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RESUMO

FRANÇA, A. S. Superfícies do tipo Enneper. 2023. 98 p. Dissertação (Mestrado em Ciências
– Matemática) – Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo,
São Carlos – SP, 2023.

Superfícies no espaço Euclidiano 3-dimensional sem pontos umbílicos cujas linhas de curvatura
correspondentes a uma de suas curvaturas principais estão contidas em esferas ou planos são
chamadas de superfícies do tipo Enneper. Neste trabalho, apresentamos uma parametrização
para as superfícies com linhas de curvatura planares e descrevemos como uma superfície do
tipo Enneper arbitrária pode ser obtida a partir de uma superfície do tipo Enneper com linhas de
curvatura planares. Apresentaremos ainda uma nova descrição da classe especial das superfícies
em que os centros das esferas que contêm as linhas de curvatura correspondentes a uma de suas
curvaturas principais estão todos em uma mesma reta. Em particular, esta última classe contém
as superfícies do tipo Enneper com curvatura Gaussiana constante não nula. Discutimos ainda a
classificação das superfícies mínimas do tipo Enneper.

Palavras-chave: superfícies, linhas de curvatura, linha de curvatura planar, linha de curvatura
esférica.





ABSTRACT

FRANÇA, A. S. Surfaces of Enneper type. 2023. 98 p. Dissertação (Mestrado em Ciências –
Matemática) – Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo,
São Carlos – SP, 2023.

We study surfaces free of umbilical points in the 3-dimensional Euclidean space with the lines
of curvature of one family contained in planes or spheres, called surfaces of Enneper type. We
present a parametrization of the surfaces with planar lines of curvature and describe how an
arbitrary surface of Enneper type can be constructed from a surface of Enneper type with one
family of planar lines of curvature. We obtain a new description of the special class of surfaces of
Enneper type with the property that the spheres that contain the lines of curvature correspondent
to one of its principal curvatures are all centered on a common straight line. In particular, this
class includes the nonzero constant Gaussian curvature ones. We also discuss the classification
of the minimal surfaces of Enneper type.

Keywords: surfaces, lines of curvature, planar line of curvature, spherical line of curvature.
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INTRODUCTION

Surfaces in R3 with the property that the lines of curvature correspondent to one of its
principal curvatures are contained in planes or spheres have been an object of study by many
classical geometers as Dobriner (1887), Bianchi (1922), Eisenhart (1909) and Darboux (1993).
Since there was a book on the subject by Enneper (1878) in 1878, some authors call any surface
satisfying this geometric condition an Enneper surface or a surface of Enneper type. We will use
the latter along this work.

Bianchi and Eisenhart first consider the case where all the lines of curvature are contained
in planes. Since the tangents to a line of curvature and to its spherical representation at corre-
sponding points are parallel, a line of curvature is contained in a plane if and only if its spherical
representation is a circle on the unit sphere. Then, in this case, the Gauss map transforms the
two families of lines of curvature into an orthogonal system of circles. The orthogonal systems
of circles on the sphere are known, and this fact is used to give parametric equations for such
surfaces. A parametrization for the surfaces for which only one family of lines of curvature are
contained in planes is also presented, which is used by Bianchi to show how an arbitrary surface
of Enneper type can be constructed by means of a surface in this class.

If one family of lines of curvature on a minimal surface consists of curves contained
in planes, then so does the other family. Besides the Catenoid and Enneper minimal surface,
there is a one-parameter family of such surfaces, see for Example (NITSCHE, 1989) and (CHO;
OGATA, 2017). Using a similar approach as Nitche, Leite (2015) obtained the classification of
the maximal surfaces with planar lines of curvature in the Minkowski space. By definition, a
maximal surface is a space-like surface with zero mean curvature.

The interest in the surfaces of Enneper type has been renewed since the construction of
immersed constant mean curvature tori in R3 by Wente (1986). These examples solved the long
standing Hopf-Conjecture (dating back to the early 1800s): Is it possible to immerse a compact
surface of positive genus in R3 with constant mean curvature? A theorem due to Alexandrov
(1956) states that such a surface can not be embedded. The Wente tori are surfaces of Enneper
type, as shown in (ABRESCH, 1987) and (SPRUCK, 1988).

Chion and Tojeiro (2021) in a recent work introduced the notion of Ribaucour partial
tubes and generalized the results described in Bianchis’s book for the corresponding hypersur-
faces of Enneper type in Rn+1. The authors obtained in particular a new description of the special
class of surfaces of Enneper type with the property that the spheres that contain the lines of
curvature correspondent to one of its principal curvatures are all centered on a common straight
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line, called Joachimsthal surfaces, based on the conformal diffeomorphism of H2 ×R onto
R3 ∖R.

In this work, we revisit the subject of surfaces of Enneper type in R3 by providing a
modern treatment of some classical results on this topic. We first present a parametrization for
the class of surfaces of Enneper type for which the lines of curvature of one family are contained
in planes, then we obtain parametric equations for the surfaces with this property in both families
by using the analysis of the orthogonal system of circles on S2.

We show that, except for some special cases, a general surface of Enneper type can be
constructed in terms of a surface in the latter class. For that, we show how to parametrize any
surface of Enneper type with the lines of curvature of one family contained in spheres in terms
of its Gauss map and a triple (γ,α,β ), where γ is a smooth curve in R3 and α,β are smooth
functions defined on an open interval. Then, we determine all the triples (γ̄, ᾱ, β̄ ) that give rise
to surfaces of Enneper type that share the same Gauss map with a given one. It turns out that,
among them, there always exists a surface for which the spheres containing the lines of curvature
all pass through a common point. Since the inversion with respect to a sphere centered at that
point maps such spheres into planes, we may conclude that the composition of the surface with
this inversion is a surface of Enneper type with the lines of curvature of one family contained in
planes.

Inspired by the recent results obtained in (CHION; TOJEIRO, 2021) and (TASSI; TO-
JEIRO, In preparation.) we give an explicit description of surfaces of Enneper type for which
the lines of curvature of one family are contained either in concentric spheres, parallel planes,
or planes that intersect along a common straight line. This result leads to a new description of
all Joachimsthal surfaces and since every surface of nonzero constant Gaussian curvature with
the lines of curvature of one family contained in planes is a Joachimsthal surface, then we also
obtain a new description for such surfaces.

Moreover, a more detailed treatment of the known classification of minimal surfaces of
Enneper type with the lines of curvature of one family contained in planes is presented.

Dissertation outline

Chapter 1 has the basic concepts of surfaces in R3. Except for the first section of Chapter
2 and the analysis of the orthogonal system of circles on S2 presented in the second section, all
the other chapters are independent and all of them contain main results on the subject.

The first section of Chapter 2 presents some basic facts about lines of curvature. In
particular, we see that every surface of Enneper type can be locally parametrized by lines of
curvature. In the next sections, we show how to recover surfaces of Enneper type in terms of its
Gauss map and support functions, which yields parametrizations for these surfaces.
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In Chapter 3 we turn to give a complete description of some special surfaces of Enneper
type. We present a proof of the fact that every surface of nonzero constant Gaussian curvature
with the lines of curvature of one family contained in planes is a Joachimsthal surface. At the
end, we use our results to construct some explicit examples of Joachimsthal surfaces.

Chapter 4 contains the classification of minimal surfaces of Enneper type with the lines of
curvature of one family contained in planes. Here the orthogonal system of circles on S2 makes a
comeback. Furthermore, in order to carry out our approach we need to derive the representation
formulas for minimal surfaces.
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CHAPTER

1
SURFACES IN THE EUCLIDEAN THREE

SPACE

In this chapter, we establish some basic facts of the theory of surfaces in R3 that will
be used throughout this work. The starting point for the results presented here is to introduce
the second fundamental form by means of the Gauss and Weingarten formulas. Then we derive
the Gauss and Codazzi equations, and as an application of the Gauss equation, we recover the
celebrated Theorema Egregium. A more detailed treatment can be found in the books of Dajczer
and Tojeiro (2019) and Spivak (1975).

1.1 The second fundamental form
Let M2 be a two-dimensional manifold and let f : M2 → R3 be a smooth map. We say

that f is an immersion if the differential f*(p) : TpM2 → Tf (p)R3 ≡R3 is injective for all p ∈ M2.
Here the Euclidean space R3 is endowed with its usual metric denoted by ⟨,⟩∼.

The induced metric by f on M2 is given by

⟨X ,Y ⟩= ⟨ f*(p)X , f*(p)Y ⟩∼,

for all p ∈ M2 and X ,Y ∈ TpM2, with respect to which f : M2 → R3 becomes an isometric
immersion. We refer to f : M2 → R3, or to f (M2), as an immersed surface in R3, or simply a
surface.

A smooth map V : U →R3 defined on an open subset U ⊂ M2 such that V (p) ∈ Tf (p)R3

for all p ∈U is called a vector field along f . Considering ∇̃ the Levi-Civita connection of R3, it
is a standard result of Riemannian manifolds that ∇̃ naturally induces a unique connection ∇ f on
the set of all vector fields along f , called the induced connection along f .

Let V : U ⊂ M2 → R3 be a vector field along f which admits an extension to a vector
field Ṽ defined on some open subset Ũ ⊂ R3, that is, V = Ṽ ∘ f where Ṽ : Ũ → R3 is a smooth
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map. Then the induced connection satisfies

(∇
f
XV )(p) = (∇̃ f*(p)X(p)Ṽ )( f (p)),

for all p ∈U and X ∈X(M2). Since the Levi-Civita connection of R3 for the Euclidean metric is
the usual differentiation of vector fields, we have

∇
f
XV (p) = dṼf (p) · f*(p)X(p) =

d
dt

Ṽ (x(t))
∣∣
t=0 :=V*X(p), (1.1)

where x : I → Ũ is a smooth curve with x(0) = f (p) and x′(0) = f*(p)X(p). From now on we
always identify ∇ f with ∇̃ and use the same notation ∇̃.

The following linear subspaces of R3

Tp f := f*(p)(TpM2) and N f M(p) := [ f*(p)(TpM2)]⊥

are called the tangent space and normal space of f at p ∈ M, respectively. Given V : M2 → R3 a
vector field along f , we can consider the decomposition

∇̃XV = (∇̃XV )T +(∇̃XV )⊥,

with respect to the orthogonal decomposition R3 = Tp f ⊕N f M(p) for all p ∈ M2. Thus, vector
fields along f lying in the tangent space are given by

f*X(p) := f*(p)X(p), p ∈ M2

for some X ∈ X(M2).

Next, we present an important property of the induced connection along f , see (GOROD-
SKI, 2016) for a proof of this result.

Proposition 1.1.1. Let X ,Y ∈ X(M2) be vector fields on M2 and let U,V : M2 → R3 be vector
fields along f . Then the following identities hold

∇̃X f*Y − ∇̃Y f*X = f*[X ,Y ], and X⟨U,V ⟩∼ = ⟨∇̃XU,V ⟩∼+ ⟨U, ∇̃XV ⟩∼

where [, ] stands for the Lie bracket of X and Y .

Given X ,Y ∈X(M2), let C(X ,Y ) be the unique vector field on M2 such that f*C(X ,Y ) =

(∇̃X f*Y )T . One can easily check that

C : X(M2)×X(M2)→ X(M2)

defines an affine connection on M2. Moreover, by the above proposition, it follows that C is
symmetric and compatible with the induced metric by f . Therefore,

Proposition 1.1.2. Let f : M2 → R3 be a surface, then the Levi-Civita connection ∇ of M2 is
given by

∇XY = f−1
* (∇̃X f*Y )T
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If we now consider c : I → M a smooth curve on M2, then Proposition (1.1.2) means that

f*

(
Dc′

dt

)
=

(
d2

dt2 ( f ∘ c)
)T

,

where D
dt stands for the covariant derivative along c and d

dt for the usual derivative of curves in
R3. Hence, c is a geodesic of M2 if and only if ( f ∘ c)′′(t) is normal to Tc(t) f , for all t ∈ I. In
particular, if f ∘ c : I → R3 is a straight line then c is a geodesic.

Definition 1.1.1. The map α that assigns to the pair of vector fields X ,Y ∈ X(M2) the vector
field α(X ,Y ) along f given by

α(X ,Y ) = [∇̃X f*Y ]⊥

is called the second fundamental form of f .

Using the Proposition 1.1.2, we can write the following basic formula of a surface

∇̃X f*Y = f*∇XY +α(X ,Y ),

which is called the Gauss formula.

We now consider the following situation: Let ϕ : R3 → R3 be a conformal diffeomor-
phism with λ ∈C∞(R3) the corresponding conformal factor; thus f̃ = ϕ ∘ f : M2 → R3 is also a
surface. Since, for all X ,Y ∈ X(M2),

⟨ f̃*X , f̃*Y ⟩∼ = ⟨ϕ* ∘ f*X ,ϕ* ∘ f*Y ⟩∼ = λ
2 ∘ f ⟨ f*X , f*Y ⟩∼,

it follows that the induced metric by f̃ and the induced metric by f are conformal metrics on M2

with conformal factor λ ∘ f .

It is a known fact that if g2 = λ 2g1 are conformal metrics on a manifold M, then the
Levi-civita connections ∇1 and ∇2 of g1 and g2, respectively, are related by

∇
2
XY = ∇

1
XY +

1
λ
(Y (λ )X +X(λ )Y −g1(X ,Y )grad1λ ) ,

for all X ,Y ∈ X(M), where grad1λ denotes the gradient of λ with respect to g1. Now, applying
this to the Gauss formula for f and f̃ , we obtain the following relation between its second
fundamental forms α f and α f̃ , respectively,

α
f̃ (X ,Y ) = α

f (X ,Y )− ⟨ f*X , f*Y ⟩∼

λ ∘ f
[(grad λ )∘ f ]⊥, (1.2)

for all X ,Y ∈ X(M2), where grad λ is the gradient of λ with respect to ⟨,⟩∼. In particular, if
λ ≡ 1 (i.e. ϕ is an isometry of R3) we see that the corresponding second fundamental forms
agree.

From the properties of linearity of a connection, it is immediate that

α(X +Z,Y ) = α(X ,Y )+α(Z,Y ), α(X ,Y +Z) = α(X ,Y )+α(X ,Z)
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and

α(ϕX ,Y ) = ϕα(X ,Y ), α(X ,ϕY ) = ϕα(X ,Y )

for all X ,Y,Z ∈X(M2) and ϕ ∈C∞(M2), that is, the map α is C∞(M2)-bilinear. Hence the value
α(X ,Y )(p) ∈ N f M(p) depends only on the values X(p),Y (p) ∈ TpM2, see (LEE, 2018, Lemma
B.6, p. 398).

