̄
= ρλΩ with ρ = det(B), being B the non-singular

matrix that satisfies ΩΩΩ = Ω̄ΩΩB. Thus, DλΩ(p) 6= (0,0) if and only if Dλ
Ω̄
(p) 6= (0,0). If x is

non-proper and p is a non-degenerate singularity, then by the Implicit function theorem,
the singular set is locally at p a regular curve, therefore on a neighborhood of p, x is
proper frontal and we can apply the argument discussed before.

In the literature (see for example (MARTINS; SAJI; TERAMOTO, 2019; SAJI;
UMEHARA; YAMADA, 2009)) is quite used a function λ called signed area density
function for the last definition instead of λΩ, this is defined by

λ := det(
(

xu xv n
)
),

where n is the normal vector field induced by a tmb ΩΩΩ =
(

w1 w2

)
. Since, xu = λ11w1 +

λ12w2, xv = λ21w1 +λ22w2, then

xu ×xv = λΩw1 ×w2
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and thus using the Lagrange’s identity we have

λ = (xu ×xv) ·n = λΩ|w1 ×w2|= λΩ

√
EΩGΩ −F2

Ω
= λΩdet(IΩ)

1
2 .

As det(IΩ)
1
2 > 0, then the definition of non-degenerate singularity does not depend if the

function used is λΩ or λ .

Definition 3.1.3. Let x : U →R3 be a frontal, ΩΩΩ=
(

w1 w2

)
and Ω̄ΩΩ=

(
w̄1 w̄2

)
tangent

moving bases of x, where ΩΩΩ = Ω̄ΩΩB. We say that ΩΩΩ and Ω̄ΩΩ are compatibles if w1×w2 · w̄1×
w̄2 > 0. Also, ΩΩΩ is an orthonormal tangent moving basis if |w1|= |w2|= 1 and w1 ·w2 = 0.

In the following theorem we show the properties that first and second fundamental
forms of frontals always satisfy. In chapter 4, we will see that having fundamentals forms
satisfying these properties and the Gauss and Mainardi-Codazzi equations on the regular
set, we can get a frontal.

Theorem 3.1.1. Let x : U → R3 be a frontal and ΩΩΩ a tangent moving basis of x, then
the matrices defined by equations (2.1a) and (2.1b) have the following decomposition:(

E F

F G

)
=

(
λ11 λ12

λ21 λ22

)(
EΩ FΩ

FΩ GΩ

)(
λ11 λ12

λ21 λ22

)T

(3.1a)(
L M

M N

)
=

(
λ11 λ12

λ21 λ22

)(
LΩ M1Ω

M2Ω NΩ

)
, (3.1b)

in which all the components are smooth real functions defined on U , EΩ > 0, GΩ > 0,
EΩGΩ −F2

Ω
> 0, rank(Dx) = rank(ΛΛΛ), Σ(x) = λ

−1
Ω

(0) and

ΛΛΛ(1)uIΩΛΛΛ
T
(2)−ΛΛΛ(1)IΩΛΛΛ

T
(2)u +Ev −Fu ∈ TΩ (3.2a)

ΛΛΛ(1)vIΩΛΛΛ
T
(2)−ΛΛΛ(1)IΩΛΛΛ

T
(2)v +Fv −Gu ∈ TΩ (3.2b)

where ΛΛΛ = (λi j).

Proof. We have Dx = ΩΩΩΛΛΛ
T , then using (2.2a) I = DxT Dx = ΛΛΛΩΩΩ

T
ΩΩΩΛΛΛ

T = ΛΛΛIΩΛΛΛ
T . Also,

using (2.2b) II = −DxT Dn = ΛΛΛ(−ΩΩΩ
T Dn) = ΛΛΛIIΩ. Now, let us set the skew-symmetric

matrices:

A1 :=

(
0 −(Ev −Fu)

Ev −Fu 0

)
, B1 :=

(
0 −τ1

τ1 0

)
:= ΩΩΩ

T
u ΩΩΩ−ΩΩΩ

T
ΩΩΩu.

From (2.1c) and (2.2c) we have DxT
u Dx− 1

2Iu =
1
2A1, then using that I=ΛΛΛIΩΛΛΛ

T , Dx=ΩΩΩΛΛΛ
T

and developing derivatives,

(ΛΛΛΩΩΩ
T
u +ΛΛΛuΩΩΩ

T )ΩΩΩΛΛΛ
T =

1
2
(ΛΛΛuIΩΛΛΛ

T +ΛΛΛIΩuΛΛΛ
T +ΛΛΛIΩΛΛΛ

T
u )+

1
2

A1.
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Substituting IΩ = ΩΩΩ
T

ΩΩΩ and IΩu = ΩΩΩ
T
u ΩΩΩ+ΩΩΩ

T
ΩΩΩu, we can group and cancel similar terms,

getting
ΛΛΛB1ΛΛΛ

T = ΛΛΛIΩΛΛΛ
T
u −ΛΛΛuIΩΛΛΛ

T +A1.

multiplying the equality by left side with
(

1 0
)

and by the right side with
(

0 1
)T

, we
obtain,

−τ1λΩ = ΛΛΛ(1)

(
0 −τ1

τ1 0

)
ΛΛΛ

T
(2) = ΛΛΛ(1)IΩΛΛΛ

T
(2)u −ΛΛΛ(1)uIΩΛΛΛ

T
(2)− (Ev −Fu)

and from it follows (3.2a). Setting the matrices:

A2 :=

(
0 −(Fv −Gu)

Fv −Gu 0

)
, B2 =

(
0 −τ2

τ2 0

)
:= ΩΩΩ

T
v ΩΩΩ−ΩΩΩ

T
ΩΩΩv

Observing that, DxT
v Dx− 1

2Iv =
1
2A2 and proceeding similarly as before, it follows (3.2b).

The conditions (3.2a) and (3.2b) in theorem 3.1.1 may seem kind of strange, but
we will see in proposition 3.2.3 why these are so important. Also these expressions can be
reduced depending on the type of tmb ΩΩΩ. If we have a tangent moving basis of a frontal,
we always can construct an orthonormal one applying Gram-Schmidt orthonormalization,
then the decompositions in theorem 3.1.1 are reduced and follows easily the corollary:

Corollary 3.1.1. Let x : U → R3 be a frontal and ΩΩΩ an orthonormal tangent moving
basis of x, then the matrices defined by equations (2.1a) and (2.1b) have the following
decomposition: (

E F

F G

)
=

(
λ11 λ12

λ21 λ22

)(
λ11 λ12

λ21 λ22

)T

(
L M

M N

)
=

(
λ11 λ12

λ21 λ22

)(
LΩ M1Ω

M2Ω NΩ

)
,

in which all the components are smooth real functions defined on U , rank(Dx) = rank(ΛΛΛ),
Σ(x) = λ

−1
Ω

(0) and

(ΛΛΛ(1)ΛΛΛ
T
(1))v −2ΛΛΛ(1)ΛΛΛ

T
(2)u ∈ TΩ

2ΛΛΛ(1)vΛΛΛ
T
(2)− (ΛΛΛ(2)ΛΛΛ

T
(2))u ∈ TΩ

where ΛΛΛ = (λi j).

Remark 3.1.3. If x : U → R3 is a frontal and ΩΩΩ a tangent moving basis of x, we can find
a tangent moving basis Ω̂ΩΩ having one of the following forms: 1 0

0 1
g1 g2

 ,

 1 0
g1 g2

0 1

 ,

 0 1
1 0
g1 g2

 ,
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g1 g2

1 0
0 1

 ,

g1 g2

0 1
1 0

 ,

 0 1
g1 g2

1 0

 ,

with g1,g2 : U → R smooth functions and the matrix Λ̂ΛΛ
T as an exact differential, it means,

there is a smooth map (a,b) : U → R2 such that D(a,b) = Λ̂ΛΛ
T . To see this, as the columns

of ΩΩΩ are linearly independent, then applying reduction of Gauss-Jordan with a finite
number of operations by columns, it can be reduced to one of the forms above. Without
loss of generality, let us suppose it is reduced to the first one. If we denote E1,E2, ..,Em

the elementary 2×2 matrices corresponding to the operations by columns, we have:

Dx = ΩΩΩΛΛΛ
T = ΩΩΩE1E2 · · ·EmE−1

m · · ·E−1
2 E−1

1 ΛΛΛ
T =

 1 0
0 1
g1 g2

E−1
m · · ·E−1

2 E−1
1 ΛΛΛ

T

Denoting Λ̂ΛΛ
T

:= E−1
m · · ·E−1

2 E−1
1 ΛΛΛ

T and x = (a,b,c), we can multiply the last equality by(
1 0 0
0 1 0

)
to get:

D(a,b) =

(
au av

bu bv

)
=

(
1 0 0
0 1 0

)
Dx =

(
1 0 0
0 1 0

) 1 0
0 1
g1 g2

 Λ̂ΛΛ
T
= I2Λ̂ΛΛ

T
= Λ̂ΛΛ

T
.

On the other hand, a simple computation leads to

I
Ω̂
=

(
1+g2

1 g1g2

g1g2 1+g2
2

)
,II

Ω̂
=

(
g1u g1v

g2u g2v

)
(1+g2

1 +g2
2)

− 1
2 ,

and since Dn = Ω̂ΩΩµµµT with n = (−g1,−g2,1)det(IΩ)
− 1

2 , reasoning as before we get that
D(−g1det(IΩ)

− 1
2 ,−g2det(IΩ)

− 1
2 ) = µµµT .

By this fact and theorem 3.1.1, follows the result:

Corollary 3.1.2. Let x : U → R3 be a frontal and ΩΩΩ a tangent moving basis of x with
the form of remark 3.1.3, then the matrices defined by equations (2.1a) and (2.1b) have
a decomposition in this form:(

E F

F G

)
=

(
au bu

av bv

)(
1+g2

1 g1g2

g1g2 1+g2
2

)(
au bu

av bv

)T

(
L M

M N

)
=

(
au bu

av bv

)(
g1u g1v

g2u g2v

)
(1+g2

1 +g2
2)

− 1
2

in which g1, g2, a and b are smooth real functions defined in U . In particular, (a,b)u ·
(g1,g2)v = (a,b)v · (g1,g2)u.
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Figure 3 – The cuspidal cross-cap (x(u,v) = (u,v2,uv3)), an example of a proper frontal which is
not a front (FUJIMORI et al., 2008).

Example 3.1.2. The cuspidal cross-cap (see Figure 3) can be decomposed in this way:

Dx =

 1 0
0 1
v3 3

2uv

(1 0
0 2v

)
= ΩΩΩΛΛΛ

T , where ΩΩΩ =

 1 0
0 1
v3 3

2uv

 ,ΛΛΛ =

(
1 0
0 2v

)
(

E F

F G

)
=

(
1 0
0 2v

)(
1+ v6 3

2uv4

3
2uv4 1+ 9

4u2v2

)(
1 0
0 2v

)T

(
L M

M N

)
=

(
1 0
0 2v

)(
0 3v2

3
2v 3

2u

)
1√

1+ v6 + 9
4u2v2

Theorem 3.1.2. Let I : U → M2×2(R) be a smooth map, with I decomposing in this
form:

I =

(
au bu

av bv

)(
1+g2

1 g1g2

g1g2 1+g2
2

)(
au bu

av bv

)T

in which g1, g2, a and b are smooth real functions defined in U , satisfying (a,b)u ·(g1,g2)v =

(a,b)v ·(g1,g2)u. Then, for each (u0,v0)∈U and p∈R3, there is a frontal x : V →R3, V ⊂U ,
V a neighborhood of (u0,v0) with first fundamental form I and second fundamental form
D(a,b)T D(g1,g2)(1+g2

1 +g2
2)

− 1
2 .

Proof. Setting the matrices:

ΩΩΩ :=

 1 0
0 1
g1 g2

 ,ΛΛΛT :=

(
au av

bu bv

)
,e1 :=

(
1
0

)
,e2 :=

(
0
1

)

as (a,b)u · (g1,g2)v = (a,b)v · (g1,g2)u, then

ΩΩΩuΛΛΛ
T e2 =

 0 0
0 0

g1u g2u

(av

bv

)
=

 0 0
0 0

g1v g2v

(au

bu

)
= ΩΩΩvΛΛΛ

T e1
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on the other hand, since ΛΛΛ
T is an exact differential, ΛΛΛ

T
u e2 = ΛΛΛ

T
v e1. Thus, ΩΩΩΛΛΛ

T
u e2 = ΩΩΩΛΛΛ

T
v e1

and adding this equality to the above one, we get:

(ΩΩΩΛΛΛ
T )ue2 = ΩΩΩuΛΛΛ

T e2 +ΩΩΩΛΛΛ
T
u e2 = ΩΩΩvΛΛΛ

T e1 +ΩΩΩΛΛΛ
T
v e1 = (ΩΩΩΛΛΛ

T )ve1

Denoting by z1 and z2 the first and second columns of ΩΩΩΛΛΛ
T respectively, fixing (u0,v0)∈U

and p ∈R3 the last equality is equivalent to z2u = z1v, which is the compatibility condition
of the system:

xu = z1 (3.7a)

xv = z2 (3.7b)

x(u0,v0) = p, (3.7c)

By theorem 2.3.1, this system of partial differential equations has a solution x : V → R3,
V ⊂ U , V a neighborhood of (u0,v0). Therefore Dx = ΩΩΩΛΛΛ

T and by proposition 3.1.1, x :
V → R3 is a frontal. Now, the first fundamental form is DxT Dx = ΛΛΛΩΩΩ

T
ΩΩΩΛΛΛ

T = I as we
wished. Using that n = (−g1,−g2,1)(1+ g2

1 + g2
2)

− 1
2 and (2.4), the second fundamental

form is ΛΛΛIIΩ = D(a,b)T D(g1,g2)(1+g2
1 +g2

2)
− 1

2 .

3.2 The new symbols and its relations with the Christoffel
symbols

In this section we study how the symbols Ti (defined in 2.3c and 2.3d) are related
with the Christoffel symbols on the regular set (Σ(x)c). In proposition 3.2.3, we see how the
decomposition in matrices (as in theorem 3.1.1) is tightly connected with the extendibility
of Ti to the singularities from its expression in terms of Christoffel symbols.

Proposition 3.2.1. Let x : U → R3 be a frontal and ΩΩΩ a tangent moving basis of x, then
the matrices T1,T2 satisfy IΩT T

1 +T1IΩ = IΩu and IΩT T
2 +T2IΩ = IΩv.

Proof. Using (2.3a), (2.3c) we have IΩu = ΩΩΩ
T
u ΩΩΩ+ΩΩΩ

T
ΩΩΩu = ΩΩΩ

T
u ΩΩΩI−1

Ω
IΩ + IΩI−1

Ω
ΩΩΩ

T
ΩΩΩu =

T1IΩ + IΩT T
1 . For IΩv is analogous.

Proposition 3.2.2. Let x : U → R3 be a proper frontal and ΩΩΩ a tangent moving basis of
x, then the Christoffel symbols defined on U −λ

−1
Ω

(0) have the following decomposition:

ΓΓΓ1 = (ΛΛΛT1 +ΛΛΛu)ΛΛΛ
−1 and ΓΓΓ2 = (ΛΛΛT2 +ΛΛΛv)ΛΛΛ

−1

Proof. ΓΓΓ1 = (DxT
u Dx)I−1 = ((ΩΩΩuΛΛΛ

T +ΩΩΩΛΛΛ
T
u )

T ΩΩΩΛΛΛ
T )(ΛΛΛT )−1I−1

Ω
ΛΛΛ
−1

=(ΛΛΛΩΩΩ
T
u +ΛΛΛuΩΩΩ

T )ΩΩΩΛΛΛ
T (ΛΛΛT )−1I−1

Ω
ΛΛΛ
−1 =(ΛΛΛΩΩΩ

T
u ΩΩΩI−1

Ω
+ΛΛΛuΩΩΩ

T
ΩΩΩI−1

Ω
)ΛΛΛ−1. Since T1 =ΩΩΩ

T
u ΩΩΩI−1

Ω

and IΩ = ΩΩΩ
T

ΩΩΩ we have the result. For ΓΓΓ2 it is analogous.
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Remark 3.2.1. With this decomposition of the Christoffel symbols, by the density of
non-singular points and smoothness of Ti on U , we get that T1 and T2 can be expressed
by:

• For p ∈ Σ(x)c,

T1 = ΛΛΛ
−1(ΓΓΓ1ΛΛΛ−ΛΛΛu) and T2 = ΛΛΛ

−1(ΓΓΓ2ΛΛΛ−ΛΛΛv).

• For p ∈ Σ(x),

T1 = lim
(u,v)→p

ΛΛΛ
−1(ΓΓΓ1ΛΛΛ−ΛΛΛu) and T2 = lim

(u,v)→p
ΛΛΛ
−1(ΓΓΓ2ΛΛΛ−ΛΛΛv).

The right hand sides of the above equations are restricted to the open set Σ(x)c. As ΓΓΓ1

and ΓΓΓ2 are expressed in terms of E, F , G and these by (3.1a) are expressed in terms of
EΩ, FΩ, GΩ and λi j, then T1 and T2 can be expressed just using EΩ, FΩ, GΩ and λi j on
Σ(x)c. By density, these are completely determined by EΩ, FΩ, GΩ and λi j on U .

Proposition 3.2.3. Let I,IΩ,ΛΛΛ : U →M2×2(R) be arbitrary smooth maps, IΩ symmetric
non-singular, λΩ = det(ΛΛΛ) and TΩ the principal ideal generated by λΩ in the ring C∞(U,R).
If we have,

I =

(
E F

F G

)
= ΛΛΛIΩΛΛΛ

T (3.8)

with int(λ−1
Ω

(0)) = /0 and if we define ΓΓΓ1 by (2.1c) and ΓΓΓ2 by (2.1d) on U −λ
−1
Ω

(0), then
the maps

ΛΛΛ
−1(ΓΓΓ1ΛΛΛ−ΛΛΛu), (3.9a)

ΛΛΛ
−1(ΓΓΓ2ΛΛΛ−ΛΛΛv), (3.9b)

defined on U −λ
−1
Ω

(0), have unique C∞ extensions to U if and only if,

ΛΛΛ(1)uIΩΛΛΛ
T
(2)−ΛΛΛ(1)IΩΛΛΛ

T
(2)u +Ev −Fu ∈ TΩ (3.10a)

ΛΛΛ(1)vIΩΛΛΛ
T
(2)−ΛΛΛ(1)IΩΛΛΛ

T
(2)v +Fv −Gu ∈ TΩ (3.10b)

Proof. For the necessary condition, let us set the skew-symmetric matrix

A1 :=

(
0 −(Ev −Fu)

Ev −Fu 0

)

and suppose that T1 is the C∞ extension of ΛΛΛ
−1(ΓΓΓ1ΛΛΛ−ΛΛΛu), then

ΛΛΛT1 = ΓΓΓ1ΛΛΛ−ΛΛΛu
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on U −λ
−1
Ω

(0), hence using (2.1c) we have

ΛΛΛT1 = (
1
2

Iu +
1
2

A1)I−1
ΛΛΛ−ΛΛΛu.

