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ABSTRACT

MOURA, R. O. Stability and hyperbolicity of equilibria for a non-local quasilinear Chafee-
Infante equation. 2022. 144 p. Dissertação (Mestrado em Ciências – Matemática) – Instituto
de Ciências Matemáticas e de Computação, Universidade de São Paulo, São Carlos – SP, 2022.

In this work we present the topics of spectral theory of operators, theory of semigroups and
their generators and geometric theory of parabolic semilinear differential equations, and then
apply these theories to analyze the qualitative aspects of the semilinear Chafee-Infante equation.
Finally, we seek to study stability and hyperbolicity of equilibria for a non-local quasilinear
Chafee-Infante equation, making use of a method of linearization for quasilinear problems,
which has been developed in (CARVALHO; MOREIRA, 2021), in order to conclude that the
equilibria of this complicated equation inherit some properties of stability and hyperbolicity
from the classical semilinear equation.

Keywords: Spectral Analysis, Semigroups, Global Attractor, Gradient Semigroups, Semilinear
Partial Differential Equations, Chafee-Infante Equation, Quasilinear Chafee-Infante Equation,
Nonlocal Chafee-Infante Equation.





RESUMO

MOURA, R. O. Estabilidade e hiperbolicidade de equilíbrios para uma equação de Chafee-
Infante quasilinear não-local. 2022. 144 p. Dissertação (Mestrado em Ciências – Matemática)
– Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, São Carlos –
SP, 2022.

Neste projeto apresentamos os tópicos de teoria espectral de operadores, teoria de semigrupos
e seus geradores e teoria geométrica de equações diferenciais parabólicas semilineares, e em
seguida aplicamos tais conhecimentos para analisar os aspectos qualitativos da equação de
Chafee-Infante semilinear. Por fim, busca-se estudar estabilidade e hiperbolicidade dos equi-
líbrios de uma equação de Chafee-Infante quasilinear não-local, utilizando-se um método de
linearização para problemas quasilineares, desenvolvido em (CARVALHO; MOREIRA, 2021),
a fim de se concluir que os equilíbrios dessa equação complicada herdam algumas propriedades
de estabilidade e hiperbolicidade do caso semilinear clássico.

Palavras-chave: Análise Espectral, Semigrupos, Atrator Global, Semigrupos Gradientes, Equa-
ções Diferenciais Parciais Semilineres, Equação de Chafee-Infante, Equação de Chafee-Infante
Quasilinear, Equação de Chafee-Infante Não-Local.
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CHAPTER

1
INTRODUCTION

Differential equations are widely studied in mathematics as they represent an essential
tool for modeling phenomena of interest to several areas of study. Among them, we can mention
the movement of bodies and particles (in physics), the dynamics of an ecosystem (in biology),
the behavior of beams (in engineering), the growth of tumors (in medicine), and many others.

A large class of differential equations, in which we will focus our work in this project, is
the class of semilinear partial differential equations. We are interested in studying the following
initial value problem:

d
dt

u = Au+ f (u, t), t > t0

u(t0) = u0 ∈ X ,
(1.1)

where X is a Banach space, A : D(A)⊂ X → X is a closed and densely defined operator (D(A) =

X), and the function f has some regularity conditions.

Our study of (1.1) involves existence and uniqueness of solutions and global attractor,
and stability and hyperbolicity of equilibria. Those concepts are essential to understand the
asymptotic behavior of a semilinear differential equation, and their meaning will be explained
soon. Therefore, throughout our study we will make use of several different mathematical
theories, which will be presented along the chapters in this thesis. We organize the presentation
of those theories as following.

In Chapter 2, we define the concepts of resolvent and spectrum of a closed operator, and
present results about the resolvent of bounded and compact operators. Moreover, we present the
numerical range, as a way to localize the resolvent of an operator. Finally, we present the basic
theory of self-adjoint operators, and we use all the previous results to characterize the spectrum
and eigenvectors of the Laplacian and Sturm-Liouville operators.

Let us denote by L (X) the space of all bounded linear maps from X into X , with the
usual norm. Moreover, if A : D(A)⊂ X → X is a linear operator, we denote by R(A) its range
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and by N(A) its kernel. In order to study the problem (1.1), it is crucial to analyze the spectrum
and resolvent of the operator A, defined as following:

Definition 1 (Resolvent and spectrum). Let A : D(A)⊂ X → X be a closed linear operator in X .
We define the resolvent set of A as following:

ρ(A) := {λ ∈ C : (λ −A) : D(A)→ X is a bijection}.

The spectrum of A is defined as σ(A) :=C\ρ(A), and it is decomposed in three disjoint
parts:

1. The point spectrum of A is the set of eigenvalues of A, that is, σp(A) := {λ ∈ σ(A) :
(λ −A) is not injective}.

2. The residual spectrum of A is the set σr(A) := {λ ∈σ(A) : (λ−A) is injective and R(λ−
A) is not dense in X}.

3. The continuous spectrum of A is the set σc(A) := {λ ∈ σ(A) : (λ −A) is injective and
R(λ −A) is dense in X but R(λ −A) ̸= X}.

If λ ∈ ρ(A), (λ −A)−1 ∈L (X). We call ρ(A) ∋ λ 7→ (λ −A)−1 ∈L (X) the resolvent
of A.

The study of the resolvent of the operator A is essential to develop the theory of fractional
powers, as well as the theory of existence and uniqueness of solutions for (1.1). The analysis of
the spectrum of A is also used to understand stability and hyperbolicity of equilibria, concepts
that will be explained latter in this thesis.

For a moment consider the problem (1.1) with t0 = 0, and a function f that does not
depend on time (this is called the autonomous case, which will be more relevant in our work)
Suppose that, for each u0 ∈ X , (1.1) has an unique solution u(·,u0) : R+→ X such that u(0,u0) =

u0, and this solutions depends continuously on t and u0. Then we define, for each t ≥ 0, the
operator T (t) : X → X by T (t)u0 = u(t,u0). It may be checked that the family {T (t) : t ≥ 0}
satisfies the following properties:

• T (0)x = x, ∀ x ∈ X .

• T (t + s) = T (t)T (s), ∀ t,s≥ 0.

• R+×X ∋ (t,x) 7→ T (t)x ∈ X is continuous.

A family with these properties is called a semigroup in X . It is in the language of
semigroups that we study the asymptotic behavior of our differential equation, that is, the
behavior of the solutions when t→∞. In Chapter 3, we define and study several objects that help
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us understand the asymptotic behavior of the solutions of a differential equation, including the
global attractor, which is a compact subset of X that is invariant by the action of the semigroup
and attracts bounded sets of X .

If x∗ ∈ X is such that T (t)x∗= x∗ for all t ≥ 0, we call x∗ an equilibrium for {T (t) : t ≥ 0}.
Let E denote the set of equilibria for {T (t) : t ≥ 0}. A particular section of Chapter 3 will be
dedicated to the study of gradient semigroups, for which there exists a function V : X → R such
that:

1. The map R+ ∋ t 7→V (T (t)x) ∈ R is decreasing, for each x ∈ X .

2. If V (T (t)x) =V (x), ∀ t ≥ 0, then x ∈ E .

For this kind of semigroup, the global attractor can be very well characterized, consisting
of the equilibria and connections among them.

Also in Chapter 3, we study the relations between the semigroup associated to a linear
differential equation u̇ = Au and the operator A. It is important to understand the characteristics
of the semigroup associated to this linear problem in order to extract properties of the semigroup
associated to the semilinear problem (1.1). We present some results in this sense, and in particular,
we prove that if −A is a sectorial operator, the semigroup associated to A is analytic in a sector
containing the positive real axis, and satisfies some estimates that are useful in the study of
semilinear parabolic equations (this is Theorem 23).

Next, in Chapter 4, we present the theory of fractional powers of positive operators,
which helps to develop the theory of parabolic differential equations in Chapter 5. Assuming
that −A is an operator of positive kind, we define (−A)α , for negative real α , by means of
complex integration involving the resolvent operator, and (−A)α for positive α taking the
inverse. We study the properties of the domains of (−A)α for positive α , studying inclusions
and interpolation results, as well as the relation between fractional powers and semigroups, and
with the perturbation of sectorial operators.

In Chapter 5, we define the semilinear differential equations of parabolic type, which are
the main focus of the work in this thesis. A semilinear parabolic differential equation has the
form of (1.1), but we strengthen the hypothesis on the operator A, asking −A to be sectorial (see
Definition 28) and positive (see Definition 29). Moreover, in a parabolic semilinear differential
equation, the function f maps from D((−A)α) into X , where D((−A)α) is the domain of some
fractional power of −A. We can define a solution for (1.1) starting at any point u0 in D((−A)α),
even if this point is not in D(A), and the solution defined in [t0, t1) will remain in D(A) for all
t ∈ (t0, t1), which ensures extra regularity.

Also in Chapter 5, we will study existence and uniqueness of solutions and their con-
tinuous dependence with respect to the initial value u0 ∈ X , presenting theorems that state that,
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under certain conditions on A and f , (1.1) has an unique solution u(·, t0,u0) : [t0, tmax)→ X such
that u(t0) = u0, for each initial value (t0,u0) in the domain of f , and we give conditions under
which the solutions are defined for every t ≥ t0.

Finally, we give a lot of importance to the analysis of the equilibria of a differential
equation. In Chapter 5, we study the concepts of stability and instability of an equilibrium
point, which basically are related to the behavior of solutions that start near the equilibrium. If a
solution starts in a point u0 close enough to a stable equilibrium x∗ ∈ X , then T (t)u0 will remain
close to x∗ for all positive t. In the same chapter, we also study the concept of hyperbolicity, that
is related to the structure of the global attractor near an equilibrium and its robustness under
perturbation.

The concept of hyperbolicity of an equilibrium point is related to the existence of two
"directions" in X , such that the equilibrium attracts in one direction and expels in another. We can
prove that, under certain conditions, this behavior is inherited by a semilinear equation from the
linear equation associated, and, near to the equilibrium, the directions of attraction and repulsion
do not change much with the adding of the nonlinearity. The reader may see the precise meaning
of these comments in Chapter 5.

Both stability and hyperbolicity for an equilibrium of a semilinear differential equation
can be concluded using spectral analysis of the linearization operators around this point.

In the Chapter 6, we study the well known Chafee-Infante equation (CHAFEE; INFANTE,
1974).

ut = uxx +λ f (u), t > 0, x ∈ (0,π)

u(0, t) = u(π, t) = 0,

u(·,0) = u0 ∈ H1
0 (0,π),

(1.2)

where λ > 0 is a parameter, f ∈C 2(R) is odd (in particular, f (0) = 0), f ′(0) = 1, and f satisfies:

f ′′(u)u < 0, ∀ u ̸= 0,

and

lim sup
|u|→∞

f (u)
u

< 0.

We apply the theory developed in the first chapters to show that for each u0 ∈ H1
0 (0,π),

there exists a unique solution u(·,u0) ∈ C
(
R+,H1

0 (0,π)
)

of (1.2), and the map defined by
R+×H1

0 (0,π) ∋ (t,u0) 7→ u(t,u0) ∈ H1
0 (0,π) is continuous. If we define T (t)u0 = u(t,u0), the

semigroup {T (t) : t ∈ R+} is gradient.

Next we study the equilibria of (1.2) in order to obtain a characterization for the gradient-
kind global attractor of this semigroup. When n2 < λ ≤ (n+1)2, n = 0,1,2, ... an analysis of
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the phase plane associated to the boundary problem

wxx +λ f (w) = 0, 0 < x < π,

w(0) = w(π) = 0
(1.3)

reveals that there exist 2n+1 equilibria {0,φ±1 , ...,φ±n } for (1.2).

We conclude from spectral analysis of the Sturm-Liouville operators associated to this
equation that all equilibria are hyperbolic except for 0 ∈ H1

0 (0,π), which loses hyperbolicity
for λ = n2, for any n ∈ N. Whenever λ = n2, two new solutions bifurcate from the origin as λ

increases. Moreover, we conclude that for λ ≤ 1, 0 ∈ H1
0 (0,π) is the only equilibrium and is

stable, and for λ > 1, only φ
±
1 are stable.

Finally, in the Chapter 7, we study a non-local quasilinear Chafee-Infante equation,
which is presented in (CARVALHO; MOREIRA, 2021):

ut = a(∥ux∥2)uxx +λ f (u), 0 < x < π, t > 0,

u(0, t) = u(π, t) = 0, t > 0,

u(·,0) = u0 ∈ H1
0 (0,π),

(1.4)

where ∥ux∥2 =
∫

π

0 |ux(s)|2ds. The function f satisfies the same conditions as before, and we also
ask (0,∞) ∋ u 7→ f (u)/u strictly decreasing. Also, λ > 0 is a parameter and a : R+→ [m,M]⊂
(0,∞) is a continuously differentiable, globally Lipschitz and non-decreasing function.

Non-local problems are important to model dynamical systems in which the behavior of
a point of the function u ∈ X depends on the value of the function in different points. Models of
this type appear, for instance, in the study of the heating of ceramic. The reader may find several
other examples of applications of non-local differential equations in (CHIPOT; VALENTE;
CAFFARELLI, 2003), (DAVIDSON; DODDS, 2006) and (KRIEGSMANN, 1997).

With the aid of an auxiliary semilinear problem whose solutions are also solutions of the
main problem through a solution dependent change in the time scale, we can use the theory of
semilinear differential equations to conclude existence, uniqueness, continuous dependence and
existence of a global attractor for this quasilinear non-local equation.

The semigroup associated to this quasilinear equation is also gradient, with the following
Lyapunov function:

V (u) =
1
2

∫ ∥ux∥2

0
a(s)ds−λ

∫
π

0

∫ u(x)

0
f (s)dsdx.

We refer to the results of (CARVALHO et al., 2020) about the equilibria of this equations.
For n2 < λ ≤ (n+1)2, the authors of this paper construct a sequence of equilibria {0,φ±1 , ...,φ±n },
and these equilibria have the same oscillatory properties of the equilibria of the semilinear
equation.
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The study of stability and hyperbolicity for this equation is done in the following way.
The authors in (CARVALHO; MOREIRA, 2021) found a non-local operator that represents
the linearization of the auxiliary semilinear problem around a given equilibrium. The local part
of this operator is the linearization operator around some equilibrium for the Chafee-Infante
classical problem, for a specific choose of the parameter λ , so that its spectrum is studied in
Chapter 6, during the analysis of the Chafee-Infante classical equation. Finally, the spectrum of
the non-local operator can be glanced if we know the spectrum of the local part (see for example
(DAVIDSON; DODDS, 2006)), treating the non-local operator as a perturbation of its local
part. We conclude that the stability and hyperbolicity of equilibria for the associated semilinear
equation can be transferred to the quasilinear equation, obtaining results like the saddle point
property and exponential attraction for the equilibria of (1.4).

In general, the study of hyperbolicity for non-local quasilinear equations is complicated,
and a general approach to prove hyperbolicity for quasilinear problems with non-local coefficient
is not yet available. However, the author in (LAPPICY, 2018) presents a method to study hyper-
bolicity in quasilinear local problems, based on linearization and shooting, and the monographs
(LUNARDI, 1995, Section 9.1.2) and (YAGI, 2009, Section 6.8) present very interesting results
about existence and uniqueness of solutions, and hyperbolicity of equilibria for quasilinear
equations, but the equation (1.4) does not satisfy the conditions needed to apply these results.

In order to understand the mathematics in this thesis, the reader should have some
knowledge about the basic theorems of functional analysis, like Hahn-Banach Theorem, the
consequences of Baire Category Lemma, among others. Moreover, in the specific study of
Laplacian and Sturm-Liouville operators, and in the study of the Chafee-Infante equation, we
assume that the reader knows what are Sobolev spaces, Lp spaces and their basic properties.
The particular sections about attractors for semigroups and gradient semigroups require less
background in functional analysis, and are more focused on metric spaces. We also make
extensive use of integration and differentiation of analytic functions f : Ω⊂C→ X from a subset
of C to a Banach space X , which retain some features of complex analytic functions (Cauchy
Theorem, Maximum Modulus Theorem, among others). The reader may check the following
books for reference about these subjects: (BREZIS, 2011), (KATO, 1995), (CARVALHO, 2012)
and (TAYLOR; LAY, 1980) for functional analysis, and this last one also for integration of
Banach space-valued functions; (SIMONS, 1963) and (CARVALHO, 2012) for metric spaces
theory; (BREZIS, 2011) for Sobolev spaces.

It is our intention that this thesis will provide to the reader a detailed presentation of all
the basic theory needed to study semilinear differential equations of parabolic type, as well as a
practical demonstration of the application of those theories in a classical Chafee-Infante equation.
Finally, we will show how the theory may be used to study a more complicated problem: the
non-local quasilinear Chafee-Infante equation studied in (CARVALHO; MOREIRA, 2021).
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CHAPTER

2
SPECTRAL ANALYSIS OF OPERATORS

2.1 The resolvent

In this section and beyond we study the resolvent and spectrum of an operator, which
are essential to extract asymptotic properties in the Cauchy problems related to this operator.
We focus ourselves on the theory needed to study the spectrum of the Laplace operator and the
Sturm-Liouville operators, which are associated with the Chafee-Infante Equation, and also with
a lot of partial differential equations in mathematical physics. For a more detailed approach
to the subjects of spectral analysis, the reader may consult (BREZIS, 2011), (TAYLOR; LAY,
1980), (KATO, 1995), (CARVALHO, 2012), and for a detailed presentation of Sturm-Liouville
operators and ordinary differential equations (ODEs), the reader may consult (BIRKHOFF;
ROTA, 1989), (HALE, 1980).

In what follows, X will denote a Banach space over C and X∗ = L (X ,C) will be its
dual space. We denote by R(A) the range of an operator A and by N(A) its kernel. Moreover, we
denote by L (X) := L (X ,X) the set of bounded linear operators from X into X , with the usual
norm.

Definition 2 (Resolvent and spectrum). Let A : D(A)⊂ X → X be a closed linear operator in X .
We define the resolvent set of A as following:

ρ(A) := {λ ∈ C : (λ −A) : D(A)→ X is a bijection}.

The spectrum of A is defined as σ(A) :=C\ρ(A), and it is decomposed in three disjoint
parts:

1. The point spectrum of A is the set of eigenvalues of A, that is, σp(A) := {λ ∈ σ(A) :
(λ −A) is not injective}.



24 Chapter 2. Spectral analysis of operators

2. The residual spectrum of A is the set σr(A) := {λ ∈σ(A) : (λ−A) is injective and R(λ−
A) is not dense in X}.

3. The continuous spectrum of A is the set σc(A) := {λ ∈ σ(A) : (λ −A) is injective and
R(λ −A) is dense in X but R(λ −A) ̸= X}.

Note that if λ ∈ ρ(A), (λ −A)−1 ∈L (X), from the Closed Graph Theorem. We call
ρ(A) ∋ λ 7→ (λ −A)−1 ∈L (X) the resolvent of A. Next we state some simple properties of the
resolvent.

Theorem 1. Let A : D(A)⊂ X → X be a closed linear operator. Then ρ(A) is an open set, and
σ(A) is closed. More precisely, if µ ∈ ρ(A), and λ ∈C is such that |µ−λ |∥(µ−A)−1∥L (X) < 1,
then λ ∈ ρ(A) and

(λ −A)−1 =
∞

∑
n=0

(µ−λ )n(µ−A)−n−1.

Proof. We only need to write (λ −A) = (µ−A)[I− (µ−λ )(µ−A)−1], and the right-hand side
can be inverted if |µ−λ |∥(µ−A)−1∥L (X) < 1, yielding the desired expression for the operator
(λ −A)−1.

Lemma 1. If A : D(A)⊂ X → X is a closed linear operator and λ , µ ∈ ρ(A), then:

(λ −A)−1− (µ−A)−1 = (µ−λ )(µ−A)−1(λ −A)−1, (2.1)

and
(λ −A)−1(µ−A)−1 = (µ−A)−1(λ −A)−1. (2.2)

Proof. Let λ , µ ∈ ρ(A), then:

(µ−A)−1 = (µ−A)−1(λ −A)(λ −A)−1

= (µ−A)−1[(µ−A)+(λ −µ)I](λ −A)−1

= (λ −A)−1 +(λ −µ)(µ−A)−1(λ −A)−1.

And (2.2) follows from (2.1)

Theorem 2. Let A : D(A)⊂ X → X be a closed operator in X . Then, the function ρ(A) ∋ λ 7→
(λ −A)−1 ∈L (X) is analytic.

Proof. For a fixed λ0 ∈ ρ(A), let λ ∈ ρ(A) be such that |λ − λ0| ≤ (2∥(λ0−A)−1∥L (X))
−1.

From (2.1),

∥(λ −A)−1− (λ0−A)−1∥ ≤ |λ0−λ |∥(λ0−A)−1∥L (X)∥(λ −A)−1∥L (X)

≤ |λ0−λ |∥(λ0−A)−1∥L (X)

∞

∑
n=0
|λ0−λ |n∥(λ0−A)−1∥n+1

L (X)

≤ |λ0−λ |∥(λ0−A)−1∥2
L (X)

∞

∑
n=0

1
2n .
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Whence ρ(A) ∋ λ 7→ (λ −A)−1 ∈L (X) is continuous. Also from (2.1), we get:

d
dλ

(λ −A)−1∣∣
λ0

= lim
λ→λ0

(λ −A)−1− (λ0−A)−1

λ −λ0

= lim
λ→λ0

− (λ0−A)−1(λ −A)−1

= −(λ0−A)−2,

which shows the analyticity.

2.2 Bounded linear operators
In what follows we will see that the spectrum of a bounded linear operator is compact,

and also define the concept of spectral radius.

Theorem 3. Let A ∈L (X). If λ > ∥A∥L (X), then λ ∈ ρ(A) and

(λ −A)−1 =
∞

∑
n=0

λ
−n−1An, (2.3)

and the series converges uniformly in {λ ∈ C : |λ | ≥ R} for R > ∥A∥L (X).

As a consequence, σ(A) is compact.

Proof. If |λ |> 0 and ∥λ−1A∥L (X) < 1, we use the Newman series to conclude that

(λ −A)−1 = [λ (I−λ
−1A)]−1 = λ

−1
∞

∑
n=0

(λ−1A)n =
∞

∑
n=0

λ
−n−1An.

It is easy to see that the series converges uniformly in {λ ∈C : |λ | ≥ R} for R> ∥A∥L (X).

Theorem 1 shows that σ(A) is closed. Since it is also bounded, it follows that σ(A) is
compact.

Definition 3 (Spectral radius). Let A ∈L (X). We define the spectral radius of A by

rσ (A) := sup{|λ | : λ ∈ σ(A)}.

Theorem 4. The spectral radius of A is given by:

rσ (A) = lim sup
n→∞

∥An∥
1
n
L (X)

. (2.4)

The series (2.3) converges for |λ |> rσ (A) and diverges if |λ |< rσ (A).
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Proof. By uniqueness of the Laurent series for the analytic function C∋ λ 7→ (λ−A)−1 ∈L (X),
we know that (2.3) holds for |λ | > rσ (A). Also, the series in (2.3) diverges if |λ | < rσ (A),
otherwise it would converge for some point in the spectrum of A. Hence, rσ (A) is the radius of
convergence of the Laurent series in (2.3), and satisfies the well-known formula for radius of
convergence given by (2.4).

The following theorem involves a simple calculation, hence its proof will be omitted.

Theorem 5. The sequence {∥An∥
1
n
L (X)
} converges, and

rσ (A) = lim
n→∞
∥An∥

1
n
L (X)

= inf
n→∞
∥An∥

1
n
L (X)

.

2.3 Compact operators
In this section, we present the definition and main results about compact operators. The

spectrum of a compact operator A is very well characterized. In special, σ(A)\{0} is composed
of isolated eigenvalues of A.

Definition 4 (Compact operator). Let X , Y be Banach spaces over C. We say that a linear
operator K : X → Y is compact if K(B) is precompact in Y whenever B is bounded in X . We
denote by K (X ,Y ) the set of compact linear operators from X into Y , and K (X) := K (X ,X).

Example: Consider X = C ([a,b],C) and k ∈ C ([a,b]× [a,b],C). In particular, k is
uniformly continuous. Define K ∈L (X) by

(Kx)(t) =
∫ b

a
k(t,s)x(s)ds.

It can be easily seen that in fact K ∈L (X), and Arzelà-Ascoli’s Theorem shows that
K ∈K (X).

Theorem 6. Let X , Y be Banach spaces over C. Then K (X ,Y ) is a closed subspace of L (X ,Y ).

Proof. Let {Kn} be a sequence in K (X ,Y ) such that Kn
n→∞−→ K ∈L (X ,Y ). For any ε > 0, there

exists nε ∈ N such that
K(BX

1 (0))⊂ Knε
(BX

1 (0))+BY
ε

2
(0).

Let
{

BY
ε

2
(xi) : xi ∈ Knε

(BX
1 (0)), i = 1, ...,k

}
be a finite cover of Knε

(BX
1 (0)), then the

collection {BY
ε (xi) : i = 1, ...,k} is a covering for K(BX

1 (0)). It follows that K(BX
1 (0)) is totally

bounded, whence it is precompact in Y .

Theorem 7. Let X , Y and Z be Banach spaces over C, A ∈L (X ,Y ), and B ∈L (Y,Z). Then:
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1. If either A ∈K (X ,Y ) or B ∈K (Y,Z), then B◦A ∈K (X ,Z),

2. If A ∈K (X ,Y ), and R(A) is closed in Y , then R(A) is finite dimensional.

Proof. The proof of 1 is trivial. Let us prove 2. Since R(A)⊂ Y is closed, it is a Banach space,
and A : X → R(A) is surjective, hence it follows from the Open Mapping Theorem that A(BX

1 (0))
is an open set in R(A) containing the origin. We conclude that there exists a ball in R(A) which
is contained in A(BX

1 (0)), so this ball is precompact. By a theorem from Riesz (BREZIS, 2011,
Theorem 6.5), R(A) has finite dimension.

Theorem 8. Let X be a Banach space over C and A ∈K (X). If λ ∈ C\{0}, N((λ −A)n) is a
finite dimension Banach space, n = 1,2,3, ....

Proof. It is easy to see that N((λ −A)n) is a closed vector subspace of X , hence it is a Banach
space. Now, for x∈N(λ−A), we have Ix= λ−1Ax, whence I : N(λ−A)→N(λ−A) is compact,
and N(λ −A) is finite dimensional.

For n≥ 2, note that

(λ −A)n = λ
nI +

n

∑
k=1

λ
n−k n!

k!(n− k)!
(−1)kAk. (2.5)

For x ∈ N((λ −A)n), Ix = −λ−nAλ x, where Aλ is the compact operator given by the
summation in (2.5). The same way as before, we conclude that N((λ −A)n) is finite dimensional.

Next we present a part of the relevant theorem called Fredholm Alternative (BREZIS,
2011, Theorem 6.6).

Theorem 9. Let A ∈K (X) and λ ∈ C\{0}, then:

1. R(λ −A) is closed.

2. N(λ −A) = {0}⇒ R(λ −A) = X

Remark 1. In fact, N(λ −A) = {0} ⇐⇒ R(λ −A) = X , as stated in Fredholm Alternative, but
we will only prove and make use of the implication (⇒).

Proof. 1. Let yn = λxn−Axn → y ∈ X , and we will prove that y ∈ R(λ −A). Let dn :=
dist(xn,N(λ −A)). Now since N(λ −A) is finite-dimensional (see Theorem 8), for a fixed
n ∈ N, we may face dn as the distance between xn and a compact set BX

r (0)∩N(λ −A),
for r > 0 big enough. Hence there exists zn ∈ N(λ −A) such that dn = ∥xn− zn∥.

Since zn ∈ N(λ −A), we have

yn = λ (xn− zn)−A(xn− zn). (2.6)
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Claim: {∥xn− zn∥} is bounded. Suppose not, and let {∥xnk− znk∥} be a subsequence such
that ∥xnk − znk∥ → ∞ as k→ ∞. If ωn = (xn− zn)/∥xn− zn∥, it follows from (2.6) that
λωnk −Aωnk → 0 as k→ ∞, and we may assume (passing to a subsequence if needed),
that Aωnk → ω ∈ X as k→ ∞. It follows that λωnk → ω as k→ ∞, and ω ∈ N(λ −A), so
that dist(ωnk ,N(λ −A))→ 0 as k→ ∞. However, for any n ∈ N:

dist(ωn,N(λ −A)) = inf
g∈N(λ−A)

∥∥∥∥ xn− zn

∥xn− zn∥
−g
∥∥∥∥

= inf
h∈N(λ−A)

∥∥∥∥ xn

∥xn− zn∥
− h
∥xn− zn∥

∥∥∥∥= dist(xn,N(λ −A))
dn

= 1,

because the sets in which you take the infimum are the same. That is a contradiction, hence
the claim is proved.

Since A is compact, we may pass to a subsequence if needed and suppose that A(xn−zn)→
ℓ. From (2.6), λ (xn−zn)→ y+ℓ

def
= λ p. Using (2.6) again, and the fact that A is continuous,

we get y = (λ −A)p.

This proves that R(λ −A) is closed.

2. Assume, by contradiction, that

X1 = R(λ −A) ̸= X .

Then X1 is closed in X , hence a Banach space, A(X1) ⊂ X1, and it is easy to see that
A|X1 ∈K (X1). From item 1, X2 := (λ −A)X1 is a closed subspace of X1. Let x ∈ X \X1,
then (λ −A)x ∈ X1 but (λ −A)x /∈ (λ −A)X1 because λ −A is injective, therefore X2 ⊂ X1

properly. Proceeding inductively, we set X0 = X and Xn = (λ −A)nX is a closed proper
subspace of Xn−1, for n = 1,2, .... Using Riesz Lemma (BREZIS, 2011, Lemma 6.1), we
can construct a sequence {xn} such that xn ∈ Xn, ∥xn∥= 1, and dist(xn,Xn+1)≥ 1/2. On
the other hand,

Axn−Axm = z−λxm,

where z :=−(λxn−Axn)+(λxm−Axm)+λxn. Take n > m, so that Xn+1 ⊂ Xn ⊂ Xm+1 ⊂
Xm, and z ∈ Xm+1. It follows that ∥Axn−Axm∥ ≥ dist(λxm,λXm+1) ≥ |λ |/2, whenever
n > m. It contradicts the fact that A is compact.

Corollary 1. Let A ∈K (X) and λ ∈ C \ {0}, then λ ∈ σ(A)⇒ λ ∈ σp(A), that is, λ is an
eigenvalue for A.

Remark 2. Let T ∈L (X). It is easy to see that if N(T n0) = N(T n0+1) for some n0 ∈ N, then
N(T n) = N(T n+1) for all n≥ n0. Hint: N(T n+1) = {x ∈ X : T x ∈ N(T n)}.
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Theorem 10. Let A ∈K (X) and λ ∈ C \ {0}. Then, there exists n0 ∈ N such that N((λ −
A)n+1) = N((λ −A)n), for all n≥ n0.

Proof. The proof is left as an exercise for the reader. Hint: use Riesz Lemma as in the proof of
the second part of Theorem 9.

Definition 5 (Algebraic and geometric multiplicity). Let λ ∈ C be an eigenvalue for A ∈K (X).
We say that N(λ −A) is the eigenspace associated to λ and define the geometric multiplicity
of λ as being the natural number dim N(λ −A). If n0 is the lowest natural number such that
N((λ −A)n0) = N((λ −A)n0+1), we call N((λ −A)n0) the generalized eigenspace associated
to λ , and define the algebraic multiplicity of λ as the natural number dim N((λ −A)n0)

The next result summarizes the properties about the spectrum of a compact operator that
we have seen so far.

Theorem 11. Let A ∈K (X). Then σ(A)\{0}= σp(A)\{0}. Moreover, every point in σ(A)\
{0} is isolated, that is, any sequence of different numbers {λn} in σ(A)\{0} that converges has
zero as limit. As a consequence, σ(A) is countable.

Proof. Yet again we use the Riesz Lemma.

Let {λn} be a sequence of different numbers in σ(A) \ {0} such that λn → λ . From
Corollary 1, λn ∈ σp(A), for all n ∈ N. Let xn ∈ X , xn ̸= 0, such that (λn−A)xn = 0, and define
Xn = span{x1, ...,xn}. Now, since the eigenvalues λn are distinct, {x1, ...,xn} are linearly inde-
pendent and Xn has n dimensions, for each n, and Xn ⊂ Xn+1 with proper inclusion. Furthermore,
(λn−A)Xn ⊂ Xn−1.

By the Riesz Lemma, there exists a sequence {yn}, yn ∈ Xn, such that ∥yn∥ = 1, and
dist(yn,Xn−1)≥ 1/2, for n≥ 2. If 2≤ m < n, we get Xm−1 ⊂ Xm ⊂ Xn−1 ⊂ Xn, and∥∥∥∥Ayn

λn
− Aym

λm

∥∥∥∥= ∥∥∥∥(λm−A)ym

λm
− (λn−A)yn

λn
− ym + yn

∥∥∥∥≥ dist(yn,Xn−1)≥
1
2
. (2.7)

Suppose λn→ λ ̸= 0, then { yn
λn
} is bounded, and {Ayn

λn
} has a convergent subsequence,

which contradicts (2.7). Then λ = 0.

For the last statement, just note that

σ(A)\{0}=
∞⋃

n=1

σ(A)∩
{

λ ∈ C :
1
n
≤ |λ | ≤ n

}
,

which is a countable union of finite sets.

Compact operators appear sometimes as the inverse of an unbounded operator. Hence,
we may use the theory developed in this section to characterize the spectrum of a much bigger
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class of operators. In particular, it will include the operators associated with the Chafee-Infante
equation.

Definition 6 (Compact resolvent). Let X be a Banach space over C and A : D(A)⊂ X → X be a
closed operator with ρ(A) ̸=∅. We say that A has compact resolvent if (λ0−A)−1 ∈K (X)

for some λ0 ∈ ρ(A).

Remark 3. If A has compact resolvent and λ0 ∈ ρ(A) with (λ0−A)−1 ∈K (X), it follows that
for any λ ∈ ρ(A),

(λ −A)−1 = (λ0−A)−1 +(λ0−λ )(λ0−A)−1(λ −A)−1

is compact as well (we used (2.1) and the fact that the composition of a linear operator with a
compact operator is compact).

Proposition 1. Let A : D(A)⊂ X → X have compact resolvent. Then σ(A) = σp(A). Moreover,
σ(A) consists of a sequence of isolated eigenvalues.

Proof. There exists λ0 ∈ ρ(A) such that (λ0−A)−1 ∈K (X). Since 0∈ ρ(λ0−A), σ(λ0−A) =

σp(λ0−A), and σ(λ0−A) is a sequence of isolated eigenvalues. Then σ(A) inherits the same
properties by translation.

The next result gives a practical way of finding operators with compact resolvent.

Proposition 2. Let A : D(A) ⊂ X → X be a closed linear operator and 0 ∈ ρ(A). Define the
normed space Y := (D(A),∥ · ∥+∥A · ∥) (the domain of A endowed with the graph norm). Then,
Y is a Banach space and if Y is compactly embedded in X , A has compact resolvent.

Proof. If a sequence {xn} is Cauchy in Y , then {xn} and {Axn} are Cauchy in X , and both
converge in X . Since A is closed, (xn,Axn)→ (x,Ax) in X×X , which implies xn→ x in Y .

Suppose Y is compactly embedded in X , that is, B bounded in Y implies B precompact
in X . It is easy to see that A : Y → X is closed, which implies that A−1 : X → Y closed, and since
X and Y are Banach, the Closed Graph Theorem implies that A−1 : X → Y is bounded. If B is
bounded in X , A−1B is bounded in Y and precompact in X . This shows that A−1 : X → X is
compact.

2.4 Numerical range
A very simple way to localize the spectrum of an operator is to use its numerical range.

Definition 7 (Numerical range). Let X be a Banach space over C and A : D(A)⊂ X → X be a
linear operator. The numerical range of A is the subset of C given by:

W (A) := {x∗(Ax) : x ∈ D(A), x∗ ∈ X∗, ∥x∥= ∥x∗∥= ⟨x,x∗⟩= 1}.
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Remark 4. The set W (A) is nonempty because of the Hahn-Banach Theorem. In the case X is a
Hilbert space, we can rewrite:

W (A) = {⟨Ax,x⟩ : x ∈ D(A),∥x∥= 1}.

Theorem 12. Let A : D(A)⊂ X → X be a closed, densely defined operator in the Banach space
X . Let W (A) be its numerical range.

1. If λ /∈W (A), then λ −A is injective, has closed range, and satisfies

∥(λ −A)x∥ ≥ d(λ ,W (A))∥x∥, ∀ x ∈ D(A). (2.8)

If, aditionally, λ ∈ ρ(A), then

∥(λ −A)−1∥L (X) ≤
1

d(λ ,W (A))
. (2.9)

2. Let Σ be an open and connected set in C\W (A) and ρ(A)∩Σ ̸=∅, then ρ(A)⊃ Σ, and

∥(λ −A)−1∥L (X) ≤
1

d(λ ,W (A))
, ∀λ ∈ Σ.

Proof. We start proving 1. Suppose λ /∈W (A). If x ∈ D(A), with ∥x∥= 1, there exists x∗ ∈ X∗

such that ∥x∗∥= 1, x∗(x) = 1, then:

0 < d(λ ,W (A))≤ |λ − x∗(Ax)|= |x∗(λx−Ax)| ≤ ∥(λ −A)x∥.

If y ∈ D(A), y ̸= 0, we apply the previous reasoning to the normalization of y, given by
x = y

∥y∥ , which yields ∥(λ −A)y∥ > 0, and ∥(λ −A)y∥ ≥ d(λ ,W (x))∥y∥. The estimates (2.8)
and (2.9) then follow imediately.

Now we prove that the range of λ −A is closed. Indeed, if yn→ y ∈ X , yn = (λ −A)xn,
then ∥yn− ym∥ ≥ d(λ ,W (A))∥xn− xm∥, then {xn} converges in X to a limit x ∈ X . Since λ −A

is closed, (λ −A)x = y, and y ∈ R(λ −A).

Now we prove 2. Let Σ⊂ C\W (A) be an open connected set such that ρ(A)∩Σ ̸=∅.
We will show that Σ∩ρ(A) = Σ. Since Σ is connected and Σ∩ρ(A) ̸=∅, we only need to show
that Σ∩ρ(A) is closed and open in Σ.

Of course Σ∩ρ(A) is open in Σ. Now suppose λn ∈ ρ(A)∩Σ, λn→ λ ∈ Σ. Since λ is in
the open set Σ⊂ C\W (A), it is easy to see that

|λ −λn|< d(λn,W (A)), ∀n≥ n0,

for some n0 ∈ N. It follows that for n≥ n0

|λ −λn|∥(λn−A)−1∥L (X) < 1,

and we can use Theorem 1 with µ = λn0 to assure that λ ∈ ρ(A)∩Σ. Therefore, ρ(A)∩Σ is also
closed in Σ, and we are done.
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2.5 Adjoint and self-adjoint operators

The study of self-adjoint operators is very important in physics (specially in quantum
mechanics). A self-adjoint operator has a very good characterization of its spectrum, namely the
Minimax Theorem (see Theorem 16).

Let (H,⟨·, ·⟩ : H ×H → C) be a Hilbert space over C, and A : D(A) ⊂ H → H be a
densely defined operator.

Theorem 13 (Representation Theorem from Riesz). Let H be a Hilbert space. Every bounded
linear functional f ∈ H∗ = L (H,C) can be represented as an inner product, that is, there
exists z ∈ H such that f (x) = ⟨x,z⟩ for all x ∈ H, where z = z f is unique with this property and
∥z∥= ∥ f∥H∗ .

Definition 8 (Adjoint). Let A : D(A)⊂ X → X be a densely defined operator. The adjoint A∗ of
A is the operator defined by:

D(A∗) = {u ∈ H : D(A) ∋ v
φu7→ ⟨Av,u⟩ ∈ C is bounded}.

For u ∈D(A∗), φu can be extended to a functional in H∗ and we define A∗u as the unique
representative of this functional. In other words, A∗u is the only element in H such that

⟨v,A∗u⟩= ⟨Av,u⟩, ∀ v ∈ D(A).