The normal space N f M(p) contains precisely one unit vector up to sign. If np ∈ N f M(p)

is one of these, we can write the Gauss formula at p as

(∇̃X f*Y )(p) = ( f*∇XY )(p)+ ⟨α(X ,Y )(p),np⟩∼np. (1.3)

Moreover, since

α(X ,Y )−α(Y,X) = ∇̃X f*Y − f*∇XY −
(
∇̃Y f*X − f*∇Y X

)
= ∇̃X f*Y − ∇̃Y f*X − f*[X ,Y ] = 0

taking Proposition 1.1.1 into account, we conclude that the map Bnp : TpM×TpM → R given by

Bnp(X ,Y ) = ⟨α(X ,Y )(p),np⟩∼, X ,Y ∈ TpM,

is a symmetric bilinear form. Sometimes we also refer to Bnp as the second fundamental form of
f at p.

Definition 1.1.2. The shape operator of f at p is the self-adjoint operator Anp : TpM2 → TpM2

corresponding to the second fundamental form, which is characterized by

⟨AnpX ,Y ⟩= Bnp(X ,Y ), for all X ,Y ∈ TpM.

Notice that, since the shape operator of f at p ∈ M2 is a self-adjoint operator, there exists
an orthonormal basis of eigenvectors {e1,e2} of TpM2 with real eigenvalues k1,k2. We say that
ei are principal directions and that ki are principal curvatures of f at p.

Definition 1.1.3. The determinant K := det(Anp) and the half of the trace H := tr(Anp)/2 are
the Gaussian curvature and the mean curvature of f at p, respectively.

In terms of the principal curvatures k1 e k2, we have

K = k1k2, H =
k1 + k2

2
.

At every p ∈ M2, we have a choice of two unit normal vectors ±np. The principal
directions do not depend on this choice, and only the signs of the principal curvatures do. Then,
the sign of H depends on the choice of the unit normal vector, but the sign of K does not. If the
mean curvature of f vanishes everywhere, the surface is said to be minimal.
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Definition 1.1.4. A point p ∈ M2 is called

∙ umbilical if Anp is a multiple of the identity.

∙ planar if Anp = 0.

∙ flat if K = 0.

Notice that p is an umbilical point if and only if all the unit vectors of TpM are principal
directions with respect to the same principal curvature, which is equivalent to K = H2.

1.2 Gauss map
Naturally, it is not useful to choose the unit normal vector np at random for each point

p ∈ M2.

Definition 1.2.1. Let N : U ⊂ M2 → S2 ⊂ R3 be a smooth map defined on an open subset
U ⊂ M2. We say that N is a unit normal vector field or a Gauss map of f if N(p) = np, for all
p ∈U .

If N : U → S2 is a Gauss map of f , then for all X ,Y ∈ X(U) we can write

⟨AX ,Y ⟩= ⟨α(X ,Y ),N⟩∼,

where A stands for the shape operator with respect to N, that is, A(p) = AN(p) and AX ∈ X(U) is
given by AX(p) := A(p)X(p) ∈ TpM, for all p ∈U . Thus, the Gauss formula becomes

∇̃X f*Y = f*∇XY + ⟨AX ,Y ⟩N.

Proposition 1.2.1. If f : M2 → R3 is a surface and N : U → S2 is a Gauss map defined on the
open subset U ⊂ M, then

∇̃X N =− f*AX , (1.4)

for all X ∈ X(U).

Proof. Given X ,Y ∈ X(U) we have ⟨ f*Y,N⟩∼ = 0. Then

0 = X⟨ f*Y,N⟩∼ = ⟨∇̃X f*Y,N⟩∼+ ⟨ f*Y, ∇̃X N⟩∼

= ⟨AX ,Y ⟩+ ⟨ f*Y, ∇̃X N⟩∼,

and hence
⟨− f*AX , f*Y ⟩∼ = ⟨∇̃X N, f*Y ⟩∼. (1.5)

Now, for every p∈U , Tp f is the orthogonal complement to N(p)∈ S2, so we can identify
Tp f = TN(p)S2. Since Y has been chosen arbitrarily, the conclusion follows from (1.5).
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In addition to the Gauss formula, the equation (1.4) is another basic formula of the theory
of surfaces, known as the Weingarten formula. In terms of the differential of N, the Weingarten
formula becomes

i* ∘N* =− f* ∘A,

where i : S2 → R3 is the inclusion map. By the inverse Function Theorem for Manifolds, we see
that if p ∈U is not a flat point, then N is a diffeomorphism in a neighborhood of p.

Next, we see that a Gauss map can always be defined locally. Let (U,x = (u1,u2)) be a
chart on M2 and consider the coordinate vector fields

∂u1(p) :=
∂

∂u1
(p) and ∂u2(p) :=

∂

∂u2
(p),

and also the coordinate vector fields along f

∂ f
∂u1

(p) := f*
∂

∂u1
(p) and

∂ f
∂u2

(p) := f*
∂

∂u2
(p),

for all p = x−1(u1,u2) ∈ U . Let {du1,du2} be the dual 1-forms of the basis {∂u1,∂u2}. Then,
with respect to the coordinates (u1,u2), the metric of M2 is given by

ds2 = g11du2
1 +2g12du1du2 +g22du2

2,

where we have set
gi j := ⟨∂ui,∂u j⟩=

〈
∂ f
∂ui

,
∂ f
∂u j

〉∼
,

called the coefficients of the first fundamental form. We say that (u1,u2) is a local system of
orthogonal coordinates if g12 = 0. If, in addition, g11 = g22, we say that u1 and u2 are isothermal

parameters of f .

Since
Ñ :=

∂ f
∂u1

∧ ∂ f
∂u2

defines a vector field along f everywhere normal to the tangent space of f , we obtain that
N := Ñ/‖Ñ‖ is a Gauss map of f defined on U . The corresponding coefficients of the second

fundamental form are given by

bi j := ⟨α(∂ui,∂u j),N⟩∼ = ⟨∇̃∂ui
f*∂u j ,N⟩∼ =

〈
∂ 2 f

∂ui∂u j
,N
〉∼

.

Taking another chart (Ū , x̄ = (ū1, ū2)), we have

∂ f
∂ ū1

∧ ∂ f
∂ ū2

=
∂ (u1,u2)

∂ (ū1, ū2)

∂ f
∂u1

∧ ∂ f
∂u2

.

Thus N preserves its sign or changes it, depending on whether the Jacobian of the coordinate
change ∂ (u1,u2)/∂ (ū1, ū2) is positive or negative, respectively. Therefore, if M2 is oriented, we
can define globally a Gauss map N : M2 → S2.
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Let us now compute the matrix of the shape operator with respect to the basis {∂u1,∂u2}.
We first observe that

(
g11 g12

g12 g22

)
:=

(
g11 g12

g12 g22

)−1

=
1

g11g22 −g2
12

(
g22 −g12

−g12 g11

)
, (1.6)

where ()−1 means the inverse matrix of (). Writing

A∂ui =
2

∑
l=1

ail∂ul ,

with as yet undetermined coefficients ail , it follows from the Gauss formula that

bi j = ⟨A∂ui,∂u j⟩=
2

∑
l=1

ailgl j,

whence

aik =
2

∑
j=1

2

∑
l=1

ailgl jg jk =
2

∑
j=1

bi jg jk.

Therefore, this and (1.6) give(
a11 a12

a12 a22

)
=

1
g11g22 −g2

12

(
b11 b12

b12 b22

)(
g22 −g12

−g12 g11

)
. (1.7)

From (1.7) we immediately obtain

K = det(ai j) =
b11b22 −b2

12
g11g22 −g2

12

and

H =
1
2

tr(ai j) =
1
2
(a11 +a22) =

1
2

b11g22 −2b12g12 +b22g11

g11g22 −g2
12

.

In particular, we have just proved that the Gaussian curvature K and the mean curvature H are
smooth functions in M2.

Since k1 and k2 are the eigenvalues of the shape operator, it follows that k1 and k2 satisfy
the equation

k2 −2Hk+K = 0,

which implies that

k = H ±
√

H2 −K.

Thus, if we choose k1(p)≥ k2(p), p ∈ M2, the functions k1 and k2 are continuous in M2, and
are also smooth, except possibly at the umbilical points of f . Moreover, the set of nonumbilical
points is precisely the set where k1 > k2, and then this is an open subset of M2.
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It is also useful to compute the vectors N*∂ui in terms of the basis { f*∂u1, f*∂u1}. By the
Weingarten formula we have

⟨N*∂ui, f*∂u j⟩
∼ =−⟨ f*A∂ui, f*∂u j⟩

∼ = ⟨A∂ui,∂u j⟩=−bi j.

By a straightforward computation, we obtain

N*∂u1 =
1

g11g22 −g2
12

((g12b12 −g22b11) f*∂u1 +(g12b11 −g11b12) f*∂u2)

and
N*∂u2 =

1
g11g22 −g2

12
((g12b22 −g22b12) f*∂u1 +(g12b12 −g11b22) f*∂u2) .

Hence, it further holds that

⟨N*∂ui,N*∂u j⟩
∼ = 2Hbi j −Kgi j. (1.8)

Remark 1. Assuming that N : U → S2 ⊂ R3 is a local diffeomorphism, we infer from (1.8) that.
if H ≡ 0, that is, if f : U → R3 is minimal, then the metric induced by N on U is conformal to
the induced metric by f .

A smooth local orthonormal frame {e1,e2} of M2 is said to be principal if each ei(p) is
a principal direction of f at p.

Proposition 1.2.2. Let f : M2 →R3 be a surface and let p ∈ M2 a nonumbilical point of f . Then
there is a principal orthonormal frame defined on a neighborhood of p.

Proof. We start with coordinate vector fields on a neighborhood U of p free of umbilical points
and consider N : U → S2 a Gauss map of f on U with corresponding shape operator A. Then
we apply the Gram-Schmidt algorithm simultaneously over U to obtain a smooth orthonormal
frame {E1,E2}.

Since A is a self-adjoint operator we can write

AE1 = aE1 +bE2 and AE2 = bE1 + cE2,

for some a,b,c ∈C∞(U). Hence

K = ac−b2, and H =
1
2
(a+ c).

Using that A at p is not a multiple of the identity, we can assume that Ei(p) is not a principal
direction, after applying orthogonal matrices to E1 and E2, if necessary. Thus, b(p) ̸= 0 and the
same holds in a smaller neighborhood Ũ of p. Let k1 and k2 the principal curvatures of f in Ũ .
Since k2

i −2Hki +K = 0, we obtain

b2 + c(k1 −a) = k1(k1 −a), and b2 +a(k2 − c) = k2(k2 − c). (1.9)
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Now, define the new vector fields ẽ1 and ẽ2 in Ũ by

ẽ1 = bE1 +(k1 −a)E2 and ẽ2 = (k2 − c)E1 +bE2.

Since b ̸= 0, we see that ẽi is never zero in Ũ . Moreover, we have

Aẽ1 = bAE1 +(k1 −a)AE2

= b(aE1 +bE2)+(k1 −a)(bE1 + cE2)

= k1bE1 +(b2 + c(k1 −a))E2

= k1ẽ1,

taking (1.9) into account. Similarly, we obtain that Aẽ2 = k2ẽ2. Finally, setting ei = ẽi/‖ẽi‖, we
see that {e1,e2} is a principal orthonormal frame on Ũ .

We consider again the surface f̃ = ϕ ∘ f : M2 →R3. If N : U ⊂ M2 → S2 is a Gauss map
of f , then Ñ = N/(λ ∘ f ) is clearly a Gauss map of f̃ on U . Denoting by A and Ã the shape
operator of f and f̃ with respect to N and Ñ, respectively, we can use (1.2) to obtain

⟨ÃX ,Y ⟩=
〈

α
f̃ (X ,Y ),

N
λ ∘ f

〉∼

=

〈
1

λ ∘ f
AX − ⟨(grad λ )∘ f ,N⟩∼

λ 2 ∘ f
X ,Y

〉
,

for all X ,Y ∈ X(U). Hence

ÃX =
1

λ ∘ f
AX − ⟨(grad λ )∘ f ,N⟩∼

λ 2 ∘ f
X . (1.10)

Then, we see from (1.10) that X(p) is an eigenvector of Ap if and only if X(p) is an
eigenvector of Ãp, and we express this fact by saying that the conformal diffeomorphism ϕ

preserves principal curvatures.

Before we present some examples, notice that any immersed submanifold M2 ⊂ R3 is a
surface with respect to the inclusion map i : M2 → R3.

Example 1.2.1 (Plane). For any plane in R3 the Gauss map is constant, so its shape operator is
zero by the Weingarten formula. Thus all points are umbilical and planar and K ≡ H ≡ 0.

Example 1.2.2 (Sphere). Let S2(p0,r) be a sphere with center p0 ∈R3 and radius r > 0 oriented
by its inward pointing unit position vector field. Since

N(p) =− p− p0

r
,

we obtain that the corresponding shape operator is A = (1/r)Id, and we see that every point is
umbilical with k1 = k2 = 1/r, hence K ≡ 1/r2 and H ≡ 1/r.
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Example 1.2.3 (Vertical Cylinder over a plane curve). Let g : I → R2 be a regular curve de-
fined on an open interval I. The cylinder over g is the set g(I)×R ⊂ R2 ×R ≡ R3. Here a
parametrization is given by

f (s, t) = (g(s), t), (s, t) ∈ I ×R.

It is easy to see that the Gauss map N is always parallel to R2 and N*∂/∂ t = 0, then by
Weingarten formula ∂/∂ t is a principal direction at every point with k1 = 0, hence K ≡ 0.

Example 1.2.4 (Cone). Let h : I → R3 be a regular curve and V ∈ R3, consider the map f :
I ×R→ R3 given by

f (s, t) =V + t(h(s)−V ).

We say that f is a cone over h with vertex at V . We have

∂ f
∂ s

= th′(s), and
∂ f
∂ t

= h(s)−V,

hence the regular points of f occur when t ̸= 0 (V can not be in the surface) and h′(s) is linearly
independent of h(s)−V . Thus, on the open subset of regular points, f defines a surface. Moreover,
since the tangent space of f at (s, t) is spanned by h′(s) and h(s)−V , the Gauss map is constant
along the coordinate curves t ↦→ (s0, t), thus N*∂/∂ t = 0 and, consequently, K ≡ 0.