Substituting I and Iu in the last equality using (3.8) and multiplying by the right side
with 2IΩΛΛΛ

T , operating some terms we can get,

ΛΛΛ(2T1IΩ − IΩu)ΛΛΛ
T = ΛΛΛIΩΛΛΛ

T
u −ΛΛΛuIΩΛΛΛ

T +A1. (3.11)

Observe that, the right side of (3.11) is skew-symmetric, then 2T1IΩ − IΩu as well and
since U −λ

−1
Ω

(0) is dense, this is also true on U . Thus,

2T1IΩ − IΩu =

(
0 −τ1

τ1 0

)

for any τ1 ∈ C∞(U,R) and since the equality (3.11) is valid on U by density, then multi-
plying this by left side with

(
1 0

)
and by the right side with

(
0 1

)T
, we obtain,

−τ1λΩ = ΛΛΛ(1)

(
0 −τ1

τ1 0

)
ΛΛΛ

T
(2) = ΛΛΛ(1)IΩΛΛΛ

T
(2)u −ΛΛΛ(1)uIΩΛΛΛ

T
(2)− (Ev −Fu)

and from it follows (3.10a). Setting the matrix:

A2 :=

(
0 −(Fv −Gu)

Fv −Gu 0

)

and observing that ΓΓΓ2 = (1
2Iv+

1
2A2)I−1, proceeding similarly as before, it follows (3.10b).

For the sufficient condition, if we have (3.10a), (3.10b), as U −λ
−1
Ω

(0) is dense then there
exist unique τ1,τ2 ∈C∞(U,R) such that,

ΛΛΛ(1)uIΩΛΛΛ
T
(2)−ΛΛΛ(1)IΩΛΛΛ

T
(2)u +Ev −Fu = λΩτ1,

ΛΛΛ(1)vIΩΛΛΛ
T
(2)−ΛΛΛ(1)IΩΛΛΛ

T
(2)v +Fv −Gu = λΩτ2.

Defining the smooth maps on U ,

T1 :=
1
2
(

(
0 −τ1

τ1 0

)
+ IΩu)I−1

Ω
and T2 :=

1
2
(

(
0 −τ2

τ2 0

)
+ IΩv)I−1

Ω
, (3.12)

we have that
ΛΛΛ(2T1IΩ − IΩu)ΛΛΛ

T = ΛΛΛIΩΛΛΛ
T
u −ΛΛΛuIΩΛΛΛ

T +A1,

ΛΛΛ(2T2IΩ − IΩv)ΛΛΛ
T = ΛΛΛIΩΛΛΛ

T
v −ΛΛΛvIΩΛΛΛ

T +A2,

which leads to T1 and T2 be equal to (3.9a) and (3.9b) respectively on U −λ
−1
Ω

(0). Thus,
by density and smoothness of T1 and T2, these are unique C∞-extensions.
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Remark 3.2.2. By proposition 3.2.3, we always can define the matrices T1,T2 by (3.12)
from a smooth map I : U → M2×2(R) satisfying a decomposition as in (3.8) with the
conditions (3.10a) and (3.10b). These maps T1,T2 automatically satisfy the relations of
proposition 3.2.1 as they also are the unique C∞ extension of (3.9a) and (3.9b). It is
natural the question if a decomposition as in (3.8) implies the conditions (3.10a), (3.10b)
and the answer is not. For example the matrix I associated to the first fundamental
form of (u,v) → (u,v2,uv) (the cross-cap) is singular at (0,0) and have a rank ≥ 1 on
the entire R2, then you can obtain the Cholesky decomposition I = ΛΛΛΛΛΛ

T (here IΩ can be
chosen as I2), where ΛΛΛ : R2 →M2×2(R) is smooth and a lower triangular matrix. It is not
difficult to check that in this case the condition (3.10a) and (3.10a) are not satisfied for
all neighborhood of (0,0).

3.3 The relative curvatures

Definition 3.3.1. Let x : U → R3 be a frontal and ΩΩΩ a tangent moving basis of x, we
define the Ω-relative curvature KΩ := det(µµµΩ) and the Ω-relative mean curvature HΩ :=
−1

2tr(µµµΩad j(ΛΛΛΩ)), where tr() is the trace and ad j() is the adjoint of a matrix.

Remark 3.3.1. Recall that ΛΛΛΩ = (λi j) = DxT ΩΩΩ(IΩ)
−1 and µµµΩ = (µi j) =−IIT

Ω
I−1

Ω
we have

that HΩ =−1
2(λ22µ11 −λ21µ12 +λ11µ22 −λ12µ21) and KΩ = LΩNΩ−M1ΩM2Ω

EΩGΩ−F2
Ω

.

We are going to use KΩ and HΩ to characterize wave fronts in theorem 3.3.1 and
colorally 3.3.1, but first we need to prove some propositions. The reason why we call these
functions curvatures is in the following result.

Proposition 3.3.1. Let x : U → R3 be a proper frontal, ΩΩΩ a tangent moving basis of x,
KΩ, HΩ, K and H the Ω-relative curvature, the Ω-relative mean curvature, the Gaussian
curvature and the mean curvature of x respectively.Then,

• for p ∈ Σ(x)c, KΩ = λΩK and HΩ = λΩH,

• for p ∈ Σ(x), KΩ = lim
(u,v)→p

λΩK and HΩ = lim
(u,v)→p

λΩH,

where the right sides are restricted to the open set Σ(x)c and λΩ = det(ΛΛΛΩ).

Proof. By theorem 3.1.1, I = ΛΛΛIΩΛΛΛ
T and II = ΛΛΛIIΩ, then for p ∈ Σ(x)c, using (2.1e), ααα =

−IIT I−1 =−IIT
Ω

ΛΛΛ
T (ΛΛΛT )−1I−1

Ω
ΛΛΛ
−1 = µµµΛΛΛ

−1. Thus, αααΛΛΛ= µµµ and KΩ = det(µµµ)= det(ααα)det(ΛΛΛ)=

λΩK. Also, we have αααλΩ = µµµad j(ΛΛΛ), then HΩ =−1
2tr(µµµad j(ΛΛΛ)) =−1

2λΩtr(ααα) = λΩH. By
density of Σ(x)c and the smoothness of KΩ and HΩ we have the result for p ∈ Σ(x).



44 Chapter 3. Decompositions of the fundamental forms

Example 3.3.1. In the example 3.1.1 we saw that the cuspidal edge x = (u,v2,v3) with
normal vector field n = (0,−3v,2)(4+9v2)−

1
2 had as tmb

ΩΩΩ =

1 0
0 2
0 3v

 , ΛΛΛ =

(
1 0
0 v

)
,

then

IΩ =

(
1 0
0 4+9v2

)
, IIΩ =

(
n ·w1u n ·w1v

n ·w2u n ·w2v

)
= (4+9v2)−

1
2

(
0 0
0 6

)
,

µµµΩ =−IIT
ΩI−1

Ω
=−(4+9v2)−

3
2

(
0 0
0 6

)
,

therefore KΩ = 0 = K, HΩ = 3(4+9v2)−
3
2 and H = 3v−1(4+9v2)−

3
2 . Observe that HΩ 6= 0,

even on the singular set (v = 0). We will see in theorem 3.3.1 that this is related to the
fact that x besides being frontal it is wavefront.

Proposition 3.3.2. Let x : U → R3 be a proper frontal and ΩΩΩ a tangent moving basis
of x. The zeros of KΩ and HΩ do not depend on the chosen tangent moving basis ΩΩΩ of x.
Also, the signs are preserved if we restrict ΩΩΩ to compatibles tangent moving bases.

Proof. Let ΩΩΩ =
(

w1 w2

)
and Ω̄ΩΩ =

(
w̄1 w̄2

)
be tmb of x, ΛΛΛ = DxT ΩΩΩ(IT

Ω
)−1 and Λ̄ΛΛ =

DxT Ω̄ΩΩ(IT
Ω̄
)−1. Since ΩΩΩ = Ω̄ΩΩC, where C is a non-singular matrix-valued map, then ΛΛΛ =

DxT Ω̄ΩΩC(CT Ω̄ΩΩ
T

Ω̄ΩΩC)−1 =DxT Ω̄ΩΩ(IT
Ω̄
)−1(CT )−1 = Λ̄ΛΛ(CT )−1. On the other hand, µµµ =−IIT

Ω
I−1

Ω
=

−DnT ΩΩΩI−1
Ω

=−DnT Ω̄ΩΩC(CT Ω̄ΩΩ
T

Ω̄ΩΩC)−1 =−IIT
Ω̄

I−1
Ω̄
(CT )−1 = µ̄µµ(CT )−1. Now, K

Ω̄
= det(µ̄µµ)= det(µµµ)det(C)=

det(C)KΩ and H
Ω̄
=−1

2tr(µ̄µµad j(Λ̄ΛΛ)) =−1
2tr(µµµCT ad j(CT )ad j(ΛΛΛ))

=−1
2tr(µµµad j(ΛΛΛ))det(C) = det(C)HΩ, then KΩ = 0 if and only if, K

Ω̄
= 0 and HΩ = 0 if and

only if, H
Ω̄
= 0. For the last assertion, observe that, if ΩΩΩ and Ω̄ΩΩ are compatibles, as ΩΩΩ= Ω̄ΩΩC,

then w1×w2 = det(C)w̄1×w̄2 and thus det(C) = (w1×w2 ·w̄1×w̄2)|w̄1×w̄2|−2 > 0, there-
fore KΩ and HΩ have the same sign of K

Ω̄
and H

Ω̄
.

Proposition 3.3.3. Let x : U →R3 be a proper frontal, ΩΩΩ1 and ΩΩΩ2 tangent moving bases
of x. Then, KΩ2 = det(C)KΩ1 and HΩ2 = ±det(C)HΩ1 (+ if ΩΩΩ1 and ΩΩΩ2 are compatibles,
− if these are not compatible), where C is the non-singular matrix-valued map satisfying
ΩΩΩ1 = ΩΩΩ2C.

Proof. Reasoning like in the proof of the above proposition and observing that the normal
vector fields n1 and n2 induced by ΩΩΩ1 and ΩΩΩ2 respectively are equal if these tangent moving
bases are compatible and opposite if they are not, from these results that µµµΩ2

=±µµµΩ2
CT

(+ if ΩΩΩ1 and ΩΩΩ2 are compatibles, − if these are not compatible) and we can get the
result.
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Remark 3.3.2. Propositions 3.3.2 and 3.3.3 are valid also for non-proper frontals, but
just if we consider tangent moving bases generating the same vector space at every point.
It means, each pair ΩΩΩ1, ΩΩΩ2 of tangent moving bases of x is related by ΩΩΩ1 = ΩΩΩ2C, where
C is a non-singular matrix-valued map.

If we have a frontal x : U → R3 with a tangent moving basis ΩΩΩ and we compose x
with a diffeomorphism h : V →U , this composition results a frontal (D(x◦h) = (ΩΩΩ◦h)(ΛΛΛ◦
h)T Dh) with ΩΩΩ◦h being a tangent moving basis of x◦h. Similarly, if we compose x with
a diffeomorphism k : W → Z, x(U)⊂W , where W , Z are open sets of R3, this composition
results a frontal (D(k ◦ x) = Dk(x)ΩΩΩΛΛΛ

T ) with Dk(x)ΩΩΩ being a tangent moving basis of
x◦h. Also, it is not difficult to see that if we have a front x : U → R3, then x◦h and φφφ ◦x
are fronts when φφφ : R3 → R3 is an isometry of R3 and h : V →U is a diffeomorphism.

Proposition 3.3.4. Let x : U → R3 be a proper frontal, h : V → U a diffeomorphism,
φφφ : R3 → R3 an isometry of R3, x̄ := φφφ ◦ x ◦ h the composite frontal, ΩΩΩ and Ω̄ΩΩ tangent
moving bases of x and x̄ respectively. If KΩ, HΩ are the relative curvatures for x and K̄

Ω̄
,

H̄
Ω̄

are the relative curvatures for x̄, then

• KΩ(h(x,y)) = 0 if and only if K̄
Ω̄
(x,y) = 0.

• HΩ(h(x,y)) = 0 if and only if H̄
Ω̄
(x,y) = 0.

Proof. It is sufficient to prove the cases in which φφφ and h are the identities respectively. If
φφφ is the identity, x̄ = x◦h, thus for the first item, as Ω̂ΩΩ := ΩΩΩ(h) is a tangent moving basis
of x̄(x,y), by proposition (3.3.2) K̄

Ω̂
(x,y) = 0 if and only if K̄

Ω̄
(x,y) = 0, but observe that

n̂ = n ◦h, then µ̂µµ = −IIT
Ω̂

I−1
Ω̂

= −Dn̂T Ω̂ΩΩI−1
Ω̂

= −DhT DnT (h)Ω̂ΩΩI−1
Ω̂

= −DhT IIT
Ω
(h)I−1

Ω
(h) =

DhT µµµ(h), therefore K̄
Ω̂
(x,y) = det(Dh)KΩ(h(x,y)) which proves the item. On the other

hand Λ̂ΛΛ = Dx̄T Ω̂ΩΩ(I
Ω̂
)−1 = DhT ΛΛΛ(h), thus

H̄
Ω̂
=−1

2
tr(µ̂µµad j(Λ̂ΛΛ))=−1

2
tr(ad j(Λ̂ΛΛ)µ̂µµ)=−det(Dh)

1
2

tr(µµµ(h)ad j(ΛΛΛ(h)))= det(Dh)HΩ(h)

and therefore HΩ(h(x,y)) = 0 if and only if H̄
Ω̂
(x,y) = 0. By proposition 3.3.2 it follows

the second item. In the last case h is the identity, x̄ = φφφ ◦x. As φφφ is an isometry, then we
can write it in this form φφφ(p) = Op+a, where O ∈M3×3(R) is an orthogonal matrix and
a ∈ R3 is a fixed vector. Thus, Ω̂ΩΩ := OΩΩΩ is a tangent moving basis of x̄ and n̂ =±On (+ if
det(O) = 1 and − if det(O) =−1), then II

Ω̂
=±(−ΩΩΩ

T OT ODn) =±IIΩ, I
Ω̂
= ΩΩΩ

T OT OΩΩΩ =

IΩ and Λ̂ΛΛ = ΛΛΛ. Therefore, µ̂µµ =±µµµ which implies KΩ = K
Ω̂

and HΩ =±H
Ω̂

. By proposition
3.3.2 it follows both items.

Proposition 3.3.5. Let x : U →R3 be a frontal, ΩΩΩ a tmb of x, h : V →U a diffeomorphism
and φφφ(p) = Op+ a, where O ∈ M3×3(R) is an orthogonal matrix and a ∈ R3 is a fixed
vector. Denoting x1 = x◦h, ΩΩΩ1 = ΩΩΩ◦h (tmb of x1), x2 = φφφ ◦x and ΩΩΩ2 = OΩΩΩ (tmb of x2),
then
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• K1
Ω1

= det(h)KΩ ◦h and H1
Ω1

= det(h)HΩ ◦h,

• K2
Ω2

= KΩ and H2
Ω2

=±HΩ (+ if det(O) = 1 and − if det(O) =−1),

where K1
Ω1

, H1
Ω1

and K2
Ω2

, H2
Ω2

are the relative curvatures of x1 and x2 respectively.

Proof. It is contained in the proof of proposition 3.3.4.

Proposition 3.3.6. Let x : U → R3 be a frontal and ΩΩΩ a tangent moving basis of x, then
x is a front if and only if, (

ΛΛΛ
T

µµµT

)
(3.13)

has a 2×2 minor different of zero, for each p ∈ Σ(x).

Proof. Let n be the normal vector field along x. By definition of front and using that
Dn = ΩΩΩµµµT (see equation (2.6)), x is a front if and only if,

2 = rank(

(
Dx
Dn

)
) = rank(

(
ΩΩΩΛΛΛ

T

ΩΩΩµµµT

)
) = rank(

(
ΩΩΩ 0
0 ΩΩΩ

)(
ΛΛΛ

T

µµµT

)
) = rank(

(
ΛΛΛ

T

µµµT

)
)

which is equivalent to have a 2×2 minor of the matrix (3.13) different of zero.

The propositions 3.3.2 and 3.3.4 now allow us to explore in which point any of KΩ

and HΩ turns zero making change of coordinates, applying isometries of R3 and switching
tangent moving bases. In the following theorem the necessary condition of the first item
was proved in ((MARTINS; SAJI; TERAMOTO, 2019),Proposition 2.4) considering a C∞

extension of λH for fronts with singular set having empty interior. We are going to prove
also the reciprocal and the case in which the singularity has rank 0, using the relative
curvatures.

Theorem 3.3.1. Let x : U →R3 be a frontal, ΩΩΩ a tangent moving basis of x and p ∈ Σ(x).
Then,

• x : U → R3 is a front on a neighborhood V of p with rank(Dx(p)) = 1 if and only if
HΩ(p) 6= 0.

• x : U → R3 is a front on a neighborhood V of p with rank(Dx(p)) = 0 if and only if
HΩ(p) = 0 and KΩ(p) 6= 0.