Definition 9 (Symmetric and self-adjoint). We say that a densely defined operator A : D(A)⊂
H → H is symmetric (or Hermitian) if A⊂ A∗ (that is, ⟨Ax,y⟩= ⟨x,Ay⟩, for all x, y ∈ D(A)).
We say that A is self-adjoint if A = A∗, that is, D(A∗) = D(A) and ⟨Ax,y⟩ = ⟨x,Ay⟩, for all x,
y ∈ D(A).

Remark 5. It is simple to see that A∗ is closed.

Proposition 3. If A : D(A)⊂ H→ H is a symmetric operator and λ is an eigenvalue for A, then
λ is real and

inf
∥x∥=1

⟨Ax,x⟩ ≤ λ ≤ sup
∥x∥=1

⟨Ax,x⟩. (2.10)

Proof. Let v ∈ D(A) be an eigenvector associated to λ . Then

⟨Av,v⟩= ⟨v,Av⟩= ⟨Av,v⟩= λ ⟨v,v⟩= λ∥v∥2.

Therefore, λ∥v∥2 must be real, and λ ∈ R.

The estimate (2.10) follows from the fact that λ = ⟨Av,v⟩, for some v ∈ D(A).
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In what follows, we denote by Γ(B) = {(x,Bx) : x ∈ D(B)} the graph of an operator
B : D(B)⊂ X → X .

Lemma 2. Let A : D(A) ⊂ H → H be a densely defined linear operator in the Hilbert space
(H,⟨·, ·⟩). Consider H×H with the inner product given by ⟨(a,b),(c,d)⟩H×H = ⟨a,c⟩+ ⟨b,d⟩.
Then

Γ(A∗) = {(−Ax,x) : x ∈ D(A)}⊥.

Proof. The proof is direct.

Proposition 4. Let (H,⟨·, ·⟩) be a Hilbert space over C, and A : D(A)⊂ H→ H be self-adjoint,
injective and have dense range. Then A−1 is self-adjoint.

Proof. Since A is self-adjoint, using Lemma 2 we get Γ(A) = {(−Ax,x) : x ∈ D(A)}⊥. With
some adjustments, we get Γ(A−1) = {(Ay,y) : y ∈ D(A)}= {(x,−Ax) : x ∈ D(A)}⊥.

Since A−1 is densely defined, also from Lemma 2 we get

Γ((A−1)∗) = {(−A−1x,x) : x ∈ R(A)}⊥ = {(x,−Ax) : x ∈ D(A)}⊥ = Γ(A−1).

Whence (A−1)∗ = A−1.

Theorem 14. Let (H,⟨·, ·⟩) be a Hilbert space over C, and A : D(A) ⊂ H → H be symmetric
(A⊂ A∗) and surjective. Then A is self-adjoint.

Proof. Claim: A and A∗ are injective.

Indeed, if x ∈ D(A), Ax = 0, then 0 = ⟨Ax,y⟩ = ⟨x,Ay⟩ for all y ∈ D(A), and ⟨x,z⟩ = 0
for all z ∈ H. From Hahn-Banach Theorem, x must be zero.

If y ∈ D(A∗) and A∗y = 0, then ⟨Ax,y⟩= ⟨x,A∗y⟩= 0 for all x ∈ D(A), and we continue
as before to conclude that y = 0.

Now let us prove that A is closed. Indeed, if D(A∗) ⊃ D(A) ∋ xn→ x ∈ H, and Axn =

A∗xn → y ∈ H, we get x ∈ D(A∗) and A∗x = y (using the fact that A∗ is closed). Since A is
surjective, there exists w ∈ D(A) such that Aw = A∗w = A∗x, but since A∗ is injective, w = x ∈
D(A), and Ax = A∗x = y. Hence A is closed and A−1 : H → H is a closed operator between
Banach spaces, whence it is bounded. It follows that D((A−1)∗) = H = D(A−1), and since A is
symmetric, A−1 is symmetric. Hence, A−1 is self-adjoint.

Using Proposition 4, and the fact that R(A−1) = D(A) is dense, we conclude that A is
self-adjoint.

In what follows we present the Friedrichs Extension Theorem, which is very useful to
obtain self-adjoint operators.
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Theorem 15 (Friedrichs). Let X be a Hilbert space over C and A : D(A)⊂ X→ X be a symmetric
linear operator for which there exists α ∈ R such that

⟨Ax,x⟩ ≤ α∥x∥2, ∀x ∈ D(A), (2.11)

or
⟨Ax,x⟩ ≥ α∥x∥2, ∀x ∈ D(A). (2.12)

Then A admits a surjective and self-adjoint extension Ã : D(Ã)⊂ X → X for which the
estimate still holds for all x ∈ D(Ã).

Proof. We only consider the case (2.12), because the other case will then follow considering −A.
Furthermore, we assume α = 1 because the general case follows using the operator A+(1−α)I.

Consider the space D(A) with inner product D(A)×D(A) ∋ (x,y) 7→ ⟨x,y⟩ 1
2

:= ⟨Ax,y⟩ ∈

C and norm D(A) ∋ x 7→ ∥x∥ 1
2
= ⟨Ax,x⟩ 1

2 ∈ R+, which satisfies ∥x∥ 1
2
≥ ∥x∥.

Denote by (Y,⟨·, ·⟩Y ) some completion of D(A) relatively to the inner product ⟨·, ·⟩ 1
2
,

that is, Y is a Hilbert space and there exists a linear application φ : D(A) → Y such that
⟨φ(x),φ(y)⟩Y = ⟨x,y⟩ 1

2
, for all x, y ∈ D(A), and φ(D(A)) dense in Y .

We will show that there is a bijection between Y and a subset of X .

We define the application T : Y →X the following way. Let y∈Y , then there is a sequence
{xn} in D(A) such that y = lim

n→∞
φ(xn). Then {φ(xn)} is Cauchy in Y , and {xn} is Cauchy in X

because
∥φ(xn)−φ(xm)∥Y = ∥xn− xm∥ 1

2
≥ ∥xn− xm∥,

so we define Ty = lim
n→∞

xn (taking the limit in the X norm).

It is simple to see that T is well-defined (does not depend on the selection of {xn}), and
is linear.

In what follows we prove that T is injective, so that T : Y → TY ⊂ X is a bijective linear
application.

Let y ∈ Y with y = lim
n→∞

φ(xn), which implies that {xn} ⊂ D(A) is Cauchy in the norm
∥ · ∥ 1

2
, and suppose

Ty = lim
n→∞

xn = 0. (2.13)

If y ̸= 0, then ∥φ(xn)∥Y = ∥xn∥ 1
2

n→∞−→ a > 0. Using the fact that A is symmetric, we get

2Re⟨Axn,xm⟩ = ⟨Axn,xn⟩+ ⟨Axm,xm⟩−⟨A(xn− xm),(xn− xm)⟩

= ∥xn∥2
1
2
+∥xm∥2

1
2
−∥xn− xm∥2

1
2
.

It follows that

∥2Re⟨Axn,xm⟩−2a2∥ ≤
∣∣∣∥xn∥2

1
2
−a2 +∥xm∥2

1
2
−a2 +∥xn− xm∥2

1
2

∣∣∣ ,
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whence 2Re⟨Axn,xm⟩
n,m→∞−→ 2a2 > 0.

This is a contradiction because, from (2.13), we get

|⟨Axn,xm⟩| ≤ ∥Axn∥∥xm∥
m→∞−→ 0, ∀n ∈ N.

Hence T : Y → TY ⊂ X is a linear bijection.

Note that for any y = lim
n→∞

φ(xn) ∈ Y ,

∥Ty∥= lim
n→∞
∥xn∥ ≤ lim

n→∞
∥xn∥ 1

2
= lim

n→∞
∥φ(xn)∥Y = ∥y∥Y ,

so that T : Y → X is bounded, and T−1 : TY → Y is closed considering the norm of X in the
domain.

Let D̃ = D(A∗)∩ TY . Is is easy to see that D(A) ⊂ D̃ ⊂ D(A∗). Indeed, if x ∈ D(A),
y = φ(x) ∈ Y , and Ty = x, and x ∈ TY .

Let Ã be the restriction of A∗ to D̃. Since A is symmetric, Ã extends A, and we are left to
show that Ã is self-adjoint.

First note that Z := TY is a Hilbert space with the inner product ⟨·, ·⟩Z = ⟨T−1·,T−1·⟩Y .
The norm induced is ∥z∥Z = ∥T−1z∥Y . This norm makes Z complete. Indeed, let {zn} be a
sequence in Z that is Cauchy, then

0←− ∥zn− zm∥Z = ∥T−1zn−T−1zm∥Y ≥ ∥zn− zm∥.

Where we used the boundedness of T . Therefore, zn→ z in X , T−1zn→ f in Y , and
f = T−1z, because T−1 is closed, from which we conclude that z ∈ Z and:

∥zn− z∥Z = ∥T−1zn−T−1z∥Y −→ 0,

and we are done.

Ã is symmetric: Let x, y ∈ D̃, then x = T x̃ and y = T ỹ with x̃, ỹ ∈ Y . Let {xn} and {yn}
be sequences in D(A) such that φ(xn)→ x̃ and φ(yn)→ ỹ. It follows from the definition of T

that x = lim
n→∞

xn and y = lim
n→∞

yn (limits in the norm of X).

It follows from the continuity of the inner product with relation to the norm it induces
that

⟨x,y⟩Z = ⟨x̃, ỹ⟩Y =
〈

lim
n→∞

φ(xn), lim
m→∞

φ(ym)
〉

Y
= lim

n→∞
lim

m→∞
⟨φ(xn),φ(ym)⟩Y = lim

n→∞
lim

m→∞
⟨xn,ym⟩ 1

2
= lim

n→∞
lim

m→∞
⟨Axn,ym⟩.

Similarly, lim
m→∞

lim
n→∞
⟨Axn,ym⟩= ⟨x,y⟩Z .
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But calculating these limits in another way yields:

lim
n→∞

lim
m→∞
⟨Axn,ym⟩= lim

n→∞
⟨Axn,y⟩= lim

n→∞
⟨xn, Ãy⟩= ⟨x, Ãy⟩,

and

lim
m→∞

lim
n→∞
⟨Axn,ym⟩= ⟨Ãx,y⟩.

From which we conclude that ⟨Ãx,y⟩= ⟨x, Ãy⟩, and Ã is symmetric.

Now we need to show that Ã is surjective. Let y∈ X and define the functional f : D(A)→
C given by f (x) = ⟨x,y⟩. It is clear that | f (x)| ≤ ∥x∥∥y∥ ≤ ∥x∥Z∥y∥, and since D(A) is dense in
Z, f can be extended to a continuous functional in the Hilbert space Z. From Theorem 13, there
exists z′ ∈ Z such that:

f (x) = ⟨x,y⟩= ⟨x,z′⟩Z = ⟨Ax,z′⟩, ∀x ∈ D(A),

where the last equality is an exercise for the reader.

Then z′ ∈ D(A∗)∩TY and Ãz′ = A∗z′ = y, and Ã is surjective.

From Theorem 14, Ã is self-adjoint, as desired.

Next we present an important theorem about the spectrum of compact self-adjoint
operators. Its proof can be found in (CARVALHO, 2012), and involves weak topology and
functional analysis.

Theorem 16 (Min-max Theorem). Let H be a Hilbert space over C and A∈K (H) be a compact
and self-adjoint operator such that ⟨Au,u⟩ ≥ 0 for all u ∈ H. Then:

1. λ1 = sup{⟨Au,u⟩ : ∥u∥= 1} is the largest eigenvalue of A, and there exists v1 ∈H, ∥v1∥= 1,
such that λ1 = ⟨Av1,v1⟩, and Av1 = λ1v1.

2. λn = sup{⟨Au,u⟩ : ∥u∥= 1 and u⊥v j, for 1≤ j ≤ n−1} is an eigenvalue for A and there
exists vn ∈ H, ∥vn∥= 1, vn⊥v j for all 1≤ j ≤ n−1, such that λn = ⟨Avn,vn⟩ and Avn =

λnvn.

3. If Vn = {F ⊂ H : F is a n−dimensional linear subspace of H}, then, for n≥ 1:

λn = inf
F∈Vn−1

sup{⟨Au,u⟩ : ∥u∥= 1,u⊥F},

and

λn = sup
F∈Vn

inf{⟨Au,u⟩ : ∥u∥= 1,u ∈ F}.
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2.6 Laplacian and Sturm-Liouville operators
In this section, we study the spectrum and the eigenvectors of the Laplacian and Sturm-

Liouville operators, using the theory we developed in this chapter.

Example 1 (Laplacian). Let X = L2(0,π), with norm and inner product denoted by ∥·∥ and ⟨·, ·⟩,
respectively, and D(A0) := C 2

c ((0,π),R) be the space of functions defined in [0,π] and taking
values in R, twice differentiable and with compact support in (0,π). Define A0 : D(A0)⊂ X→ X

by:
(A0φ)(x) =−φ

′′(x), x ∈ (0,π), φ ∈ D(A0).

Using integration by parts, we can show that A0 is symmetric. Moreover,

⟨A0φ ,φ⟩=
∫

π

0
(−φ

′′)φdx =
∫

π

0
φ
′(x)2dx = ∥φ∥2

H1
0
≥ 2

π2∥φ∥
2.

It follows from Theorem 15 that A0 has a self-adjoint extension A, which satisfies

⟨Aφ ,φ⟩ ≥ 2
π2∥φ∥

2, ∀φ ∈ D(A). (2.14)

In this particular case, we may assume Y = H1
0 (0,π), φ : D(A0)→ Y as the inclusion.

Indeed, D(A0)
H1

0 = H1
0 (0,π). Moreover, if φ , ψ ∈ D(A0),

⟨φ ,ψ⟩H1
0
=
∫

π

0
φ
′
ψ
′ds = ⟨Aφ ,ψ⟩= ⟨φ ,ψ⟩ 1

2
.

And H1
0 (0,π) is in fact a completion of D(A0) with relation to the inner product ⟨·, ·⟩ 1

2
.

Moreover,

D(A∗0) = {φ ∈ L2(0,π) : ∃ φ
∗ ∈ L2(0,π) such that ⟨−u′′,φ⟩= ⟨u,φ∗⟩, for all u ∈ D(A0)},

and this is precisely the space of functions in L2(0,π) that have a second weak derivative in
L2(0,π). Then we conclude that D(A) = H2(0,π)∩H1

0 (0,π), and A is given by Aφ =−φ ′′, for
all φ ∈ D(A), taking the derivative in the sense of distributions.

From Theorem 15, A is surjective, and from (2.14), A is injective, so that 0 ∈ ρ(A).
Moreover, if x, y ∈ [0,π], then, for any φ ∈ D(A),

|φ(x)−φ(y)| ≤ |x− y|
1
2∥φ ′∥L2 = |x− y|

1
2 ⟨Aφ ,φ⟩

1
2 .

Let B be a bounded subset of D(A), with the norm of graph ∥ · ∥G = ∥ · ∥+∥A · ∥. Then
sup
φ∈B
∥φ∥< ∞ and sup

φ∈B
∥Aφ∥< ∞.

It follows that sup
φ∈B

√
⟨Aφ ,φ⟩ < ∞, which implies sup

φ∈B
∥φ ′∥ < ∞. Using Arzelà-Ascoli

Theorem, we conclude that B is precompact in C ([0,π],R), therefore B is precompact in L2(0,π).
From Proposition 2, A has compact resolvent, hence σ(A) = σp(A).
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Now consider the eigenvalue problem

Aφ = λφ ⇐⇒ φ
′′ =−λφ .

The general solution of this equation is φ(x) = a cos(
√

λx)+b sin(
√

λx), but the bound-
ary conditions φ(0) = φ(π) = 0 yields a = 0 and λ = n2 for some n ∈N. Then σ(A) = σp(A) =

{λ1,λ2, ...}, with λn = n2 associated to the normalized eigenvector φn(x) =
√

2
π

sin(nx).

Example 2 (Sturm-Liouville operators). The Sturm-Liouville operators are very important in
physics, and they are also the linear operators associated to the Chafee-Infante equation.

We consider a particular case of Sturm-Liouville operators. Define A : H2(0,π) ∩
H1

0 (0,π)→ L2(0,π) by Av =−v′′+q(x)v, where q : [0,π]→ R is a continuous function.

Let α = | inf
x∈[0,π]

q(x)|, and consider the operator A+αI, given by (A+αI)v = −v′′+

(q(x)+α)v. Define the new function p : [0,π]→ R by p(x) = q(x)+α ≥ 0. We will show that
B : H2(0,π)∩H1

0 (0,π)→ L2(0,π), given by Bv =−v′′+ p(x)v, is self-adjoint, which will imply
that A is self-adjoint — because it is a translation by a real constant of B.

It is simple to see that B is symmetric, using that the Laplacian is symmetric. We only
need to show that B is surjective, so consider the bilinear application between Hilbert spaces
a : H1

0 (0,π)×H1
0 (0,π)→ R given by:

a(u,v) =
∫

π

0
ux(s)vx(s)ds+

∫
π

0
p(s)u(s)v(s)ds.

Note that a is continuous — that is, there exists a constant C ≥ 0 such that

|a(u,v)| ≤C∥u∥H1
0
∥v∥H1

0
, for all u,v ∈ H1

0 (0,π).

Moreover, a is coercive — that is, there exists some α > 0 such that a(v,v)≥ α∥v∥2
H1

0

for all v ∈ H1
0 (0,π). Hence, from Lax-Milgram’s Theorem (BREZIS, 2011, Corollary 5.8), for

each f ∈ L2(0,π), there exists u ∈ H1
0 (0,π) such that∫

π

0
ux(s)vx(s)ds+

∫
π

0
p(s)u(s)v(s)ds =

∫
π

0
f (s)v(s)ds, ∀ v ∈ H1

0 (0,π).

That is, the equation −uxx + p(x)u = f has a weak solution in H1
0 (0,π). Next we need

to conclude regularity for u and we do it the following way. Note that f − p(x)u ∈ L2(0,π),
and since the Laplacian is a bijection (see Example 1), there exists w ∈ H2(0,π)∩H1

0 (0,π)
such that −wxx = f − p(x)u. Now we define the continuous and coercive bilinear form b :
H2(0,π)×H1

0 (0,π)→ R by

b(z,v) =
∫

π

0
zx(s)vx(s)ds,

and the function h ∈ L2(0,π), given by h(x) = f (x)− p(x)u(x). Then b(u,v) = b(w,v) = ⟨v,h⟩,
for all v ∈ H1

0 (0,π). It follows from the uniqueness in Lax-Milgram’s Theorem that u = w ∈
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H2(0,π)∩H1
0 (0,π), and Bu = f . Therefore, B is surjective, hence self-adjoint. We conclude that

A is self-adjoint.

Note that

⟨Bφ ,φ⟩ ≥ ∥φ ′∥2 ≥ 2
π2∥φ∥

2.

Hence, B is injective, and 0 ∈ ρ(B). With the same reasoning as the one we used in
Example 1, we may conclude that B has compact resolvent. It follows that A has compact
resolvent.

The spectrum of A is a strictly increasing sequence of eigenvalues, which we denote
by {µ j} j∈N∗ , with µ j+1 > µ j, and we claim that µ j → ∞ as j→ ∞. Indeed, ρ(B) ⊃ (−∞, 1

π2 )

because of Theorem 12, therefore the spectrum of B can only accumulate at +∞, and it does

accumulate there. Indeed, the normalized eigenvectors of B−1 ∈ K (L2(0,π)) are a Hilbert
basis for L2(0,π) (BREZIS, 2011, Theorem 6.11), and each eigenvalue has finite geometric
multiplicity, therefore B−1 must have infinitely many eigenvalues, accumulating at zero, so that
B has infinitely many eigenvalues, accumulating at +∞.

All the eigenvalues of the Sturm-Liouville operator are simple. Indeed, let v1 and v2 be
solutions of

Av = µ jv ⇐⇒ −v′′+(q(x)−µ j)v = 0,

for some j ∈ N∗. This is a common ODE, and we calculate the Wronskian of v1 and v2 to
determine whether they are linearly independent or dependent. But∣∣∣∣∣v1(0) v2(0)

v′1(0) v′2(0)

∣∣∣∣∣= 0.

Then v1 and v2 are linearly dependent and the claim is proven. This fact is extremely
important because it allows us to conclude information about symmetry of eigenvectors of A,
which will be necessary in Chapter 7.

The next theorem is based on (BIRKHOFF; ROTA, 1989, Chapter 10, Section 7).

Theorem 17. Let v j ∈ H2(0,π)∩H1
0 (0,π) be the eigenvector of A associated to µ j that satisfies

v′j(0) = 1, j ∈ N∗. Then v1(x)> 0 for x ∈ (0,π), and v j vanishes precisely j+1 times in [0,π].

Proof. Consider the eigenvalue problem for the Sturm-Liouville operator:

−v′′(x)+(q(x)−λ )v(x) = 0,

which may be written as

v′ = w

w′ = (q(x)−λ )v.
(2.15)
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Suppose (v(·,λ ),v′(·,λ )) is a continuous solution of (2.15), for the initial conditions
(v(0,λ ),v′(0,λ )) = (0,1). Now we need to find the values of λ for which the associated solution
satisfies the boundary condition v(π,λ ) = 0, and we will have found an eigenvector of the
Sturm-Liouville operator.

Consider the change of variables

v(·,λ ) = r(·,λ )sinα(·,λ )

w(·,λ ) = r(·,λ )cosα(·,λ ).

With some calculations, we obtain the equivalent problem:

α
′ = cos2

α +(λ −q(x))sin2
α

r′ = r(1+q(x)−λ )cosα sinα,
(2.16)

and initial conditions (α(0,λ ),r(0,λ )) = (0,1).

Notice that r > 0, because if r(x) = 0 for some x ≥ 0, then (v,w) = (0,0) is the origin
in the phase plane of (2.15), a contradiction. Therefore, v(π,λ ) = r(π,λ )sinα(π,λ ) = 0 ⇐⇒
sinα(π,λ ) = 0 ⇐⇒ α(π,λ ) = jπ for some j ∈ Z.

It follows from simple comparison results in (BIRKHOFF; ROTA, 1989, Chapter 1,
Section 11, Corollary 1) that for each x ∈ (0,∞), α(x,λ ) is a continuously differentiable and
strictly increasing function of λ ∈ R.

The behavior of the function α(·,λ ) with relation to the first variable is not necessarily
increasing, but it has the following important property: if for some xn > 0, α(xn,λ ) = nπ ,
where n = 0,1,2, ..., then α(x,λ ) > nπ for all x > xn. Indeed, it follows from the differential
equation that α ′(xn,λ ) = 1 > 0. If there exists c > xn such that α(c,λ ) ≤ nπ , then the set
S := {x ∈ (xn,c] : α(x,λ )≤ nπ} has an infimum x∗ > xn that satisfies

α(x,λ )> nπ, for x ∈ (xn,x∗)

α(x∗,λ ) = nπ.
(2.17)

From the differential equation, α ′(x∗,λ )> 0, but from (2.17), and the Mean Value Theo-
rem, α ′(·,λ ) takes negative values arbitrarily close to x∗, and this is a contradiction. Therefore,
we proved that if xn > 0, α(xn,λ ) = nπ , where n ∈ N, then α(x,λ ) > nπ for all x > xn. In
particular, α(x,λ )> 0 for x > 0.

Let us now prove that α(π,λ )
λ→−∞−→ 0. Indeed, let 0 < β < π and 0 < ε < π . Consider

the line segment in the xα-plane joining the points (0,β ) and (π,ε). In this line segment,
α > min{ε,β} > 0 and α < max{ε,β} < π , so that we may take a λ sufficiently negatively
large such that for any point (x,α) lying in the line segment and such that x∈ (0,π), the derivative
α ′(x,λ ) = cos2α +(λ −q(x))sin2

α is smaller than the slope of the line segment. It follows that
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α(x,λ ) remains below the line segment for all x ∈ (0,π], and, in particular, 0 < α(π,λ ) ≤ ε .
This shows that α(π,λ )→ 0 as λ →−∞.

We already know from past observations that A has infinitely many distinct eigenvalues,
so that there exists an infinite set K ⊂ N∗ such that for each k ∈ K, there exists µk ∈ R such that
α(π,µk) = kπ . From the Intermediate Value Theorem and the fact that α(π,λ )→ 0 as λ →−∞,
we conclude that for each j ∈ N∗, there exists µ j ∈ R such that α(π,µ j) = jπ . Then, µ j is an
eigenvalue for A for each j ∈N∗, {µ j} is increasing and is in fact the sequence of all eigenvalues
of A. The associated eigenvector, v j(x) = r(x,µ j)sinα(x,µ j) has exactly j+1 zeros in [0,π],
in the points x ∈ [0,π] such that α(x,µ j) = kπ , for some k ∈ {0,1,2, ..., j}. This completes the
proof.
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CHAPTER

3
SEMIGROUPS

3.1 Global attractors for semigroups
As mentioned in the introduction, in order to unravel part of the asymptotic behavior of

an autonomous differential equation, we make use of the theory of semigroups. In this section
we present the definitions of a semigroup and the most important concepts related to it, and
also the conditions that a semigroup must satisfy in order to have a global attractor. For a
more thorough approach to the topics of this chapter — namely, semigroups, global attractors,
gradient semigroups, generators of semigroups and spectral decomposition of semigroups —,
the reader may consult: (BORTOLAN; CARVALHO; LANGA, 2020), (CARVALHO; LANGA;
ROBINSON, 2013), (TEMAM, 1997).

Let X denote a metric space with metric d and C (X) be the set of continuous maps from
X into itself. Let R+ = {t ∈ R : t ≥ 0} and R− = {t ∈ R : t ≤ 0}.

Given K ⊂ X , r > 0, the r-neighborhood of K is the set defined by Or(K) := {x ∈ X :
d(x,K)< r}, where d(x,K) = inf

y∈K
d(x,y).

Definition 10 (Semigroup). A semigroup in X is a family T = {T (t) : t ≥ 0} ⊂ C (X) that
satisfies:

• T (0)x = x, ∀x ∈ X .

• T (t + s) = T (t)T (s), ∀ t,s≥ 0.

• R+×X ∋ (t,x) 7→ T (t)x ∈ X is continuous.

The space X is called the phase space of T .

A semigroup T = {T (t) : t ≥ 0} is used to study the evolution of a dynamical system in
the phase space X , associating each initial position x0 ∈ X to a final position T (t)x0 after a time
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t ≥ 0 is passed. The conditions imposed guarantee the compatibility of the semigroup with this
interpretation.

Note that X has arbitrary dimension, and can represent some euclidean space Rn, as in
the case of an ordinary differential equation, or a space of functions, as in the case of some partial
differential equations. The main restriction imposed is that the final position T (t)x0 depends only
on the initial position x0 and the time t that has passed, not depending on the initial moment.
Dynamical systems that satisfy this condition are called autonomous.

In order to study the asymptotics of a dynamical system, we first will define some
previous concepts:

Definition 11 (ω-limit). Let T = {T (t) : t ≥ 0} be a semigroup in X , and for any B ⊂ X , let
T (t)B = {T (t)b : b ∈ B}. We define:

• The positive orbit of B under T :

γ
+(B) =

⋃
s≥0

T (s)B.

• The partial orbit of B under T starting on t ∈ R+, t > 0:

γ
+
t (B) =

⋃
s≥t

T (s)B.

• The ω-limit set of B⊂ X under T is defined by

ω(B) =
⋂

t∈R+

γ
+
t (B).

Definition 12 (Global solution and global orbit). A global solution of T = {T (t) : t ≥ 0}
through x ∈ X is a continuous function φ : R→ X such that T (t)φ(s) = φ(t + s), for all t ≥ 0
and s ∈ R, and x = φ(0). If φ(R) is bounded, we say that φ is a bounded global solution. Lastly,
if φ is a constant global solution, it is called a stationary solution for T , and its value is called
an equilibrium for T .

When a global solution φ : R→ X through x exists, we define the global orbit of x

relative to the global solution φ by:

γφ (x) = {φ(t) : t ∈ R}.

If t ∈ R, we write (γφ )
−
t (x) = {φ(s) : s ∈ R and s≤ t}.

Note that if φ is a global solution of T through x ∈ X , the value φ(−t) is a point that is
taken by T (t) to T (t)φ(−t) = x. Because of this, we may say that a global solution is associated
to a possible representation of the past history of a point x ∈ X . With that said, it is important to
note that a global solution through x ∈ X does not need to be unique for negative values of t.
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Definition 13 (α-limit). When a global solution φ : R→ X through x exists, we define the
α-limit set of x relative to φ as

αφ (x) =
⋂
t≤0

(γφ )
−
t (x).

The following characterization of the ω-limit and α-limit sets will be frequently used in
the proofs of the results that follow.

Proposition 5. If B⊂ X , then:

1. ω(B) is closed and

ω(B) = {y ∈ X : there are sequences {tn}n∈N in R+ and {xn}n∈N

in B such that tn
n→∞−→ ∞ and y = lim

n→∞
T (tn)xn}.

(3.1)

2. If φ : R→ X is a global solution of T through x ∈ X , then αφ (x) is closed and

αφ (x) = {v ∈ X : there is a sequence {tn}n∈N in R+ such that

tn
n→∞−→ ∞ and v = lim

n→∞
φ(−tn)}.

(3.2)

Proof. We will prove the first claim, since the proof of the characterization of αφ (x) is analogous.
It is obvious from definition that ω(B) is closed.

Let y ∈ ω(B) =
⋂

t≥0
γ
+
t (B). Then, for each n ∈ N, y ∈ γ

+
n (B). Therefore, there exist

xn ∈ B, and tn ≥ n such that d(T (tn)xn,y)< 1
n . Obviously tn→∞ and y = limn→∞ T (tn)xn, which

concludes one inclusion.

Now, suppose that y ∈ X and there exist sequences {tn}n∈N ⊂ R+, {xn}n∈N ⊂ B with
tn

n→∞−→ ∞ and y = lim
n→∞

T (tn)xn. In this case, for any τ ≥ 0, we have {T (tn)xn}tn≥τ ⊂ γ+τ (B), and

y ∈ γ
+
τ (B). It proves that y ∈ ω(B) and the characterization of ω(B) is proved.

Definition 14 (Distance and Hausdorff semidistance). Given two nonempty subsets A, B⊂ X ,
we define their Hausdorff semidistance dH(A,B) by:

dH(A,B) = sup
{

inf
y∈B

d(x,y) : x ∈ A
}
.

Also, we denote by d(A,B) the usual distance between these sets, given by:

d(A,B) = inf
{

inf
y∈B

d(x,y) : x ∈ A
}
.

Definition 15 (Attraction and absorption). Let A and B be nonempty subsets of X and T =

{T (t) : t ≥ 0} be a semigroup in X . We say that:



46 Chapter 3. Semigroups

1. The set A T -attracts B if lim
t→∞

dH(T (t)B,A) = 0.

2. A T -absorbs B if there exists t0 ⩾ 0 such that T (t)B⊂ A, for all t ⩾ t0.

Remark 6. It follows from this definition that if A T -absorbs B, then A T -attracts B, and if A

T -attracts B, then any ε-neighborhood of A T -absorbs B.

Definition 16 (Invariance). Let T = {T (t) : t ∈ R+} be a semigroup in X . The subset A⊂ X

is said to be T -invariant (resp. positively T -invariant) if T (t)A = A for all t ≥ 0 (resp. if
T (t)A⊂ A for all t ≥ 0).

Now we are ready to define the global attractor of a semigroup.

Definition 17 (Global attractor). Let T be a semigroup in X . A subset A ⊂ X is called its
global attractor if it is nonempty, compact, T -invariant, and T -attracts any bounded subset of
X .

Remark 7. If the semigroup T = {T (t) : t ≥ 0} possesses a global attractor, it is unique. In fact,
if A and ˜A are global attractors for T , then A is bounded, so ˜A T -attracts A . Moreover,
A = T (t)A , for all t ≥ 0, whence:

d((A , ˜A ) = d((T (t)A , ˜A )
t→∞−→ 0,

which implies that A ⊂ ˜A . The other inclusion follows analogously, and we are done.

We have the following characterization for global attractors.

Proposition 6. Let T = {T (t) : t ≥ 0} be a semigroup in X that possesses a global attractor A .
Then:

A = {x ∈ X : there exists a bounded global solution of T through x}.

Proof. Suppose x ∈ X is such that there exists a bounded global solution of T through x, and
call this solution φ : R→ X . Then, φ(R) is bounded and invariant, whence φ(R) ⊂ A , and
x ∈A .

Let x ∈ A , and we will show that there exists a bounded global solution φ : R→ A

through x. Indeed, define φ(t) = T (t)x for t ≥ 0, and note that φ(R+) is bounded because A

attracts {x}.

Since x ∈A = T (1)A , there exists x−1 ∈A such that T (1)x−1 = x and proceding by
induction, we can construct a sequence (not necessarily unique) {x−n}n∈N in A such that x0 = x

and T (1)x−n−1 = x−n for all n ∈ N. Define

φ(t) =

{
T (t)x, t ≥ 0

T ( j+ t)x− j, t ∈ [− j,− j+1), j ∈ N∗.
(3.3)



3.1. Global attractors for semigroups 47

Since A is invariant and bounded, φ : R→A is a well defined bounded global solution
of T through x, its continuity following from the continuity of the semigroup.

Proposition 7. Let T be a semigroup in X . Then A⊂ X is T -invariant if, and only if, for each
x ∈ A there exists a global solution φ : R→ A of T through x.

Proof. Repeat the construction in the proof of the last proposition.

Now we intend to conclude some properties about the ω-limit of a set based on properties
of the set and the semigroup.

Proposition 8. Let T = {T (t) : t ≥ 0} be a semigroup in X and K be a compact subset of
X . Suppose K T -attracts a nonempty compact set K1 ⊂ X , then γ+(K1) is precompact and
∅ ̸= ω(K1)⊂ K.

Proof. First we prove the following claim: if {xn}n∈N is a sequence in X such that

d(xn,K)
n→∞−→ 0,

then {xn}n∈N has a convergent subsequence to a point in K.

Indeed, for any m ∈ N, let nm ∈ N be such that d(xnm ,K)< 1/m, so that there exists an
ym ∈ K such that d(xnm,ym) <

1
m . We can pass to a subsequence and assume ym

m→∞−→ y0 ∈ K,
whence:

d(xnm,y0)≤ d(xnm ,ym)+d(ym,y0)
m→∞−→ 0,

and the claim is proven.

Now, note that for any ε > 0, there exists a t0 ≥ 0 such that:

T (t)K1 ⊂ O ε

2
(K), for t ≥ t0.

Consider a finite covering of K given by {B ε

2
(xi) : i = 1, ...,N} with x1, ..., xN ∈ K. It is

easy to see that {Bε(xi) : i = 1, ...,N} covers
⋃

t≥t0 T (t)K1, so that this last set is totally bounded.
Since K and

⋃
0≤t≤t0 T (t)K1 are compact, hence totally bounded, it follows that γ+(K1)∪K is

totally bounded.

Now we will prove that γ+(K1)∪K is complete, which will imply that γ+(K1)∪K is
compact. Indeed, let {xn} ⊂ γ+(K1)∪K be a Cauchy sequence.

Suppose first that there exists t̃ ≥ 0 such that {xn : n∈N} ⊂K∪
(⋃

0≤t≤t̃ T (t)K1
)
. Hence,

{xn} is convergent to an element of K∪
(⋃

0≤t≤t̃ T (t)K1
)
, which is also an element of γ+(K1)∪K.
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Now suppose that for any m ∈ N, there exists an nm ∈ N such that xnm ∈
⋃

t>m T (t)K1.
Then, take tm > m and ym ∈ K1 such that xnm = T (tm)ym, and since K attracts K1, the following
holds:

d(xnm ,K)≤ dH(T (tm)K1,K)
m→∞−→ 0.

From the first claim, it follows that {xnm}m has a further subsequence that converges to
an element of K. Since {xn} is Cauchy, it converges itself to an element of K, and we are done.

We just proved that γ+(K1)∪K is compact, and γ+(K1) is precompact.

For all t ≥ 0, γ
+
t (K1) is compact and nonempty, and γ

+
t (K1) ⊂ γ

+
s (K1) for s ≤ t. It

implies that the family {γ+t (K1)}t∈R+ has the finite intersection property, and since it is a family
of subsets of the compact γ+(K1), it follows from a basic topology theorem that:

ω(K1) =
⋂
t≥0

γ
+
t (K1) ̸=∅.

To prove that ω(K1) ⊂ K, suppose y ∈ ω(K1), and for any ε > 0, there exists a t0 ≥ 0
such that:

y ∈ γ
+
t0 (K1)⊂Oε(K),

so d(y,K)≤ ε and since ε is arbitrary, y ∈ K.

Lemma 3. Let T = {T (t) : t ≥ 0} be a semigroup in X and B ⊂ X . Then ω(B) is positively
T -invariant. If ω(B) is compact and T -attracts B, then ω(B) is T -invariant.

Proof. If ω(B) =∅ then there is nothing to prove. Assume then that ω(B) ̸=∅ and fix t ≥ 0.
From Proposition 5, given y ∈ ω(B) there exist sequences {tn}n∈N ⊂ R+ with tn

n→∞−→ ∞ and
{xn}n∈N in B such that y = lim

n→∞
T (tn)xn. It follows from the continuity of T (t) that T (t)y =

lim
n→∞

T (t + tn)xn and hence T (t)y ∈ ω(B). Hence ω(B) is positively T -invariant.

Suppose now that ω(B) is compact and T -attracts B, then we must show that ω(B)⊂
T (t)ω(B), for all t ≥ 0. For y ∈ ω(B) there are sequences {tn} with tn→ ∞ and {xn} in B such
that y = lim

n→∞
T (tn)xn. If t ∈ R+, we can redefine {tn} and {xn} passing to subsequences so that

tn ≥ t for all n ∈ N. Therefore, T (t)T (tn− t)xn = T (tn)xn→ y ∈ ω(B) as n→ ∞. Since ω(B) is
compact and T -attracts B we have d(T (tn− t)xn,ω(B)) n→∞−→ 0, and from the first claim proved
in Proposition 8, the sequence {T (tn− t)xn}n∈N has a subsequence (which we denote the same)
that converges to some x ∈ ω(B). Hence, by continuity of T (t), we have T (t)x = y. Therefore
ω(B)⊂ T (t)ω(B), for all t ∈ R+, and along with what was proved in the last paragraph, we get
T (t)ω(B) = ω(B) for all t ∈ R+, which completes the proof.
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The following lemma presents a characterization for the α-limit of a point. Its proof is
similar to the ones presented so far and will be omitted.

Lemma 4. Let x ∈ X and suppose φ : R→ X is a global solution through x such that φ(R−) is
compact. Then, αφ (x) is nonempty, compact, invariant and for every ε > 0, there exists a t0 ≥ 0
such that φ(−t) ∈ Oε(αφ (x)) for all t ≥ t0.

Lemma 5. Suppose T = {T (t) : t ≥ 0} is a semigroup in X , B⊂ X is connected and ω(B) is
compact and attracts B. Then ω(B) is connected.

Proof. Since ω(B) attracts B, it follows that dH(γ
+
t (B),ω(B)) t→∞−→ 0. Indeed, given ε > 0, there

exists a t0 ≥ 0 such that T (t)B⊂ O ε

2
(ω(B)), for t ≥ t0, whence γ

+
t (B)⊂Oε(ω(B)).

Since [0,∞)× X ∋ (s,x) 7→ T (s)x ∈ X is continuous, and [t,∞)× B is connected, it
follows that γ

+
t (B) is connected, for all t ≥ 0.

Suppose that ω(B) is a disjoint union of nonempty compact sets ω1 and ω2, such that
d(ω1,ω2)> 2ρ . For some t0 ≥ 0, γ

+
t0 (B)⊂Oρ(ω(B)), but ω(B)⊂ γ

+
t0 (B), which contradicts the

fact that γ
+
t0 (B) is connected. This concludes the proof.

The following concepts are used to characterize semigroups that have global attractors.

Definition 18 (Bounded and eventually bounded). A semigroup T in X is said to be eventually
bounded if for every B⊂ X bounded, there exists tB ≥ 0 such that γ

+
tB (B) is bounded. Also, T

is said to be bounded if γ+(B) is bounded whenever B⊂ X is bounded.