Example 1.2.5 (Surfaces of Revolution). These surfaces are obtained by rotating a regular curve
s ∈ I ↦→ (g1(s),g2(s)) (the profile curve) contained in a plane about an axis that does not intersect
the curve. If the curve intersects the rotation axis, it must do so at a right angle. Taking y = 0 as
the plane of the curve and the z-axis as the rotation axis, the surface can be parametrized by

f (s, t) = (g1(s)cos t,g1(s)sin t,g2(s)), (s, t) ∈ I × (0,2π).

Here g1 is positive everywhere. The image by f of the coordinate curves t ↦→ (s0, t) and s ↦→ (s, t0)

are called parallels and meridians, respectively. Note that the parallels are contained in planes
that are parallel to the plane z = 0 and the meridians are contained in planes that intersect along
the z-axis.

Assuming that the profile curve is parametrized by arclength, a straightforward calcula-
tion shows that

K =−
g′′1
g1

, and H =
1
2
−g′2 +g1(g′2g′′1 −g′′2g′1)

g1
,

with respect to the inward pointing Gauss map. One can deduce by this explicit expression for
the Gaussian curvature that the only surfaces of revolution for which K ≡ 0 are the cylinders
over a circle, the cones over a circle, and planes.

Next, we show that spheres and planes are essentially the only surfaces all of whose
points are umbilical.



1.3. The Gauss and Codazzi equations 29

Proposition 1.2.3. Let f : M2 → R3 be a surface. If M2 is connected and all of its points are
umbilical, then f (M2) is either contained in a sphere or in a plane.

Proof. Let (U,x = (u1,u2)) be a chart on M2 with U connected. Using that all the points are
umbilical, it follows by the Weingarten formula that

∂N
∂ui

= λ
∂ f
∂ui

, (1.11)

for some λ ∈C∞(U). By differentiating the preceding equation, we obtain

∂λ

∂ui

∂ f
∂u j

+λ
∂ 2 f

∂ui∂u j
=

∂ 2N
∂ui∂u j

=
∂ 2N

∂u j∂ui
=

∂λ

∂u j

∂ f
∂ui

+λ
∂ 2 f

∂u j∂ui
,

hence
∂λ

∂ui

∂ f
∂u j

=
∂λ

∂u j

∂ f
∂ui

. (1.12)

Since ∂ f/∂u1 and ∂ f/∂u2 are linearly independent, we see from (1.12) that the partial deriva-
tives of λ vanish, so λ must be constant on U .

If λ = 0, we infer from (1.11) that N is constant on U , thus f (U) is contained in a plane.
For λ ̸= 0, we see that f −N/λ ≡ p0 must be constant on U , hence

‖ f − p0‖=
1
|λ |

,

and this implies that f (U)⊂ S2(p0, |λ |−1). This proves the claim in the case M2 =U , but we
may conclude the proof using the connectedness of M2.

1.3 The Gauss and Codazzi equations

We now turn to relate the Gaussian curvature of a surface defined extrinsically by means
of the second fundamental form, with the sectional curvature of the immersed manifold.

Let (M,g) be a general Riemannian manifold and denote by ∇ its Levi-Civita connection.
In this work, we are considering the following sign convention for the curvature tensor

R(X ,Y )Z = ∇X ∇Y Z −∇Y ∇X Z −∇[X ,Y ]Z,

for all X ,Y,Z ∈ X(M).

Now, let f : M2 → R3 be a surface. Since the curvature tensor of R3 is identically zero,
we have

∇̃X ∇̃Y f*Z − ∇̃Y ∇̃X f*Z − ∇̃[X ,Y ] f*Z = 0, (1.13)

for all X ,Y,Z ∈ X(M2).
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Proposition 1.3.1 (Gauss Equation). For vector fields X ,Y,Z,W on M2,

⟨R(X ,Y )Z,W ⟩= ⟨α(X ,W ),α(Y,Z)⟩∼−⟨α(X ,Z),α(Y,W )⟩∼,

where R denotes the curvature tensor of M2 with respect to the induced metric by f .

Proof. By the Gauss formula, we obtain

⟨∇̃X ∇̃Y f*Z, f*W ⟩∼ = X⟨∇̃Y f*Z, f*W ⟩∼−⟨∇̃Y f*Z, ∇̃X f*W ⟩∼

= X⟨ f*∇Y Z, f*W ⟩∼−⟨ f*∇Y Z, f*∇XW ⟩∼

−⟨α(Y,Z),α(X ,W )⟩∼

= X⟨∇Y Z,W ⟩−⟨∇Y Z,∇XW ⟩−⟨α(Y,Z),α(X ,W )⟩∼

= ⟨∇X ∇Y Z,W ⟩−⟨α(Y,Z),α(X ,W )⟩∼

and by interchanging X and Y ,

⟨∇̃Y ∇̃X f*Z, f*W ⟩∼ = ⟨∇Y ∇X Z,W ⟩−⟨α(X ,Z),α(Y,W )⟩∼.

We further have

⟨∇̃[X ,Y ] f*Z, f*W ⟩∼ = ⟨ f*∇[X ,Y ]Z, f*W ⟩∼ = ⟨∇[X ,Y ]Z,W ⟩.

Now, using (1.13), it follows that

0 = ⟨∇̃X ∇̃Y f*Z − ∇̃Y ∇̃X f*Z − ∇̃[X ,Y ] f*Z, f*W ⟩∼

= ⟨R(X ,Y )Z,W ⟩−⟨α(Y,Z),α(X ,W )⟩∼+ ⟨α(X ,Z),α(Y,W )⟩∼.

If we now chose (U,x = (u1,u2)) a chart on M2, by the Gauss equation it follows that

⟨R(∂u1,∂u2)∂u2 ,∂u1⟩
|∂u1|2|∂u2|2 −⟨∂u1,∂u2⟩2 =

b11b22 −b2
12

g11g22 −g2
12

= K.

Thus we have:

Corollary 1.3.0.1. The sectional curvature of M2 and the Gaussian curvature of f coincide at
each point p ∈ M2.

In the case where M2 ⊂ R3, we recover from the previous Corollary the celebrated
Theorem Egregium, which asserts that the Gaussian curvature of a regular surface in R3 is an
intrinsic invariant.

Next, we see that the normal component of (1.13) gives another equation for a surface.

Proposition 1.3.2 (Codazzi Equation). Let N : U ⊂ M2 → R3 be a Gauss map of f . Then, for
vector fields defined on U ,

∇X AY −A∇XY = ∇Y AX −A∇Y X .
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Proof. By the Gauss and Weingarten formula, we obtain

⟨∇̃X ∇̃Y f*Z,N⟩∼ = X⟨∇̃Y f*Z,N⟩∼−⟨∇̃Y f*Z, ∇̃X N⟩∼

= X⟨α(Y,Z),N⟩∼−⟨∇̃Y f*Z,− f*AX⟩∼

= X⟨AY,Z⟩+ ⟨ f*∇Y Z, f*AX⟩∼

= ⟨∇X AY,Z⟩+ ⟨AY,∇X Z⟩+ ⟨∇Y Z,AX⟩,

and by interchanging X and Y ,

⟨∇̃Y ∇̃X f*Z,N⟩∼ = ⟨∇Y AX ,Z⟩+ ⟨AX ,∇Y Z⟩+ ⟨∇X Z,AY ⟩.

It also holds that

⟨∇̃[X ,Y ] f*Z,N⟩∼ = ⟨α([X ,Y ],Z),N⟩∼ = ⟨A[X ,Y ],Z⟩

= ⟨A∇XY −A∇Y X ,Z⟩,

which, together with (1.13), give

0 = ⟨∇̃X ∇̃Y f*Z − ∇̃Y ∇̃X f*Z − ∇̃[X ,Y ] f*Z,N⟩∼

= ⟨∇X AY −A∇XY −∇Y AX +A∇Y X ,Z⟩,

and since Z has been chosen arbitrarily we obtain the desired equation.

Remark 2. Let {e1,e2} be a principal orthonormal frame defined in a neighborhood U of M2

with corresponding principal curvatures k1 and k2. Since

⟨∇eiAe j −A∇eie j,el⟩= ⟨k j∇eie j + ei(k j)e j,el⟩−⟨∇eie j,Ael⟩

= ⟨(k j − kl)∇eie j + ei(k j)e j,el⟩,

we see that, on U , the Codazzi equation is equivalent to the following two equations:

e1(k2) = (k1 − k2)⟨∇e2e1,e2⟩ and e2(k1) = (k2 − k1)∇e1e2,e1⟩.
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CHAPTER

2
SURFACES OF ENNEPER TYPE

We present a parametrization for the class of surfaces of Enneper type for which the lines
of curvature of one family are contained in planes, then we obtain parametric equations for the
surfaces with this property in both families. We also describe how a general surface of Enneper
type can be constructed in terms of a surface in the latter class.

2.1 Lines of curvature
In this section, we establish some definitions and basic facts about the class of regular

curves on a surface that are tangent to a principal direction at any point. We will concentrate only
on those facts which are of importance to us later on.

Let f : M2 →R3 be a surface and let c : I → M2 be a smooth curve. The curve c is said to
be a line of curvature of f if c′ always points along a principal direction of f . By the Weingarten
formula, this means that

N*c′ =−k f*c′, (2.1)

where N is a Gauss map of f defined in a neighborhood of c(I) and k(t) is a principal curvature
at c(t). The following result is useful to find lines of curvature.

Theorem 2.1.1 (Joachimsthal’s theorem). Let f : M1 → R3 and g : M2 → R3 be surfaces. Con-
sider c1 : I → M1 and c2 : I → M2 regular curves with

f (c1(t)) = g(c2(t)) := c(t),

for all t ∈ I. Suppose that the intersection of f and g along c be transversal, that is, Tc1(t) f ̸= Tc2(t)g.
Then each two of the following statements imply the third:

(a) c1 is a line of curvature of f ;

(b) c2 is a line of curvature of g;
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(c) f (M1) and g(M2) intersect at a constant angle along c.

Proof. The result is local in nature, so we assume that both M1 and M2 are oriented. Let
Ni : Mi → S2, 1 ≤ i ≤ 2, be the Gauss map that determines the corresponding surface. Then

d
dt
⟨N1 ∘ c1,N2 ∘ c2⟩∼ = ⟨∇̃c′1

N1,N2⟩∼+ ⟨N1, ∇̃c′2
N2⟩∼

= ⟨− f*A1c′1,N2⟩∼+ ⟨N1,−g*A2c′2⟩∼,
(2.2)

where Ai, 1 ≤ i ≤ 2, is the shape operator with respect to Ni. Since

c′(t) = f*c′1(t) = g*c′2(t),

we also have

⟨ f*c′1(t),N2(c2(t))⟩∼ = ⟨g*c′2(t),N1(c1(t))⟩∼ = 0. (2.3)

If the statements (a) and (b) hold, then (2.2) and (2.3) imply that

⟨N1(c1(t)),N2(c2(t))⟩∼ = const,

and (c) follows. Suppose now that (a) and (c) hold. By (2.2) and (2.3), we see that g*A2c′2(t)

is perpendicular to N1(c1(t)). On the other hand, it is also perpendicular to N2(c1(t)). Since
⟨N1(c1(t)),N2(c2(t))⟩∼ is constant and N1(c1(t)) ̸=±N2(c2(t)), we conclude that N1(c1(t)) and
N2(c2(t)) are linearly independent, hence g*A2c′2(t) must be a multiple of c′(t) = g*c′2(t), and
consequently c2 is a line of curvature of g. The proof that (b) and (c) imply (a) is analogous to
the latter case.

Let Σ ⊂ R3 denote either a plane or a sphere of R3. Since every regular curve in Σ is a
line of curvature of i : Σ → R3, we have the following restatement of the previous theorem.

Corollary 2.1.1.1. Let f : M2 → R3 be a surface and let c : I → M2 be a regular curve such that
f (c(I)) is contained in either a plane or a sphere Σ of R3. Then c is a line of curvature of f if
and only if Σ intersects f (M2) at a constant angle along f (c(I)).

Joachimsthal’s theorem will be used mostly in the last form. A smooth curve c : I → M2

is said to be planar or spherical if the corresponding curve f (c(I)) is contained in a plane or a
sphere of R3. From (2.1) a line of curvature of a surface is planar if and only if its image by the
Gauss map in the unit sphere is a planar curve, that is, it is an arc of a circle.

Although all the planar curves are lines of curvature of its planes, only straight lines are
geodesics. In the next Corollary, we state a result in the converse direction.

Corollary 2.1.1.2. Let f : M2 → R3 be a surface and let c : I → M2 be a geodesic. Suppose that
f ∘ c has nowhere vanishing curvature (as a curve in R3) and that it lies in a plane normal to a
nonzero vector b ∈ R3. Then, c is a line of curvature of f .
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Proof. Clearly, ⟨( f ∘ c)′′,b⟩∼ = 0 and, since c is a geodesic, ( f ∘ c)′′ is a multiple of N ∘ c. Thus

⟨N ∘ c,b⟩∼ = 0,

which implies that c is a line of curvature.

Given a chart (U,x = (u1,u2)) on M2, we say that f ∘ x−1 is a local parametrization of f

by lines of curvature if the coordinate curves u1 ↦→ x−1(u1,u0
2) and u2 ↦→ x−1(u0

1,u2) are lines of
curvature of f , or equivalently, if the coordinate vector fields ∂u1 and ∂u1 are eigenvectors of the
shape operator of f . If we assume that the coordinates (u1,u2) are orthogonal, then ∂u1 and ∂u2

are eigenvectors of the shape operator A of f if and only if b12 = ⟨A∂u1,∂u2⟩ ≡ 0. In this case,
we also say that such coordinates are principal coordinates or parameters of lines of curvature.

Remark 3. Let (U,x = (u1,u2)) be a local system of principal coordinates and suppose that
f is free of flat points in U . Consider the surface h = i∘N : U → R3, where i : S2 → R3 is the
inclusion map. Since

⟨h*∂u1 ,h*∂u2⟩
∼ = ⟨ f*A∂u1, f*A∂u2⟩

∼ = ⟨A∂u1,A∂u2⟩= 0,

we see that (u1,u2) are also orthogonal coordinates with respect to the metric induced by h.

Let us now consider p ∈ M2 a nonumbilical point of f and {e1,e2} a principal orthonor-
mal frame defined on a neighborhood V of p (see Proposition 1.2.2). Hence, the lines of curvature
of f in V are the integral curves of these vector fields, up to reparametrization. Next, we observe
a general fact about any two-dimensional manifold.

Proposition 2.1.1. ((SPIVAK, 1975, ADDENDUM 2)) Let X1 and X2 be linearly independent
vector fields in a neighborhood of a point p in a two-dimensional manifold M2. Then there is a
local chart (U,x = (u1,u2)) on M2 with p ∈U such that the coordinate curves u1 ↦→ x−1(u1,u0

2)

and u2 ↦→ x−1(u0
1,u2) lie along the integral curves of X1 and X2, respectively.