Proof. For the first item, we can apply a change of coordinates h and an isometry φφφ of R3

(making the line Dx(p)(R2) parallel to (1,0,0)) such that x̄ = φφφ ◦x◦h = (u,b(u,v),c(u,v)),
h(0,0) = p, bu(0,0) = bv(0,0) = cu(0,0) = 0 and having a tangent moving basis Ω̄ΩΩ in the
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form of remark 3.1.3. Thus, Dx̄= Ω̄ΩΩΛ̄ΛΛ
T , Λ̄ΛΛ

T
=D(u,b), µ̄µµ

T =D(−g1det(I
Ω̄
)−

1
2 ,−g2det(I

Ω̄
)−

1
2 )

and (u,b)u · (g1,g2)v = (u,b)v · (g1,g2)u (by corollary 3.1.2). Hence, cu = g1 + g2bu and
g1v+bug2v = bvg2u which implies that g1(0,0) = g1v(0,0) = 0. Since x̄ is wave front locally
at (0,0), by proposition 3.3.6 the matrix(

D(u,b)

µ̄µµ
T

)

has a 2×2 minor different from zero at (0,0) and therefore (−g2det(I
Ω̄
)−

1
2 )v(0,0) 6= 0. A

simple computation using the definition leads to H̄
Ω̄
(0,0) =−1

2(−g2det(I
Ω̄
)−

1
2 )v(0,0) 6= 0,

hence HΩ(p) 6= 0. Now, if we suppose that HΩ(p) 6= 0, as HΩ(p) = −1
2(λ22µ11 −λ21µ12 +

λ11µ22 −λ12µ21)(p), then (λ12µ21 −λ22µ11)(p) 6= 0 or (λ11µ22 −λ21µ12)(p) 6= 0, which are
two 2× 2 minors of (3.13) and also ΛΛΛ(p) 6= 0. Thus, rank(Dx(p)) = rank(ΛΛΛ(p)) = 1 and
there exists a neighborhood V of p, where any of these two 2× 2 minors is different of
zero, therefore by proposition 3.3.6 x is a front on V . For the second item, if x is a front
and rank(Dx(p)) = rank(ΛΛΛ(p)) = 0, then ΛΛΛ(p) = 0, HΩ(p) = 0 and by proposition 3.3.6
KΩ(p) = det(µµµT ) 6= 0. Now, if KΩ(p) 6= 0 and HΩ(p) = 0, there exist a neighborhood V of p
where KΩ 6= 0 and by proposition 3.3.6 x is a front on V . By the first item, rank(Dx(p)) 6= 1
because HΩ(p) = 0, then rank(Dx(p)) = 0.

From theorem 3.3.1 follows immediately the following corollary.

Corollary 3.3.1. Let x : U → R3 be a frontal, ΩΩΩ a tmb of x, this is a front if and only if,
(KΩ,HΩ) 6= 0 on Σ(x).

Example 3.3.2. Let x : R2 → R3 defined by x(u,v) := (u2,v2,v3 + u3), this is a frontal
with rank(Dx(p)) = 0 at p = (0,0) (Figure 4). We have the decomposition:

Figure 4 – A front with rank(Dx(0,0)) = 0.

Dx =

 2 0
0 2

3u 3v

(u 0
0 v

)
= ΩΩΩΛΛΛ

T , where ΩΩΩ =

 2 0
0 2

3u 3v

 ,ΛΛΛ =

(
u 0
0 v

)
,
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being ΩΩΩ a tangent moving basis of x, then we have n = (−6u,−6v,4)ε−
1
2 , w1u = (0,0,3),

w1v = (0,0,0), w2u = (0,0,0) and w2v = (0,0,3). Thus

IΩ = ΩΩΩ
T

ΩΩΩ =

(
4+9u2 9uv

9uv 4+9v2

)
,IIΩ =

(
n ·w1u n ·w1v

n ·w2u n ·w2v

)
=

(
12ε−

1
2 0

0 12ε−
1
2

)

µµµΩ =−IIT
ΩI−1

Ω
=−12ε

− 3
2

(
4+9u2 −9uv

−9uv 4+9v2

)

where ε = 36u2 +36v2 +16. Also, KΩ(u,v) = 144(36u2 +36v2 +16)−2 6= 0 and HΩ(0,0) =
−1

2(λ22µ11 −λ21µ12 +λ11µ22 −λ12µ21)(0,0) = 0, then by corollary 3.3.1, x is a front.

Example 3.3.3. Let x : R2 → R3 defined by x(u,v) := (ueu,v2,(u2

2 +u)v3), this is a frontal
with rank(Dx(p)) = 0 at p = (−1,0) (Figure 5). We have the decomposition:

Figure 5 – A frontal with rank(Dx(−1,0)) = 0.

Dx =

eu 0
0 2

v3 (u2

2 +u)3v

(1+u 0
0 v

)
= ΩΩΩΛΛΛ

T ,

where ΩΩΩ =

eu 0
0 2

v3 (u2

2 +u)3v

 ,ΛΛΛ =

(
1+u 0

0 v

)
,

being ΩΩΩ a tangent moving basis of x, then we have n = (−2v3,−eu(u2

2 + u)3v,2eu)δ− 1
2 ,

w1u = (eu,0,0), w1v = (0,0,3v2), w2u = (0,0,(u+1)3v) and w2v = (0,0,3(u2

2 +u)). Thus

IΩ =

(
e2u + v6 3(u2

2 +u)v4

3(u2

2 +u)v4 4+9(u2

2 +u)2v2

)
,IIΩ =

(
−2v3eu 6euv2

6(1+u)euv 6eu(u2

2 +u)

)
δ
− 1

2

where δ = 4v6 + e2u(9(u2

2 + u)2v2 + 4). Also, KΩ(−1,0) = 0 and HΩ(−1,0) = 0, then by
corollary 3.3.1, x is not a front at p = (−1,0).
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3.4 Representation formulas of Wavefronts
In this section we obtain formulas to construct all the local parametrizations of

wavefronts on a neighborhood of singularities of rank 0 and 1. These formulas are in terms
of some functions as parameters and they can be freely chosen. They are very useful to
give examples and counterexamples with desired characteristics.

Proposition 3.4.1 (Formula for rank 1). Let x : (U,0)→ (R3,0) be a germ of a wavefront,
ΩΩΩ a tangent moving basis of x and 0∈ Σ(x) with rank(Dx(0)) = 1. Then, up to an isometry
x is R-equivalent to y(w,z) = (w,

∫ z
0 λ

Ω̂
(w, t)dt + f1(w),

∫ z
0 tλ

Ω̂
(w, t)dt + f2(w)) which has as

tangent moving basis

Ω̂ΩΩ =

 0
yw 1

z

 ,ΛΛΛ
Ω̂
=

(
1 0
0 λ

Ω̂

)

where λ
Ω̂
(w,z), f1(w), f2(w) are smooth functions with λ

Ω̂
(0) = 0. In particular, x is

A -equivalent to (w,
∫ z

0 λ
Ω̂
(w, t)dt,

∫ z
0 tλ

Ω̂
(w, t)dt).

Proof. We can apply a change of coordinates h1 and an isometry φφφ of R3 (making the line
Dx(0)(R2) ⊂ ΩΩΩ(0)(R2) parallel to (1,0,0) and the plane ΩΩΩ(0)(R2) coincide with R2 × 0)
such that x̄ = φφφ ◦ x ◦h1 = (u,b(u,v),c(u,v)), bu(0,0) = bv(0,0) = 0 and having a tangent
moving basis Ω̄ΩΩ in the form:

Ω̄ΩΩ =

 1 0
0 1
g1 g2


with g1(0)= g2(0)= 0. Thus, Dx̄= Ω̄ΩΩΛ̄ΛΛ

T , Λ̄ΛΛ
T
=D(u,b), µ̄µµ

T =D(−g1det(I
Ω̄
)−

1
2 ,−g2det(I

Ω̄
)−

1
2 ).

Since x̄ is wave front locally at (0,0), by theorem 3.3.1 H̄
Ω̄
(0,0)=−1

2(−g2det(I
Ω̄
)−

1
2 )v(0,0) 6=

0, hence g2v 6= 0. Then, by the local form of the submersion, there exist a diffeomor-
phism with the form h2(w,z) = (w, l(w,z)) such that g2 ◦h2 = z, therefore setting y(w,z) :=
x̄◦h2(w,z) = (w, b̃(w,z), c̃(w,z)), Ω̃ΩΩ := Ω̄ΩΩ(h2) and g̃1 = g1 ◦h2 we have

Dy = Ω̄ΩΩ(h2)Λ̄ΛΛ
T
(h2)Dh2 = Ω̄ΩΩ(h2)D(u,b)(h2)Dh2 =

 1 0
0 1
g̃1 z

D(w, b̃)

and thus c̃z = zb̃z, λ
Ω̃
= b̃z. Integrating we get c̃=

∫ z
0 tλ

Ω̃
(w, t)dt+ c̃(w,0), b̃=

∫ z
0 λ

Ω̃
(w, t)dt+

b̃(w,0). Observe that the tangent moving basis Ω̂ΩΩ and ΛΛΛ
Ω̂

given in the statement of the
proposition give a decomposition of this last y in the proof, λ

Ω̃
= b̃z = λ

Ω̂
and from this

follows the result.

Remark 3.4.1. The formula in proposition 3.4.1 can be rewritten in the form

(u,b(u,v),
∫ v

0
tbv(u, t)dt + f2(u)),
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where b is a smooth function and bv = λ
Ω̂

.

Example 3.4.1 (Arbitrary singular set). Let C ⊂R2 be a closed set, by theorem (2.29,(LEE,
2013)) there exist a smooth nonnegative function λΩ : R2 → R such that λ

−1
Ω

(0) =C, then
y = (w,

∫ z
0 λΩ(w, t)dt,

∫ z
0 tλΩ(w, t)dt) is a wavefront with singular set Σ(y) =C.

Example 3.4.2 (Wavefronts with vanishing Gaussian curvature). Because KΩ(p) 6= 0
on singularities p of rank 0 and lim

(u,v)→p
|K| = |KΩ|

|λΩ| = ∞, then a wavefront with vanishing

Gaussian curvature x only has singularities of rank 1. Without loss of generality, let us
suppose (0,0) is a singularity, thus up to an isometry this is R-equivalent to the formula
in remark 3.4.1 at (0,0). Then taking the tangent moving basis in proposition 3.4.1, since
LΩNΩ −M1ΩM2Ω = 0, a simple computation leads to −vbuu +

∫ v
0 tbuuv(u, t)dt + f2uu(u) = 0.

Therefore f2uu(u) = 0 and taking derivative in v we get buu = 0. We conclude that x, up
to an isometry is R-equivalent to

(u,ur1(v)+ r2(v),
∫ v

0
tur′1(t)+ r′2(t)dt +uc1 + c2),

where r1,r2 are smooth functions with r′2(0) = 0 and c1,c2 constants. In particular x is a
ruled surface locally at (0,0) with a directrix curve (0,r2(v),r2(v)+c2) having a singularity
at v = 0.

Proposition 3.4.2. Let x : (U,0)→ (R3,0) be a germ of a wavefront, ΩΩΩ a tangent moving
basis of x and 0 ∈ Σ(x) with KΩ(0) 6= 0. Then, up to an isometry x is R-equivalent to
y = (a,b,

∫ u
0 t1au(t1,v) + vbu(t1,v)dt1 +

∫ v
0 t2bv(0, t2)dt2), where a, b are smooth functions

and av = bu. In particular, y = (a,
∫ u

0 av(t,v)dt+ f1(v),
∫ u

0 tau(t,v)+vav(t,v)dt+
∫ v

0 t f1v(t)dt),
where f1(v) is a smooth function.

Proof. Applying an isometry we always can choose a tangent moving basis of x = (a,b,c)

in the form

ΩΩΩ =

 1 0
0 1
g1 g2

 ,ΛΛΛT
Ω = D(a,b).

We have that KΩ(0) 6= 0 if and only if det(IIΩ(0)) 6= 0 and by corollary 3.1.2 this is
equivalent to have det(D(g1,g2) 6= 0), therefore by the Inverse function theorem there
exist a diffeomorphism h(w,z) such that (g1,g2)◦h = (w,z). Setting y := x◦h = (â, b̂, ĉ) we
have

Dy = ΩΩΩ(h)ΛΛΛT
Ω(h)Dh =

1 0
0 1
w z

D(â, b̂),

thus by corollary 3.1.2 (â, b̂)w · (w,z)z = (â, b̂)z · (w,z)w, it means b̂w = âz. Also, ĉw =

wâw + zb̂w and ĉz = wâz + zb̂z. Then, ĉ =
∫ w

0 t1âw(t1,z)+ zâz(t1,z)dt1 + ĉ(0,z), but ĉ(0,z) =
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∫ z
0 t2b̂z(0, t2)dt2, thus we get the first part. For the last part just define f1(z) := b̂(0,z),

observe that b̂ =
∫ w

0 âz(t,z)dt + f1(z) and substitute these in the last formula.

Corollary 3.4.1 (Formula for rank 0). Let x : (U,0)→ (R3,0) be a germ of a wavefront,
ΩΩΩ a tangent moving basis of x and 0 ∈ Σ(x) with rank(Dx(0)) = 0. Then, up to an isom-
etry x is R-equivalent to y = (a,b,

∫ u
0 t1au(t1,v)+ vbu(t1,v)dt1 +

∫ v
0 t2bv(0, t2)dt2), where a,

b are smooth functions, av = bu and D(a,b)(0) = 0. In particular, y = (a,
∫ u

0 av(t,v)dt +

f1(v),
∫ u

0 tau(t,v)+vav(t,v)dt+
∫ v

0 t f1v(t)dt), where f1(v) is a smooth function with au(0) =
av(0) = f1v(0) = 0.

Proof. By theorem 3.3.1 KΩ(0) 6= 0 and applying the proposition 3.4.2 we get the result.

Corollary 3.4.2 (Local form for general rank). Let x : (U,0) → (R3,0) be a germ of
a wavefront, ΩΩΩ a tangent moving basis of x and 0 ∈ Σ(x). Then, x is A -equivalent to
y = (a,b,

∫ u
0 t1au(t1,v) + vbu(t1,v)dt1 +

∫ v
0 t2bv(0, t2)dt2), where a, b are smooth functions

and av = bu.

Proof. The case rank(Dx(0)) = 0 is the last colollary. If rank(Dx(0)) = 1 by proposi-
tion 3.4.1 x is A -equivalent to (w,

∫ z
0 λ

Ω̂
(w, t)dt,

∫ z
0 tλ

Ω̂
(w, t)dt) which is A -equivalent to

(w,
∫ z

0 λ
Ω̂
(w, t)dt,

∫ z
0 tλ

Ω̂
(w, t)dt+w2). By a simple computation for this last wavefront K

Ω̂
(0) 6=

0 and applying proposition 3.4.2 we get the result.
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CHAPTER

4
THE FUNDAMENTAL THEOREM

In classical differential geometry, the fundamental theorem of regular surfaces
(see(CARMO, 1976; STOKER, 1969)) states that if we have E,F,G,L,M,N smooth func-
tions defined in an open set U ⊂R2, with E > 0, G> 0, EG−F2 > 0 and the given functions
satisfy formally the Gauss and Mainardi-Codazzi equations, then for each p ∈U there ex-
ist a neighborhood V ⊂ U of p and a diffeomorphism x : V → x(V ) ⊂ R3 such that the
regular surface x(U) has E,F,G and L,M,N as coefficients of the first and second funda-
mental forms, respectively. Furthermore, if U is connected and if x̄ : U → x̄(U) ⊂ R3 is
another diffeomorphism satisfying the same conditions, then there exist a translation T
and a proper linear orthogonal transformation ρρρ in R3 such that x̄ = T◦ρρρ ◦x.
Gauss equation:

Γ
2
12u −Γ

2
11v +Γ

1
12Γ

2
11 +Γ

2
12Γ

2
12 −Γ

2
11Γ

2
22 −Γ

1
11Γ

2
12 =−EK

Mainardi-Codazzi equations:

Lv −Mu = LΓ
1
12 +M(Γ2

12 −Γ
1
11)−NΓ

2
11

Mv −Nu = LΓ
1
22 +M(Γ2

22 −Γ
1
12)−NΓ

2
12

where K is the Gaussian Curvature and Γ
j
ik are the Christoffel symbols.

This theorem realizes the first and the second fundamental forms compatible as
a regular surface in the euclidean 3-space. In (KOSSOWSKI, 2004) M. Kossowski gave
sufficient conditions for a singular first fundamental form (metrics admitting only non-
degenerate singularities) to be realized as a wave front. Saji, Umehara and Yamada in
(SAJI; UMEHARA; YAMADA, 2011) also consider this question of the realization of
frontals and they give a theorem in terms of “coherent tangent bundles” a new concept
they introduced. They show that a coherent tangent bundle induces compatible first
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and second fundamental forms. In addition in (HASEGAWA et al., 2015), M. Hasegawa,
A. Honda, K. Naokawa, K. Saji, M. Umehara and K. Yamada proved that a Kossowski
metrics induces uniquely a coherent tangent bundle. However the set of metrics associated
to frontals is bigger than Kossowski metrics and it was not shown what properties satisfy
explicitly these metrics and how they induce a coherent tangent bundle. In theorem 3.1.1
we describe what are the properties that every metric of a frontal satisfies, which allow us
to realize all the proper frontals. In this chapter, we present our main result theorem 4.4.1
in terms of the classical fundamental forms satisfying the properties of decomposition
in their associated matrices. This result generalizes the fundamental theorem of regular
surfaces mentioned before including now all the proper frontals, with the possibility to
distinguish wave fronts from its fundamental forms.

4.1 The Relative Compatibility Equations
There are two groups of equations, which are present in all frontals and guarantee

the integrability conditions for the system of partial differential equations that we consider
in theorem 4.4.1. In this section we show one group of these and we prove that they are
equivalent essentially to 3 equations that curiously seem very similar to the Gauss equation
and Mainardi-Codazzi equations. The other group is presented in the next section.

