A new approach to the differential geometry of frontals in the
Euclidean space

Tito Alexandro Medina Tejeda

Tese de Doutorado do Programa de Pds-Graduacao em
Matematica (PPG-Mat)

o
=
2
o
o
<
V)]
LLl
a)
LL
a)
<
o
Vs
oc
LLl
>
P
-

Instituto de Ciéncias Matematicas e de Computacao

SAO CARLOS

ICMC
i







SERVIGO DE POS-GRADUAGAO DO ICMC-USP

Data de Depdsito:

Assinatura:

Tito Alexandro Medina Tejeda

A new approach to the differential geometry of frontals in the
Euclidean space

Thesis submitted to the Instituto de Ciéncias
Matematicas e de Computagdo — ICMC-USP — in
accordance with the requirements of the Mathematics
Graduate Program, for the degree of Doctor in Science.
FINAL VERSION

Concentration Area: Mathematics

Advisor: Profa. Dra. Maria Aparecida Soares Ruas

USP - Sao Carlos
August 2021



Ficha catalografica elaborada pela Biblioteca Prof. Achille Bassi
e Secdo Técnica de Informéatica, ICMC/USP,
com os dados inseridos pelo(a) autor(a)

Medi na Tej eda, Tito Al exandro
MA91n A new approach to the differential geonetry of
frontals in the Euclidean space / Tito Al exandro
Medi na Tej eda; orientadora Maria Apareci da Soares
Ruas. -- Sao Carlos, 2021.
93 p.

Tese (Doutorado - Programa de Pds- G aduacdo em
Matematica) -- Instituto de G éncias Matematicas e
de Conputacdo, Universidade de Sao Paul o, 2021.

1. Frontal. 2. Vavefront. 3. Singular surface.
4. Relative curvature. 5. Tangent noving basis. |.
Soares Ruas, Maria Aparecida, orient. Il. Titulo.

Bibliotecéarios responsaveis pela estrutura de catalogacéo da publicacdo de acordo com a AACR2:
Glaucia Maria Saia Cristianini - CRB - 8/4938
Juliana de Souza Moraes - CRB - 8/6176



Tito Alexandro Medina Tejeda

Uma nova abordagem da geometria diferencial de frontais
no espaco euclidiano

Tese apresentada ao |Instituto de Ciéncias
Matematicas e de Computacdo - ICMC-USP,
como parte dos requisitos para obtengdo do titulo
de Doutor em Ciéncias — Matematica. VERSAO
REVISADA

Area de Concentragdo: Matematica

Orientadora:  Profa. Dra. Maria Aparecida
Soares Ruas

USP - Sao Carlos
Agosto de 2021






This work is dedicated to my parents and grandparents,
who supported me since I was a child to delve into
science and pursue my dreams.

Especially to my grandmother who prays and motivates me every day from far away.






ACKNOWLEDGEMENTS

The main thanks go to professor Maria Aparecida Soares Ruas, for her valuable
guide. I am grateful to professors Goo Ishikawa, Takashi Nishimura, Kentaro Saji and
Masatomo Takahashi for useful comments on this work. Especially, I thank to professors
Kentaro Saji and Keisuke Teramoto for the fruitful discussions about the extendibility
of the Gaussian Curvature, during their visit to the ICMC-USP on September 2019 in
which they gave some ideas that contributed to this work. Thanks to professors Luciana
Martins and Ratl Oset for giving me the opportunity to present my work at important

scientific events.

I also thank the financial support of Conselho Nacional de Desenvolvimento Cienti-
fico e Tecnoldgico (CNPq) and the academic support of Instituto de Ciéncias Matematicas
e de Computagao (ICMC). This study was financed in part by the Coordenagiao de Aper-
feigopamento de Pessoal de Nivel Superior - Brasil (CAPES) - Finance Code 001.






“Mathematics reveals its secrets only to those
who approach it with pure love, for its own beauty.”
(Archimedes)






RESUMO

MEDINA-TEJEDA, T. A. Uma nova abordagem da geometria diferencial de fron-
tais no espago euclidiano. 2021. 90 p. Tese (Doutorado em Ciéncias — Matematica)
— Instituto de Ciéncias Matematicas e de Computacao, Universidade de Sao Paulo, Sao
Carlos — SP, 2021.

Neste trabalho investigamos a geometria diferencial de superficies singulares conhecidas
como frontais. Provamos um resultado semelhante ao teorema fundamental das superfi-
cies regulares na geometria diferencial classica, que estende o teorema classico aos frontais
no espaco Euclidiano. Além disso, caracterizamos de forma simples essas superficies sin-
gulares e suas formas fundamentais com propriedades locais na diferencial de sua parame-
trizacao e decomposicoes nas matrizes associadas as formas fundamentais. Em particular,
introduzimos novos tipos de curvaturas que podem ser usadas para caracterizar as frentes
de onda. Por outro lado, investigamos as condigbes necessarias e suficientes para esten-
der e delimitar a curvatura Gaussiana, curvatura média e curvaturas principais perto de
todos os tipos de singularidades das frentes. Além disso, estudamos a convergéncia para
limites infinitos desses invariantes geométricos e mostramos como isso esta estreitamente

relacionado a uma propriedade de aproximacao de frentes por superficies paralelas.

Palavras-chave: Frontal, Frente, Curvatura Gaussiana , Curvatura Média, Curvaturas

Principais.






ABSTRACT

MEDINA-TEJEDA, T. A. A new approach to the differential geometry of frontals
in the Euclidean space. 2021. 90 p. Tese (Doutorado em Ciéncias — Matematica) —

Instituto de Ciéncias Matematicas e de Computagao, Universidade de Sao Paulo, Sao
Carlos — SP, 2021.

In this work we investigate the differential geometry of singular surfaces known as frontals.
We prove a similar result to the fundamental theorem of regular surfaces in classical
differential geometry, which extends the classical theorem to the frontals in Euclidean 3-
space. Also, we characterize in a simple way these singular surfaces and its fundamental
forms with local properties in the differential of its parametrization and decompositions
in the matrices associated to the fundamental forms. In particular we introduce new
types of curvatures which can be used to characterize wave fronts. On the other hand, we
investigate necessary and sufficient conditions for the extendibility and boundedness of
Gaussian curvature, Mean curvature and principal curvatures near all types of singularities
of fronts. Furthermore, we study the convergence to infinite limits of these geometrical
invariants and we show how this is tightly related to a property of approximation of fronts

by parallel surfaces.

Keywords: Frontal, Front, Gaussian curvature, Mean curvature, Principal curvatures.
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CHAPTER

1

INTRODUCTION

In recent years, there is a great interest in the differential geometry of a special
type of singular surface, namely, frontal. Many papers are dedicated to the study of
frontals from singularity theory and geometry viewpoints (see (SAJI, 2010; ISHIKAWA,
2018; ISHIKAWA, 2020; MEDINA-TEJEDA, 2019) and the references therein), in partic-
ular wavefronts, a subclass of these (ARNOL'D; GUSEIN-ZADE; VARCHENKO, 2012;
ARNOL’D, 1990; ISHIKAWA, 2018; MARTINS et al., 2016; MEDINA-TEJEDA, 2019;
MURATA; UMEHARA, 2009; KOSSOWSKI, 2004; SAJI; UMEHARA; YAMADA, 2009;
TERAMOTO, 2016; TERAMOTO, 2019a; TERAMOTO, 2019b). The word “front” comes
from physical fronts, bounding a domain in which a physical process propagates at a fixed
moment in time. For instance, a wave propagating in the 3-Euclidean space with constant
speed starting from each point of an ellipsoid in direction of the interior of this (the ini-
tial domain to be perturbed) creates a equidistant surface at time t bounding an interior
part of the ellipsoid that it has not been perturbed at time t. In this case, the complete
equidistant surface is called the wavefront, this changes as time passes leading to the for-
mation of singularities along the whole equidistant surface in any time (ARNOL’D, 1990).
The notion of "frontal” emerged as a natural generalization of wavefront in the case of
hypersurfaces and a generalized definition with equivalences can be found in (ISHIKAWA,
2018).

Much of the existing work focuses on a generic set (in Whitney’s topology) of these
singular surfaces that have certain good types of singularities. The geometric properties
of the generic surfaces are not necessarily satisfied for the entire class of singular surfaces.
The methods to study generic singular surfaces rely on results from the theory of singular-
ities and differential geometry, and in many cases depend upon special coordinate systems
called adapted coordinate systems. In this work we introduce tools that allow us to use
arbitrary coordinate systems and frames to investigate the geometry of singular surfaces

in a neighborhood of a singular point. Our results do not depend on genericity assump-
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tions and apply to any proper frontals or wavefronts. We are interested in exploring the

geometrical behavior near the most degenerate types of singularities.

The behavior of Gaussian curvature, mean curvature and principal curvatures
near non-degenerate singularities on wavefronts have been widely studied in (SAJI; UME-
HARA; YAMADA, 2009; MARTINS et al., 2016; TERAMOTO, 2016; TERAMOTO,
2019b). However, in the degenerate case this is unknown, as well as the convergence to
infinite limits of these invariants has been little explored. For this reason it is natural
to wonder which properties of wavefronts determine one behavior or another on general
types of singularities. Also, there is a lack of literature about the geometry of singularities

of rank 0 (or corank 2) on wavefronts and our approach here allow us to study them.

In chapter 2 we present the notation, classical terminology and basic results that
we use most and are present in books of differential geometry and singularities. Also we
introduce new additional terminology and symbols which are very related to the classical
ones of the differential geometry and can be defined on singularities without problems.
In chapter 3 we see how the fundamental forms, Christoffel symbols and classical curva-
tures in frontals are related with the new symbols and how these determine properties to
characterize wavefronts. Additionally, we use these properties to obtain some formulas of
representation for wavefronts. In chapter 4 we present a fundamental theorem for frontals
similar to the classical one for regular surfaces. At the last chapter we give necessary and
sufficient condition to the boundedness, convergence to infinite limits and extendibility of

the classical invariant near all types of singularities of wavefronts.
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CHAPTER

2

PRELIMINARIES

2.1 Fixing notation and some definitions

A smooth map x: U — R3 defined in an open set U C R? is called a frontal if, for
all p € U there exists a unit normal vector field n:V, — R3 along x, where Vp is an open
set of U, p € V,. This means, [n| =1 and it is orthogonal to the partial derivatives of x
for each point (u,v) € V,. If also the singular set £(x) = {p € U : x is not immersive at p}
has empty interior we call X proper frontal, in another case we say that x is a non-proper
frontal. Since X(x) is closed, this is equivalent to have the complement X(x)¢ = U — X(x)
being dense and open in U. We call a point p € X(X) a singularity or singular point and a
point in the complement X(x)¢ a reqular point. A frontal x is a wave front or simply front
if the pair (x,n) is an immersion for all p € U. There are many examples of frontals which
are not wave fronts, cuspidal Sy singularities for instance (SAJI, 2010). The existence of a
smooth normal vector field on these singular surfaces determines planes (the orthogonal
spaces) at singularities that can be understood as limiting planes of the tangent planes

on regular points around them (see Figure 1).

Figure 1 — The cuspidal edge (x(u,v) = (u,v*,v*),n = (0, —3v, 2)(4+9v2)_%) and the limiting tan-
gent planes.

The cuspidal edge and the swallowtail (see Figure 1 and 2) are two types of singular

points that represent the generic singularities in the space of wave fronts with the Whitney
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C>*-topology (ARNOL’D; GUSEIN-ZADE; VARCHENKO, 2012). For this reason, all the
re-parametrizations and diffeomorphic singular surfaces to these are the most studied
and there exist criterias to recognize them (KOKUBU et al., 2005; ISHIKAWA, 2020).
However, these singularities are not generic in the space of all frontals (in fact proper
frontals are not generic either)(ISHIKAWA, 2018). There are some non-proper frontals
which are not “surfaces”, x(u,v) = (uv,0,0) for instance and others whose entire image is
a surface but locally at some singular points the image of a neighborhood at these is a
constant (see example 2.5 (ISHIKAWA, 2018)). Here we treat frontals in general, but our

main result aim to proper frontals.

o
%’0‘;’”&1\
e
i

,,’?/

10

Figure 2 — The swallowtail (x(u,v) = (3u* + 1?v, 4 + 2uv,v),n = (1, —u,1u?)(1 + u® + u*)~2), an
example of front.

From now on, we denote U and V in this work open sets in R%. Let x: U — R> be
a frontal, and as we are interested in exploring local properties of frontals, restricting the
domain if necessary, we can suppose that we have a global normal vector field n: U — R3.
There are two possible choices of normal vector fields along x (n and —n). We are always
assuming that we have chosen one of them and we hold fixed this for all the concepts
defined using a normal vector field along x. Let f: U — R" be a smooth map, we denote
by Df:= (3—){3), the differential of f and we consider it as a smooth map Df: U — M, > (R).
We write Dfy, , Dfy, the partial derivatives of Df and Df(p) := (g—)f‘](p)) for pe U. We
denote I, the identity matrix n x n. Also, a vector in R" is identified as a column vector
in M,x1(R) and if A € Myuxn(R), Ay is the i""-row and AY) is the j™-column of A.

Definition 2.1.1. We call moving basis a smooth map Q: U — Ms3»(R) in which the
columns wi,w, : U — R> of the matrix Q = (wl wz) are linearly independent smooth

vector fields.

Definition 2.1.2. We call a tangent moving basis (tmb) of x a moving basis Q = <W1 w2>

such that x,,x, € (w;,w,), where (,) denotes the linear span vector space.

Example 2.1.1. For the cuspidal edge (x(u,v) = (u,v*,v*), we have x, = (1,0,0) and



2.2. The new symbols 27

x, = (0,2v,3v?) = (0,2,3v)v, then denoting w; := (1,0,0) and ws := (0,2,3v),
0
Q:= <W1 wz> = 2

oS O =

3y

is a tmb of x. Observe that multiplying Q by a matrix-valued smooth map B : R> —
M2 (R) with det(B) # 0, we have that QB is another tmb of x, because the columns are

still linearly independent and generate the same vector space of wi,w.

Let x: U — R? be a frontal with a global normal vector field n: U — R3. Denoting
the inner product by (-), adj(A) the adjoint of a matrix A (i.e Aadj(A) = adj(A)A =

det(A)Ip) and ()7 the operation of transposing a matrix, we set the matrices:

[— E F . Xy Xy Xu-Xy (2.1a)
F G X, Xy Xp-Xy
M L M n-x, n-X, (2.1b)
M N n-x, n-X,
1
1 .
5} 1—%1 2EV
1
T, = (1‘%2 ) ( 5G”> ! (2.1d)
1 .
I F%z 2Gv
a: ITI— (2.1e)

The matrices I and II in a non-singular point p € U coincide with the matrix repre-
sentation of the first fundamental form and of the second fundamental form respectively.
I'1, I, and @ are defined in £(x)¢, they are the Christoffel symbols and the Weingarten

matrix. Also observe that, we can compute these matrices in this way:

I=Dx!Dx (2.2a)
Il = —Dx'Dn (2.2b)
I = (Dx! Dx)I™! (2.2¢)
I, = (Dx!Dx)1! (2.2d)

2.2 The new symbols

Here we present the definitions of the new symbols that can be defined even on

singularities and allow us to obtain information about the classical ones near singularities
W1 XW)

and we set
T [lwrxwa|

of frontals. Let Q = (W1 ) be a moving basis, we denote by n :=
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the matrices:

o= (52 fo) . _grg (2.3a)
Fo Gq

Lo M
o= ¢ ") .=—-Q"pn (2.3b)
Mo No

TV T3

Ti=|_!! “) = Q)1 (2.3¢)
T Th ?

T T3

To=| 12 12) = Qo)1 (2.3d)
Ty Th ?

TR | £ (2.3¢)

Since n-w; =0 and n-w; =0, then we have —n,-w; =n-wy,, —n,-W| =n-wy,, —N,- Wy =
n-wy, and —n, - wy = n-wp,. Therefore,

I — (“'W“‘ “'W”> (2.4)

n-wpy, n-wp,

Also, as ny,n, € (Wj, W), there exist real functions (fi;;) i,j € {1,2} defined on U, such
that:

n, = Wi + fl1ow2
n, = [ wW; + [lpoW>

Then, Dn = Qa” | where i = (fi;;). Thus, using (2.3b) Il = —Q"Dn = —Q"Qp” =
—Toi”, therefore i = _nglg_zl = U and we have:

Dn=Qul (2.6)

By last, w; and wj are linearly independent, the positive-definite quadratic form () re-
stricted to (w1, ws) has Ig = QT Q as its matrix representation in the basis {w;,w,} and
therefore det(Ig) > 0. Notice that, given a frontal x, on a small neighborhood V of a
regular point, Q = Dx is a tmb of x|y, then the matrices Ig,Ilg, 77,72 and pg coincide
with LIL T, I, and @. At singular points Dx is not a tmb of x, but we will see in chapter

3 that for frontals there exists tmb locally at singularities.

2.3 The Frobenius Theorem

The following is a particular version of Frobenius theorem that can be found in
((STOKER, 1969) appendix B) or (TERNG, 2005).