Therefore, applying the above proposition to e1 and e2 we obtain a local system of
principal coordinates (U,x = (u1,u2)) for f such that U ⊂V .

Definition 2.1.1. A surface f : M2 → R3 is said to be of Enneper type if it is free of umbilical
points and the family of lines of curvature correspondent to one of its principal curvatures are
planar or spherical.

In the case of a surface of revolution, Corollary 2.1.1.1 shows that meridians and parallels
must be lines of curvature, hence surfaces of revolution free of umbilical points are surfaces of
Enneper type.

We end this section by presenting an intrinsic notion of curvature for regular curves in a
Riemannian manifold. Let (M2,⟨,⟩) be an oriented Riemannian manifold, and let c : I → M2 be
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a regular curve. Denote e := c′/‖c′‖ the unit field of directions, and consider n the vector field
along c such that {e(t),n(t)} is an orthonormal positive basis of Tc(t)M2. We define the signed

geodesic curvature of c by the number

kg(t) :=
1

‖c′(t)‖2

〈
Dc′

dt
(t),n(t)

〉
,

for all t ∈ I. It follows immediately from the compatibility of the Levi-Civita connection that

De
dt

= ‖c′‖kgn and
Dn
dt

=−‖c′‖kge.

Thus, the curve c has vanishing signed geodesic curvature if and only if it is a geodesic, up to
reparametrization.

Example 2.1.1 (Curves with constant geodesic curvature on the Sphere). Let S2 be the unit
sphere oriented by its outward pointing unit normal vector field, and let c : I → S2 be a circle. In
order to calculate the geodesic curvature of c, note that the geodesic curvature is invariant under
isometries. Thus, we can assume that the circle lies in a plane z =

√
1− r2, where r ≤ 1 is the

radius of the circle, after applying a rotation, if necessary. Then, the parametrization of c is

c(t) =
(

r cos
t
r
,r sin

t
r
,
√

1− r2
)

which implies that

c′(t) =
(
−sin

t
r
,cos

t
r
,0
)

and

c′′(t) =
(
−1

r
cos

t
r
,−1

r
sin

t
r
,0
)
.

Since c is a unit speed curve, then c(t)∧ c′(t) is a unit normal vector field along c. Then, a
straightforward computation gives

kg(t) = ⟨Dc′

dt
(t),c(t)∧ c′(t)⟩∼ = ⟨c′′(t),c(t)∧ c′(t)⟩∼ =

√
1− r2

r
.

Conversely, let c : I → S2 be a unit speed curve with constant geodesic curvature d, and consider
b(t) = n(t)+dc(t), where n(t) = c(t)∧ c′(t). Since ⟨n′(t),c(t)⟩∼ = 0, we obtain

b′(t) = n′(t)+dc′(t) =
Dn
dt

(t)+dc′(t) =−kgc′(t)+dc′(t) = 0.

This shows that b(t)≡ b where b is a nonzero vector in R3. Furthermore, we have

⟨c(t),b⟩∼ = ⟨c(t),n(t)+dc(t)⟩∼ = d‖c(t)‖2 = d,

and therefore c must be planar.
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2.2 Surfaces with planar lines of curvature
We start our study of surfaces of Enneper type by those surfaces for which one family

of lines of curvature are contained in planes. It turns out that, except for some special cases,
surfaces of Enneper type with spherical lines of curvature, which are treated in the next section,
can be constructed in terms of a surface in this class.

Proposition 2.2.1. Let N : M2 → S2 be a local diffeomorphism and let γ ∈C∞(M2) be a smooth
function. Consider the surface h = i∘N : M2 → R3, and define f : M2 → R3 by

f = γh+h*gradγ, (2.4)

where the gradient gradγ is computed with respect to the metric induced by h. Then, on the open
subset of regular points, f defines a surface in R3 having N as a Gauss map.

Conversely, any oriented surface in R3 free of flat points can be parametrized in this way.

Proof. First, note that, by the Weingarten formula, the shape operator of h with respect to N is
equal to −I, where I is the identity. Differentiating (2.4) and using the Gauss formula we obtain

f*X = X(γ)h+ γh*X + ∇̃X h*grad γ

= X(γ)h+ γh*X +h*∇X grad γ −⟨X ,grad γ⟩N

= X(γ)h+ γh*X +h*(Hess γ)X −X(γ)h

= h*(γI +Hess γ)X ,

for all X ∈ X(M2), where Hess γ is the Hessian operator computed with respect to the metric
induced by h. Thus, setting P = γI +Hess γ , the differential of f becomes

f* = i*N*P. (2.5)

We conclude that, on the open subset where P is invertible, the map f defines a surface having N

as a Gauss map and A =−P−1 as the corresponding shape operator.

Conversely, let f : M2 →R3 be an oriented surface free of flat points and let N : M2 → S2

be its Gauss map, which is a local diffeomorphism. Define γ := ⟨ f ,h⟩∼, and denote by ⟨,⟩* the
metric induced by h. Then

⟨h*grad γ,h*X⟩∼ = ⟨grad γ,X⟩* = X(γ)

= ⟨ f*X ,h⟩∼+ ⟨ f ,h*X⟩∼

= ⟨ f ,h*X⟩∼,

since h = i∘N is normal to f . Therefore, we can decompose f as

f = γh+h*grad γ. (2.6)
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The parametrization given by (2.6) is called the Gauss parametrization of f .

Next, we show how all surfaces of Enneper type with planar lines of curvature can be
parametrized in terms of its Gauss map and a support function in the sense of (2.6). Before we
state and prove this result, we need to calculate the geodesic curvature of a coordinate curve in
the sphere.

Let N : I×J → S2 be a local diffeomorphism, where I,J ⊂R are open intervals. Assume
that the metric induced by N is given by

ds2 = v2
1du2

1 + v2
2du2

2.

Since (u1,u2) are orthogonal coordinates of I × J, it is an elementary fact that, with
respect to this metric, we have

∇
N
∂u1

∂u2 =
∂ (logv1)

∂u2
∂u1 +

∂ (logv2)

∂u1
∂u2,

and hence 〈
∇

N
∂u1

∂u1,
∂u2

v2

〉
=− 1

v2
⟨∇N

∂u1
∂u2,∂u1⟩=− 1

v2

∂ (logv1)

∂u2
v2

1.

Thus, the geodesic curvature (up to sign) of a coordinate curve u1 ∈ I ↦→ (u1,u0
2),u

0
2 ∈ J

is given by ϕ(u1,u0
2), where

ϕ :=− 1
v2

∂ (logv1)

∂u2
. (2.7)

Moreover, taking into account that N is a local isometry, we see that the coordinate
curves have constant geodesic curvature, or equivalently, that ϕ depends only on u2, if and only
if the curves u1 ∈ I ↦→ N(u1,u0

2),u
0
2 ∈ J are arcs of circles in S2 (see Example 2.1.1).

Theorem 2.2.1. Let N : I × J → S2 be a local diffeomorphism, defined on a product of open
intervals I,J ⊂ R, whose induced metric is

ds2 = v2
1du2

1 + v2
2du2

2.

Suppose that the curves u1 ↦→ N(u1,u0
2), u0

2 ∈ J, are arcs of circles in S2. Given U ∈C∞(I) and
V ∈C∞(J), let γ ∈C∞(I × J) be defined by

γ(u1,u2) = v1(u1,u2)

(
U(u1)+

∫ u2

u0
2

V (τ)v2(u1,τ)

v1(u1,τ)
dτ

)
. (2.8)

Then the map f : I × J → R3 given by

f (u1,u2) = γ(u1,u2)N(u1,u2)+
1
v2

1

∂γ

∂u1

∂N
∂u1

+
1
v2

2

∂γ

∂u2

∂N
∂u2

(2.9)

defines, on the open subset of its regular points, a surface parametrized by lines of curvature
whose coordinate curves u1 ↦→ f (u1,u0

2), u0
2 ∈ J, are contained in planes.

Conversely, any surface of Enneper type free of flat points with one family of planar
lines of curvature can be locally parametrized in this way.
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Proof. Note that (2.9) can be written as

f = γ(i∘N)+ i*N*grad γ,

where grad γ is computed with respect to the metric induced by i∘N. Then, by Proposition 2.2.1,
on the open subset of regular points, f defines a surface free of flat points having N as a Gauss
map. Moreover, the differential of f is

f* = i*N*P, (2.10)

and the shape operator of f with respect to N is

A =−P−1, (2.11)

where P = Hess γ + γI, with the Hessian being also computed with respect to the metric induced
by i∘N.

We claim that Hess γ(∂u1,∂u2) = 0 if and only if γ is given by (2.8) for some U ∈C∞(I)

and V ∈C∞(J). Indeed, we have

∇
N
∂u1

∂u2 =
∂ (logv2)

∂u1
∂u2 − v2ϕ∂u1,

where ϕ is given by (2.7). Hence

Hess γ(∂u1 ,∂u2) =
∂

∂u2

(
∂γ

∂u1

)
− (∇N

∂u1
∂u2)(γ)

=
∂

∂u2

(
∂γ

∂u1

)
− ∂ (logv2)

∂u1

∂γ

∂u2
+ v2ϕ

∂γ

∂u1
,

and therefore Hess γ(∂u1 ,∂u2) = 0 if and only if

∂

∂u2

(
∂γ

∂u1

)
+ v2ϕ

∂γ

∂u1
=

∂ (logv2)

∂u1

∂γ

∂u2
. (2.12)

Since ϕ depends only on u2, we obtain

∂ (ϕv2γ)

∂u1

= ϕv2
∂ (logv2)

∂u1
γ +ϕv2

∂γ

∂u1
,

and, consequently, (2.12) can be written as

∂

∂u1

(
∂γ

∂u2
+ϕv2γ

)
=

(
∂γ

∂u2
+ϕv2γ

)
∂ (logv2)

∂u1
. (2.13)

If γ = 0, there is nothing to prove. Suppose that γ ̸= 0 and that

∂γ

∂u2
=−ϕv2γ = γ

∂ (logv1)

∂u2
.

Then γ = v1U for some U ∈C∞(I), and the claim follows. Suppose now that(
∂γ

∂u2
+ϕv2γ

)
̸= 0.
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From (2.13), we obtain (
∂γ

∂u2
+ϕv2γ

)
= v2V (2.14)

for some V ∈C∞(J). Taking into account that

∂ (γv−1
1 )

∂u2
=

∂γ

∂u2
v−1

1 − γv−2
1

∂v1

∂u2

= v−1
1

(
∂γ

∂u2
+ϕv2γ

)
,

(2.15)

(2.14) can be written as
∂ (γv−1

1 )

∂u2
= v2V v−1

1 ,

which proves our claim.

Denoting by ⟨,⟩* the metric induced by i∘N, it follows from the claim that

⟨P∂u1,∂u2⟩
* = Hess (∂u1,∂u2)+ γ⟨∂u1,∂u2⟩

* = 0,

and this also implies that ∂u1 and ∂u2 are eigenvectors of P; hence

⟨P∂u1,P∂u2⟩
* = 0.

Now, using (2.10) and (2.11) gives

⟨∂u1,∂u2⟩= ⟨ f*∂u1, f*∂u2⟩
∼ = ⟨i*N*P∂u1, i*N*P∂u2⟩

∼

= ⟨P∂u1,P∂u2⟩
* = 0

and

⟨A∂u1,∂u2⟩= ⟨− f*P−1
∂u1, f*∂u2⟩

∼ = ⟨−i*N*∂u1, i*N*P∂u2⟩
∼

= ⟨∂u1,P∂u2⟩
* = ⟨P∂u1 ,∂u2⟩

* = 0,

which shows that f is parametrized by lines of curvature. Finally, since N is the Gauss map of f

and the curves u1 ↦→ N(u1,u0
2), u0

2 ∈ J, are circles in S2, it follows that the images by f of the
u1-coordinate curves are contained in planes.

For the converse, let f : M2 → R3 be a surface of Enneper type free of flat points with
the lines of curvature correspondent to one of its principal curvatures being contained in planes.
Since f is free of umbilical points, we can consider f locally parametrized by lines of curvature
with principal coordinates (u1,u2) ranging on a product I × J of open intervals I,J ⊂ R. Let
N : I × J → S2 be the Gauss map of f . Then N is a local diffeomorphism and (u1,u2) are also
orthogonal coordinates with respect to the metric induced by N (see Remark 3).

Since the u1-lines of curvature are planar, the curves u1 ∈ I ↦→ N(u1,u0
2),u

0
2 ∈ J are arcs

of circles of S2. Now, the Gauss parametrization allows to recover f in terms of N and a support
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function γ ∈C∞(I × J) by means of (2.9). Furthermore, the shape operator of f is A =−P−1,
where P = γI +Hess γ . We have

⟨P∂u1,∂u2⟩
* = ⟨−∂u1,A∂u2⟩= 0,

whence
Hess γ(∂u1,∂u2) = ⟨P∂u1,∂u2⟩

*− γ⟨∂u1,∂u2⟩
* = 0.

Therefore, the support function γ must be given by (2.8) for some U ∈ C∞(I) and
V ∈C∞(J), as shown in the proof of the direct statement.

For the corresponding surface given by (2.9), we have

K =− 1
det(Hess γ + γI)

, and H =−1
2

tr (Hess γ + γI)
det(Hess γ + γI)

=−1
2

∆γ +2γ

det(Hess γ + γI)
,

where ∆ stands for the Laplacian of γ . If f is free of umbilical points (H2 −K ̸= 0), then f is a
surface of Enneper type.

The Wente tori are a family of compact surfaces in R3 of genus 1 with constant mean
curvature discovered by Wente (1986). These examples solved the famous Hopf-Conjecture: Is it
possible to immerse a compact surface of positive genus in R3 with constant mean curvature?
A theorem due to Alexandrov (1956) states that such a surface can not be embedded. Abresch
(1987) obtained a classification of all Wente tori for which one family of lines of curvature are
contained in planes using elliptic integrals. In fact, the original method of Wente yields exactly
those tori in Abresch’s classification, as shown by Spruck (1988); see also (STERLING, 1991).
Explicit parametric equations of these tori in terms of elliptic and theta functions of Jacobi type
were obtained by Walter (1987) who also remarked that each line of curvature is either planar or
spherical. (Fig. 1).

