• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Mémoire de Maîtrise
DOI
https://doi.org/10.11606/D.55.1970.tde-27062022-151252
Document
Auteur
Nom complet
Hildebrando Munhoz Rodrigues
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Carlos, 1970
Directeur
Jury
Onuchic, Nelson (Président)
Loibel, Gilberto Francisco
Oliva, Waldyr Muniz
Titre en portugais
INVARIANÇA PARA SISTEMAS NÃO AUTÔNOMOS DE EQUAÇÕES DIFERENCIAIS COM RETARDAMENTO E APLICAÇÕES
Mots-clés en portugais
Não disponível
Resumé en portugais
Não disponível
Titre en anglais
Invariance properties in the theory of differential equations with time delay and applications
Mots-clés en anglais
Not available
Resumé en anglais
This work is essentially diuided in two parts. In the first part we introduce the concept of ínvariant set with respect to a nonautonomous delay equation (I) y(t) = P(t, yt). Consider the perturbed equation (2) x(t) = P(t, xt) + Q(t, xt) + S(t, xt) where Q and are "small" perturbations in a sence specified in this work. With respect to the concept of invariante, as introduced in the first part, the following property holdes: The ω-limit set of every solution x(t) of (2), bounded in the future, is invariant with respect to (1). In the second part, the following application of the above mentioned theory is done: Consider the equations (I) x + f(t, x, x) + g(x) = 0 (II) x + f(t, x, x) + g(x) + h(t, x, x) = 0 By using the concept of invariance with respect to (I), we obtain, under certain assumptions on f, g and h, some stability results concerning equation (II).
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Date de Publication
2022-06-27
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
CeTI-SC/STI
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2022. Tous droits réservés.