Let ΩΩΩ =
(

w1 w2

)
: U →M3×2(R) be a moving base and n = w1×w2

‖w1×w2‖ . We have
that w1,w2,n is a base of R3, then there are real functions (pi j) and (qi j) defined in U ,
i, j ∈ {1,2,3} such that:

w1u = p11w1 + p12w2 + p13n

w2u = p21w1 + p22w2 + p23n

nu = p31w1 + p32w2 + p33n

w1v = q11w1 +q12w2 +q13n

w2v = q21w1 +q22w2 +q23n

nv = q31w1 +q32w2 +q33n

If we set the matrix W :=
(

w1 w2 n
)
∈ GL(3) whose columns are w1, w2 and n. Also,

denoting by P := (pi j) and Q := (qi j), we have:

Wu =WP
T (4.3a)

Wv =WQ
T (4.3b)

which is equivalent to:

WT
u = PWT (4.4a)

WT
v =QWT (4.4b)
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then, we have that P =WT
u (W

T )−1 =WT
uWW

−1(WT )−1 =WT
uW(WTW)−1 and Q =

WT
v (W

T )−1 = WT
vWW

−1(WT )−1 = WT
vW(WTW)−1. Considering W =

(
ΩΩΩ n

)
as a

block matrix, we have:

P=WT
uW(WTW)−1 =

(
ΩΩΩ

T
u

nT
u

)(
ΩΩΩ n

)
(

(
ΩΩΩ

T

nT

)(
ΩΩΩ n

)
)−1

=

(
ΩΩΩ

T
u ΩΩΩ ΩΩΩ

T
u n

nT
u ΩΩΩ nT

u n

)(
ΩΩΩ

T
ΩΩΩ ΩΩΩ

T n
nT ΩΩΩ nT n

)−1

=

(
ΩΩΩ

T
u ΩΩΩ ΩΩΩ

T
u n

nT
u ΩΩΩ 0

)(
IΩ 0
0 1

)−1

=

(
ΩΩΩ

T
u ΩΩΩ ΩΩΩ

T
u n

nT
u ΩΩΩ 0

)(
I−1

Ω
0

0 1

)
=

(
ΩΩΩ

T
u ΩΩΩI−1

Ω
ΩΩΩ

T
u n

nT
u ΩΩΩI−1

Ω
0

)

from (2.6), we have nT
u = µµµT

(1)ΩΩΩ
T and nT

v = µµµT
(2)ΩΩΩ

T . Then,

P=

(
ΩΩΩ

T
u ΩΩΩI−1

Ω
ΩΩΩ

T
u n

nT
u ΩΩΩI−1

Ω
0

)
=

(
T1 ΩΩΩ

T
u n

µµµT
(1)ΩΩΩ

T
ΩΩΩI−1

Ω
0

)
=

(
T1 ΩΩΩ

T
u n

µµµT
(1) 0

)

Finally, using (2.4) and by analogy with the same procedure for Q, we get:

P=

T 1
11 T 2

11 LΩ

T 1
21 T 2

21 M2Ω

µ11 µ12 0

 (4.5)

Q=

T 1
12 T 2

12 M1Ω

T 1
22 T 2

22 NΩ

µ21 µ22 0

 (4.6)

now, as WT
uv =W

T
vu, then PvW

T +PWT
v =QuW

T +QWT
u . Using (4.4a) and (4.4b) in the

last equality, PvW
T +PQWT =QuW

T +QPWT , then (Pv −Qu +PQ−QP)WT = 0 and
finally we get:

Pv −Qu +[P,Q] = 0 (4.7)

which is the compatibility condition of the system (4.4) by corollary 2.3.1.

Using (4.5) and (4.6) to compute each component (i, j) of (4.7) we obtain the
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following equations that we call the Ω-relative compatibility equations (RCE):

(1,1) (T 1
11)v − (T 1

12)u = T 1
12T 1

11 −T 1
11T 1

12 +T 2
12T 1

21 −T 1
22T 2

11 +µ11M1Ω −µ21LΩ (4.8a)

(1,2) (T 2
11)v − (T 2

12)u = T 1
12T 2

11 +T 2
12T 2

21 −T 1
11T 2

12 −T 2
11T 2

22 +µ12M1Ω −µ22LΩ (4.8b)

(2,1) (T 1
21)v − (T 1

22)u = T 1
22T 1

11 +T 2
22T 1

21 −T 1
21T 1

12 −T 2
21T 1

22 +µ11NΩ −µ21M2Ω (4.8c)

(2,2) (T 2
21)v − (T 2

22)u = T 2
22T 2

21 −T 2
21T 2

22 +T 2
11T 1

22 −T 2
12T 1

21 +µ12NΩ −µ22M2Ω (4.8d)

(1,3) µ11v −µ21u = T 1
11µ21 +T 1

21µ22 −T 1
12µ11 −T 1

22µ12 (4.8e)

(2,3) µ12v −µ22u = T 2
11µ21 +T 2

21µ22 −T 2
12µ11 −T 2

22µ12 (4.8f)

(3,1) (LΩ)v − (M1Ω)u = LΩT 1
12 +M2ΩT 2

12 −M1ΩT 1
11 −NΩT 2

11 (4.8g)

(3,2) (M2Ω)v − (NΩ)u = LΩT 1
22 +M2ΩT 2

22 −M1ΩT 1
21 −NΩT 2

21 (4.8h)

(3,3) LΩµ21 +M2Ωµ22 −M1Ωµ11 −NΩµ12 = 0 (4.8i)

Using that the Ω-relative curvature KΩ = det(µµµ)= det(IIΩ)
det(IΩ)

= LΩNΩ−M1ΩM2Ω

EΩGΩ−F2
Ω

and µµµ =−IIT
Ω

I−1
Ω

in (4.8b) we get:

(T 2
12)u − (T 2

11)v +T 1
12T 2

11 +T 2
12T 2

21 −T 2
11T 2

22 −T 1
11T 2

12 =−EΩKΩ. (4.9)

4.2 The Singular Compatibility Equations

In the following group of equations that we present here, the functions (λi j) are
involved. Let x : U → R3 be a frontal and ΩΩΩ =

(
w1 w2

)
a tangent moving base of x.

Then, Dx = ΩΩΩΛΛΛ
T and we have that,

xu = λ11w1 +λ12w2

xv = λ21w1 +λ22w2

where ΛΛΛ = (λi j). Setting,

Λ̄ΛΛ :=

λ11 λ12 0
λ21 λ22 0
0 0 1

 , X :=
(

Dx n
)
,

we have X =WΛ̄ΛΛ
T , where W =

(
ΩΩΩ n

)
. Denoting î, ĵ, k̂ the canonical base of R3, the

compatibility condition xuv = xvu is equivalent to

Xuĵ =Xv î, (4.11)

using (4.3) with (4.11) we have

WPT
Λ̄ΛΛ

T ĵ+WΛ̄ΛΛ
T
u ĵ =WuΛ̄ΛΛ

T ĵ+WΛ̄ΛΛ
T
u ĵ =WvΛ̄ΛΛ

T î+WΛ̄ΛΛ
T
v î =WQT

Λ̄ΛΛ
T î+WΛ̄ΛΛ

T
v î,



4.3. Equivalences between equations 57

then (4.11) is equivalent to

PT
Λ̄ΛΛ

T ĵ+ Λ̄ΛΛ
T
u ĵ =QT

Λ̄ΛΛ
T î+ Λ̄ΛΛ

T
v î. (4.12)

Computing each component of 4.12, we get the following equations that we call singular
compatibility equations (SCE):

λ11v −λ21u = T 1
11λ21 +T 1

21λ22 −T 1
12λ11 −T 1

22λ12 (4.13a)

λ12v −λ22u = T 2
11λ21 +T 2

21λ22 −T 2
12λ11 −T 2

22λ12 (4.13b)

λ11M1Ω +λ12NΩ = λ21LΩ +λ22M2Ω (4.13c)

4.3 Equivalences between equations
In this section we prove that (RCE) are equivalent to the equations (4.9), (4.8g),

(4.8h) which have a structure similar to the Gauss equation and Mainardi-Codazzi equa-
tions. If we set the matrices:

e1 :=

(
1
0

)
,e2 :=

(
0
1

)
,

we can rewrite RCE and SCE with the following very useful compact notation.
Equations (4.13a) and (4.13b):

eT
2 (ΛΛΛT1 +ΛΛΛu) = eT

1 (ΛΛΛT2 +ΛΛΛv). (4.14)

Equation (4.13c):

ΛΛΛ(1)II(2)
Ω

= ΛΛΛ(2)II(1)
Ω
, (4.15)

that is, ΛΛΛIIΩ is symmetric.
Equations (4.8a), (4.8b), (4.8c) and (4.8d):

T1v −T2u +T1T2 −T2T1 + II(1)
Ω

eT
2 µµµ − II(2)

Ω
eT

1 µµµ = 0. (4.16)

Equations (4.8e) and (4.8f):

eT
2 (µµµT1 +µµµu) = eT

1 (µµµT2 +µµµv). (4.17)

Equations (4.8g) and (4.8h):

eT
2 (IIT

ΩT T
1 − IIΩu) = eT

1 (IIT
ΩT T

2 − IIΩv). (4.18)

Equation (4.8i):

µµµ(1)II(2)
Ω

= µµµ(2)II(1)
Ω
, (4.19)

that is, µµµIIΩ is symmetric.
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Proposition 4.3.1. Let IΩ,IIΩ,T1,T2 : U → M2×2(R) be arbitrary smooth maps with
IΩ symmetric positive definite. If we set µµµ =−IIT

Ω
I−1

Ω
, KΩ = det(µµµ) and we have that

IΩT T
1 +T1IΩ = IΩu, (4.20)

IΩT T
2 +T2IΩ = IΩv, (4.21)

denoting

IΩ =

(
EΩ FΩ

FΩ GΩ

)
,IIΩ =

(
LΩ M1Ω

M2Ω NΩ

)
,

then:

(i) The equation (4.16) is satisfied if and only if, the equation (4.9) is satisfied.

(ii) The equation (4.18) is satisfied if and only if, the equation (4.17) is satisfied.

Proof.

• (i) The equation (4.16) is satisfied if and only if, the resulting equation of multiplying
this by the right side with IΩ is satisfied

T1vIΩ −T2uIΩ +T1T2IΩ −T2T1IΩ − II(1)
Ω

II(2)T
Ω

+ II(2)
Ω

II(1)T
Ω

= 0. (4.22)

Observe that −II(1)
Ω

II(2)T
Ω

+ II(2)
Ω

II(1)T
Ω

is skew-symmetric. Let us set,

A := T1vIΩ −T2uIΩ +T1T2IΩ −T2T1IΩ, (4.23)

B =

(
0 −b

b 0

)
:=−II(1)

Ω
II(2)T

Ω
+ II(2)

Ω
II(1)T

Ω
, (4.24)

we have that

−AT =−IΩT T
1v + IΩT T

2u − IΩT T
2 T T

1 + IΩT T
1 T T

2 . (4.25)

On the other hand, deriving (4.20) by v, (4.21) by u and subtracting the results we
get:

IΩT T
2u − IΩT T

1v −T1IΩv +T2IΩu = T1vIΩ −T2uIΩ − IΩuT T
2 + IΩvT T

1 . (4.26)

Substituting in (4.26), IΩu and IΩv by (4.20) and (4.21), we obtain canceling similar
terms that, the right side of (4.23) is equal to the right side of (4.25). Then, A is
skew-symmetric having the form

A =

(
0 −a

a 0

)
,
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hence (4.22) is satisfied if and only if, a+ b=0 as also, (4.16) can be expressed in
this form, (

0 −a−b

a+b 0

)
I−1

Ω
= 0. (4.27)

Computing the component (1,2) of (4.27) we have EΩ(−a−b)det(IΩ)
−1 = 0, then

a+ b = 0 if and only if, the component (1,2) of (4.16) is satisfied, which is the
equation (4.8b) that is simplified to (4.9).

• (ii) Using that µµµ =−IIT
Ω

I−1
Ω

, we substitute µµµ , µµµu and µµµv in (4.17), we get eT
2 (−IIT

Ω
I−1

Ω
T1−

IIT
ΩuI−1

Ω
− IIT

Ω
(I−1

Ω
)u) = eT

1 (−IIT
Ω

I−1
Ω
T2 − IIT

ΩvI−1
Ω

− IIT
Ω
(I−1

Ω
)v) that is satisfied if and

only if, the resulting equation of multiply this by the right side with IΩ is satisfied,
in which we can later substitute (I−1

Ω
)uIΩ =−I−1

Ω
IΩu, (I−1

Ω
)vIΩ =−I−1

Ω
IΩv, factorize

similar terms in both sides and get eT
2 (IIT

Ω
I−1

Ω
(IΩu−T1IΩ)−IIT

Ωu) = eT
1 (IIT

Ω
I−1

Ω
(IΩv−

T2IΩ)− IIT
Ωv). Since IΩu−T1IΩ = IΩT T

1 and IΩv−T2IΩ = IΩT T
2 by hypothesis, sub-

tituting these, the equation becomes in (4.18).

Remark 4.3.1. Since that equation (4.19) is always satisfied by definition of µµµ and as
every frontal satisfy (4.20) and (4.21) (proposition 3.2.1), by this last proposition (RCE)
are equivalent to (4.9), (4.8g) and (4.8h).

4.4 The Fundamental Theorem

Theorem 4.4.1. Let E,F,G,L,M,N smooth functions defined in an open set U ⊂ R2,
with E ≥ 0, G ≥ 0 and EG−F2 ≥ 0. Assume that the given functions have the following
decomposition: (

E F

F G

)
=

(
λ11 λ12

λ21 λ22

)(
EΩ FΩ

FΩ GΩ

)(
λ11 λ12

λ21 λ22

)T

(4.28a)(
L M

M N

)
=

(
λ11 λ12

λ21 λ22

)(
LΩ M1Ω

M2Ω NΩ

)
(4.28b)

in which all the components are smooth real functions defined in U , EΩ > 0, GΩ > 0,
EΩGΩ −F2

Ω
> 0, λ

−1
Ω

(0) has empty interior and

ΛΛΛ(1)u

(
EΩ FΩ

FΩ GΩ

)
ΛΛΛ

T
(2)−ΛΛΛ(1)

(
EΩ FΩ

FΩ GΩ

)
ΛΛΛ

T
(2)u +Ev −Fu ∈ TΩ (4.29a)

ΛΛΛ(1)v

(
EΩ FΩ

FΩ GΩ

)
ΛΛΛ

T
(2)−ΛΛΛ(1)

(
EΩ FΩ

FΩ GΩ

)
ΛΛΛ

T
(2)v +Fv −Gu ∈ TΩ, (4.29b)
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where ΛΛΛ = (λi j), λΩ = det(ΛΛΛ) and TΩ is the principal ideal generated by λΩ in the
ring C∞(U,R). Assume also that E,F,G,L,M,N formally satisfy the Gauss and Mainardi-
Codazzi equations for all (u,v) ∈U −λ

−1
Ω

(0). Then,

• (Existence) for each (u0,v0) ∈U there exists a neighborhood V ⊂U of (u0,v0) and
a frontal x : V → x(V )⊂ R3 with a tangent moving base ΩΩΩ such that Dx = ΩΩΩΛΛΛ

T ,

IΩ =

(
EΩ FΩ

FΩ GΩ

)
, IIΩ =

(
LΩ M1Ω

M2Ω NΩ

)

and the frontal x has E,F,G and L,M,N as coefficients of the first and second
fundamental forms, respectively.

• (Rigidity) If U is connected and if

x̄ : U → R3 and Ω̄ΩΩ : U → R3

are another frontal and a tangent moving base satisfying the same conditions, then
there exist a translation T and a proper linear orthogonal transformation ρρρ in R3

such that Ω̄ΩΩ = ρρρΩΩΩ and x̄ = T◦ρρρ ◦x.

In order to prove theorem 4.4.1, we shall divide the proof in two parts, existence
and rigidity separately. We are also going to use the following lemma.

Lemma 4.4.1. If we have:

Γ̄ΓΓ1Λ̄ΛΛ− Λ̄ΛΛu = Λ̄ΛΛT̄1 (4.30a)

Γ̄ΓΓ2Λ̄ΛΛ− Λ̄ΛΛv = Λ̄ΛΛT̄2 (4.30b)

in which Λ̄ΛΛ, T̄1, T̄2 : U →Mn×n(R) and Γ̄ΓΓ1, Γ̄ΓΓ2 : U − det−1(Λ̄ΛΛ)(0)→Mn×n(R) are smooth
maps with int(det−1(Λ̄ΛΛ)(0)) = /0. Then,

Γ̄ΓΓ1v − Γ̄ΓΓ2u +[Γ̄ΓΓ1, Γ̄ΓΓ2] = 0 is equivalent to T̄1v − T̄2u +[T̄1, T̄2] = 0 in U . Futhermore,
if

Ī = Λ̄ΛΛĪΩΛ̄ΛΛ
T (4.31)

where Ī, ĪΩ are smooth maps with det(ĪΩ) 6= 0. Then,

• ĪΓ̄ΓΓ
T
1 + Γ̄ΓΓ1Ī = Īu if and only if, ĪΩT̄ T

1 + T̄1ĪΩ = ĪΩu on U .

• ĪΓ̄ΓΓ
T
2 + Γ̄ΓΓ2Ī = Īv if and only if, ĪΩT̄ T

2 + T̄2ĪΩ = ĪΩv on U .
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Proof. For the first part, deriving (4.30a) in v, (4.30b) in u we get:

Λ̄ΛΛvT̄1 + Λ̄ΛΛT̄1v = Γ̄ΓΓ1vΛ̄ΛΛ+ Γ̄ΓΓ1Λ̄ΛΛv − Λ̄ΛΛuv (4.32a)

Λ̄ΛΛuT̄2 + Λ̄ΛΛT̄2u = Γ̄ΓΓ2uΛ̄ΛΛ+ Γ̄ΓΓ2Λ̄ΛΛu − Λ̄ΛΛvu (4.32b)

Subtracting (4.32b) from (4.32a)

Λ̄ΛΛ(T̄1v − T̄2u)+ Λ̄ΛΛvT̄1 − Λ̄ΛΛuT̄2 = (Γ̄ΓΓ1v − Γ̄ΓΓ2u)Λ̄ΛΛ+ Γ̄ΓΓ1Λ̄ΛΛv − Γ̄ΓΓ2Λ̄ΛΛu (4.33a)

Substituting (4.30a) and (4.30b) in (4.33a) on right side

Λ̄ΛΛ(T̄1v − T̄2u)+ Λ̄ΛΛvT̄1 − Λ̄ΛΛuT̄2 = (Γ̄ΓΓ1v − Γ̄ΓΓ2u)Λ̄ΛΛ+ Γ̄ΓΓ1Γ̄ΓΓ2Λ̄ΛΛ− Γ̄ΓΓ2Γ̄ΓΓ1Λ̄ΛΛ− Γ̄ΓΓ1Λ̄ΛΛT̄2

+Γ̄ΓΓ2Λ̄ΛΛT̄1

Then,

Λ̄ΛΛ(T̄1v − T̄2u)+(Γ̄ΓΓ1Λ̄ΛΛ− Λ̄ΛΛu)T̄2 +(Λ̄ΛΛv − Γ̄ΓΓ2Λ̄ΛΛ)T̄1 = (Γ̄ΓΓ1v − Γ̄ΓΓ2u)Λ̄ΛΛ+[Γ̄ΓΓ1, Γ̄ΓΓ2]Λ̄ΛΛ

Using (4.30a) and (4.30b) on the left side

Λ̄ΛΛ(T̄1v − T̄2u)− Λ̄ΛΛT̄2T̄1 + Λ̄ΛΛT̄1T̄2 = (Γ̄ΓΓ1v − Γ̄ΓΓ2u)Λ̄ΛΛ+[Γ̄ΓΓ1, Γ̄ΓΓ2]Λ̄ΛΛ

Therefore, we have

Λ̄ΛΛ(T̄1v − T̄2u +[T̄1, T̄2]) = (Γ̄ΓΓ1v − Γ̄ΓΓ2u +[Γ̄ΓΓ1, Γ̄ΓΓ2])Λ̄ΛΛ

As U −det−1(Λ̄ΛΛ)(0) is dense in U and Λ̄ΛΛ is invertible there, we have the result.