Theorem 2.3.1 (Frobenius). Let ®,E: U x V — R” be smooth vector fields, where U C R?
and V C R" are open sets. Let (ug,vp) € U be a fixed point. Then for each point p € V the

system of partial differential equations:
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ox

i O(u,v,x(u,v)),
ox

5= E(u,v,x(u,v)),

x(uo,v0) = P,

has a unique smooth solution x : Uy — R" defined on a neighborhood Uy of (ug,vo) € Uy if

and only if, it satisfies the compatibility condition:

d0 09dO_ JE JE
v oxT ou ox
Corollary 2.3.1. Let S,T: U — M, x,(R) be smooth vector fields, where U is an open
set in R?. Let (ug,vo) € U be a fixed point. Then for each point A € GL(n) the system of

(2.8)

partial differential equations:

G

% —_— SG,

G

o 16
G(ug,vo) = A,

has a unique smooth solution G : Uy — GL(n) defined on a neighbourhood Uy of (ug,vp) €
Uy if and only if, it satisfies the compatibility condition:

oS oT
5;—5;+$J1_Q (2.10)

where [S,T] = ST — TS is the Lie bracket.

Proof. Identifying M,,x,(R) = R" and defining O(u,v,X) := SX and E(u,v,X) := TX for
X € Myxn(R), the compatibility condition (2.8) is equivalent to (2.10) and by theorem
2.3.1 follows the result. O

2.4 The Hadamard Lemma

In the following we establish one useful fact sometimes called the Hadamard
Lemma (GIBSON, 1979).

Lemma 2.4.1 (Hadamard). Let U be a convex neighbourhood of 0 in R” and let f be
a smooth function defined on U x R? which vanishes on 0 x R?. Then, there exist smooth

functions g1, g2, -, on U x R? with

f=x181+"+Xu8n
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where xi,---,x, are the standard co-ordinate functions on R”.

Proof. Denoting x = (x,---,x,) and y = (y1,--+,¥q)

) = lx9) = £0) = [ Gtstosyar= [ 3 S onypsar

—Zx,/ -(1x,y)dt = Zx,g, X,Y),

1
where g;(x,y) :/0 %(rx,y)dt O

2.5 Map-Germs

Let X and Y be two subsets of R” containing a point p € R". We say that X is
equivalent to Y if there exists an open set U C R" containing p such that XNU =Y NU.
This defines an equivalence relation among subsets of R" containing the point p. The

equivalence class of a subset X is called the germ of X at p and is denoted by (X,p) .

Let U and V be two open subsets of R"” containing a point p € R", and let f :
U—R"and g:V — R" be two smooth maps. We say that f ~ g if there exists an open
set W C UNYV containing p such that f=g on W, that is fly = glw.

The relation ~ is an equivalence relation and a germ at p of a smooth map is by

definition an equivalent class under this equivalence relation. A map-germ at p is denoted
by

f]: (R",p) = R"
where f : U — R™ is a representative of germ [f] in a neighbourhood U of p. However, at

most of the cases we omit the brackets [ | at germs, when there are no risk of confusion.

Sometimes we require that all the elements of the equivalence classes have the

same value at p, say q. Then we write
f:(R"p) = (R".q) .

Let &, denote the set of germs, at the origin 0 in R”, of smooth functions (R",0) —
R, & ={f : (R",0) — R|f is the germ of a smooth function}.

With the addition and multiplication operations, &, becomes a commutative R-
algebra with a unit. It has a maximal ideal M, which is the subset of germs of functions

that vanish at the origin. We have

My = {[f] € &|£(0) = 0}.



2.6. Left-Right Equivalence 31

Since M, is the unique maximal ideal of &,,&, is a local algebra. If xi,---,x, are the
standard co-ordinate functions on R", then by Hadamard lemma M, is generated by the

germs of functions x;, i=1,--- ,n.

The set of all smooth map-germs f: (R*,0) — R™ is denoted by £(n,m) . It is the

direct product of m-copies of &,, that is,

Enm)=E, x - x &,

m times

2.6 Left-Right Equivalence

Definition 2.6.1. Let f; : (R”,0) — (R™,0),i = 1, 2 be germs of smooth maps between

Fuclidean spaces. They are

1. right-equivalent, if there exists a germ of diffeomorphism h : (R*,0) — (R",0)
such that £, =f;oh™!;

2. left-equivalent, if there exists a germ of diffeomorphism k : (R™,0) — (R™,0) such
that f2 = kOfl;

3. left-right-equivalent, if there exist germs of diffeomorphism h: (R*,0) — (R",0)
and k : (R™,0) — (R™,0) such that f, = kofjoh~!.

The advantage when the source and target are fixed is that the equivalences can
be seen as group actions. Let & = Dif f(R",0) x Dif f(R™,0) be the group of pairs of
diffeomorphisms. We have an action of &7 on the set of germs f: (R*,0) — (R™,0) , given
by

(h,k)-f=kofoh™!.

Analogously, we can consider the groups #Z = Dif f(R",0) and .Z = Diff(R”,0) and the
corresponding actions. If ¥ = Z,.Z or o/, we say that f|,f, are &-equivalent if they are in
the same ¢-orbit. In this situation, we will use the terms Z,.%Z or .&/-equivalences instead
of right, left or right-left equivalences, respectively. The interested reader in the study of
singularities of map-germs can consult (GIBSON, 1979; MOND; NUNO-BALLESTEROS,
2020; IZUMIYA et al., 2015).
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CHAPTER

3

DECOMPOSITIONS OF THE
FUNDAMENTAL FORMS

In this chapter we characterize a frontal x in terms of the differential of x, its
fundamental forms through a decomposition of matrices and wave fronts in terms of
two new curvatures which are related with the Gaussian and mean curvature. As in
our corollary 3.3.1, T. Fukunaga and M. Takahashi in (FUKUNAGA; TAKAHASHI,
2019) also characterized wave fronts in terms of curvatures. The curvatures introduced
in (FUKUNAGA; TAKAHASHI, 2019), are a particular case of the relative curvatures

presented here.

3.1 Characterizing a frontal and its fundamental forms

Proposition 3.1.1. Let x: U — R? be a smooth map with U C R? an open set. Then, the

following statements are equivalent:

(i) The map x is a frontal.

(ii) For all p € U there is a tangent moving basis Q : V, = M3,,(R) of x with V, CU
a neighborhood of p.

(iii) For all p € U there are smooth maps Q:V, = M3,2(R) and A:V, = Mj,»(R) with
rank(Q) =2, V, CU a neighbourhood of p, such that Dx(q) = QAT for all q € V.

Proof.

o (i« ii) Ifxisafrontal, then for all p € U there exists a unitary vector fieldn: V, — R
with x,-n =0, x,-n =0, n= (n1,n2,n3), V, a neighborhood of p which we can

reduce in order to get n; # 0 on V), for some i € {1,2,3}. Without loss of generality
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let us suppose that n; # 0 and define Q := <w1 w2> with w; = (np,—n;,0) and
wy = (n3,0,—n;). Since w; and w; are linearly independent, orthogonal to n and
dim(nt) =2 (n* orthogonal space to n), we have that (wy,w;) =n'. Therefore, Q:
V, = M3,2(R) is a tangent moving basis of x. The converse, just define n:= Hxi i:vviu
taking wi and w, the columns from a tangent moving basis Q:V,, = M3,2(R). Then,

n is orthogonal to x, and x,, which belong to (wy,w»).

o (ii & iii) If we suppose (ii), for all p € U there is a tangent moving basis Q:V, —
M3.2(R) of x with V, C U a neighborhood of p. Thus, there are coefficients A;; such
that x, = 411w + A1oWo and x, = A1 W] + AWy, Therefore, Dx(q) = QAT for all
q €V, where A = (4;;). Multiplying the equality by Q7 and as I is invertible, we
have that ISEIQTDx(q) = A" Then, A:V, — M. (R) is smooth. Reciprocally, if we
have Dx(q) = QAT for all q € Vp, then x, = A11w; + 412w and X, = A1 W + Ao ws.

Hence x,,X, € (W;,w2) and as rank(Q) =2, Q is a tangent moving basis of x.

]

Remark 3.1.1. In the proof of proposition 3.1.1, observe that A = DXTQ(IgTZ)_l, then A is
determined by a local tangent moving basis of x. Also having a decomposition Dx = QAT

with rank(Q) = 2 implies that Q is a tangent moving basis of x.

Example 3.1.1. For the cuspidal edge (x(u,v) = (u,v*,»3) observe that the Jacobian

matrix decomposes as in proposition 3.1.1:

1 0 1 0
10
Dx=10 2v]|=10 2
5 0 v
0 3v 0 3v
where,
1 0 10
Q: O 2 7A:< )’
0 v
0 3v

being Q a tmb of x as we had seen in example 2.1.1.

Notice that, the proof of proposition 3.1.1 did not use that the set £(x) = {p €
U :x is not immersive at p} has empty interior, therefore this is valid for even non-proper
frontals. However we need this condition at the moment that we consider to relate different

tangent moving bases. If we have a proper frontal x : U — R3 with a tmb Q = (w1 wz),

inducing a normal vector field n and Q = (Wl \TV2> is another tmb of x, we have that
for p € Z(x)¢, (wi,w2) = (x,,X,) = (W], W3), then we have n;-w; =0, for i = 1,2 on X(x)C.
By continuity and density of the regular points, it is also satisfied on U, thus (wy,w;) =

(W1,W3) on U ensured that every tmb generate the same vector space at each point. From
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this, we have that for all p € U, Q(p) = Q(p)B(p), where B(p) is a non-singular 2 x 2
matrix, which seen as a map is smooth because B = IE}IQTQ. For non-proper frontals,
the latter is not always valid, for example the non-proper frontal x = (uv,0,0) has the
following different tangent moving bases which not generate the same vector space at
every point:

0
Q= 1], Q=
u

o O =
o O =
- < O

From now on, as we want to describe local properties and tangent moving bases
exist locally, we can suppose that we have a global tangent moving basis for a frontal

restringing the domain if necessary.

Definition 3.1.1. Let x be a frontal and Q a tangent moving basis of X, we denote
Ao = (4j) :=Dx'Q(Iq) !, A :=det(Ag) and To(U) as the principal ideal generated by
Aq in the ring C*(U,R) (smooth real functions on U).

Thus, we have globally Dx = QA{, Z(x) = A5 ' (0) and rank(Dx) = rank(Ag). With
a given tangent moving basis Q = (wl w2>, we always choose as unit normal vector
field along x, the induced by Q (i.e n= %) Also, we are going to write simply Tq,

A = (A;j) and p = (u;;) instead of Ta(U), Aq and g when there is no risk of confusion.

Definition 3.1.2. Let x: U — R> be a frontal, Q a tmb of x, p € X(x), we say that p is

a non-degenerate singularity if DAg(p) # (0,0), in another case it is called degenerate.

Remark 3.1.2. This definition does not depend on the chosen tmb Q. If x is proper
frontal with another tmb Q, we have A5 = pAg with p = det(B), being B the non-singular
matrix that satisfies @ = QB. Thus, DAq(p) # (0,0) if and only if DAg(p) # (0,0). If x is
non-proper and p is a non-degenerate singularity, then by the Implicit function theorem,
the singular set is locally at p a regular curve, therefore on a neighborhood of p, x is

proper frontal and we can apply the argument discussed before.

In the literature (see for example (MARTINS; SAJI; TERAMOTO, 2019; SAJI;
UMEHARA; YAMADA, 2009)) is quite used a function A called signed area density
function for the last definition instead of Aq, this is defined by

l:zdet((xu X, n)),

where n is the normal vector field induced by a tmb Q = <w1 w2>. Since, X, = A1 1w +
Maw2, X, = A1 W1 + AWy, then

Xy XXy :ﬂ,gwl X Wo
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and thus using the Lagrange’s identity we have

A= (Xu X XV) ‘n = AQ|W1 X W2| = AQ\/EQGQ —Fé = lgdel(lg) .

As a’et(Ig)% > (, then the definition of non-degenerate singularity does not depend if the

o=

function used is Ag or A.

Definition 3.1.3. Let x: U — R> be a frontal, Q = <w1 w2> and Q = (v‘vl Wz) tangent
moving bases of X, where Q = QB. We say that Q and Q are compatibles if w; X wa - W X

wy > 0. Also, Q is an orthonormal tangent moving basis if |w;| = |wy| =1 and w;-w, =0.

In the following theorem we show the properties that first and second fundamental
forms of frontals always satisfy. In chapter 4, we will see that having fundamentals forms
satisfying these properties and the Gauss and Mainardi-Codazzi equations on the regular

set, we can get a frontal.

Theorem 3.1.1. Let x: U — R? be a frontal and Q a tangent moving basis of x, then
the matrices defined by equations (2.1a) and (2.1b) have the following decomposition:

T
E F\ [Au A\ (Ea Fo)\ (A1 A2
= (3.1a)
F G M1 Axn) \Fo Ga) \ A Ax
L M\ _ At A Lo Mg , (3.1)
M N A1 Axn ) \Myo Ng

in which all the components are smooth real functions defined on U, Eq > 0, Ggo > 0,
EqGq — F3 > 0, rank(Dx) = rank(A), £(x) = 15" (0) and

where A — (A,J)

Proof. We have Dx = QA”, then using (2.2a) I =Dx'Dx = AQTQAT = AIgAT. Also,
using (2.2b) Il = —Dx"Dn = A(—Q Dn) = Allg. Now, let us set the skew-symmetric

matrices:
0 —(E, — F, 0o —
A= (Ev — i) , By = 1) .=a’a-0o’q,.
E,—F, 0 T 0

From (2.1c) and (2.2¢) we have Dx! Dx — %Iu = %Al, then using that I = AIoA”, Dx= QAT

and developing derivatives,

1 1
(AQ] +AQNQAT = E(AMIQAT + Al AT + AIgAT) + SAL
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Substituting Io = Q7 Q and Ig, = QZQ +Q7Q,, we can group and cancel similar terms,
getting
ABAT = AIoAT — A IoAT + A
T
multiplying the equality by left side with (1 0) and by the right side with (0 1) , We

obtain,

0

U\ AT T T
5 0 ) Ay = AmleA), — ApyleAp) = (B = F)

—le«Q - A(l) (

and from it follows (3.2a). Setting the matrices:

—(F,— G, _
Ay | Y (F=G) g, (0 ~2) . _qro_grq,
F,— Gy 0 (%) 0

Observing that, Dx! Dx — %IV = %Az and proceeding similarly as before, it follows (3.2b).
U

The conditions (3.2a) and (3.2b) in theorem 3.1.1 may seem kind of strange, but
we will see in proposition 3.2.3 why these are so important. Also these expressions can be
reduced depending on the type of tmb Q. If we have a tangent moving basis of a frontal,
we always can construct an orthonormal one applying Gram-Schmidt orthonormalization,

then the decompositions in theorem 3.1.1 are reduced and follows easily the corollary:

Corollary 3.1.1. Let x: U — R> be a frontal and Q an orthonormal tangent moving
basis of x, then the matrices defined by equations (2.1a) and (2.1b) have the following

(E F) B (Ml 3«12) (3»11 112>T
F G \Mi An) \ M An
(L M) B (Ml ln) (LQ Mm)
M N o1 An) \Mag No |’
in which all the components are smooth real functions defined on U, rank(DX) = rank(A),
2(x) = A, ' (0) and

decomposition:

(A =2A0)A0), € To
2A 1AL — (A € To

Vv

where A = (4;;).

Remark 3.1.3. If x: U — R? is a frontal and Q a tangent moving basis of X, we can find

a tangent moving basis Q having one of the following forms:

g1 & 0 1 g1 &
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g1 & g1 & 0 1
1 0 ) 0 1 ) g1 &2 1>
0 1 1 0 1 0

with g1,g2 : U — R smooth functions and the matrix AT as an exact differential, it means,
there is a smooth map (a,b) : U — R? such that D(a,b) = A" To see this, as the columns
of Q are linearly independent, then applying reduction of Gauss-Jordan with a finite
number of operations by columns, it can be reduced to one of the forms above. Without
loss of generality, let us suppose it is reduced to the first one. If we denote E{,E;,...E,,

the elementary 2 x 2 matrices corresponding to the operations by columns, we have:

1 0
Dx=QA" =QE|E,---E,E,' - E;'E['AT=]0 1 |E,' - -E;'E['AT
g1 &

Denoting AT =E, ! -EglEIIAT and x = (a,b,c), we can multiply the last equality by

1ooy
0O get.
010) °°

1 0
u 1 00 1 00 o o o
D(a,b) = (Z Zv> = (0 | O) Dx = <O 1 O) 0 1 AT:]IzAT:AT.