Definition 19 (Asymptotically compact). A semigroup T is said to be asymptotically compact
if for any closed, bounded, nonempty and positively invariant subset B ⊂ X , there exists a
compact J ⊂ B that attracts B.

We have the following characterization for an asymptotically compact semigroup:

Proposition 9. Let T = {T (t) : t ≥ 0} be a semigroup in X and suppose that {T (tn)xn : n ∈ N}
is precompact whenever {xn : n ∈N} and {T (tn)xn : n ∈N} are bounded in X and tn→ ∞. Then,
T is asymptotically compact.

On the other hand, if T is asymptotically compact and eventually bounded, then
{T (tn)xn : n ∈ N} is precompact whenever {xn} is a bounded sequence in X and tn→ ∞.

Proof. Assume the first hypothesis and suppose that B⊂ X is closed, bounded, nonempty and
positively invariant. We will prove that ω(B) is nonempty, compact, attracts B and ω(B)⊂ B.

Indeed, let {xn} be a sequence in B and tn→∞, then {T (tn)xn} is also in B, so {T (tn)xn}
has a subsequence that converges to y ∈ X , and by Proposition 5, y ∈ ω(B), and ω(B) is not
empty.
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Now let us prove that ω(B) is compact. Let {yn} be a sequence in ω(B), and note that,
for each n ∈ N, yn ∈ γ

+
n (B) and it can be written as yn = lim

k→∞
T (tn

k )x
n
k with tn

k ≥ n and xn
k ∈ B,

for all k ∈ N. For each n ∈ N, choose kn ∈ N such that d
(

yn,T (tn
kn
)xn

kn

)
< 1

n . The sequence{
T (tn

kn
)xn

kn

}
n

satisfies tn
kn
≥ n, and both

{
xn

kn

}
n

and
{

T (tn
kn
)xn

kn

}
n

are contained in B, so it

follows from the hypothesis that
{

T (tn
kn
)xn

kn

}
n

has a convergent subsequence, which we denote
the same, converging to an element y ∈ X . It follows that:

d (y,yn)≤ d
(
yn,T

(
tn
kn

)
xn

kn

)
+d
(
T
(
tn
kn

)
xn

kn
,y
) n→∞−→ 0.

Hence, {yn} has a convergent subsequence, from which follows that ω(B) is precompact,
and also compact, since it is closed.

It follows from the positive invariance of B that ω(B) ⊂ B, and we only are left to
prove that ω(B) T -attracts B. Indeed, suppose not, then, there exists an ε0 > 0 and a sequence
tn→ ∞ such that dH(T (tn)B,ω(B))> ε0. Hence, for each n ∈ N, there exists xn ∈ B such that
d(T (tn)xn,ω(B))> ε0. Yet, {T (tn)xn} contains a subsequence converging to an element of ω(B),
which is a contradiction.

Now, suppose T is asymptotically compact and eventually bounded. If {xn} is bounded
in X and tn → ∞, there exists t0 ≥ 0 such that B = γ

+
t0 ({xn : n ∈ N}) is bounded. Moreover,

B is positively invariant, hence there exists a compact J ⊂ B that attracts B. In particular,
d(T (tn)xn,J)

n→∞−→ 0, and since J is compact, {T (tn)xn} has a convergent subsequence, and is
precompact.

Finally, we present sufficient conditions to ensure that ω(B) is nonempty, compact and
attracts B, and is invariant.

Lemma 6. If T = {T (t) : t ≥ 0} is asymptotically compact and B⊂ X is a nonempty subset of
X such that γ

+
t0 (B) is bounded for some t0 ≥ 0, then ω(B) is nonempty, compact, invariant and

attracts B.

Proof. From the continuity of T (t), it follows that T (t)γ+t0 (B)⊂ γ
+
t0 (B), for t ≥ 0, so there exists

a compact J ⊂ γ
+
t0 (B) that attracts γ

+
t0 (B), hence there exists a sequence tn→ ∞ such that

T (t)γ+t0 (B)⊂ O 1
n
(J), for t ≥ tn. (3.4)

In particular, let {xn} be a sequence in B, then {T (tn)T (t0)xn} is bounded, {T (t0)xn} is
bounded, and tn→ ∞, and from Proposition 9, {T (tn)T (t0)xn} has a subsequence that converges
to an element of ω(B), hence ω(B) ̸=∅.
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Now let us prove that ω(B)⊂ J, so that ω(B) is compact. Indeed, let y ∈ ω(B). Then y

can be written as y = lim
n→∞

T (tn)xn, for tn ≥ t0 for all n ∈ N, then y = lim
n→∞

T (tn− t0)T (t0)xn, and
from (3.4), we get

d(T (tn− t0)T (t0)xn,J)
n→∞−→ 0, (3.5)

and since J is compact, it follows from a claim that has already been proved that y ∈ J.

Now we only need to show that ω(B) T -attracts B, and it will follow from Lemma 3 that
ω(B) is invariant. Suppose ω(B) does not attract B. Then, there exists an ε0 > 0 and a sequence
tn→∞, tn ≥ t0, such that dH(T (tn)B,ω(B))> ε0. Hence, for each n∈N, there exists xn ∈ B such
that d(T (tn)xn,ω(B)) > ε0. Since d(T (tn− t0)T (t0)xn,J)

n→∞−→ 0, {T (tn)xn} has a subsequence
that converges, and its limit is in ω(B). This is a contradiction, and we are done.

Lemma 7. Suppose B is a nonempty subset of X and γ
+
t0 (B) is compact for some t0 ≥ 0. Then

ω(B) is nonempty, compact, invariant and attracts B.

Proof. We know that
{

γ
+
t (B) : t ≥ t0

}
is a family of closed subsets of the compact set γ

+
t0 (B),

and has the finite intersection property, hence ω(B) =
⋂

t≥t0 γ
+
t (B) is nonempty and compact.

Now we only need to prove that ω(B) attracts B, and it will follow from Lemma 3 that
ω(B) is invariant. Suppose not, so there exists an ε0 > 0 and sequences tn→ ∞, xn ∈ B such
that d(T (tn)xn,ω(B))> ε0 for all n ∈N. However, there exists a n1 ∈N such that {T (tn)xn : n≥
n1} ⊂ γ

+
t0 (B), which is compact. Hence {T (tn)xn} has a convergent subsequence and the limit

belongs to ω(B), which contradicts d(T (tn)xn,ω(B))> ε0 for all n ∈ N.

Definition 20 (Conditionally eventually compact). A semigroup T = {T (t) : t ≥ 0} is said to
be conditionally eventually compact if for any B⊂ X bounded and positively invariant, there
exists a tB ∈ R+ such that T (tB)B is compact. Moreover, T is said to be eventually compact if
for any B⊂ X bounded, there exists tB ∈ R+ such that T (tB)B is compact.

Theorem 18. A conditionally eventually compact semigroup is asymptotically compact.

Proof. Let {T (t) : t ≥ 0} be a conditionally eventually compact semigroup and suppose B⊂ X

is nonempty, closed, bounded and T (t)B⊂ B for all t ≥ 0. Then, there exists tB ≥ 0 such that
T (tB)B is precompact. We claim that γ

+
tB is compact. Indeed, if {xn} is a sequence in γ

+
tB , for

each n ∈N, there exist tn ≥ 0, yn ∈ B such that xn = T (tn)T (tB)yn = T (tB)T (tn)yn and since B is
positively invariant, {xn} is a sequence in T (tB)B and has a convergent subsequence.

It follows from Lemma 7 that ω(B) ⊂ B is nonempty, compact and attracts B, which
concludes the proof that {T (t) : t ≥ 0} is asymptotically compact.
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Definition 21 (Point/bounded/compact-dissipative). We say that a semigroup T is point-
dissipative (resp. bounded-dissipative, compact-dissipative) if there exists a bounded subset
B⊂ X which T -attracts any point (resp. any bounded set, any compact set) of X .

Lemma 8. Let T = {T (t) : t ≥ 0} be a point-dissipative and asymptotically compact semigroup
in X . Suppose that if K is compact, γ

+
tK (K) is bounded for some tK ∈ R+. Then T is compact-

dissipative.

Proof. Since T is point-dissipative, there exists a nonempty bounded set B which absorbs points
of X . Define U := {x ∈ B : γ+(x)⊂ B}. It is easy to see that U ̸=∅, γ+(U) =U , U is bounded
and absorbs any point of X . Moreover, γ+(U) is positively invariant. It follows that there exists
a compact K, K ⊂ γ+(U) = U , which attracts U . Since U absorbs points and K attracts U , it
follows that K attracts points of X .

Now, let us prove that for some neighborhood V of K, γ
+
t (V ) is bounded for some t ≥ 0.

Suppose not, then for any n ∈ N, γ+n (O 1
n
(K)) is unbounded, hence there exists xn ∈ O 1

n
(K),

tn ≥ n, such that d(T (tn)xn,0) > n. The sequence {T (tn)xn} is unbounded, xn → y ∈ K and
tn→ ∞. It follows that the set {xn : n ∈ N} is compact, but γ+m ({xn : n ∈ N}) is not bounded for
any m ∈ N because it contains {T (tn)xn : n≥ m}. This contradicts an hypothesis.

Let V be an ε-neighborhood of K and tV ≥ 0 be such that γ
+
tV (V ) is bounded. If x ∈ X ,

there exists tx ≥ 0 such that T (t)x ∈ V for t ≥ tx. Since T (tx) is continuous, there exists a
neighborhood Ox of x such that T (tx)Ox ⊂V . If t ≥ tx + tV , T (t)Ox ⊂ γ

+
tV (V ). It follows that for

any x ∈ X , γ
+
tV (V ) absorbs some neighborhood of x, which implies that γ

+
tV (V ) absorbs compact

sets of X , hence T is compact-dissipative.

Proposition 10. Let T = {T (t) : t ≥ 0} be a semigroup in X . If K is compact and T -attracts
itself, then ω(K) =

⋂
t≥0 T (t)K.

Proof. It follows from definition that
⋂

t≥0 T (t)K ⊂ ω(K). For the other inclusion, it follows
from Proposition 8 that γ+(K) is precompact and ∅ ̸= ω(K) ⊂ K. From Lemma 7, ω(K) is
invariant, whence ω(K) = T (t)ω(K)⊂ T (t)K for all t ≥ 0, which proves the other inclusion.

The next theorem gives a characterization of semigroups that possess a global attractor.

Theorem 19. A semigroup T = {T (t) : t ≥ 0} has a global attractor A if, and only if, T is
point-dissipative, eventually bounded and asymptotically compact.

Proof. Suppose T is point-dissipative, eventually bounded and asymptotically compact, then by
Lemma 8, T is compact-dissipative. Let C be a bounded subset of X which T -absorbs compact
sets of X , and B := {x ∈C : γ+(x)⊂C}. It is easy to see that B is nonempty, absorbs compacts of
X and is positively invariant, hence T (t)B⊂ B for all t ≥ 0. Since T is asymptotically compact,
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there exists a compact set K ⊂ B that attracts B, and, as a consequence, K attracts any compact
set in X .

Consider the set A = ω(K). Since K T -attracts itself, it follows from Proposition 8
and Lemma 7 that A is nonempty, compact and invariant. If J ⊂ X is compact, K T -attracts
J and it follows from the same lemma and proposition that ω(J)⊂ K, ω(J) T -attracts J, and
ω(J) = T (s)ω(J)⊂ T (s)K for all s≥ 0, and it follows from Proposition 10 that ω(J)⊂ ω(K).
Since ω(J) T -attracts J, ω(K) also T -attracts J.

Let B be a bounded subset of X . Since T is asymptotically compact and eventually
bounded, it follows from Lemma 6 that ω(B) is nonempty, compact, invariant and T -attracts B.
Hence, using J = ω(B) in the last paragraph claim, and the fact that ω(B) is invariant, we get
ω(ω(B)) = ω(B)⊂A , from which A attracts B. Hence, A is the global attractor for T .

Suppose now that T has a global attractor A . Then it is easy to see that T is eventually
bounded — since B bounded is attracted by A , and T is point dissipative — since A attracts
points. To see that T is asymptotically compact, we use Proposition 9. Suppose {xn} is bounded
and tn→ ∞, then A attracts {xn : n ∈ N}, and d(T (tn)xn,A )

n→∞−→ 0, and since A is compact,
{T (tn)xn} has a convergent subsequence, whence T is asymptotically compact.

3.2 Gradient semigroups
A very important kind of semigroup is the so called gradient semigroup. It arises from

real world problems in which there is some kind of energy that is dissipated along the time,
forcing the system to occupy states that are each time more basic. As it will be seen, the global
attractor of a gradient semigroup can be very well characterized.

We recall that an equilibrium for a semigroup is an unitary invariant set. In this section
we study a semigroup T = {T (t) : t ≥ 0} that has a set of equilibria

E = {x ∈ X : T (t)x = x ∀ t ≥ 0}. (3.6)

Definition 22 (Gradient semigroup). Let T = {T (t) : t ≥ 0} be a semigroup in X and E be its
set of equilibria. We say that T is gradient if there is a continuous function V : X → R such
that:

1. The map R+ ∋ t 7→V (T (t)x) ∈ R is decreasing, for each x ∈ X .

2. If V (T (t)x) =V (x),∀ t ≥ 0, then x ∈ E .

The function V is called the Lyapunov function of T .

In what follows, we characterize the asymptotic behavior and global attractor of a gradient
semigroup.
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Lemma 9. Let T = {T (t) : t ≥ 0} be a gradient semigroup and E be its set of equilibria. For
any x ∈ X , ω(x)⊂ E , and if there exists a global solution φ : R→ X through x, then αφ (x) is a
subset of E .

If T has a global attractor and E only has isolated points, then E ⊂A is finite. In this
case, for each x ∈ X , ω(x) is an unitary set, and if φ : R→ X is a global solution through x ∈ X ,
αφ (x) is an unitary set.

Proof. We only consider the ω-limit, because the proofs for the α-limit are analogous. Suppose
ω(x) ̸=∅, and y ∈ ω(x). It follows from the characterization 5 that there exists an increasing
sequence {tn}, with tn→ ∞ and y = lim

n→∞
T (tn)x. The function R ∋ t 7→V (T (t)x) is decreasing

and V (T (tn)x)
n→∞−→ V (y) =: c ∈ R. It follows that V (T (t)x) t→∞−→ c, and V ≡ c in ω(x). Since

ω(x) is positively invariant, T (t)y ∈ ω(x) and V (T (t)y) =V (y), for all t ∈ R.

If T has a global attractor A , E ⊂A and since A is compact, E is finite. Since ω(x)

is connected (Lemma 5), ω(x) is an unitary set.

Definition 23 (Unstable and stable sets). Let T = {T (t) : t ≥ 0} be a semigroup in X and A be
a subset of X . We define the unstable set of A by:

W u(A) := {y ∈ X : there is a global solution ξ : R→ X through y such that ξ (t) t→−∞−→ A},

and the stable set of A is defined by:

W s(A) := {y ∈ X : T (t)y t→∞−→ A}.

Finally, given a δ -neighborhood Oδ (A) of A, the local unstable set of A and local stable
set of A are defined, respectively, by

W u,δ
loc (A) := {y ∈ X : there is a global solution ξ : R→ X through y such that

ξ (t) ∈ Oδ (A), ∀ t ≤ 0, and ξ (t) t→−∞−→ A},

and
W s,δ

loc (A) := {y ∈ X : T (t)y ∈ Oδ (A), ∀ t ≥ 0, and T (t)y t→∞−→ A}.

Theorem 20. Let T = {T (t) : t ≥ 0} be a gradient, eventually bounded and asymptotically
compact semigroup and let E , its set of equilibria, be bounded. Then T has a global attractor
A =W u(E ). If E = {e1, ...,en}, then A =

⋃n
i=1W u(ei). Finally, if A is subset of a connected

bounded set, then A is connected.

Proof. Since T is asymptotically compact and eventually bounded, we may use Lemma 6 to
assure that ω(x) attracts x, and from the fact that T is gradient, it follows that ω(x)⊂ E . Since
E is bounded and attracts points, T is point-dissipative. From Theorem 19, T has a global
attractor A .
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Let x ∈A , then there exists a bounded global solution φ of T through x (see Proposition
6). Since φ(R) is invariant and attracted by A , we have φ(R)⊂A . From Lemma 4 and Lemma
9, ∅ ̸= αφ (x)⊂ E , and φ(t) t→−∞−→ E . Hence A ⊂W u(E ).

If x ∈W u(E ), there exists a global solution φ through x such that φ(t) t→−∞−→ E , and since
ω(x)⊂ E attracts x, we also have φ(t) t→∞−→ E . Hence φ(R) is invariant and bounded, from which
φ(R)⊂A , and x ∈A . This proves the inverse inclusion, and A =W u(E ).

If E = {e1, ...,en}, we get the equality W u(E ) =
⋃n

i=1W u(ei) using the fact that α-limits
of points are unitary.

Suppose now that A ⊂ B for B bounded and connected. Let A be the disjoint union of
two compacts A1 and A2, such that d(A1,A2) = 2ρ > 0. Since A T -attracts B, there exists
t0 ≥ 0, such that T (t0)B⊂Oρ(A ), but T (t0)B⊃ T (t0)A = A , and this contradicts the fact that
T (t0)B is connected.

The following results are related to the concept of stability and hyperbolicity of equilibria.

Lemma 10. Let T = {T (t) : t ≥ 0} be a semigroup and y∗ be an equilibrium for T . Given
t ∈ R+, ε > 0, there exists a δ > 0 such that {T (s)y : 0≤ s≤ t, y ∈ Bδ (y∗)} ⊂ Bε(y∗).

Proof. It follows from the continuity of R×X ∋ (t,x) 7→ T (t)x ∈ X .

Definition 24 (Stability). Let {T (t) : t ≥ 0} be a semigroup in X and y∗ be one of its equilibria.
We say that y∗ is stable if for any ε > 0, there exists a δ > 0 such that if x ∈ Oδ (y∗), then
γ+(x) ⊂ Oε(y∗). We say that y∗ is asymptotically stable if it is stable and there exists η > 0
such that for any x ∈ Oη(y∗), we have T (t)x t→∞−→ y∗.

Lemma 11. Let T = {T (t) : t ≥ 0} be a gradient semigroup with a global attractor A and a set of
equilibria E = {ei : 1≤ i≤ n}. Let V : X→R be its Lyapunov function and V (E ) = {α1, ...,αp},
with αi < αi+1, 1≤ i≤ p−1.

If 1 ≤ j ≤ p− 1 and α j ≤ r < α j+1, then Xr = {z ∈ X : V (z) ≤ r} is positively T -
invariant and {Tr(t) : t ≥ 0}, the restriction of {T (t) : t ≥ 0} to Xr, has a global attractor A j

given by:

A j =
⋃
{W u(el) : V (el)≤ α j}. (3.7)

In particular, V (z)≤ α j for z∈A j, α1 = min{V (x) : x ∈ X}, and A 1 = {e∈ E : V (e) =

α1} consists of asymptotically stable equilibria.

Proof. It follows from the definition of Lyapunov function that Xr is positively invariant.
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The semigroup {Tr(t) : t ≥ 0} is point dissipative, asymptotically compact and eventually
bounded, inheriting those properties from T . It follows that {Tr(t) : t ≥ 0} has a global attractor
A j, and is gradient with Lyapunov function Vr =V |Xr . Hence, (3.7) holds.

Now we prove the asymptotical stability of the equilibria {e ∈ E : V (e) = α1}. Define:

δ0 =
1
2

min{d(x,y) : x,y ∈A 1, x ̸= y}.

Let e∈ E be such that V (e)=α1 and suppose it is not stable. Then, there exists 0< ε < δ0

and sequences {xk} in X , xk → e, and {tk} in R+ with d(T (tk)xk,e) ≥ ε and d(T (t)xk,e) < ε

for all 0 ≤ t < tk. From Lemma 10, tk → ∞ and we use Proposition 9 to take a convergent
subsequence of {T (tk)xk}, which we denote the same. Let y be its limit. It follows that

V (y) = lim
k→∞

V (T (tk)xk)≤ lim
k→∞

V (xk) = α1.

Since α1 is the global minimum of V , we get V (T (t)y) = V (y) = α1, whence y ∈A 1

and d(y,e) ≥ ε . However, {T (tk− 1)xk} also has a convergent subsequence z, which belongs
to A 1 ∩Oε(e) (because d(T (t)xk,e) < ε for all 0 ≤ t < tk). Since d(z,e) < δ0, z = e and
e = T (1)e = T (1)z = y, which is a contradiction. Hence, e is stable.

Now we only need to show that there is a neighborhood V of e such that e attracts
each point in V . Indeed, using the stability, there exists δ > 0 such that for x ∈ V := Oδ (e),
γ+(x) ∈ Oδ0(e). Then ω(x) ⊂ Oδ0(e). Since ω(x) is a unitary set contained in E , ω(x) = e.
Since ω(x) attracts x, we are done.

An important concept for the study of equilibria is the topological hyperbolicity, which
is presented as following:

Definition 25 (Topological hyperbolicity). We say that φ ∈ E is topologically hyperbolic if
{φ} is an isolated invariant set. Equivalently, there exists δ > 0 such that if ξ : R→ X is a global
solution that satisfies supt∈R∥ξ (t)−φ∥< δ , then ξ (t) = φ for all t ∈ R.

A direct consequence of that is the following lemma.

Lemma 12. Let T = {T (t) : t ≥ 0} be an asymptotically compact semigroup. Suppose U , V

are open subsets of X with U ⊂V and such that A is the maximal T -invariant subset of V . If
for some u0 ∈ X , t0 ≥ 0, we have T (t)u0 ∈U for all t ≥ t0, then dH(T (t)u0,A)→ 0 as t → ∞.
Analogously, if ξ is a global solution for T and for some t0 ≥ 0 we have ξ ((−∞,−t0)) ∈U ,
then dH(ξ (t),A)→ 0 as t→−∞.

It follows that if φ ∈ E is topologically hyperbolic and η is a global solution for T such
that supt≥t0∥η(t)−φ∥< δ , for some t0 ≥ 0, then η(t) t→∞−→ φ . And if supt≤−t0∥η(t)−φ∥< δ ,
for some t0 ≥ 0, then η(t) t→−∞−→ φ .
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Remark 8. For a gradient semigroup, if there is a finite number of equilibria, they are all
topologically hyperbolic.

Indeed, let T = {T (t) : t ≥ 0} be a gradient semigroup with Lyapunov function V .
Define δ := 1

2min{d(y1,y2) : y1,y2 ∈ E , y1 ̸= y2}. Then, if ξ : R→ X is a global solution for T

such that ξ (t) ∈ Oδ (φ), for all t ∈ R, we have ξ (R)⊂A .

Let y = ξ (0). Since T is asymptotically compact and eventually bounded, it follows
from Lemma 6 that ω(y) is nonempty and attracts y. But ω(y) ⊂ E , so that ω(y) = φ , and
T (t)y = ξ (t) t→∞−→ φ . Analogously, from Lemma 4, we have ξ (t) t→−∞−→ φ . For any t̃ ∈ R, by the
properties of Lyapunov functions, we get

V (ξ (t̃))≤ lim
t→−∞

V (ξ (t)) =V (φ) = lim
t→∞

V (ξ (t))≤V (ξ (t̃))⇒V (ξ (t̃)) =V (φ)

Hence V is constant in ξ (R), so that for any t0 ∈ R, V (T (t)ξ (t0)) = V (ξ (t0)) for all
t ≥ 0, which implies ξ (t0) ∈ E , so that ξ (t0) = φ , because of the definition of δ .

3.3 Semigroups and their generators
In this section we study the association of a semigroup to the linear Cauchy problem

ẋ = Ax, x(0) = x0 in the phase space X , where A : D(A) ⊂ X → X is a linear operator. In
particular, we study the relations between the properties of A and the properties of the semigroup
associated to the Cauchy problem generated by it. The analysis in this section will be focused on
characterizing the semigroups associated to an operator A when −A is sectorial (see Definition
28), because the theory of parabolic diferential equations will be built using sectorial operators.
The reader may find several results about semigroups associated to other kinds of operators in
(BREZIS, 2011) and (CARVALHO, 2012).

First we present the definition of linear semigroup, which is a little bit different from the
definition of semigroup we have worked with so far (see Definition 10). Let X be a Banach space
with norm ∥ · ∥.

Definition 26 (Linear semigroup). A linear semigroup in X is a family T = {T (t) : t ≥ 0} ⊂
L (X) of linear operators such that:

• T (0) = IX ,

• T (t + s) = T (t)T (s), for all t,s≥ 0.

If T also satisfies

• ∥T (t)− IX∥L (X)→ 0 as t→ 0+, we say that T is uniformly continuous.

• ∥T (t)x− x∥→ 0 as t→ 0+, ∀x ∈ X , we say that T is strongly continuous.
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By simplicity, throughout this section, we may say only "semigroup" instead of "linear
semigroup", always referring to the Definition 26. A strongly continuous semigroup has an
exponential estimate, as stated in the following theorem.

Theorem 21. Suppose that {T (t) : t ≥ 0} ⊂L (X) is a strongly continuous semigroup. Then,
there exist constants M ≥ 1 and β such that

∥T (t)∥L (X) ≤Meβ t , ∀ t ≥ 0.

Proof. We claim that supt∈[0,η ] ∥T (t)∥L (X) < ∞ for some η > 0. Indeed, for every sequence
{tn} in (0,∞) such that tn→ 0, we have T (tn)x→ x for every x ∈ X , so that {T (tn)x} is bounded
for every x ∈ X , which implies (by the Uniform Boundedness Principle) that {T (tn)} is bounded
in L (X). Suppose the claim is false, then for each n ∈ N, there exists tn ∈ [0, 1

n ] such that
∥T (tn)∥L (X) > n, and the sequence {T (tn)} is not bounded, a contradiction.

Let η > 0 be such that sup{∥T (t)∥L (X) : 0 ≤ t ≤ η}=M < ∞ and choose any β ≥
1
η

log(∥T (η)∥L (X)), so that ∥T (η)∥L (X) ≤ eβη . Then, if s > 0, we may write s = kη + t with
k ∈ N, t ∈ [0,η ], and

∥T (kη + t)∥L (X) = ∥T (η)kT (t)∥L (X) ≤ ∥T (η)∥k
L (X)∥T (t)∥L (X) ≤Me|β |ηeβ (kη+t),

and the theorem follows.

Definition 27 (Generator). Let {T (t) : t ≥ 0}⊂L (X) be a strongly continuous linear semigroup,
we define its generator as the operator A : D(A)⊂ X → X , where

D(A) =
{

x ∈ X : lim
t→0+

T (t)x− x
t

exists
}
, Ax = lim

t→0+

T (t)x− x
t

.

It may be seen in (CARVALHO, 2012, Example 3.1.1 and Theorem 3.1.2) that a uni-
formly continuous linear semigroup {T (t) : t ≥ 0} is necessarily of the form

T (t) = eAt :=
∞

∑
0

Antn

n!
, t ≥ 0,

for some A ∈L (X). Moreover, d
dt eAt = AeAt , t > 0, and [0,∞) ∋ t 7→ eAtx0 is the solution of the

following Cauchy problem:

ẋ = Ax

x(0) = x0 ∈ X .

Since in general we are interested in studying Cauchy problems with operators that
are only closed, and not bounded, we will focus ourselves in the study of strongly continuous
semigroups, instead of uniformly continuous semigroups.

The next theorem present some of the most important properties about strongly continu-
ous semigroups.
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Theorem 22. Suppose that {T (t) : t ≥ 0} ⊂L (X) is a strongly continuous semigroup, then:

1. For any x ∈ X , [0,∞) ∋ t 7→ T (t)x is continuous.

2. [0,∞) ∋ t 7→ ∥T (t)∥L (X) is lower semicontinuous.

3. If A is the generator of {T (t) : t ≥ 0}, then A is closed and densely defined. For x ∈ D(A),
t 7→ T (t)x is differentiable and

d
dt

T (t)x = AT (t)x = T (t)Ax, t > 0.

4. Let β be as in Theorem 21, and Reλ > β , then λ ∈ ρ(A) and

(λ −A)−1x =
∫

∞

0
e−λ tT (t)xdt, ∀x ∈ X

Proof. (1) Let x ∈ X , t > 0, then:

∥T (t +h)x−T (t)x∥= ∥(T (h)− I)T (t)x∥ h→0+−→ 0,

∥T (t)x−T (t−h)x∥ ≤ ∥(T (t−h)∥L (X)∥T (h)x− x∥ h→0+−→ 0,

where we use Theorem 21 to estimate ∥(T (t−h)∥L (X).

(2) We will show that {t ≥ 0 : ∥T (t)∥L (X) > b} is open in [0,∞) for each b≥ 0, which
easily implies the lower semicontinuity. In fact, let b≥ 0 and ∥T (t0)∥L (X) > b, then there exists
x ∈ X with ∥x∥ = 1, such that ∥T (t0)x∥ > b, and it follows from the continuity proved in the
first part of this theorem that ∥T (t)x∥> b for t in a neighborhood of t0, and ∥T (t)∥L (X) > b for
t in a neighborhood of t0, so that a neighborhood of t0 is in {t ≥ 0 : ∥T (t)∥L (X) > b}, which
completes the proof.

(3) Let x ∈ X and ε > 0, and define xε = 1
ε

∫
ε

0 T (t)xdt. It is easy to see that xε → x as
ε → 0+, and if h > 0,

h−1(T (h)xε − xε) =
1

εh

{∫
ε+h

ε

T (t)xdt−
∫ h

0
T (t)xdt

}
h→0+−→ 1

ε
(T (ε)x− x),

then xε ∈ D(A), which proves that D(A) is dense in X . The fact that A is closed will be a direct
consequence of the proof of (4), because we will prove that for some λ ∈ C, λ −A : D(A)→ X

is a bijection and (λ −A)−1 ∈L (X), which implies that A is closed. If x ∈D(A), it follows that:

d+

dt
T (t)x = lim

h→0+

1
h
{T (t +h)x−T (t)x} de f

= AT (t)x = T (t)Ax,

which is continuous by (1). It is left as an exercise for the reader to show that since t 7→ T (t)x is
continuous and has continuous right derivative, t 7→ T (t)x is continuously differentiable.
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(4) We will show that if Reλ > β , λ −A : D(A)→ X is a bijection and (λ −A)−1 ∈
L (X), which readily implies that A is closed, so that we can define the resolvent of A and
λ ∈ ρ(A). Define the operator R(λ ) : X → X by:

R(λ )x =
∫

∞

0
e−λ tT (t)xdt.

Using the fact that ∥T (t)∥L (X) ≤ Meβ t , we can show that R(λ ) is well defined (the
integral converges) and is bounded, with ∥R(λ )∥L (X) ≤ M

Reλ−β
. We will show that λ −A is

surjective. Indeed, let x ∈ X , and for h > 0,

h−1(T (h)− I)R(λ )x = R(λ )
T (h)x− x

h

= h−1
[∫

∞

h
eλh−λ tT (t)xdt−

∫
∞

0
e−λ tT (t)xdt

]
= h−1

[
−
∫ h

0
eλ (h−t)T (t)xdt +(eλh−1)

∫
∞

0
e−λ tT (t)xdt

]
h→0+−→ −x+λR(λ )x,

(3.8)

so that R(λ )x ∈D(A) and (λ −A)R(λ )x = x, which proves that λ −A is surjective. Moreover, if
x ∈ D(A), we have:

R(λ )
T (h)x− x

h
h→0+−→ R(λ )Ax,

and using (3.8) we obtain x = R(λ )(λ −A)x. Therefore, (λ −A)R(λ )x = x = R(λ )(λ −A)x, so
that λ −A is injective, and R(λ ) = (λ −A)−1 ∈L (X).

We now start the study of sectorial operators, which is the class of operators for which
we will develope the theory of semilinear differential equations.

Definition 28 (Sectorial operator). Let A : D(A)⊂ X → X be a densely defined closed operator
in X . We say that A is sectorial (with vertex a ∈ R) if there exist constants C ≥ 0, φ ∈ (π

2 ,π)

such that Σ = {λ ∈ C : |arg(λ −a)|< φ} ⊂ ρ(−A), and:

∥(λ +A)−1∥L (X) ≤
C

|λ −a|
, ∀λ ∈ Σ.

If we say only that A is sectorial, we mean it is sectorial with vertex 0.

Example 3. Consider the Laplacian operator A : H2(0,π)∩H1
0 (0,π)→ L2(0,π), given by

Aφ = −φ ′′. The operator A is sectorial with vertex 0. Indeed, σ(−A) = {−12,−22,−32, ...},
and C\(−∞,−1]⊂ ρ(−A). Moreover, if φ ∈D(−A), ⟨−Aφ ,φ⟩=−∥φ∥2

H1
0
≤− 2

π2∥φ∥2, so that

W (−A)⊂ (−∞,− 2
π2 ]. Consider the set Σϕ = {λ : |argλ |< ϕ}, for any ϕ ∈ (π

2 ,π), and note that
if λ ∈ Σϕ , d(λ ,W (A))≥ |λ |sin(π−ϕ), and by Theorem 12,

∥(λ +A)−1∥L (X) ≤
1

|λ |sin(π−ϕ)
.
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Next we will extract a lot of properties of the semigroup generated by the operator A

when −A is sectorial. In special, we will have a formula for T (t) depending on the resolvent of
A. This theorem will be essential in the study of fractional powers related to semigroups, and in
the study of abstract theory of semilinear parabolic differential equations.

Theorem 23. Suppose A : D(A)⊂X→X is such that−A is sectorial, that is, there exist constants
C ≥ 0 and φ ∈ (π

2 ,π) such that Σφ = {λ ∈ C : |arg(λ )|< φ} ⊂ ρ(A),

∥(λ −A)−1∥L (X) ≤C/|λ | ∀λ ∈ Σφ .

Then A generates a strongly continuous semigroup {T (t) : t ≥ 0} ⊂L (X), given by

T (t) =
1

2πi

∫
Γ0

eλ t(λ −A)−1dλ , (3.9)

where Γ0 is the boundary of Σν \ {λ ∈ C : |λ | ≤ r}, π

2 < ν < φ , r small, and the curve Γ0 is
oriented in the direction of increasing imaginary part, that is, Γ0 is going up in the complex
plane. Moreover, t 7→ T (t) can be extended to an analytic function with domain {t ∈C : |arg t|<
ν−π/2}, and for some K > 0,

∥T (t)∥L (X) ≤ K, ∥AT (t)∥L (X) ≤ Kt−1

for all t > 0, and the operator
d
dt

T (t) = AT (t)

is bounded for any t > 0.

Proof. Define T (t) as in expression (3.9). In fact, T (t) is well defined in L (X) because for
t > 0, argλ =±ν ,

∥eλ t(λ −A)−1∥L (X) ≤C
e−t|λ |k1

|λ |
, k1 = |cosν |> 0,

so the integral converges in L (X), for all t > 0 — note that |λ | is the denominator is not a
problem since the integration curve is away from zero. It is easy to see that the convergence of
the integral is uniform for t ∈ [ε,∞) for all ε > 0, so that t 7→ T (t)∈L (X) is continuous in t > 0.
We can also guarantee the convergence of the integral for complex t. Indeed, if |arg(t)|< ν− π

2 ,
we have:

∥eλ t(λ −A)−1∥L (X) ≤C
eRe(λ t)

|λ |
,

so that if we are over the line argλ =±ν , we have argλ +arg t ∈ (π

2 ,
3π

2 ), and Re(λ t) =−|λ ||t|α
for some α > 0, and the integral converges the same way, uniformly in the region where
|arg(t)| ≤ ε1 < ν− π

2 and ε0 ≤ |t|, for any (εi > 0, i = 0,1). Therefore, t 7→ T (t) is analytic in
the region |arg t|< ν− π

2 , which contains R+ \{0}.
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Let us prove that ∥T (t)∥L (X) and t∥AT (t)∥L (X) are bounded for t > 0. If we change the
variable to µ = λ t,

T (t) =
1

2πi

∫
Γ0

eµ

(
µ

t
−A
)−1 dµ

t
,

and the integration curve is still Γ0 because the argument of the integral is analytic, so we can
use Cauchy’s Theorem to transfer the integrals from tΓ0 to Γ0. We can estimate and obtain:

∥T (t)∥L (X) ≤
1

2π

∫
Γ0

eReµ C
|µ|/t

|dµ|
t

= K < ∞, ∀ t > 0.

Similarly, we have:

J (A) =
1

2πi

∫
Γ0

eλ tA(λ −A)−1dλ =
1

2πi

∫
Γ0

eλ t [−I +λ (λ −A)−1]dλ

= − 1
2πi

∫
Γ0

eλ tdλ +
t−1

2πi

∫
Γ0

eµ µ

t

(
µ

t
−A
)−1

dµ.

It is simple to prove, using Cauchy’s Theorem, that the first integral is zero, and the
second one may be estimated the following way:

∥ t−1

2πi

∫
Γ0

eµ µ

t
(

µ

t
−A)−1dµ∥L (X) ≤

1
2πt

∫
Γ0

eReµC|dµ|= K1t−1 < ∞.

Note that AT (t) = J (A); indeed, if x ∈ X , T (t)x is the limit of a sequence {yn} of
Riemann sums, while J (A)x is the limit of the sequence {Ayn}, and since A is closed, we have
T (t)x ∈ D(A), AT (t)x = J (A)x and:

AT (t)x = T (t)Ax, ∀x ∈ D(A).

Therefore, AT (t) ∈L (X), and ∥AT (t)∥L (X) ≤ K1t−1.

Because of the uniform convergence, we can differentiate under the integration sign and
obtain, for t > 0:

d
dt

T (t) =
1

2πi

∫
Γ0

eλ t
λ (λ −A)−1dλ ,

and as we saw above, this is equal to AT (t).

Next we will prove that T (t)x→ x as t→ 0+, for every x ∈ X . In fact, we use once again
the identity A(λ −A)−1 =−I +λ (λ −A)−1 to conclude that if x ∈ D(A),

T (t)x =
1

2πi

∫
Γ0

eλ t
λ
(λ −A)−1

λ
xdλ

=

(
1

2πi

∫
Γ0

eλ t dλ

λ

)
x+

t
2πi

∫
Γ0

eµ µ

t
(

µ

t
−A)−1Ax

dµ

µ2 .

The first integral between parenthesis equals 1, so that:

∥T (t)x− x∥ ≤ t
2π

∫
Γ0

eReµC∥Ax∥
∣∣∣∣dµ

µ2

∣∣∣∣ t→0+−→ 0,
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and since ∥T (t)∥L (X) is bounded, T (t)x→ x as t → 0+, for all x ∈ X . Finally, for x ∈ X , the
application [0, t] ∋ s 7→ T (t− s)T (s)x is continuous and is differentiable for 0 < s < t, and a
simple calculation shows that

d
ds

(T (t− s)T (s)x) =−AT (t− s)T (s)x+T (t− s)AT (s)x = 0.

Hence this application is constant and

T (t− s)T (s)x = T (t)x, for 0≤ s≤ t, x ∈ X .

This is the semigroup property, so that {T (t) : t ≥ 0} is a strongly continuous semigroup.
We are only left to show that its generator is A, but T (t)x− x =

∫ t
0T (s)Axds for t > 0, x ∈ D(A),

and using the strong continuity,

1
t
(T (t)x− x) t→0+−→ Ax,

so that the generator B of {T (t) : t ≥ 0} extends A. However, 1 ∈ ρ(A) because −A is sectorial,
and 1 ∈ ρ(B) because of the fourth property in Theorem 22. If z ∈ X , z = (1−A)a = (1−B)a

for some a ∈ D(A), so that (1−B)−1z = a, and D(B)⊂ D(A), which completes the proof.

Remark 9. The results obtained for sectorial operators with vertex 0 can be easily extended
to operators that are sectorial with a vertex a ̸= 0. For instance, consider Theorem 23; if −A is
sectorial with vertex a ∈R, then−A+a is sectorial with vertex 0 and A−a generates an analytic
strongly continuous semigroup {T (t) : t ≥ 0} such that

∥T (t)∥L (X) ≤ K, and ∥AT (t)∥L (X) ≤ Kt−1, ∀ t ≥ 0,

then, defining T1(t) = T (t)eat , it is easy to see that the strongly continuous analytic semigroup
{T1(t) : t ≥ 0} is generated by the operator A, and

∥T1(t)∥L (X) ≤ Keat , and ∥AT1(t)∥L (X) ≤ Kt−1eat ,∀ t ≥ 0.