For the last part, the proof of the second item is analogous to the first one, so we
are going to prove just the first. For p ∈U −det−1(Λ̄ΛΛ)(0), by (4.30a) we have,

ĪΩT̄ T
1 + T̄1ĪΩ = ĪΩ(Λ̄ΛΛ

T
Γ̄ΓΓ

T
1 − Λ̄ΛΛ

T
u )(Λ̄ΛΛ

T
)−1 + Λ̄ΛΛ

−1
(Γ̄ΓΓ1Λ̄ΛΛ− Λ̄ΛΛu)ĪΩ (4.38)

= ĪΩΛ̄ΛΛΓ̄ΓΓ
T
1 (Λ̄ΛΛ

T
)−1 + Λ̄ΛΛ

−1
Γ̄ΓΓ1Λ̄ΛΛĪΩ − ĪΩΛ̄ΛΛ

T
u (Λ̄ΛΛ

T
)−1 − Λ̄ΛΛ

−1
Λ̄ΛΛuĪΩ

On the other hand, Λ̄ΛΛ
−1

Λ̄ΛΛ = In, then Λ̄ΛΛ
T
u (Λ̄ΛΛ

T
)−1 = −Λ̄ΛΛ

T
((Λ̄ΛΛ

T
)−1)u, Λ̄ΛΛ

−1
Λ̄ΛΛu = −(Λ̄ΛΛ

−1
)uΛ̄ΛΛ.

Also, from (4.31) ĪΩΛ̄ΛΛ
T
= Λ̄ΛΛ

−1I, Λ̄ΛΛĪΩ = Ī(Λ̄ΛΛT
)−1 substituting the last four equalities in

(4.38) we get:

ĪΩT̄ T
1 + T̄1ĪΩ = Λ̄ΛΛ

−1ĪΓ̄ΓΓ
T
1 (Λ̄ΛΛ

T
)−1 + Λ̄ΛΛ

−1
Γ̄ΓΓ1Ī(Λ̄ΛΛT

)−1 − ĪΩΛ̄ΛΛ
T
u (Λ̄ΛΛ

T
)−1 − Λ̄ΛΛ

−1
Λ̄ΛΛuĪΩ

= Λ̄ΛΛ
−1
(ĪΓ̄ΓΓ

T
1 + Γ̄ΓΓ1Ī)(Λ̄ΛΛT

)−1 + ĪΩΛ̄ΛΛ
T
((Λ̄ΛΛ

T
)−1)u +(Λ̄ΛΛ

−1
)uΛ̄ΛΛĪΩ

= Λ̄ΛΛ
−1
(ĪΓ̄ΓΓ

T
1 + Γ̄ΓΓ1Ī)(Λ̄ΛΛT

)−1 + Λ̄ΛΛ
−1Ī((Λ̄ΛΛT

)−1)u +(Λ̄ΛΛ
−1
)uĪ(Λ̄ΛΛT

)−1

By hypothesis ĪΓ̄ΓΓ
T
1 + Γ̄ΓΓ1Ī = Īu, then

ĪΩT̄ T
1 + T̄1ĪΩ = Λ̄ΛΛ

−1Īu(Λ̄ΛΛ
T
)−1 + Λ̄ΛΛ

−1Ī((Λ̄ΛΛT
)−1)u +(Λ̄ΛΛ

−1
)uĪ(Λ̄ΛΛT

)−1

= (Λ̄ΛΛ
−1Ī(Λ̄ΛΛT

)−1)u = ĪΩu

By density of U −det−1(Λ̄ΛΛ)(0), ĪΩT̄ T
1 + T̄1ĪΩ = ĪΩu holds on U . The converse is obtained

in the same way.
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Proof. Theorem 4.4.1(Existence). By proposition 3.2.3 there exist T1,T2 : U →M2×2(R)
smooth maps such that on (λ−1

Ω
(0))c,

T1 = ΛΛΛ
−1(ΓΓΓ1ΛΛΛ−ΛΛΛu), (4.39a)

T2 = ΛΛΛ
−1(ΓΓΓ2ΛΛΛ−ΛΛΛv). (4.39b)

Let us construct T̄1 and T̄2 as the matrices P and Q in (4.5) and (4.6) respectively, using
(2.3e), (2.3a) and (2.3b). By (4.39a), (4.39b) and since αααΛΛΛ = µµµ on (λ−1

Ω
(0))c (caused by

(4.28a) and (4.28b)) we have for all (u,v) ∈ (λ−1
Ω

(0))c,

Γ̄ΓΓ1Λ̄ΛΛ− Λ̄ΛΛu = Λ̄ΛΛT̄1 and Γ̄ΓΓ2Λ̄ΛΛ− Λ̄ΛΛv = Λ̄ΛΛT̄2

where,

Γ̄ΓΓ1 =

Γ1
11 Γ2

11 L

Γ1
21 Γ2

21 M

α11 α12 0

=


1
2Eu (Fu − 1

2Ev) L
1
2Ev

1
2Gu M

−L −M 0


E F 0

F G 0
0 0 1


−1

(4.41)

Γ̄ΓΓ2 =

Γ1
12 Γ1

22 α21

Γ2
12 Γ2

22 α22

M N 0

=


1
2Ev

1
2Gu −M

(Fv − 1
2Gu)

1
2Gv −N

M N 0


E F 0

F G 0
0 0 1


−1

(4.42)

Λ̄ΛΛ =

λ11 λ12 0
λ21 λ22 0
0 0 1


Let (u0,v0)∈U , q∈R3 be fixed points and since EΩGΩ−F2

Ω
> 0 we can find z1, z2, z3 fixed

vectors of R3 linearly independent and positively oriented such that z1 · z1 = EΩ(u0,v0),
z1 · z2 = FΩ(u0,v0), z2 · z2 = GΩ(u0,v0), z3 · z3 = 1 and z3 · zi = 0 for i = 1,2. Consider the
system of partial differential equations,

WT
u = T̄1W

T (4.43a)

WT
v = T̄2W

T (4.43b)

W(u0,v0) =
(

z1 z2 z3

)
(4.43c)

It is known in classical differential geometry that, the Gauss and Mainardi-Codazzi equa-
tions are equivalent to Γ̄ΓΓ1v − Γ̄ΓΓ2u + [Γ̄ΓΓ1, Γ̄ΓΓ2] = 0, then as this is satisfied, by lemma 4.4.1
T̄1v − T̄2u +[T̄1, T̄2] = 0 in U which is the compatibility condition of the above system of
equations. By corollary 2.3.1, this system has a unique solution W : V̄ → GL(3), where V̄

is a neighborhood of (u0,v0). Since det(W(u0,v0))> 0, restricting V̄ if it is necessary, we
can suppose that det(W)> 0 on V̄ . Setting the matrices,

Ī :=

E F 0
F G 0
0 0 1

 , ĪΩ :=

EΩ FΩ 0
FΩ GΩ 0
0 0 1


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Y :=WTW (4.44)

We want to prove that ĪΩ =Y. Consider the following system of partial differential equa-
tions.

Yu =YT̄ T
1 + T̄1Y (4.45a)

Yv =YT̄ T
2 + T̄2Y (4.45b)

Y(u0,v0) = ĪΩ(u0,v0) (4.45c)

Defining ΘΘΘ(u,v,X) := XT̄ T
1 + T̄1X and ΞΞΞ(u,v,X) := XT̄ T

2 + T̄2X for X ∈M3×3(R), we can
compute the compatibility condition 2.8 and we get:

XT̄ T
1v + T̄1vX+(XT̄ T

2 + T̄2X)T̄ T
1 + T̄1(XT̄ T

2 + T̄2X)

=XT̄ T
2u + T̄2uX+(XT̄ T

1 + T̄1X)T̄ T
2 + T̄2(XT̄ T

1 + T̄1X)

Eliminating common terms and grouping we have:

X(T̄ T
1v − T̄ T

2u)+(T̄1v − T̄2u)X

=X(T̄ T
1 T̄ T

2 − T̄ T
2 T̄ T

1 )+(T̄2T̄1 − T̄1T̄2)X

then,

X(T̄1v − T̄2u +[T̄1, T̄2])
T +(T̄1v − T̄2u +[T̄1, T̄2])X = 0 (4.46)

As T̄1v − T̄2u +[T̄1, T̄2] = 0, (4.46) is satisfied for all X ∈M3×3(R), then by theorem 2.3.1
the system of partial differential equations (4.45) has unique solution. On the other hand,
using (4.43a) and (4.43b), it can be verified easily that X defined in 4.44 is a solution
of the system 4.45. Also by (4.41) and (4.42) we have ĪΓ̄ΓΓ

T
1 + Γ̄ΓΓ1Ī = Īu and ĪΓ̄ΓΓ

T
2 + Γ̄ΓΓ2Ī = Īv

on (λ−1(0))c, then by lemma 4.4.1, ĪΩT̄ T
1 + T̄1ĪΩ = ĪΩu and ĪΩT̄ T

2 + T̄2ĪΩ = ĪΩv on U , it
means, ĪΩ is also a solution of the system 4.45, therefore by uniqueness ĪΩ = Y on any
neighborhood V̂ of (u0,v0). Now, as ĪΩ =WTW, we have that w3 is orthogonal to w1,w2

and w3 ·w3 = 1. Since det(W) > 0, n := w1×w2
‖w1×w2‖ = w3 and if we define ΩΩΩ :=

(
w1 w2

)
then,

ΩΩΩ
T

ΩΩΩ =

(
EΩ FΩ

FΩ GΩ

)
= IΩ

from (4.43a) and (4.43b) we have,T 1
11 T 2

11 LΩ

T 1
21 T 2

21 M2Ω

µ11 µ12 0

=WT
uWĪ−1

Ω
=

(
ΩΩΩ

T
u ΩΩΩI−1

Ω
ΩΩΩ

T
u n

nT
u ΩΩΩI−1

Ω
0

)
T 1

12 T 2
12 M1Ω

T 1
22 T 2

22 NΩ

µ21 µ22 0

=WT
vWĪ−1

Ω
=

(
ΩΩΩ

T
v ΩΩΩI−1

Ω
ΩΩΩ

T
v n

nT
v ΩΩΩI−1

Ω
0

)
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then,

T1 =

(
T 1

11 T 2
11

T 1
21 T 2

21

)
= (ΩΩΩT

u ΩΩΩ)I−1
Ω

and T2 =

(
T 1

12 T 2
12

T 1
22 T 2

22

)
= (ΩΩΩT

v ΩΩΩ)I−1
Ω

IIΩ =

(
n ·w1u n ·w1v

n ·w2u n ·w2v

)
=

(
LΩ M1Ω

M2Ω NΩ

)
Let us consider the system of partial differential equations restricted to V̂ ,

xu = λ11w1 +λ12w2 (4.49a)

xv = λ21w1 +λ22w2 (4.49b)

x(u0,v0) = q (4.49c)

As, (
0 1

)
(ΛΛΛT1 +ΛΛΛu) =

(
0 1

)
ΓΓΓ1ΛΛΛ =

(
1 0

)
ΓΓΓ2ΛΛΛ =

(
1 0

)
(ΛΛΛT2 +ΛΛΛv)

for (u,v) ∈ (λ−1(0))c, then by density(
0 1

)
(ΛΛΛT1 +ΛΛΛu) =

(
1 0

)
(ΛΛΛT2 +ΛΛΛv)

on the entire U , as also, by (4.28b) ΛΛΛIIΩ is symmetric, then the singular compatibility
equations (4.13a), (4.13b) and (4.13c) are satisfied, which are the compatibility condition
of the system (4.49). Therefore by theorem 2.3.1, this system has a solution x : V → x(V )⊂
R3, where V ⊂ V̂ is a neighborhood of (u0,v0). As Dx = ΩΩΩΛΛΛ

T , by proposition 3.1.1, x is a
frontal with ΩΩΩ being a tangent moving base of it, satisfying what we wished.

Proof. Theorem 4.4.1(Rigidity). Let x̄ : U → x̄(U) ⊂ R3 be a frontal, U connected, with
Ω̄ΩΩ a tangent moving base of x̄ satisfying the same conditions of x and ΩΩΩ. As IΩ = I

Ω̄
,

exists a rotation ρρρ ∈ SO(3) such that ρρρΩΩΩ(u0,v0) = Ω̄ΩΩ(u0,v0). Set a := x̄(u0,v0)−ρρρx(u0,v0),
x̂ := ρρρx+a and Ω̂ΩΩ := ρρρΩΩΩ. Observe that, x̄(u0,v0) = x̂(u0,v0), Ω̂ΩΩ(u0,v0) = Ω̄ΩΩ(u0,v0), Dx̂ =

Ω̂ΩΩΛΛΛ
T , IΩ = I

Ω̂
and IIΩ = II

Ω̂
(caused by ρρρw1 ×ρρρw2 = ρρρ(w1 ×w2)). Also by remark 3.2.1

Ti = T̄i = T̂i. We want to prove that x̄ = x̂ on U , so, let us define the set,

B := {(u,v) ∈U : Ω̄ΩΩ(u,v) = Ω̂ΩΩ(u,v)}

B is not empty and closed by continuity. For each (ū, v̄)∈B, as we had seen before,
(

Ω̄ΩΩ n̄
)

is a solution of the system:

WT
u = PWT

WT
v =QWT

W(ū, v̄) =
(

Ω̄ΩΩ(ū, v̄) n̄(ū, v̄)
)

As the matrices P (4.5) and Q (4.6) are constructed with the coefficients of IΩ, IIΩ

and Ti, then
(

Ω̂ΩΩ n̂
)

is solution of the system as well and by uniqueness, Ω̂ΩΩ = Ω̄ΩΩ on a
neighborhood of (ū, v̄). We have that B is open and since U is connected, B=U . Therefore,
Dx̄ = Ω̄ΩΩΛΛΛ

T = Ω̂ΩΩΛΛΛ
T = Dx̂ and since x̄(u0,v0) = x̂(u0,v0), x̄ = x̂ on U .
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Remark 4.4.1. In theorem 4.4.1 can be switched the hypothesis of E,F,G,L,M,N satis-
fying the Gauss and Mainardi-Codazzi equations for all (u,v) ∈U −λ

−1
Ω

(0) by hypothesis
of EΩ,FΩ,GΩ,LΩ,M1Ω,M2Ω,NΩ satisfying the equations (4.9), (4.8g) and (4.8h) on U , where
T1,T2 are defined as in proposition 3.2.3 (see remark 3.2.2). Since T̄1v− T̄2u+[T̄1, T̄2] = 0
is equivalent to (4.9), (4.8g) and (4.8h), using lemma 4.4.1 these two different hypothesis
are equivalent, then we obtain the same result in the theorem. By last, the frontal ob-
tained is going to be a wavefront if (KΩ,HΩ) 6= (0,0) on the domain, where KΩ,HΩ are
computed with the given coefficients EΩ,FΩ,GΩ,LΩ,M1Ω,M2Ω,NΩ and λi j.
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CHAPTER

5
BEHAVIOR OF THE CLASSICAL

INVARIANTS

In this chapter we introduce the relative principal curvatures which give us geo-
metrical information near singularities and are defined even on them. After that, we study
singularities of rank 1 both degenerate and non-degenerate of wavefronts. The theorems
5.2.1, 5.2.2 give equivalent conditions for boundedness and extendibility of the Gaussian
curvature which generalize the one found in (SAJI; UMEHARA; YAMADA, 2009) and
similarly theorem 5.2.5 for the principal curvatures. We also study the convergence to in-
finite limits of the classical invariants and show how this is tightly related to a particular
property of uniform approximation of fronts by parallel surfaces.

For a singularity p of a wavefront x, there exists l > 0 and a neighborhood Ul of p
such yl = x+ ln is an immersion, also this l can be chosen as small as we wish (see lemma
5.1.1). The neighborhood Ul may shrink as l is smaller, then is natural to ask when Ul

can be hold fixed for l arbitrarily small, in this case we say that x is parallelly smoothable
at p. We will see that, this last property is determined by the convergence to infinite
limits of the classical invariants at each type of singularity and also is related with the
extendibility of the principal curvatures at singularities. The theorems 5.2.3, 5.2.4 and
5.2.6 characterize when a wavefront is parallelly smoothable at all types of singularities.

Finally, we study the behavior of the invariants at singularities of rank 0 of wave-
fronts, obtaining results quite different from those obtained in the rank 1 case. The ex-
ample 5.2.6 shows explicitly a wavefront with singularity of rank 0 and mean curvature
vanishing everywhere, like a minimal surface in the regular case, which make these types
of singular surfaces very interesting.



68 Chapter 5. Behavior of the classical invariants

5.1 The relative principal curvatures

Definition 5.1.1. Let x : U → R3 be a frontal, ΩΩΩ a tmb of x, for each p ∈ U we define
the Ω-relative Weingarten matrix as follows:

αααΩ := µµµΩad j(ΛΛΛΩ)

Proposition 5.1.1. Let x : U → R3 be a proper frontal and ΩΩΩ a tmb of x. We have the
following equality, αααΩ = αααλΩ on Σ(x)c. In particular αααΩ has real eigenvalues.

Proof. By theorem 3.1.1, I = ΛΛΛIΩΛΛΛ
T and II = ΛΛΛIIΩ, then for p ∈ Σ(x)c, ααα = −IIT I−1 =

−IIT
Ω

ΛΛΛ
T (ΛΛΛT )−1I−1

Ω
ΛΛΛ
−1 = µµµΩΛΛΛ

−1. Thus, we have αααλΩ = µµµΩad j(ΛΛΛ) = αααΩ. The eigenvalues
of αααΩ are real if tr(αααΩ)

2 − 4det(αααΩ) ≥ 0. As KΩ = det(µµµΩ) and HΩ = −1
2tr(αααΩ) this is

equivalent to have H2
Ω
−λΩKΩ ≥ 0 and by proposition 3.3.1 H2

Ω
−λΩKΩ = λ 2

Ω
(H2−K)≥ 0

on Σ(x)c, then by continuity and the density of regular points, it follows the result on
U .