On the other hand, a simple computation leads to

1+g1 gig S & .
Iy = : g = ) (1+gi+85) 2,
g182 1+g5 &u 8

and since Dn = Q#T with n = (—g1,—g2, l)det(IQ)_%7 reasoning as before we get that
1 1

By this fact and theorem 3.1.1, follows the result:

Corollary 3.1.2. Let x: U — R? be a frontal and Q a tangent moving basis of x with
the form of remark 3.1.3, then the matrices defined by equations (2.1a) and (2.1b) have

a decomposition in this form:
2 T
E F _ ay by 1 +81 8182 ay by
F G a, b, g182 1 +g% ay by,
L M a, b 1
_ u Du 8lu  8lv (1+g%+g%)7
M N ay b, 82u  82v

in which g1, g2, @ and b are smooth real functions defined in U. In particular, (a,b), -

(81,82)v = (a,D)v - (81,82)u-
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Figure 3 — The cuspidal cross-cap (x(u,v) = (u,v*,uv?)), an example of a proper frontal which is
not a front (FUJIMORI et al., 2008).

Example 3.1.2. The cuspidal cross-cap (see Figure 3) can be decomposed in this way:

1 0 Lo 1 0 Lo
Dx=|0 1 = QAT where Q=10 1 |,A=
3 3 0 2v 0 2v

voosuv v 3uy
T
E F\ (1 0)[1+¥ 3Juw? 10
F G)] \0o 2v %uv4 1+?Tu2v2 0 2v
(L M>_<1 0)(0 3v2> 1
o 3 3 /
M N 0 2v EV EM 1+V6+%M2V2
Theorem 3.1.2. Let I: U — M>34»(R) be a smooth map, with I decomposing in this
form:
) T
[ % bu\ (1+8g7 818 ay by
a, b, 8182 1‘1‘8% ay by
in which g1, g2, @ and b are smooth real functions defined in U, satisfying (a,b),-(g1,82)v =

(a,b),-(g1,82)u- Then, for each (ug,vg) € U and p € R?, there is a frontal x: V —R>, V C U,

V a neighborhood of (ug,vp) with first fundamental form I and second fundamental form
D(a.b)"D(g1,82)(1+ 8} +83) 7.

[\S1IO%)

Proof. Setting the matrices:

1 0

1 0
Q = O 1 ,AT = (Zu Cblv> 7e1 = <O> ,ez = <1>
gl & o

as (aab)u : (glagZ)v - (d,b)v : (glagZ)m then

0 0 0 0
QA= 0 0 (ZV> —lo o (Z“) =Q,Ale
v u

81u  82u 81y 82
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on the other hand, since A’ is an exact differential, ALe; = Al'e;. Thus, QATe; = QATe,

and adding this equality to the above one, we get:
(QAT),e0 =Q,ATe; + QAT e, = Q ATe; + QATe; = (QAT ) e,

Denoting by z; and z, the first and second columns of QAT respectively, fixing (ug,vo) €U
and p € R? the last equality is equivalent to 2y, = z1,, which is the compatibility condition

of the system:

X, =17 (3.7a)
X, =1 (3.7b)
x(uo,vo) = P, (3.7¢)

By theorem 2.3.1, this system of partial differential equations has a solution x: V — R3,
V C U, V a neighborhood of (ug,vg). Therefore Dx = QAT and by proposition 3.1.1, X :
V — R3 is a frontal. Now, the first fundamental form is Dx'Dx = AQT QAT =T as we
wished. Using that n= (—g1,—g2,1)(1+ g} —I—g%)_% and (2.4), the second fundamental
form is Allg = D(a,b)"D(g1,g2)(1 —I—g%—l—g%)_%. O

3.2 The new symbols and its relations with the Christoffel

symbols

In this section we study how the symbols 7T; (defined in 2.3¢ and 2.3d) are related
with the Christoffel symbols on the regular set (£(x)¢). In proposition 3.2.3, we see how the
decomposition in matrices (as in theorem 3.1.1) is tightly connected with the extendibility

of 7; to the singularities from its expression in terms of Christoffel symbols.

Proposition 3.2.1. Let x: U — R? be a frontal and Q a tangent moving basis of X, then
the matrices 771, 7> satisfy IQ’TIT +Tilq = Ig, and IQ’TZT +Tlo =1g,.

Proof. Using (2.3a), (2.3¢) we have Ig, = QI Q+QTQ, = Q] QI 'Io +101;,'Q"Q, =
Tilo —I—IQ’TlT. For Ig, is analogous. ]

Proposition 3.2.2. Let x: U — R? be a proper frontal and Q a tangent moving basis of
x, then the Christoffel symbols defined on U — A, 1(0) have the following decomposition:

[ = AT +A)A " and Th = (AT +A)A™!

Proof. T = (DxIDx)I"! = (Q,AT + QA )TQAT)(AT)'I,'A™!
= (AQ +AQQAT (AT I'A ! = (AQ] QI + A, QT QI A Since 77 = QL QI
and Ig = QT Q we have the result. For I'; it is analogous. Il
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Remark 3.2.1. With this decomposition of the Christoffel symbols, by the density of
non-singular points and smoothness of 7; on U, we get that 7] and T, can be expressed
by:

« For p € £(x)¢,

Ti=A"'TA-A,) and T =AH(THA—A).

« For p € £(x),

Ti= lim AYT\A—A,) and T = lim A" {(ThA—A,).

(uv)—p (uv)—p

The right hand sides of the above equations are restricted to the open set L(x)¢. As I
and I'; are expressed in terms of E, F, G and these by (3.1a) are expressed in terms of
Eq, Fo, Gg and A;j, then 7| and 7T, can be expressed just using Eq, Fq, Go and A;j on
X(x)¢. By density, these are completely determined by Eq, Fo, Gq and A;; on U.

Proposition 3.2.3. Let LIg,A: U — Mj.2(R) be arbitrary smooth maps, Ig symmetric
non-singular, Ag = det(A) and T the principal ideal generated by Ag in the ring C*(U,R).

If we have,

E F
| = = AIoAT 3.8
(£ ) o

with int(Ag "' (0)) = @ and if we define 'y by (2.1¢) and I'; by (2.1d) on U — A5 ' (0), then

the maps

A '(TIA-A)), (3.92)
A '(ThbA-A,), (3.9b)

defined on U — A, 1(0), have unique C* extensions to U if and only if,

A daAl) —AgleAl), +E —F, € To (3.10a)

Proof. For the necessary condition, let us set the skew-symmetric matrix

—(E,—F,
A1 = 0 ( )
E,—F, 0

and suppose that 77 is the C* extension of A_l(l"lA—Au), then

AT =T1A—A,
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on U — /151(0), hence using (2.1c¢) we have

1 1

Substituting I and I, in the last equality using (3.8) and multiplying by the right side

with 2IQAT, operating some terms we can get,
AQTIg —Ig)AT = AIgAT — A AT + A4 (3.11)

Observe that, the right side of (3.11) is skew-symmetric, then 2771g — I, as well and
since U — Ao ' (0) is dense, this is also true on U. Thus,

0 -7
2T — I, = ( 1)
T1 0

for any 1) € C*(U,R) and since the equality (3.11) is valid on U by density, then multi-
T
plying this by left side with (1 0) and by the right side with <0 1) , we obtain,

_ 0 —n) . r _ T T
—T A,Q = A(l) <T1 0 > A(Z) = A(])IQA(Z)L{ — A(I)MIQA(Z) — (EV — Fu)

and from it follows (3.10a). Setting the matrix:

0 —(FR-G,
Ay e ( )
F,— G, 0

and observing that I', = (%IH— %Az)l’l, proceeding similarly as before, it follows (3.10Db).
For the sufficient condition, if we have (3.10a), (3.10b), as U — 151(()) is dense then there
exist unique 7y, 7, € C*(U,R) such that,

A(I)VIQA{z) - A(I)IQA{Z)V +Fv - Gu — A«QTZ.

Defining the smooth maps on U,

1.{0 — 1 (0 -
Ti = 5(( Tl) +Ig,)I,' and T2 := 5(( sz) +lo)k ', (3.12)

1 O (9

we have that
AQTIg —Ig)AT = AIgAT — A IoAT + A4,

AQT:Ig —Ig)AT = AIgAT — A JJoAT + A,

which leads to 77 and 73 be equal to (3.9a) and (3.9b) respectively on U — A '(0). Thus,

by density and smoothness of 77 and 73, these are unique C*-extensions. O]
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Remark 3.2.2. By proposition 3.2.3, we always can define the matrices 77,7, by (3.12)
from a smooth map I:U — My (R) satisfying a decomposition as in (3.8) with the
conditions (3.10a) and (3.10b). These maps T, 77 automatically satisfy the relations of
proposition 3.2.1 as they also are the unique C* extension of (3.9a) and (3.9b). It is
natural the question if a decomposition as in (3.8) implies the conditions (3.10a), (3.10b)
and the answer is not. For example the matrix I associated to the first fundamental
form of (u,v) — (u,v?,uv) (the cross-cap) is singular at (0,0) and have a rank > 1 on
the entire R2, then you can obtain the Cholesky decomposition I = AAT (here I can be
chosen as ), where A : R? — Mo,»(R) is smooth and a lower triangular matrix. It is not
difficult to check that in this case the condition (3.10a) and (3.10a) are not satisfied for

all neighborhood of (0,0).

3.3 The relative curvatures

Definition 3.3.1. Let x: U — R? be a frontal and Q a tangent moving basis of x, we
define the Q-relative curvature K := det(lg) and the Q-relative mean curvature Hg :=

—%tr([.lgadj(AQ)), where tr() is the trace and adj() is the adjoint of a matrix.

Remark 3.3.1. Recall that Ag = (4;) =Dx" Q(Io) ! and pg = (4;;) = —HEI;" we have

that Ho = —3 (At — Aar iz + Aipzs — Aapiar) and Ko = %

We are going to use K and Hgq to characterize wave fronts in theorem 3.3.1 and
colorally 3.3.1, but first we need to prove some propositions. The reason why we call these

functions curvatures is in the following result.

Proposition 3.3.1. Let x: U — R3 be a proper frontal, Q a tangent moving basis of x,
Ko, Hg, K and H the Q-relative curvature, the Q-relative mean curvature, the Gaussian

curvature and the mean curvature of x respectively.Then,

o for p € X(x), Ko = AoK and Hg = AqH,

o forpe Z(X), Ko = lim AgK and Hg = lim AQH,

(u,v)=p (uv)=p

where the right sides are restricted to the open set £(x)¢ and Aq = det(Ag).

Proof. By theorem 3.1.1, I = AIgAT and II = Allg, then for p € Z(x)¢, using (2.1e), & =
7T ' = AT (AT)''A™ = pA ™! Thus, @A = p and Kq = det () = det (a)det (A) =
AoK. Also, we have @tAq = ptad j(A), then Ho = —3tr(padj(A)) = —iAgtr(@) = AqH. By
density of £(x)¢ and the smoothness of Ko and Hg we have the result for p € £(x). [
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Example 3.3.1. In the example 3.1.1 we saw that the cuspidal edge x = (u,v?,v?) with
normal vector field n = (0,—3v,2) (4—1—9\/2)_% had as tmb

1 0 1 0
Q: O 2 ’A:< )’
0 v
0 3v

1 0 . . 00
o= IS e R YRR ,
0 4+9v n-wpy, n-wy, 06

3 (0 0
po=-TGHL = —(4+97)" (0 ) ,

then

NSO

6

therefore Ko =0=K, Ho = 3(4+9v2)*% and H = 3v*1(4+9v2)*%. Observe that Ho # 0,
even on the singular set (v =0). We will see in theorem 3.3.1 that this is related to the

fact that x besides being frontal it is wavefront.

Proposition 3.3.2. Let x: U — R3 be a proper frontal and Q a tangent moving basis
of x. The zeros of Ko and Hg do not depend on the chosen tangent moving basis Q of x.

Also, the signs are preserved if we restrict Q to compatibles tangent moving bases.

Proof. Let Q = <W1 w2> and Q = <W1 W2> be tmb of x, A =Dx' Q(I5)™! and A =
DXTQ(IZ—;>_1. Since Q = QC, where C is a non-singular matrix-valued map, then A =
DXTQC(CTQTQC)_l = DXTS_Z(IE)_1 (CT)~'=A(CT)~". On the other hand, p = —II5I;' =
—pn’ QI

= -Dn"QC(CTQ QC) ! = ML N(CT) "' = f1(CT) . Now, Kg = det(ft) = det(t)det(C) =
det(C)Kq and Hg = —3tr(ftad j(A)) = —3tr(uCTad j(CT)ad j(A))

= —3tr(pad j(A))det(C) = det(C)Hg, then Ko = 0 if and only if, Ko =0 and Hg = 0 if and
only if, Hy = 0. For the last assertion, observe that, if Q and Q are compatibles, as Q@ = QC,
then wi x wa = det(C)W; x W and thus det(C) = (W X Wy - W| X W )|W; X Wa| 2 > 0, there-

fore Ko and Hg have the same sign of K5 and Hg. ]

Proposition 3.3.3. Let x: U — R? be a proper frontal, Q; and Q, tangent moving bases
of x. Then, Ko, = det(C)Kq, and Hq, = £det(C)Hgq, (+ if Qi and Q, are compatibles,
— if these are not compatible), where C is the non-singular matrix-valued map satisfying
Q =Q,C.

Proof. Reasoning like in the proof of the above proposition and observing that the normal
vector fields n; and np induced by Q; and Q, respectively are equal if these tangent moving
bases are compatible and opposite if they are not, from these results that pg = :|:[J,QzCT
(4 if Q; and Q, are compatibles, — if these are not compatible) and we can get the
result. ]
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Remark 3.3.2. Propositions 3.3.2 and 3.3.3 are valid also for non-proper frontals, but
just if we consider tangent moving bases generating the same vector space at every point.
It means, each pair Q, Q, of tangent moving bases of x is related by Q| = Q,C, where

C is a non-singular matrix-valued map.

If we have a frontal x: U — R? with a tangent moving basis Q and we compose x
with a diffeomorphism h:V — U, this composition results a frontal (D(xoh) = (Qoh)(Ao
h)” Dh) with Qoh being a tangent moving basis of xoh. Similarly, if we compose x with
a diffeomorphism k: W — Z, x(U) C W, where W, Z are open sets of R?, this composition
results a frontal (D(kox) = Dk(x)QAT) with Dk(x)Q being a tangent moving basis of
xoh. Also, it is not difficult to see that if we have a front x: U — R?, then xoh and ¢ ox

are fronts when @ : R? — R? is an isometry of R? and h:V — U is a diffeomorphism.

Proposition 3.3.4. Let x: U — R? be a proper frontal, h: V — U a diffeomorphism,
¢ : R’ — R? an isometry of R?, X := ¢ oxoh the composite frontal, Q and Q tangent
moving bases of x and X respectively. If Ko, Hg are the relative curvatures for x and Kg,

Hg are the relative curvatures for X, then

o Kqo(h(x,y)) =0 if and only if K5 (x,y) =0.

« Hq(h(x,y)) =0 if and only if Hg(x,y) =0.

Proof. Tt is sufficient to prove the cases in which @ and h are the identities respectively. If
¢ is the identity, X = xoh, thus for the first item, as Q := Q(h) is a tangent moving basis
of X(x,y), by proposition (3.3.2) Kg(x,y) =0 if and only if K5 (x,y) =0, but observe that
fi=noh, then g = —IIZ1-" = —DA’ QI = —Dh" Dn” (h)QI." = —Dh T (h)I;' (h) =
Dh” pi(h), therefore Ky (x,y) = det(Dh)Kq(h(x,y)) which proves the item. On the other
hand A = D)'(TIAZ(IQ)*1 = Dh” A(h), thus

Ay — —%tr([ftad J(A)) = —%tr(ad J(AVL) = —det(Dh)~tr((h)ad j(A(h))) = det(Dh)Ho(h)

\S]

and therefore Ho(h(x,y)) = 0 if and only if Hg(x,y) = 0. By proposition 3.3.2 it follows
the second item. In the last case h is the identity, X = ¢ ox. As @ is an isometry, then we
can write it in this form ¢ (p) = Op+a, where O € M3,3(R) is an orthogonal matrix and
a € R3 is a fixed vector. Thus, Q := OQ is a tangent moving basis of X and fi = +O0n (+ if
det(0) =1 and — if det(0) = —1), then Il = +(—Q"070Dn) = £1Ig, Iy = Q' 070Q =
Io and A = A. Therefore, fL = £p which implies Ko = K¢ and Ho = +Hg. By proposition
3.3.2 it follows both items. ]

Proposition 3.3.5. Let x: U — R3 be a frontal, Q a tmb of x, h: V — U a diffeomorphism
and ¢(p) = Op +a, where O € M3,3(R) is an orthogonal matrix and a € R? is a fixed
vector. Denoting x; =xoh, Q; =Qoh (tmb of x;), X, = ¢ ox and Q; = OQ (tmb of x;),
then
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. KSI)] =det(h)Kqoh and Hgl21 =det(h)Hgoh,

« K =Kgqand H3 =+Hg (+ if det(0) =1 and — if det(0) = —1),
where Kglzl, Hsl21 and Kéz, Hé2 are the relative curvatures of x; and x, respectively.