We now concentrate on the surfaces of Enneper Type with planar lines of curvature in
both families. Let f : I×J →R3 be a surface in this class and assume that f is free of flat points.
An orthogonal system of circles on S2 is a pair of two families of circles, with the property that at
each point where two circles from distinct families intersect, their tangent vectors are orthogonal.
Since the lines of curvature of f intersect orthogonally, we obtain that the two families of planar
lines of curvature are transformed by the Gauss map N : I×J → S2 into an orthogonal system of
circles. Thus, we must find orthogonal systems of circles on the unit sphere.

A pencil of planes is the set of planes through a given straight line in R3, called the axis

of the pencil. A subtle property is that a pencil is determined by any two of its planes. According
to Eisenhart (1909) and Leite (2015), the orthogonal systems of circles on S2 consist of the
intersections of the sphere with two pencils of planes, where the pencils’ axes are reciprocal
polars for the sphere, in the sense described as follows.

Let r1 and r2 be the axes of such pencils. By a suitable choice of the coordinate axes
of R3, we can assume that r1 is a line parallel to the y-axis through the point (0,0,a), with
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Figure 1 – Wente Tori

(a) Wente torus (left), twisted torus (right).

(b) Wente’s Twisted Torus

Source: (MCINTOSH, 2008) and (STERLING, 2022)

0 ≤ a ≤ 1. Then, the line r2 must be parallel to the x-axis, cutting the z-axis at (0,0,1/a), where
the limiting case a = 0 is viewed as a line at infinity, and so this corresponds to the system of
meridians and parallels, with respect to the y-axis (Fig. 2). We will discuss the cases a = 1, a = 0,
and 0 < a < 1 separately.

In the case a = 1, the two axes r1 and r2 meet at (0,0,1) and, clearly, the planes x = 0
and z−1 = 0 intersect in r1. Thus, any plane in the pencil with respect to r1, except z−1 = 0,
can be obtained by

x+u1(z−1) = 0, u1 ∈ R, (2.16)

and any plane in the second pencil, except z−1 = 0, can be obtained by

y+u2(z−1) = 0, u2 ∈ R. (2.17)

Thus, solving the equations in (2.16) and (2.17) simultaneously with the equation of the sphere
x2 + y2 + z2 = 1, we obtain the following expression of the Gauss map with respect to the
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parameters of lines of curvature (u1,u2)

N(u1,u2) =
1

1+u2
1 +u2

2
(2u1,2u2,u2

1 +u2
2 −1),

that is, N is the inverse of the stereographic projection from the North pole, whose induced
metric is given by

ds2 =
4

(1+u2
1 +u2

2)
2 (du2

1 +du2
2)

Figure 2 – Orthogonal systems of circles on S2.

(a) a = 1 (b) a = 0

Source: Elaborated by the author.

Similarly, in the case where 0 < a < 1, the equations of the planes with respect to r1(a)

and r2(a) are given by

x−λ (z−a) = 0, and y−µ(z− 1
a
) = 0, λ ,µ ∈ R,

respectively. Using that the distance from (0,0) to the line Ax+By+C = 0 is given by d =

|C|/
√

A2 +B2, we see that each plane in the first pencil is secant to S2, and only the planes of
the second pencil for which |µ|< a/

√
1−a2 are secant to S2. Then, we can reparametrize the

parameters (λ ,µ) and express the pencils of planes in the form

x− tanu1√
1−a2

(z−a) = 0 and y− a tanhu2√
1−a2

(z− 1
a
) = 0, (2.18)

where −π/2 < u1 < π/2 and u2 ∈ R. This new parametrization of the pencils will be useful in
the computations below.

Hence, solving the equations in (2.18) simultaneously with the equation of the sphere
x2 + y2 + z2 = 1 we obtain that, with respect to the parameters of lines of curvature (u1,u2), the
Gauss map is given by

N(u1,u2) =

( √
1−a2 sinu1

coshu2 +acosu1
,−

√
1−a2 sinhu2

coshu2 +acosu1
,
acoshu2 + cosu1

coshu2 +acosu1

)
, (2.19)
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By differentiating N, we have

∂N
∂u1

= b(u1,u2)
(

cosu1 coshu2 +a,−asinhu2 sinu1,−
√

1−a2 sinσ coshu2

)
(2.20)

and

∂N
∂u2

=−b(u1,u2)
(

sinu1 sinhu2,(1+acoshu2 cosu1),
√

1−a2 sinhu2 cosu1

)
, (2.21)

where

b(u1,u2) =

√
1−a2

(coshu2 +acosu1)2 .

It follows that〈
∂N
∂u1

,
∂N
∂u1

〉∼
=(1−a2)(coshu2 +acosu1)

−4((cosu1 coshu2 +a)2

+(1−a2)sin2 u1 cosh2 u2 +a2 sinh2 u2 sin2 u1)

=(1−a2)(coshu2 +acosu1)
−4(cos2 u1 cosh2 u2 + sin2 u1 cosh2 u2

+a2 +2acoshu1 coshu2 +a2 sin2 u1(sinh2 u2 − cosh2 u2))

=(1−a2)(coshu2 +acosu1)
−4(cosh2 u2

+2acoshu2 cosu1 +a2 cos2 u1)

=(1−a2)(coshu2 +acosu1)
−2,

where we used the fundamental equations sin2 u1 + cos2 u1 = 1 and cosh2 u2 − sinh2 u2 = 1. A
similar computation gives〈

∂N
∂u2

,
∂N
∂u2

〉∼
= (1−a2)(coshu2 +acosu1)

−2.

Hence the induced metric by N is

ds2 = (1−a2)(coshu2 +acosu1)
−2(du2

1 +du2
2).

Now, if we put a = 0 in 2.19, we obtain

N(u1,u2) =

(
sinu1

coshu2
,− sinhu2

coshu2
,

cosu1

coshu2

)
,

whence the coordinate curves u1 ↦→ N(u1,u0
2) are contained in the parallel planes y = const.

and the coordinate curves u2 ↦→ N(u0
1,u2) are contained in planes of the pencil generated by the

y-axis. Thus, we recover the case corresponding to the system of meridians and parallels. Since
the planes containing the coordinate curves u1 ↦→ f (u1,u0

2) are parallel to the planes containing
the curves u1 ↦→ N(u1,u0

2), we see that, in the case a = 0, the u1-lines of curvature of f are
contained in parallel planes (see Theorem 3.1.2 in Chapter 3).

Therefore, in virtue of Theorem 2.2.1, we obtain the following result.
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Theorem 2.2.2. Let f : M2 → R3 be a surface of Enneper type free of flat points with planar
lines of curvature in both families. Then, up to isometries of R3, f is locally parametrized by

f (u1,u2) = γ(u1,u2)N(u1,u2)+
1

v1(u1,u2)2

(
∂γ

∂u1

∂N
∂u1

+
∂γ

∂u2

∂N
∂u2

)
,

where either

N(u1,u2) =
1

1+u2
1 +u2

2
(2u1,2u2,u2

1 +u2
2 −1)

and

v1(u1,u2) =
2

(1+u2
1 +u2

2)
,

or

N(u1,u2) =

( √
1−a2 sinu1

coshu2 +acosu1
,−

√
1−a2 sinhu2

coshu2 +acosu1
,
acoshu2 + cosu1

coshu2 +acosu1

)
and

v1(u1,u2) =

√
1−a2

coshu2 +acosu1
,

where 0 ≤ a < 1.

In either case, γ(u1,u2) = v1(u1,u2)(U(u1)+V (u2)), where U and V are smooth func-
tions of u1 and u2, respectively.

For minimal surfaces, the principal parameters (u1,u2) in Theorem 2.2.2 are also confor-
mal with respect to the metric induced by f . This fact, together with the Codazzi equation, will
enable us to find explicit parametric equations for these surfaces.

2.3 The general case
In order to describe all surfaces of Enneper type, we now treat the case in which the lines

of curvature of one family are contained in spheres. For a surface in this class, we are able to
present a parametrization in terms of its Gauss map and a triple (γ,α,β ), where γ is a smooth
curve in R3 and α,β are smooth functions defined on an open interval.

Let f : M2 →R3 be a surface of Enneper type free of flat points with the lines of curvature
correspondent to one of its principal curvatures being contained in spheres. Consider f locally
parametrized by lines of curvature with principal coordinates (u1,u2) ranging on a product I × J

of open intervals I,J ⊂ R. Let N : I × J → S2 be the Gauss map of f , and let

ds2 = v2
1du2

1 + v2
2du2

2

be the metric induced by N on I × J.

Let us assume that the u1-lines of curvature are spherical. Thus, fixing an arbitrary u0
2 ∈ J,

the image by f of the coordinate curve u1 ∈ I ↦→ (u1,u0
2) lies in a sphere S2(γ(u0

2),R(u
0
2)) of
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R3 with center γ(u0
2) ∈ R3 and radius R(u0

2). Denoting by ei := ∂ui/‖∂ui‖ be the unit coordinate
vector fields with respect to the metric induced by f and using that f*∂u1(u1,u0

2) is tangent to
S2(γ(u0

2),R(u
0
2)) for all u1 ∈ I, we can write the corresponding position vector field as

f (u1,u0
2)− γ(u0

2)

R(u0
2)

= cosθ(u1,u0
2)N(u1,u0

2)+ sinθ(u1,u0
2) f*e2(u1,u0

2),

where θ is the angle between this position vector field and N, which depends only on u0
2 by

Joachimsthal’s Theorem.

Now, note that

v2
2 = ⟨N*∂u2,N*∂u2⟩

∼ = ⟨ f*A∂u2, f*A∂u2⟩
∼

= k2
2⟨ f*∂u2, f*∂u2⟩

∼ = k2
2‖∂u2‖

2,

and, after changing e2 by −e2, if necessary, it follows that

f*e2 =
1

k2‖∂u2‖
N*∂u2 =

1
v2

N*∂u2.

Then, we can write
f = γ +αN +βv−1

2 N*∂u2, (2.22)

where α = α(u2) = R(u2)cosθ(u1,u2) and β = β (u2) = R(u2)sinθ(u1,u2).

Differentiating (2.22) with respect to u2 gives

f*∂u2 = γ
′+α

′N +αN*∂u2

+ v−1
2

(
β
′−β

∂ (logv2)

∂u2

)
N*∂u2 +βv−1

2 ∇̃∂u2
N*∂u2,

where the prime means derivative with respect to u2. Furthermore, by the Gauss formula,

∇̃∂u2
N*∂u2 = N*∇

N
∂u2

∂u2 − v2
2N,

where ∇N denotes the Levi-Civita connection of I×J with respect to the metric induced by i∘N.
Now we see that ⟨ f*∂u2,N⟩∼ = 0 is equivalent to

⟨γ ′,N⟩∼+α
′−βv2 = 0. (2.23)

We have thus proved the converse statement of the following result.

Theorem 2.3.1. Let N : I × J → S2 be a local diffeomorphism, defined on a product of open
intervals I,J ⊂ R, whose induced metric is

ds2 = v2
1du2

1 + v2
2du2

2.

If there exist α,β ∈ C∞(J) with no common zeros and a smooth curve γ : J → R3 such that
(2.23) holds, then the map f : I×J →R3 given by (2.22) defines a surface parametrized by lines
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of curvature having N as a Gauss map such that the coordinate curves u1 ∈ I ↦→ f (u1,u0
2),u

0
2 ∈ J

are contained in spheres.

Conversely, any surface of Enneper type free of flat points with one family of spherical
lines of curvature can be locally parametrized in this way.

Proof. Let f : I × J → R3 be given by (2.22) in terms of N and (γ,α,β ). Using that ∂u1 and ∂u2

are orthogonal with respect to the metric induced by i∘N, it follows by the Gauss formula that

∇̃∂u2
N*∂u1 = ∇̃∂u1

N*∂u2 = N*∇
N
∂u1

∂u2

=
∂ (logv1)

∂u2
N*∂u1 +

∂ (logv2)

∂u1
N*∂u2.

Note that the triple (γ,α,β ) only depends on u2, hence

f*∂u1 = αN*∂u1 + v−1
2 β

(
−∂ (logv2)

∂u1
N*∂u2 + ∇̃∂u1

N*∂u2

)
=

(
α + v−1

2 β
∂ (logv1)

∂u2

)
N*∂u1.

(2.24)

Differentiating (2.23) with respect to u1 gives

⟨γ ′,N*∂u1⟩
∼ = β

∂v2

∂u1
= βv−1

2 v2
2

∂ (logv2)

∂u1
= βv−1

2 ⟨N*∂u2, ∇̃∂u2
N*∂u1⟩

∼

= ⟨ f , ∇̃∂u2
N*∂u1⟩

∼−⟨γ, ∇̃∂u2
N*∂u1⟩

∼,

where we used the definition of f in the last equality. On the other hand, differentiating

⟨ f ,N*∂u1⟩
∼ = ⟨γ,N*∂u1⟩

∼

with respect to u2 we obtain

⟨ f*∂u2,N*∂u1⟩
∼ =−⟨ f , ∇̃∂u2

N*∂u1⟩
∼+ ⟨γ ′,N*∂u1⟩

∼+ ⟨γ, ∇̃∂u2
N*∂u1⟩

∼

= 0.
(2.25)

Now, taking into account that the condition (2.23) is equivalent to ⟨ f*∂u2,N⟩∼ = 0, it
follows by (2.24) and (2.25) that

⟨ f*∂u1, f*∂u2⟩
∼ = 0.

Since α and β have no common zeros, we conclude that f defines a surface having N as
a Gauss map and that (u1,u2) are also orthogonal coordinates with respect to the metric induced
by f .

To see that the coordinate curves u1 ∈ I ↦→ (u1,u0
2),u

0
2 ∈ J are spherical lines of curvature

of f , just observe that (2.22) gives

‖ f (u1,u0
2)− γ(u0

2)‖∼ =
√

α(u0
2)

2 +β (u0
2)

2 = const
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and

⟨N(u1,u0
2),

f (u1,u0
2)− γ(u0

2)

‖ f (u1,u0
2)− γ(u0

2)‖∼
⟩∼ =

α(u0
2)√

α(u0
2)

2 +β (u0
2)

2
= const,

and therefore the result is a consequence of Joachimsthal’s Theorem.

Let f : I × J → R3 to be a surface of Enneper type as in the previous theorem. Assume
that f is parametrized by 2.22 in terms of its Gauss map N : I × J → S2 and a triple (γ,α,β )

satisfying (2.23). Suppose further that γ is a smooth regular curve and that no coordinate curve
u1 ∈ I ↦→ f (u1,u0

2),u
0
2 ∈ J is an arc of a circle. Under these assumptions, in the following result we

are able to determine all surfaces of Enneper type with spherical lines of curvature corresponding
to the same family that share the same Gauss map with f .