Denoting the eigenvalues of αααΩ by −k1Ω, −k2Ω, then k1Ω, k2Ω satisfy the equation
k2+tr(αααT

Ω
)k+det(αααT

Ω
) = 0. Since KΩ = det(µµµΩ) and HΩ =−1

2tr(αααΩ), we have k2−2HΩk+

λΩKΩ = 0. Thus,
k = HΩ ±

√
H2

Ω
−λΩKΩ

Definition 5.1.2. Let x : U → R3 be a frontal, ΩΩΩ a tmb of x, we call the functions
k1Ω := HΩ−

√
H2

Ω
−λΩKΩ and k2Ω := HΩ+

√
H2

Ω
−λΩKΩ the relative principal curvatures.

We also define for a proper frontal x the following functions on Σ(x)c:

k1 :=

H −
√

H2 −K if λΩ > 0,

H +
√

H2 −K if λΩ < 0.

k2 :=

H +
√

H2 −K if λΩ > 0,

H −
√

H2 −K if λΩ < 0.

We clarify that, the principal curvatures of x are the functions defined by κ− :=
H −

√
H2 −K and κ+ := H +

√
H2 −K on Σ(x)c.

Remark 5.1.1. It follows from the above definition that the relative principal curvatures
satisfy k1Ω + k2Ω = 2HΩ and k1Ωk2Ω = λΩKΩ. The smooth functions k1 and k2 defined on
Σ(x)c have similar properties to the classical principal curvatures. Also their definitions
do not depend on the chosen tmb ΩΩΩ inducing the same orientation of the normal vector
field n. If another tmb Ω̂ΩΩ induces an opposite orientation of n, then the signs of these
functions are opposite as well. Observe that k1k2 = K and k1+k2

2 = H on Σ(x)c. In the case
of non-degenerate singularities, if we make a suitable change of coordinates k1,k2 coincide
with those functions defined in ((TERAMOTO, 2016), equation (2.6)).
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Proposition 5.1.2. Let x : U → R3 be a proper frontal, ΩΩΩ a tangent moving basis of x.
Then,

1. for p ∈ Σ(x)c, k1Ω = λΩk1 and k2Ω = λΩk2,

2. for p ∈ Σ(x), k1Ω = lim
(u,v)→p

λΩk1 and k2Ω = lim
(u,v)→p

λΩk2.

Proof. We have that k1Ω = λΩH −
√

λ 2
Ω

H2 −λ 2
Ω

K = λΩH −|λΩ|
√

H2 −K = λΩk1 and sim-
ilarly k2Ω = λΩk2 on Σ(x)c. For p ∈ Σ(x), by smoothness of k1Ω, k2Ω and density of Σ(x)c,
k1Ω = lim

(u,v)→p
λΩk1 and k2Ω = lim

(u,v)→p
λΩk2.

Example 5.1.1. For the cuspidal edge x = (u,v2,v3) in example 3.3.1 we saw that KΩ =

0 = K, HΩ = 3(4+ 9v2)−
3
2 and H = 3v−1(4+ 9v2)−

3
2 . Since λΩ = v, then k1Ω = 0, k2Ω =

6(4+9v2)−
3
2 ,

k1 :=

3v−1(4+9v2)−
3
2 −|3v−1(4+9v2)−

3
2 | if v > 0

3v−1(4+9v2)−
3
2 + |3v−1(4+9v2)−

3
2 | if v < 0,

k2 :=

3v−1(4+9v2)−
3
2 + |3v−1(4+9v2)−

3
2 | if v > 0

3v−1(4+9v2)−
3
2 −|3v−1(4+9v2)−

3
2 | if v < 0,

therefore k1 = 0 and k2 = 6v−1(4+9v2)−
3
2 .

In the proof of proposition 3.3.4 was observed that making change of coordinates
h on a frontal x and taking Ω̂ΩΩ := ΩΩΩ ◦ h as tmb of x ◦ h, it results with new different
relative curvatures det(h)(KΩ◦h) and det(h)(HΩ◦h). However, if we choose the tmb ΩΩΩ

h :=
(ΩΩΩ◦h)Dh instead of Ω̂ΩΩ when we make a change of coordinates, they remain invariant.

Proposition 5.1.3 (Invariance property). Let x : U → R3 be a frontal, ΩΩΩ a tmb of x,
h : V →U diffeomorphism, then the new relative curvatures of x◦h are KΩh = KΩ ◦h and
HΩh = HΩ ◦h. In particular, k1Ωh = k1Ω ◦h, k2Ωh = k2Ω ◦h and λΩh = λΩ ◦h.

Proof. Observe that, the matrix ΛΛΛΩh induced by ΩΩΩ
h is (Dh)−1(ΛΛΛΩ ◦ h)Dh, then λΩh =

λΩ◦h and since D(n◦h)=ΩΩΩ
h
µµµT

Ωh , we have (Dh)−1µµµT
Ω
(Dh)= µµµT

Ωh and therefore KΩh =KΩ◦
h. Also, µµµΩhad j(ΛΛΛΩh) = det(Dh)Dh−1µµµΩad j(ΛΛΛΩ)ad j(Dh−1) and using that tr(ABC) =

tr(CAB) we get HΩh = HΩ ◦h. Since, k1Ωh and k2Ωh are written in terms of KΩh and HΩh ,
the result follows for them.

The following two lemmas give a tmb in connection with parallel surfaces for
wavefronts and they will be used to prove theorems 5.2.1 and 5.2.2 in the next section.
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Lemma 5.1.1. Let x : U → R3 be a wavefront, ΩΩΩ a tmb of x, for each p ∈ Σ(x) there exist
locally an embedding yl : V → R3, p ∈ V , such that Dyl is a tmb of x, the matrix ΛΛΛDyl

determined for this tmb is I2 − lααα l, where l ∈ R+ and ααα l is the Weingarden matrix of yl

and I2 is the identity matrix.

Proof. For each t ∈ R, consider yt = x+ tn, as Dx = ΩΩΩΛΛΛ
T and Dn = ΩΩΩµµµT we have Dyt =

ΩΩΩΛΛΛ
T + tΩΩΩµµµT , then yt has a singularity at q if and only if det(ΛΛΛT + tµµµT )(q) = 0. Making

a direct computation det(ΛΛΛT + tµµµT ) = λΩ − 2tHΩ + t2KΩ and now taking p ∈ Σ(x), by
corollary (3.3.1), there exist l ∈R+ such that det(ΛΛΛT + lµµµT )(p) =−2lHΩ(p)+ l2KΩ(p) 6= 0.
Thus, there exists a neighborhood V of p such that yl : V → R3 is an embedding. Since,
Dyl = ΩΩΩ(ΛΛΛ+ lµµµ), Dyl is a tmb of x. We can assume Dyl and ΩΩΩ induce the same normal
vector n (i.e det(ΛΛΛT + lµµµT )> 0 on V ), otherwise we can change the order of columns in ΩΩΩ

from the beginning. Therefore, we have Dyl(I2 − lαααT
l ) = Dyl − lDn = Dx = DylΛΛΛ

T
Dyl

, thus
ΛΛΛDyl = I2 − lααα l.

Lemma 5.1.2. Let x : U → R3 be a wavefront, p ∈ Σ(x) and ΩΩΩ = Dyl a tmb of x as above,
then

1. IΩ = Il, IIΩ = IIl, µµµ = ααα l and µµµad j(ΛΛΛ) = ααα l − lKlI2.

2. KΩ = Kl, HΩ = Hl +Kll and λΩ = 1+2Hll +Kll2.

3. k1Ω = k1l(1+ lk2l) and k2Ω = k2l(1+ lk1l).

where Il, IIl, Kl, Hl, k1l, k2l are first fundamental form, second fundamental form, Gaus-
sian curvature, mean curvature and principal curvatures of yl respectively. Additionally,
rank(Dx(p)) = 1 if and only if yl is free of umbilical point on a neighborhood of p. Sim-
ilarly, rank(Dx(p)) = 0 if and only if yl has a umbilical point at p of positive Gaussian
curvature.

Proof.

1. Applying the definition directly we get the first three equalities. By lemma 5.1.1
ΛΛΛ = I2 − lααα l, then µµµad j(ΛΛΛ) = ααα l(I2 − lad j(ααα l)) = ααα l − lKlI2.

2. Using item (1), KΩ = det(µµµ) = det(ααα l) = Kl, HΩ = −1
2tr(µµµad j(ΛΛΛ)) = −1

2tr(ααα l −
lKlI2) = Hl +Kll and λΩ = det(ΛΛΛ) = det(I2 − lααα l) = 1+2Hll +Kll2.

3. Using the formulas in definition 5.1.2, item (2) and knowing that k1l =Hl−
√

H2
l −Kl,

k2l = Hl +
√

H2
l −Kl and Kl = k1lk2l, a simple computation leads to item (3).

For the last part, by proposition 3.3.1 rank(Dx(p)) = 0 if and only if HΩ(p) = 0, λΩ(p) = 0
and KΩ(p) 6= 0. On the other hand these conditions are equivalent to Hl(p) = −Kl(p)l
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and 0 = 1− 2l2Kl(p)+ l2Kl(p) which is equivalent to Kl(p) = 1
l2 and Hl(p) = −1

l . Then
yl has an umbilical point at p of positive Gaussian curvature. Conversely, we have 0 <

Kl(p) = Hl(p)2, then 0 = 1+ 2lHl(p)+ l2Hl(p)2 which imply Hl(p) = −1
l and therefore

HΩ(p) =−1
l +

1
l2 l = 0, by proposition 3.3.1 rank(Dx(p)) = 0. Equivalently rank(Dx(p)) = 1

if and only if p is not a umbilical point which is equivalent to have yl free of umbilical
point on a neighborhood of p.

5.2 Extendibility and boundedness

5.2.1 Singularities of rank 1

In this section, we study the behavior at a singular point of rank 1 of the classical
invariant of wavefronts, using the relative principal curvatures defined in previous sec-
tion. The non-degenerate case was investigated in (SAJI; UMEHARA; YAMADA, 2009;
MARTINS et al., 2016; TERAMOTO, 2016; TERAMOTO, 2019b).

Proposition 5.2.1. Let x : U → R3 be a proper wavefront, ΩΩΩ a tmb of x, then for every
p ∈ Σ(x) with rank(Dx(p)) = 1, the following is always satisfied:

1. (k1Ω(p),k2Ω(p)) 6=(0,0). In particular, if k1Ω(p) 6= 0 (resp. k2Ω(p) 6= 0), then k2Ω(p)=
0 (resp. k1Ω(p) = 0). Also, HΩ(p) < 0 (resp. HΩ(p) > 0) if and only if k1Ω(p) 6= 0
(resp. k2Ω(p) 6= 0).

2. There is an open neighborhood V ⊂ U of p in which one of the functions k1, k2

has a C∞ extension to V . More precisely, k1 (resp. k2) has a C∞ extension if only if
k1Ω(p) = 0 (resp. k2Ω(p)).

3. One of the functions k1, k2 in module diverge to ∞. More precisely, lim
(u,v)→p

|k1| = ∞

(resp. |k2|) if and only if k1Ω(p) 6= 0 (resp. k2Ω(p)).

4. lim
(u,v)→p

|H|= ∞.

5. If KΩ(p) 6= 0 then lim
(u,v)→p

|K|= ∞.

Proof.

1. Observe that, for p ∈ Σ(x), k1Ω(p) = HΩ(p)−|HΩ(p)| and k2Ω(p) = HΩ(p)+ |HΩ(p)|.
By proposition 3.3.1, HΩ(p) 6= 0, then just one of k1Ω(p), k2Ω(p) is different of zero.
Thus, the sub index of kiΩ(p) corresponding to the non-zero value is determined
bijectively by the sign of HΩ(p).
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2. By item (1), without loss of generality, we can assume that k1Ω(p) 6= 0. Let V be a
neighborhood of p such that k1Ω 6= 0 on V , then by proposition 3.3.1, k2 =

λΩk1k2
λΩk1

= KΩ

k1Ω

on V −Σ(x). Thus, KΩ

k1Ω
is a C∞ extension of k2 to V .

3. By item (1), without loss of generality, we can assume that k1Ω(p) 6= 0. Let V be
a neighborhood of p such that k1Ω 6= 0 on V , then k1 =

k1Ω

λΩ
on V −Σ(x). Thus, for

every p ∈ Σ(x)∩V , lim
(u,v)→p

|k1|= lim
(u,v)→p

|k1Ω|
|λΩ| = ∞.

4. Since HΩ(p) 6= 0 and by proposition 3.3.1, lim
(u,v)→p

|H|= lim
(u,v)→p

|HΩ|
|λΩ| = ∞.

5. Since KΩ(p) 6= 0 and by proposition 3.3.1, lim
(u,v)→p

|K|= lim
(u,v)→p

|KΩ|
|λΩ| = ∞.

We shall use the following two lemmas to prove theorems 5.2.1 and 5.2.2 about
boundedness and extendibility of the Gaussian curvature.

Lemma 5.2.1. Let x : U → R3 be a proper wavefront, W ⊂U a compact set, V ⊂U an
open set, a : W → R a continuous function, ΩΩΩ1 and ΩΩΩ2 tangent moving bases of x, then
we have:

1. If there exist a constant C1 > 0 such that |a| ≤ C1|λΩ1| on W then there exist a
constant C2 > 0 such that |a| ≤C2|λΩ2| on W .

2. TΩ1(V ) = TΩ2(V )

Proof.

1. Setting A = I−1
Ω1

ΩΩΩ
T
1 ΩΩΩ2 (change of basis matrix) and ρ = det(A), we have ΩΩΩ2 = ΩΩΩ1A,

therefore ΛΛΛΩ1 =AΛΛΛΩ2 and λΩ1 = ρλΩ2 . Since |a| ≤C1|λΩ1 |=C1|ρ||λΩ2 | and choosing
C2 as the maximum of C1|ρ| on W , we get the result.

2. Using the proof of item (1), λΩ1 = ρλΩ2 with ρ 6= 0, then we have the equality.

Lemma 5.2.2. Let x1 : U → R3 be a proper wavefront with U open connected, W ⊂U a
compact set, V ⊂U an open set, h : Z →U a diffeomorphism and ΩΩΩ a tmb of x. Setting
x2 := x1 ◦h and choosing ΩΩΩ

h = (ΩΩΩ◦h)Dh as tmb of x2 we have:

1. There exist a constant C1 > 0 such that |L1| ≤C1|λΩ|, |M1| ≤C1|λΩ|, |N1| ≤C1|λΩ| on
W if and only if there exist a constant C2 > 0 such that |L2| ≤C2|λΩh|, |M2| ≤C2|λΩh|,
|N2| ≤C2|λΩh| on h−1(W ). Where L1, M1, N1 and L2, M2, N2 are the coefficients of
the second fundamental form of x1 and x2 respectively.
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2. L1,M1,N1 ∈ TΩ(V ) if and only if L2,M2,N2 ∈ TΩh(h−1(V )).

Proof. Let us denote by II1, II2 the matrices of the second fundamental forms of x1 and
x2 respectively. If det(Dh) > 0, then n2 = n1 ◦h (in the case det(Dh) < 0, n2 = −n1 ◦h
and it is analogous) therefore II2 =−DxT

2 Dn2 =−DhT DxT
1 Dn1Dh = DhT II1Dh. This last

equality expresses the coefficients L2, M2, N2 as sum of multiples of the coefficients L1,
M1, N1 and vice versa. Since λΩh = λΩ ◦h (see proposition 5.1.3) we get items (1) and (2)
easily.

Theorem 5.2.1. Let x : U → R3 be a proper wavefront with just singularities of rank
1, ΩΩΩ a tmb of x, p ∈ Σ(x). Let W ⊂ U be a compact neighborhood of p in which the
relative principal curvature kiΩ 6= 0 does not vanish. Let k j be the function that admits
a C∞ extension to W and K the Gaussian curvature, then the following statements are
equivalent:

1. K is bounded on W −Σ(x).

2. There exist a constant C > 0 such that |KΩ| ≤C|λΩ| on W .

3. There exist a constant C > 0 such that |k j| ≤C|λΩ| on W .

4. There exist a constant C > 0 such that |L| ≤C|λΩ|, |M| ≤C|λΩ| and |N| ≤C|λΩ| on
W .

Proof.

• (1 ⇔ 2) As |K|= |KΩ|
|λΩ| on W −Σ(x) and by the density of W −Σ(x) in W , it follows

the equivalence.

• (2 ⇔ 3) Since W is compact, k j, KΩ, kiΩ are continuous on W and k j =
KΩ

kiΩ
, from this

last equality follows the equivalence.

• (4 ⇒ 1) We have that |LN −M2| ≤ 2C2|λΩ|2 on W , but by proposition 3.1.1, EG−
F2 = (EΩGΩ−F2

Ω
)λ 2

Ω
, then |K| ≤ 2C2

EΩGΩ−F2
Ω

on W −Σ(x). Since 2C2

EΩGΩ−F2
Ω

is continuous
on U and W is compact, K is bounded on W −Σ(x).

• (2 ⇒ 4) If we prove (4) locally on W , we can choose an open covering Bk (open
sets with the induced topology) of W in which (4) is satisfied in each compact B̄k

with constants Ck. Reducing this covering to a finite one, we have finite constants
Ck1, ..,Ckn and choosing C as the maximum of these constants, (4) is satisfied globally
on W .

To prove this locally, first, for each q ∈W let us take a tmb Dyl as in lemma 5.1.1
on a neighborhood V of q with yl free of umbilical point (5.1.2) on V . Shrinking



74 Chapter 5. Behavior of the classical invariants

V if it is necessary, there exist a diffeomorphism h : V ′ → V , such that yl ◦ h has
derivatives as principal directions. By lemmas 5.2.1 and 5.2.2, we can assume that
ΩΩΩ = Dyl being yl an embedding with derivatives as principal directions. Thus, by
lemmas 5.1.1 and 5.1.2 IΩ, IIΩ, ααα l and ΛΛΛ = (λi j) = I− lααα l are diagonal matrices. If
rank(ΛΛΛ(q)) = 1, without loss of generality shrinking V to a compact neighborhood,
we can suppose that λ22(q) = 1− lαl22(q) = 0, with λ11 6= 0 and −NΩ

GΩ
= αl22 6= 0 on

V . By proposition 3.1.1, M = 0, L = λ11LΩ, N = λ22NΩ = λΩ
NΩ

λ11
and by hypothesis

(2) |NΩLΩ

EΩGΩ
| ≤ C|λΩ| on V ′ = V ∩W , thus |L| ≤ C|λ11||EΩGΩ

NΩ
||λΩ|. If we choose C′ as

the biggest maximum of the functions C|λ11||EΩGΩ

NΩ
| and |NΩ

λ11
| on V ′, we get that

|L| ≤C′|λΩ|, |M| ≤C′|λΩ| and |N| ≤C′|λΩ| on V ′.