Proof. It is contained in the proof of proposition 3.3.4. 0

Proposition 3.3.6. Let x: U — R> be a frontal and Q a tangent moving basis of X, then

(AZ) 513)
U

has a 2 x 2 minor different of zero, for each p € £(x).

x is a front if and only if|

Proof. Let n be the normal vector field along x. By definition of front and using that
Dn=Qu’ (see equation (2.6)), x is a front if and only if,

o () ) ) ()

which is equivalent to have a 2 x 2 minor of the matrix (3.13) different of zero. O

The propositions 3.3.2 and 3.3.4 now allow us to explore in which point any of Kq
and Hg turns zero making change of coordinates, applying isometries of R? and switching
tangent moving bases. In the following theorem the necessary condition of the first item
was proved in ((MARTINS; SAJI; TERAMOTO, 2019),Proposition 2.4) considering a C*
extension of AH for fronts with singular set having empty interior. We are going to prove
also the reciprocal and the case in which the singularity has rank 0, using the relative

curvatures.

Theorem 3.3.1. Let x: U — R? be a frontal, Q a tangent moving basis of x and p € X(x).
Then,

e x:U — R3is a front on a neighborhood V of p with rank(Dx(p)) = 1 if and only if
Hg(p) # 0.

e x:U — R?is a front on a neighborhood V of p with rank(Dx(p)) = 0 if and only if
Hg(p) =0 and Kg(p) 75 0.

Proof. For the first item, we can apply a change of coordinates h and an isometry ¢ of R
(making the line Dx(p)(R?) parallel to (1,0,0)) such that X = @ oxoh = (u,b(u,v),c(u,v)),
h(0,0) = p, b,(0,0) = b,(0,0) = ¢,(0,0) = 0 and having a tangent moving basis Q in the
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form of remark 3.1.3. Thus, DX = QA" A" = D(u,b), g7 = D(—gldet(IQ)_% , —gzdet(IQ)_%)
and (u,b), - (g1,82)y = (u,b)y - (g1,82)u (by corollary 3.1.2). Hence, ¢, = g + g2b, and

g1v+bugay = bygo, which implies that g;(0,0) = g1,(0,0) = 0. Since X is wave front locally

at (0,0), by proposition 3.3.6 the matrix

<D(u,b)>
I-_l'T

has a 2 x 2 minor different from zero at (0,0) and therefore (—gza’et(IQ)’%)v(O,O) #0. A
simple computation using the definition leads to Hg(0,0) = —%(—gzdet(l— )_%)V(O,O) # 0,
hence Hg(p) # 0. Now, if we suppose that Ho(p) # 0, as Ho(p) = —%(lzz,un — A1 lin +
M1t — Aapia1)(P), then (Aopar — Apopiir)(p) # 0 or (A2 — Aaipi2)(p) # O, which are
two 2 x 2 minors of (3.13) and also A(p) # 0. Thus, rank(Dx(p)) = rank(A(p)) = 1 and
there exists a neighborhood V of p, where any of these two 2 x 2 minors is different of
zero, therefore by proposition 3.3.6 x is a front on V. For the second item, if x is a front
and rank(Dx(p)) = rank(A(p)) = 0, then A(p) =0, Ho(p) = 0 and by proposition 3.3.6
Ko(p) =det(u”) #0. Now, if Ko(p) # 0 and Hq(p) =0, there exist a neighborhood V of p
where Kq # 0 and by proposition 3.3.6 X is a front on V. By the first item, rank(Dx(p)) # 1
because Hg(p) = 0, then rank(Dx(p)) = 0. O

From theorem 3.3.1 follows immediately the following corollary.

Corollary 3.3.1. Let x: U — R? be a frontal, Q a tmb of x, this is a front if and only if,
(KQ,HQ) 75 0 on Z(X).

Example 3.3.2. Let x: R> — R? defined by x(u,v) := (u?,v?,v3 +u?), this is a frontal
with rank(Dx(p)) =0 at p = (0,0) (Figure 4). We have the decomposition:

Figure 4 — A front with rank(Dx(0,0)) = 0.

2 0 0 2 0 0
Dx=10 2 ((b; )zQAT,WhereQ: 0o 2 7A:<u >,

y
3u 3v 3u 3v
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being Q a tangent moving basis of x, then we have n = (—6u, —6v, 4)8_%, wi, = (0,0,3),

wi, = (0,0,0), wp, = (0,0,0) and wy, = (0,0,3). Thus
_1

IQ:QTQ: 4492 9uv2 g = n-wp, newp\ 122 ()1

uv 449 n-wy, n-wy, 0 1264

44942 —Ouy
— M1 = —12e73
Heo Q0 ( —Ouv 4—1—9v2>

where € = 36u® +36v2 + 16. Also, Kq(u,v) = 144(36u> +36v> +16)~2 # 0 and Hq(0,0) =
—%(lzz,un — M2 + A o2 — Ao ptz1)(0,0) = 0, then by corollary 3.3.1, x is a front.

Example 3.3.3. Let x: R? — R? defined by x(u,v) := (ue,v?, (“—22 +u)v?), this is a frontal
with rank(Dx(p)) =0 at p=(—1,0) (Figure 5). We have the decomposition:

0.4

Figure 5 — A frontal with rank(Dx(—1,0)) = 0.

< 0 1+u O
Dx= |0 2 ) — QAT
v (“—22+u 3v 0 v
¢ 0 <1+u O)
where Q=1 0 2 A= ,
v (”72+u)3v 0 v

being Q a tangent moving basis of x, then we have n = (—2\/3,—6”(“72 + u)3v, 2e")5_%,
wi, = (€4,0,0), wy, = (0,0,3v?), wa, = (0,0, (14 1)3v) and wy, = (0,0,3("72 +u)). Thus

o2 410 3(% +u)vt —2y3et 6etv? 1
Io = 2 4 2 5 5 | o= 2 02
3(%5 +u)® 44+9(% +u)v 6(1+u)e'v 6e"(%5 +u)
where § = 4% +62”(9(§ +u)?v? +4). Also, Ko(—1,0) =0 and Hg(—1,0) = 0, then by
corollary 3.3.1, x is not a front at p = (—1,0).
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3.4 Representation formulas of Wavefronts

In this section we obtain formulas to construct all the local parametrizations of
wavefronts on a neighborhood of singularities of rank 0 and 1. These formulas are in terms
of some functions as parameters and they can be freely chosen. They are very useful to

give examples and counterexamples with desired characteristics.

Proposition 3.4.1 (Formula for rank 1). Let x: (U,0) — (R?,0) be a germ of a wavefront,
Q a tangent moving basis of x and 0 € X(x) with rank(Dx(0)) = 1. Then, up to an isometry
X is Z-equivalent to y(w,z) = (w, [5 Ao (W,2)dt + fi(w), [g tAg(w,1)dt + fo(w)) which has as

tangent moving basis
0 1 0
ﬂ — 1 ’AA =
Yw o) (O )“Q)

4

where Ag(w,z), fi(w), fa(w) are smooth functions with Ay (0) = 0. In particular, x is
/-equivalent to (w, [ Ag(w,1)dt, [5tAs(w,t)dt).

Proof. We can apply a change of coordinates hy and an isometry ¢ of R? (making the line
Dx(0)(R?) € Q(0)(R?) parallel to (1,0,0) and the plane Q(0)(R?) coincide with R? x 0)
such that X = ¢ oxohy = (u,b(u,v),c(u,v)), b,(0,0) = b,(0,0) = 0 and having a tangent

moving basis Q in the form:

1 0
Q=10 1
81 &2

1

with g1(0) = g2(0) =0. Thus, DX = OA" A" =D(u,b), a7 :D(—gldet(IQ)*%, —gadet(I5)72).
Since % is wave front locally at (0,0), by theorem 3.3.1 Hg(0,0) = —%(—gzdet(lg)_%)v(0,0) +
0, hence gy, # 0. Then, by the local form of the submersion, there exist a diffeomor-
phism with the form hy(w,z) = (w,1(w,z)) such that g; ohy = z, therefore setting y(w,z) :=
xohy(w,z) = (w,b(w,z2),&(w,2)), Q:= Q(hy) and g1 = g1 ohy we have
1 0
Dy = Q(hy)A” (hy)Dhy = Q(hy)D(u,b)(hy)Dhy = | 0 1 | D(w,b)
81

<

and thus ¢, = zb,, Ag = b,. Integrating we get ¢ = [FtAg(w,1)dt +E(w,0), b= [§ Ag(w,t)dt +
b(w,0). Observe that the tangent moving basis Q and Ag given in the statement of the
proposition give a decomposition of this last y in the proof, Ag = b, = Ay and from this
follows the result. O

Remark 3.4.1. The formula in proposition 3.4.1 can be rewritten in the form

(w,b(u,v), /O thy(uw,1)dt + fr(u),
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where b is a smooth function and b, = AQ.

Example 3.4.1 (Arbitrary singular set). Let C C R? be a closed set, by theorem (2.29,(LEE,
2013)) there exist a smooth nonnegative function Aq : R> — R such that A, ' (0) = C, then
y = (W, 5 Aa(w,t)dt, [§tAq(w,1)dt) is a wavefront with singular set X(y) = C.

Example 3.4.2 (Wavefronts with vanishing Gaussian curvature). Because Kq(p) # 0

on singularities p of rank 0 and ( li§n K| = % = oo, then a wavefront with vanishing
u,v)—p
Gaussian curvature x only has singularities of rank 1. Without loss of generality, let us

suppose (0,0) is a singularity, thus up to an isometry this is Z-equivalent to the formula
in remark 3.4.1 at (0,0). Then taking the tangent moving basis in proposition 3.4.1, since
LoNg —MigMag =0, a simple computation leads to —vbyy, + [i thyu(u,t)dt + fauu(u) = 0.
Therefore fa,,(#) =0 and taking derivative in v we get by, = 0. We conclude that x, up

to an isometry is Z-equivalent to
v
(u,ury(v) +ra(v), /0 tur (t) +rh(t)dt 4+ ucy + c3),

where r,ry are smooth functions with ré(O) =0 and ¢y, ¢ constants. In particular x is a
ruled surface locally at (0,0) with a directrix curve (0,r(v),r2(v)+c¢2) having a singularity
at v=20.

Proposition 3.4.2. Let x: (U,0) — (R3,0) be a germ of a wavefront,  a tangent moving
basis of x and 0 € £(x) with Kq(0) # 0. Then, up to an isometry x is Z-equivalent to
y = (a,b, [y tiay(t1,v) + vb,(t1,v)dt; + [y t2b,(0,12)dt2), where a, b are smooth functions
and a, = by,. In particular, y = (a, [y av(t,v)dt + f1(v), [y tau(t,v)+va,(t,v)dt + [yt f1,(t)dt),

where f(v) is a smooth function.

Proof. Applying an isometry we always can choose a tangent moving basis of x = (a,b,¢)

in the form

1 0
Q=10 1 |,AL=D(ab).
81 &2

We have that Kq(0) # 0 if and only if det(Ilg(0)) # 0 and by corollary 3.1.2 this is
equivalent to have det(D(g1,g82) # 0), therefore by the Inverse function theorem there
exist a diffeomorphism h(w,z) such that (g1,g2) oh = (w,z). Setting y :=xoh = (4,b,¢) we

have

Dy = Q(h)AL (h)Dh =

S =

N o= O
>
—~
S
SO
N—

thus by corollary 3.1.2 (4,b),, - (w,2), = (4,b), - (w,z)w, it means b, = d,. Also, &, =
wa,, +zb,, and & = wa, +zb,. Then, ¢ = [ 114, (t1,2) +2d(t1,2)dt; 4+ ¢(0,z), but é(0,z) =
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f(ftzlgz(o,tz)dtz, thus we get the first part. For the last part just define fi(z) := b(0,z),
observe that b= [y’ d,(t,z)dt + fi(z) and substitute these in the last formula. O

Corollary 3.4.1 (Formula for rank 0). Let x: (U,0) — (R>,0) be a germ of a wavefront,
Q a tangent moving basis of x and 0 € X(x) with rank(Dx(0)) = 0. Then, up to an isom-
etry X is Z-equivalent to y = (a,b, [y tia,(t1,v) + vbyu(t1,v)dt) + [y t2b,(0,12)dt,), where a,
b are smooth functions, a, = b, and D(a,b)(0) = 0. In particular, y = (a, [y a,(t,v)dt +
f1(v), Jo tau(t,v) +vay(t,v)dt + [y tf1,(t)dt), where fi(v) is a smooth function with a,(0) =
ay(0) = f1,(0) =0.

Proof. By theorem 3.3.1 Kq(0) # 0 and applying the proposition 3.4.2 we get the result.
O]

Corollary 3.4.2 (Local form for general rank). Let x : (U,0) — (R3,0) be a germ of
a wavefront, Q a tangent moving basis of x and 0 € X(x). Then, x is &/-equivalent to
y = (a,b, [y tiay(t1,v) + vb,(t1,v)dt) + [y 12b,(0,12)dt2), where a, b are smooth functions

and a, = b,.

Proof. The case rank(Dx(0)) = 0 is the last colollary. If rank(Dx(0)) =1 by proposi-
tion 3.4.1 x is &/-equivalent to (w, [5 As(w,1)dt, [§1Ag(W,1)dt) which is &7-equivalent to
(w, 5 Ag(w,2)dt, [§tAs(w,t)dt+w?). By a simple computation for this last wavefront Ka (0) #
0 and applying proposition 3.4.2 we get the result. [
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CHAPTER

A

THE FUNDAMENTAL THEOREM

In classical differential geometry, the fundamental theorem of regular surfaces
(see(CARMO, 1976; STOKER, 1969)) states that if we have E,F,G,L,M,N smooth func-
tions defined in an open set U C R?, with E >0, G > 0, EG—F? > 0 and the given functions
satisfy formally the Gauss and Mainardi-Codazzi equations, then for each p € U there ex-
ist a neighborhood V C U of p and a diffeomorphism x: V — x(V) C R? such that the
regular surface x(U) has E,F,G and L,M,N as coefficients of the first and second funda-
mental forms, respectively. Furthermore, if U is connected and if X: U — %(U) C R? is
another diffeomorphism satisfying the same conditions, then there exist a translation T
and a proper linear orthogonal transformation p in R3 such that ¥ =Topox.

Gauss equation:
2 2 2 2 2 2 2 >
I, — T, + Tl + T, — T IS, - T, = —EK

Mainardi-Codazzi equations:

L,—M, =LT},+M(},-T},)— NI,
M, —N, = LT}, +M(T3,—T},) —NI3,

where K is the Gaussian Curvature and Fljk are the Christoffel symbols.

This theorem realizes the first and the second fundamental forms compatible as
a regular surface in the euclidean 3-space. In (KOSSOWSKI, 2004) M. Kossowski gave
sufficient conditions for a singular first fundamental form (metrics admitting only non-
degenerate singularities) to be realized as a wave front. Saji, Umehara and Yamada in
(SAJI; UMEHARA; YAMADA, 2011) also consider this question of the realization of
frontals and they give a theorem in terms of “coherent tangent bundles” a new concept

they introduced. They show that a coherent tangent bundle induces compatible first
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and second fundamental forms. In addition in (HASEGAWA et al., 2015), M. Hasegawa,
A. Honda, K. Naokawa, K. Saji, M. Umehara and K. Yamada proved that a Kossowski
metrics induces uniquely a coherent tangent bundle. However the set of metrics associated
to frontals is bigger than Kossowski metrics and it was not shown what properties satisfy
explicitly these metrics and how they induce a coherent tangent bundle. In theorem 3.1.1
we describe what are the properties that every metric of a frontal satisfies, which allow us
to realize all the proper frontals. In this chapter, we present our main result theorem 4.4.1
in terms of the classical fundamental forms satisfying the properties of decomposition
in their associated matrices. This result generalizes the fundamental theorem of regular
surfaces mentioned before including now all the proper frontals, with the possibility to

distinguish wave fronts from its fundamental forms.

4.1 The Relative Compatibility Equations

There are two groups of equations, which are present in all frontals and guarantee
the integrability conditions for the system of partial differential equations that we consider
in theorem 4.4.1. In this section we show one group of these and we prove that they are
equivalent essentially to 3 equations that curiously seem very similar to the Gauss equation

and Mainardi-Codazzi equations. The other group is presented in the next section.