3.4 Exponential dichotomy for linear semigroups
In this section we briefly present the theory of exponential dichotomy for linear semi-

groups, making use of some parts of the theories of spectral decomposition and operational
calculus developed in (TAYLOR; LAY, 1980) and (CARVALHO, 2012) — the reader can easily
catch up on these themes with the background we developed in Chapter 2. We will present the
notion of exponential dichotomy for linear problems, which is basically when the spectrum
of some operator in the semigroup does not intersect a circumference in C. This separation of
the spectrum induces a separation in the phase space X = X1⊕X2, and the restrictions of the
semigroup to these spaces have either an attracting or expelling property of exponential type.
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The exponential dichotomy for semigroups whose generator is bounded is relatively easy
to obtain. Indeed, if A ∈L (X), it follows from Theorem 3 that:

A j =
∫

γ

λ
j(λ −A)−1dλ ,

where γ is a closed, rectifiable curve in the counterclockwise direction, which circles one time
around the spectrum of A.

From this, and (CARVALHO, 2012, Theorem 3.1.2), we can conclude that:

eAt =
∞

∑
n=0

(At)n

n!
=
∫

γ

eλ t(λ −A)−1dλ ,

and it follows from the Spectral Mapping Theorem (TAYLOR; LAY, 1980, Theorem 5.71-A),
that σ(eA) = eσ(A), and if the spectrum of A is disjoint of Reλ = α for some α ∈ R, then the
spectrum of eA is disjoint from {λ ∈ C : |λ |= eα}, and we have the exponential dichotomy.

For semigroups generated by a more general operator, only closed, the Spectral Mapping
Theorem does not apply in general, and the knowledge of the spectrum of A is not enough
to understand the spectrum of eA. However, it is easy to show dichotomy for the semigroup
generated by an operator A if −A is sectorial (with vertex α), as we will see in the next theorem.

First we present the following lemma about spectral decomposition (CARVALHO, 2012,
Theorem 2.9.2):

Lemma 13. Let X be a Banach space over C and A : D(A)⊂ X → X be a closed linear operator.
Suppose σ(A) contains a bounded set σ , and let D be a bounded Cauchy set such that ∂D⊂ ρ(A),
σ ⊂ D, then

Q =
1

2πi

∫
+∂D

(ξ −A)−1dξ

is such that Q ∈L (X), Q2 = Q and defining Xσ = R(Q) and Xσ ′ = N(Q), we have a decompo-
sition X = Xσ ⊕Xσ ′ in such a way that the spectra of the parts Aσ and Aσ ′ in Xσ and Xσ ′ are σ

and σ ′, respectively, and Aσ ∈L (Xσ ).

Theorem 24 (Exponential dichotomy for sectorial operators). Let L be a sectorial operator such
that σ(L) is disjoint from {λ ∈ C : Reλ = 0}, and define the projection:

P =
1

2πi

∫
+∂D

(λ −L)−1dλ ,

where D is a bounded Cauchy set such that ∂D⊂ ρ(L) and σ1 ⊂ D, where σ1 = σ(L)∩{λ ∈
C : Reλ < 0} (or P = 0 if this intersection is empty). Define the phase space decomposition
X = X1⊕X2, X1 = R(P), X2 = N(P). Then σi = σ(Li), where Li is the restriction of L to Xi,
i = 1,2, and L1 ∈L (X).

Let {T (t) : t ≥ 0} be the analytic semigroup generated by −L. Then, we have PT (t) =

T (t)P for all t ≥ 0, T (t)|Xi ∈L (Xi) is the semigroup generated by −Li, i = 1,2, and there exist
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δ1, δ2 > 0, C ≥ 0 such that:

∥T (t)|X2∥L (X2) ≤Ce−δ2t , ∀ t ≥ 0. (3.10)

The semigroup {T (t)|X1 : t ≥ 0} can be extended to a group in L (X1), with T (t)|X1 =

(T (−t)|X1)
−1, for t < 0, and

∥T (t)|X1∥L (X1) ≤Ceδ1t , ∀ t ≤ 0. (3.11)

Proof. It follows from Lemma 13 that σ(−L1) = σ(−L)∩ {λ ∈ C : Reλ > 0}, which is a
compact set, so there exists δ1 > 0 such that σ(−L1) ⊂ {λ ∈ C : Reλ > δ1}. By the Spectral
Mapping Theorem, σ(T (t)|X1) = eσ(−L1 t) is contained in {λ ∈ C : |λ |> eδ1t} for all t > 0. For
each t > 0, 0 ∈ ρ(T (t)|X1), and we denote by T (−t)|X1 the inverse of T (t)|X1 . Now, the spectral
radius of T (−1)|X1 satisfies

rσ (T (−1)|X1)< e−δ1 ,

so that, using the formula for spectral radius in Theorem 5, we conclude that, for n ∈ N large
enough:

∥T (−n)|X1∥L (X1) < e−δ1n,

hence, if s < 0, we write s =−n+ τ , with τ ∈ [0,1), and we get:

∥T (s)|X1∥L (X1) < eδ1(−n)∥T (+τ)|X1∥L (X1) ≤C1eδ1(−n+τ),

where C1 = sup0≤τ<1e−δ1τ∥T (τ)|X1∥L (X1), and we have the exponential estimate (3.11).

Before we continue, since L is sectorial, there exist β ∈ R, ψ ∈ (π

2 ,π) and K ≥ 0 such
that Σψ = {λ ∈ C : |arg(λ −β )|< ψ} ∈ ρ(−L), and

∥(λ +L)−1∥L (X) ≤
K

|λ −β |
, ∀λ ∈ Σψ .

For the semigroup in X2, note that σ(−L2) is the (possibly unbounded) set {λ ∈ σ(−L) :
Reλ < 0}.

The estimate (3.10) will follow from Theorem 23 — along with Remark 9 — if we prove
that L2 is sectorial with vertex in −δ2 (for a δ2 > 0 small enough). The fact that L is sectorial
guarantees that σ(−L2) is at a positive distance of {λ ∈ C : Reλ = 0}, even though σ(−L2)

is not necessarily compact. Then, it is possible to choose δ2 > 0, φ ∈ (π

2 ,π], φ < ψ , such that
Σφ = {λ ∈ C : |arg(λ − (−δ2))|< φ} ⊂ ρ(−L2). The estimate for ∥(λ +L2)

−1∥L (X2) in Σφ is
trivial using the estimate for ∥(λ +L)−1∥L (X) in Σψ and using the fact that ∥(λ +L2)

−1∥L (X2)

is bounded for λ in the compact region that is in Σφ but not in Σψ . It follows that L2 is sectorial
with vertex −δ2, and we are done.
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CHAPTER

4
FRACTIONAL POWERS

4.1 Definition and basic results
In this chapter we introduce the fractional powers, preparing the reader to develop the

qualitative theory of parabolic semilinear differential equations in Chapter 5. The reader may
find a very good presentation of this topic in (AMANN, 1995).

First of all, let us define the class of operators for which we can define the fractional
powers.

Definition 29 (Operators of positive kind). Let X be a Banach space. We say that a linear operator
A : D(A)⊂ X → X is of positive kind (or simply positive) with constant M ≥ 1 if A is closed,
densely defined, R+ ⊂ ρ(−A), and

(1+ s)∥(s+A)−1∥L (X) ≤M, s ∈ R+.

We denote by PM = PM(X) the set of all operators of positive kind in X with constant
M ≥ 1.

An operator of positive kind has the following important property.

Theorem 25. Let A ∈PM. If θM := arcsin 1
2M , and

ΣM := {z ∈ C : |argz| ≤ θM}+{z ∈ C : |z| ≤ 1/2M}

Then ΣM ⊂ ρ(−A) and

(1+ |λ |)∥(λ +A)−1∥L (X) ≤ 2M+1, λ ∈ ΣM (4.1)

Proof. If λ ∈ C and s ∈ R is such that

|λ − s| ≤ (1+ s)/2M (4.2)
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Then λ +A = (s+A)(1+(λ−s)(s+A)−1), and using the Newmann series we conclude
that λ ∈ ρ(−A) and

∥(λ +A)−1∥L (X) ≤ ∥[1+(λ − s)(s+A)−1]−1∥L (X)∥(s+A)−1∥L (X)

≤ 2M(1+ s)−1 ≤ 2M
1+ |λ |

1+ s+ |λ − s|
1+ s

≤ 2M
1+ |λ |

(
1+

1
2M

)
=

2M+1
1+ |λ |

,

For each λ ∈ ΣM, there exists a positive s ∈ R+ such that (4.2) holds. The proof of this
fact is simple, and the chose of s is represented in the figure below

Figure 1

It follows that ΣM ∈ ρ(−A) and (4.1) holds.

We are ready to present the definition of negative fractional powers for operators of
positive kind. This definition agrees with the one usually given to bounded operators, but is
presented in a way that does not require a bounded spectrum to be calculated. The properties in
Theorem 25 may be used to ensure that the integral converges. The reader can see more details
in (CARVALHO, 2012).

Definition 30 (Negative fractional powers). Let A ∈PM, and α ∈ C with Reα < 0, then we
define

Aα :=
1

2πi

∫
Γ

(−λ )α(λ +A)−1dλ =
1

2πi

∫
−Γ

λ
α(λ −A)−1dλ , (4.3)

where Γ is any simple, piecewise smooth curve in ΣM \R+ going from ∞e−iν until ∞eiν , for
some ν ∈ (0,θM).
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Remark 10. It follows from a standard complex integration argument using Cauchy’s Theorem
that this definition does not depend on Γ. Moreover, the integral converges in L (X), so that
Aα ∈L (X), for Reα < 0.

Lemma 14. For all α , β with negative real part, AαAβ = Aα+β .

Proof. Let α , β ∈ C be such that Reα < 0 and Reβ < 0, and choose the curves Γ1 and Γ2 in
such a way that Γ1 is on the left and Γ2 on the right in the complex plane. Then:

AαAβ =
1

(2πi)2

∫
Γ1

∫
Γ2

(−λ )α(−µ)β (λ +A)−1(µ +A)−1dµdλ

=
1

(2πi)2

∫
Γ1

∫
Γ2

(−λ )α(−µ)β (λ −µ)−1[(µ +A)−1− (λ +A)−1]dµdλ

=
1

2πi

∫
Γ2

(−µ)β (µ +A)−1
(

1
2πi

∫
Γ1

(−λ )α

λ −µ
dλ

)
dµ

+
1

2πi

∫
Γ1

(−λ )α(λ +A)−1

(
1

2πi

∫
Γ2

(−µ)β

µ−λ
dµ

)
dλ

For each µ ∈ Γ2, the complex function λ 7→ (−λ )α(λ −µ)−1 is analytic to the left of
Γ1. Then Cauchy’s Theorem implies that the integral on the first parenthesis is zero. For each
λ ∈ Γ1, however, the function µ 7→ (−µ)β (µ−λ ) has a singularity in λ , and using Cauchy’s
Theorem again we conclude that the integral in the second parenthesis equals (−λ )β . Then, we
get:

AαAβ =
1

2πi

∫
Γ1

(−λ )α+β (λ +A)−1dλ = Aα+β

Theorem 26. Let A ∈PM, then

A−z =
sin(πz)

π

∫
∞

0
s−z(s+A)−1ds, 0 < Rez < 1

Proof. The idea is to transfer the integral to the positive real axis. We choose 0 < θ < θM and
0 < r < 1

2M , and calculate the fractional power using the Definition (30), choosing Γ as the curve
that comes from ∞e−iθ until re−iθ as a straight line, then circles the origin clockwisely until it
reaches reiθ , and goes until ∞eiθ as a straight line. After some calculations, we obtain

A−z =
1

2πi

∫
∞

r
s−ze−i(−π+θ)z(seiθ +A)−1eiθ ds

− 1
2πi

∫
∞

r
s−ze−i(π−θ)z(se−iθ +A)−1e−iθ ds+

+
1

2πi

∫
θ

2π−θ

(rei(ξ −π))−z(reiξ +A)−1ireiξ dξ .

The absolute values of the arguments in the two first integrals are dominated by the
function Cs−Rez(1+ s)−1, with C ≥ 0 independent from θ and r, and the absolute value of the
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argument in the last integral is dominated by dr−Rezr for d ≥ 0 also independent of θ and r.
Then, we can apply Lebesgue Dominated Convergence Theorem and making θ → 0, r→ 0, we
obtain:

A−z =
eiπz

2πi

∫
∞

0
s−z(s+A)−1ds− e−iπz

2πi

∫
∞

0
s−z(s+A)−1ds

=
sin(πz)

π

∫
∞

0
s−z(s+A)−1ds

If Reα > 0, suppose A−αx = 0, for some x ∈ X , then we may choose n ∈ N such that
Reα ≤ n, and by Lemma 14,

A−nx = A−(n−α)−αx = A−(n−α)A−αx = 0,

and since A−n is injective, x = 0, so that A−α is injective for Reα > 0. Hence, A−α : X→ R(A−α)

is a bijection, where R(A−α) is the range of A−α .

Definition 31 (Positive fractional powers). Let Reα > 0, A ∈PM, then we define the fractional
power Aα by setting D(Aα) = R(A−α), and Aαx = (A−α)−1x, x ∈ D(Aα).

Let Reα > 0. As inverse of a closed operator, Aα is closed, which implies that D(Aα) is
a Banach space with the norm of the graph ∥ ·∥+∥Aα · ∥. Since A−α is bounded, the graph norm
is equivalent to the norm ∥Aα · ∥.

We define the fractional power space Xα as the Banach space (D(Aα),∥Aα · ∥).

Lemma 15. Let A ∈PM, and α , β ∈ C with 0 < Reα < Reβ , then Xβ ⊂ Xα ⊂ X , and the
inclusions are continuous.

Proof. If x ∈ D(Aβ ), then

x = A−β Aβ x = A−α−(β−α)Aβ x = A−αA−(β−α)Aβ x,

so that x ∈ R(A−α) = D(Aα), and we conclude that D(Aβ )⊂ D(Aα). Moreover,

∥Aαx∥= ∥Aα−β Aβ x∥ ≤ ∥Aα−β∥L (X)∥Aβ x∥, ∀x ∈ D(Aβ ),

and this implies that the inclusion Xβ ⊂ Xα is continuous. Similarly, Xα ⊂ X is continuous.

Lemma 16. Let A ∈PM, α , β ∈ C, with Reα , Reβ , Re(α +β ) all ̸= 0. Then

AαAβ x = Aα+β x, ∀x ∈ D(Au),

where u ∈ {α,β ,α +β}, with Reu = max{Reα,Reβ ,Re(α +β )}.



4.1. Definition and basic results 71

Proof. The proof is very simple yet extensive. The reader may check it in (CARVALHO,
2012).

Proposition 11. If A∈PM and α , β ∈C, with 0 < Reα < Reβ , then Xβ ⊂ Xα ⊂ X with dense
inclusions.

Proof. By hypothesis, D(A) is dense in X . We will show that D(Ak) dense in X implies D(Ak+1)

dense in X , for k ∈ N∗. Indeed, let x ∈ D(Ak), ε > 0, define f = Akx and since D(Ak) is dense in
X , there exists u ∈ D(Ak) such that ∥u− f∥< ε/∥A−k∥L (X), so that if v = Au,

∥A−k−1v− x∥= ∥A−ku−A−k f∥ ≤ ∥A−k∥L (X)∥u− f∥< ε.

Therefore, D(Ak) ⊂ D(Ak+1), which implies D(Ak+1) ⊃ D(Ak) = X , and D(Ak+1) is
dense in X . By induction D(Ak) is dense for all k ∈ N∗.

If Reα > 0, D(Aα)⊃ D(Ak) for k ∈ N∗ large enough, so that D(Aα) is dense in X .

Now suppose that 0 < Reα < Reβ , and we will prove that D(Aβ ) is dense in D(Aα). Let
x ∈ D(Aα), ε > 0, and define f = Aαx. Since D(Aβ−α) is dense in X , there exists u ∈ D(Aβ−α)

such that ∥u− f∥< ε , and if we set v := A−αu ∈ D(Aβ ), we have

∥v− x∥Xα = ∥Aα(v− x)∥= ∥u− f∥< ε,

and we are done.

Proposition 12. Let A ∈PM be an operator with compact resolvent, then A−α ∈K (X) if
Reα > 0, and if 0 < Reα < Reβ , then Xβ ⊂ Xα ⊂ X with compact inclusions.

Proof. If Reα < 0, Aα is compact simply because it is defined as

Aα :=
1

2πi

∫
Γ

(−λ )α(λ +A)−1dλ =
1

2πi

∫
−Γ

λ
α(λ −A)−1dλ ,

which is the limit of a sequence of compact operators, and K (X) is closed in L (X).

Now let us prove that Xβ ⊂ Xα is a compact inclusion (the proof that Xα ⊂ X is a
compact inclusion is analogous). Assume {xn} is a bounded sequence in Xβ , then {Aβ xn} is
bounded in X , and

Aαxn = AαA−β Aβ xn = Aα−β Aβ xn

that is, {Aαxn} is the image by a compact operator of a bounded sequence, so that there is a
subsequence {Aαxnk} which converges to z ∈ X . This implies that

∥Aαxnk− z∥= ∥Aα(xnk−A−αz)∥→ 0.

Hence, {xnk} converges in Xα . This completes the proof.
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Proposition 13. Let H be a Hilbert space and A : D(A)⊂H→H be a self-adjoint operator with
compact resolvent and such that ⟨Au,u⟩ ≥ δ∥u∥2, for all u ∈ D(A), for some δ > 0. Then, A is
an operator of positive kind, and Aθ is self-adjoint for all θ ∈ R.

Proof. The numerical range of the operator−A satisfies W (−A)⊂ (−∞,−δ ]. Consider the open
connected set Σ = C\ (−∞,−δ ]. Since −A has compact resolvent, its spectrum is countable, so
that Σ∩ρ(−A) ̸=∅, and by Theorem 12, Σ⊂ ρ(−A), so that R+ ⊂ ρ(−A), and

∥(s+A)−1∥L (H) ≤
1

δ + s
≤ M

1+ s
, ∀s ∈ R+

for some M ≥ 1. Thus, A is an operator of positive kind.

Let θ ∈ (0,1), Theorem 26 implies:

A−θ =
sin(πθ)

π

∫
∞

0
s−θ (s+A)−1ds,

and as a limit of symmetric operators, A−θ is symmetric. This implies that A−θ is symmetric for
all θ > 0. As inverse of a symmetric operator, Aθ is symmetric for θ > 0, and since it is also
surjective, it follows from Theorem 14 that Aθ is self-adjoint for θ > 0. From Proposition 4, A−θ

are self-adjoint for θ > 0. This completes the proof.

Example 4 (Fractional powers of the Laplacian). Consider the Laplace operator A : H2(0,π)∩
H1

0 (0,π)→ L2(0,π), given by Aφ = −φ ′′. We already know from Example 1 that A is self-
adjoint, has compact resolvent, and satisfies:

⟨Aφ ,φ⟩ ≥ 2
π2∥φ∥

2, ∀φ ∈ D(A).

It follows from Proposition 13 that A is an operator of positive kind, and Aθ is self-adjoint
for every θ ∈ R.

Next we calculate a fractional power space for the Laplacian, showing that X
1
2 =H1

0 (0,π).
We have already seen that D(A) = H2(0,π)∩H1

0 (0,π)⊂D(A
1
2 )⊂ L2(0,π) with dense inclusion,

and the norm in X
1
2 in an element φ ∈ D(A) is given by:

∥A
1
2 φ∥2 = ⟨A

1
2 φ ,A

1
2 φ⟩= ⟨Aφ ,φ⟩= ∥φ ′∥2

So that ∥φ∥
X

1
2
= ∥φ∥H1

0
, for all φ ∈ D(A) = H2(0,π)∩H1

0 (0,π).

By the density, X
1
2 = D(A)

X
1
2
. We claim that D(A)

X
1
2
= D(A)

H1
0 . Indeed, let x ∈D(A)

X
1
2
,

then there exists a sequence {xn} in D(A) such that ∥x− xn∥
X

1
2
→ 0, then ∥xn− xm∥

X
1
2
=

∥xn− xm∥H1
0

n,m→∞−→ 0, so that {xn} converges in H1
0 (0,π), that is, there exists y ∈ H1

0 (0,π) such

that ∥y− xn∥H1
0
→ 0. But both X

1
2 and H1

0 (0,π) are included continuously in L2(0,π), so that y
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and x are limits of {xn} in the norm of L2(0,π), which implies x = y, and x ∈D(A)
H1

0 . The other
inclusion is proved analogously.

Therefore, X
1
2 = H2(0,π)∩H1

0 (0,π)
H1

0 , and using the fact that C∞
c (0,π)⊂ H2(0,π)∩

H1
0 (0,π) and C∞

c (0,π)
H1

0 = H1
0 (0,π), we conclude that X

1
2 = H1

0 (0,π). To show that the norms
in the two sets are equal, just notice that if x ∈ X

1
2 , there exists a sequence xn ∈ D(A) such that

∥x− xn∥
X

1
2
→ 0, and as before we can conclude that ∥x− xn∥H1

0
→ 0. It follows that:

∥x∥H1
0
= lim

n→∞
∥xn∥H1

0
= lim

n→∞
∥xn∥

X
1
2
= ∥x∥

X
1
2
,

and we are done.

We can use this fact and the knowledge we have about the Laplacian to prove a very
interesting result:

Proposition 14. Let ∥ · ∥H1
0

denote the norm of H1
0 (0,π) and ∥ · ∥ denote the norm of L2(0,π).

Then, ∥φ∥ ≤ ∥φ∥H1
0

for all φ ∈ H1
0 (0,π).

Proof. Let A : H2(0,π)∩H1
0 (0,π)→ L2(0,π) denote the Laplacian, defined by Aφ = −φ ′′.

We know from Example 1 that A−1 ∈ K (L2(0,π)), and if φ ∈ L2(0,π), let ψ = A−1φ ∈
H2(0,π)∩H1

0 (0,π), so we have:

⟨A−1
φ ,φ⟩= ⟨ψ,Aψ⟩=−⟨ψ,ψ ′′⟩= ∥ψ ′∥2 ≥ 0.

Finally, A−1 is self-adjoint, and all the hypothesis of Theorem 16 are satisfied. Therefore,
the largest eigenvalue of A−1 is given by λ1 = sup{⟨A−1u,u⟩ : ∥u∥ = 1}, but we have already
seen in Example 1 that λ1 = 1. Therefore,

⟨A−1u,u⟩ ≤ ∥u∥2, ∀u ∈ L2(0,π).

If v ∈H1
0 (0,π), we use u = A

1
2 v in the estimate above, and the fact that A

1
2 is self-adjoint,

to conclude that ∥v∥ ≤ ∥v∥H1
0
.

4.2 Interpolation inequalities

In this section we present some inequalities relating the fractional powers of a positive
operator A, which will be necessary to study semigroups and perturbation of sectorial operators
in the sections that will follow.

Theorem 27. Let A ∈PM. There exists a constant K ≥ 0, which depends only on A, such that

∥Aαx∥ ≤ K∥Ax∥α∥x∥1−α , ∀ 0≤ α ≤ 1, x ∈ D(A). (4.4)
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and

∥Aαx∥ ≤ K
[
(1−α)µα∥x∥+αµ

α−1∥Ax∥
]
, ∀µ > 0, 0≤ α ≤ 1, x ∈ D(A). (4.5)

Proof. It is trivial for α = 0 or α = 1. If 0 < α < 1, x ∈ D(A), it follows from Theorem 26 that

Aαx = A−(1−α)Ax =
sinπα

π

∫
∞

0
sα−1A(s+A)−1xds

Therefore, if µ ∈ (0,∞), using that A(s+A)−1 = I−s(s+A)−1, and ∥s(s+A)−1∥L (X)≤
M for s≥ 0, we obtain:

∥Aαx∥ ≤ sinπα

π

[∫
µ

0
sα−1(M+1)∥x∥ds+

∫
∞

µ

sα−2M∥Ax∥ds
]

≤ sinπα

π
(M+1)

[
µα

α
∥x∥+ µα−1

1−α
∥Ax∥

]
≤

(
sinπα

π

(M+1)
α(1−α)

)[
(1−α)µα∥x∥+αµ

α−1∥Ax∥
]
,

and the coefficient between parenthesis has an upper bound for 0 < α < 1, so that (4.5) follows,
and (4.4) follows if we use µ = ∥Ax∥/∥x∥.

Proposition 15. Let A ∈P(X) and B : D(B) ⊂ X → X be a closed linear operator such that
D(B)⊃ D(Aα), for some α > 0. Then there exist constants C,C1 > 0 such that

∥Bx∥ ≤C∥Aαx∥, x ∈ D(Aα)

and
∥Bx∥ ≤C1(µ

α∥x∥+µ
α−1∥Ax∥), µ > 0, x ∈ D(A).

Proof. The operator BA−α : X → X is well-defined because D(B)⊃ D(Aα), and is closed, then
by the Closed Graph Theorem, it is bounded, and the first estimate follows. Then, using also
Theorem 27, we get, for x ∈ D(Aα):

∥Bx∥= ∥BA−αAαx∥ ≤ ∥BA−α∥K
[
(1−α)µα∥x∥+αµ

α−1∥Ax∥
]

≤ C1(µ
α∥x∥+µ

α−1∥Ax∥), µ > 0.

Theorem 28. Suppose that A and B are positive operators, with D(A) = D(B) and Reσ(A)> 0,
Reσ(B)> 0, and for some α ∈ [0,1), (A−B)A−α ∈L (X). Then, for all β ∈ [0,1], Aβ B−β and
Bβ A−β are in L (X).

Proof. The cases β = 0, β = 1 are simple and are left to the reader as an exercise. For a fixed
β ∈ (0,1), it follows from Theorem 27 that, for x ∈ X , λ ∈ [0,∞), we have λ ∈ ρ(−A) and:

∥Aβ (λ +A)−1x∥ ≤ K∥A(λ +A)−1x∥β∥(λ +A)−1x∥1−β

≤ ∥x−λ (λ +A)−1x∥β∥(λ +A)−1x∥1−β
(4.6)



4.3. Semigroups and fractional powers 75

so that Aβ (λ +A)−1 ∈L (X) for all λ ≥ 0, and the same happens for Bβ (λ +B)−1. More than
that, since both A and B are positive, we get:

∥Aβ (λ +A)−1∥L (X) ≤C1(λ +1)β−1, λ ∈ [0,∞).

and

∥Bβ (λ +B)−1∥L (X) ≤C2(λ +1)β−1, λ ∈ [0,∞).

Now, for β ∈ (0,1),

B−β −A−β =
sin(πβ )

π︸ ︷︷ ︸
=γ

∫
∞

0
λ
−β (λ +B)−1(A−B)(λ +A)−1dλ .

Therefore,

Bβ A−β = I− γ

∫
∞

0
λ
−β Bβ (λ +B)−1(A−B)A−αAα(λ +A)−1dλ

The integrals converge in L (X) because of the estimates we presented above, along with
the fact that (A−B)A−α ∈L (X), therefore, Bβ A−β ∈L (X).

We prove that Aβ B−β is bounded analogously, but in this case we need to show that
∥Aα(λ +B)−1∥= O(|λ |α−1) as |λ | → ∞. This is a consequence of the fact that:

[I +Aα(λ +A)−1(B−A)A−α ]Aα(λ +B)−1 = Aα(λ +A)−1,

and we use the Newmann series to estimate Aα(λ +B)−1.

Corollary 2. If A and B are like in the Theorem 28, then D(Aα) = D(Bα), with equivalent norms
0≤ α ≤ 1.

4.3 Semigroups and fractional powers

In this section we study the relation between a semigroup generated by an operator and
its fractional powers, obtaining estimates that will be useful in the applications. We start with a
consequence of an interpolation inequality of the last section.

Corollary 3 (of Theorem 27). If A is a sectorial linear operator with vertex a ∈ R and A ∈PM,
let {e−At : t ≥ 0} denote the analytic semigroup generated by −A. Then, if α ∈ [0,1],

∥Aαe−At∥L (X) ≤Cαt−αeat , t > 0.

Proof. It is a simple application of Theorem 27, using the estimates in Theorem 23 and Remark
9.
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Theorem 29. Suppose A is a sectorial linear operator of positive kind, and let {e−At : t ≥ 0}
denote the analytic semigroup generated by −A. Then, the following holds:

1. If t > 0, α ≥ 0, R(e−At)⊂ D(Aα), and

∥Aαe−At∥L (X) ≤Mαt−α , 0 < t ≤ 1.

2. If α > 0, we have tαAαe−Atx→ 0 as t→ 0+, for each x ∈ X .

3. ∥(e−At− I)A−α∥L (X) ≤M1−α
tα

α
if 0 < α ≤ 1, 0≤ t ≤ 1.

Proof. 1) If t > 0, it follows from Theorem 23 that R(e−At) ⊂ D(A), ∥Ae−At∥L (X) ≤ Mt−1,
∥e−At∥L (X) ≤ M. Then, for any m ∈ Z, R(e−At) ⊂ D(Am) because e−At = (e−At/m)m and if
y ∈ D(Ak), then e−At/my ∈ D(Ak+1). If 0≤ α ≤ 1, from Theorem 27, we have:

∥Aαe−At∥L (X) ≤ K∥Ae−At∥α

L (X)∥e
−At∥1−α

L (X) ≤ KMt−α .

It follows that, for m = 0,1,2, · · · , 0≤ α ≤ 1, 0 < t ≤ 1,

∥Am+αe−At∥L (X) ≤ ∥Aαe−At/(m+1)∥L (X)∥Ae−At/(m+1)∥m
L (X)

≤ (KM)m+1(m+1)m+αt−m−α ,

and the estimate is proved for any α ≥ 0.

2) If α > 0, choose m ∈ N such that m≥ α > 0, and if x ∈ D(Am)

∥tαAαe−Atx∥ ≤ tα∥Aα−m∥L (X)∥e−At∥L (X)∥Amx∥ t→0+−→ 0,

and ∥tαAαe−At∥L (X) ≤Mα for all 0 < t ≤ 1. Then, since D(Am) is dense in X , the result follows
for every x ∈ X .

3) Since d
dse−As =−Ae−As, we have for all x ∈ X :

∥(e−At− I)A−αx∥=
∥∥∥∥−∫ t

0
A1−αe−Asxds

∥∥∥∥≤ ∫ t

0
M1−αsα−1∥x∥ds = M1−α

tα

α
∥x∥.

4.4 Perturbation of sectorial operators

In this section we will see that a nice perturbation of a sectorial operator is sectorial,
possibly changing the vertex. This will help us use the theory of sectorial operators for semilinear
differential equations, in which the linear part is perturbed by a non-linear function.
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Theorem 30. Let A : D(A)⊂ X → X be such that −A is sectorial. There exists a δ > 0 such that
if B : D(B)⊂ X → X , D(B)⊃ D(A), is a linear operator satisfying

∥Bx∥ ≤ δ∥Ax∥+K∥x∥, ∀x ∈ D(A), (4.7)

then −(A+B) is sectorial with vertex a≥ 0, and D(A+B) = D(A).

Proof. Since −A is sectorial, there exist constants φ ,C, with π/2 < φ ≤ π , such that for
|arg(λ )| < φ , λ ∈ ρ(A) and ∥(λ −A)−1∥L (X) ≤ C/|λ |. Choose δ > 0 and θ such that 0 <

δ (C+1)< θ < 1, and suppose (4.7) holds. Let |arg(λ )|< φ , and we will show that B(λ−A)−1 ∈
L (X). Indeed B(λ −A)−1 is well-defined in X because D(A)⊂ D(B), and if x ∈ X ,

∥B(λ −A)−1x∥ ≤ δ∥A(λ −A)−1x∥+K∥(λ −A)−1x∥

≤ δ∥− x+λ (λ −A)−1x∥+ KC
|λ |
∥x∥

≤ δ (1+C)∥x∥+ KC
|λ |
∥x∥,

and ∥B(λ −A)−1∥L (X) ≤ θ for |λ |> R with R large enough. Note that we can write λ − (A+

B)= (I−B(λ−A)−1)(λ−A), so that we can use the Newmann Series to see that if |arg(λ )|< φ ,
|λ | ≥ R we have λ ∈ ρ(A+B) and

∥[λ − (A+B)]−1∥L (X) ≤
C/(1−θ)

|λ |
.

It is easy to see then that −(A+B) is sectorial with some vertex a > R.

Corollary 4. Let A be a sectorial operator of positive kind and B : D(B)⊂ X → X be a closed
operator such that D(B) ⊃ D(Aα), for some 0 < α < 1. Then A+B is sectorial with vertex
a ∈ R.

Proof. Since D(B)⊃ D(Aα)⊃ D(A), it follows from Proposition 15 that

∥Bx∥ ≤C(µα∥x∥+µ
α−1∥Ax∥), x ∈ D(A), µ > 0,

then we can choose a big µ > 0 and apply Theorem 30.
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CHAPTER

5
SEMILINEAR EVOLUTION EQUATIONS

5.1 Existence, uniqueness and continuous dependence
In this chapter we study semilinear partial differential equations, which arise in the study

of partial differential equations that are a regular perturbation of a linear equation. For a thorough
approach to this topic, including a more detailed discussion on continuous dependence, the reader
may consult (HENRY, 2013) and (CARVALHO; LANGA; ROBINSON, 2013). In this chapter,
we will make use of projections and spectral sets, which are presented in detail in (CARVALHO,
2012, section 2.9), and in (CARVALHO; LANGA; ROBINSON, 2013).

Consider the initial value problem:

d
dt

u =−Au+ f (t,u), t > t0

u(t0) = u0 ∈ X ,
(5.1)

where X is a Banach space and A : D(A)⊂ X → X is a sectorial (vertex 0) and positive operator
(see definitions 28 and 29). Note that if we have a problem like (5.1) and A is sectorial with
vertex a ̸= 0, we can still apply this theory using the operator B = α +A as linear part and
g = f −α as non-linear part — the equation remains unchanged, and the essential properties
of f are preserved by g. By Theorem 23 and Corollary 3, −A generates a strongly continuous
semigroup, which we denote by {e−At : t ≥ 0}, and if α ∈ [0,1], there is a constant M ≥ 0 such
that ∥e−At∥L (X) ≤M and ∥Aαe−At∥L (X) ≤Mt−α , for all t ≥ 0. Denote by ∥ · ∥ the norm of X .

Recall that, since A is positive, we define Aα , for α ∈ R, and Xα := (D(Aα),∥Aα · ∥).

Note that Xα is itself a Banach space and the semigroup {e−At : t ≥ 0} may be restricted
to a strongly continuous semigroup in Xα , because for t > 0, α ≥ 0, x ∈ Xα , we have R(e−At)⊂
D(Aα) and Aαe−Atx = e−AtAαx (Theorem 23).

Definition 32 (Solution). Let X be a Banach space and A : D(A) ⊂ X → X be a sectorial
and positive operator. Assume 0 ≤ α < 1, U ⊂ R×Xα is an open set and f : U → X is a
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continuous function. A solution of (5.1) in [t0, t1) is a continuous function u : [t0, t1)→ X that
is differentiable in (t0, t1) and such that (t,u(t)) ∈U , for t ∈ [t0, t1), u(t) ∈ D(A), for t ∈ (t0, t1),
and (t0, t1) ∋ t 7→ Au(t) ∈ X is continuous and (5.1) holds.

One advantage of studying this class of equations, named parabolic partial differential
equations, is that we may take f mapping from fractional spaces of A into X . For instance, we
may take f : Xα → X given by f (u) = Aαu, which is globally Lipschitz because of the definition
of the norm in Xα . This allows for a larger class of non-linear functions that can be studied.

The next theorem states that the weak solution concept used for hyperbolic equations is
not needed in the context of parabolic equations since weak solutions are also strong here.

Theorem 31. Let X ,A,α,U, f be as above and assume f is locally Hölder continuous, that is,
for any x ∈U , there exists V ⊂U neighborhood of x in U such that:

∥ f (τ1,u1)− f (τ2,u2)∥X ≤ K
(
|τ1− τ2)|η +∥u1−u2∥η

Xα

)
, ∀(τ1,u1),(τ2,u2) ∈V.

If u : [t0, t1]→ Xα is continuous, (t,u(t)) ∈U for t ∈ [t0, t1], and u satisfies the Formula
of Variation of Constants, given by:

u(t) = e−A(t−t0)u(t0)+
∫ t

t0
e−A(t−s) f (s,u(s))ds, t ≥ t0,

then u is a solution for (5.1).

Proof. Let us prove first that u : (t0, t1]→ Xα is locally Hölder continuous. Since u : [t0, t1]→
Xα is continuous, {(t,u(t)) : t0 ≤ t ≤ t1} is compact in U and there exists a B ≥ 0 such that

sup
t0≤t≤t1

∥ f (t,u(t))∥X ≤ B. Hence, for t0 < t ≤ t +h≤ t1,

u(t +h)−u(t) = (e−Ah− I)
[

e−A(t−t0)u(t0)+
∫ t

t0
e−A(t−s) f (s,u(s))ds

]
+

∫ t+h

t
e−A(t+h−s) f (s,u(s))ds.

Choose a θ such that 0 < θ < 1−α . Then, by Corollary 3 and Theorem 29, we get:

∥u(t +h)−u(t)∥Xα ≤ Mhθ (t− t0)−θ∥u(t0)∥Xα +
∫ t

t0
Mhθ (t− s)−α−θ Bds

+
∫ t+h

t
M(t +h− s)−αBds

Since −α +1 > 0 considering the second term we get

∫ t

t0
Mhθ (t− s)−α−θ Bds = MB

(t− t0)−α+1

−α−θ +1
hθ (t− t0)−θ ≤C1hθ (t− t0)−θ .
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And for the third term, we get:∫ t+h

t
M(t +h− s)−αBds ≤ MB

h1−α−θ

1−α
hθ (t− t0)−θ

(t1− t0)−θ

≤ C2hθ (t− t0)−θ .

Therefore, for a constant C > 0,

∥u(t +h)−u(t)∥Xα ≤Chθ (t− t0)−θ .

It follows that t 7→ f (t,u(t))≡ g(t) is continuous in [t0, t1] and satisfies a Hölder condition

∥g(t +h)−g(t)∥ ≤ K(t− t0)−δ hδ , t0 < t ≤ t +h≤ t1,

for some K,δ > 0 (0 < δ < 1−α , without loss of generality). It is enough to show that

G(t) =
∫ t

t0
e−A(t−s)g(s)ds

takes values in D(A) with t → AG(t) continuous in (t0, t1] — this will imply u(t) ∈ D(A) for
t ∈ [t0, t1), (t0, t1) ∋ t 7→ Au(t) ∈ X is continuous, and u is differentiable in (t0, t1). Therefore, we
will show that h−1(e−Ah− I)G(t) converges as h→ 0+, uniformly in t∗0 ≤ t ≤ t1, for any t∗0 > t0.
Now,

h−1(e−Ah− I)G(t) =
∫ t

t0
h−1(e−Ah− I)e−A(t−s)(g(s)−g(t))ds

+h−1
∫ t0+h

t0
e−A(t+h−s)g(t)ds−h−1

∫ t

t−h
e−A(t−s)g(t)ds,

and the two last terms converge uniformly in t∗0 ≤ t ≤ t1. For the other term, not that∫ t

t0
∥Ae−A(t−s)∥L (X)∥g(t)−g(s)∥ds < ∞

because of the Hölder condition, and

∥h−1
∫ t

t0
(e−Ah− I +hA)e−A(t−s)(g(s)−g(t))ds∥=

= ∥
∫ t

t0
h−1

∫ h

0
(I− e−Aσ )dσAe−A(t−s)(g(s)−g(t))ds∥

≤
∫ t

t0
Mhε(t− s)−1−εK(s− t0)−δ (t− s)δ ds h→0+−→ 0, 0 < ε < δ

uniformly for t∗0 ≤ t ≤ t1.