On the other hand, if rank(ΛΛΛ(q)) = 2, shrinking V to a compact neighborhood,
we can suppose that λ11 6= 0 and λ22 6= 0 on V . Thus, M = 0, L = λ11LΩ = λΩ

LΩ

λ22
,

N = λ22NΩ = λΩ
NΩ

λ11
, then choosing C′ as the biggest maximum of the functions | LΩ

λ22
|

and |NΩ

λ11
| on V ′ =V ∩W , we have |L| ≤C′|λΩ|, |M| ≤C′|λΩ| and |N| ≤C′|λΩ| on V ′.

It is known that the boundedness and extendibility of the Gaussian curvature are
equivalent in the non-degenerate case (see proof of theorem 3.1 in (SAJI; UMEHARA;
YAMADA, 2009)), however in the degenerate case the following example shows that
boundedness does not implies extendibility. Theorem 5.2.2 characterizes extendibility in
the general case.

Example 5.2.1. The wavefront x(u,v) = (u,2v3 + u2v,3v4 + u2v2) (cuspidal lips) with
normal vector n = (2uv2,−2v,1)(4u2v4 + 4v2 + 1)−

1
2 has an isolated (then, degenerated)

singularity at (0,0) of rank 1 and Gaussian curvature K = − 4v2

(4u2v4+4v2+1)2(u2+6v2)
with

|K| ≤ 1. Observe that K does not converge when (u,v)−→ (0,0), then it is not extendable.

Figure 6 – A wavefront with degenerate singularity of rank 1 at the origin and Gaussian curva-
ture bounded but non-extendable.
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Theorem 5.2.2. Let x : U → R3 be a proper wavefront with just singularities of rank 1,
ΩΩΩ a tmb of x, p ∈ Σ(x) with rank(Dx(p)) = 1. Let V ⊂U be an open neighborhood of p in
which the relative principal curvature kiΩ 6= 0 does not vanish. Let k j be the function that
admits a C∞ extension to V and K the Gaussian curvature, then the following statements
are equivalent:

1. The Gaussian curvature K admits a C∞ extension to V .

2. KΩ ∈ TΩ(V ).

3. k j ∈ TΩ(V ).

4. L,M,N ∈ TΩ(V ).

where TΩ(V ) is the principal ideal generated by λΩ in the ring C∞(V,R).

Proof.

• (1 ⇔ 2) As KΩ = KλΩ on V −Σ(x) and by the density of V −Σ(x) in V , it follows
the equivalence.

• (2 ⇔ 3) Since k j =
KΩ

kiΩ
, from this last equality follows the equivalence.

• (4 ⇒ 1) we have that LN −M2 = φλ 2
Ω

with φ ∈ C∞(V,R), but by proposition 3.1.1,
EG−F2 = (EΩGΩ−F2

Ω
)λ 2

Ω
, then K = φ

EΩGΩ−F2
Ω

on V −Σ(x). Since φ

EΩGΩ−F2
Ω

is smooth
on V , K has a C∞ extension to V .

• (2 ⇒ 4) if we prove (4) locally on V , we can choose an locally finite open covering
Bk ⊂ V (open balls) of V , k ∈ N with a partition of the unity ψk subordinated
to this open cover in which L,M,N ∈ TΩ(Bk) for every Bk. For each k ∈ N there
exist f1k, f2k, f3k ∈C∞(V,R) such that L = f1kλΩ, M = f2kλΩ, N = f3kλΩ on Bk. Since
the supports of fskψk form families locally finite for s = 1,2,3, we have that fs :=

∑k fskψk ∈C∞(V,R) for s = 1,2,3, therefore L = f1λΩ, M = f2λΩ, N = f3λΩ on V .

To prove this locally, first, for each q ∈V let us take a tmb Dyl as in lemma 5.1.1 on
a neighborhood Z ⊂V of q with yl free of umbilical point on Z. Shrinking Z if it is
necessary, there exist a diffeomorphism h : Z′ → Z, such that yl ◦h has derivatives as
principal directions. By lemmas 5.2.1 and 5.2.2, we can assume that ΩΩΩ = Dyl being
yl an embedding with derivatives as principal directions on Z. Thus, by lemmas 5.1.1
and 5.1.2 IΩ, IIΩ, ααα l and ΛΛΛ= (λi j) = I− lααα l are diagonal matrices. If rank(ΛΛΛ(q)) = 1,
without loss of generality shrinking Z to a open neighborhood V ′, we can suppose
that λ22(q)= 1− lαl22(q)= 0, with λ11 6= 0 and −NΩ

GΩ
=αl22 6= 0 on V ′. By proposition

3.1.1, M = 0, L = λ11LΩ, N = λ22NΩ = λΩ
NΩ

λ11
and by hypothesis (2) NΩLΩ

EΩGΩ
= φλΩ for
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some φ ∈C∞(V,R), then L= φλ11
EΩGΩ

NΩ
λΩ. Thus, we get that L∈TΩ(V ′), M ∈TΩ(V ′)

and N ∈ TΩ(V ′).

On the other hand, if rank(ΛΛΛ(q)) = 2, shrinking Z to a open neighborhood V ′, we
can suppose that λ11 6= 0 and λ22 6= 0 on V ′. Thus, M = 0, L = λ11LΩ = λΩ

LΩ

λ22
,

N = λ22NΩ = λΩ
NΩ

λ11
, then we have L ∈ TΩ(V ′), M ∈ TΩ(V ′) and N ∈ TΩ(V ′).

Let [x] : (R2,0)→ (R3,0) be a germ of a frontal x, ΩΩΩ a tmb of x, 0 ∈ Σ(x), we define
the following ideals:

• J as the ideal in E2 generated by the germ [λΩ].

• Ĵ := {[g] ∈ E2 : there exist C > 0 such that |g| ≤C|λΩ| on some neighborhood of 0}.

• JΣ := {[g] ∈ E2 : for some neighborhood U of 0,g vanish on U ∩λ
−1
Ω

(0)}.

These ideals satisfy J ⊂ Ĵ ⊂ JΣ, their definitions do not depend on the chosen tmb ΩΩΩ and
when 0 is a non-degenerate singularity these three ideals are equal. To see that, making
a change of coordinates, we can assume that λΩ is equal to u or v, then applying the
Hadamard lemma, we obtain the result. From this and theorems 5.2.1 and 5.2.2 we have
the following corollary.

Corollary 5.2.1. Let [x] : (R2,0) → (R3,0) be a germ of a proper wavefront, ΩΩΩ a tmb
of x, 0 ∈ Σ(x) a non-degenerate singularity with rank(Dx(0)) = 1. Let k j be the function
that admits a local C∞ extension at 0 and K the Gaussian curvature, then the following
statements are equivalent:

1. The Gaussian curvature K admits a local C∞ extension at 0.

2. The Gaussian curvature K is locally bounded on some neighborhood of 0.

3. [KΩ] ∈ JΣ.

4. [k j] ∈ JΣ.

5. [L], [M], [N] ∈ JΣ.

The equivalences between (1), (2) and (5) were obtained by K. Saji, M. Umehara,
and K. Yamada (see proof of theorem 3.1 in (SAJI; UMEHARA; YAMADA, 2009)).
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Example 5.2.2. The wavefront (u,sin(ku)vk+1

k+1 ,sin(ku)vk+2

k+2 ), k a positive natural number,
has as a tangent moving basis:

ΩΩΩ =

 1 0

cos(ku)k vk+1

k+1 1

cos(ku)k vk+2

k+2 v

 , ΛΛΛ =

(
1 0
0 sin(ku)vk

)

IIΩ =

(
sin(ku)k2vk+2( 1

k+1 −
1

k+2) 0
0 1

)
1√
ε

where ε = 1+v2+cos2(ku)k2v2k+4( 1
k+1 −

1
k+2)

2. Then, λΩ = sin(ku)vk, (LΩNΩ−M1ΩM2Ω)∈
TΩ therefore KΩ ∈ TΩ and by theorem 5.2.2 the Gaussian curvature K admit a C∞ exten-
sion to R2. Observe that, since II = ΛΛΛIIΩ (see theorem 3.1.1), we have L,M,N ∈ TΩ.

Remark 5.2.1. The boundedness and extendibility of Gaussian curvature are conserved
under changes of coordinates in the domain, however they are not conserved making
changes at the target. The wavefront x(u,v) = (u,2v3+u2v,3v4+u2v2+u2) with Gaussian
curvature unbounded can be obtained from example 5.2.1 whose Gaussian curvature is
bounded, applying at the target the diffeomorphism F(X ,Y,Z) = (X ,Y,Z+X2). The same
situation occurs with the example 5.2.2 and (u,sin(ku)vk+1

k+1 ,sin(ku)vk+2

k+2 + u2) which have
extendable and non-extendable Gaussian curvatures respectively.

In the following, we study the convergence to infinite limits of the classical invari-
ants. Also in the next definition we introduce a notion which is tightly related with this
behavior.

Definition 5.2.1. Let x : U →R3 be a wavefront and p ∈ Σ(x). We say that x is parallelly
smoothable at p if there exist ε > 0 and an open neighborhood V of p such that rank(D(x+
ln)(q)) = 2 for every (q, l) ∈V × (0,ε) or every (q, l) ∈V × (−ε,0).

Example 5.2.3. The wavefront x = (u, v3

3 ,
v4

4 ) has as singular set the axis u (v = 0) and
normal vector field n = (0,−v,1)ρ , where ρ = (1+ v2)−

1
2 . Thus, if we consider yl = x+ ln

we have

Dyl =

1 0
0 v2 − lρ − lρvv

0 v3 + lρv

 .

Since v2 − lρ − lρvv > 0 for every (q, l) ∈ R2 × (−∞,0), then x is parallelly smoothable at
every point of Σ(x).

Theorem 5.2.3. Let x : U → R3 be a proper wavefront, ΩΩΩ a tmb of x, p ∈ Σ(x) with
rank(Dx(p))= 1, KΩ(p) 6= 0 and HΩ(p)< 0 (resp. HΩ(p)> 0) then the following statements
are equivalents:
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1. x is parallelly smoothable at p.

2. lim
(u,v)→p

H =±∞.

3. lim
(u,v)→p

k1 =±∞ (resp. k2).

4. lim
(u,v)→p

K =±∞.

5. There exist an open neighborhood V of p in which λΩ does not change sign.

6. There exist an open neighborhood V of p in which k2Ω (resp. k1Ω) does not change
sign.

Proof.

• (1 ⇒ 5) if x is parallelly smoothable at p if and only if there exist ε > 0 and an open
neighborhood V of p such that yt = x+ tn|V is an immersion for every t ∈ (0,ε) (or
every t ∈ (−ε,0)) if and only if det(ΛΛΛT + tµµµT )(q) = λΩ(q)−2tHΩ(q)+ t2KΩ(q) 6= 0
for every t ∈ (0,ε) (or every t ∈ (−ε,0)) and q ∈V . Shrinking V we can suppose this
is connected, then we have that λΩ(q)− 2tHΩ(q)+ t2KΩ(q) > 0 (or < 0) for every
(q, t) ∈V × (0,ε), thus taking the limit in both sides of this inequality when t tends
to 0, we get that λΩ ≥ 0 on V .

• (5 ⇔ 2) as H = HΩ

λΩ
on Σ(x)c and HΩ(p) 6= 0, follows the equivalence.

• (5 ⇔ 4) as K = KΩ

λΩ
on Σ(x)c and KΩ(p) 6= 0, follows the equivalence.

• (2 ⇔ 3) by proposition 5.2.1, there exist a neighborhood V of p such that k2 has a
C∞ extension and since k1 = 2H − k2 follows the equivalence.

• (3 ⇔ 6) there exist a neighborhood W of p such that HΩ < 0 and KΩ 6= 0 on W , then
k1 6= 0 on W −Σ(x). Since KΩ

k1
= k2Ω on W −Σ(x) and k2Ω = 0 on Σ(x)(by proposition

5.2.1), follows the equivalence.

• (6 ⇒ 1) there exist a neighborhood W of p such that HΩ < 0 and KΩ 6= 0 on W . By
proposition 5.2.1 k1Ω(p) 6= 0, thus k1Ω(p)

KΩ(p)
6= 0, then using item (6) there exist ε > 0

and an open connected V of p such that k2Ω

KΩ
does not change sign and |k1Ω

KΩ
|> ε on

V . Thus, if k2Ω

KΩ
≥ 0 (resp. k2Ω

KΩ
≤ 0) then λΩ(q)− 2tHΩ(q)+ t2KΩ(q) 6= 0 for every

(q, t) ∈ V × (−ε,0) (resp. V × (0,ε)) because λΩ(q)−2tHΩ(q)+ t2KΩ(q) = 0 if and
only if t = k1Ω

KΩ
(q) or t = k2Ω

KΩ
(q).
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Theorem 5.2.4. Let x : U → R3 be a proper wavefront, ΩΩΩ a tmb of x, p ∈ Σ(x) with
rank(Dx(p))= 1, KΩ(p)= 0 and HΩ(p)< 0 (resp. HΩ(p)> 0) then the following statements
are equivalents:

1. x is parallelly smoothable at p.

2. lim
(u,v)→p

H =±∞.

3. lim
(u,v)→p

k1 =±∞ (resp. k2).

4. There exist an open neighborhood V of p, in which λΩ does not change sign.

Proof. The proof of (1 ⇒ 4), (2 ⇔ 3), (2 ⇔ 4) is equal to corresponding ones in theorem
5.2.3 because this does not use the hypothesis of KΩ(p) 6= 0. To prove (3⇒ 1), let us define
A := {q ∈ U : KΩ(q) 6= 0}. If p /∈ Ā, there exist a neighborhood W of p in which KΩ ≡ 0,
thus λΩ(q)−2tHΩ(q)+ t2KΩ(q) = λΩ(q)−2tHΩ(q) on W and since HΩ(p) 6= 0, using that
λΩ does not change sign on a neighborhood of p, shrinking W we have that λΩ

HΩ
does not

change sign, then if λΩ

HΩ
≥ 0 (resp. λΩ

HΩ
≤ 0) we have that λΩ(q)− 2tHΩ(q) 6= 0 for every

(q, t) ∈W × (−ε,0) (resp. W × (0,ε)) with an arbitrary ε > 0 and it follows the result. If
p ∈ Ā, by hypothesis there exist a open neighborhood W of p such that k1 > 0 and H > 0
(resp. or < 0) on W −Σ(x) and as k1Ω(p) 6= 0, we have that lim

(u,v)→p
|k1Ω

KΩ
|
∣∣
A = ∞. Let ε > 0

be given, there exist a open ball B such that |k1Ω

KΩ
| > ε on B∩A and k1 > 0 (resp. < 0),

H > 0 (resp. < 0), λΩ

HΩ
= 1

H > 0 (resp. < 0) on B−Σ(x). Since k2Ω

KΩ
= 1

k1
on (B∩A)−Σ(x),

we have that k2Ω

KΩ
≥ 0 (resp. ≤ 0) on B∩A. Now, if (q, t) ∈ B× (−ε,0) (resp. B× (0,ε)) and

KΩ(q) = 0 then λΩ(q)−2tHΩ(q)+ t2KΩ(q) = λΩ(q)−2tHΩ(q) 6= 0 because λΩ

HΩ
≥ 0 (resp.

≤ 0) on B. The another option is that KΩ(q) 6= 0, then λΩ(q)− 2tHΩ(q)+ t2KΩ(q) 6= 0
because this is 0 if and only if t = k1Ω

KΩ
(q) or t = k2Ω

KΩ
(q) which is impossible since that

|k1Ω

KΩ
(q)|> ε and k2Ω

KΩ
(q)≥ 0 (resp. ≤ 0). It follows the result.

Corollary 5.2.2. Let x : U → R3 be a proper wavefront, ΩΩΩ a tmb of x, p ∈ Σ(x) with
rank(Dx(p)) = 1, we have that x is parallelly smoothable at p if and only if λΩ does not
change sign on a neighborhood of p.

Corollary 5.2.3. Let x : U → R3 be a proper wavefront, ΩΩΩ a tmb of x, p ∈ Σ(x) with
rank(Dx(p)) = 1, if x is parallelly smoothable at p, then p is a degenerate singularity.

Proof. If we suppose that p = (p1, p2) is a non-degenerate singularity, then λΩu(p) 6= 0
or λΩv(p) 6= 0 and therefore λΩ(u, p2) or λΩ(p1,v) is strictly monotone as function of
one variable on every sufficient small neigborhood of p, which is contradictory, because
λΩ(p) = 0 and this does not change sign by corollary 5.2.2.
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Corollary 5.2.4. Let x : U → R3 be a proper wavefront, ΩΩΩ a tmb of x, p ∈ Σ(x) with
rank(Dx(p)) = 1, if p is an isolated singularity then x is parallelly smoothable at p.

Proof. If p is an isolated singularity, then there exist an open connected neighborhood V

of p, such that λΩ 6= 0 on V −{p} and since that V −{p} is arc-connected, λΩ does not
change sign on V . By corollary 5.2.2, it follows the result.

Corollary 5.2.5 (Representation formula of wavefronts parallelly smoothable rank 1).
Let [x] : (R2,0)→ (R3,0) be a germ of a proper wavefront, ΩΩΩ a tmb of x, 0 ∈ Σ(x) with
rank(Dx(0))= 1. If x is parallelly smoothable at 0 then, up to an isometry x is R-equivalent
to y(u,v) = (u,

∫ v
0 λΩ(u, t)dt + f1(u),

∫ v
0 tλΩ(u, t)dt + f2(u)) where λΩ does not change sign

on some neightborhood of 0.

Proof. Using proposition 3.4.1 and corollary 5.2.2 we get the result.