Let Q = <w1 W2> : U — M3x2(R) be a moving base and n = Y2, We have

[[Wixwal|
that wi,w2,n is a base of R?, then there are real functions (p;;) and (g;;) defined in U,

i,j€{1,2,3} such that:

Wiy = p11W1 + p1aW2 + pi3n
W2, = p21W1 + p2oW2 + pa3n

n, = p31Wi + p32W2 + p33n
Wiy = q11W1 +412W2 +¢q131n
W2y = @21W1 +¢220W2 + G230

n, = g31Wi +¢g32w2 +g33n

If we set the matrix W := (wl W) n) € GL(3) whose columns are wy, wy and n. Also,

denoting by P := (p;;) and Q := (g;;), we have:

W, = Wp? (4.3a)

W, =WQ? (4.3b)
which is equivalent to:

W' =pw? (4.4a)

WI' = Qw’ (4.4b)
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then, we have that P = W (W)=l = W/ WW- (W)~ = WIW(WTW)~! and Q =
W (W) = WIWW - (W) ! = WIW(WTW) ! Considering W = (@ n) as a

block matrix, we have:

P=WIW(W'w)! = (?;) (@ ) ((i{) (@ o))

—1 —1
(el ln) [@"Q Q'n)  [(QlQ Qln) (I, 0
“\n’Q nln)\n"Q n'n)  \nlQ 0 0 1

(el Qln) (1! 0) [olo1)' Qln
~\nfQ 0 0 1) \nfQr;' o0

from (2.6), we have nl = [,l(Tl)QT and n! = [J,(TZ)QT. Then,

p_ [0l Q) _ Ti Qmn\ (7 Qn
S \nfor;' o ) peler' o - ply, 0

Finally, using (2.4) and by analogy with the same procedure for @, we get:

Tlll 7—121 Lo

P=|T7) T2 M (4.5)
Hir M2 O
Th T3 Mg

Q=|7, T3 Na (4.6)
Mo1 Mo O

now, as WI = W  then P,WT + PW! = Q, W7 + QW Using (4.4a) and (4.4b) in the
last equality, P,W? + PQW” = Q, W' + QPW7, then (P, — Q,+PQ — QP)W’ =0 and
finally we get:

IPV_QM+[IP7Q] =0 (47)

which is the compatibility condition of the system (4.4) by corollary 2.3.1.

Using (4.5) and (4.6) to compute each component (i,j) of (4.7) we obtain the
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following equations that we call the Q-relative compatibility equations (RCE):

(L) (T = (Th)u =TT — Th T+ TAT — T T + Mo — i1 Lo (4.8a)
(1,2) (T — (T3 = TOTA + T3 T — Tii T — T T + thoMia — Lo (4.8b)
2,1) (B = (Th)u = AT + T — T Tis — T Ty + tniNa — iMoo (4.8¢)
(2,2) (Tl — (T =TT — T T + T(iToh — TATR) + thiaNo — Moo (4.8d)
(1,3)  ti1y— pare = T 21 + Toy 22 — Tiaktan — Tob (4.8¢)
(2,3)  Mi2v— poow = Tt + Toi 22 — Tzl — To (4.8f)
(3,1) (La)y— (Mi@)u = LaTis +MaTis — MiaTii — NaTii (4.8g)
(3,2) (M), — (No)u = LaToh +MaaTys — Mio Ty — NaTs (4.8h)
(3,3) Lapor + Mol — Miopir — Noptiz =0 (4.81)
Using that the Q-relative curvature Kq = det (1) = ‘th((lll S)) = Lﬂ]gs‘:gf_‘%gm and p = —M5I;'

in (4.8b) we get:
(T3 — (TA)v+ T T + T Tot — T s — T Tis = —EaKa. (4.9)

4.2 The Singular Compatibility Equations

In the following group of equations that we present here, the functions (4;;) are

involved. Let x: U — R? be a frontal and Q = (wl W2> a tangent moving base of x.
Then, Dx = QAT and we have that,

X, = A1 W1 + A1awW)

Xy = A21W1 + AW
where A = (4;;). Setting,

Ai Az O
A= A 0], X:= (DX n),
0 0 1

we have X = W[\T, where W = (Q n). Denoting f,j,f( the canonical base of R3, the

compatibility condition x,, = X,, is equivalent to
X.j = Xud, (4.11)
using (4.3) with (4.11) we have

WPTA'j+ WA, j=WA'j+ WA, j= WA T+ WA T=WQ A i+ WA,
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then (4.11) is equivalent to
PTA"j+A = Q"ATi+ AL (4.12)

Computing each component of 4.12, we get the following equations that we call singular

compatibility equations (SCE):

My — A1, = 7—1112,21 + 75112422 — 7-112/111 — 7512/112 (4.13a)
Moy — Aoou = T A1 + T Az — Ta M1 — TaAia (4.13b)
MiMig+ AaNg = AL + AnMog (4.13¢)

4.3 Equivalences between equations

In this section we prove that (RCE) are equivalent to the equations (4.9), (4.8g),

(4.8h) which have a structure similar to the Gauss equation and Mainardi-Codazzi equa-

() ()

we can rewrite RCE and SCE with the following very useful compact notation.
Equations (4.13a) and (4.13b):

tions. If we set the matrices:

el (ATI+A,) =el (AT +A). (4.14)
Equation (4.13c):
Al = AplLy, (4.15)

that is, Allg is symmetric.
Equations (4.8a), (4.8b), (4.8¢c) and (4.8d):

Tiv—Tout+ TiTo—ToTi + 1 el p — M3l = 0. (4.16)

Equations (4.8¢) and (4.8f):

& (UTi+up,) =e (U2 +1,). (4.17)
Equations (4.8g) and (4.8h):
e; (G T, —To,) = ef (IGT, —g,). (4.18)
Equation (4.8i):
N(1)H§22) = ﬂ(z)llg)» (4.19)

that is, ullg is symmetric.
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Proposition 4.3.1. Let Ig,Ilg, 71,77 : U — My 2(R) be arbitrary smooth maps with
Io symmetric positive definite. If we set g = —IIgI_l, Ko = det(u) and we have that

o7 + Tilg = I, (4.20)
107, +Tolg =1q,, (4.21)
denoting
E F L M
I — o Fo g — Q 1Q ’
Fo Gg Mqa Ng
then:

(i) The equation (4.16) is satisfied if and only if, the equation (4.9) is satisfied.

(ii) The equation (4.18) is satisfied if and only if, the equation (4.17) is satisfied.

Proof.

e (i) The equation (4.16) is satisfied if and only if, the resulting equation of multiplying
this by the right side with Iq is satisfied

Tida — Toulo + Ti Tala — ToTilg — DO I + m12mS)” = o. (4.22)

Observe that —Ilg)llg)T +II£22)IIS)T is skew-symmetric. Let us set,

A =T lo—Tulo+TTiTlo— T T, (4.23)
0 —b
B— (b . ) S | 1501 (A | 1 | O (4.24)
we have that
AT = 1T+ 10T — 10T T + 10T T3 (4.25)

On the other hand, deriving (4.20) by v, (4.21) by u and subtracting the results we
get:

1075, — 1o T — Tilow + Talou = Tilo — Taudo — 1. T3 +1o, 7. (4.26)

Substituting in (4.26), Ig, and Ig, by (4.20) and (4.21), we obtain canceling similar
terms that, the right side of (4.23) is equal to the right side of (4.25). Then, A is

skew-symmetric having the form
A= (0 _“> ,
a 0
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hence (4.22) is satisfied if and only if, a4+ b=0 as also, (4.16) can be expressed in

( 0 _“_b> I;' =0 (4.27)

this form,

a+b 0

Computing the component (1,2) of (4.27) we have Eq(—a — b)det(Iq)~! =0, then
a+b =0 if and only if, the component (1,2) of (4.16) is satisfied, which is the
equation (4.8b) that is simplified to (4.9).

o (ii) Using that g = —II515" we substitute g, g, and g, in (4.17), we get ezT(—IlgTZIEZIﬂ —
5, I, -5 (1Y) = el (-5 7 — TG 15! — 1L (I1),) that is satisfied if and
only if, the resulting equation of multiply this by the right side with Iq is satisfied,
in which we can later substitute (Iél)ulg = —Iéllgu, (IEZI)VIQ = —IélIQV, factorize
similar terms in both sides and get el (515" (In, — Tilo) —1I5,) = el (A1, (I, —
Tlo) — Ilgv). Since Ig, — Tilg = IQ’TIT and I, — ThIq = IQ’ET by hypothesis, sub-
tituting these, the equation becomes in (4.18).

O

Remark 4.3.1. Since that equation (4.19) is always satisfied by definition of p and as
every frontal satisfy (4.20) and (4.21) (proposition 3.2.1), by this last proposition (RCE)
are equivalent to (4.9), (4.8g) and (4.8h).

4.4 The Fundamental Theorem

Theorem 4.4.1. Let E,F,G,L,M,N smooth functions defined in an open set U C R?,
with £>0,G>0and EG—F 2 > (. Assume that the given functions have the following

decomposition:
T
E F A A Eqo F Ap A
_ (A A2 Q ra 11 A2 (4.28a)
F G M1 An ) \Fa Gao) \Aa1 Axn
L M A A Lo M
_ (A A2 Q 1Q (4.28b)
M N M1 A ) \Maa No
in which all the components are smooth real functions defined in U, Eqg > 0, Ggo > 0,
EqGg — Fs% >0, A, 1(0) has empty interior and

Eq Fo T Eqo Fo T
At <FQ GQ> A=A (FQ GQ> A +E —Fe%a (4.29a)

Eq Fo T Eqo [Fo T
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where A = (4;j), Aq = det(A) and Tq is the principal ideal generated by Aq in the
ring C*(U,R). Assume also that E,F,G,L,M,N formally satisfy the Gauss and Mainardi-
Codazzi equations for all (u,v) € U — Ag"'(0). Then,

 (Existence) for each (ug,vg) € U there exists a neighborhood V C U of (ug,vp) and
a frontal x: V — x(V) C R? with a tangent moving base Q such that Dx = QA’,

I — Eq Fo g = Lo Mg
Fo Gql’ Mo Ng

and the frontal x has E,F,G and L,M,N as coefficients of the first and second

fundamental forms, respectively.
 (Rigidity) If U is connected and if
x:U—>R and Q:U - R?

are another frontal and a tangent moving base satisfying the same conditions, then
there exist a translation T and a proper linear orthogonal transformation p in R3
such that Q = pQ and x=Topox.

In order to prove theorem 4.4.1, we shall divide the proof in two parts, existence

and rigidity separately. We are also going to use the following lemma.
Lemma 4.4.1. If we have:

MA—A,=AT (4.30a)
LA— A, =AT; (4.30b)

in which A, 77,75 : U — Myxn(R) and T'1,T5 : U —det ' (A)(0) — Mxn(R) are smooth
maps with int(det ' (A)(0)) = 0. Then,

[y, — o+ [[1,T2] = 0 is equivalent to Ty, — Tz, +[T1,7T2] = 0 in U. Futhermore,
if

I=AloA" (4.31)

where I,Ig are smooth maps with det(Iq) # 0. Then,

4

. if‘lT +TI'I =1, if and only if, iQ7_'1T +Tlo =1, on U.

o 105 + Dol =1, if and only if, 1o 7 + Talg =g, on U.
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Proof. For the first part, deriving (4.30a) in v, (4.30b) in u we get:
AT +AT, =T, A+T1A, — A, (4.32a)
AT+ AT =Ty A+ oA, — Ay, (4.32b)
Subtracting (4.32b) from (4.32a)
ATy = Tou) + AT = ATo = (T, —T2) A+ T1A, — A, (4.33a)
Substituting (4.30a) and (4.30b) in (4.33a) on right side

1_\(7_—1\1 - 7-214) +1_\v7_'1 -

>

WTo = (T, —To ) A+T1IHA -0 A —T1AT;
+IAT:

Then,

ATy = T2) + (TIA = A) T2 + (A, —ToA)Ti = (U1, — Ty )A + [T, T2]A
Using (4.30a) and (4.30b) on the left side

ATy = To) = AT+ ATi T2 = (U1, — Tou) A+ [T, o)A
Therefore, we have
A(Tiy—Tou+[T1,T3]) = (T1y = Doy + [T, T)A

As U —det™'(A)(0) is dense in U and A is invertible there, we have the result.

For the last part, the proof of the second item is analogous to the first one, so we

are going to prove just the first. For p € U —det_l([\) (0), by (4.30a) we have,
- — — - - - T — - - -
o7 +Tila =To(A'TT —A))(A") '+ A7 (TIA- AT (4.38)
1

—TATT (AT '+ A 1‘"[\1Q oA (A A 'Adq

On the other hand, 'A
Also, from (4.31) Ig

(4.38) we get:

]In, then AZ(_T)_I = —1_\T((1_\T)_1)u7 ]\_11_\14 = —(1_\_1)141_\'
z 2T

A A=
Al =A" I, Al = I(A" )~ substituting the last four equalities in

o7 +Tilo=A""T0] (AT) '+ A ' IA) ' —IpA] (A7) = A 'A g
A A +ODA) !+ 1A (AN ™), + (A ALy
A A DA T AT TIAD) Y+ (AT IAN !
By hypothesis I’} + 11 =1,, then
077 +Tilo =A LA+ A (AN e+ A HJIANH!
= (A TA) =T

By density of U —det~'(A)(0), IoT;" + Tila = Io, holds on U. The converse is obtained

in the same way. [
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Proof. Theorem 4.4.1(Existence). By proposition 3.2.3 there exist 77,72 : U — Max2(R)
smooth maps such that on (7(61(0))C,
Ti=A"'T1A-A,), (4.39a)
T =A{(TA—A,). (4.39b)
Let us construct T; and T3 as the matrices P and Q in (4.5) and (4.6) respectively, using

(2.3¢), (2.3a) and (2.3b). By (4.39a), (4.39b) and since @A = g on (A5 '(0))¢ (caused by
(4.28a) and (4.28b)) we have for all (u,v) € (A5'(0))¢,

TIA—A,=AT; and bA— A, =AT;
where,

1E. (F,—3E) L\ (E

)

(4.41)

L |
I
ﬂ
B-—A
=
Bl\)
o X M~
Il
DO —
S
DO —
Q
<
<
!

(4.42)

|

~

|

<

o

o
oS M m o QM

© Q™
o

A=|21 2n O

Let (ug,vo) €U, q € R? be fixed points and since EqGgq — Fé > 0 we can find zy, z,, z3 fixed
vectors of R? linearly independent and positively oriented such that z; -z; = Eq(ug,vo),
z) -2y = Fo(up,vo), 22 -2 = Go(up,vo), z3-23 = 1 and z3-z; =0 for i = 1,2. Consider the

system of partial differential equations,

wW! =W’ (4.43a)
W =T wT (4.43b)
W(uo,\)()) = <Z1 Y ) Z3> (4.430)

It is known in classical differential geometry that, the Gauss and Mainardi-Codazzi equa-
tions are equivalent to I'1, — Iy, + [[1,T2] = 0, then as this is satisfied, by lemma 4.4.1
Tiv—Tou+ ['7_~,'7_-2] =0 in U which is the compatibility condition of the above system of
equations. By corollary 2.3.1, this system has a unique solution W : V — GL(3), where V
is a neighborhood of (ug,vo). Since det(W(up,vg)) > 0, restricting V if it is necessary, we
can suppose that det(W) >0 on V. Setting the matrices,

E F O Eo Fo O
I:=|F G 0|.Jlo:=|Fy Go O
0 0 1 0 0 1
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Y :=W'w (4.44)

We want to prove that I =Y. Consider the following system of partial differential equa-

tions.
Y, =Y +T1Y (4.45a)
Y, =YT, +T2Y (4.45D)
Y (uo,vo) = o (uo, vo) (4.45¢)

Defining O(u,v,X) := X7,/ + T1X and E(u,v,X) := X7/ +T:X for X € M3,3(R), we can
compute the compatibility condition 2.8 and we get:
XT + T X+ XT + LX) T + Ti(XT, +T2X)
=XTo, + T2 X+ XT + TiX) T + o(XT +TiX)
Eliminating common terms and grouping we have:

X(T1y = Tou) + (Tiv = T2u)X
=X(T' ' - T +(TTi - TiT)X
then,
X(Tiy = Tou+ [T1, )" + (Tiv = T+ [T1, T2))X = 0 (4.46)

As Tiy— Tou+[T1,T2) =0, (4.46) is satisfied for all X € M343(R), then by theorem 2.3.1
the system of partial differential equations (4.45) has unique solution. On the other hand,
using (4.43a) and (4.43b), it can be verified easily that X defined in 4.44 is a solution
of the system 4.45. Also by (4.41) and (4.42) we have il:'IT +II=1, and if‘g +IhI=1,
on (A71(0))¢, then by lemma 4.4.1, Io T + Tilg =g, and I T + Thlg =1g, on U, it
means, Lo is also a solution of the system 4.45, therefore by uniqueness Io =Y on any
neighborhood V of (ug,vo). Now, as Io = W W, we have that wj is orthogonal to wi,w;
and w3 -w3 = 1. Since det(W) > 0, n:= "2 — w3 and if we define Q := (w1 wz)

— wixwa ||
then,
ala- (e fo)_y,
Fo Gg
from (4.43a) and (4.43b) we have,
T, Th L
S y raiol [ QuQly' Qn
TN Th My | =W, Wl = o
n, QI 0
Mir pi2 0
Th Ts M
7'112 7‘122 ]VIQ _ WTwi—l o QSQIEZI Qlj;n
22 /22 Q | — YWy Q - DZQI;)] 0

M1 U O
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then,

1 1
7-1=<T‘f 77%):(@59)191 ande:(T? 7@)=<ﬂfﬂ>bl

n-wy, n-wp, Lo Mg
n-wy, n-wy, Mo Ng

Let us consider the system of partial differential equations restricted to V,

Xy = A1W1 + A1 w2 (4.49a)
Xy = 21 W1 + Ao w2 (4.49b)
X(MQ,V()) =q (4.496)

As,
(0 1)ATi+A)=(0 1)TiA=(1 0)T:A=(1 0)(ATs+A)

for (u,v) € (A71(0))¢, then by density
(0 1)ATi+A) = (1 0)(AT3+A)

on the entire U, as also, by (4.28b) Allg is symmetric, then the singular compatibility
equations (4.13a), (4.13b) and (4.13c) are satisfied, which are the compatibility condition
of the system (4.49). Therefore by theorem 2.3.1, this system has a solution x: V —x(V) C
R3, where V C V is a neighborhood of (ug,vp). As Dx = QAT by proposition 3.1.1, x is a

frontal with Q being a tangent moving base of it, satisfying what we wished. ]

Proof. Theorem j.4.1(Rigidity). Let X: U — X(U) C R® be a frontal, U connected, with
Q a tangent moving base of X satisfying the same conditions of x and Q. As I = Ig,
exists a rotation p € SO(3) such that pQ(ug,vo) = Q(ug,vo). Set a :=X(uo,vo) — pX(ug,vo),
% := px+a and Q := pQ. Observe that, X(ug,vo) = X(uo,vo), Q(uo,vo) = Q(ug,vo), DX =
QAT, Io =1, and g =1l (caused by pwi x pwy = p(W; x w2)). Also by remark 3.2.1

T: = T; = T;. We want to prove that X =% on U, so, let us define the set,
B:={(u,v) €U : Qu,v) = Q(u,v)}

B is not empty and closed by continuity. For each (i, v) € B, as we had seen before, (Q ﬁ)
is a solution of the system:

WI =pw?