Therefore,

h−1(e−Ah− I)G(t)→−
∫ t

t0
Ae−A(t−s)(g(s)−g(t))ds+ e−A(t−t0)g(t)−g(t)

as h→ 0+ uniformly in [t∗0 , t1], which completes the proof.
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In order to study the existence and uniqueness of solutions for (5.1), we need to use a
version of Grönwall’s Lemma that allows for singularities in the auxiliary functions. It is stated
as following (HENRY, 2013):

Lemma 17. Suppose a, b≥ 0, α ,β ∈ [0,1), u : [0,T ]→R is integrable, and the following holds:

0≤ u(t)≤ at−α +b
∫ t

0
(t− s)−β u(s)ds (5.2)

Then, there exists a constant K = K(b,β ,T ) such that:

u(t)≤ K
1−α

at−α

For almost every t ∈ (0,T ).

We are ready to prove the existence and uniqueness of solutions. As usual, we use the
Banach Fixed Point Theorem.

Theorem 32 (Existence, uniqueness, extensions of solutions). Suppose X is a Banach space,
A : D(A) ⊂ X → X is sectorial and positive, 0 ≤ α < 1, Xα is as defined before, and U is an
open subset of R×Xα . Assume f : U → X is locally Hölder continuous in its first argument and
locally Lipschitz continuous in its second argument, that is, in a neighborhood of any point in U ,
this holds:

∥ f (t,u1)− f (s,u2)∥ ≤C
(
|t− s|θ +∥u1−u2∥Xα

)
, (5.3)

for some θ ,C > 0 depending on the neighborhood. Then, given (t0,u0)∈U , there exists a unique
solution u : [t0, t1)→ X , where the interval [t0, t1) is maximal. Finally, if u0 ∈D(A), the derivative
of the solution is continuous as t→ t+0 . If t1 < ∞, then either (t,u(t))

t→t1−→ ∂U or

∥ f (t,u(t))∥X

1+∥u(t)∥Xα

is not bounded in [t0, t1), or both.

Note that u0 does not need to belong to the domain of A, but only to a fractional domain
Xα . However, the domain of A is dense in Xα , and we may find a solution u : [t0, t1)→ X such
that u(t0) = u0 and u(t) ∈ D(A) for any 0 < t < t1, which is a regularization of the initial data.

Proof. Consider the operator G defined as following:

G(u)(t) = e−A(t−t0)u0 +
∫ t

t0
e−A(t−s) f (s,u(s))ds, t0 ≤ t ≤ t0 +T.

We will show that for T,r chosen correctly, this operator is a contraction in the ball of
radius r and center u0 of the space C ([t0, t0 +T ],Xα), namely,

Br :=

{
u : [t0, t0 +T ]→ Xα : u is continuous and sup

t∈[t0,t0+T ]
∥u(t)−u0∥Xα ≤ r

}
.
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Choose r, T > 0 such that the set V := [t0, t0 + T ]×{u ∈ Xα : ∥u− u0∥Xα ≤ r} is
contained in the open set U . Since f satisfies (5.3), choose B > 0 so that ∥ f (t,u)∥ ≤ B for
(t,u) ∈V , and let L > 0 be such that:

∥ f (t,u1)− f (t,u2)∥ ≤ L∥u1−u2∥Xα , (t,ui) ∈V, i = 1,2.

Using Theorem 23 and Corollary 3, let M > 0 be such that:

∥e−Asz∥Xα ≤M∥z∥Xα , 0≤ s≤ T

∥e−Asz∥Xα ≤Ms−α∥z∥, 0≤ s≤ T.

Now, using that {e−At : t ≥ 0} is strongly continuous, we may reduce the value of the
chosen T so that:

∥e−Asu0−u0∥Xα ≤ r/2, 0≤ s≤ T

MBT 1−α

1−α
≤ r/2

MLT 1−α

1−α
≤ 1/2,

Now we prove that G(Br)⊂ Br. Indeed, if u ∈ Br:

sup
t∈[t0,t0+T ]

∥G(u)(t)−u0∥Xα = sup
t∈[t0,t0+T ]

∥e−A(t−t0)u0−u0 +
∫ t

t0
e−A(t−s) f (s,u(s))ds∥Xα

≤ sup
t∈[t0,t0+T ]

(
r
2
+
∫ t

t0
M(t− s)−α∥ f (s,u(s))∥ds

)

≤ sup
t∈[t0,t0+T ]

(
r
2
+M sup

s∈[t0,t0+T ]
∥ f (s,u(s))∥(t− t0)1−α

1−α

)

≤ r
2
+

MT 1−α

1−α
sup

s∈[t0,t0+T ]
∥ f (s,u(s))∥ ≤ r

2
+

MBT 1−α

1−α
≤ r

With similar calculations we prove that if u, ũ ∈ Br,

sup
t∈[t0,t0+T ]

∥Gu(t)−Gũ(t)∥Xα ≤ MLT 1−α

1−α
sup

t∈[t0,t0+T ]
∥u(s)− ũ(s)∥Xα ,

so that G is a contraction in Br and possesses an unique fixed point u ∈ Br, and by Theorem 31,
u(·) is a solution of (5.1).

Now let us prove the uniqueness. Suppose u, ũ are solutions of (5.1) defined in [t0, t2]. If
u(t) = ũ(t), for all t ∈ [t0,a], for some a > t0, define α = sup{a∈ (t0, t2] : u(t) = ũ(t)∀ t ∈ [t0,a]}.
If α = t2, we are done. Otherwise, consider instead the solutions u and ũ defined in [α, t2]. This
shows us that we can suppose that u(t) ̸= ũ(t) for t as close as we wish from t0, t > t0 (possibly
redefining t0 = α).
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Since u and ũ are continuous, take T̃ > 0 small enough so that T̃ < T , and:

sup
t∈[t0,t0+T̃ ]

∥u(t)−u0∥Xα ≤ r

sup
t∈[t0,t0+T̃ ]

∥ũ(t)−u0∥Xα ≤ r,

But G is a contraction in the ball B̃r of radius r and center u0 of the space C ([t0, t0 +

T̃ ],Xα), with norm of supremum, and G(B̃r) ⊂ B̃r, so G only has one fixed point in B̃r. The
restrictions of u and ũ to [t0, t0 + T̃ ] are both fixed points of G in B̃r, but u(t) ̸= ũ(t) for some
t ∈ [t0, t0 + T̃ ]. This is a contradiction, so α = t2 and u(t) = ũ(t) for t ∈ [t0, t2].

The maximal solution is constructed the following way: let

t1 = sup{a > t0 : there exists a solution of (5.1) defined in [t0,a)}

and for t ∈ [t0, t1), define u(t) = ũ(t) where ũ is a solution defined in [t0,a) for a > t. This
solution u is well defined because of the uniqueness of solutions, and it is trivially maximal.

Now let us prove the last claim.

Suppose t1 < ∞, and the limit u1 = lim
t→t−1

u(t) exists. If (t1,u1) ∈U , there exists a solution

ũ : [t1, t1+δ )→ X , with ũ(t1) = u1 for some δ > 0. Then û : [t0, t1+δ )→ X given by û(t) = u(t),
for t0 ≤ t < t1 and û(t) = ũ(t), for t1 ≤ t < t1 +δ satisfies the Formula of Variation of Constants
and is a solution of (5.1). This contradicts the definition of t1. So (t1,u1) ∈ ∂U .

Suppose now that:

∥ f (t,u(t))∥
1+∥u(t)∥Xα

≤ B < ∞, t0 ≤ t < t1 (5.4)

We will show that in this case, the limit u1 = lim
t→t−1

u(t) must exist, and the proof will be

complete. First note that for t ∈ [t0, t1), estimating in the Formula of Variation of Constants, and
using the condition (5.4), we get:

1+∥u(t)∥Xα ≤ [1+M∥u(t0)∥Xα ]+
∫ t

t0
MB(t− s)−α(1+∥u(s)∥Xα )ds.

By Grönwall’s Lemma 17, we conclude that ∥u(t)∥Xα is bounded in [t0, t1), and by the
Lipschitz condition, ∥ f (t,u(t))∥ ≤ B1, t0 ≤ t < t1. Let us prove that ∥u(s)−u(r)∥Xα → 0 as s,
r→ t−1 , which will imply the existence of the limit.

Given ε > 0 choose 0< ε1 < t1−t0 with ε1≤ ε

4MB1
. Define t∗ := t1−ε1 and let 0< δ ≤ ε1

be such that ∥(e−A(s−t∗)− e−A(r−t∗))u(t∗)∥Xα ≤ ε

4 if |s− r| ≤ δ . Let s,r ∈ [t1−δ , t1), and s≤ r

so that t∗ ≤ t1−δ ≤ s≤ r < t1, we may use the Formula of Variation of Constants for u(s) and
u(r) with t0 = t∗, and we get:

∥u(s)−u(r)∥Xα ≤ ε

4
+2
∫ s

t∗
MB1dθ +

∫ r

s
MB1dθ ≤ ε,
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which completes the proof.

Remark 11. Here we make a digression to talk about continuity of solutions in relation to the
initial conditions (t0,u0). For non-autonomous problems (the case where f depends on t), this
continuity is a consequence of the continuity of the contraction operator G in relation to t0 and
u0 (HENRY, 2013, Corollary 3.4.6). However, we can show continuity in relation to initial data
in a much simpler way if we are in the autonomous case (where f does not depend on t). Indeed,
consider the problem:

d
dt

u =−Au+ f (u), t ≥ 0

u(0) = u0 ∈ Xα ,

where A : D(A)⊂ X → X is sectorial, positive, α ∈ [0,1), f : Xα → X is Lipschitz continuous
in bounded sets of Xα . Then, Theorem 32 applies and for each u0 ∈ Xα , there exists a solution
u(·,u0) : [0,τ)→ Xα such that u(0,u0) = u0. Suppose further that for every u0 ∈ Xα , the solution
u(·,u0) is bounded in [0,τ) — in the applications, we usually show this boundedness using
energy estimates, like the one we make in the first section of Chapter 6 — then the last part
of Theorem 32 implies that τ = ∞ for every initial condition u0 ∈ Xα . Now, let u1, u2 ∈ Xα

be two initial conditions, and T > 0, then there exists ρ ≥ 0 such that ∥u(s,u1)∥Xα ≤ ρ and
∥u(s,u2)∥Xα ≤ ρ for any s ∈ [0,T ] and let k(ρ) be the Lipschitz constant of f in the ball of
radius ρ in Xα . By the Formula of Variation of Constants, we have, for any t ∈ [0,T ]:

∥u(t,u1)−u(t,u2)∥Xα ≤ ∥e−Atu1− e−Atu2∥∫ t

0
∥e−A(t−s) ( f (u(s,u1))− f (u(s,u2)))∥Xα ds

which yields:

∥u(t,u1)−u(t,u2)∥Xα ≤M∥u1−u2∥Xα+∫ t

0
Mk(ρ)(t− s)−α∥u(s,u1)−u(s,u2)∥Xα ds.

From the Grönwall’s Lemma 17,

∥u(t,u1)−u(t,u2)∥Xα ≤ K(T )∥u1−u2∥Xα , ∀ t ∈ [0,T ].

Using the triangle inequality, we obtain that the application R×Xα ∋ (t,u0) 7→ u(t,u0)∈
Xα is continuous, which allows us to use the theory of semigroups and attractors developed in
Chapter 3 to study parabolic semilinear differential equations when they are autonomous.
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5.2 Stability of equilibria
In this section we study the behavior of a dynamical system in the neighborhood of an

equilibrium point. We will show that, under certain conditions, we can approximate a semilinear
parabolic equation by a linear equation, and analyze the spectrum of the linear operator associated
in order to conclude information about the original semilinear equation.

From now on, let 0 < α < 1 and consider the sectorial operator A of positive kind in the
Banach space X , and the function f : U→ X , where U is a neighborhood of R×{u0} in R×Xα ,
such that there exists a fixed neighborhood of u0 in Xα , say V ⊂ Xα , satisfying t×V ⊂U for all
t ∈ R. We say that u0 ∈ X is an equilibrium for (5.1) if u(t)≡ u0 is a solution of:

d
dt

u+Au = f (t,u), t ∈ R, (5.5)

that is, u0 ∈ D(A) and Au0 = f (t,u0) for all t ∈ R.

Definition 33 (Stability and uniform stability). An equilibrium u∗ of (5.1) is called stable for the
equation (5.1) in Xα if for any ε > 0, t0 ∈ R, there exists δ = δ (t0) > 0 such that any solution u

with ∥u(t0)−u∗∥Xα < δ is defined for t ∈ [t0,∞) and satisfies ∥u(t)−u∗∥Xα < ε for all t ≥ t0.

An equilibrium u∗ of (5.1) is called uniformly stable for equation (5.1) in Xα if for any
ε > 0, there exists δ > 0 for which if ∥ũ− u0∥ < δ , then for any t0 ∈ R, t ≥ t0, the solution
u(·, t0, ũ) such that u(t0, t0, ũ) = ũ, ∥ũ− u∗∥ < δ is defined in [t0,∞) and satisfies ∥u(t, t0, ũ)−
u∗∥< ε for all t ∈ [t0,∞).

The equilibrium u∗ is uniformly asymptotically stable if it is uniformly stable and
∥u(t; t0, ũ)−u∗∥Xα → 0 as t− t0→∞, uniformly for t0 ∈R and ∥ũ−u∗∥Xα < δ , for some δ > 0.

We say that an equilibrium u∗ is unstable if it is not stable.

Theorem 33 (Stability by linear approximation). Let A and f be as in Theorem 32 and u∗ an
equilibrium for (5.1). Suppose that

f (t,u∗+ z) = f (t,u∗)+Bz+g(t,z)

where B∈L (Xα ,X) and ∥g(t,z)∥= o(∥z∥Xα ) as ∥z∥Xα → 0, uniformly for t ∈R and f : U→ X

is locally Hölder continuous in the first variable, and locally Lipschitz in the second.

If the spectrum of L := A−B is a subset of {λ ∈ C : Reλ > β} for some β > 0, then
the equilibrium u∗ is uniformly asymptotically stable in Xα . More than that, there exist ρ > 0,
M ≥ 1 such that if t0 ∈ R and ∥u0−u∗∥Xα ≤ ρ

2M then there is a unique solution of

du
dt

+Au = f (t,u), t > t0, u(t0) = u0, (5.6)

defined in [t0,∞) that satisfies

∥u(t; t0,u0)−u∗∥Xα ≤ 2Me−β (t−t0)∥u0−u∗∥Xα , t ≥ t0. (5.7)
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Proof. From Corollary 4, we have that L = A−B sectorial with vertex a ∈ R, and since σ(L)⊂
{λ ∈ C : Reλ > β}, it is easy to see that L is sectorial with vertex 0 and L ∈P is of positive
kind.

Choose 0 < β < β ′ < Reσ(L). Then Theorem 24 applies with P = 0 and δ2 = β ′, and
using also Corollary 2 and Corollary 3, we get:

∥e−Ltz∥Xα = ∥Aαe−Ltz∥ ≤C∥Lαe−Ltz∥ ≤Mt−αe−β ′t∥z∥,

∥e−Ltz∥Xα = ∥Aαe−Ltz∥= ∥e−LtAαz∥ ≤Me−β ′t∥z∥Xα .

Now let σ > 0 be small enough so that

Mσ

∫
∞

0
s−αe−(β

′−β )sds < 1/2, (5.8)

and since ∥g(t,z)∥∥z∥Xα

∥z∥Xα→0−→ 0, uniformly in t ∈ R, we choose ρ > 0 small enough so that

∥g(t,z)∥ ≤ σ∥z∥Xα for ∥z∥Xα ≤ ρ and t ∈ R.

Let z(t) = u(t; t0,u0)−u∗, where u(·, t0,u0) is the (5.6), and ∥u0−u∗∥Xα ≤ ρ/2M. By
Theorem 32, z is defined in some maximal interval [t0, t f ), and ∥z(t)∥Xα ≤ ρ in some interval
[t0, t̃). It is easy to see that z is solution for the following problem:

d
dt

z =−Lz+g(t,z), t ≥ t0

z(t0) = u0−u∗ ∈ Xα .

Suppose that ∥z(s)∥Xα < ρ for t0 < s < t̃, then, by the Formula of Variation of Constants,

∥z(t)∥Xα = ∥e−L(t−t0)z(t0)+
∫ t

t0
e−L(t−s)g(s,z(s))ds∥Xα

≤Me−β ′(t−t0)∥z(t0)∥Xα +σM
∫ t

t0
(t− s)−αe−β ′(t−s)∥z(s)∥Xα ds

≤ ρ/2+ρσM
∫ t

−∞

(t− s)−αe−β ′(t−s)ds < ρ,

(5.9)

where we used (5.8) in the last estimate. Then, if ∥z(s)∥Xα < ρ in t0 ≤ s < t1 with t1 maximal
with this property, we claim that t1 = ∞. Suppose not, then either t1 = t f or t1 < t f ; the first case
leads to a contradiction since the boundedness of z near t f allows an extension of the interval
[t0, t f ) of definition of z, contradicting the fact that z is defined in a maximal domain; in the
second case, we would have ∥z(t1)∥Xα = ρ because of the maximality, contradicting the estimate
(5.9). It follows that t1 = ∞.
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Now we only need to prove (5.7). If u(t) = sup{∥z(s)∥Xα eβ (s−t0), t0 ≤ s≤ t}, then

∥z(t̃)∥Xα eβ (t̃−t0) ≤ M∥z(t0)∥Xα +σM
∫ t̃

t0
(t̃− s)−αe−(β

′−β )(t̃−s)dsu(t)

≤ M∥z(t0)∥Xα +
1
2

u(t), ∀0≤ t̃ ≤ t

where we used (5.8). Therefore, u(t) ≤ M∥z(t0)∥Xα + 1
2u(t), and u(t) ≤ 2M∥z(t0)∥Xα , which

yields:

∥u(t; t0,u0)−u∗∥Xα ≤ 2Me−β (t−t0)∥u0−u∗∥Xα , t ≥ t0.

The following lemma will be important to identify unstable equilibria, by stating, under
certain conditions, the existence of a global solution which converges to the equilibrium as
t→−∞.

Lemma 18. Let A and f be as above and u∗ be an equilibrium for (5.6). Suppose that

f (t,u∗+ z) = f (t,u∗)+Bz+g(t,z)

where B∈L (Xα ,X) and ∥g(t,z1)−g(t,z2)∥≤ k(ρ)∥z1−z2∥Xα for ∥z1∥Xα ≤ ρ and ∥z2∥Xα ≤ ρ ,

and k(ρ)
ρ→0+−→ 0.

Suppose that the spectrum of L = A−B is disjoint of {λ ∈ C : Reλ = 0}, and define the
spectral sets σ1 = σ(L)∩{λ ∈ C : Reλ < 0} and σ2 = σ(L)\σ1, and suppose that σ1 ̸= /0. Let
P be the projection from Theorem (24), associated to the part of the spectrum of L to the left of
the imaginary axis, that is:

P =
1

2πi

∫
C
(λ −L)−1dλ ,

where C is a smooth curve wrapping σ1, contained in Reλ < 0, in the counterclockwise direction.
Define the phase space decomposition X = X1⊕X2, X1 = R(P), X2 = N(P). Then σi = σ(Li),
where Li is the restriction of L to Xi, i = 1,2.

For a ∈ X1, τ ∈ R, consider the following integral equation:

y(t) = e−L1(t−τ)a+
∫ t

τ

e−L1(t−s)P(g(s,y(s))ds

+
∫ t

−∞

e−L2(t−s)(I−P)(g(s,y(s))ds, t ≤ τ.

(5.10)

Then, there exists ρ > 0 such that if ∥a∥Xα ≤ ρ/2M, (5.10) has a unique solution y(t)

over −∞ < t ≤ τ , with ∥y(t)∥Xα ≤ ρe2β (t−τ), and this solution to the integral equation is also a
solution for the differential equation:

ż+Lz = g(t,z).
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Proof. Due to the exponential dichotomy of the sectorial operator L (Theorem 24), we can
choose β > 0, and M ≥ 0 such that:

∥e−L2t(I−P)u∥Xα ≤Me−β t∥u∥Xα , ∥e−L2t(I−P)u∥Xα ≤Mt−αe−β t∥u∥, t > 0

∥e−L1tPu∥Xα ≤Me3β t∥u∥Xα , ∥e−L1tPu∥Xα ≤Me3β t∥u∥ t ≤ 0.

Where in the last estimate we used the fact that (L1)
α ∈L (X1). If G if the set of functions

with domain (−∞,τ] taking values in Xα
1 and satisfying sups≤τ e−2β (s−τ)∥y(s)∥Xα < ρ , where ρ

is small enough so that the following condition is satisfied:

Mk(ρ)(∥P∥β−1 +∥(I−P)∥
∫

∞

0
u−αe−βudu)≤ 1

4M
<

1
2
. (5.11)

In G , we define the metric:

d(y, ỹ) = sup
s≤τ

e−2β (s−τ)∥y(s)− ỹ(s)∥Xα ,

which makes it a complete metric space. Finally, define in G the following operator:

(Ty)(t) = e−L1(t−τ)a+
∫ t

τ

e−L1(t−s)P(g(s,y(s))ds

+
∫ t

−∞

e−L2(t−s)(I−P)(g(s,y(s))ds, t ≤ τ.

(5.12)

We only need to show that the range of T is in G and d(Ty,T ỹ)≤ 1
2d(y, ỹ) for all y, ỹ∈ G ,

and the result will follow from Banach’s Fixed Point Theorem. Indeed:

e−2β (t−τ)∥(Ty)(t)∥Xα

≤M∥a∥Xα +
∫

τ

t
Me3β (t−s)e−2β (t−s)∥P∥k(ρ)e−2β (s−τ)∥y(s)∥Xα ds

+
∫ t

−∞

M(t− s)−αe−β (t−s)∥(I−P)∥k(ρ)e−2β (s−τ)∥y(s)∥Xα ds

≤M∥a∥Xα +
∫

τ

t
Meβ (t−s)∥P∥k(ρ)e−2β (s−τ)∥y(s)∥Xα ds

+
∫ t

−∞

M(t− s)−αe−β (t−s)∥(I−P)∥k(ρ)e−2β (s−τ)∥y(s)∥Xα ds

≤M∥a∥Xα +M k(ρ)[∥P∥
∫

τ

t
eβ (t−s)ds

+∥(I−P)∥
∫ t

−∞

(t− s)−αe−β (t−s)ds]sup
s≤τ

e−2β (s−τ)∥y(s)∥Xα

≤M∥a∥Xα +M k(ρ)[∥P∥β−1

+∥(I−P)∥
∫

∞

0
s−αe−β sds]sup

s≤τ

e−2β (s−τ)∥y(s)∥Xα

≤ ρ/2+ρ/2 = ρ,

(5.13)
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So that T is well-defined and its range is in G . To show that T is a uniform contraction
in G , we proceed as following:

e−2β (t−τ)∥(Ty)(t)− (T ỹ)(t)∥Xα

≤
∫

τ

t
Me3β (t−s)e−2β (t−s)∥P∥k(ρ)e−2β (s−τ)∥y(s)− ỹ(s)∥Xα ds

+
∫ t

−∞

M(t− s)−αe−β (t−s)∥(I−P)∥k(ρ)e−2β (s−τ)∥y(s)− ỹ(s)∥Xα ds

≤
∫

τ

t
Meβ (t−s)∥P∥k(ρ)e−2β (s−τ)∥y(s)− ỹ(s)∥Xα ds

+
∫ t

−∞

M(t− s)−αe−β (t−s)∥(I−P)∥k(ρ)e−2β (s−τ)∥y(s)− ỹ(s)∥Xα ds

≤M k(ρ)[∥P∥
∫

τ

t
eβ (t−s)ds

+∥(I−P)∥
∫ t

−∞

(t− s)−αe−β (t−s)ds]sup
t≤τ

e−2β (t−τ)∥y(t)− ỹ(t)∥Xα

≤M k(ρ)[∥P∥β−1

+∥(I−P)∥
∫

∞

0
s−αe−β sds]sup

s≤τ

e−2β (s−τ)∥y(s)− ỹ(s)∥Xα

≤1
2

sup
s≤τ

e−2β (s−τ)∥y(s)− ỹ(s)∥Xα .

Therefore, there exists a unique fixed point y ∈ G of T , which is a solution of (5.10)
satisfying the exponential estimate ∥y(t)∥Xα ≤ ρe2β (t−τ). Now we need to show that y is a
solution of ż+Lz = g(t,z). Define η(s) = g(s,y(s)) and t0 ≤ τ , and for t0 ≤ t ≤ τ , we have:

(I−P)y(t) =
∫ t

−∞

e−L2(t−s)(I−P)η(s)ds

= e−L2(t−t0)
∫ t0

−∞

e−L2(t0−s)(I−P)η(s)ds

+
∫ t

t0
e−L2(t−s)(I−P)η(s)ds

= e−L2(t−t0)(I−P)y(t0)+
∫ t

t0
e−L2(t−s)(I−P)η(s)ds

and

Py(t) = e−L1(t−τ)a+
∫ t

τ

e−L1(t−s)Pη(s)ds

= e−L1(t−t0)e−L1(t0−τ)a

+ e−L1(t−t0)
∫ t0

τ

e−L1(t0−s)Pη(s)ds+
∫ t

t0
e−L1(t−s)Pη(s)ds.

Then, it is simple to see that y = Py+(I−P)y satisfies the Formula of Variation of
Constants, so that it is a solution of

dy
dt

+Ly = η(t), t0 < t < τ,

and this concludes the proof.
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Theorem 34 (Instability by linear approximation). Let A, f , B, g, L and u∗ be as in Lemma
18. Then u∗ is unstable. More precisely, there exists t0 ∈ R, ε0 > 0 and {un : n ≥ 1} with
∥un−u∗∥Xα → 0 as n→ 0 such that, for all n ∈ N,

sup
t
∥u(t; t0,un)−u∗∥Xα ≥ ε0 > 0,

where the supremum is taken over the maximal existence interval of u(·, t0,un).

Proof. Choose ρ > 0 as in Lemma 18, and ∥a∥Xα ≤ ρ/2M, τ ∈ R, then there exists an unique
solution y : (∞,τ]→ X of the integral equation (5.10), with ∥y(t)∥Xα ≤ ρe2β (t−τ). If we denote
this solution by y(t) = y∗(t;τ,a), using an estimate in (5.13) and the fact that y is a fixed point
for T , we get:

sup
s≤τ

e−2β (s−τ)∥y(s)∥Xα ≤M∥a∥Xα +
1
2

sup
s≤τ

e−2β (s−τ)∥y(s)∥Xα ,

so that

∥y∗(t;τ,a)∥Xα ≤ 2M∥a∥Xα e2β (t−τ), t ≤ τ.

We will show that ∥y∗(τ,τ,a)∥ ≥ 1/2∥a∥Xα . Indeed,

∥y∗(τ;τ,a)−a∥Xα ≤
∥∥∥∥∫ τ

−∞

e−L2(τ−s)(I−P)g(s,y∗(s,τ,a))ds
∥∥∥∥

Xα

≤ ∥(I−P)∥k(ρ)2M∥a∥Xα

∫
τ

−∞

M(τ− s)−αe−β (τ−s)ds

≤ 1
2
∥a∥Xα

e assim, ∥y∗(τ;τ,a)∥Xα ≥ 1/2∥a∥Xα .

Recall that y∗(.;τ,a) is a solution of

dz
dt

+Lz = g(t,z), t < τ.

Now, let t0 ∈ R, if zn = y∗(t0; t0 +n,a), the solution z(· , t0,zn) of the problem dz
dt +Lz =

g(t,z), z(t0, t0,zn) = zn satisfies, by uniqueness, z(t, t0,zn) = y∗(t, t0 + n,a) for t0 ≤ t ≤ t0 + n,
and

sup{∥z(t; t0,zn)∥Xα , t ≥ t0} ≥ ∥z(t0 +n; t0,zn)∥Xα

= ∥y∗(t0 +n; t0 +n,a)∥Xα ≥ 1/2∥a∥Xα .

Moreover, ∥zn∥Xα ≤ ρe−2βn→ 0, as n→ ∞.
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5.3 Saddle Point Property
In this section we present a very important theorem about the behavior of the local stable

and unstable sets of an equilibrium point.

Theorem 35 (Saddle Point Property). Suppose that A, f , u∗ are like in Theorem 33, with

f (t,u∗+ z) = f (t,u∗)+Bz+g(t,z),

B ∈ L(Xα ,X), g(t,0) = 0 and ∥g(t,z1)− g(t,z2)∥ ≤ k(ρ)∥z1− z2∥Xα for ∥zi∥Xα ≤ ρ , i = 1,2,

with k(ρ)
ρ→0+−→ 0, and assume (without loss of generality), that k(·) is non-decreasing. Let

L = A−B, and suppose that σ(L) is disjoint from the imaginary axis. We define the spectral sets
σ1 = σ(L)∩{λ ∈C : Reλ < 0} and σ2 = σ(L)\σ1. Let P be the spectral projection associated
to σ1, that is:

P =
1

2πi

∫
C
(λ −L)−1dλ ,

where C is a smooth curve wrapping σ1, contained in Reλ < 0, in the counterclockwise direction.
Define the phase space decomposition X = X1⊕X2, X1 = R(P), X2 = N(P). Then σi = σ(Li),
where Li is the restriction of L to Xi, i = 1,2.Then there exist constants ρ > 0, M ≥ 1 such that
the following holds:

1. The local stable set of the semilinear problem S(t0,ρ), defined by

S = {z0 : ∥(I−P)z0∥Xα ≤ ρ/2M, ∥z(t, t0,z0)∥Xα ≤ ρ f or t ≥ t0}

is homeomorphic under the homeomorphism (I−P)
∣∣
S to the closed ball of radius ρ/2M

in Xα
2 . Moreover, S is tangent to Xα

2 in 0 and when z0 ∈ S,

∥z(t, t0,z0)∥Xα → 0 as t→ ∞ (exponentially)

2. The unstable set of the semilinear problem U =U(t0,ρ), given by U = {z0 : ∥Pz0∥Xα ≤
ρ/2M, z(t, t0,z0) is a solution defined in (−∞, t0), ∥z(t, t0,z0)∥Xα ≤ ρ, t ≤ t0} is homeo-
morphic under the homeomorphism P

∣∣
U to the closed ball of radius ρ/2M in X1. Moreover,

U is tangent to X1 in 0 and when z0 ∈U , z(t, t0,z0)→ 0 as t→−∞ exponentially.

Proof. As before, using Theorem 24, let M > 0 and β > 0 be such that

∥Aαe−L1t∥ ≤Meβ t , ∥e−L1t∥ ≤Meβ t , for t ≤ 0,

∥Aαe−L2t(I−P)A−α∥ ≤Me−β t , ∥Aαe−L2t∥ ≤Mt−αe−β t , for t > 0.

Suppose that z0 ∈ S, then z(t, t0,z0) = z(t) = z1(t)+ z2(t) ∈ X1⊕X2

z1(t) = e−L1(t−t0)Pz0 +
∫ t

t0
e−L1(t−s)Pg(s,z(s))ds,



5.3. Saddle Point Property 93

so that

eL1tz1(t) = eL1t0Pz0 +
∫ t

t0
eL1sPg(s,z(s))ds t→∞−→ 0.

We conclude that Pz0 =−
∫

∞

t0 e−L1(t0−s)g(s,z(s))ds, which means that for t ≥ t0,

z(t) = e−L2(t−t0)a+
∫ t

t0
e−L2(t−s)(I−P)g(s,z(s))ds−

∫
∞

t
e−L1(t−s)Pg(s,z(s))ds, (5.14)

where a = (I−P)z(t0).

Reciprocally, if a ∈ X2, ∥a∥Xα ≤ ρ/2M, we will show that (for ρ > 0 small enough)
there exists a unique solution z(t) = z(t, t0,a) of the integral equation (5.14) with (I−P)z0 =

(I−P)z(t0, t0,a) = a and ∥z(t, t0,a)∥Xα ≤ ρ for all t ≥ t0.

In fact, if ρ > 0 is chosen in such a way that

MK(ρ){∥(I−P)∥
∫

∞

0
u−αe−βudu+∥P∥

∫
∞

0
e−βudu}< 1/2,

then the right hand side of equation (5.14) defines an uniform contraction in the space of
continuous functions z : [t0,∞)→ X with sup∥z(t)∥Xα ≤ ρ and (I−P)z(t0) = a, provided that
∥a∥Xα ≤ ρ/2M so that there is a solution of the integral equation z(t, t0,z) in this space. This
solution is a Lipschitz function of a ∈ Xα

2 , ∥a∥Xα ≤ ρ/2M, in the norm ∥ ·∥Xα , and we can show
that t→ z(t, t0,a) is locally Hölder continuous, and it follows from Theorem 31 that z(t, t0,a) is
solution of dz

dt +Lz = g(t,z), t > 0, with initial value

h(a) := z(t0, t0,a) = a−
∫

∞

t0
e−L1(t0−s)Pg(s,z(s, t0,a))ds.

Then (I−P)h(a) = a, e h(·) is Lipschitz continuous, so that

S = {h(a) : a ∈ Xα
2 , ∥a∥Xα ≤ ρ/2M}

is the representation of the local stable set. Note that (I−P) is injective in S because if (I−P)b =

0, b is the initial value of the unique solution of the integral equation with a = 0. Since the
function φ ≡ 0 is a solution of this integral equation we have b = 0.

Now note that

∥h(a)−a∥Xα ≤
∫

∞

t0
Meβ (t0−s)∥P∥∥g(s,z(s, t0,a)∥ds

and sups≥t0 ∥z(s, t0,a)∥=O(∥a∥Xα ) as ∥a∥Xα → 0, a∈ X2, then ∥h(a)−a∥Xα = o(∥a∥Xα , which
proves that S is tangent to Xα

2 at 0. Now we prove the exponential convergence. Let z(t0) ∈ S;
we can estimate in the Formula of Variation of Constants using that z(t) = h(z2(t)) and h is
Lipschitz with constant J, to obtain:

eβ (t−t0)∥z2(t)∥Xα ≤M∥z0∥Xα +
∫ t

t0
M∥I−P∥k(ρ)(t− s)−αeβ (s−t0)J∥z2(s)∥Xα ds.
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Using Grönwall’s Lemma in the expression above, we conclude that there exists some
constant K ≥ 0 such that:

∥z(t)∥Xα ≤ Ke−β (t−t0)∥z0∥α .

The proof for the unstable set is similar, using an integral equation as that one in the
proof of Theorem 34. For the sake of conciseness, we omit the proof for this case.
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CHAPTER

6
SEMILINEAR CHAFEE-INFANTE EQUATION

6.1 Well-posedness and gradient structure

In this chapter we will study the classical Chafee-Infante equation (CHAFEE; INFANTE,
1974), given by:

ut = uxx +λ f (u), t > 0, x ∈ (0,π)

u(0, t) = u(π, t) = 0, t ≥ 0

u(·,0) = u0 ∈ H1
0 (0,π),

(6.1)

where λ > 0 is a parameter, f ∈C 2(R) is odd (in particular, f (0) = 0), f ′(0) = 1, and f satisfies:

f ′′(u)u < 0, ∀ u ̸= 0 (6.2)

and

lim sup
|u|→∞

f (u)
u

< 0. (6.3)

The dynamical system associated to this equation possesses a gradient attractor whose
structure can be very well understood. In particular, we know how many equilibria it possesses
for each value of λ , whether these equilibria are stable or unstable, hyperbolic or not, and how
they connect to each other through global solutions.

We define f e : H1
0 (0,π)→ L2(0,π), f e(u)(x) = f (u(x)). Now we will apply the semilin-

ear equations theory using X0 = L2(0,π), A =−∆ with D(A) = H2(0,π)∩H1
0 (0,π), α = 1/2.

Recall that X
1
2 = H1

0 (0,π) (see Example 4), and this will be our phase space. We only need
to show that f e : H1

0 (0,π)→ L2(0,π) is Lipschitz in bounded sets of H1
0 (0,π) to ensure local

existence of solutions by Theorem 32.
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Indeed, let ∥ · ∥ denote the L2(0,π) norm and suppose u, v ∈ H1
0 (0,π), ∥u∥H1

0
≤ ρ ,

∥v∥H1
0
≤ ρ . Then:

∥ f e(u)− f e(v)∥2 =
∫

π

0
| f (u(x))− f (v(x))|2dx

=
∫

π

0
[ f ′(θ(x)u(x)+(1−θ(x))v(x))]2(u(x)− v(x))2dx

≤ C(ρ)∥u− v∥2 ≤C(ρ)∥u− v∥2
H1

0
,

where we used that f is continuously differentiable and for all x ∈ [0,π]:

|θ(x)u(x)+(1−θ(x))v(x)| ≤ |u(x)|+ |v(x)| ≤ sup
x∈[0,π]

|u(x)|+ sup
x∈[0,π]

|v(x)| ≤ 2π
1
2 ρ.

Therefore, if u, v ∈ H1
0 (0,π), ∥u∥H1

0
≤ ρ , ∥v∥H1

0
≤ ρ , there exists a constant k(ρ) > 0

such that:
∥ f e(u)− f e(v)∥ ≤ k(ρ)∥u− v∥H1

0
, (6.4)

so that Theorem 32 applies and given u0 ∈ H1
0 (0,π), there exist a local solution u : [0, t1)→

H1
0 (0,π) such that u(0) = u0.

From now on, we may use the same notation for f and f e, since the meaning will be
given by the context.

Now consider the function V : H1
0 (0,π)→ R given by

V (u) =
1
2
∥u∥2

H1
0
−
∫

π

0
λF(u(x))dx, where F(s) :=

∫ s

0
f (ξ )dξ .

This function is Lipschitz in bounded sets of H1
0 (0,π), hence continuous. Moreover, V is

differentiable. Now, let u : [0,π]× [0, t1)→ R be a solution of (6.1), then the composition V ◦u

is differentiable. Multiplying the differential equation by ut and integrating yields:∫
π

0
ut(x, t)2dx =

∫
π

0
uxx(x, t)ut(x, t)dx+λ

∫
π

0
f (u(x, t))ut(x, t)dx⇒

∥ut(·, t)∥2 =−1
2

d
dt
∥ux(·, t)∥2 +

d
dt

λ

∫
π

0
F(u(x))dx =− d

dt
V (u(·, t)),

that is, V is non-increasing along solutions and is only constant in t ≥ 0 if ut = 0, for t ≥ 0, that
is, if u(x, t)≡ u0(x), where u0 ∈ H1

0 (0,π) is an equilibrium of (6.1).

This proves that V is a Lyapunov function for (6.1). Now, from condition (6.3), we can
prove that for any ε > 0, there exists a constant Cε > 0 such that f (s)s≤ εs2 +Cε , for all s ∈ R,
and from this we conclude that there exists a constant Kε > 0 such that F(s)≤ εs2 +Kε , for all
s ∈ R. Hence, if u ∈ H1

0 (0,π),

V (u)≥ 1
2
∥u∥2

H1
0
−λε∥u∥2−λπKε ≥

(
1
2
−λε

)
∥u∥2

H1
0
−λπKε ⇒

V (u)≥ 1
4
∥u∥2

H1
0
−λπK 1

4λ

,
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where we used an appropriate ε and the property ∥u∥ ≤ ∥u∥H1
0

(see Proposition 14).

Then, for any solution u : [0, t1)→ H1
0 (0,π) with u(0) = u0 ∈ H1

0 :

∥u(t)∥2
H1

0
≤ 4λπK 1

4λ

+4V (u(t))≤ 4λπK 1
4λ

+4V (u0). (6.5)

This proves that the positive orbit of a solution is bounded in H1
0 (0,π), and using the last

claim in Theorem 32, we conclude that for any u0 ∈ H1
0 , we have a maximal solution u(·,u0) :

[0,∞)→ H1
0 (0,π) for which u(0,u0) = u0. Define the continuous mapping T (t) : H1

0 (0,π)→
H1

0 (0,π) by T (t)u0 = u(t,u0), for t ≥ 0. It follows from Remark 11 that R+×H1
0 (0,π) ∋

(t,u0) 7→ T (t)u0 ∈ H1
0 (0,π) is continuous, and T = {T (t) : t ≥ 0} is a semigroup. With the

Lyapunov function V , T is a gradient semigroup in H1
0 (0,π).