Example 5.2.4. The wavefront (u,2v3 + u2v,3v4 + u2v2) (cuspidal lips) has an isolated
singularity at (0,0), then by corollary 5.2.4 it is parallelly smoothable at (0,0). On the
other hand, (u,2v3−u2v,3v4−u2v2) (cuspidal beaks) is not parallelly smoothable at (0,0)
by corollary 5.2.2, because taking as a tangent moving basis:

ΩΩΩ =

 1 0
−2uv 1
−2uv2 2v

 , ΛΛΛ =

(
1 0
0 6v2 −u2

)

we get λΩ = 6v2 − u2, which changes of sing on every neighborhood of (0,0). By the
same argument, x(u,v) = (u,v2,v3) (cuspidal edge) and x(u,v) = (3u4 + u2v,4u3 + 2uv,v)

(swallowtail) are not parallelly smoothable at (0,0), because can be chosen tmb’s ΩΩΩ in
which λΩ is v and 12u2 +2v respectively.

Figure 7 – A wavefront (cuspidal beaks) non-parallelly smoothable at (0,0).
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Theorem 5.2.5. Let x : U → R3 be a proper wavefront, ΩΩΩ a tmb of x and p ∈ Σ(x) with
rank(Dx(p)) = 1. One of the principal curvatures κ−,κ+ has a C∞-extension to an open
neighborhood of p if and only if x is parallelly smoothable at p.

Proof. If x is parallelly smoothable at p, then by corollary 5.2.2 λΩ ≥ 0 (or λΩ ≤ 0, this
case is analogous) on an open neighborhood V of p, thus k1 = κ−, k2 = κ+ on V −Σ(x) and
by proposition 5.2.1 one of these function has a C∞-extension to an open neighborhood of p.
Conversely, without loss of generality let us suppose that κ− has a C∞-extension to an open
neighborhood W of p, then λΩ does not change sign on some neighborhood of p, otherwise
there are sequences an −→ p, bn −→ p such that λΩ(an) > 0 and λΩ(bn) < 0 for every
n ∈ N. Thus, lim

n→∞
|k1(an)| = lim

n→∞
|κ−(an)| = |κ−(p)| = lim

n→∞
|κ−(bn)| = lim

n→∞
|k2(bn)| which is

contradictory, because by proposition 5.2.1 one of the limits lim
n→∞

|k1(an)|, lim
n→∞

|k2(bn)| is
∞.

Corollary 5.2.6. Let x : U → R3 be a proper wavefront, ΩΩΩ a tmb of x and p ∈ Σ(x)
with rank(Dx(p)) = 1. If κ+ (or κ−) have a C∞-extension locally at p, then the other one
diverges to ±∞ at p.

Proof. If κ+ have a C∞-extension locally at p, by theorem 5.2.5 x is parallelly smoothable
at p, then by corollary 5.2.2 λΩ ≥ 0 (or λΩ ≤ 0, this case is similar) on a neighborhood V

of p. Thus, k1 = κ−, k2 = κ+ on V −Σ(x) and by items (3)s of theorems 5.2.3 and 5.2.4,
one of the functions k1, k2 diverges to ±∞. Since k2 = κ+ extends, k1 = κ− diverges to
±∞.

Corollary 5.2.7. Let x : U → R3 be a proper wavefront, ΩΩΩ a tmb of x and p ∈ Σ(x) with
rank(Dx(p)) = 1. One of the principal curvatures κ−,κ+ diverges to ±∞ at p if and only
if x is parallelly smoothable at p.

Proof. If κ− (with κ+ is analogous) diverges to ±∞ and we suposse that x is not parallelly
smoothable at p then λΩ changes sign on every neighborhood of p. Thus, there exists se-
quences an −→ p, bn −→ p such that λΩ(an)> 0 and λΩ(bn)< 0 for every n∈N. Therefore,
lim
n→∞

|k1(an)|= lim
n→∞

|κ−(an)|=±∞ = lim
n→∞

|κ−(bn)|= lim
n→∞

|k2(bn)|, which is contradictory, be-
cause by proposition 5.2.1 one of the functions k1, k2 extends at p. The converse follows
immediately from theorem 5.2.5 and corollary 5.2.6.

Corollary 5.2.8. Let x : U → R3 be a proper wavefront, ΩΩΩ a tmb of x and p ∈ Σ(x) with
rank(Dx(p)) = 1. The principal curvature κ− (resp. κ+) is bounded locally at p if and
only if κ− (resp. κ+) have a C∞-extension locally at p.

Proof. If κ− is bounded locally at p, using the same reasoning of the proof in theorem
5.2.5, we have that x is parallelly smoothable at p, then by theorem 5.2.5 and corollary



82 Chapter 5. Behavior of the classical invariants

5.2.6 one principal curvature has a C∞-extension locally at p and the other one diverge.
Since κ− is bounded locally at p, this is the extendable one.

5.2.2 Singularities of rank 0

Proposition 5.2.2. Let x : U → R3 be a proper wavefront, ΩΩΩ a tmb of x, p ∈ Σ(x) with
rank(Dx(p)) = 0, then:

1. (k1Ω,k2Ω)(p) = (0,0).

2. lim
(u,v)→p

|K|= ∞.

3. 1
k1

and 1
k2

have continuous extensions on a neighborhood V of p, which are of class
C∞ except possibly at umbilical points and singularities of rank 0 of x.

4. lim
(u,v)→p

|k1|= ∞ and lim
(u,v)→p

|k2|= ∞.

5. 1
k1
+ 1

k2
has a C∞-extension on a neighborhood V of p.

Proof.

1. By theorem 3.3.1, HΩ(p) = 0, then k1Ω(p) = HΩ(p)−
√

H2
Ω
(p)−λΩ(p)KΩ(p) = 0.

Similarly k2Ω(p) = 0.

2. By theorem 3.3.1, KΩ(p) 6= 0 and then it follows by proposition 3.3.1 that lim
(u,v)→p

|K|=

lim
(u,v)→p

|KΩ

λΩ
|= ∞

3. There exist a neighborhood V of p such that KΩ(p) 6= 0 and since KΩ = λΩk1k2 on
Σ(x)c then k1 6= 0,k2 6= 0 on V −Σ(x), therefore 1

k1
= k2

k1k2
= k2Ω

KΩ
and similarly 1

k2
= k1Ω

KΩ

which are well defined on V . Notice that k1Ω and k2Ω may not be differentiable at
umbilical points and singularities of rank 0 of x (because H2

Ω
(p)−λΩ(p)KΩ(p) = 0

at those points and this expression is under a radical sign in the relative principal
curvatures).

4. By item (2), there exist a neighborhood V of p such that k1 6= 0,k2 6= 0 on V −Σ(x),
therefore k1Ω 6= 0,k2Ω 6= 0 as well. Then, k1 =

KΩ

k2Ω
and k2 =

KΩ

k1Ω
on V −Σ(x) and using

that KΩ(p) 6= 0 and item (1) we get (3).

5. Since KΩ(p) 6= 0, there exists an open neighborhood V of p such that KΩ does not
vanish on V , then 1

k1
+ 1

k2
= 2H

K = 2HΩ

KΩ
on V −Σ(x) and as 2HΩ

KΩ
is well defined on V ,

this is a C∞-extension.
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Theorem 5.2.6. Let x : U → R3 be a proper wavefront, ΩΩΩ a tmb of x, p ∈ Σ(x) with
rank(Dx(p)) = 0, then the following statements are equivalent:

1. x is parallelly smoothable at p.

2. λΩKΩ ≥ 0 and HΩ does not change sign on a neighborhood V of p.

3. lim
(u,v)→p

K = ∞ and lim
(u,v)→p

H =±∞.

4. lim
(u,v)→p

k1 = lim
(u,v)→p

k2 = ∞ or lim
(u,v)→p

k1 = lim
(u,v)→p

k2 =−∞.

Proof.

• (1 ⇒ 2) If x is parallelly smoothable at p, then there exist ε > 0 and an open
connected neighborhood V of p such that λΩ(q)−2tHΩ(q)+ t2KΩ(q) 6= 0 for every
(q, t) ∈ V × (0,ε) (or V × (−ε,0), this case is analogous). As KΩ 6= 0 and does not
change sign on V (shrinking V if it is necessary), k1Ω = k2Ω = 0 and since λΩ(q)−
2tHΩ(q)+ t2KΩ(q) 6= 0 if and only if t = k1Ω

KΩ
(q) or t = k2Ω

KΩ
(q), we have that k1Ω

KΩ
≤ 0

and k2Ω

KΩ
≤ 0 on V . Then, k1Ωk2Ω ≥ 0 on V , but −k1Ω and −k2Ω are the eigenvalues

of αααT
Ω
= (µµµΩad j(ΛΛΛ))T , then λΩKΩ = k1Ωk2Ω ≥ 0 on V . Observe that k1Ω and k2Ω do

not change sign on V , then HΩ neither.

• (2 ⇒ 3) Since λΩKΩ = λ 2
Ω

K on Σ(x)c and using that lim
(u,v)→p

|K| = ∞ we get that

lim
(u,v)→p

K = ∞. On the other hand, H2 ≥ K, then lim
(u,v)→p

|H| = ∞. As HΩ and λΩ do

not change sign on a neighborhood of p, H = HΩ

λΩ
neither and we get the result.

• (3 ⇒ 4) As K is positive near to p then λΩKΩ = λ 2
Ω

K ≥ 0 and KΩ 6= 0 on a neigh-
borhood Z of p. Shrinking Z, λΩ does not change sign and H neither on Z −Σ(x).
Without loss of generality, let us suppose λΩ ≥ 0 on Z, then k1 = H −

√
H2 −K and

k2 = H +
√

H2 −K and since H does not change sign on Z −Σ(x), one of the func-
tions k1,k2 neither. By this last and since that K > 0, we have that k1 > 0,k2 > 0 or
k1 < 0,k2 < 0 on Z−Σ(x), then using item (3) of proposition 5.2.2 we get the result.

• (4 ⇒ 1) There exists a neighborhood V of p such that k1 > 0,k2 > 0 (or k1 < 0,k2 <

0, this case is analogous) on V − Σ(x) and KΩ 6= 0 on V , then k1Ω

KΩ
= 1

k2
> 0 and

k2Ω

KΩ
= 1

k1
> 0 on V −Σ(x), thus by density the of V −Σ(x) k1Ω

KΩ
, k2Ω

KΩ
≥ 0 on V . Choose

ε > 0 arbitrary and we have that λΩ(q)− 2tHΩ(q)+ t2KΩ(q) 6= 0 for every (q, t) ∈
V × (−ε,0). It follows (1).



84 Chapter 5. Behavior of the classical invariants

Corollary 5.2.9. Let x : U → R3 be a proper wavefront, ΩΩΩ a tmb of x, p ∈ Σ(x) with
rank(Dx(p)) = 0. If there exist a neighborhood V of p in which the only singularity of rank
0 is p, then x is parallelly smoothable at p if and only if λΩKΩ ≥ 0 on a neighborhood W

of p.

Proof. If λΩKΩ ≥ 0 on W , shrinking if it is necessary we can suppose that K 6= 0 on W −Σ(x)
and since λΩKΩ = λ 2

Ω
K, then H2 > K > 0 on W −Σ(x). As HΩ 6= 0 on singularities of rank

1, then HΩ has a isolated zero on W ∩V and therefore HΩ does not change sign. Applying
the last theorem we get the result.

Observe that, if we have a wavefront x : U → R3, ΩΩΩ a tmb of x, p ∈ Σ(x) with
rank(Dx(p)) = 0 and this is parallelly smoothable at p, since KΩ(p) 6= 0 and λΩKΩ ≥ 0 on
a neighborhood of p, then λΩ does not change sign on a neighborhood of p. However, this
condition is not sufficient as it happened in the case of singularities of rank 1. The next
example shows this.

Example 5.2.5. The wavefront x := (uk,±vk, k
k+1uk+1 ± k

k+1vk+1), with k ∈ N, k ≥ 2 has
as tmb:

ΩΩΩ =

1 0
0 1
u v

 , ΛΛΛ =

(
kuk−1 0

0 ±kvk−1

)
,

then λΩ =±k2uk−1vk−1, KΩ = 1
(1+u2+v2)2 . By corollary 5.2.9, x is parallelly smoothable at

(0,0) when we choose k odd and the sign +. If k is even or the sign is −, this is not
parallelly smoothable at (0,0), even when k is odd with sing − in the expression, in which
λΩ does not change sign.

Corollary 5.2.10. Let x : U → R3 be a proper wavefront, ΩΩΩ a tmb of x, p ∈ Σ(x) with
rank(Dx(p)) = 0 and Σ(x)0 = {q ∈ Σ(x) : rank(Dx(q)) = 0}. If x is parallelly smoothable
at p then:

1. There exists an open neighborhood V of p in which one of the functions k1, k2 has
a C∞ extension to V −Σ(x)0. More precisely, k1 (resp. k2) has a C∞ extension to
V −Σ(x)0 if only if HΩ ≤ 0 (resp. HΩ ≥ 0) on V .

2. There exists an open neighborhood V of p in which one of the functions k1, k2

diverge to ±∞ (just one sign globally) near the singularities to p. More precisely,
lim

(u,v)→Σ(x)∩V
k1 =±∞ (resp. k2) if and only if HΩ ≤ 0 (resp. HΩ ≥ 0) on V .

Proof.

1. Since that HΩ does not change sign on a neighborhood V of p by item (2) of
proposition 5.2.6 and applying proposition 5.2.1 we get the result.
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2. By items (2) and (4) of proposition 5.2.6 HΩ and k1 do not change sign on a neigh-
borhood V of p and applying proposition 5.2.1 we get the result.

Proposition 5.2.3. Let x : U → R3 be a proper wavefront, ΩΩΩ a tmb of x and p ∈ Σ(x)
with rank(Dx(p)) = 0. If H is bounded on a neighborhood of p then we have:

1. There exists a neighborhood V of p such that K < 0 on V −Σ(x) and lim
(u,v)→p

K =−∞.

2. λΩ does not change sign on a neighborhood V of p.

3. One of the functions k1,k2 diverges to ∞ and the another one to −∞ at p. More
precisely, if λΩ ≥ 0 (resp. λΩ ≤ 0) on a neighborhood V of p then lim

(u,v)→p
k1 = −∞

(resp. ∞) and lim
(u,v)→p

k2 = ∞ (resp. −∞).

4. There is no singularity of rank 1 on a neighborhood of p.

5. There exists a neighborhood V of p such that lim
(u,v)→Σ(x)∩V

k1
k2
=−1

Proof.

1. We know that K 6= 0 near to p. If there exists a sequence an −→ p with K(an) > 0
for every n ∈ N, as H2 ≥ K and lim

(u,v)→p
K(an) = ∞ we have that lim

(u,v)→p
|H(an)| = ∞

which is contradictory, then we have (1).

2. By (1) λΩKΩ = λ 2
Ω

K < 0 near to p and since KΩ(p) 6= 0, then λΩ does not change
sign on a neighborhood V of p.

3. If λΩ ≥ 0 near p, k1 = H −
√

H2 −K and k2 = H +
√

H2 −K on a neighborhood of
p and since K < 0 near p, then k2 > 0 > k1 on a neighborhood of p. By (3) of
proposition 5.2.2 we have the result.

4. If H is bounded on a neighborhood V of p and suppose that there exists a singularity
q of rank 1 in V , by (4) of proposition 5.2.1 lim

(u,v)→p
|H|= ∞ witch is contradictory.

5. Let V be a bounded neighborhood of p with just singularities of rank 0 with H

bounded. There exists C > 0 such that |k1 + k2| <C, then |1+ k1
k2
| < C

|k2| and by (3)
of proposition 5.2.2 lim

(u,v)→q
k1
k2
=−1 for every q ∈ Σ(x)∩V . Since Σ(x)∩V is compact

we have the result.
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Proposition 5.2.4. Let x : U → R3 be a proper wavefront, ΩΩΩ a tmb of x, p ∈ Σ(x) with
rank(Dx(p)) = 0 and let us choose W a compact neighborhood of p in which KΩ 6= 0. The
following statements are equivalent:

1. The mean curvature H is bounded on W −Σ(x).

2. There exists C > 0 such that |HΩ| ≤C|λΩ| on W .

3. There exists C > 0 such that |LG+NE −2MF | ≤C|λ 2
Ω
| on W .

4. There exists C > 0 such that | 1
k1
+ 1

k2
| ≤C|λΩ| on W .

5. 1
k1Ω

+ 1
k2Ω

is bounded on W .

Proof.

• (1 ⇔ 2) Using that HΩ = λΩH on W −Σ(x) which is dense in W , we get the equiva-
lence.

• (1⇔ 3) Using that H(EG−F2)= LG+NE−2MF on W −Σ(x) and EG−F2 ∈T2
Ω
(W )

(see proposition 3.1.1), by compactness of W we get the equivalence.

• (2 ⇔ 4) by proposition 5.2.2 1
k1
+ 1

k2
has a C∞-extension to W and this is equal to

2HΩ

KΩ
. From this equality follows the equivalence.

• (4 ⇔ 5) Since that k1Ω = λΩk1 and k2Ω = λΩk2 on W −Σ(x) which is dense in W , we
get the equivalence.

Proposition 5.2.5. Let x : U → R3 be a proper wavefront, ΩΩΩ a tmb of x, p ∈ Σ(x) with
rank(Dx(p)) = 0 and let us choose V an open neighborhood of p in which KΩ 6= 0. The
following statements are equivalent:

1. The mean curvature H has a C∞-extension to the neighborhood V of p.

2. HΩ ∈ TΩ(V ).

3. LG+NE −2MF ∈ T2
Ω
(V ).

4. 1
k1
+ 1

k2
∈ TΩ(V ).

5. 1
k1Ω

+ 1
k2Ω

has a C∞-extension to the neighborhood V of p.

Proof. The proof of proposition 5.2.4 can be reproduced here to prove the corresponding
equivalences.
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Example 5.2.6. The wavefront x :=(1
2 log

(
v2 +1

)
− 1

2 log
(
u2 +1

)
, uv

v2+1 ,
uv2

v2+1 −u+tan−1(u))

(see figure 8) has as tmb:

ΩΩΩ =

1 0
0 1
u v

 , ΛΛΛ =

( −u
1+u2

v
1+v2

v
1+v2

u(1−v2)
(1+v2)2

)
, µµµ =

 −(1+v2)

(1+u2+v2)
3
2

uv

(1+u2+v2)
3
2

uv

(1+u2+v2)
3
2

−(1+u2)

(1+u2+v2)
3
2

 ,

then λΩ = −(u2+v2)
(1+u2)(1+v2)2 , HΩ =−1

2(λ22µ11−λ21µ12+λ11µ22−λ12µ21) = 0 and therefore the
mean curvature is extendable, with H = 0 on R2.

Figure 8 – A wavefront with singularity of rank 0 at the origin and mean curvature vanishing
everywhere.
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