W =QwT”

W (iz,v) = (fz(a,v‘) ﬁ(a,v‘))
As the matrices P (4.5) and Q (4.6) are constructed with the coefficients of I, Ilg
and 7;, then (ﬁ ﬁ) is solution of the system as well and by uniqueness, O=Qona

neighborhood of (i1, v). We have that B is open and since U is connected, 5 =U. Therefore,
Dx = QAT = QAT = D% and since X(up,vo) = X(up,vp), Xx=%X on U. ]



4.4. The Fundamental Theorem 65

Remark 4.4.1. In theorem 4.4.1 can be switched the hypothesis of E,F,G,L,M,N satis-
fying the Gauss and Mainardi-Codazzi equations for all (u,v) € U — A5 1(0) by hypothesis
of Eq,Fo,Ga,Lo,Mio,Mrq,Ng satisfying the equations (4.9), (4.8¢g) and (4.8h) on U, where
Ti,7T> are defined as in proposition 3.2.3 (see remark 3.2.2). Since Ty, — T2, + [T1, T3] =0
is equivalent to (4.9), (4.8g) and (4.8h), using lemma 4.4.1 these two different hypothesis
are equivalent, then we obtain the same result in the theorem. By last, the frontal ob-
tained is going to be a wavefront if (Kq,Hg) # (0,0) on the domain, where Kq,Hq are
computed with the given coefficients Eq,Fq,Ga,La,Miq,Mxq,Nq and A;;.
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CHAPTER

5

BEHAVIOR OF THE CLASSICAL
INVARIANTS

In this chapter we introduce the relative principal curvatures which give us geo-
metrical information near singularities and are defined even on them. After that, we study
singularities of rank 1 both degenerate and non-degenerate of wavefronts. The theorems
5.2.1, 5.2.2 give equivalent conditions for boundedness and extendibility of the Gaussian
curvature which generalize the one found in (SAJI; UMEHARA; YAMADA, 2009) and
similarly theorem 5.2.5 for the principal curvatures. We also study the convergence to in-
finite limits of the classical invariants and show how this is tightly related to a particular

property of uniform approximation of fronts by parallel surfaces.

For a singularity p of a wavefront x, there exists [ > 0 and a neighborhood Uj of p
such y; = x+/n is an immersion, also this / can be chosen as small as we wish (see lemma
5.1.1). The neighborhood U; may shrink as [ is smaller, then is natural to ask when U,
can be hold fixed for [ arbitrarily small, in this case we say that x is parallelly smoothable
at p. We will see that, this last property is determined by the convergence to infinite
limits of the classical invariants at each type of singularity and also is related with the
extendibility of the principal curvatures at singularities. The theorems 5.2.3, 5.2.4 and

5.2.6 characterize when a wavefront is parallelly smoothable at all types of singularities.

Finally, we study the behavior of the invariants at singularities of rank 0 of wave-
fronts, obtaining results quite different from those obtained in the rank 1 case. The ex-
ample 5.2.6 shows explicitly a wavefront with singularity of rank 0 and mean curvature
vanishing everywhere, like a minimal surface in the regular case, which make these types

of singular surfaces very interesting.
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5.1 The relative principal curvatures

Definition 5.1.1. Let x: U — R3 be a frontal, Q a tmb of x, for each p € U we define

the Q-relative Weingarten matrixz as follows:
o = [Lgadj(l\g)

Proposition 5.1.1. Let x: U — R? be a proper frontal and Q a tmb of x. We have the
following equality, @g = @Aq on L(x)¢. In particular €q has real eigenvalues.

Proof. By theorem 3.1.1, I = AIoAT and II = Allg, then for p € £(x)¢, a = —II'T"! =
—IlgTZAT(AT)_llg_zlA_1 = oA~ Thus, we have @dq = pgadj(A) = @g. The eigenvalues
of g are real if tr(@g)? —4det(ag) > 0. As Ko = det(1g) and Hg = —%tr(ag) this is
equivalent to have H3 —AqKq > 0 and by proposition 3.3.1 H3 — AqKq = A3(H*> —K) >0
on X(x)¢, then by continuity and the density of regular points, it follows the result on
U. O

Denoting the eigenvalues of &g by —kiq, —kq, then ki, ko satisfy the equation
k2 +tr(al)k+det(al) = 0. Since Kq =det (1) and Ho = —1tr(atq), we have k* — 2Hok +

A,QKQ =0. Thus,
k=Hq+\/H3 — AoKo

Definition 5.1.2. Let x: U — R? be a frontal, Q a tmb of x, we call the functions

kio :=Hg — 4 /Hsz2 — AoKq and kpg := Hg + 4 /HSZ2 — Ao Kq the relative principal curvatures.

We also define for a proper frontal x the following functions on X(x):

H—VH?2—K if 2g >0,

k12:

H+VH?—K if 20 <O.
L H+VH?>—K if Ao >0,
2=

H—VHZ—K if g <0.

We clarify that, the principal curvatures of x are the functions defined by x_ :=

H—+VH?*—-K and x; := H++vVH?—K on £(x)°.

Remark 5.1.1. It follows from the above definition that the relative principal curvatures
satisfy k1o + koo = 2Hg and kigkro = AoKq. The smooth functions ky and kp defined on
Y(x)¢ have similar properties to the classical principal curvatures. Also their definitions
do not depend on the chosen tmb Q inducing the same orientation of the normal vector
field n. If another tmb € induces an opposite orientation of m, then the signs of these
functions are opposite as well. Observe that kjk, = K and ]%kz = H on £(x)¢. In the case
of non-degenerate singularities, if we make a suitable change of coordinates ki,k; coincide
with those functions defined in ((TERAMOTO, 2016), equation (2.6)).
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Proposition 5.1.2. Let x: U — R> be a proper frontal, Q a tangent moving basis of x.
Then,

1. forpe Z(X)C, k1o = Agk; and kpg = lgkz,

2. forp e E(X), kio = lim Aok and koo = lim Agks.

(u,v)=p (uv)—=p

Proof. We have that kjg = AgH — \/AJH? — A3K = AgH — |Ag|VH? — K = Agk; and sim-
ilarly kro = Agks on X(x)¢. For p € £(x), by smoothness of kg, koo and density of X(x)¢,
klg = lim A,le and kQQ = lim AQ]Q. L]

(u,v)=p (wv)—=p

Example 5.1.1. For the cuspidal edge x = (u,v%,v?) in example 3.3.1 we saw that Ko =

0=K, Hg = 3(4+9v2)_% and H = 3v*1(4+9v2)_%. Since Aq = v, then kjg =0, krg =
6(4+912)"2,

[SI[9%} [NSI[O8)

T A9 T B @ 9) R iy 0
1=
3 (@4 49%) 72 3 (44 9?) 3] ifv <O,
_[mrared et o
2=
3 (4492) 3 — Bl (44+92) 3| ifv<0,

[\S1[S8]

therefore k; = 0 and ky = 6v—! (4 +91?) 2.

In the proof of proposition 3.3.4 was observed that making change of coordinates
h on a frontal x and taking Q= Qoh as tmb of xoh, it results with new different
relative curvatures det(h)(Kqoh) and det(h)(Hgoh). However, if we choose the tmb Q" :=

(Qoh)Dh instead of Q when we make a change of coordinates, they remain invariant.

Proposition 5.1.3 (Invariance property). Let x: U — R? be a frontal, Q a tmb of x,
h:V — U diffeomorphism, then the new relative curvatures of xoh are Ko = Kq oh and
HQh = HQ oh. In particular, leh = klg Oh, kZQh = kQQ oh and AQh = )LQ oh.

Proof. Observe that, the matrix Ags, induced by Q" is (Dh)~!'(Ag oh)Dh, then Ag =
Agoh and since D(noh) = Qhugh, we have (Dh) ' uL (Dh) = [.tgh and therefore Kon = Kg o
h. Also, pgradj(Agr) = det(Dh)Dh~'pnadj(Ag)ad j(Dh™') and using that tr(ABC) =
tr(CAB) we get Hon = Hg oh. Since, kygn and k,on are written in terms of Kon and Hep,
the result follows for them. O

The following two lemmas give a tmb in connection with parallel surfaces for

wavefronts and they will be used to prove theorems 5.2.1 and 5.2.2 in the next section.
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Lemma 5.1.1. Let x: U — R? be a wavefront, Q a tmb of x, for each p € £(x) there exist
locally an embedding y; : V — R3, p € V, such that Dy, is a tmb of X, the matrix Apy,
determined for this tmb is I, —let;, where [ € Rt and @; is the Weingarden matrix of y;

and I is the identity matrix.

Proof. For each t € R, consider y; = x+mn, as Dx = QAT and Dn = Qu” we have Dy, =
QAT +1Qu”  then y, has a singularity at q if and only if der(AT +ru”)(q) = 0. Making
a direct computation det(AT +1u”) = Ag —2tHg +t?Kq and now taking p € Z(x), by
corollary (3.3.1), there exist [ € Rt such that der(AT +1u”)(p) = —2Hq(p) + *Ka(p) # 0.
Thus, there exists a neighborhood V of p such that y; : V — R? is an embedding. Since,
Dy; = Q(A+1u), Dy, is a tmb of x. We can assume Dy; and Q induce the same normal
vector m (i.e det(AT +1u™) >0 on V), otherwise we can change the order of columns in Q
from the beginning. Therefore, we have Dy, (I — lalT) =Dy, —IDn=Dx = DylAlT)yl, thus
Apy, =1 —la. O

Lemma 5.1.2. Let x: U — R be a wavefront, p € X(x) and Q = Dy; a tmb of x as above,
then

1. IQ = Il> IIQ = IIZ, H =0 and [.tad](A) =0y —lKﬂIz.
2. Ko =K;, Ho = H;+ Kl and Aq = 1 4+ 2H,l + K;I%.

3. ko= kll(l +lk21) and koo = kzz(l -|—lk11>.

where I;, II;, K;, H;, ky;, ky; are first fundamental form, second fundamental form, Gaus-
sian curvature, mean curvature and principal curvatures of y; respectively. Additionally,
rank(Dx(p)) = 1 if and only if y; is free of umbilical point on a neighborhood of p. Sim-
ilarly, rank(Dx(p)) = 0 if and only if y; has a umbilical point at p of positive Gaussian

curvature.
Proof.

1. Applying the definition directly we get the first three equalities. By lemma 5.1.1
A=1,—la;, then ﬂad](A) = a,(]Iz — ladj(al)) =a;— K.

2. Using item (1), Kq = det(p) = det(t;) = K;, Ho = —3tr(padj(A)) = —3tr(0; —
IKi)) = H + Kl and Ag = det(A) =det(I, —loty) = 1+ 2Hl +Kllz.

3. Using the formulas in definition 5.1.2, item (2) and knowing that ki, = H; — 4 /le - K,

ky = H;+ 4 /le — K; and K; = kyjky;, a simple computation leads to item (3).

For the last part, by proposition 3.3.1 rank(Dx(p)) = 0 if and only if Ho(p) =0, Aa(p) =0
and Ko(p) # 0. On the other hand these conditions are equivalent to H;(p) = —K;(p)!
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and 0 = 1 —2I?K;(p) + I>K;(p) which is equivalent to K;(p) = llz and H;(p) = —%. Then
y; has an umbilical point at p of positive Gaussian curvature. Conversely, we have 0 <
Ki(p) = Hy(p)?, then 0 = 1+ 2[H,(p) + [*H,(p)? which imply H;(p) = —7 and therefore
Ho(p)=—7+ l%l =0, by proposition 3.3.1 rank(Dx(p)) = 0. Equivalently rank(Dx(p)) =1
if and only if p is not a umbilical point which is equivalent to have y; free of umbilical

point on a neighborhood of p. [

5.2 Extendibility and boundedness

5.2.1 Singularities of rank 1

In this section, we study the behavior at a singular point of rank 1 of the classical
invariant of wavefronts, using the relative principal curvatures defined in previous sec-
tion. The non-degenerate case was investigated in (SAJI; UMEHARA; YAMADA, 2009;
MARTINS et al., 2016; TERAMOTO, 2016; TERAMOTO, 2019b).

Proposition 5.2.1. Let x: U — R> be a proper wavefront, Q a tmb of x, then for every
p € X(x) with rank(Dx(p)) = 1, the following is always satisfied:

L. (kia(p),k2q(p)) # (0,0). In particular, if k1o (p) # 0 (resp. kaa(p) #0), then kxo(p) =
0 (resp. kio(p) =0). Also, Ho(p) < 0 (resp. Ho(p) > 0) if and only if kjo(p) # 0

(resp. kaa(p) #0).

2. There is an open neighborhood V C U of p in which one of the functions ki, kp

has a C* extension to V. More precisely, k; (resp. kz) has a C* extension if only if

kia(p) =0 (resp. ka(p))-

3. One of the functions k;, kp in module diverge to co. More precisely, ( li)m ky| = oo

u,v)—p
(resp. |kz|) if and only if kjq(p) # 0 (resp. kao(p)).

4. lim |H|=es.

(uv)—p

5. If Ko(p) #0 then lim |K|=oo.

(uv)—p

Proof.

1. Observe that, for p € X(x), kia(p) = Ha(p) — |Ha(p)| and ka(p) = Ha(p) + |Ha(p)|-
By proposition 3.3.1, Ho(p) # 0, then just one of k1o (p), k2o (p) is different of zero.
Thus, the sub index of kjo(p) corresponding to the non-zero value is determined

bijectively by the sign of Hg(p).
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2. By item (1), without loss of generality, we can assume that kjo(p) # 0. Let V be a
neighborhood of p such that kjg # 0 on V, then by proposition 3.3.1, k, = /l%}(]fz = g—g
on V —X(x). Thus, g—g is a C* extension of kp to V.

3. By item (1), without loss of generality, we can assume that kjo(p) # 0. Let V be
a neighborhood of p such that kjg # 0 on V, then k| = ]E—ﬁf on V —X(x). Thus, for

eX(x)NV, lim |k|= lim %2l —c
cvery PEXX)OV, Jin, Jal= ., Tl
4. Since Hg(p) # 0 and by proposition 3.3.1, lim |H|= lim \g_g\ = oo,
(uv)—=p (uy)—p 2l
5. Since Ko(p) # 0 and by proposition 3.3.1, lim |K|= lim % = oo,
(uy)=p (uy)—p "2

]

We shall use the following two lemmas to prove theorems 5.2.1 and 5.2.2 about

boundedness and extendibility of the Gaussian curvature.

Lemma 5.2.1. Let x: U — R3 be a proper wavefront, W C U a compact set, V C U an
open set, a: W — R a continuous function, @ and Q; tangent moving bases of x, then

we have:

1. If there exist a constant C; > 0 such that |a| < Ci|Aq,| on W then there exist a
constant C, > 0 such that |a| < C3|Aq,| on W.

2. T, (V) =%q,(V)
Proof.

1. Setting A = IEZIIQ{QZ (change of basis matrix) and p = det(A), we have Q, = QA
therefore Aq, = AAq, and Ag, = pAq,. Since |a| < Ci|Aq, | = Ci|p||Aq,| and choosing

C; as the maximum of Cy|p| on W, we get the result.