6.2 Existence of the attractor and equilibria

In this section we prove that T possesses a global attractor of gradient kind, and show
that the equation (6.1) has a finite number of equilibria, and this number depends on the value
of λ > 0. For λ ≤ 1, we show that the origin of H1

0 (0,π) is the only equilibrium, and when λ

becomes strictly larger than 1, two new equilibria bifurcate from the origin. New bifurcations
from the origin occur whenever λ = n2 for n = 1,2,3, ..., so that equation (6.1) has precisely
2n+1 equilibria if n2 < λ ≤ (n+1)2, for n = 0,1,2,3, ....

In order to prove existence of the attractor, we start showing that T is bounded. Indeed,
if B is bounded in H1

0 (0,π), and supu∈B∥u∥H1
0
≤ R, by the estimate (6.5) and the fact that V (B)

is bounded for B bounded, we conclude that ∥T (s)u0∥H1
0
≤C, for all s ∈ [0,∞), u0 ∈ B, where C

only depends on R. Whence γ+(B) is bounded.

Now we show that T is eventually compact, hence asymptotically compact (see Theorem
18). More precisely, we show that T (1) : H1

0 (0,π)→ H1
0 (0,π) is compact. Indeed, let B be

bounded in H1
0 (0,π), and supu∈B∥u∥H1

0
≤ R. We already know from the last paragraph that

∥T (s)u0∥H1
0
≤C, for all s ∈ [0,1], u0 ∈ B, where C only depends on R.

For any u0 ∈ B, 1
2 < β < 1, we have T (1)u0 ∈ D(A) ⊂ D(Aβ ), and using Theorem 29

and (6.4) in the Variation of Parameters Formula, we get:

∥Aβ T (1)u0∥ =

∥∥∥∥Aβ− 1
2 e−AA

1
2 u0 +

∫ 1

0
Aβ e−A(1−s) f (T (s)u0)ds

∥∥∥∥
≤ M

β− 1
2
∥u0∥H1

0
+
∫ 1

0
Mβ (1− s)−β k(C)Cds,

where k(C) is the Lipschitz constant of f in the bounded set {u ∈ H1
0 (0,π) : ∥u∥H1

0
≤C}.

It follows that T (1)B is bounded in Xβ , and precompact in H1
0 (0,π) (see Proposition

12). This proves that T (1) is a compact operator and T is eventually compact.
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Now we prove that T is point dissipative. Indeed, let u0 ∈ H1
0 (0,π), then γ

+
0 ({u0}) =

{T (t)u0 : t ≥ 0} is bounded in H1
0 (0,π). Since T is asymptotically compact, it follows from

Lemma 6 that ω(u0) is nonempty, compact, invariant and attracts u0. Moreover, from Lemma 9
we conclude that ω(u0)⊂ E , where E is the set of equilibria of (6.1). Hence, E attracts u0 and
we only need to show that E is bounded. Indeed, if u ∈ E ,

uxx +λ f (u) = 0⇒
∫

π

0
u(s)uxx(s)ds+λ

∫
π

0
u(s) f (u(s))ds = 0⇒

∥u∥2
H1

0
≤ λε∥u∥2 +πλCε ⇒

∥u∥2
H1

0

2
≤ (λε− 1

2
)∥u∥2 +πλCε ,

where we used that f (s)s ≤ εs2 +Cε for all s ∈ R. In particular, for ε = 1
2λ

, we get ∥u∥2
H1

0
≤

πλC 1
2λ

.

Since T is point dissipative, asymptotically compact and bounded, it follows from
Theorem 19 that T has a global attractor A .

Now we need to find the equilibria of (6.1), that is, we need to find u ∈ H1
0 (0,π) such

that:

uxx(x)+λ f (u(x)) = 0, x ∈ [0,π]

u(0) = u(π) = 0.
(6.6)

If we use the hypothesis over f and f ′, we conclude that the function R ∋ s 7→ f (s)s has
a local minimum at the point 0. Moreover, f (u)u is negative for large u because of Condition
(6.3). Therefore, there exists a unique ā, 0 < ā < ∞, such that:

f (u)u > 0, for− ā < u < ā, (6.7)

with ā maximal with this property, which implies that f (ā) = 0. From the concavity hypothesis,
f (s) is negative for s > ā, and positive for s <−ā.

As before, we define F(u) :=
∫ u

0 f (ξ )dξ , u ∈ R. It is obvious that F is non-negative and
even in (−ā, ā) and F(0) = 0. Also, F is strictly increasing in [0, ā), F reaches a local maximum
in ā and then decreases until positive infinite. Analogously, F is strictly decreasing in (−ā,0], F

reaches a local maximum in −ā and is strictly increasing in (−∞,−ā). Now, define:

El := limu→āF(u) = limu→−āF(u).

In the interval [0, ā), F has a continuous inverse (from Inverse Function Theorem), which
we call U+ : [0,El)→ [0, ā). In (−ā,0], F has a continuous inverse U− : [0,El)→ (−ā,0]. It is
obvious that U−(E) =−U+(E), because F is even.

Now, in order to find functions that satisfy (6.6), we look for solutions of the following
ordinary differential equation:

ux = v

vx =−λ f (u),
(6.8)
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It follows from simple differentiation that for any (u,v) solution of (6.8), the value of
1
2u′(x)2 +λF(u(x)) is constant for every x ∈ R.

Figure 2 – Phase plane for (6.8) in the case λ f (u) = λu−bu3

For a fixed λ > 0, for any v0 ∈ R, consider the solution of (6.8) such that:

u(0) = 0, u′(0) = v(0) = v0.

If we take E = 1
2λ−1v2

0, we get:

λE =
1
2

u′(x)2 +λF(u(x)), (6.9)

for all x in the domain of u.

We need u to satisfy the boundary condition in (6.6). It can only happen if:

0 < E < El, (6.10)

because otherwise, E surpasses the maximum of F and, from the energy equation (6.9), u′ cannot
be zero for any x. That means u cannot become zero again to fulfill the boundary condition.
So, we assume (6.10) holds. This means we are taking v0 small enough so that the behavior of
the solution (u,v) in the phase plane of (6.8) is oscillatory around the origin, and the condition
u(π) = 0 may be fulfilled.

For this same reason, we need to assume that:

−(2λEl)
1
2 < v0 < (2λEl)

1
2 (6.11)

Indeed, if v0 is negative, u(x) is negative for small x, and in order to have u(π) = 0,
we must ask E smaller than El , which means v0 =−

√
2λE >−

√
2λEl . The same reasoning

applies for positive v0.

It follows from a simple analysis of (6.8), considering (6.7), that if v0 ̸= 0, u(0) = 0,
and u′(0) = v0, we have a first α > 0 such that u(α) = u0 and v(α) = 0. Let us address
the case v0 > 0, 0 < E < El . In this case, u increases and v decreases until the solution
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touches the u-axis, in the point U+(E) (see equation (6.9)). Through this trajectory, we have
u′(x) =

√
2λ (E−F(u(x)), and from this we can calculate the first time Ξ+(E) such that

(u(Ξ+(E)),v(Ξ+(E))) = (U+(E),0):

Ξ+(E) :=
∫ U+(E)

0
[2λ (E−F(u))]−

1
2 du. (6.12)

From symmetry of the problem, the first value of x > 0 such that u(x) = 0 is exactly
2Ξ+(E).

Analogously, if v0 < 0 and 0 < E < El , we can calculate the time Ξ−(E) such that
v(Ξ−(E)) = 0, which is:

Ξ−(E) :=
∫ 0

U−(E)
[2λ (E−F(u))]−

1
2 du, (6.13)

and 2Ξ−(E) is the first positive value of x such that u(x) = 0.

Since U−(E) =−U+(E), and F is even, it follows that Ξ+(E) = Ξ−(E)
def
= Ξ(E), for all

0 < E < El . Then τ(E) = 2Ξ(E) is the time that a solution needs to perform a half translation
around the origin, parting from (0,v0) and arriving at (0,−v0), v0 ∈ R.

We conclude that u : [0,π]→ R satisfies (6.6) if and only if u is the restriction to [0,π]
of the first coordinate of (u,v), where (u,v) satisfies (6.8) with u(0) = 0, v(0) = v0, and defining
E = 1

2λ−1v2
0, we have 0 < E < El , and the following equation holds:

kτ(E) = π, k = 1,2, ... (6.14)

Think about the phase plane of (6.8) with v as ordinate and u as abscissa. If kτ(E) = π

with odd k, we have a solution (u,v) of (6.8) that starts at (0,v0), v0 > 0 (or v0 < 0), and circles
in the clockwise direction going down (or up) k+1

2 times and going up (or down) k−1
2 times, until

u vanishes in the instant π . Likewise, if kτ(E) = π with even k, we have a solution that starts at
(0,v0) with v0 ∈ R and performs k/2 complete translations around the origin until the moment
π . All of those reveal equilibria of (6.1).

What is left is to find the solutions of (6.8) that have energies that satisfy (6.14). In order
to do that, we need to study the behavior of the function τ , which depends on the value of λ . We
do this using the following theorems, which come from (CHAFEE; INFANTE, 1974).

Consider τ(E) = 2Ξ(E) = 2
∫U+(E)

0 {
√

2λ (E−F(u))}−1du, for 0 < E < El , and we
change variables the following way: Ey2 = F(u), for 0 ≤ y ≤ 1, 0 ≤ u ≤ U+(E). Then, we
obtain:

τ(E) = 2

√
2E
λ

∫ 1

0
(1− y2)−

1
2

y
f (u)

dy, where u =U+(Ey2). (6.15)

Theorem 36. τ is continuous and:

lim
E→0+

τ(E) =
π√
λ
. (6.16)
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Proof. We only prove the second claim. Since f (u) = f ′(0)u+o(u) = u+o(u), given 0 < ε < 1,
there exists a δ > 0 such that:

(1− ε)u≤ f (u)≤ (1+ ε)u, if 0≤ u≤ δ . (6.17)

Writing F(u) as integral and using this last inequality, we get:

1
2
(1− ε)u2 ≤ F(u)≤ 1

2
(1+ ε)u2, if 0≤ u≤ δ .

By continuity of U+, there exist an η , 0<η <El , such that U+(E)≤ δ , for all 0≤E ≤η .
If 0≤ E ≤ η , 0≤ y≤ 1, we have Ey2 = F(u) with 0≤ u≤ δ , and the last inequality yields:√

(1− ε)

2E
u≤ y≤

√
(1+ ε)

2E
u, for 0 < E ≤ η , 0≤ y≤ 1.

Using (6.17), we get:√
1− ε

2E(1+ ε)2 ≤
y

f (u)
≤

√
1+ ε

2E(1− ε)2 , for 0 < E ≤ η , 0≤ y≤ 1.

Using this estimate in (6.15), we get:

π√
λ

√
1− ε

(1+ ε)2 ≤ τ(E)≤ π√
λ

√
1+ ε

(1− ε)2 , for 0 < E ≤ η (6.18)

Whence lim
E→0+

τ(E) = π√
λ

.

Theorem 37. τ is differentiable in (0,El), and:

dτ

dE
(E)> 0, (0 < E < El). (6.19)

Proof. It follows from an extensive yet straightforward differentiation of the expression in (6.15)
that:

dτ

dE
(E) =

√
2

λE

∫ 1

0
(1− y2)−

1
2

y
f (u)

(
1− 2 f ′(u)F(u)

f (u)2

)
dy, with u =U+(Ey2). (6.20)

Define the function g : R→ R by g(u) = f (u)2− 2 f ′(u)F(u), and note that g′(u) =

−2 f ′′(u)F(u). For u > 0, f ′′(u) < 0, and g′(u) > 0, and since g(0) = 0, we have g(u) > 0 for
u ∈ (0, ā). It follows that dτ

dE (E)> 0 for 0 < E < El .

Theorem 38. lim
E→El

τ(E) = ∞.

Therefore, the range of τ is ( π√
λ
,∞).
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Proof. Suppose ā < ∞, so (6.8) has an equilibrium point (ā,0) and El = F(ā).

Consider the solution of (6.8) with u(0) = 0, u′(0) = v(0) = v0 > 0, and E = 1
2λ−1v2

0.
This solution touches the u-axis at the point u0 such that F(u0) = E. If E approaches El , u0

approaches ā, hence, it follows from Lemma 10 that given T > 0, there exists a δ > 0 such that
if El−δ < E < El , τ(E)> T , and the theorem is proven.

We are ready to show the last theorem of this section.

Theorem 39. Suppose f ∈ C 2(R) is odd, f ′(0) = 1, and the conditions (6.2) and (6.3) hold.
If λ ≤ 1, the origin 0 ∈ H1

0 (0,π) is the only equilibrium for (6.1). Let N ∈ N∗, and N2 < λ ≤
(N +1)2, then there are 2N +1 equilibria for (6.1), which we denote:

{0}∪{φ±j : j = 1, ...,N},

where φ
+
j and φ

−
j have j+1 zeros in [0,π], φ

−
j =−φ

+
j , and d

dxφ
+
j (0)> 0, for j = 1, ...,N.

Proof. If λ ≤ 1, it follows from the last theorems that τ(E)> π√
λ
≥ π , for all 0 < E < El and

kτ(E) = π can not be satisfied for any pair (E,k), with 0 < E < El and k ∈ N∗. Hence, 0 is the
only equilibrium of (6.1).

Now assume 1 < λ ≤ 22, then τ has range ( π√
λ
,∞), and since π

2 ≤
π√
λ
< π , there exist

an energy E1 such that τ(E1) = π , and the pair (E1,1) is the only one that satisfies kτ(E) = π .
The solution u with u′(0)> 0, and energy E1 is called φ

+
1 . It has already been mentioned that

this solution only has two zeros in [0,π]. Analogously, the solution with u′(0)< 0 and energy
E1, is called φ

−
1 , and from the fact that f is odd, we can conclude that φ

−
1 =−φ

+
1 .

More generally, if N2 < λ ≤ (N +1)2, the range of τ is ( π√
λ
,∞), and π

N+1 ≤
π√
λ
< π

N ,
and we have 0 < E j < El , such that τ(E j) =

π

j , j = 1, ...,N. As before, the solutions with energy
E j are called φ

+
j and φ

−
j , depending on the sign of u′(0), j = 1, ...,N. The discussion about the

number of zeros of φ
±
j has already been made, and φ

−
j =−φ

+
j follows from the fact that f is

odd.

This completes the proof.

Remark 12. Let φ ∈ E , then η(·) = φ(π −·) is another equilibrium for (6.1) with the same
number of zeros as φ . It follows that η =±φ , depending on the number of zeros of φ . It is easy
to conclude that φ

±
j (π− x) = (−1) j−1φ

±
j (x), for x ∈ [0,π], which is a symmetry property for

φ
±
j .
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Moreover, if φ j is an equilibrium for (6.1) with j = 2r for an even natural number r, then
we can consider ψ j = φ j|[0,π2 ]

, which is an equilibrium for the problem:

ut = uxx +λ f (u), t > 0, x ∈ (0, π

2 )

u(0, t) = u(π

2 , t) = 0, t ≥ 0

u(·,0) = u0 ∈ H1
0 (0,

π

2 ),

(6.21)

and the same reasoning as before may be applied to conclude that φ j(
π

2 − x) = −φ j(x) for
x ∈ [0, π

2 ]. Inductively, we conclude that if k = 2n(2 j+1) with n≥ 1 and j ≥ 0 integers, then

φk

(
π

2i − x
)
=−φk(x), ∀x ∈

[
0,

π

2i

]
, 1≤ i < n.

These and other symmetry results will be important in the analysis of the quasilinear
non-local Chafee-Infante equation in Chapter 7.

Let E be the finite set of isolated equilibria of (6.1). It follows from Theorem 20 that:

A =
⋃

φ∈E
W u(φ). (6.22)

For any bounded global solution ξ : R→H1
0 (0,π), ξ (R)⊂A , so that αξ (ξ (0)) = {φ1}

and ω(ξ (0)) = {φ2}, for some φ1, φ2 ∈ E , and the following holds:

φ1
t→−∞←− ξ (t) t→∞−→ φ2. (6.23)

And for any u0 ∈ H1
0 (0,π), there exists φ ∈ E such that T (t)u0

t→∞−→ φ .

6.3 Stability and hyperbolicity of the equilibria
In this section we study stability and hyperbolicity for the finite equilibria of equation

(6.1). It is easy to see that the operator associated to the linearization of (6.1) around the
equilibrium φ ∈ E is given by the formula below.

Lφ : H2(0,π)∩H1
0 (0,π)→ L2(0,π)

Lφ u =−u′′−λ f ′(φ)u

It was proven in Example 2 that Lφ is self-adjoint and has compact resolvent, and its
spectrum is an increasing sequence {µ j} of eigenvalues such that µ j→ ∞.

From the theorems in Section 5.2 we know that if µ1 > 0, φ is stable, and if µ1 < 0, it is
unstable. We will identify whether µ1 > 0 or µ1 < 0 for each equilibrium of (6.1).

First of all, consider the equilibrium φ0 = 0, whose linearization is L0 =−u′′−λu, with
spectrum given by σ(L0) = {n2−λ : n ∈ N}, so that φ0 is exponentially asymptotically stable
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if λ < 1 and unstable if λ > 1. Moreover, for any λ ≤ 1, φ0 is the only equilibrium of T ,
then we have A = W u(φ0). Suppose W u(φ0) ̸= {φ0}, then we would have a global solution
ξ : R→ H1

0 (0,π) with ξ (0) ̸= φ0 such that

φ0
t→−∞←− ξ (t) t→∞−→ φ0,

and we can show that this is a contradiction because T is gradient. So that A = {φ0}, and φ0

attracts any bounded set of H1
0 (0,π).

For the nonzero equilibria, we will need a comparison result.

Theorem 40. Let a ∈ C ([0,π],R), u, v ∈ C 2([0,π]) with u(0) = v(0) = 0 and u′(0) = v′(0) = 1.
Suppose that u(x)≥ 0 and v(x)> 0 for x ∈ (0,x1), for some x1 > 0. If either

u′′(x)+a(x)u(x)> v′′(x)+a(x)v(x) = 0, 0 < x < x1

or
0 = u′′(x)+a(x)u(x)> v′′(x)+a(x)v(x), 0 < x < x1,

then u(x)> v(x) for 0 < x≤ x1.

Proof. Suppose that the first estimate is true, then, for x ∈ (0,x1)

d
dx

(u′(x)v(x)− v′(x)u(x)) = v(x)u′′(x)− v′′(x)u(x)

> v(x)v′′(x)+ v(x)2a(x)− v(x)a(x)u(x)−u(x)v′′(x) = 0.

With similar calculations, we conclude the same for the other case. Then, since we have
u′(0)v(0)− v′(0)u(0) = 0, we conclude that u′(x)v(x)− v′(x)u(x)> 0 for x ∈ (0,x1). Now,

d
dx

u(x)
v(x)

=
u′(x)v(x)− v′(x)u(x)

v(x)2 > 0, x ∈ (0,x1)

Since lim
x→0+

u(x)/v(x) = 1, we conclude u(x)> v(x) for x ∈ (0,x1].

Theorem 41. Let φ ∈ E and consider the eigenvalue problem

θ
′′+(µ1 +λ f ′(φ))θ = 0 ⇐⇒ Lφ θ = µ1θ

θ(0) = θ(π) = 0, θ
′(0) = 1

(6.24)

Where µ1 is the lowest real number such that the equation has a unique solution in
H1

0 (0,π)∩H2(0,π). It follows from Theorem 17 that θ(x)> 0 in (0,π).

Let v be the solution of the initial value ODE problem

− vxx = λ f ′(φ)v

v(0) = 0, v′(0) = 1.

If v has no zero in (0,π], then µ1 > 0. If v has a zero in (0,π), then µ1 < 0.
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Proof. If v > 0 in (0,π], we cannot have a solution of (6.24) with µ1 = 0, because in this case θ

and v would satisfy the same initial value problem in [0,π), but would differ in x = π . If v > 0 in
(0,π] and µ1 < 0 then,

θ
′′+λ f ′(φ)θ =−µ1θ

And since θ(x)> 0 for x ∈ (0,π), we have:

θ
′′+λ f ′(φ)θ > 0 = v′′+λ f ′(φ)v, for x ∈ (0,π),

From Theorem 40, θ(x)> v(x) for all x∈ (0,π], so that θ(π)> v(π)> 0, a contradiction.

Hence, we conclude µ1 > 0.

Now assume that v has a first zero x1 in (0,π), and v(x)> 0 in x∈ (0,x1). Then, if µ1 = 0
we have that v≡ θ , and this is a contradiction with the fact that θ > 0 in (0,π). If, on the other
hand, µ1 > 0, we have that

θ
′′+λ f ′(φ)θ < 0 = v′′+λ f ′(φ)v

for x ∈ (0,x1). Then v(x) > θ(x) in (0,x1] and θ(x1) < 0, which is a contradiction. Then we
must have µ1 < 0.

Now we analyze the stability for the nontrivial equilibria. Since f ′ is even, the solutions
φ
+
j and φ

−
j generate the same linearization operator Lφ , and we may restrict our analysis to φ

+
j ,

for each j = 1, ...,n, when n2 < λ ≤ (n+1)2, n ∈ N∗.

First consider u(x) = φ
+
1 for λ > 1. We know that u(0) = 0, u′(0)> 0 and f (u(x))> 0

for all x ∈ (0,π). Define

w(x) :=− 1
λu′(0)

u′′(x) =
f (u(x))
u′(0)

.

Then, w(x)> 0 for all x ∈ (0,π), w(0) = w(π) = 0, w′(0) = 1, and

w′′+λ f ′(u)w =
f ′′(u(x))u′(x)2

u′(0)
< 0 = v′′+λ f ′(u)v, ∀x ∈ (0,π),

where we used the fact that f ′′(u)< 0 for u > 0.

Let us prove that v(x) > 0 for x ∈ (0,π). Suppose not, then there exists a first zero
x1 ∈ (0,π) such that v(x1) = 0 and v(x) > 0 in x ∈ (0,x1). Then we use Theorem 40, and
conclude that v(x)> w(x)> 0 in (0,x1], a contradiction. Hence, v(x)> 0 for x ∈ (0,π), and we
may apply Theorem 40 again to see that v(x)> w(x)≥ 0 for x ∈ (0,π]. Using Theorem 41, we
conclude that µ1 > 0, and φ

±
1 are asymptotically stable for (6.1).
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Now, suppose that u is a nontrivial equilibrium of (6.1) satisfying u′(0)> 0 and vanishing
somewhere in the interval (0,π), say at x̄ (that is the case of u = φ

+
j for some 1 < j ≤ n). From

the way u was constructed, it has a negative minimum at some point x∗ ∈ (0,π), and we have
u(x∗)< 0, u′(x∗) = 0, and u′′(x∗)> 0. But both v and u′ solve the ODE −vxx = λ f ′(u)v, so their
Wronskian is constant, that is,

v′(x)u′(x)− v(x)u′′(x) = const = u′(0)> 0.

Thus −v(x∗)u′′(x∗) = u′(0), and v(x∗)< 0. Thus µ1 < 0, and we conclude that φ
±
j are

unstable for 1 < j ≤ n, if n2 < λ ≤ (n+1)2.

So far we have proved the following theorem.

Theorem 42. If λ ≤ 1, φ0 = 0 is the only equilibrium for (6.1) and is globally asymptotically
stable. If N2 < λ ≤ (N+1)2, for some N ∈N∗, then the equilibrium φ0 is unstable, the equilibria
φ
±
1 are asymptotically stable, and the equilibria φ

±
j are unstable, for 0 < j ≤ N.

Note that φ0 is hyperbolic provided that λ ̸= n2 for all n ∈ N. Next we prove that a
nontrivial equilibrium φ of the Chafee-Infante equation (6.1) is hyperbolic. We use properties of
the function τ constructed in Section 6.2, which depends on the energy of an equilibrium, given
by E = 1

2λ−1u′(0)2.

Note that if Eφ is the energy associated to φ , there exists nφ ∈ N such that nφ τ(Eφ ) = π ,
and

φ
′′(x)+λ f (φ(x)) = 0,

φ(0) = φ(τ(Eφ )) = φ(π) = 0 and φ
′(

τ(Eφ )

2
) = 0.

(6.25)

In Section 6.2 we showed that for each 0 < E < El , there is a solution of the following
boundary value ODE problem:

u′′(x)+λ f (u(x)) = 0,

u(0,E) = 0, u′(0,E) =
√

2λE and u(kτ(E),E) = 0 ∀ k ∈ N.
(6.26)

In particular, u(·,Eφ ) = φ . Then both η = φ ′ and ψ = ∂u
∂E (·,E)

∣∣∣
E=Eφ

are solutions of

the ODE v′′+λ f ′(φ)v = 0. Indeed,

ψ
′′(x) =

∂uxx

∂E
(x,E)

∣∣∣∣
E=Eφ

=
∂

∂E
(−λ f (u(x,E)))

∣∣∣∣
E=Eφ

= −
[

λ f ′(u(x,E))
∂u
∂E

(x,E)
]∣∣∣∣

E=Eφ

=−λ f ′(φ(x))ψ(x).

We know that η(0) ̸= 0, η ′(0) = φ ′′(0) = −λ f (φ(0)) = 0 and ψ(0) = 0, ψ ′(0) =
λ√

2λEφ

̸= 0. Calculating the Wronskian at the point x = 0 shows that η and ψ are linearly
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independent and any solution of v′′+λ f ′(φ)v = 0 must be of the form

ω = c1η + c2ψ.

Let us show that if ω(0) = ω(π) = 0 then we must have ω ≡ 0, which implies that
Lφ : H2(0,π)∩H1

0 (0,π)→ L2(0,π) does not have zero as an eigenvalue.

In fact, ψ(0) = 0, η(0) ̸= 0 and c1η(0) + c2ψ(0) = 0 implies c1 = 0. Now, since
u(nφ τ(E),E) = 0 for all E, differentiating with respect to E yields

∂u
∂x

(nφ τ(E),E)nφ τ
′(E)+

∂u
∂E

(nφ τ(E),E) = 0

It follows from the definition of u and τ(E) that ∂u
∂x (nφ τ(E),E) ̸= 0 and since we have

proved in Theorem 37 that τ ′(E)> 0, we must have ψ(nφ τ(Eφ )) = ψ(π) = ∂u
∂E (nφ τ(Eφ ),Eφ ) ̸=

0. Hence, 0=ω(π) = c2ψ(π) implies c2 = 0, and the only solution ω of Lφ ω = 0 which satisfies
ω(0) = ω(π) = 0 is ω ≡ 0. This proves that 0 is not an eigenvalue of Lφ .

By Proposition 1, 0 ∈ ρ(Lφ ).

Hence we have proved the following:

Theorem 43. The equilibrium φ0 = 0 of (6.1) is hyperbolic if λ ̸= n2 for all n ∈ N. The nonzero
equilibria of (6.1) are all hyperbolic.
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CHAPTER

7
A NON-LOCAL QUASILINEAR
CHAFEE-INFANTE EQUATION

7.1 Well-posedness and gradient attractor

In this chapter we present the study developed in (CARVALHO; MOREIRA, 2021)
about a non-local version of the Chafee-Infante equation. Non-local partial differential equations
appear in several applications, from the heating of ceramic until population dynamics. The
reader may find several examples of applications in (CHIPOT; VALENTE; CAFFARELLI,
2003), (DAVIDSON; DODDS, 2006) and (KRIEGSMANN, 1997). Consider the following
initial-boundary value problem:

ut = a(∥ux∥2)uxx +λ f (u), t > 0, x ∈ (0,π)

u(0, t) = u(π, t) = 0, t ≥ 0

u(·,0) = u0 ∈ H1
0 (0,π),

(7.1)

where λ > 0 is a parameter, a : R+→ [m,M]⊂ (0,∞) is a continuosly differentiable, globally
Lipschitzian and non-decreasing function; f ∈ C 2(R) is odd (in particular, f (0) = 0), f ′(0) = 1,
and f satisfies:

f ′′(u)u < 0, ∀ u ̸= 0, (7.2)

and

lim sup
|u|→∞

f (u)
u

< 0, (7.3)

and finally

(0,∞) ∋ u 7→ f (u)
u

is strictly decreasing. (7.4)

We denote by ∥ · ∥ the usual norm in L2(0,π).
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Throughout our study, we will work very often with the following auxiliary equation.

wτ = wxx +
λ f (w)

a(∥wx∥2)
, τ > 0, x ∈ (0,π)

w(0,τ) = w(π,τ) = 0, τ ≥ 0

w(·,0) = u0 ∈ H1
0 (0,π).

(7.5)

The equation (7.1) has a non-local coefficient for uxx, which makes it a quasilinear
equation, instead of semilinear. Hence the results in Chapter 5 can not be applied directly.
However, we will see that solutions for (7.1) can be obtained from solutions of (7.5) with a
solution dependent change in time scale. Therefore, we may use the techniques we developed in
Chapter 5 to conclude information about (7.5), and then transfer this information without great
difficulty to the quasilinear equation.

First of all, we can conclude that (7.5) has solutions defined for all t ≥ 0, which depend
continuously on the initial condition, and (7.5) defines a gradient semigroup in H1

0 (0,π) that has
a global attractor. The calculations used to conclude this information resemble very much the
ones we did for the classical Chafee-Infante equation (in Chapter 6), except for the fact that now
the non-linearity contains a non-local term — which is nice to work with because the function a

has strictly positive lower and upper bounds.

After that, we will study the bifurcation of equilibria for (7.1), as in (CARVALHO et

al., 2020). We note that these equilibria are also equilibria for (7.5), and then we may study
the nonlocal linearization operator associated to equation (7.5) in order to conclude stability
and hyperbolicty of equilibria for (7.5). At last, we may transfer the results to (7.1), concluding
results about stability and hyperbolicity (in the sense of Definition 34) for the equilibria of the
quasilinear equation (7.1).

Consider well-posedness for equation (7.5) in the phase space H1
0 (0,π). Again, let

X0 = L2(0,π), A = −∆ in D(A) = H2(0,π)∩H1
0 (0,π), and recall that D(A

1
2 ) = H1

0 (0,π). We
need to show that ge : H1

0 (0,π)→ L2(0,π), given by ge(w)(x) = λ f (w(x))
a(∥wx∥2)

, is Lipschitz in bounded
sets of the domain.

Let u, v∈H1
0 (0,π) be such that ∥u∥H1

0
≤ ρ and ∥v∥H1

0
≤ ρ . Using the estimate (6.4) from

the last chapter, and that a satisfies |a(∥ux∥2)−a(∥vx∥2)| ≤ k|∥ux∥2−∥vx∥2| for some k≥ 0, we
get:

∥ge(u)−ge(v)∥ =

∥∥∥∥λ f (u)a(∥vx∥2)−λ f (v)a(∥ux∥2)

a(∥ux∥2)a(∥vx∥2)

∥∥∥∥
≤ |λ |

m2 ∥ f (u)a(∥vx∥2)− f (v)a(∥ux∥2)∥

≤ |λ |
m2

[
∥ f (u)a(∥vx∥2)− f (v)a(∥vx∥2)∥+∥ f (v)[a(∥vx∥2)−a(∥ux∥2)]∥

]
≤ C1(ρ)∥u− v∥H1

0
+C2(ρ)∥v∥H1

0
|∥vx∥2−∥ux∥2|

≤ C1(ρ)∥u− v∥H1
0
+C2(ρ)∥v∥H1

0
2ρ∥u− v∥H1

0
≤C3(ρ)∥u− v∥H1

0
,
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where we used the inequality below

|∥vx∥2−∥ux∥2|= |(∥vx∥+∥ux∥)(∥vx∥−∥ux∥)| ≤ 2ρ∥u− v∥H1
0
.

Then, Theorem 32 applies and for each u0 ∈H1
0 , there exists a local solution w : [0, t1)→

H1
0 (0,π) of (7.5) such that w(0) = u0. Now consider the function V : H1

0 (0,π)→ R defined by:

V (u) =
1
2

∫ ∥ux∥2

0
a(s)ds−λ

∫
π

0
F(u(x))dx, where F(s) :=

∫ s

0
f (ξ )dξ .

It is easy to see that this function is Lipschitz in bounded sets of H1
0 (0,π), hence

continuous. Moreover, if w : [0, t1)→ H1
0 (0,π) is a solution for (7.5), the composition V ◦w :

[0, t1)→ R is differentiable, because both the functional V and the solution w are differentiable.
For the solution w, we have:

a(∥w(τ)∥2
H1

0
)wτ = a(∥w(τ)∥2

H1
0
)wxx +λ f (w).

We multiply both sides by wτ and integrate in [0,π], then we use the following facts

∫
π

0
a(∥w(τ)∥2

H1
0
)wxx(x,τ)wτ(x,τ)dx =− d

dτ

1
2

∫ ∥w(τ)∥2
H1

0

0
a(s)ds,

and

λ

∫
π

0
f (w(x,τ))wτ(x,τ)dx =+

d
dτ

λ

∫
π

0
F(w(x,τ))dx.

In the end, we obtain:

d
dτ

V (w(·,τ)) =−a(∥w(τ)∥2
H1

0
)∥wτ∥2.

Which is always non-positive. If w is defined in τ ≥ 0 and V (w(τ)) =V (u0) for all τ ≥ 0,
then, d

dτ
V (w(·,τ))≡ 0, so that wτ(τ)≡ 0 for all τ ≥ 0 and we conclude that w is an equilibrium

for (7.5). Then V has the properties of a Lyapunov function.

The same way we obtained (6.5) in the last chapter, we can show that if w : [0, t1)→
H1

0 (0,π) is a solution of (7.5) with initial value u0, then:

∥w(τ)∥2
H1

0
≤

4λπK m
4λ

m
+

4
m

V (w(τ))≤
4λπK m

4λ

m
+

4
m

V (u0), ∀τ ∈ [0, t1), (7.6)

where Kε is a positive constant such that F(u)≤ εu2 +Kε , for all u ∈ R (its existence follows
from the condition (7.3)).

Using the last part of Theorem 32, we conclude that for every u0 ∈ H1
0 (0,π), there exists

a solution w(·,u0) : R+ → H1
0 (0,π) such that w(0,u0) = u0. If we define S(τ) : H1

0 (0,π)→
H1

0 (0,π) as S(τ)u0 = w(τ,u0), the mapping R+×H1
0 (0,π) ∋ (τ,u0) 7→ S(τ)u0 ∈ H1

0 (0,π) is



112 Chapter 7. A non-local quasilinear Chafee-Infante equation

continuous by Remark 11, and S = {S(τ) : τ ≥ 0} is a gradient semigroup with Lyapunov
function V .

For each solution w(·,u0) of (7.5), we define the solution dependent change in timescale
t = tτ =

∫
τ

0 a(∥w(θ ,u0)∥2
H1

0
)−1dθ . Since 0 < m ≤ a(s) ≤ M < ∞ for all s ∈ R+, the function

tτ : R+→ R+ is a bijection and strictly increasing, satisfying tτ → ∞ when τ → ∞. From now
on we may write t instead of tτ .

If we define u(·,u0) : R+→ H1
0 (0,π) by u(t,u0) = w(τ,u0), a direct calculation shows

that u(·,u0) is the unique solution of (7.1). The semigroup associated to (7.1) is T := {T (t) :
t ≥ 0}, where T (t)u0 = S(τ)u0 for each t =

∫
τ

0 a(∥S(θ)u0∥2
H1

0
)−1dθ (do note that the relation

between t and τ depends on u0, so we cannot simply write T (t) = S(τ)). We conclude that
{T (t) : t ≥ 0} is also gradient, with Lyapunov function V , and has the same equilibria as
{S(τ) : τ ≥ 0}— we denote this set of equilibria by E .

Remark 13. If η : R→ H1
0 (0,π) is a global solution for S = {S(τ) : τ ≥ 0} through u0 ∈

H1
0 (0,π), then ξ : R→ H1

0 (0,π), given by ξ (t) = η(τ), where t =
∫

τ

0 a(∥η(θ)∥2
H1

0
)−1dθ , is a

global solution for T = {T (t) : t ≥ 0} through the same point. Indeed, for any t ≥ 0, s ∈ R, we
have

T (t)ξ (s) = T (t)η(σ) = S(τ)η(σ) = η(τ +σ), (7.7)

where s =
∫

σ

0 a(∥η(θ)∥2
H1

0
)−1dθ , and t =

∫
τ

0 a(∥η(σ +θ)∥2
H1

0
)−1dθ . On the other hand,

∫
σ+τ

0
a(∥η(θ)∥2

H1
0
)−1dθ =

∫
σ

0
a(∥η(θ)∥2

H1
0
)−1dθ +

∫
σ+τ

σ

a(∥η(θ)∥2
H1

0
)−1dθ = s+ t,

which implies, by definition, that ξ (t+s) = η(τ +σ), and by (7.7) we conclude that T (t)ξ (s) =

ξ (t + s).

Let A be a global attractor for S , then it is also a global attractor for T . Indeed, A is
compact and nonempty. To show that A is T -invariant, we use Proposition 7. First, since A

is S -invariant, for each point x ∈A there exists a global solution η : R→A of S through x,
then there exists a global solution ξ : R→A of T through x, which is defined as ξ (t) = η(τ)

for t =
∫

τ

0 a(∥η(θ)∥2
H1

0
)−1dθ . It follows that A is T -invariant.

Notice that A S -attracts bounded sets of H1
0 (0,π). Let B be a bounded set in H1

0 (0,π),
then for any ε > 0, there exists τ0 ≥ 0 such that S(τ)B ⊂ Oε(A ), for all τ ≥ τ0. If we define
t0 = 1

mτ0, we have that for all t ≥ t0, x ∈ B,

t ≥ t0 =
1
m

τ0 ≥
∫

τ0

0
a(∥S(θ)x∥2

H1
0
)−1dθ .

Therefore, T (t)x = S(τ)x for some τ ≥ τ0, and T (t)x ∈Oε(A ), for all t ≥ t0. It follows
that T (t)B⊂Oε(A ) for all t ≥ t0, so that A T -attracts bounded sets in H1

0 (0,π), and A is in
fact the global attractor for T .
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We may apply the same calculations of the beginning of Section 6.2 to show that
{S(τ) : τ ≥ 0} has a global attractor. To illustrate the similarity of ideas, we show that the set E

is bounded, proceeding as following.

Let u ∈ E . By Condition 7.3, given ε > 0, there exists a constant Cε > 0 such that
f (s)s≤ εs2 +Cε , for all s ∈ R. Then

a(∥ux∥2)
∫

π

0
u(s)uxx(s)ds+λ

∫
π

0
u(s) f (u(s))ds = 0⇒ a(∥ux∥2)∥u∥2

H1
0
≤ λε∥u∥2 +πλCε ⇒

∥u∥2
H1

0
≤ λ

m
ε∥u∥2 +

πλ

m
Cε ⇒

∥u∥2
H1

0

2
≤
(

λ

m
ε− 1

2

)
∥u∥2 +

πλ

m
Cε ,

and choosing an ε small enough, we have an uniform estimate for ∥u∥H1
0
, for u ∈ E .

Therefore, we can use the same calculations as in last chapter to show that {S(τ) : τ ≥ 0}
has a global attractor A , which is also a global attractor for T = {T (t) : t ≥ 0}.

7.2 Bifurcation of equilibria
In this section we present the study developed in (CARVALHO et al., 2020). We intend

to construct equilibria for the quasilinear Chafee-Infante equation (7.1). To do this, we will
first find a positive solution for an elliptical problem in the subinterval [0, π

j ], and then use the
symmetry of this solution and of our problem to construct the sign-changing equilibria for (7.1).
Consider the problem:

a
(
∥ux∥2

j
)

uxx +λ f (u) = 0, x ∈ (0, π

j ),

u(0) = u(π

j ) = 0,
(7.8)

where j ∈ N∗, ∥ux∥2
j =

∫ π

j
0 |ux(s)|2ds (the usual norm of the Banach space L2(0, π

j )), λ , a and f

have the same conditions as before.

We say that u ∈ H1
0 (0,

π

j ) is a weak solution of the problem (7.8) if

a
(
∥ux∥2

j
)∫ π

j

0
ux(s)vx(s)ds−λ

∫ π

j

0
f (u(s))v(s)ds = 0, ∀v ∈ H1

0 (0,
π

j ). (7.9)

Note that a weak solution of (7.8) can be found as critical point of the energy functional
Vj : H1

0 (0,
π

j )→ R defined by

Vj(u) =
1
2

∫ ∥ux∥2
j

0
a(s)ds−λ

∫ π

j

0
F(u(s))ds, where F(s) :=

∫ s

0
f (ξ )dξ .