Proposition 2.3.1. Let f : I × J → R3 be a surface of Enneper type as above. Then, any other
surface f̄ : I× J → R3 of Enneper type free of flat points having N as a Gauss map and such that
the coordinate curves u1 ∈ I ↦→ (u1,u0

2),u
0
2 ∈ J are spherical lines of curvature is parametrized

by 2.22 in terms of a triple (γ̄, ᾱ, β̄ ) which is related to (γ,α,β ) by

γ̄
′ = λγ

′, ᾱ
′ = λα

′ and β̄ = λβ

for some λ ∈C∞(J).

Proof. First, we claim that β must be nowhere vanishing. Indeed, if β vanishes at some u0
2 ∈ J,

condition (2.23) becomes

⟨γ ′(u0
2),N(u1,u0

2)⟩∼+α
′(u0

2) = 0,

and since γ ′ is nowhere vanishing, this implies that the curve u1 ∈ I ↦→ N(u1,u0
2),u

0
2 ∈ J is planar.

Hence the curve u1 ∈ I ↦→ f (u1,u0
2),u

0
2 ∈ J is also planar, and therefore it is an arc of a circle,

contradicting our assumption.

By Theorem (2.3.1), after possibly reducing I and J, f̄ : I × J can be parametrized by
(2.22) in terms of N and a triple (γ̄, ᾱ, β̄ ), where ᾱ, β̄ ∈ C∞(J) are smooth functions without
common zeros and γ̄ : J → R3 is a smooth curve satisfying

⟨γ̄ ′,N⟩∼+ ᾱ
′− β̄v2 = 0. (2.26)

Now, we can write β̄ = λβ for some λ ∈C∞(J), since β is nowhere vanishing. From
(2.23) and (2.26) we obtain

⟨γ̄ ′−λγ
′,N⟩∼+ ᾱ

′−λα
′ = 0. (2.27)

If γ̄ ′−λγ ′ was nonzero for some u0
2, then, arguing as before, we would conclude that the curve

u1 ∈ I ↦→ f (u1,u0
2),u

0
2 ∈ J, would be an arc of a circle, a contradiction. Therefore γ̄ ′−λγ ′ must

vanish everywhere, and by (2.27) the same holds for ᾱ ′−λα ′.
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At this point, let us review some properties of the inversion in a sphere. Let S2(x0,r) be
the sphere centered at x0 ∈ R3 with radius r. The inversion with respect to S2(x0,r) is the map
I : R3 ∖{x0}→ R3 ∖{x0} defined by

I (x) = x0 + r2 x− x0

‖x− x0‖2 .

Note that x and I (x) are on the same ray emanating from x0, and that

‖I (x)− x0‖‖x− x0‖= r2.

It also follows immediately that I maps R3 ∖{x0} onto itself, and that I 2 = I. Thus, by the
chain rule, the matrix of I*(I (x)) ∘I*(x) is the identity, and, taking determinants, we see
that I*(x) is a linear isomorphism, hence the inverse function theorem guarantees that I is a
diffeomorphism.

Lemma 2.3.2. The inversion in a sphere is a conformal diffeomorphism.

Proof. Without loss of generality, take x0 to be the origin and r = 1. Then

I (x) =
x

‖x‖2 =
1

‖x‖2 (x
1,x2,x3)

and

I*(x) =
1

‖x‖4

‖x‖2 −2(x1)2 −2x1x2 −2x1x3

−2x2x1 ‖x‖2 −2(x2)2 −2x2x3

−2x3x1 −2x3x2 ‖x‖2 −2(x3)2

 .
Applying this to a vector v = (v1,v2,v3) ∈ R3 we obtainv1‖x‖2 −2x1⟨x,v⟩

v2‖x‖2 −2x2⟨x,v⟩
v3‖x‖2 −2x3⟨x,v⟩

 .
Therefore

⟨I*(x)v,I*(x)v⟩=
1

‖x‖8

3

∑
i=1

(vi‖x‖2 −2xi⟨x,v⟩)2 =
⟨v,v⟩
‖x‖4 ,

for any x ∈ R3 ∖{0} and any v ∈ R3, and this gives the result.

A plane and a sphere in R3 are given by equations of the form

⟨u,x⟩= A, x ∈ R3 (2.28)

and
B⟨x,x⟩−⟨v,x⟩=C, x ∈ R3 (2.29)

respectively, where u,v ∈ R3 are nonzero vectors and A,B,C ∈ R with B ̸= 0. Observe that the
planes and the spheres given by (2.29) all pass through the origin if and only if A =C = 0.
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Considering the inversion with respect to S2, if y = I (x) we have

1
‖y‖2 = ‖x‖2.

Then, if A ̸= 0, I maps the planes given by equation (2.28) into

⟨u, y
‖y‖2 ⟩= A ⇔ A⟨y,y⟩−⟨u,y⟩= 0,

which are spheres passing through the origin. Similarly, taking C = 0, the spheres given by
equation (2.29) are mapped to

B
‖y‖2 −⟨v, y

‖y‖2 ⟩= 0 ⇔ ⟨v,y⟩= B,

which are planes not passing through the origin. We then have the following result.

Lemma 2.3.3. Under inversion with respect to a sphere centered at x0, a plane that does not
contain x0 is mapped to a sphere that contains x0. Conversely, a sphere containing x0 is mapped
to a plane that does not contain x0.

We now describe how a surface of Enneper type with spherical lines of curvature given
as in Theorem 2.3.1 can be constructed by means of a surface of Enneper type with planar lines
of curvature given as in Theorem 2.2.1.

Theorem 2.3.4. Let f̄ : I × J → R3 be a surface such that the u1-coordinate curves are spherical
lines of curvature. Assume that its Gauss map N̄ : I × J → S2 is a local diffeomorphism whose
induced metric is

ds2 = v2
1du2

1 + v2
2du2

2

and that f̄ is parametrized by (2.22) in terms of N̄, a smooth regular curve γ̄ : J → R3 and
ᾱ, β̄ ∈C∞(J) without common zeros satisfying (2.23). Then f̄ can be constructed in terms of a
surface f̃ whose u1-coordinate curves are planar lines of curvature.

Proof. Since the triple (γ̄ = (ā, b̄, c̄), ᾱ, β̄ ) satisfies (2.23), then the same holds for the new triple
(γ = (a,b,c),α,β ) defined by

γ
′ = λ γ̄

′, α
′ = λᾱ

′ and β = λβ̄ (2.30)

for some λ ∈C∞(J). By Theorem 2.3.1, after reducing I and J if necessary so that α2 +β 2 > 0,
the map f : I × J → R3 parametrized by (2.22) in terms of N̄ and (γ,α,β ) is a surface such that
the coordinate curves u1 ∈ I ↦→ f (u1,u0

2),u
0
2 ∈ J are lines of curvature of f contained in spheres

with center γ(u0
2) ∈ R3 and radius

√
α2(u0

2)+β 2(u0
2).

Next, we see that, given λ ∈ C∞(J), it is always possible to choose the functions
a,b,c,α,β satisfying the equations (2.30). Clearly, we need to solve the ordinary differential
equations

(a′,b′,c′) = λ (ā′, b̄′, c̄′) and α
′ = λᾱ

′. (2.31)
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Consider the functions A,B,C and D given by one of the infinitely many solutions of the
homogeneous system of linear equations

Aā′+Bb̄′+Cc̄′+Dᾱ ′ = 0

Aā′′+Bb̄′′+Cc̄′′+Dᾱ ′′ = 0

Aā′′′+Bb̄′′′+Cc̄′′′+Dᾱ ′′′ = 0.

By differentiating the first equation twice and using the other equations, we obtainA′ā′+B′b̄′+C′c̄′+D′ᾱ ′ = 0

A′′ā′+B′′b̄′+C′′c̄′+D′′ᾱ ′ = 0.

Taking into account (2.31), we see that
Aa′+Bb′+Cc′+Dα ′ = 0

A′a′+B′b′+C′c′+D′α ′ = 0

A′′a′+B′′b′+C′′c′+D′′α ′ = 0.

(2.32)

By taking the auxiliary function u := Aa+Bb+Cc+Dα , we conclude from (2.32) that
A′a+B′b+C′c+D′α = u′

A′′a+B′′b+C′′c+D′′α = u′′

A′′′a+B′′′b+C′′′c+D′′′α = u′′′,

so that a,b,c and α can be recovered from linear combinations of u,u′,u′′ and u′′′. Since
γ̄ ′ = (ā′, b̄′, c̄′) ̸= 0, it follows that λ can be recovered from linear combinations of u,u′,u′′,u′′′

and u′′′′, whence u must be a solution of a 4th order linear differential equation, which always
exists for all values of u2 ∈ J.

If we now impose
‖γ‖2 = α

2 +β
2, (2.33)

by differentiating we obtain

λ (aā′+bb̄′+ cc̄′+αᾱ
′)−λβ̄ (λ ′

β̄ +λβ̄
′) = 0,

or equivalently,
aā′+bb̄′+ cc̄′+αᾱ

′− β̄ (λ ′
β̄ +λβ̄

′) = 0, (2.34)

hence u is a solution of a 5th order linear differential equation. Thus, given λ ∈C∞(J), there
always exist infinitely many solutions of (2.30) satisfying (2.33).

Choosing one of these solutions, the condition (2.33) implies that the spheres containing
the lines of curvature of the surface f all pass through the origin. Therefore, the composition
f̃ = I ∘ f of f with an inversion with respect to a sphere centered at the origin is a surface such
that the coordinate curves u1 ∈ I ↦→ f̃ (u1,u0

2),u
0
2 ∈ J are lines of curvature of f̃ contained in

planes.
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The argument used in the previous theorem does not apply to surfaces of Enneper type
for which the lines of curvature are contained in concentric spheres, which corresponds to the
case γ̄ = const. We will present a description of these surfaces in the next chapter.
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CHAPTER

3
ON SOME SPECIAL SURFACES OF

ENNEPER TYPE

In the last chapter, we showed that surfaces of Enneper type can be parametrized essen-
tially in terms of its Gauss map. We now turn to give a complete description of some special
classes of such surfaces. More precisely, we will see how any surface of Enneper type for which
the lines of curvature of one family are contained either in concentric spheres, parallel planes, or
planes that intersect along a common line arises.

In particular, those in first class are ruled out in Theorem 2.3.4. Furthermore, we will
prove that the last property is satisfied by a surface of nonzero constant Gaussian curvature with
one family of planar lines of curvature.

3.1 Joachimsthal surfaces

Let Q2
ε denote either S2,R2 or H2, according as ε = 1, ε = 0 or ε =−1, respectively. We

will first recall some conformal maps between R3 and the Riemannian product spaces Q2
ε ×R.

Then, a complete description of some surfaces in Q2
ε ×R obtained by Tojeiro (2010) leads to

an approach to carry out our main results. We remark that the theory developed in Chapter 1
for surfaces in R2 ×R≡ R3 can be extended with minor modifications to surfaces in S2 ×R or
H2 ×R, see the book of Dajczer and Tojeiro (2019) for more details.

Let Rn+2
µ denote either the Euclidean space Rn+2 or the Lorentzian space Rn+2

1 , according
as µ = 0 or µ = 1, respectively. We always regard

Rk
µ = {(x1,x2, · · · ,xn+2) ∈ Rn+2

µ : xk+1 = · · ·= xn+2 = 0}.

Here, the spaces Q2
ε ×R⊂ R3

µ ×R= R4
µ are endowed with its standard metrics, where µ = 0 if

ε = 0 or ε = 1, and µ = 1 if ε =−1.
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Given a surface F : M2 →Q2
ε ×R, we denote by N a unit normal vector field along F . If

∂̄ denotes the unit coordinate vector field of the factor R (up to sign), we use the same notation
for its horizontal lift with respect to the projection π : Q2

ε ×R→ R. With this notation, a vector
field T ∈ X(M2) and a smooth function ν on M2 are defined by

∂̄ = F*T +νN.

Note that F*T is the orthogonal projection of the constant vector field ∂̄ ∈ R4
µ onto the tangent

space to F .

Tojeiro in 2010 presented a classification of the surfaces for which T always lies in the
direction of a principal vector field of F . A trivial class arises when ν vanishes identically, in
which case F(M2) is an open subset of a product M1×R, where M1 is the image set of a smooth
regular curve in Q2

ε . Other examples arise as follows.

Let γ : I → Q2
ε be a smooth regular curve, where I ⊂ R is an open interval. Now let

γs : I →Q2
ε be the family of its parallel curves given by

γs(t) =Cε(s)γ(t)+Sε(s)n(t), t ∈ I,

where n : I → R3
µ is a unit normal vector field along γ and

Cε(s) =


coss, if ε = 1

1, if ε = 0

coshs, if ε =−1

and Sε(s) =


sins, if ε = 1

s, if ε = 0

sinhs, if ε =−1.

Define F : I × J →Q2
ε ×R⊂ R4

µ by

F(t,s) = γs(t)+a(s)(0,0,0,1), (3.1)

for some smooth function a : J → R with positive derivative on an open interval J ⊂ R.

Theorem 3.1.1 ((TOJEIRO, 2010)). The map F given by (3.1) defines, at regular points, a
surface in Q2

ε ×R that has T as an eigenvector of its shape operator. Conversely, any surface
F : M2 → Q2

ε ×R with correspondent nowhere vanishing function ν such that T lies in the
direction of a principal vector field of F is locally given in this way.

At this point, let us recall that there exists a conformal diffeomorphism Ψ : S2 ×R→
R3 ∖{0} given by

Ψ(x, t) = etx. (3.2)

It is immediate that Ψ is a diffeomorphism with inverse given by

Ψ
−1(y) =

(
y
‖y‖

, log‖y‖
)
. (3.3)
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Since Ψ*(x, t) = etI for all (x, t) ∈ S2 ×R, where I is the identity matrix of order 3, we see that
Ψ is indeed a conformal diffeomorphism whose conformal factor is et . Notice that (3.3) implies
that Ψ−1 takes spheres centered at the origin onto slices S2 ×{s} of S2 ×R, and takes each ray
through the origin onto a slice {x}×R, x ∈ S2.

Next we present a conformal diffeomorphism between H2 ×R and R3 ∖R. For that, let
{u1,u2,u3} be the usual orthonormal basis of R3

1, that is, ⟨u1,u1⟩∼=−1, ⟨u2,u2⟩∼= ⟨u3,u3⟩∼=

1 and ⟨ui,u j⟩∼ = 0 if i ̸= j, and define the new vectors

v1 =
u1 +u3

2
, v2 = u2 and v3 =

u1 −u3

2
.