2. Using the proof of item (1), Ag, = pAq, with p # 0, then we have the equality.

]

Lemma 5.2.2. Let x; : U — R> be a proper wavefront with U open connected, W C U a
compact set, V C U an open set, h:Z — U a diffeomorphism and Q a tmb of x. Setting
X3 :=x; oh and choosing Q" = (Qoh)Dh as tmb of x, we have:

1. There exist a constant C; > 0 such that |[L;| < Ci|Aq|, [M1| < Ci|Aql, [N1] < Ci|Aq| on
W if and only if there exist a constant C, > 0 such that |Ly| < Ca|Agn|, [M2| < Ca|Agu],
IN2| < Ca|Agn| on h™1(W). Where Ly, My, Ny and Ly, M>, N are the coefficients of

the second fundamental form of x; and x; respectively.
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2. Li,M;,Ny € To(V) if and only if Ly, Ma, N, € Ton(h~1(V)).

Proof. Let us denote by IIj, II; the matrices of the second fundamental forms of x; and
x, respectively. If det(Dh) > 0, then ny =njoh (in the case det(Dh) <0, np = —njoh
and it is analogous) therefore II, = —ng Dn, = —DhTDxlTDnth = Dh™II, Dh. This last
equality expresses the coefficients Ly, M,, N> as sum of multiples of the coefficients L,
M, Ny and vice versa. Since Agn = Ag oh (see proposition 5.1.3) we get items (1) and (2)
easily. O

Theorem 5.2.1. Let x: U — R3 be a proper wavefront with just singularities of rank
1,  a tmb of x, p € X(x). Let W C U be a compact neighborhood of p in which the
relative principal curvature kg 7# 0 does not vanish. Let k; be the function that admits
a C” extension to W and K the Gaussian curvature, then the following statements are

equivalent:

1. K is bounded on W —X(x).
2. There exist a constant C > 0 such that |Kq| < C|Aq| on W.
3. There exist a constant C > 0 such that |k;| < C|Aq| on W.

4. There exist a constant C > 0 such that |L| < C|Aq|, |[M| < C|Aq| and |N| < C|Ag| on
w.

Proof.

e (1<2)As|K|= |/1_ on W —X(x) and by the density of W —X(x) in W, it follows

the equivalence.

+ (24 3) Since W is compact, kj, Kq, kig are continuous on W and k; = k%? from this

last equality follows the equivalence.

« (4= 1) We have that |[LN —M?| < 2C2|7LQ|2 on W, but by proposition 3.1.1, EG —
F?=(EqGq—F3)A3, then K| < <z F2 on W —X(x). Since % is continuous
on U and W is compact, K is bounded on W —X(x).

e (2=4) If we prove (4) locally on W, we can choose an open covering By (open
sets with the induced topology) of W in which (4) is satisfied in each compact By
with constants Cy. Reducing this covering to a finite one, we have finite constants
Cy,, --»Cr, and choosing C as the maximum of these constants, (4) is satisfied globally
on W.

To prove this locally, first, for each q € W let us take a tmb Dy; as in lemma 5.1.1
on a neighborhood V of q with y; free of umbilical point (5.1.2) on V. Shrinking
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V if it is necessary, there exist a diffeomorphism h:V’ — V, such that y;oh has
derivatives as principal directions. By lemmas 5.2.1 and 5.2.2, we can assume that
Q = Dy, being y; an embedding with derivatives as principal directions. Thus, by
lemmas 5.1.1 and 5.1.2 I, Ilg, &; and A = (4;;) =1 —Ila; are diagonal matrices. If
rank(A(q)) = 1, without loss of generality shrinking V to a compact neighborhood,
we can suppose that Ay (q) =1 —1ay(q) =0, with 41 # 0 and —g—g =0y #0 on
V. By proposition 3.1.1, M =0, L= A;1Lg, N = ApoNg = /'Lgf—ﬁ and by hypothesis
(2) 13262| < ClAg| on V! =VNW, thus [L| < C|An||%422[|Aql. If we choose C' as
the biggest maximum of the functions C |7L11||E‘1{,g‘2| and |g—ﬁ| on V', we get that
IL| <C'|Aql, M| < C'|Aq| and |N| < C'|Ag| on V.

On the other hand, if rank(A(q)) = 2, shrinking V to a compact neighborhood,
we can suppose that Aj; #0 and Ay #0 on V. Thus, M =0, L = A1Lg = AQ]/{—;,
N = ApNg = Agﬁv—ﬁ, then choosing C’ as the biggest maximum of the functions |§—§;|
and |iv—ﬁ| on V' =VNW, we have |L| < C'|Aq|, |M| < C'|Aq| and |N| < C'|Ag| on V.

]

It is known that the boundedness and extendibility of the Gaussian curvature are

equivalent in the non-degenerate case (see proof of theorem 3.1 in (SAJI; UMEHARA;

YAMADA, 2009)), however in the degenerate case the following example shows that

boundedness does not implies extendibility. Theorem 5.2.2 characterizes extendibility in

the general case.

Example 5.2.1. The wavefront x(u,v) = (u,2v? 4 u?v,3v* + 4?v?) (cuspidal lips) with
normal vector m = (2uv?, —2v, 1)(4u*v* + 42 + 1)_% has an isolated (then, degenerated)

singularity at (0,0) of rank 1 and Gaussian curvature K = — < with

(4uPvA+4v241)2 (u4-61?)

|K| < 1. Observe that K does not converge when (u,v) — (0,0), then it is not extendable.

Figure 6 — A wavefront with degenerate singularity of rank 1 at the origin and Gaussian curva-

ture bounded but non-extendable.
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Theorem 5.2.2. Let x: U — R? be a proper wavefront with just singularities of rank 1,
Q a tmb of x, p € £(x) with rank(Dx(p)) = 1. Let V C U be an open neighborhood of p in

which the relative principal curvature k;q # 0 does not vanish. Let k; be the function that

admits a C™ extension to V and K the Gaussian curvature, then the following statements

are equivalent:

1.

2.

3.

The Gaussian curvature K admits a C* extension to V.
Kq € Ta((V).

kieZqV).

4. L,M,N € To(V).

where T (V) is the principal ideal generated by Aq in the ring C*(V,R).

Proof.

(1 <2) As Ko = KAq on V —X(x) and by the density of V —X(x) in V, it follows

the equivalence.
(2« 3) Since kj = f—g, from this last equality follows the equivalence.

(4= 1) we have that LN —M?* = 913 with ¢ € C*(V,R), but by proposition 3.1.1,
EG—F?=(EqGq—F3)A3, then K = ﬁ% on V —X(x). Since ﬁ% is smooth
on V., K has a C” extension to V.

(2 = 4) if we prove (4) locally on V, we can choose an locally finite open covering
Bi CV (open balls) of V| k € N with a partition of the unity y; subordinated
to this open cover in which L,M,N € Tq(By) for every By. For each k € N there
exist fix, fok, f3x € C(V,R) such that L = fizAqo, M = forda, N = f3rAq on By. Since
the supports of fuy; form families locally finite for s = 1,2,3, we have that f;:=
Y facW € C*(V,R) for s = 1,2,3, therefore L = fiAdq, M = frdg, N = f3Aq on V.

To prove this locally, first, for each q € V let us take a tmb Dy; as in lemma 5.1.1 on
a neighborhood Z C V of q with y; free of umbilical point on Z. Shrinking Z if it is
necessary, there exist a diffeomorphism h: Z’ — Z, such that y; oh has derivatives as
principal directions. By lemmas 5.2.1 and 5.2.2, we can assume that Q = Dy, being
y; an embedding with derivatives as principal directions on Z. Thus, by lemmas 5.1.1
and 5.1.2 Ig, g, &; and A = (4;;) =1 —le; are diagonal matrices. If rank(A(q)) =1,
without loss of generality shrinking Z to a open neighborhood V', we can suppose
that Axx(q) = 1—1ayn(q) =0, with Aj; #0 and —g—g = 0y # 0 on V. By proposition
3.1.1,M =0, L= Ay1Lo, N=A»nNq = lgg—ﬁ and by hypothesis (2) ggé‘é = @ Aq for
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some ¢ € C*(V,R), then L= (Z)AHE%;;Q Aq. Thus, we get that L€ Tq(V'), M € Tq(V')
and N € To(V').

On the other hand, if rank(A(q)) = 2, shrinking Z to a open neighborhood V', we
can suppose that A;; # 0 and Ay # 0 on V'. Thus, M =0, L = A11Lg = AQ%’
N = AppNg = lgiv—ﬁ, then we have L € T (V'), M € Tq(V’) and N € To(V').

O

Let [x] : (R?,0) — (R3,0) be a germ of a frontal x, Q a tmb of x, 0 € £(x), we define
the following ideals:

e J as the ideal in & generated by the germ [Agq)].
o J:={[g] € & : there exist C > 0 such that |g| < C|Aq| on some neighborhood of 0}.

o Js = {[g] € & : for some neighborhood U of 0,g vanish on UNA, " (0)}.

These ideals satisfy J C J C Js, their definitions do not depend on the chosen tmb Q and
when 0 is a non-degenerate singularity these three ideals are equal. To see that, making
a change of coordinates, we can assume that Aq is equal to u or v, then applying the
Hadamard lemma, we obtain the result. From this and theorems 5.2.1 and 5.2.2 we have

the following corollary.

Corollary 5.2.1. Let [x] : (R?,0) — (R?,0) be a germ of a proper wavefront, Q a tmb
of X, 0 € X(x) a non-degenerate singularity with rank(Dx(0)) = 1. Let k; be the function
that admits a local C* extension at 0 and K the Gaussian curvature, then the following

statements are equivalent:

1. The Gaussian curvature K admits a local C* extension at 0.

2. The Gaussian curvature K is locally bounded on some neighborhood of 0.
3. [Kq] € Js.

4. [kj] € Js.

5. [L],[M],[N] € Js.

The equivalences between (1), (2) and (5) were obtained by K. Saji, M. Umehara,
and K. Yamada (see proof of theorem 3.1 in (SAJI; UMEHARA; YAMADA, 2009)).
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k+

Example 5.2.2. The wavefront (u, sm(ku) sin(ku) 17 ), k a positive natural number,

k+1 ’
has as a tangent moving basis:

where € = 1 +v? +cos? (ku)k*v 2k+4(ki1 k+2) Then, Ag = sin(ku)v*, (LoNg —MioM>g) €
T therefore Ko € T and by theorem 5.2.2 the Gaussian curvature K admit a C* exten-

sion to R%. Observe that, since Il = Allg (see theorem 3.1.1), we have L,M,N € Tq.

Remark 5.2.1. The boundedness and extendibility of Gaussian curvature are conserved
under changes of coordinates in the domain, however they are not conserved making
changes at the target. The wavefront x(u,v) = (u,2v> +u?v, 3v* + u?v? +u?) with Gaussian
curvature unbounded can be obtained from example 5.2.1 whose Gaussian curvature is
bounded, applying at the target the diffeomorphism F(X,Y,Z) = (X, Y Z+X 2). The same
situation occurs with the example 5.2.2 and (u,sin(ku) k++1 ,sm(ku) T +2 iy 2) which have

extendable and non-extendable Gaussian curvatures respectively.

In the following, we study the convergence to infinite limits of the classical invari-
ants. Also in the next definition we introduce a notion which is tightly related with this

behavior.

Definition 5.2.1. Let x: U — R? be a wavefront and p € £(x). We say that x is parallelly
smoothable at p if there exist € > 0 and an open neighborhood V of p such that rank(D(x+
In)(q)) =2 for every (q,l) € V x (0,¢€) or every (q,/) € V x (—¢,0).

Example 5.2.3. The wavefront x = (u, 3 : ) has as Slngular set the axis u (v =0) and

normal vector field n = (0,—v,1)p, where p = (14v?)~ 3, Thus, if we consider y; =x+In

we have
1 0
Dy,=|0 v’ —Ip—Ipw
0  V+ip,

Since v? —Ip —Ip,v > 0 for every (q,I) € R? x (—o0,0), then x is parallelly smoothable at
every point of X(x).

Theorem 5.2.3. Let x: U — R? be a proper wavefront, Q a tmb of x, p € £(x) with
rank(Dx(p)) =1, Ko (p) # 0 and Ho(p) < 0 (resp. Ho(p) > 0) then the following statements

are equivalents:
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. X is parallelly smoothable at p.
lim H = *co.
(uv)=p
. lim kj = 2oo (resp. kp).
(u,v)—p
lim K = Hoco.
(uv)=p
. There exist an open neighborhood V of p in which Aq does not change sign.
. There exist an open neighborhood V of p in which kg (resp. k1q) does not change
sign.
Proof.

« (1=15) if x is parallelly smoothable at p if and only if there exist € > 0 and an open

neighborhood V of p such that y; = x+fn|y is an immersion for every ¢ € (0,€) (or
every t € (—¢€,0)) if and only if det(AT +tu”)(q) = Aq(q) — 2tHao(q) +*Ka(q) # 0
for every r € (0,€) (or every t € (—€,0)) and q € V. Shrinking V we can suppose this
is connected, then we have that Aq(q) —2tHq(q) +1*Ka(q) > 0 (or < 0) for every
(q,7) € V x (0,€), thus taking the limit in both sides of this inequality when ¢ tends
to 0, we get that Ag >0 on V.

(5<2)asH= ﬁl—g on X(x)¢ and Hg(p) # 0, follows the equivalence.
(5e4)as K= I/{—g on X(x)¢ and Kq(p) # 0, follows the equivalence.

(2 < 3) by proposition 5.2.1, there exist a neighborhood V of p such that k; has a

C” extension and since k; = 2H — k, follows the equivalence.

(3 < 6) there exist a neighborhood W of p such that Hg < 0 and Ko # 0 on W, then
ki #0 on W —X(x). Since 9 = kpq on W —X(x) and kpq = 0 on X(x)(by proposition

5.2.1), follows the equlvalence.

(6 = 1) there exist a neighborhood W of p such that Hg < 0 and Kg # 0 on W. By
proposition 5.2.1 kjo(p) # 0, thus k'g # 0, then using item (6) there exist € >0
and an open connected V of p such that Igg does not change sign and |];{1—§| > € on
V. Thus, if kz—Q >0 (resp. %—g < 0) then Aq(q) —2tHqo(q) +t*Ka(q) # 0 for every
(q,1) €V x (—€,0) (resp. V x (0,€)) because Aq(q) —2tHo(q) +12Ka(q) = 0 if and
only if t = Kl—g(q) or t = 22(q).
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Theorem 5.2.4. Let x: U — R3 be a proper wavefront, Q a tmb of x, p € (x) with
rank(Dx(p)) =1, Ko(p) =0 and Ho(p) <0 (resp. Ho(p) > 0) then the following statements

are equivalents:

1. x is parallelly smoothable at p.

2. lim H = doo.

(u,v)—p

3. lim k; = oo (resp. k).

(uv)—p

4. There exist an open neighborhood V of p, in which Ag does not change sign.

Proof. The proof of (1 =4), (2< 3), (24 4) is equal to corresponding ones in theorem
5.2.3 because this does not use the hypothesis of Kq(p) # 0. To prove (3 = 1), let us define
A:={qeU:Kq(q) #0}. If p¢& A, there exist a neighborhood W of p in which Kq =0,
thus Aq(q) —2tHq(q) +1>Ka(q) = Aa(q) —2tHo(q) on W and since Ho(p) # 0, using that
Ao does not change sign on a neighborhood of p, shrinking W we have that 2—2 does not
change sign, then if g—g >0 (resp. g—g < 0) we have that Aq(q) —2tHg(q) # 0 for every
(q,7) € W x (—¢€,0) (resp. W x (0,¢€)) with an arbitrary € > 0 and it follows the result. If
p € A, by hypothesis there exist a open neighborhood W of p such that k; >0 and H >0

(resp. or < 0) on W —X(x) and as kjo(p) # 0, we have that (ulvi)rri)p]];{l—gHA =oo. Let € >0

be given, there exist a open ball B such that \]2—3\ >¢€ on BNA and k; > 0 (resp. <0),
H >0 (resp. <0), I;_Ll—ﬁ = £ >0 (resp. <0) on B—X(x). Since %—g = kl_l on (BNA)—X(x),
we have that %—3 >0 (resp. <0) on BNA. Now, if (q,7) € Bx (—¢€,0) (resp. Bx (0,€)) and
Kqo(q) =0 then Aq(q) —2tHqo(q) +1*Ka(q) = Aa(q) — 2tHg(q) # 0 because 1% >0 (resp.
< 0) on B. The another option is that Ko(q) # 0, then Aq(q) —2tHo(q) +t*Ka(q) # 0
because this is 0 if and only if t = %(q) or t = %—g(q) which is impossible since that

]g—g(q)| > ¢ and l;?—g(q) >0 (resp. <0). It follows the result. O

Corollary 5.2.2. Let x: U — R? be a proper wavefront, Q a tmb of x, p € X(x) with
rank(Dx(p)) = 1, we have that x is parallelly smoothable at p if and only if Ay does not

change sign on a neighborhood of p.

Corollary 5.2.3. Let x: U — R? be a proper wavefront, Q a tmb of x, p € £(x) with
rank(Dx(p)) = 1, if x is parallelly smoothable at p, then p is a degenerate singularity.