We use a standard calculation to show that

⟨V ′j(u),v⟩= a
(
∥ux∥2

j
)∫ π

j

0
ux(s)vx(s)ds−λ

∫ π

j

0
f (u(s))v(s)ds, ∀ u,v ∈ H1

0 (0,
π

j ),

and if V ′j(u) = 0 for some u ∈ H1
0 (0,π), then u is a weak solution for (7.8).
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Lemma 19. If λ > a(0) j2, there exists a nontrivial positive weak solution for the problem (7.8).

Proof. We restrict the domain of Vj to the space of positive functions in H1
0 (0,π) which take

values between 0 and ā, where ā is the greatest real number (or infinite) such that f (s)s > 0 for
s ∈ (−ā,0)∪ (0, ā). Define

M :=
{

v ∈ H1
0 (0,

π

j ) : 0≤ v(x)≤ ā, ∀x ∈ (0, π

j )
}
.

As discussed before, Vj(u)≥C1∥ux∥2
j +C2 for constants C1 > 0, C2 ∈ R. It follows that

Vj(u)→ ∞ as ∥ux∥ j→ ∞.

Now we will prove that Vj is weakly lower semicontinuous on H1
0 (0,

π

j ), which means
that for every sequence {un} in H1

0 (0,
π

j ) such that un ⇁ u ∈ H1
0 (0,

π

j ) (weak convergence in
H1

0 (0,
π

j )), it holds

Vj(u)≤ lim inf
n→∞

Vj(un).

Indeed, let {un} be a sequence in H1
0 (0,

π

j ) that weakly converges to u ∈ H1
0 (0,

π

j ). Then,
∥u∥H1

0 (0,
π

j )
≤ lim inf

n→∞
∥un∥H1

0 (0,
π

j )
. By Fatou’s Lemma:

∫ ∥ux∥2
j

0
a(s)ds≤

∫ (lim inf
n→∞

∥u′n∥ j

)2

0
a(s)ds≤

∫ lim inf
n→∞

∥u′n∥2
j

0
a(s)ds≤ lim inf

n→∞

∫ ∥u′n∥2
j

0
a(s)ds.

Since H1
0 (0,

π

j ) is compactly embedded in L2(0, π

j ), every subsequence of {un} is
bounded in H1

0 (0,
π

j ) and has a further subsequence {unk} which converges strongly to v in
L2(0, π

j ), and since {unk} also converges weakly to u in L2(0, π

j ) (because of the weak conver-
gence in H1

0 (0,
π

j )), we have u = v. Then every subsequence of {un} has a further subsequence
which converges strongly to u in L2(0, π

j ), and we conclude that {un} converges strongly to u in
L2(0, π

j ), which easily implies:

∫
π

0
F(u(s))ds = lim

n→∞

∫
π

0
F(un(s))ds.

It follows that Vj(u)≤ lim inf
n→∞

Vj(un), and Vj is weakly lower semicontinuous.

Clearly M is weakly closed, because it is convex and strongly closed. This means that
M and Vj satisfy all the conditions of the Theorem 1.2 of (STRUWE, 2008). Then Vj attains a
minimum u in M . We will show that u is a weak solution for (7.8), by proving that ⟨V ′j(u),v⟩= 0
for all v ∈ H1

0 (0,π). Let ϕ ∈C∞
c (0,

π

j ) and ε > 0. We define vε = u+ εϕ−ϕε +ϕε , where

ϕ
ε = max{0,u+ εϕ− ā}⩾ 0 and ϕε = max{0,−(u+ εϕ)}⩾ 0.

Note that ϕε ,ϕε ∈ H1
0 (0,

π

j )∩L∞(0, π

j ), and vε ∈M .
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Now, we have the following estimates

⟨V ′j(u),ϕε⟩ = a(∥ux∥2
j)
∫ π

j

0
ux(s)ϕε

x (s)ds−λ

∫ π

j

0
f (u(s))ϕε(s)ds

= a(∥ux∥2
j)
∫

Ωε

ux(s)(ux + εϕx)(s)ds−λ

∫
Ωε

f (u(s))(u+ εϕ− ā)(s)ds

⩾ a(∥ux∥2
j)
∫

Ωε

εux(s)ϕx(s)ds−λ

∫
Ωε

f (u(s))(u+ εϕ− ā)(s)ds

⩾ a(∥ux∥2
j)
∫

Ωε

εux(s)ϕx(s)ds−λ

∫
Ωε

f (u(s))εϕ(s)ds

⩾ −a(∥ux∥2
j)|Ωε |ε∥ux∥L1(0, π

j )
∥ϕx∥L∞(0, π

j )
−λ sup

s∈[0, π

j ]

| f (u(s))||Ωε |ε∥ϕ∥L∞(0, π

j )

=

−a(∥ux∥2
j)∥ux∥L1(0, π

j )
∥ϕx∥L∞(0, π

j )
−λ sup

s∈[0, π

j ]

| f (u(s))|∥ϕ∥L∞(0, π

j )

ε|Ωε |,

where Ωε :=
{

x ∈ (0, π

j );u(x)+ εϕ(x)⩾ ā > u(x)
}

satisfies |Ωε | → 0 when ε → 0+. Similarly

⟨V ′j(u),ϕε⟩= a(∥ux∥2
j)
∫ π

j

0
ux(s)(ϕε)x(s)ds−λ

∫ π

j

0
f (u(s))ϕε(s)ds

=−a(∥ux∥2
j)
∫

Ωε

ux(s)(ux + εϕx)(s)ds+λ

∫
Ωε

f (u(s))(u+ εϕ)(s)ds

⩽−a(∥ux∥2
j)
∫

Ωε

εux(s)ϕx(s)ds

⩽ a(∥ux∥2
j)∥ux∥L1(0, π

j )
∥ϕx∥L∞(0, π

j )
ε|Ωε |,

where Ωε :=
{

x ∈ (0, π

j );u(x)+ εϕ(x)⩽ 0 < u(x)
}

satisfies |Ωε | → 0 when ε → 0+.

Since u, vε ∈M , and M is convex, for any h ∈ [0,1], u+ h(vε − u) ∈M , so that
Vj(u)≤Vj(u+h(vε −u)), and

⟨V ′j(u),vε −u⟩= lim
h→0+

Vj(u+h(vε −u))−Vj(u)
h

≥ 0.

Noting that vε −u = εϕ−ϕε +ϕε , we conclude that

⟨V ′j(u),ϕ⟩⩾
⟨V ′j(u),ϕε⟩−⟨V ′j(u),ϕε⟩

ε
⩾C1|Ωε |+C2|Ωε |.

For C1, C2 ∈ R. Since ε > 0 can be arbitrarily small, we have ⟨V ′j(u),ϕ⟩ ⩾ 0 for each
ϕ ∈C∞

c (0,
π

j ). But if ϕ ∈C∞
c (0,

π

j ), we have −ϕ ∈C∞
c (0,

π

j ) as well, so that ⟨V ′j(u),ϕ⟩ ≤ 0. We
conclude that V ′j(u) vanishes in C∞

c (0,
π

j ), and since V ′j(u) : H1
0 (0,

π

j )→ R is continuous and
C∞

c (0,
π

j ) is dense in H1
0 (0,

π

j ), it follows that V ′j(u) vanishes in H1
0 (0,

π

j ), and u is a positive
weak solution for (7.8).

Finally, we will show that u is non-trivial. We do this by proving that Vj attains negative
values in M , so that Vj(u) < 0 and consequently u ̸= 0. In fact, consider the operator A :
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H2(0, π

j )∩H1
0 (0,

π

j )→ L2(0, π

j ), given as Aφ = −φ ′′, which has λ1 = j2 as its first (lowest)
eigenvalue (see Example 1). Let φ be the eigenfunction associated to λ1 such that φ ′(0) = 1.
That is, φ ∈ H2(0, π

j )∩H1
0 (0,

π

j ) is solution to the following eigenvalue problem

−φxx = j2
φ , x ∈ (0, π

j ),

φ(0) = φ(π

j ) = 0, φ
′(0) = 1.

Since a(0) j2 < λ , it follows from the continuity of a, that there exist ε > 0, δ > 0 such
that a(t) j2−λ < −ε for all t ∈

[
0,δ 2 j2∥φ∥2

j

]
. Note that φ is positive, and choosing δ small

enough, we have δφ ∈M . Now,

∥φx∥2
j =

∫ π

j

0
φx(s)2ds =−

∫ π

j

0
φxx(s)φ(s)ds = j2∥φ∥2

j .

There exists a cδ ∈
[
0,δ 2∥φx∥2

j

]
=
[
0,δ 2 j2∥φ∥2

j

]
such that

∫ ∥δφx∥2
j

0
a(s)ds = a(cδ )∥δφx∥2

j = a(cδ )δ
2 j2∥φ∥2

j .

Moreover, f (s)− s is quadratic near the origin, because f ′(0) = 1, we write f (s)− s =

s2g(s), with g continuous in R+. Then we have:

Vj(δφ) =
1
2

∫ ∥δφx∥2
j

0
a(s)ds−λ

∫ π

j

0

∫
δφ(x)

0
f (ξ )dξ dx

=
1
2

δ
2[a(cδ ) j2−λ ]∥φ∥2

j −λ

∫ π

j

0

∫
δφ(x)

0
( f (ξ )−ξ )dξ dx.

Therefore,∣∣∣∣Vj(δφ)− 1
2

δ
2∥φ∥2

j [a(cδ ) j2−λ ]

∣∣∣∣≤ λ

∫ π

j

0

∫ |δφ(x)|

0
ξ

2|g(ξ )|dξ dx

≤ λC
∫ π

j

0

∫ |δφ(x)|

0
ξ

2dξ dx = Kδ
3,

(7.10)

where C and K are positive constants. If we take δ > 0 small enough so that Kδ <
∥φ∥2

j ε

4 , the
estimate (7.10) — along with the fact that a(t) j2−λ <−ε for all t ∈ [0,δ 2 j2∥φ∥2

j ] — implies
Vj(δφ)< 0, and we are done.

Lemma 20. If λ > a(0) j2, the nontrivial positive weak solution of the problem (7.8) is unique.
Moreover, let u be the nontrivial positive weak solution of (7.8), then u ∈ H2(0, π

j )∩H1
0 (0,

π

j ),
u ∈ C 2(0, π

j ), and u satisfies (7.8) in the strong sense. Additionally, u(x) = u(π

j − x), for all
x ∈ [0, π

j ].
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Proof. Let u ∈ H1
0 (0,

π

j ) be a weak solution of (7.8). Then λ f (u(·))
a(∥ux∥2

j)
∈ L2(0, π

j ) because f and
u are continuous functions. Since the Laplacian is surjective (see Example 1), it follows that
there exists w ∈ H2(0, π

j )∩H1
0 (0,

π

j ) such that −wxx =
λ f (u)

a(∥ux∥2
j)

. If we define the bilinear form

b : H1
0 (0,

π

j )×H1
0 (0,

π

j )→ R by

b(v,z) = a(∥ux∥2
j)
∫ π

j

0
vx(s)zx(s)ds,

it is easy to see that b is continuous and coercive, so Lax-Milgram’s Theorem (BREZIS, 2011,
Corollary 5.8) can be applied to b(·, ·). Now, note that

b(u,v) = b(w,v) =
∫ π

j

0
λ f (u(s))v(s)ds, ∀ v ∈ H1

0 (0,
π

j ),

and the uniqueness given by Lax-Milgram’s Theorem implies that u = w. Therefore, u ∈
H2(0, π

j )∩H1
0 (0,

π

j ), u satisfies (7.8), taking the derivatives in the sense of distributions, and

u ∈ C 1(0, π

j ). Finally, uxx =− λ f (u)
a(∥ux∥2

j)
is a continuous function, so that u ∈ C 2(0, π

j ), and u satis-
fies (7.8) with strong derivatives. Moreover, it follows from the Maximum Principle (PROTTER;
WEINBERGER, 1984), that u(x)> 0 for x ∈ (0, π

j ). Finally, note that η(·) = u(π

j − ·) is also
nontrivial, positive and satisfies (7.8). So, if we prove the first claim, the second will follow.

Let u and v be two distinct nontrivial positive solutions of (7.8). By the observations
above, we can show that u2

v , v2

u ∈ H1
0 (0,

π

j ). Thus, since a is non-decreasing,

0 ⩽
(
a(∥ux∥2

j)−a(∥vx∥2
j)
)(
∥ux∥2

j −∥vx∥2
j
)
+a(∥vx∥2

j)
∫ π

j

0

(
ux(s)−

u(s)
v(s)

vx(s)
)2

ds+

a(∥ux∥2
j)
∫ π

j

0

(
vx(s)−

v(s)
u(s)

ux(s)
)2

dx

= a(∥ux∥2
j)
∫ π

j

0
u2

x(s)ds−a(∥ux∥2
j)
∫ π

j

0
ux(s)

(
v2

u

)
x
(s)ds+a(∥vx∥2

j)
∫ π

j

0
v2

x(s)ds

−a(∥vx∥2
j)
∫ π

j

0
vx(s)

(
u2

v

)
x
(s)ds

= λ

∫ π

j

0
f (u(s))

(
u− v2

u

)
(s)ds+λ

∫ π

j

0
f (v(s))

(
v− u2

v

)
(s)ds

= λ

∫ π

j

0

(
f (u(s))

u(s)
− f (v(s))

v(s)

)
(u(s)2− v(s)2)ds.

If u ̸= v, then we arrive at a contradiction because of Condition (7.4), and we are done.

We are ready to find the equilibria for equation (7.1), which are precisely the functions
u ∈ H2(0,π)∩H1

0 (0,π) that satisfy

a(∥ux∥2)uxx +λ f (u) = 0 x ∈ (0,π),

u(0) = u(π) = 0.
. (7.11)
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First, if 0 < λ ≤ a(0), let u be an equilibrium for (7.1), then u is a solution for the
following problem:

wxx +λ0 f (w) = 0 x ∈ (0,π),

w(0) = w(π) = 0.
, (7.12)

where λ0 =
λ

a(∥ux∥2)
> 0. Therefore, u is an equilibrium for the classical Chafee-Infante equation

(6.1). Since a is non-decreasing, 0 < λ/a(∥ux∥2)≤ 1, and it follows from Theorem 39 that u = 0.
Hence, for λ ≤ a(0), the origin 0 ∈ H1

0 (0,π) is the only equilibrium for (7.1).

In the case a(0) < λ , we can apply Lemma 19 and Lemma 20 with j = 1, and find a
positive nontrivial equilibrium for (7.1), which we denote φ

+
1 . Observe that φ

−
1 :=−φ

+
1 is also

an equilibrium for (7.1). The solutions φ0 = 0, φ
+
1 and φ

−
1 are in fact the only equilibria for (7.1)

provided that a(0)< λ ≤ 22a(0). Indeed, if u is an equilibrium for (7.1), then u is a solution for
the classical Chafee-Infante equilibrium problem (7.12), and since λ/a(∥ux∥2)≤ 22, it follows
from Theorem 39 that u may be the origin, or u > 0 in (0,π), or u < 0 in (0,π). If u > 0 in
(0,π), it follows from the uniqueness in Lemma 20 that u = φ

+
1 . If u < 0 in (0,π), then we may

apply Lemma 20 to v =−u to conclude that v = φ
+
1 , then u = φ

−
1 , and we are done.

Now suppose a(0)22 < λ , then we have the equilibria 0, φ
+
1 and φ

−
1 , and we can also

construct a pair of equilibria that change sign one time. For that, we are going to restrict ourselves
to the following problem in [0, π

2 ]:

a(2∥ux∥2
2)uxx +λ f (u) = 0, x ∈ (0, π

2 )

u(0) = u(π

2 ) = 0.
(7.13)

It follows from Lemma 19 and Lemma 20 that (7.13) has a unique nontrivial positive
solution φ π

2
∈H2(0, π

2 )∩H1
0 (0,

π

2 ), with φ π

2
(0) = φ π

2
(π

2 ) = 0, and this solution satisfies φ π

2
(x) =

φ π

2
(π

2 − x) for all x ∈ (0, π

2 ).

Then, we define φ
+
2 (x) =

φ π

2
(x), if x ∈ [0, π

2 ],

−φ π

2
(π− x), if x ∈ [π

2 ,π].

Notice that φ
+
2 is continuous, φ

+
2 ∈ C 2((0, π

2 )∪ (
π

2 ,π)), and the derivative of φ
+
2 in

(0, π

2 )∪ (
π

2 ,π) has coincident lateral limits in π/2. This may be used to show that φ
+
2 ∈

H2(0,π)∩H1
0 (0,π), and φ

+
2 is a solution for (7.11). Also, φ

+
2 (π−x) =−φ

+
2 (x), for all x∈ (0,π)

and φ
+
2 (π

2 − x) = φ
+
2 (x) for all x ∈ [0, π

2 ]. We also define φ
−
2 = −φ

+
2 , which is another equi-

librium for (7.1). If a(0)22 < λ ≤ a(0)32, any solution u of (7.11) is also a solution for the
classical Chafee-Infante equilibrium equation (7.12) with parameter λ/a(∥ux∥2)≤ 32, and with
a reasoning similar as before we conclude that u may only be one of the solutions of the set
{0,φ−1 ,φ+

1 ,φ−2 ,φ+
2 } (in this case we also use the uniqueness of a positive nontrivial solution of

(7.13)).

An inductive argument — finding a solution for a problem in [0, π

j ] and constructing an
oscillatory equilibrium — can be applied and we can show that a(0) j2 is a bifurcation point
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of the parameter λ > 0, and we can always show — using what we know for the classical
Chafee-Infante equation – that these constructed equilibria are the only possible. We summarize
the results in the following:

Theorem 44. If λ ≤ a(0), the origin 0 ∈ H1
0 (0,π) is the only equilibrium for (7.1). Let N ∈ N∗,

and a(0)N2 < λ ≤ a(0)(N +1)2, then there are precisely 2N +1 equilibria for (7.1), which we
denote:

{0}∪{φ±k : k = 1, ...,N},

where φ
+
k and φ

−
k have k + 1 zeros in [0,π], φ

−
k = −φ

+
k , and φ

+
k (x) > 0 for x ∈ (0, π

k ), for
k = 1, ...,N.

7.3 Spectrum properties for a non-local operator

For φ ∈ E , we intend to find an expression for the linearization of equation (7.5) around
φ . Let h ∈ H1

0 (0,π), and let us calculate the Gateaux Derivative of H1
0 (0,π) ∋ w 7→ f (w)

a(∥wx∥2)
∈

L2(0,π) in the value φ and direction h:

lim
t→0+

1
t

[
f (φ + th)

a(∥(φ + th)x∥2)
− f (φ)

a(∥φx∥2)

]
=

f ′(φ)h
a(∥φx∥2)

+ lim
t→0+

f (φ)
t

[
a(∥φx∥2)−a(∥(φ + th)x∥2)

a(∥(φ + th)x∥2)a(∥φx∥2)

]
︸ ︷︷ ︸

=γ

and this second limit yields:

γ = lim
t→0+

− f (φ)
t

a′(θ(t)∥φx∥2 +(1−θ(t))∥(φ + th)x∥2)

a(∥(φ + th)x∥2)a(∥φx∥2)
(∥(φ + th)x∥2−∥φx∥2)

= lim
t→0+

− f (φ)
t

a′
(∫

π

0 |φx|2ds+(1−θ(t))t
∫

π

0 (2φxhx + th2
x)ds

)
a(∥(φ + th)x∥2)a(∥φx∥2)

(
t
∫

π

0
(2φxhx + th2

x)ds
)

where θ(t) ∈ [0,1] for each t > 0. Passing the limit in this expression, we conclude that:

lim
t→0+

1
t

[
f (φ + th)

a(∥(φ + th)x∥2)
− f (φ)

a(∥φx∥2)

]
=

f ′(φ)h
a(∥φx∥2)

− 2 f (φ)a′(∥φx∥2)

a(∥φx∥2)2

∫
π

0
φxhxds

=
f ′(φ)h

a(∥φx∥2)
− λ2a′(∥φx∥2) f (φ)

a(∥φx∥2)3

∫
π

0
f (φ(s))h(s)ds

where in the second equality we integrated by parts and used that φ is a solution of (7.5).

It follows that the linearization operator around φ for the semilinear equation (7.5) is
given by the formula below — remember that we work with the operator with inverted sign, as
in Chapter 5.

Lφ

ε : H2(0,π)∩H1
0 (0,π)→ L2(0,π)

Lφ

ε u =−u′′− λ f ′(φ)
a(∥φ ′∥2)

u+ ε f (φ)
∫

π

0
f (φ(s))u(s)ds,
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in the particular case ε = λ 22a′(∥φ ′∥2)
a(∥φ ′∥2)3 ≥ 0.

Note that since f is odd and f ′ is even, the linearization operator associated to an
equilibrium φ ∈ E is the same as the linearization operator associated to the equilibrium −φ .
Hence, we only need to study stability and hyperbolicity for the equilibria φ

+
k , k = 1,2, ...,N

given by Theorem 44, and the results will be identical for their negative counterparts. We will
denote for simplicity φ

+
k = φk.

To obtain information about the spectrum of Lφ

ε , we interpret it as a bounded perturbation
of the Sturm-Liouville operator

Lφ

0 : H2(0,π)∩H1
0 (0,π)→ L2(0,π)

Lφ

0 u =−u′′− λ f ′(φ)
a(∥φ ′∥2)

u,
(7.14)

whose spectrum is very well understood. In fact, an equilibrium φ for (7.5) is also an equilibrium
for the following semilinear Chafee-Infante problem:

wτ = wxx +
λ f (w)

a(∥φ ′∥2)
, τ > 0, x ∈ (0,π)

w(0,τ) = w(π,τ) = 0, τ ≥ 0

w(·,0) = u0 ∈ H1
0 (0,π).

(7.15)

The linearization operator of φ for (7.15) is given by Lφ

0 . Hence, from the results in
Section 6.3, we know the following.

Lemma 21. Let φ be a nonzero equilibrium for (7.1), and define the operator Lφ

0 as in (7.14).
Then:

1. If φ(x)> 0 in (0,π), then Lφ

0 has only strictly positive eigenvalues.

2. If φ has a zero in (0,π), then Lφ

0 has at least one strictly negative eigenvalue.

3. 0 ∈ ρ(Lφ

0 ).

In order to discover relations between the spectrum of Lφ

ε and the spectrum of Lφ

0 , we
will use results from (DAVIDSON; DODDS, 2006) about the following non-local operator.

Lε : H2(0,π)∩H1
0 (0,π)→ L2(0,π)

Lεu =−u′′+ p(x)u+ εc(x)
∫

π

0
c(s)u(s)ds,

(7.16)

where p, c : [0,π]→ R are continuous functions with c ̸≡ 0.

When ε = 0, L0u = −u′′+ p(x)u is a Sturm-Liouville operator, and by the results in
Example 2, L0 is a self-adjoint operator, with compact resolvent, and its sequence of eigenvalues
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accumulates at ∞. Let σ(L0) = {µ j : j = 1,2,3, ...} denote its spectrum, with µ j > µ j−1 and
µ j→ ∞ as j→ ∞.

Theorem 45. For any ε ∈ R, the operator Lε given by (7.16) is self-adjoint and has compact
resolvent. Moreover, its sequence of eigenvalues {µ j(ε)} j∈N∗ accumulates at +∞ and has a
lower bound.

Proof. Let α =
∣∣ inf
x∈[0,π]

p(x)
∣∣ and β = |ε|∥c∥2, and consider instead the operator Kε = Lε +

αI +β I. We will prove all the claims for Kε , and Lε will inherit the same properties. Define
r : [0,π]→ R by r(x) = p(x)+α ≥ 0, and note that

Kεu =−u′′+ r(x)u+ εc(x)
∫

π

0
c(s)u(s)ds+βu.

Note that, for any u ∈ D(Kε) = H2(0,π)∩H1
0 (0,π),

⟨Kεu,u⟩= ∥u∥2
H1

0
+
∫

π

0
r(x)u(x)2dx+ ε

(∫
π

0
c(s)u(s)ds

)2

+β∥u∥2︸ ︷︷ ︸
≥0

≥ ∥u∥2
H1

0
≥ ∥u∥2. (7.17)

It is easy to see that Kε is symmetric. We will show that it is surjective. Indeed, consider
the bilinear application a : H1

0 (0,π)×H1
0 (0,π)→ R given by

a(u,v) =
∫

π

0
uxvxds+

∫
π

0
r(s)u(s)v(s)ds+ ε

∫
π

0
c(s)v(s)ds

∫
π

0
c(s)u(s)ds+β

∫
π

0
u(s)v(s)ds.

The application a is trivially continuous (|a(u,v)| ≤C∥u∥H1
0
∥v∥H1

0
, for some C ≥ 0, for

all u, v ∈ H1
0 (0,π)). To see that it is also coercive, just note that:

a(u,u) = ⟨Kεu,u⟩ ≥ ∥u∥2
H1

0
, ∀u ∈ H1

0 (0,π).

It follows from Lax-Milgram’s Theorem (BREZIS, 2011, Corollary 5.8) that for each
f ∈ L2(0,π), there exists u ∈ H1

0 (0,π) such that a(u,v) = ⟨ f ,v⟩ for all v ∈ H1
0 (0,π). Next we

need to show that u ∈ H2(0,π) and that Kεu = f .

Let b : H1
0 (0,π)×H1

0 (0,π)→ R be the continuous coercive bilinear application given
by

b(w,v) =
∫

π

0
wxvxds+

∫
π

0
r(s)w(s)v(s)ds,

and define h ∈ L2(0,π) by h(x) = f (x)− εc(x)
(∫

π

0 c(s)u(s)ds
)
− βu(x). If the operator L :

H2(0,π)∩H1
0 (0,π)→ L2(0,π) is given by Lw =−w′′+ r(x)w, it has been already proved that

0 ∈ ρ(L) (see Example 2). Therefore, there exists w ∈ H2(0,π)∩H1
0 (0,π) such that Lw = h.

But note that b(u,v) = b(w,v) = ⟨h,v⟩, for all v ∈ H1
0 (0,π), and by the uniqueness assured

by Lax-Milgram’s Theorem, we conclude that u = w, u ∈ H2(0,π)∩H1
0 (0,π), and Kεu = f .



122 Chapter 7. A non-local quasilinear Chafee-Infante equation

This proves that Kε is surjective and self-adjoint. Since by (7.17) Kε is also injective, we have
0 ∈ ρ(Kε).

If B is a bounded set in D(Kε), with the norm of the graph, then it follows from (7.17)
that sup

φ∈B
∥φ ′∥< ∞. From Arzelà-Ascoli’s Theorem, B is precompact in C ([0,π],R), therefore B

is precompact in L2(0,π). From Proposition 2, Kε has compact resolvent.

The fact that the spectrum of Kε accumulates at +∞ and has a lower bound follows
from the second part of Theorem 12, and from the fact that Kε needs to have infinitely many
eigenvalues because its inverse is compact, as we discussed in Example 2.

This completes the proof.

In what follows, {µ j} will denote the sequence of eigenvalues of L0, and {µ j(ε)},
the sequence of eigenvalues of Lε , with µ j(0) = µ j for each j ∈ N∗. The reader may check
(DAVIDSON; DODDS, 2006, Lemma 2.1), for results about continuity of the spectrum and
eigenprojections of Lε with respect to ε . In what follows, we present two results from this same
article about the behavior and geometric multiplicity of the eigenvalues of Lε .

Theorem 46. Suppose that, for some ε ∈ R and j ∈ N∗, we have µ j(ε) ̸= µk for every k ∈ N∗.
Then µ j(ε) is a simple eigenvalue for Lε .

Proof. Suppose µ j(ε) is associated to two linearly independent eigenvectors, namely u and v.
Then, for any a, b ∈ R,

µ j(ε)(au+bv) = Lε(au+bv)

= L0(au+bv)+ εc(x)
∫

π

0
c(s)[au(s)+bv(s)]ds

= L0(au+bv)+ εc(x)
(

a
∫

π

0
c(s)u(s)ds+b

∫
π

0
c(s)v(s)ds

)

Then we may choose a and b, at least one of them being nonzero, such that this last
term between parenthesis is equal to zero. For this pair a, b, we would have au+ bv ̸≡ 0 and
µ j(ε)(au+bv) = L0(au+bv), which implies that µ j(ε) is an eigenvalue for L0, contradicting
the hypothesis.

It is proved in (DAVIDSON; DODDS, 2006) that the eigenvalues of Lε have a unique
corresponding eigenvector other than at points of intersection of a moving eigenvalue with
a fixed eigenvalue (in relation to ε). If for some ε∗ ∈ R, µ j(ε

∗) has an unique normalized
eigenvector, we denote it by v j(ε

∗). If, other than that, we have an intersection of eigenvalues
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(that is, µ j(ε
∗) = µk(ε

∗), for some k ̸= j), we can define

v j(ε
∗) = lim

ε→ε∗
v j(ε),

which is an eigenvector for µ j(ε
∗) by the continuity results in this same article.

Theorem 47. For each j ∈ N, µ j(ε) is continuously differentiable with respect to ε in R.
Moreover,

µ
′
j(ε) = +

[∫
π

0 c(x)[v j(ε)](x)dx
]2∫

π

0 [v j(ε)]2(x)dx
, ∀ε ∈ R, (7.18)

and µ j(ε) is non-decreasing in relation to ε .

Proof. Let ε1, ε2 ∈ R. Then

−[v j(ε1)]
′′(x)+ p(x)[v j(ε1)](x)+ ε1c(x)

∫
π

0
c(s)[v j(ε1)](s)ds = µ j(ε1)[v j(ε1)](x),

and

−[v j(ε2)]
′′(x)+ p(x)[v j(ε2)](x)+ ε2c(x)

∫
π

0
c(s)[v j(ε2)](s)ds = µ j(ε2)[v j(ε2)](x),

Multiplying these equations by [v j(ε2)](x) and [v j(ε1)](x), respectively, integrating be-
tween 0 and π and then subtracting yields:

(ε1− ε2)
∫

π

0
c(s)[v j(ε1)](s)ds

∫
π

0
c(s)[v j(ε2)](s)ds = (µ j(ε1)−µ j(ε2))

∫
π

0
[v j(ε1)][v j(ε2)]ds,

which implies

(µ j(ε1)−µ j(ε2))

(ε1− ε2)
=

∫
π

0 c(s)[v j(ε1)](s)ds
∫

π

0 c(s)[v j(ε2)](s)ds∫
π

0 [v j(ε1)](s)[v j(ε2)](s)ds

Passing to the limit and using the continuity results for the spectrum and eigenprojections
of Lε (DAVIDSON; DODDS, 2006) this expression yields (7.18).

The last theorems are valid for Lφ

ε , because the functions f ′(φ) and f (φ) satisfy what is
asked.

Now consider the problem (7.5) with a(0)N2 < λ ≤ a(0)(N + 1)2. For each solution
φk := φ

+
k , k = 1,2, ...,N, remember that the linearization operator of the problem (7.5) around

φk is given by

Lφk
εk u =−u′′− λ f ′(φk)

a(∥φ ′k∥2)
u+ εk f (φk)

∫
π

0
f (φk(s))u(s)ds,

where εk =
λ 22a′(∥φ ′k∥

2)

a(∥φ ′k∥2)3 .

Let {µk
j} j∈N∗ denote the increasing sequence of eigenvalues of the Sturm-Liouville

operator Lφk
0 . Let v j denote the eigenvector associated to µk

j that satisfies v′j(0) = 1.
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Lemma 22. The eigenvectors of Lφk
0 satisfy the following symmetry condition: for x ∈

[
0, π

2

]
,

v j(x+ π

2 ) =

{
v j(

π

2 − x), if j is odd
−v j(

π

2 − x), if j is even.
(7.19)

Proof. It is easy to see that η j(·) = v j(π− ·) is another eigenvector associated to µk
j . Indeed,

(
Lφk

0 η j

)
(x) = −η

′′
j (x)−

λ f ′(φk(x))
a(∥φ ′k∥2)

η j(x)

= −v′′j (π− x)− λ f ′(φk(π− x))
a(∥φ ′k∥2)

v j(π− x)

=
(

Lφk
0 v j

)
(π− x) = µ

k
j v j(π− x) = µ

k
j η j(x)

Since the eigenvalues of Sturm-Liouville operators are simple (see Example 2), there
exists a constant c ∈ R such that v j(π− x) = cv j(x), for all x ∈ [0,π]. Then∫

π

0
[v j(π− x)]2dx = c2

∫
π

0
[v j(x)]2dx⇒∥v∥2 = c2∥v∥2⇒ c =±1

Because of the behavior of Sturm-Liouville eigenvectors presented in Theorem 17, we
conclude that for s ∈ [0,π],

v j(π− s) =

{
v j(s), if j is odd
−v j(s), if j is even,

which implies (7.19) if you take s = π

2 − x.

Using the symmetry of the eigenvectors of the Sturm-Liouville operator, and the sym-
metry of the solutions of (7.1), we can prove a further relation between the spectrum of Lφk

εk and
Lφk

0 .

Theorem 48 (From (CARVALHO; MOREIRA, 2021)). Let φk ∈ E . If {µk
j} j denotes the

increasing sequence of eigenvalues of Lφk
0 , the following holds:

1. If k is even, µk
2 j−1 is an eigenvalue for Lφk

εk , and v2 j−1 is an associated eigenvector, for all
j ∈ N∗.

2. If k is odd, µk
2 j is an eigenvalue for Lφk

εk , and v2 j is an associated eigenvector, for all j ∈N∗.

Proof. 1. Recall that f is odd, and since k is even, the solution φk has the following symmetry:
φk(x+ π

2 ) = −φk(
π

2 − x), for all x ∈ [0, π

2 ]. Moreover, if j is odd, v j(x+ π

2 ) = v j(
π

2 − x),
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for all x ∈ [0, π

2 ], then:

∫
π

0
f (φk(s))v j(s)ds =

∫ π

2

0
f (φk(s))v j(s)ds+

∫
π

π

2

f (φk(s))v j(s)ds

=
∫ π

2

0
f (φk(s))v j(s)ds+

∫ π

2

0
f (φk(

π

2 + s))v j(
π

2 + s)ds

=
∫ π

2

0
f (φk(s))v j(s)ds+

∫ π

2

0
f (−φk(

π

2 − s))v j(
π

2 − s)ds

=
∫ π

2

0
f (φk(s))v j(s)ds−

∫ π

2

0
f (φk(s))v j(s)ds = 0.

Therefore, Lφk
εk v j = Lφk

0 v j = µk
j v j, and we are done.

2. The second claim can be proved the same way observing that if k is odd and j is even,
then φk(

π

2 + x) = φk(
π

2 − x) and v j(
π

2 + x) =−v j(
π

2 − x), for all x ∈ [0, π

2 ].

7.4 Stability of equilibria

Let us start by the origin. If λ ≤ a(0), it follows from Theorem 44 that φ0 is the
only equilibrium for (7.5), and also the only equilibrium for (7.1). Since T — the semigroup
associated with equation (7.1) — is a gradient semigroup, the same argument as the one we used
in the classical case may be used to show that A = {φ0}, so that φ0 attracts any bounded set of
H1

0 (0,π), and is asymptotically stable.

Since f (0) = 0 and f ′(0) = 1, the linearization operator associated to φ0 ≡ 0 is given
by L0

ε0
=−u′′− λ

a(0)u, and its spectrum is σ(L0
ε0
) = {n2− λ

a(0) : n ∈ N∗}. If λ < a(0), then φ0 is
exponentially stable for equation (7.5), and we will prove that it is also exponentially stable for
(7.1). Indeed, there exists V neighborhood of 0 ∈ H1

0 (0,π) and constants K, β > 0 such that for
every solution w of (7.5) with w(0) = u0 ∈V , we have

∥w(τ)−0∥H1
0
≤ Ke−βτ∥u0−0∥H1

0
, ∀τ ≥ 0

The solution of (7.1) starting on u0 is u : R+→ H1
0 (0,π) given by u(t) = w(τ), where

t =
∫

τ

0 a(∥w(θ ,u0)∥2
H1

0
)−1dθ . Note that τ

M ≤ t ≤ τ

m , then:

∥u(t)−0∥H1
0
= ∥w(τ)−0∥H1

0
≤ Ke−βτ∥u0−0∥H1

0
≤ Ke−βmt∥u0−0∥H1

0
.

Therefore, if λ < a(0), φ0 T -attracts exponentially a neighborhood of itself in H1
0 (0,π).

Now let λ > a(0). Then φ0 is exponentially unstable for (7.5), and by the constructions
made in Chapter 5, there exists K, β > 0 and δ0 > 0 such that for each δ < δ0, we may find
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a global solution η : R→ H1
0 (0,π) of {S(τ) : τ ≥ 0} through u0 ∈ H1

0 (0,π), ∥u0∥H1
0
< δ , that

satisfies

∥η(τ)−0∥H1
0
≤ δ , ∀τ ≤ 0,

∥η(τ)−0∥H1
0
≤ Keβτ∥u0−0∥H1

0
, ∀τ ≤ 0.

Then there exists a global solution ξ : R→ H1
0 (0,π) of {T (t) : t ≥ 0} through u0, given

by ξ (t) = η(τ), for t =
∫

τ

0 a(∥η(θ)∥2
H1

0
)−1dθ . It satisfies:

∥ξ (t)−0∥H1
0
= ∥η(τ)−0∥H1

0
≤ Keβτ∥u0−0∥H1

0
≤ Keβmt∥u0−0∥H1

0
, t ≤ 0

Therefore, if λ > a(0), then φ0 is also unstable for (7.1).

Now let us study the stability of the equilibrium φ1. The fact that the operator Lφ1
0 only

has positive eigenvalues (because of the asymptotic stability of the positive equilibrium in
Chafee-Infante classical problem), and the non-decreasing behavior of the eigenvalues of the
non-local operator in relation to the parameter ε will guarantee that the positive equilibrium φ1

is asymptotically stable, as in the classical case.

Theorem 49. Let a(0)< λ , then φ1 is exponentially asymptotically stable for the problem (7.1).

Proof. Note that the linearization operator around this equilibrium is given by:

Lφ1
ε1 u =−u′′− λ f ′(φ1)

a(∥φ ′1∥2)
u+ ε1 f (φ1)

∫
π

0
f (φ1(s))u(s)ds,

where ε1 =
2λ 2a′(∥φ ′1∥2)

a(∥φ ′1∥2)3 ≥ 0, because a is non-decreasing. Denote by {µ1
j (ε1)} its eigenvalues.

From Lemma 21, Lφ1
0 only has strictly positive eigenvalues because it is the operator of

linearization associated to the positive equilibrium of a Chafee-Infante classical problem. From
Theorem 47, it follows that for each j ∈ N∗, µ1

j (ε) is non-decreasing in relation to ε , whence
µ1

j (ε1)≥ µ1
j ≥ µ1

1 > 0. Then the eigenvalues of Lφ1
ε1 have a strictly positive lower bound, and φ1

is exponentially asymptotically stable in H1
0 (0,π), for the equation (7.5). Proceeding exactly as

before, with the change in time scale, we conclude that φ1 is also exponentially asymptotically
stable for equation (7.1).

For the equilibria φk with k ≥ 2, the non-decreasing behavior of the eigenvalues in
relation to ε do not actually say much, because an eigenvalue of Lφk

0 can be negative and the
correspondent eigenvalue of Lφk

εk can be positive. Then, we need to use Theorem 48 to spot
negative eigenvalues of Lφk

εk .

Theorem 50. The equilibria φk are unstable for the problem (7.1), for any k ≥ 2.
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Proof. Suppose first that k is even. Then, by Theorem 48, µk
1 is an eigenvalue for Lφk

εk . Note that
µk

1 is the lowest eigenvalue of Lφk
0 , and it is negative because Lφk

0 is the linearization around a
sign-changing equilibrium of the Chafee-Infante classical equation (as we stated in Lemma 21).
Therefore, φk is unstable for the problem (7.5), and by consequence it is unstable for problem
(7.1).