Thus {v1,v2,v3} is a new basis of R3
1 satisfying

⟨v1,v1⟩∼ = ⟨v3,v3⟩∼ = 0, ⟨v1,v3⟩∼ =−1
2

and ⟨v2,v j⟩∼ = δ2 j

and also

‖x1v1 + x2v2 + x3v3‖2 =−x1x3

2
+ x2

2 −
x3x1

2
=−x1x3 + x2

2.

On the other hand, −x1x3+x2
2 =−1 ⇔ x1x3 = 1+x2

2, hence x1 and x3 have the same sign. Then,
in terms of this new basis, the hyperbolic plane can be identified with its hyperboloid model
given by

H2 = {x1v1 + x2v2 + x3v3 ∈ R3
1 : −x1x3 + x2

2 =−1,x1 > 0}.

We now consider the maps Φ : H2 ×S1 → R3 ∖R and Φ̄ : R3 ∖R→H2 ×S1 defined by

Φ(x1v1 + x2v2 + x3v3,(y1,y2)) =
1
x1
(x2,y1,y2)

and
Φ̄(y1,y2,y3) =

1√
y2

2 + y2
3

(
v1 + y1v2 +(y2

1 + y2
2 + y2

3)v3,(y2,y3)
)
. (3.4)

It is easy to see that these maps are well defined and differentiable. Furthermore, a straightforward
computation gives that Φ̄ is the inverse map of Φ.

The partial derivatives of Φ̄ are given by

Φ̄y1(y1,y2,y3) =
1√

y2
2 + y2

3

(v2 +2y1v3,(0,0)) .

Φ̄y2(y1,y2,y3) =− y2

(y2
2 + y2

3)
3
2

(
v1 + y1v2 +(y2

1 + y2
2 + y2

3)v3,(y2,y3)
)
+

+
1√

y2
2 + y2

3

(2y2v3,(1,0)) .

Φ̄y3(y1,y2,y3) =− y3

(y2
2 + y2

3)
3
2

(
v1 + y1v2 +(y2

1 + y2
2 + y2

3)v3,(y2,y3)
)
+

+
1√

y2
2 + y2

3

(2y3v3,(0,1)) .
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Then, we obtain

‖Φ̄y1(y1,y2,y3)‖2 =
1

y2
2 + y2

3
.

‖Φ̄y2(y1,y2,y3)‖2 =
y2

2
(y2

2 + y2
3)

3

(
−(y2

1 + y2
2 + y2

3)+ y2
1 +(y2

2 + y2
3)
)

+2
(

y2
2

(y2
2 + y2

3)
2 −

y2
2

(y2
2 + y2

3)
2

)
+

1
y2

2 + y2
3
.

=
1

y2
2 + y2

3

‖Φ̄y3(y1,y2,y3)‖2 =
1

y2
2 + y2

3
.

We also have

⟨Φ̄y1(y1,y2,y3),Φ̄y2(y1,y2,y3)⟩∼ =− y2y1

(y2
2 + y2

3)
2 +

y2y1

(y2
2 + y2

3)
2 = 0

⟨Φ̄y1(y1,y2,y3),Φ̄y3(y1,y2,y3)⟩∼ = 0

⟨Φ̄y2(y1,y2,y3),Φ̄y3(y1,y2,y3)⟩∼ =
y2y3

(y2
2 + y2

3)
3 (−(y2

1 + y2
2 + y2

3)+(y2
1 + y2

2 + y2
3))

− y2

(y2
2 + y2

3)
2 (−y3 + y3)−

y3

(y2
2 + y2

3)
2 (−y2 + y2)

= 0.

Therefore, Φ̄ is a conformal diffeomorphism whose conformal factor is 1/
√

y2
2 + y2

3.

Note that, given α ∈ R and β ∈ (0,∞), we can choose λ = (α2 + 1)/β > 0 such that
βv1 +αv2 +λv3 ∈H2, whence

Φ
(
H2 ×{(y0

1,y
0
2)}
)
= {(α,βy0

1,βy0
2) : α ∈ R,β > 0}. (3.5)

The last set in (3.5) is clearly contained in the half-plane given byyy0
2 − zy0

1 = 0,

yy0
1 + zy0

2 > 0.
(3.6)

Conversely, given a point (x,y,z) in the half-plane given by (3.6), it follows from the second
equation that y2 + z2 > 0. Setting β =

√
y2 + z2 and α = x, we can use the first equation to

obtain that

|βy0
1|=

√
y2 + z2|y0

1|=
√
(yy0

1)
2 +(zy0

1)
2 =

√
(yy0

1)
2 +(yy0

2)
2 = |y|.

On the other hand,

yy0
1(yy0

1 + zy0
2) = (yy0

1)
2 +(zy0

1)(yy0
2) = (y0

1)
2(y2 + z2),

which implies that y and y0
1 have the same sign, and hence y = βy0

1. Similarly, we obtain that
z = βy0

2.
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This shows that Φ
(
H2 ×{(y0

1,y
0
2)}
)

is a half-plane of the plane yy0
2 − zy0

1 = 0 in R3

containing R, but since each half-plane of a plane in R3 containing R is given by (3.6) for some
(y0

1,y
0
2) ∈ S1, we may conclude that the map Φ−1 takes each half-plane of a plane containing R

onto a slice H2 ×{x} of H2 ×S1. Moreover, arguing as above we can easily see that Φ takes
slices {x}×S1, x ∈H2, onto circles centered at R lying in planes orthogonal to R, and each such
circle in R3 is mapped by Φ−1 onto a slice {x}×S1 of H2 ×S1.

Finally, composing Φ : H2 ×S1 → R3 ∖R with the Riemannian covering map

π :H2 ×R→H2 ×S1

(x, t) ↦→ (x,(cos t,sin t))
(3.7)

gives rise to a conformal covering map, which we still denote by Φ : H2×R→R3 ∖R, given by

Φ(x1v1 + x2v2 + x3v3, t) =
1
x1
(x2,cos t,sin t). (3.8)

We are now ready to prove the main result of this section. To simplify the notation,
we denote by Φ either the conformal diffeomorphism Φ : Q2

ε ×R→ R3 ∖ {0} given by (3.2),
if ε = 1, the conformal covering map Φ : Q2

ε ×R→ R3 ∖R given by (3.8), if ε = −1, or the
standard isometry Φ : Q2

ε ×R→ R3, if ε = 0.

Theorem 3.1.2. Let f : I×J →R3 be a surface parametrized by lines of curvature. Assume that
the coordinates curves t ∈ I ↦→ f (t,s0),s0 ∈ J, are contained in either

(a) concentric spheres,

(b) parallel planes,

(c) planes intersecting along a common line.

Then one of the following possibilities holds, up to isometries of R3:

(i) f is a cone over a regular curve γ : I → S2 in case (a), the cylinder over a regular curve
γ : I → R2 in case (b), or a surface of revolution obtained by rotating a regular curve
γ : I → R2

+, the latter regarded as the half-plane model of H2, in case (c);

(ii) there exists F : I× J →Q2
ε ×R given by (3.1) in terms of a regular curve γ : I →Q2

ε , with
ε = 1 in case (a), ε = 0 in case (b) and ε =−1 in case (c), such that f = Φ∘F .

Proof. We first observe that, up to isometries of R3, we may assume that the spheres in (a) are
centered at the origin, the planes in (b) are parallel to R2 and that the planes in (c) intersect
along R.
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Consider the surface F = Φ−1 ∘ f : I × J →Q2
ε ×R, where ε = 1 in case (a) and ε = 0

in case (b). Let N be a unit normal vector field along F and consider the decomposition

∂̄ = F*T +νN.

Suppose that condition (a) holds. Since the spheres containing the coordinate curves
t ∈ I ↦→ f (t,s0),s0 ∈ J are centered at the origin and Φ−1 takes such spheres onto slices S2×{s}
of S2 ×R, we then have that the height function

(t,s) ↦→ ⟨F(t,s), ∂̄ ⟩∼ (3.9)

depends only on s ∈ J. By differentiating (3.9) with respect to the coordinate t we obtain

0 = ⟨F*∂t , ∂̄ ⟩∼ = ⟨F*∂t ,F*T +νN⟩∼ = ⟨F*∂t ,F*T ⟩∼,

which implies that
⟨∂t ,T ⟩= 0,

taking into account that the metrics induced by f and F are conformal. This means that T is a
multiple of the coordinate vector field ∂s. Moreover, since conformal diffeomorphisms preserve
principal directions and the integral curves of ∂s are lines of curvature of f , we conclude that T

lies in the direction of a principal vector field of F .

We now assume that condition (b) holds. In this case, the coordinate curves t ∈ I ↦→
F(t,s0),s0 are contained in slices R2 ×{s} of R2 ×R. Thus, one can argue as in the preceding
paragraph to conclude that T lies in the direction of a principal vector field of F .

Finally, assume that condition (c) is satisfied. Let Φ̄ be the conformal diffeomorphism
given by (3.4) and consider the surface F̄ = Φ̄∘ f : I× J →H2 ×S1. Then the coordinate curves
t ∈ I ↦→ F̄(t,s0),s0 ∈ J are contained in slices H2 ×{x} of H2 ×S1. Let F : I × J →H2 ×R be
such that F̄ = π ∘F , where π is the covering map given by (3.7). Then the coordinate curves
t ∈ I ↦→ F(t,s0),s0 ∈ J are contained in slices H2 ×{s} of H2 ×R. Now we can argue as in case
(a) in order to conclude that T lies in the direction of a principal vector field of F .

In either of the preceding cases, the map F is either given by

F(t,s) = γ(t)+ s(0,0,0,1), (3.10)

where γ : I → Q2
ε is a smooth regular curve, which corresponds to the case where ν vanishes

identically, or it is given by (3.1) in terms of such a curve, with ε = 1 in case (a), ε = 0 in case
(b) and ε =−1 in case (c). In any case, we have f = Φ∘F .

If we now regard H2 as the half-plane model, the map F given by (3.10) is a vertical
cylinder over γ . Since Φ takes slices {x}×R of S2 ×R onto rays through the origin, we obtain
that, in case (a), f = Φ∘F is the cone over γ with vertex at the origin. On the other hand, when
ε =−1, the map Φ takes slices {x}×R of H2 ×R onto circles centered at R that are contained
in planes orthogonal to R. Then, the corresponding f = Φ∘F is a surface of revolution with γ as
a profile curve and R as the rotation axis, in case (c).
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Let γ : I →H2 be written as γ(t) = a(t)v1 +b(t)v2 + c(t)v3, for some smooth functions
a,b,c ∈ C∞(I) with a > 0. Then the corresponding surface of revolution f = Φ ∘F : I × J →
R3 ∖R is given by

f (t,s) = Φ(a(t)v1 +b(t)v2 + c(t)v3,s) =
(

b(t)
a(t)

,
1

a(t)
coss,

1
a(t)

sins
)
.

Conversely, any surface of revolution f : I ×R→ R3 obtained by rotating a regular planar curve
t ∈ I ↦→ (g1(t),g2(t)) about the x-axis can be written in the form

f (t,s) = (g1(t),g2(t)coss,g2(t)sins),

with g2 > 0. Then, we see that f = Φ∘F , where F is given by (3.10) with respect to the regular
curve γ : I →H2 given by

γ(t) =
1

g2(t)
v1 +

g1(t)
g2(t)

v2 +
g1(t)2 +g2(t)2

g2(t)
v3.

A surface f : M2 → R3 of Enneper type with one family of planar lines of curvature
such that the planes containing every line of curvature of this family satisfy the condition (c) is
known as a Joachimsthal surface. Clearly, every surface of revolution free of umbilical points is
a Joachimsthal surface (see Fig. 3).

Figure 3 – Pseudosphere

The pseudosphere is a surface of revolution with constant negative Gaussian curvature obtained
by rotation of a tractrix about the x-axis.

Source: Elaborated by the author.

Corollary 3.1.2.1. Let γ : I →H2 be a unit speed curve and let γs : I →H2 be the family of its
parallel curves, given by

γs(t) = coshsγ(t)+ sinhs(γ(t)∧ γ
′(t)),
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where ∧ stands for the Lorentzian cross-product. Define F : I × J →H2 ×R⊂ R4
1 by

F(t,s) = γs(t)+h(s)(0,0,0,1), (3.11)

where J ⊂ R is an open interval and h ∈C∞(J) has positive derivative. Then, on the open subset
M2 ⊂ I×J of its regular points, the map f = Φ∘F : M2 →R3∖R, where Φ : H2×R→R3∖R is
the conformal covering map given by (3.8), defines a surface parametrized by lines of curvature,
such that the coordinate curves t ∈ I ↦→ f (t,s0),s0 ∈ J are contained in planes intersecting along
a common line, whereas the coordinate curves s ∈ J ↦→ f (t0,s), t0 ∈ I lie on spheres centered on
that line.

Conversely, any Joachimsthal surface in R3 locally can either be parametrized in this
way or is a surface of revolution, up to isometries of R3.

Proof. It suffices to prove the direct statement. By Theorem 3.1.1, the map F given by (3.11)
defines on the open subset M2 ⊂ I×J of its regular points a surface F : M2 →H2 ×R for which
T lies in the direction of a principal vector field. Furthermore, a point (t,s) is regular for F if and
only if γ ′s(t) ̸= 0, in which case ⟨F*∂t ,F*∂s⟩∼ = 0. Arguing as in the proof of Theorem 3.1.2, we
obtain that T lies in the direction of ∂s, and since Φ is a conformal diffeomorphism, we conclude
that f = Φ∘F : M2 → R3 ∖R defines a surface parametrized by lines of curvature.

Since the lines of curvature t ∈ I ↦→ F(t,s0),s0 ∈ J, are clearly contained in slices
H2×{s} of H2×R, it follows that the t-lines of curvature of f are contained in planes intersecting
along R. It remains to show that the s-lines of curvature lie on spheres centered on that line. To
see this, write

γ(t) = a(t)v1 +b(t)v2 + c(t)v2, γ
′(t) = a′(t)v1 +b′(t)v2 + c′(t)v2.

We have
γ ∧ γ

′ = (ab′−a′b)v1 +
1
2
(ac′−a′c)v2 +(bc′−b′c)v3

and hence that

f (t,s) =


b(t)coshs+1/2(a(t)c′(t)−a′(t)c(t))sinhs

a(t)coshs+(a(t)b′(t)−a′(t)b(t))sinhs
cos(h(s))

a(t)coshs+(a(t)b′(t)−a′(t)b(t))sinhs
sin(h(s))

a(t)coshs+(a(t)b′(t)−a′(t)b(t))sinhs

 . (3.12)

From this expression for f , a long but straightforward computation shows that∥∥∥∥ f (t0,s)−
(

b′(t0)
a′(t0)

,0,0
)∥∥∥∥= 1

|a′(t0)|
.