Proof. 1f we suppose that p = (py,p2) is a non-degenerate singularity, then Aq,(p) # 0
or Agy(p) # 0 and therefore Aq(u,p2) or Aq(pi,v) is strictly monotone as function of
one variable on every sufficient small neighorhood of p, which is contradictory, because

Ao (p) =0 and this does not change sign by corollary 5.2.2. O
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Corollary 5.2.4. Let x: U — R? be a proper wavefront, Q a tmb of x, p € £(x) with
rank(Dx(p)) = 1, if p is an isolated singularity then x is parallelly smoothable at p.

Proof. 1f p is an isolated singularity, then there exist an open connected neighborhood V
of p, such that Ag # 0 on V — {p} and since that V — {p} is arc-connected, Ag does not
change sign on V. By corollary 5.2.2, it follows the result. O]

Corollary 5.2.5 (Representation formula of wavefronts parallelly smoothable rank 1).
Let [x] : (R?,0) — (R?,0) be a germ of a proper wavefront, Q a tmb of x, 0 € £(x) with
rank(Dx(0)) = 1. If x is parallelly smoothable at 0 then, up to an isometry x is Z-equivalent
to y(u,v) = (u, Jo Aa(u,t)dt + fi(u), [y tAq(u,t)dt + f2(u)) where Aq does not change sign

on some neightborhood of 0.

Proof. Using proposition 3.4.1 and corollary 5.2.2 we get the result. ]

Example 5.2.4. The wavefront (u,2v> +u?v,3v* +u?v?) (cuspidal lips) has an isolated
singularity at (0,0), then by corollary 5.2.4 it is parallelly smoothable at (0,0). On the
other hand, (u,2v? —u?v,3v* —u?v?) (cuspidal beaks) is not parallelly smoothable at (0,0)

by corollary 5.2.2, because taking as a tangent moving basis:

1 0 ! 0
Q=] 2uv 1 ,AZ( >

5 0 6v:—u?
—2uv= 2y

we get Aq = 6v?> — u?, which changes of sing on every neighborhood of (0,0). By the
same argument, X(u,v) = (u,v?,v}) (cuspidal edge) and x(u,v) = (3u* + u?v,4u> + 2uv,v)
(swallowtail) are not parallelly smoothable at (0,0), because can be chosen tmb’s Q in

which Ag is v and 12u® 4 2v respectively.

N &
T

>
TN

Figure 7 — A wavefront (cuspidal beaks) non-parallelly smoothable at (0,0).
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Theorem 5.2.5. Let x: U — R? be a proper wavefront, Q a tmb of x and p € X(x) with
rank(Dx(p)) = 1. One of the principal curvatures x_, k; has a C*-extension to an open

neighborhood of p if and only if x is parallelly smoothable at p.

Proof. 1f x is parallelly smoothable at p, then by corollary 5.2.2 Ao > 0 (or Ag < 0, this
case is analogous) on an open neighborhood V of p, thus k; = x_, k» = K on V —X(x) and
by proposition 5.2.1 one of these function has a C*-extension to an open neighborhood of p.
Conversely, without loss of generality let us suppose that K has a C*-extension to an open
neighborhood W of p, then Ag does not change sign on some neighborhood of p, otherwise
there are sequences a, — p, b, —> p such that Ag(a,) > 0 and Ag(b,) < 0 for every
n € N. Thus, nli_r)g\h (a,)] = r}i_r}r;]lc,(an)\ = |x_(p)| = ’}1_r>r°10\1€,(bn)| = r}l_f)loloykz(bn)l which is
contradictory, because by proposition 5.2.1 one of the limits r}grolo k1 (a,)|, r}grolo |ka(by,)| is
oo, O

Corollary 5.2.6. Let x: U — R be a proper wavefront, Q a tmb of x and p € £(x)
with rank(Dx(p)) = 1. If k. (or xk_) have a C”-extension locally at p, then the other one
diverges to doo at p.

Proof. 1f k; have a C”-extension locally at p, by theorem 5.2.5 x is parallelly smoothable
at p, then by corollary 5.2.2 Ao > 0 (or Aqg <0, this case is similar) on a neighborhood V
of p. Thus, k; = k_, ky = k4 on V —X(x) and by items (3)s of theorems 5.2.3 and 5.2.4,
one of the functions ky, ky diverges to £oo. Since k, = K extends, k; = k_ diverges to
+oo. O

Corollary 5.2.7. Let x: U — R? be a proper wavefront, Q a tmb of x and p € X(x) with
rank(Dx(p)) = 1. One of the principal curvatures k_, k; diverges to +eo at p if and only
if x is parallelly smoothable at p.

Proof. 1f x_ (with x is analogous) diverges to oo and we suposse that x is not parallelly
smoothable at p then Aq changes sign on every neighborhood of p. Thus, there exists se-
quences a, — p, b, — p such that Ag(a,) > 0 and Ap(b,) < 0 for every n € N. Therefore,
lim |k (a,)| = lim |x_(a,)| = 2ec = lim |k_(b,)| = lim |k»(b,)|, which is contradictory, be-
n—oo n—yoo n—oo n—oo

cause by proposition 5.2.1 one of the functions ki, k; extends at p. The converse follows

immediately from theorem 5.2.5 and corollary 5.2.6. [

Corollary 5.2.8. Let x: U — R? be a proper wavefront, Q a tmb of x and p € X(x) with
rank(Dx(p)) = 1. The principal curvature k_ (resp. k;) is bounded locally at p if and

only if x_ (resp. k;) have a C*-extension locally at p.

Proof. 1f x_ is bounded locally at p, using the same reasoning of the proof in theorem

5.2.5, we have that x is parallelly smoothable at p, then by theorem 5.2.5 and corollary
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5.2.6 one principal curvature has a C*-extension locally at p and the other one diverge.

Since k_ is bounded locally at p, this is the extendable one. O

5.2.2 Singularities of rank 0

Proposition 5.2.2. Let x: U — R? be a proper wavefront, Q a tmb of x, p € £(x) with
rank(Dx(p)) = 0, then:

L. (kig,kaq)(p) = (0,0).

2. lim |K|=oo.

(u,v)—p

3. % and é have continuous extensions on a neighborhood V of p, which are of class

C* except possibly at umbilical points and singularities of rank 0 of x.

4. lim |kj|=cand lim [k = .
(u,v)—p (u,v)—p

D. k]_1 + kiz has a C”-extension on a neighborhood V of p.

Proof.

1. By theorem 3.3.1, Ho(p) = 0, then kio(p) p) — \/Ha(p) — Aa(p)Ka(p) = 0.
Similarly kxq(p) =0.
2. By theorem 3.3.1, Ko (p) # 0 and then it follows by proposition 3.3.1 that lim |K|=

(u,v)—p

3. There exist a neighborhood V of p such that Kq(p) # 0 and since Ko = )Lgklkz on
X(x)¢ then k; # 0,ky # 0 on V —X(x), therefore kl = k]fiz km and similarly % IE—S
which are well defined on V. Notice that kjq and k,q may not be differentiable at
umbilical points and singularities of rank 0 of x (because Hé(p) —Ao(p)Ka(p) =0
at those points and this expression is under a radical sign in the relative principal

curvatures).

4. By item (2), there exist a neighborhood V of p such that k1 3& 0,k A0 on V —X(x),
therefore k1 # 0,koq # 0 as well. Then, k; = k 2 and k, = k on V —X(x) and using
that Ko(p) # 0 and item (1) we get (3).

5. Since Kqo(p) # 0, there exists an open neighborhood V of p such that Ko does not

vanish on V, then - -+ k =2 = 2[?—3 on V —X(x) and as 211{1—(? is well defined on V,

this is a C°°—extens1on.
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Theorem 5.2.6. Let x: U — R3 be a proper wavefront, Q a tmb of x, p € (x) with

rank(Dx(p)) = 0, then the following statements are equivalent:

1. x is parallelly smoothable at p.
2. AoKq > 0 and Hg does not change sign on a neighborhood V of p.

3. lim K=oand lim H = too.

(uv)—=p (u,v)—=p
4. lim k] = lim k2 =ocoor lim k] = lim k2 — —00,
(w)=p  (uy)=p (w)=p  (uy)=p
Proof.

e (1 =2) If x is parallelly smoothable at p, then there exist € > 0 and an open
connected neighborhood V of p such that Aq(q) —2tHq(q) +t2Kq(q) # O for every
(q,t) €V x (0,€) (or V x (—&,0), this case is analogous). As Ko # 0 and does not
change sign on V (shrinking V if it is necessary), k1o = koo = 0 and since Ao(q) —
2tHo(q) +12Ko(q) # 0 if and only if r = ];(l—g(q) ort= %—g(q), we have that ]2—3 <0
and %—g <0 on V. Then, kjgkyo >0 on V, but —kjo and —kyq are the eigenvalues
of lng2 = (Hgadj(A))T, then AgKq = kigkaq >0 on V. Observe that ki and kg do
not change sign on V, then Hg neither.

e (2= 3) Since oKq = A3K on X(x)° and using that ( li§n |K| = o we get that
u,v)—p

lim K =oo. On the other hand, H?> > K, then lim |H|=oc. As Hg and Aq do

(uv)—p (uv)—p

not change sign on a neighborhood of p, H = H—g neither and we get the result.

e (3=4) As K is positive near to p then AqKq = ),éK >0 and Kg # 0 on a neigh-
borhood Z of p. Shrinking Z, Ag does not change sign and H neither on Z — ¥(x).
Without loss of generality, let us suppose Ag >0 on Z, then k; = H — VH? —K and
ky = H++/H? — K and since H does not change sign on Z —X(x), one of the func-
tions ki, ky neither. By this last and since that K > 0, we have that k; > 0,k > 0 or
k1 <0,k <0 on Z—X(x), then using item (3) of proposition 5.2.2 we get the result.

e (4=1) There exists a neighborhood V of p such that k; > 0,k > 0 (or k; < 0,k <
0, this case is analogous) on V —X(x) and Kg # 0 on V, then 1;(1_3 = % >0 and
%—g = % >0 on V —X(x), thus by density the of V —X(x) ];(l—g, %—g >0 on V. Choose

g€ > 0 arbitrary and we have that Aq(q) —2tHq(q) +1*Kqa(q) # 0 for every (q,t) €

V x (—¢,0). It follows (1).
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Corollary 5.2.9. Let x: U — R be a proper wavefront, Q a tmb of x, p € £(x) with
rank(Dx(p)) = 0. If there exist a neighborhood V of p in which the only singularity of rank
0 is p, then x is parallelly smoothable at p if and only if AgKq > 0 on a neighborhood W
of p.

Proof. 1f 2oKq > 0 on W, shrinking if it is necessary we can suppose that K # 0 on W —X(x)
and since AoKq = A3K, then H> > K >0 on W —X(x). As Hg # 0 on singularities of rank
1, then Hg has a isolated zero on W NV and therefore Hg does not change sign. Applying
the last theorem we get the result. ]

Observe that, if we have a wavefront x: U — R?, Q a tmb of x, p € (x) with
rank(Dx(p)) = 0 and this is parallelly smoothable at p, since Ko (p) # 0 and AgKg > 0 on
a neighborhood of p, then Ag does not change sign on a neighborhood of p. However, this
condition is not sufficient as it happened in the case of singularities of rank 1. The next

example shows this.

Example 5.2.5. The wavefront x := (u*, £, k%uk“ + k%vk“), with k € N, k > 2 has

as tmb:
1 0
ku?=1 0
Q= 0 1 ) A= ! ’
0 +kyk—1
u v
then Ag = k21 Ko = m By corollary 5.2.9, x is parallelly smoothable at

(0,0) when we choose k odd and the sign +. If k is even or the sign is —, this is not
parallelly smoothable at (0,0), even when k is odd with sing — in the expression, in which

Aq does not change sign.

Corollary 5.2.10. Let x: U — R> be a proper wavefront, Q a tmb of x, p € £(x) with
rank(Dx(p)) = 0 and X(x)o = {q € X(x) : rank(Dx(q)) = 0}. If x is parallelly smoothable
at p then:

1. There exists an open neighborhood V of p in which one of the functions ki, k; has
a C™ extension to V —X(x)o. More precisely, k; (resp. kz) has a C* extension to
V —X(x)g if only if Ho <0 (resp. Ho >0) on V.

2. There exists an open neighborhood V of p in which one of the functions k;, k;
diverge to too (just one sign globally) near the singularities to p. More precisely,
lim  kj = 4o (resp. kp) if and only if Hg <0 (resp. Ho > 0) on V.
(u,v)—=X(x)NV

Proof.

1. Since that Hg does not change sign on a neighborhood V of p by item (2) of
proposition 5.2.6 and applying proposition 5.2.1 we get the result.



5.2.  Eaxtendibility and boundedness 85

2. By items (2) and (4) of proposition 5.2.6 Hg and k; do not change sign on a neigh-
borhood V of p and applying proposition 5.2.1 we get the result.

]

Proposition 5.2.3. Let x: U — R? be a proper wavefront, Q a tmb of x and p € Z(x)
with rank(Dx(p)) = 0. If H is bounded on a neighborhood of p then we have:

1. There exists a neighborhood V of p such that K <0 on V—X(x) and lim K = —oo.

(uy)—p

2. Aq does not change sign on a neighborhood V of p.

3. One of the functions ki,k, diverges to e and the another one to —e at p. More

precisely, if Ag > 0 (resp. Ag < 0) on a neighborhood V of p then lim k; = —c

(uv)—p

(resp. ) and lim kp = o (resp. —oo).
(u,v)—=p

4. There is no singularity of rank 1 on a neighborhood of p.

5. There exists a neighborhood V of p such that lim % =—1

(u,v)—=X(x)NV

Proof.

1. We know that K # 0 near to p. If there exists a sequence a, — p with K(a,) >0

for every n € N, as H> > K and lim K(a,) = o we have that lim |H(a,)| =
(uv)—=p (u,v)=p

which is contradictory, then we have (1).

2. By (1) AgKq = A3K < 0 near to p and since Kq(p) # 0, then Ag does not change
sign on a neighborhood V of p.

3. If Ag >0 near p, ky = H —VH?—K and k = H++vH?—K on a neighborhood of
p and since K < 0 near p, then k, > 0 > k; on a neighborhood of p. By (3) of

proposition 5.2.2 we have the result.

4. If H is bounded on a neighborhood V of p and suppose that there exists a singularity
q of rank 1 in V, by (4) of proposition 5.2.1 lim |H| = oo witch is contradictory.

(uv)—p

5. Let V be a bounded neighborhood of p with just singularities of rank 0 with H
bounded. There exists C > 0 such that |k; + k2| < C, then |1+ %| < |k—C2‘ and by (3)

of proposition 5.2.2 ( li)m % = —1 for every q € £(x)NV. Since £(x) NV is compact
u,v)—q

we have the result.
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Proposition 5.2.4. Let x: U — R? be a proper wavefront, Q a tmb of x, p € £(x) with
rank(Dx(p)) = 0 and let us choose W a compact neighborhood of p in which Kq # 0. The

following statements are equivalent:

1. The mean curvature H is bounded on W —X(x).

2. There exists C > 0 such that |Hg| < C|Ag| on W.

3. There exists C > 0 such that |LG+NE —2MF| < C|A3| on W.
4. There exists C > 0 such that |% + %| < C|Ag| on W.

5. L+ % is bounded on W.

kio
Proof.
» (1< 2) Using that Ho = AgH on W —E(x) which is dense in W, we get the equiva-
lence.

e (1 3) Using that H(EG—F?)=LG+NE —2MF on W —X(x) and EG—F? € T5(W)

(see proposition 3.1.1), by compactness of W we get the equivalence.

e (2<4) by proposition 5.2.2 % + é has a C”-extension to W and this is equal to

2}?—5. From this equality follows the equivalence.

e (4<5) Since that k1o = Agk; and kyg = Agky on W — X(x) which is dense in W, we

get the equivalence.

]

Proposition 5.2.5. Let x: U — R> be a proper wavefront, Q a tmb of x, p € Z(x) with
rank(Dx(p)) = 0 and let us choose V an open neighborhood of p in which Kq # 0. The

following statements are equivalent:

1. The mean curvature H has a C*-extension to the neighborhood V of p.
2. Hg € Tp(V).

3. LG+NE —2MF € T3,(V).

4 F+EeTav).

5. A+ é has a C”-extension to the neighborhood V of p.

kig

Proof. The proof of proposition 5.2.4 can be reproduced here to prove the corresponding

equivalences. m
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Example 5.2.6. The wavefront x:= (log (> +1) — 1 log (u® + 1)

(see figure 8) has as tmb:

87

v w? —u+tan~!(u))

) v2+1 ’ v2+1
uy
3
(1+u?+v2)2
—(1412) ’

3
(14+u*+v?)2

0 oy (o
a-fo 1) oas (T 0 ) e
w 12 (14+12)2 (1+u2+v2)%
)
then Ag = %, Hg = —%(lgzuu — A1 l12 + A1 or — Apptp1) = 0 and therefore the

mean curvature is extendable, with H =0 on R

0.5
05 0.0

Figure 8 — A wavefront with singularity of rank 0 at the origin and mean curvature vanishing

everywhere.
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