If k is odd, it follows from Theorem 48 that µk
2 is an eigenvalue for Lφk

εk . We will prove
that µk

2 is negative. Indeed, consider the auxiliary Sturm-Liouville operator defined by

Dk : H2(0, π

2 )∩H1
0 (0,

π

2 )→ L2(0,π)

Dku =−u′′− λ f ′(φk)

a(∥φ ′k∥2)
u,

(7.20)

Note that if v2 is the eigenvector of Lφk
0 associated to µk

2 such that v′2(0) = 1, then
v2(x)> 0 for x ∈ (0, π

2 ), v2(
π

2 ) = 0, and v2|[0, π

2 ]
is the positive eigenvector for Dk, associated to

the eigenvalue µk
2 . It follows that µk

2 is the first (lowest) eigenvalue of Dk.

Consider the problem of finding the lowest real number α such that

θ
′′+

(
α +

λ f ′(φk)

a(∥φ ′k∥2)

)
θ = 0 ⇐⇒ Dkθ = αθ

θ(0) = θ(π

2 ) = 0, θ
′(0) = 1

(7.21)

has a solution θ ∈H2(0, π

2 )∩H1
0 (0,

π

2 ). Using Theorem 41, which still holds with the same proof
for the operator Dk, we can analyze instead the ODE

− vxx =
λ f ′(φk)

a(∥φ ′k∥2)
v

v(0) = 0, v′(0) = 1.
(7.22)

If v has a zero in (0, π

2 ), then α = µk
2 < 0. Note that since k ≥ 3, φk has a local mini-

mum x∗ ∈ [0, π

2 ]. Then, since both v and φ ′k are solutions of −vxx =
λ f ′(φk)
a(∥φ ′k∥2)

v, their Wronskian
φ ′k(x)v

′(x)−φ ′′k (x)v(x) is constant, and calculating it in zero and in x∗, we obtain:

−φ
′′
k (x
∗)v(x∗) = φ

′
k(0)> 0,

which implies v(x∗)< 0, and v(y) = 0 for some y ∈ (0, π

2 ). This completes the proof.

7.5 Hyperbolicity of equilibria
In this section we will prove that all equilibria for (7.5) are hyperbolic, except for

0 ∈ H1
0 (0,π), which loses hyperbolicity when λ = a(0)n2 for any n ∈ N. After that, we will use

change in time scale to see what information can be concluded for the local stable and unstable
sets of the equilibria in the quasilinear problem.



128 Chapter 7. A non-local quasilinear Chafee-Infante equation

It has already been said that σ(L0
ε0
) = {n2− λ

a(0) : n ∈ N∗}, then the origin of (7.5) is
always hyperbolic, except when λ = a(0)n2 for some n ∈N∗, which are the points of bifurcation.

It was also proved that the spectrum of Lφ1
ε1 has a strictly positive lower bound, then φ1 is

always hyperbolic, provided that λ > a(0).

Now we prove the hyperbolicity of φ2, which gives some intuition about what we will
need to do in the general case φk where k is even.

Theorem 51. The equilibrium φ2 is hyperbolic for equation (7.5).

Proof. The linearization operator around φ2 is Lφ2
ε2 , which has compact resolvent from Theorem

45, then we only need to show that 0 is not an eigenvalue for Lφ2
ε2 . We do this by contradiction.

Suppose 0 ∈ σp(L
φ2
ε2 ), so that there exists 0 ̸= v ∈H2(0,π)∩H1

0 (0,π) such that Lφ2
ε2 v = 0.

From Lemma 21, 0 is not an eigenvalue for Lφ2
0 , then by Theorem 46, 0 is a simple eigenvalue

for Lφ2
ε2 .

Using that φ2(π− x) =−φ2(x) for x ∈ [0,π], one may easily check that η(·) = v(π− ·)
is another eigenvector associated to the eigenvalue 0, then v(π− x) = cv(x). Squaring each side
and integrating yields c =±1. Suppose that, for each x ∈ [0,π], v(π− x) = v(x), then∫

π

0
f (φ2(x))v(x)dx =

∫
π

0
f (−φ2(π− x))v(π− x)dx =−

∫
π

0
f (φ2(x))v(x)dx

Therefore, 0= Lφ2
ε2 v= Lφ2

0 v, and this is a contradiction. We conclude, then, that v(π−x)=

−v(x) for x ∈ [0,π], and v(π

2 ) = 0. Then∫
π

π

2

f (φ2(s))v(s)ds =
∫ π

2

0
f (φ2(

π

2 + s))v(π

2 + s)ds

=
∫ π

2

0
f (φ2(π− s))v(π− s)ds

=
∫ π

2

0
f (−φ2(s))[−v(s)]ds

=
∫ π

2

0
f (φ2(s))v(s)ds

Therefore,
∫

π

0 f (φ2(s))v(s)ds= 2
∫ π

2
0 f (φ2(s))v(s)ds, and the equation Lφ2

ε2 v= 0 becomes:

−v′′− λ f ′(φ2)

a(∥φ ′2∥2)
v+2ε2 f (φ2)

∫ π

2

0
f (φ2(s))v(s)ds = 0,

where ε2 =
2λ 2a′(∥φ ′2∥2)

a(∥φ ′2∥2)3 ≥ 0

For each ε ∈ R, consider the operator Mε : H2(0, π

2 )∩H1
0 (0,

π

2 )→ L2(0, π

2 ) given by

Mεu =−u′′− λ f ′(φ2)

a(∥φ ′2∥2)
u+ ε f (φ2)

∫ π

2

0
f (φ2(s))u(s)ds.
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Let ṽ = v|[0, π

2 ]
, then ṽ ∈ D(M2ε2) and M2ε2 ṽ = 0. Therefore, 0 is an eigenvalue for M2ε2 ,

and since the eigenvalues of Mε are non-decreasing with ε (Theorem 47 still holds), we have an
eigenvalue γ ≤ 0 for M0. Now, consider the classical Chafee-Infante problem:

ut = uxx +
λ f (u)

a(∥φ ′2∥2)
, t > 0, x ∈ (0, π

2 )

u(0, t) = u(π

2 , t) = 0, t ≥ 0

u(·,0) = u0 ∈ H1
0 (0,

π

2 ).

(7.23)

It is easy to see that ψ1 = φ2|[0, π

2 ]
is the positive equilibrium for (7.23), and the operator

M0, which can be written as

M0u =−u′′− λ

a(∥φ ′2∥2)
f ′(ψ1)u,

is the linearization around ψ1. However, the analysis done in Chapter 6, Section 3, can be
performed without any relevant change to guarantee that ψ1 is exponentially stable for (7.23),
and the spectrum of M0 has a strictly positive lower bound. This contradicts the existence of the
eigenvalue γ ≤ 0, and we are done.

Theorem 52. The equilibrium φk is hyperbolic for equation (7.5), for any odd k ≥ 3.

Proof. Suppose by contradiction that there exists 0 ̸= v∈H2(0,π)∩H1
0 (0,π) such that Lφk

εk v = 0.
We know by Lemma 21 that 0 is not an eigenvalue for Lφk

0 , and by Theorem 46, 0 is a simple
eigenvalue for Lφk

εk . It may be checked that η(·) = v(π−·) is another eigenvector associated to
the eigenvalue 0, then v(π− x) = cv(x) for all x ∈ [0,π] for some constant c ∈ R. Squaring each
side and integrating between 0 and π yields c =±1. Suppose c =−1, then:∫

π

0
f (φk(s))v(s)ds =

∫
π

0
f (φk(π− s))[−v(π− s)]ds =−

∫
π

0
f (φk(s))v(s)ds,

and 0 = Lφk
εk v = Lφk

0 v, which is a contradiction because 0 is not an eigenvalue for Lφk
0 . It follows

that v(x) = v(π− x) for all x ∈ [0,π]. Now we need to consider two separated cases:

Case 1: v(π

k ) = 0

In this case, we will prove that v has the same symmetry and oscillation properties that
φk has. Indeed, define

v1(x) =

{
v(π

k − x), if x ∈ [0, π

k ]

−v(x− π

k ), if x ∈ [π

k ,π].

We will show that Lφk
εk v1 = 0. Indeed, let x ∈ [0, π

k ], then φk(
π

k − x) = φk(x), and

Lφk
εk v1(x) =−v′′(π

k − x)−
λ f ′(φk(

π

k − x))
a(∥φ ′k∥2)

v(π

k − x)+ εk f (φk(
π

k − x))
∫

π

0
f (φk(s))v1(s)ds.
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And if x ∈ [π

k ,π], we use φk(x− π

k ) =−φk(x) and the fact that f ′ is even, to obtain:

Lφk
εk v1(x) =−

[
−v′′(x− π

k )−
λ f ′(φk(x− π

k ))

a(∥φ ′k∥2)
v(x− π

k )+ εk f (φk(x− π

k ))
∫

π

0
f (φk(s))v1(s)ds

]
.

So that we are only left to show that
∫

π

0 f (φk(s))v1(s)ds =
∫

π

0 f (φk(s))v(s)ds, which is
done below∫

π

0
f (φk(s))v1(s)ds =

∫ π

k

0
f (φk(

π

k − s))v(π

k − s)ds+
∫

π

π

k

f (−φk(s− π

k ))[−v(s− π

k )]ds

=
∫ π

k

0
f (φk(s))v(s)ds+

∫
π− π

k

0
f (φk(s))v(s)ds

=
∫

π

π− π

k

f (φk(π− s))v(π− s)ds+
∫

π− π

k

0
f (φk(s))v(s)ds

=
∫

π

0
f (φk(s))v(s)ds,

where in the last equality we used that v(π− x) = v(x), for x ∈ [0,π].

Since 0 is a simple eigenvalue, v1 =±v. Suppose v1 =−v, then v(x) =−v(π

k − x), for
x ∈ [0, π

k ], and v(x) = v(x− π

k ), for x ∈ [π

k ,π], and we can show that∫
π

0
f (φk(s))v(s)ds = 0,

which implies Lφk
0 v = 0, a contradiction. Then we must have v1 = v, and v oscillates the same

way that φk does, that is, v(x) = −v(x− π

k ) and φk(x) = −φk(x− π

k ), for x ∈ [π

k ,π]. For each
interval [r π

k ,(r+1)π

k ], r = 0,1, ...,k−1, we can prove, using an indution argument, that∫ (r+1) π

k

r π

k

f (φk(s))v(s)ds =
∫ π

k

0
f (φk(s))v(s)ds,

where so that
∫

π

0 f (φk(s))v(s)ds = k
∫ π

k
0 f (φk(s))v(s)ds.

We can apply the same argument that we applied for k = 2. Note that

−v′′− λ f ′(φk)

a(∥φ ′k∥2)
v+ kεk f (φk)

∫ π

k

0
f (φk(s))v(s)ds = 0,

where εk =
2λ 2a′(∥φ ′k∥

2)

a(∥φ ′k∥2)3 ≥ 0, and we define for ε ∈ R the operator Mε : H2(0, π

k )∩H1
0 (0,

π

k )→
L2(0, π

k ) by

Mεu =−u′′− λ f ′(φk)

a(∥φ ′k∥2)
u+ ε f (φk)

∫ π

k

0
f (φk(s))u(s)ds.

Since ṽ = v|[0, π

k ]
satisfies Mkεk ṽ = 0, we have that 0 is an eigenvalue for Mkεk , and by

Theorem 47 (which can be proved the same way if we work in the domain [0, π

k ]), we obtain an
eigenvalue γ ≤ 0 for M0.
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However, we can consider the Chafee-Infante classical problem

ut = uxx +
λ f (u)

a(∥φ ′k∥2)
, t > 0, x ∈ (0, π

k )

u(0, t) = u(π

k , t) = 0, t ≥ 0

u(x,0) = u0(x), u0 ∈ H1
0 (0,

π

k ),

which has the positive equilibrium ψ1 = φk|[0, π

k ]
, and M0 represents the linearization around this

positive equilibrium. The existence of γ is then a contradiction, and we are done with this case.

Case 2: v(π

k ) ̸= 0

First we define the following auxiliary functions:

v1(x) =

{
v(x+ π

k ), if x ∈ [0,π− π

k ]

−v(x− (π− π

k )), if x ∈ [π− π

k ,π],

and v2(x) = v1(π − x), x ∈ [0,π]. It follows from this definition that
∫

π

0 f (φk(s))v(s)ds =

−
∫

π

0 f (φk(s))v1(s)ds = −
∫

π

0 f (φk(s))v2(s)ds. Note that v1, v2 ∈ H2(0,π), but do not vanish
in 0 and π , then v1, v2 /∈ H1

0 (0,π). Moreover, it may be checked that Lφk
εk v1 = Lφk

εk v2 = 0.

Now we define u1 = v+ v1, and u2 = v+ v2. Note that

0 = Lφk
εk u1 =−u′′1−

λ f ′(φk)

a(∥φ ′k∥2)
u1,

because the integral terms cancel. The same happens to u2. We will show that {u1,u2} is a
linearly independent set, hence a fundamental set of solutions for the ODE:

−v′′− λ f ′(φk)

a(∥φ ′k∥2)
v = 0

Suppose not, then u1 = αu2. Since

u1(0) = αu2(0)⇒ v(π

k ) =−αv(π

k ),

we have α = −1. Therefore, u1 + u2 = 2v+ v1 + v2 = 0. Evaluating this equation in jπ
k , for

j = 1,2, ...,k−1, and using the fact that v(π− x) = v(x), for x ∈ [0,π], we obtain:

v
(
( j−1)π

k

)
+2v

(
jπ
k

)
+ v
(
( j+1)π

k

)
= 0, j = 1,2, ...,k−1.
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This system of equations can be written in matrix form Lk−1V = 0, where:

Lk−1 =



2 1 0 . . . . . . 0 0 0
1 2 1 . . . . . . 0 0 0
0 1 2 . . . . . . 0 0 0
...

...
... . . . . . . ...

...
...

...
...

... . . . . . . ...
...

...
0 0 0 . . . . . . 2 1 0
0 0 0 . . . . . . 1 2 1
0 0 0 . . . . . . 0 1 2


and V =



v(π

k )

v(2π

k )

v(3π

k )

v(4π

k )
...
...

v( (k−2)π
k )

v( (k−1)π
k )


.

We can show that det(Lk−1) = k ̸= 0 by induction. Indeed, the identity is obviously true
for k = 3 and k = 4. We suppose k ≥ 4, and that both det(Lk−2) = k− 1 and det(Lk−1) = k

hold, and we need to show that det(Lk) = k+1. If we use Laplace expansion with relation to
the last line of Lk, we get:

det(Lk) = 2det(Lk−1)−det(B).

Where B is the matrix that we get by deleting the line k and column k−1 from Lk. Note
that det(B) = det(Lk−2) (this follows from subtracting the column k−1 from column k−2 in
B). Then we have det(Lk) = 2det(Lk−1)−det(Lk−2) = 2k− (k−1) = k+1, and we are done.

It follows that V = 0, so that v(π

k ) = 0 and we have a contradiction. This implies that
{u1,u2} is in fact a fundamental set of solutions for

−v′′− λ f ′(φk)

a(∥φ ′k∥2)
v = 0

It follows that there exist α and β ∈ R such that φ ′k = αu1 + βu2. Recall from the
construction of the equilibria in Chapter 6 that φ ′k(0) = (−1) jφ ′k(

jπ
k ), for all j ∈ {1,2, ...k}, and

φ ′k(x) = −φ ′k(π − x), for all x ∈ [0,π]. Finally, note that u1(π − x) = v(π − x)+ v1(π − x) =

v(x)+ v2(x) = u2(x), for x ∈ [0,π]. Therefore,

φ
′
k(x) =−φ

′
k(π− x)⇒ αu1(x)+βu2(x) =−(αu1(π− x)+βu2(π− x)) =−αu2(x)−βu1(x)

⇒ (α +β )(u1(x)+u2(x)) = 0, ∀x ∈ [0,π]

Since u1 + u2 ̸≡ 0 because they are linearly independent, we have β = −α , and φ ′k =

α(u1−u2) = α(v1− v2). We can do as before and set a system of equations, for 1≤ j ≤ k−1:

φ
′
k(0) = 2αv(π

k )

φ
′
k(

jπ
k ) = αv

(
( j+1)π

k

)
−αv

(
( j−1)π

k

)
,
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and using φ ′k(0) = (−1) jφ ′k(
jπ
k ), we get

2(−1) jv
(

π

k

)
− v
(
( j+1)π

k

)
+ v
(
( j−1)π

k

)
= 0, j = 1, ...,k−1 (7.24)

This system of equations will imply v(π

k ) = 0, and this will end the proof. For the case
k = 3, simply note that (7.24) with j = 1 implies v(π

3 ) =−
1
2v(2π

3 ) =−1
2v(π

3 ), so that v(π

3 ) = 0.

For k = 5, if we choose j = 1,2, and use the symmetry of v, we get the system[
−2 −1
3 −1

][
v(π

5 )

v(2π

5 )

]
=

[
0
0

]
,

and since the determinant of the matrix is 5, we get v(π

5 ) = 0.

For k ≥ 7, we can write k = 2n+ 1, n ≥ 3, and the equations in (7.24) for j = 1, ...,n,
along with the fact that v(π− x) = v(x), generate the system HnV = 0, where

Hn =



−2 −1 0 0 . . . . . . 0 0 0 0
3 0 −1 0 . . . . . . 0 0 0 0
−2 1 0 −1 . . . . . . 0 0 0 0

2 0 1 0 . . . . . . 0 0 0 0
...

...
...

... . . . . . . ...
...

...
...

...
...

...
... . . . . . . ...

...
...

...
2(−1)n−3 0 0 0 . . . . . . 0 −1 0 0
2(−1)n−2 0 0 0 . . . . . . 1 0 −1 0
2(−1)n−1 0 0 0 . . . . . . 0 1 0 −1
2(−1)n 0 0 0 . . . . . . 0 0 1 −1



and V =



v(π

k )

v(2π

k )

v(3π

k )

v(4π

k )
...
...

v( (n−2)π
k )

v( (n−1)π
k )

v(nπ

k )


We will use induction to prove that det(Hn) = (−1)n(2n+1). The identity is obvious

when n = 2, because the matrix is then

H2 =

[
−2 −1
3 −1

]

Suppose det(Hn) = (−1)n(2n+1) for some n≥ 2, and we will prove that det(Hn+1) =

(−1)n+1(2n+3).

If we add the n-th column of Hn to the (n− 1)-th column, we obtain the following
matrix:

Bn =



−2 −1 0 0 ... ... 0 0 0 0
3 0 −1 0 ... ... 0 0 0 0
−2 1 0 −1 ... ... 0 0 0 0

2 0 1 0 ... ... 0 0 0 0
...

...
...

... . . . . . . ...
...

...
...

...
...

...
... . . . . . . ...

...
...

...
2(−1)n−3 0 0 0 ... ... 0 −1 0 0
2(−1)n−2 0 0 0 ... ... 1 0 −1 0
2(−1)n−1 0 0 0 ... ... 0 1 −1 −1
2(−1)n 0 0 0 ... ... 0 0 0 −1


.
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Note that, det(Hn+1) = det(Bn+1), and Bn+1 can be written as

Bn+1 =



0

0

Hn
...
0

−1

2(−1)n+1 0 0 0 ... 0 0 0 −1


Bn+1 =



−2

3

−2 Tn
...
2(−1)n

2(−1)n+1 0 0 0 ... 0 0 −1


,

where Tn is the matrix:

Tn =



−1 0 0 0 ... ... 0 0 0 0
0 −1 0 0 ... ... 0 0 0 0
1 0 −1 0 ... ... 0 0 0 0
0 1 0 −1 ... ... 0 0 0 0
...

...
...

... . . . . . . ...
...

...
...

...
...

...
... . . . . . . ...

...
...

...
0 0 0 0 ... ... −1 0 0 0
0 0 0 0 ... ... 0 −1 0 0
0 0 0 0 ... ... 1 0 −1 0
0 0 0 0 ... ... 0 1 −1 −1


,

whose determinant can be calculated by Gauss elimination, adding the first line to the third,
and then the second to the fourth, and so on, until what is left is a diagonal matrix. This yields
det(Tn) = (−1)n.

Using Laplace expansion with relation to the last line of Bn+1, we get:

det(Hn+1) = det(Bn+1) =−det(Hn)−2det(Tn)

= (−1)n+1(2n+1)+2(−1)n+1 = (−1)n+1(2n+3).

We proved that the matrix Hn is non-singular, which implies v(π

k ) = 0.

This completes the proof that the equilibria φk are hyperbolic for k odd.

Theorem 53. The equilibria φk are hyperbolic for k even.

Proof. Suppose that there exists 0 ̸= v ∈ H2(0,π)∩H1
0 (0,π) such that Lφk

εk v = 0. If we write
k = 2n(2 j+1), with n≥ 1 and j ≥ 0 integers, we claim that the eigenvector v has the following
oscillation result:

v
(

π

2i − x
)
=−v(x), ∀x ∈

[
0,

π

2i

]
,1≤ i < n (7.25)

Suppose n≥ 2, otherwise there is nothing to prove.

I follows from the symmetric properties of the equilibria (see Remark 12) that

φk

(
π

2i − x
)
=−φk(x), ∀x ∈

[
0,

π

2i

]
,1≤ i < n.

From the simplicity of the zero eigenvalue for Lφk
εk , we know that either v(π− x) = v(x)

for x ∈ [0,π] or v(π− x) =−v(x) for x ∈ [0,π]. The first possibility could not happen because
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it would imply Lφk
εk v = Lφk

0 v = 0 because the integral would vanish, and this is a contradiction.
Hence v(π− x) =−v(x), for x ∈ [0,π], which implies v(π

2 ) = 0. Moreover,∫
π

0
f (φk(s))v(s)ds =

∫ π

2

0
f (φk(s))v(s)ds+

∫
π

π

2

f (φk(s))v(s)ds

=
∫ π

2

0
f (φk(s))v(s)ds+

∫
π

π

2

f (−φk(π− s))[−v(π− s)]ds

= 2
∫ π

2

0
f (φk(s))v(s)ds.

Now we define the auxiliary function:

v1(x) =

{
v(π

2 − x), if x ∈ [0, π

2 ]

−v(x− π

2 ), if x ∈ [π

2 ,π].

Proceeding the usual calculations, and using the fact that φk(
π

2 − x) =−φk(x), for x ∈
[0, π

2 ] and φk(x) = φk(x− π

2 ), for x ∈ [π

2 ,π] (note that this depends on n being ≥ 2), we conclude
that Lφk

εk v1 = 0. This implies v = cv1, where c =±1. Suppose that c = 1, then v(x) = +v(π

2 − x)

for x ∈ [0, π

2 ], and we obtain∫ π

2

0
f (φk(s))v(s)ds =

∫ π

2

0
f (−φk(

π

2 − s))v(π

2 − s)ds =−
∫ π

2

0
f (φk(s))v(s)ds,

that is,
∫ π

2
0 f (φk(s))v(s)ds = 0 and Lφk

0 v = Lφk
εk v = 0, a contradiction.

Therefore, we conclude v(x) =−v(π

2 − x) for x ∈ [0, π

2 ], and we proved (7.25) for i = 1.

As long as i < n, we can prove the next case using the previous one. In fact, now we
have: ∫

π

0
f (φk(s))v(s)ds = 4

∫ π

4

0
f (φk(s))v(s)ds.

We can define the auxiliary function:

v2(x) =

{
v(π

4 − x), if x ∈ [0, π

4 ]

−v(x− π

4 ), if x ∈ [π

4 ,π],

which satisfies Lφk
εk v2 = 0. Therefore, v = cv2 with c =±1, and if c = 1 we obtain∫ π

4

0
f (φk(s))v(s)ds = 0,

which is a contradiction.

Then the claim is proved inductively, considering the auxiliary functions, for 1≤ i < n:

vi(x) =

{
v( π

2i − x), if x ∈ [0, π

2i ]

−v(x− π

2i ), if x ∈ [ π

2i ,π],
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Using the last claim, the similar oscillation properties of φk and v yield:

∫
π

0
f (φk(s))v(s)ds = 2n

∫ π

2n

0
f (φ(s))v(s)ds

Then we can work with a problem in a reduced interval as we did in the case k = 2. Let
ψk = φk|[0, π

2n ]
and u = v|[0, π

2n ], and note that 0 ̸= u ∈ H2(0, π

2n )∩H1
0 (0,

π

2n ) satisfies

−u′′− λ f ′(ψk)

a(2n∥ψ ′k∥2
n)

u+2n+1 λ 2a′(2n∥ψ ′k∥2
n)

a(2n∥ψ ′k∥2
n)

3 f (ψk)
∫ π

2n

0
f (ψk(s))u(s)ds = 0, (7.26)

where ∥ux∥2
n =

∫ π

2n
0 |ux(s)|2ds.

Now we only need to notice that ψk = φk|[0, π

2n ] is an equilibrium for the system

ut = d(∥ux∥2
n)uxx +λ f (u), t > 0, x ∈ (0, π

2n )

u(0, t) = u( π

2n , t) = 0, t ≥ 0

u(·,0) = u0 ∈ H1
0 (0,

π

2n ),

(7.27)

where d = a(2n ·). More precisely, ψk is one of the two equilibria with 2 j+2 zeros in [0, π

2n ],
therefore, we can use Theorem 52 with no significant change in the proof to assure that the
linearization operator of (7.27) around ψk does not contain 0 as an eigenvalue, and this operator
is given by

Lψk : H2(0, π

2n )∩H1
0 (0,

π

2n )

Lψkv =−v′′− λ f ′(ψk)

d(∥ψ ′k∥2
n)

v+
2λ 2d′(∥ψ ′k∥2

n)

d(∥ψ ′k∥2
n)

3 f (ψk)
∫ π

2n

0
f (ψk(s))v(s)ds.

This contradicts (7.26), and we are done.

We only proved hyperbolicity for equation (7.5), in the sense discussed in Chapter 5.
Now we need to pass the results for the quasilinear equation (7.1). To do this, we define a more
general sense of hyperbolicity. Remember that an equilibrium φ ∈ E is topologically hyperbolic
(see Definition 25) if there exists δ > 0 such that if ξ : R→ X is a global solution that satisfies
supt∈R∥ξ (t)−φ∥< δ , then ξ ≡ φ .

Let BH1
0

δ
(φ) denote the ball of radius δ centered in φ , in the norm of H1

0 (0,π). Recall
that we define the local stable and unstable sets of an equilibrium φ ∈ E , respectively, by:

W u,δ
loc (φ) := {u ∈ H1

0 (0,π) : there is a global solution ξ : R→ H1
0 (0,π) through u such that

ξ (t) ∈ BH1
0

δ
(φ), ∀ t ≤ 0, and ξ (t) t→−∞−→ φ},
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and
W s,δ

loc (φ) := {u ∈ H1
0 (0,π) : T (t)u ∈ BH1

0
δ
(φ), ∀ t ≥ 0, and T (t)u t→∞−→ φ}.

Where the convergence is in the norm of H1
0 (0,π).

Definition 34 (Strict hyperbolicity). We say that φ ∈ E is hyperbolic if φ is topologically
hyperbolic and there exist closed subspaces Xu and Xs of H1

0 (0,π), with H1
0 (0,π) = Xu

⊕
Xs

such that the local stable and unstable sets of φ are given as graphs of Lipschitz functions
θu : Xu→ Xs and θs : Xs→ Xu, with Lipschitz constants Ls, Lu both in (0,1), θu(0) = θs(0) = 0,
in the following sense: there exists δ0 > 0 such that for any 0 < δ < δ0, there are 0 < δ ′′< δ ′< δ

with

{φ +xu+θu(xu) : xu ∈ Xu,∥xu∥H1
0
< δ

′′} ⊂W u,δ ′
loc (φ)⊂ {φ +xu+θu(xu) : xu ∈ Xu,∥xu∥H1

0
< δ}

and

{φ +θs(xs)+ xs : xs ∈ Xs,∥xs∥H1
0
< δ

′′} ⊂W s,δ ′
loc (φ)⊂ {φ +θs(xs)+ xs : xs ∈ Xs,∥xs∥H1

0
< δ}.

If an equilibrium of (7.5) has a linearization operator L whose spectrum does not contain
0, then we define the spectral projections Pu and Ps associated to the parts of σ(L) to the left and
to the right of the imaginary axis, respectively. Theorem 35 implies that φ is strictly hyperbolic
with the sets Xu = Pu(H1

0 (0,π)) and Xs = Ps(H1
0 (0,π)). Moreover, the forward (resp. backward)

attraction over the local stable (resp. unstable) set of φ is exponential. This is the so called saddle
point property.

We will show that the hyperbolic equilibria of (7.5) are also hyperbolic for (7.1) in the
sense of this last definition.

From Remark 8, we already know that all the equilibria for (7.1) are topologically
hyperbolic.

Suppose the origin φ0 = 0 is a hyperbolic equilibrium for (7.5), then there is a δ0 > 0,
and constants K, β > 0 in such a way that for all 0 < δ < δ0, there exists 0 < δ ′′ < δ ′ < δ such
that for all xu ∈ Xu, ∥xu∥H1

0
< δ ′′, then xu+θu(xu) ∈W u,δ ′

loc (0), and there exists η : R→H1
0 (0,π)

global solution for (7.5) such that η(0) = xu +θu(xu), ∥η(τ)∥H1
0
< δ ′ for τ ≤ 0, and

η(τ) ∈W u,δ ′
loc (0)⊂ {xu +θu(xu) : xu ∈ Xu,∥xu∥H1

0
< δ}, ,∀τ ≤ 0,

so that η(τ) = Pu(η(τ))+θu(Pu(η(τ))), for τ ≤ 0. Moreover, we have the estimate

∥η(τ)∥H1
0
≤ Keβτ∥η(0)∥H1

0
, ∀τ ≤ 0.

We can change the time scale to t =
∫

τ

0 a(∥η(θ)∥2
H1

0
)−1dθ , and define ξ (t) = η(τ). Then

ξ : R→ H1
0 (0,π) is a global solution for (7.1). Therefore, for each xu ∈ Xu, ∥xu∥H1

0
< δ ′′, we
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found a global solution ξ of (7.1) such that ξ (0) = xu +θu(xu), ∥ξ (t)∥H1
0
< δ ′ for all t ≤ 0, and

ξ (t) = Pu(ξ (t))+θu(Pu(ξ (t))) for all t ≤ 0. And the estimate translates into:

∥ξ (t)∥H1
0
≤ Keβmt∥ξ (0)∥H1

0
, ∀ t ≤ 0.

Moreover, if xs ∈ Xs, ∥xs∥H1
0
< δ ′′, then xs +θs(xs) ∈W s,δ ′

loc (0), and there exists w : R→
H1

0 (0,π), global solution for (7.5), such that w(0) = xs +θs(xs), ∥w(τ)∥H1
0
< δ ′ for τ ≥ 0, and

w(τ) ∈W s,δ ′
loc (0)⊂ {xs +θs(xs) : xs ∈ Xs,∥xs∥H1

0
< δ}, ,∀τ ≥ 0,

so that w(τ) = Ps(w(τ))+θs(Ps(w(τ))), for τ ≥ 0 and

∥w(τ)∥H1
0
≤ Ke−βτ∥w(0)∥H1

0
, ∀τ ≥ 0.

Defining the global solution α : R→ H1
0 (0,π) by

α(t) = w(τ), for t =
∫

τ

0
a(∥w(θ)∥2

H1
0
)−1dθ ,

we have the graph characterization of the local stable set of 0, as well as the exponential estimate.

We can apply this very same reasoning to nonzero equilibria. It follows that the equilibria
for (7.1) are all hyperbolic in the sense of Definition 34, except for the origin when λ = a(0)n2

for some n ∈ N. We were able to transfer the results of hyperbolicity from equation (7.5) to
equation (7.1) essentially because the structure of the local stable and unstable sets does not
change between the two equations, and because we could estimate the decay of ∥ξ (t)∥H1

0
and

∥α(t)∥H1
0

using the uniform estimate for the variable change τ ≤ mt for τ ≤ 0 and τ ≥ mt for
τ ≥ 0, which does not depend on the particular initial position u0 ∈ H1

0 (0,π).



139

CHAPTER

8
CONCLUSION

In this thesis, we presented several topics related to the study of parabolic partial dif-
ferential equations, including spectral analysis, fractional powers, semigroups and exponential
dichotomy, and then we applied this knowledge to study the classical semilinear Chafee-Infante
equation and a non-local quasilinear Chafee-Infante equation (CARVALHO; MOREIRA, 2021).

In Chapter 2, we defined the resolvent and spectrum of closed operators in the Banach
space X , and we showed that for a bounded operator A ∈L (X) the spectrum is compact and the
resolvent operator can be written as a series in L (X). Moreover, using the Fredholm Alternative,
we showed that if A : D(A) ⊂ X → X has compact resolvent, its spectrum is a sequence of
isolated eigenvalues of finite geometric multiplicity. Finally, we defined symmetric and self-
adjoint operators, which are kinds of operators that appears in real-world applications with special
kinds of symmetry, and we proved Friedrichs Theorem, which is a way to obtain self-adjoint
operators from symmetric operators. Then, we used the results in this chapter to characterize
the spectrum of the Sturm-Liouville operators of the form L : H2(0,π)∩H1

0 (0,π)→ L2(0,π),
Lv=−v′′+q(x)v, where q : [0,π]→R is a continuous function, showing that this operator is self-
adjoint, has compact resolvent and its sequence of eigenvalues accumulates at +∞. Furthermore,
if we denote by {µ j} the increasing sequence of eigenvalues of L, then µ j is simple and an
associated eigenvalue v j has j+1 zeros in [0,π].

Then, in Chapter 3, we presented the theory of linear semigroups associated to the
differential equation

ẋ = Ax

when −A is a sectorial operator with vertex a ∈ R. We proved that the spectrum characteristics
of this kind of operator allows us to construct a semigroup {eAt : t ≥ 0}, generated by A, such
that d

dt eAt = AeAt ∈L (X), and

∥eAt∥L (X) ≤ Keat , ∥AeAt∥L (X) ≤ Kt−1eat , ∀ t ≥ 0.
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Moreover, if the spectrum of A is disjoint from {λ ∈ C : Reλ = 0}, we have seen that,
using the sectoriality of A, we can decompose the phase plane in two subspaces, such that in
one subspace eAt decays exponentially as t→ ∞, and in the other subspace {eAt : t ≥ 0} can be
extended to a group and eAt decays exponentially as t→−∞. This property is called exponential
dichotomy. It is specially important to obtain this result for linear semigroups because under
some conditions we can conclude similar properties for a semilinear equation, approximating it
by a linear equation, as it is done to study stability and hyperbolicity of equilibria for parabolic
semilinear equations in Chapter 5.

Also in Chapter 3, we introduce the theory of nonlinear semigroups as an elegant way to
study the asymptotic behavior of a non-linear autonomous dynamical system. In particular, we
give conditions under which the semigroup has a global attractor, and characterize the global
attractor of gradient semigroups.

In Chapter 4, we introduce the fractional powers of a positive operator, along with
interpolation and inclusion results about the fractional power spaces Xα = (D(Aα),∥Aα · ∥). We
also use fractional powers to prove that a regular perturbation of a sectorial positive operator is
still sectorial, with few assumptions on the perturbation (see Corollary 4).

The semilinear parabolic equations are defined in Chapter 5, being of the form

d
dt

u =−Au+ f (t,u), t > t0

u(t0) = u0,
(8.1)

where A : D(A)⊂ X → X is a sectorial and positive operator, (t0,u0) ∈U , which is an open set
in R×Xα , and f : U → X is continuous. Since we work in a fractional power space of A, we
can use the interpolation and inclusion results about fractional powers, which are a useful tool.
We study the existence, uniqueness and continuous dependence of solutions for (8.1), using
the Banach Fixed Point, along with all the estimates we can obtain from the fractional powers
formulation. Moreover, since A is sectorial and positive, we can approximate the function f near
an equilibrium φ of (8.1) by a bounded linear operator B, and the operator L = A−B will also be
sectorial by perturbation results. We call L the linearization operator around φ , and the fact that
L is sectorial help us conclude information about stability and hyperbolicity for the equilibrium
φ , using the exponential dichotomy for the semigroup {e−Lt : t ≥ 0}.

Finally, we present an example of application for all these theories. In Chapter 6, we
study the Chafee-Infante equation (CHAFEE; INFANTE, 1974), which is a parabolic semilinear
differential equation in the phase space H1

0 (0,π), given by:

ut = uxx +λ f (u), t > 0, x ∈ (0,π)

u(0, t) = u(π, t) = 0, t ≥ 0

u(·,0) = u0 ∈ H1
0 (0,π).

(8.2)
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where λ > 0 is a parameter, f ∈C 2(R) is odd (in particular, f (0) = 0), f ′(0) = 1, and f satisfies:

f ′′(u)u < 0, ∀ u ̸= 0,

and

lim sup
|u|→∞

f (u)
u

< 0.

We show that this equation satisfies the conditions for local existence of solutions, then
we find a Lyapunov functional and use it to estimate the solutions, concluding that a solution
u : [0,τ)→ H1

0 (0,π) remains bounded in all its interval of existence, and can be extended to a
solution defined for t ≥ 0, so that for each point u0 ∈ H1

0 (0,π), there exists a bounded solution
u(·,u0) : R+→ H1

0 (0,π) such that u(0,u0) = u0. Using the continuous dependence results in
Chapter 5, we can conclude that the Chafee-Infante equation can be studied through a nonlinear
semigroup, and we use the theory in Chapter 3 to show that the semigroup associated has a
global attractor of gradient kind.

We study the bifurcation of equilibria for the Chafee-Infante equation, analyzing the
phase plane associated to the equilibrium equation, and we conclude if N2 < λ ≤ (N + 1)2,
there exist 2N +1 equilibria for (8.2), which we denote {0}∪{φ±j }, φ

−
j = −φ

+
j , and φ

+
j has

j+1 zeros in [0,π]. Moreover, the equilibria have a lot of symmetry properties, for example
φ
±
j (π− x) = (−1) j−1φ

±
j (x), for x ∈ [0,π].

Using the spectral analysis of the linearization operators around the equilibria of Chafee-
Infante equation — which are Sturm-Liouville operators as the ones we studied in Chapter 2 —,
we conclude that φ0 = 0 is globally asymptotically stable for (8.2) for λ ≤ 1, and if λ > 1, only
φ
±
1 are stable. Moreover, all the equilibria are hyperbolic except for φ0 when λ = n2 for some

n ∈ N.

Then, in Chapter 7, we study a non-local version of the Chafee-Infante equation, given
by:

ut = a(∥ux∥2)uxx +λ f (u), 0 < x < π, t > 0,

u(0, t) = u(π, t) = 0, t > 0,

u(·,0) = u0 ∈ H1
0 (0,π),

(8.3)

where ∥ux∥2 =
∫

π

0 |ux(s)|2ds. The function f satisfies the same conditions as before, and we also
ask (0,∞) ∋ u 7→ f (u)/u strictly decreasing. Also, λ > 0 is a parameter and a : R+→ [m,M]⊂
(0,∞) is a continuously differentiable, globally Lipschitz and non-decreasing function.

We see that this equation has some properties that resemble the ones of the classical
semilinear Chafee-Infante equation. Namely, if a(0)N2 < λ ≤ a(0)(N + 1)2, then there are
precisely 2N +1 equilibria for (8.3), which we denote again by:

{0}∪{φ±k : k = 1, ...,N},
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where φ
+
k and φ

−
k have k + 1 zeros in [0,π], φ

−
k = −φ

+
k , and φ

+
k (x) > 0 for x ∈ (0, π

k ), for
k = 1, ...,N. Moreover, φ0 = 0 is stable for λ ≤ a(0), and if λ > a(0), φ

±
1 are the only stable

equilibria. All the equilibria are hyperbolic (in the sense of Definition 34) except for φ0 when
λ = a(0)n2, for some n ∈ N∗.

We prove this results for (8.3) with the aid of an auxiliary semilinear equation whose
solutions are related to the solutions of (8.3) by a solution-dependent change in the time scale.
All the theory of semilinear equations is applied to this semilinear equation to conclude stability
and hyperbolicity of equilibria — the spectral analysis is complicated because the linearization
operator is non-local. Then, the results can be transferred to the quasilinear equation, because
the structure of the local stable and unstable sets does not change between the two equations,
and because the change in time scale has a certain uniform estimate, because of which we can
transfer the exponential decay results from an equation to the other.
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