• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tesis Doctoral
DOI
https://doi.org/10.11606/T.55.2020.tde-27072020-180126
Documento
Autor
Nombre completo
Maria Carolina Zanardo
Dirección Electrónica
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Carlos, 2020
Director
Tribunal
Nabarro, Ana Claudia (Presidente)
Dias, Fábio Scalco
Ruas, Maria Aparecida Soares
Silva, Jorge Luiz Deolindo
Título en portugués
Geometria local associada à aplicação de Gauss de hipersuperfícies em R4
Palabras clave en portugués
Aplicação de Gauss
Conjunto parabólico
Função altura
Hipersuperfície canal
Resumen en portugués
Esta tese é dedicada ao estudo das propriedades geométricas provenientes, principalmente, das singularidades da aplicação de Gauss e das singularidades da família de funções altura em uma hipersuperfície M em R4. Obtemos caracterizações geométricas de singularidades estáveis da aplicação de Gauss de M, ou seja, singularidades de codimensão menor ou igual a 3, usando singularidades multilocais da função altura em M. Além disso, relacionamos singularidades da função altura sobre M e singularidades da função altura sobre o conjunto parabólico de M, visto como uma superfície em R4. Também consideramos um caso particular: a hipersuperfície canal de uma curva em R4, para o qual os resultados são mais precisos e envolvem relações com as singularidades da família de funções altura sobre a curva.
Título en inglés
Local geometry associated with the Gauss map of hypersurfaces in R4
Palabras clave en inglés
Canal hypersurface
Gauss map
Height function
Parabolic set
Resumen en inglés
This thesis is dedicated to the study of geometric properties derived mostly from the singularities of the Gauss map and from the singularities of the family of height functions on a hyperfurface M in R4. We obtain geometric characterizations regarding stable singularities of the Gauss map of M, that is, singularities which codimension is less than or equal to 3, using multilocal singularities of the family of height functions on M. In addition, we analyse the relatation between the singularities of the height function on M and singularities of the height function on the parabolic set of M, seen as a surface in R4. We also consider a particular case: the canal hypersurface of a curve in R4, in which the results are more accurate and involve relations with the singularities of the family of height functions on the curve.
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
Fecha de Publicación
2020-07-27
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
CeTI-SC/STI
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2021. Todos los derechos reservados.