If a′(t0) = 0, the sphere is identified with the plane x = 0.
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The above complete description of all Joachimsthal surfaces in R3 in terms of the
conformal covering map Φ : H2 ×R→ R3 ∖R was first obtained by Chion and Tojeiro (2021),
and yields a new description for such surfaces. Furthermore, Corollary 3.1.2.1 allows us to
recover the classical fact that, for surfaces free of umbilical points, the lines of curvature in one
family lie in planes passing through a common line r if and only if the lines of curvature in the
second family lie on spheres whose centers are on r and which cut the surface orthogonally, see
(EISENHART, 1909, p. 308) and (BIANCHI, 1922, §193).

Motivated by the above description, Tassi and Tojeiro (In preparation.) investigated
the pairs (γ,h) for which the corresponding Joachimsthal surface f = Φ ∘F given by (3.12)
has nonzero constant Gaussian curvature. First, if γ : I → H2 is a unit speed curve given by
γ(t) = a(t)v1 +b(t)v2 + c(t)v3, then

−a(t)c(t)+b2(t) =−1, and −a′(t)c′(t)+(b′(t))2 = 1

whence a simple computation gives

a′(t) = a(t)
b(t)b′(t)±φ(t)

1+b2(t)
, and c(t) =

1+b2(t)
a(t)

,

where φ(t) :=
√

1+b2(t)− (b′(t))2. Thus, solving this ODE we can recover the coordinates
a(t) and c(t) from b(t) by

a(t) = deBσ (t), d > 0

where
Bσ (t) =

∫ t

t0

b(s)b′(s)+σφ(s)
1+b2(s)

ds, t0 ∈ I,σ ∈ {1,−1}.

The following result was obtained.

Proposition 3.1.1 ((TASSI; TOJEIRO, In preparation.)). The surface f = Φ∘F : I×J →R3 ∖R
given in Corollary 3.1.2.1 has nonzero constant Gaussian curvature if and only if one of the
following possibilities holds:

(i) h(s) = ls+m, for some l,m ∈ R with l ̸= 0, and b is a solution of the following ODE

((b′)2 −b2)b′′ = b+σb′φ

(ii)

h(s) = d2 ±
∫ eP(s)√

d2
1 − e2P(s)

ds,

for some d1,d2 ∈ R, where

P(s) =
1
2

log(a1 −a3 − (a1 +a3)cosh(2s)+2a2 sinh(2s)),

with (a1,a2,a3) ∈ R3 ∖{0}, and b is a solution of the ODE

a1(1+b2)φ +a2(σ(b′′−b)(1+b2)+(b′−σbφ)φ)+a3σ(b′′−b)(b′−σbφ) = 0.
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We will see in the next section that every surface of Enneper type with nonzero constant
Gaussian curvature for which one family of lines of curvature are contained in planes must be a
Joachimsthal surface. Granting this for now, we can combine the previous result and Corollary
3.1.2.1 to provide the following more explicit description.

Corollary 3.1.2.2. Let γ : I →H2 be a unit speed curve given by γ(t) = a(t)v1+b(t)v2+c(t)v3

and assume that b ∈ C∞(I) and h ∈ C∞(J) are given by one of the items of Proposition 3.1.1.
Then, on the open subset M2 ⊂ I × J of its regular points, the map f : M2 → R3 ∖R given by
(3.12), defines a surface of Enneper type of nonzero constant Gaussian curvature with one family
of planar lines of curvature.

Conversely, any surface of Enneper type of nonzero constant Gaussian curvature with
one family of planar lines of curvature locally can either be parametrized in this way or is a
surface of revolution, up to isometries of R3.

3.2 Surfaces with nonzero constant Gaussian curvature

Our goal in this section is to prove that if a surface of nonzero constant Gaussian curvature
has the property that the lines of curvature of one family are contained in planes, then all these
planes intersect along a common straight line, that is, it must be a Joachimsthal surface.

Let f : M2 → R3 be a surface free of umbilical and flat points. We assume without loss
of generality that M2 is oriented. From now on, we identify N : M2 → S2 ⊂ R3, the Gauss map
of f , with the surface i∘N : M2 → R3, and denote by ⟨,⟩* its induced metric. We first note that
the Gauss and Weingarten formulas enable us to relate the Levi-Civita connections ∇ and ∇* of
⟨,⟩ and ⟨,⟩*, respectively. Indeed, for all X ,Y ∈ X(M2) we have

∇̃X N*Y = N*∇
*
XY + ⟨N*A*X ,N*Y ⟩∼N

=− f*A∇
*
XY + ⟨−N*X ,N*Y ⟩∼N

=− f*A∇
*
XY −⟨AX ,AY ⟩N.

(3.13)

On the other hand,

∇̃X N*Y =−∇̃X f*AY =−( f*∇X AY + ⟨AX ,AY ⟩N). (3.14)

Thus, comparing (3.13) and (3.14) we obtain

A∇
*
XY = ∇X AY.

Now we consider {e1,e2} a principal orthonormal frame for f defined on some open
subset U ⊂ M2 with correspondent principal curvatures k1,k2 ∈C∞(U). Notice that the vector
fields e*1 := (1/k1)e1 and e*2 := (1/k2)e2 form an orthonormal frame with respect to the metric
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induced by N. If we denote by c : I →U an e1-line of curvature of f , we see that the geodesic
curvature (up to sign) of c is α ∘ c, where α ∈C∞(U) is given by

α := ⟨∇e1e1,e2⟩.

Similarly, the geodesic curvature of the e2-lines of curvature is given by β ∘ c ∈C∞(U), where

β := ⟨∇e2e2,e1⟩.

Moreover, the compatibility of ∇ with the metric gives

∇e1e1 = αe2, ∇e2e2 = βe1, ∇e1e2 =−αe1, and ∇e2e1 =−βe2

Lemma 3.2.1. The e1-lines of curvature of f are planar if and only if e1(k1)α = k1e1(α).

Proof. The geodesic curvature (up to sign) of the e1-lines of curvature with respect to the metric
induced by N is given by

1
k2

1
⟨∇*

e1
e1,e*2⟩* =

1
k2

1
⟨A∇

*
e1

e1,Ae*2⟩=
1
k2

1
⟨∇e1Ae1,e2⟩

=
1
k2

1
⟨k1∇e1e1 + e1(k1)e1,e2⟩=

1
k2

1
⟨k1∇e1e1,e2⟩

=
α

k1
.

We further have that

e1(k1)α = k1e1(α)⇔ e1

(
α

k1

)
= 0,

which is equivalent to the geodesic curvature α/k1 being constant along the e1-lines of curvature.
Since N : U → S2 is a local isometry, this is also equivalent to the image by N of the e1-lines of
curvature being arcs of circles in S2, and the result follows.

Lemma 3.2.2. A line of curvature c of f has constant geodesic curvature α if and only if it
is contained in either a plane or a sphere that intersects f (M2) orthogonally along f (c(I)),
according to whether α is zero or not, respectively.

Proof. Let c : I →U be an e1-line of curvature and suppose first that c is contained in a plane
that intersects f (M) orthogonally along c. This means that there exists a unit vector b ∈ R3 such
that

⟨ f ∘ c,b⟩∼ = const, and ⟨N ∘ c,b⟩∼ = 0. (3.15)

Differentiating the first equation in (3.15) we obtain

⟨ f*e1 ∘ c,b⟩∼ = 0,
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which, together with the second equation in (3.15), allows to conclude that f*e2 must be constant
along c. Thus, by the Gauss formula

0 = (∇̃e1 f*e2)∘ c = ( f*∇e1e2 + ⟨Ae1,e2⟩N)∘ c

= ( f*∇e1e2)∘ c = (−α f*e1)∘ c,

the geodesic curvature α ∘ c is zero. Suppose now that c is contained in a sphere with center P0

and radius r that intersects f (M2) orthogonally along c. We then have

⟨ f ∘ c−P0, f ∘ c−P0⟩∼ = r2, and
〈

N ∘ c,
f ∘ c−P0

r

〉∼
= 0. (3.16)

Arguing as before, we see that f − r f*e2 must be constant along c, whence

0 = ( f*e1 − r∇̃e1 f*e2)∘ c = ( f*e1 + rα f*e1)∘ c

= ((1+ rα) f*e1)∘ c,

and therefore the geodesic curvature α ∘ c is equal to the constant −1/r.

For the converse statement, assume that c is an e1-line of curvature with constant geodesic
curvature α . If α = 0, it follows that

(∇̃e1 f*e2)∘ c = ( f*∇e1e2 + ⟨Ae1,e2⟩N)∘ c = 0,

since (∇e1e2)∘ c = (−αe1)∘ c = 0. Hence f*e2 is constant in R3 along c, and this implies that
f (c(I)) is contained in a plane that intersects f (M) orthogonally along f (c(I)), taking into
account that ( f ∘ c)′ = f*e1 is orthogonal to f*e2. In the case where α ̸= 0 we obtain

(∇̃e1 f*e2)∘ c = ( f*∇e1e2 + ⟨Ae1,e2⟩N)∘ c = (−α f*e1)∘ c,

thus the map g = f +(1/α) f*e2 satisfies

(g*e1)∘ c = ( f*e1)∘ c+
1
α
(−α f*e1)∘ c = 0.

This shows that g has a constant value P0 ∈ R3 along c, and therefore f (c(I)) is contained in a
sphere centered at P0 with radius 1/|α|. Furthermore, since the normal vector of such sphere
along c is given by f*e2, we conclude that this sphere intersects f (M) orthogonally along f (c(I)).

Clearly, the same proof holds for a e2-line of curvature.

The proof of the Theorem 3.2.4 below also relies on the next lemma.

Lemma 3.2.3. If f : M2 → R3 has nonzero constant Gaussian curvature, then the e1-lines of
curvature are planar if and only if the e2-lines of curvature have constant geodesic curvature.
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Proof. By Remark 2, the Codazzi equation for f is equivalent to the equations

e1(k2) = (k2 − k1)β and e2(k1) = (k1 − k2)α. (3.17)

Note that the e2-lines of curvature have constant geodesic curvature if and only if e2(β ) = 0.
Furthermore, by the first equation in (3.17), this is also equivalent to

e2(e1(k2))(k2 − k1) = e1(k2)(e2(k2)− e2(k1)). (3.18)

Since K = k1k2 is constant, we have

e1(k1k2) = 0 = e2(k1k2) = e2(k1)k2 + k1e2(k2), (3.19)

which implies that

e2(k2)− e2(k1) =−k2 + k1

k1
e2(k1).

Substituting in (3.18) yields

k1(k2 − k1)e2(e1(k2))+(k1 + k2)e2(k1)e1(k2) = 0,

and, using again (3.17), we see that (3.18) is equivalent to

−k2
1e2(e1(k2))+(k2

2 − k2
1)αβk1 = 0. (3.20)

It further holds that

e2(e1(k2))− e1(e2(k2)) = [e2,e1](k2) = (∇e2e1 −∇e1e2)(k2)

=−βe2(k2)+αe1(k2).
(3.21)

On the other hand, from (3.19) and (3.17) we obtain

−k2
1e1(e2(k2)) = k2

1e1

(
e2(k1)k2

k1

)
= k1k2e1(e2(k1))+ k2

1e2(k1)e1

(
k2

k1

)
= k1k2e1(α(k1 − k2))+ k2

1(α(k1 − k2))

(
k1e1(k2)− k2e1(k1)

k2
1

)
= (k1 − k2)k2(e1(α)k1 −αe1(k1))−2αk1k2e1(k2)+αk1e1(k1k2)

= (k1 − k2)k2(e1(α)k1 −αe1(k1))−2αk1k2(k2 − k1)β

and

−k2
1(−βe2(k2)+αe1(k2)) =−k2

1

(
−β

k2e2(k1)

k1
+α(k2 − k1)β

)
=−k2

1β

(
k2

k1
(k2 − k1)α +α(k2 − k1)

)
= αβk1(k1 − k2)

2.
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Now, (3.21) gives

−k2
1e2(e1(k2)) = (k1 − k2)k2(e1(α)k1 −αe1(k1))−2αk1k2(k2 − k1)β

+αβk1(k1 − k2)
2

= (k1 − k2)k2(e1(α)k1 −αe1(k1))+αβk1(k2
1 − k2

2).

Therefore, (3.20) holds if and only if e1(α)k1 −αe1(k1) = 0, which is equivalent to the e1-lines
of curvature being planar by Lemma 3.2.1.

We are now able to prove the wished result.

Theorem 3.2.4. Every surface of Enneper type f : M2 → R3 of nonzero constant Gaussian
curvature whose lines of curvature correspondent to one of its principal curvatures are planar is a
Joachimsthal surface.

Proof. Given p ∈ M2, let {e1,e2} be a principal orthonormal frame for f defined on a neigh-
borhood U of p with correspondent principal curvatures k1 and k2. Assume that the e1-lines of
curvature are planar. Then the e2-lines of curvature have constant geodesic curvature by Lemma
3.2.3. Let c2 : J →U denote an e2-line of curvature and let β ∘ c2 ≡ β be its geodesic curvature.
We will discuss the cases where β = 0 and β ̸= 0 separately.

In the case where β = 0, from Lemma 3.2.2 we have that f (c2(J)) is contained in a plane
that intersects f (M2) orthogonally. This means that the e2-lines of curvature are also planar,
hence the e1-lines of curvature have constant geodesic curvature α , again by Lemma 3.2.3. We
claim that α must be nonzero. Indeed, if α and β are identically zero along the e1-lines of
curvature and the e2-lines of curvature, respectively, we obtain that

∇e1e1 = ∇e2e2 = ∇e1e2 = ∇e2e1 = [e1,e2] = 0,

whence

R(e1,e2)e2 = ∇e1∇e2e2 −∇e2∇e1e2 −∇[e1,e2]e2 = 0.

Then M2 would be flat, a contradiction. Therefore, if c1 : I → M2 is an e1-line of curvature, it
follows that c1 is an arc of a circle in a sphere that intersects f (M2) orthogonally. Since each
plane containing an e2-line of curvature passing through c1(t) is orthogonal to such sphere,
for all t ∈ I, we conclude that all these planes must intersect along a common straight line r.
Moreover, this implies that the planes containing the e1-lines of curvature must be parallel to
each other. Therefore, f (M2) is a surface of revolution with r as its axis of rotation.

We now analyze the case where β ̸= 0. By Lemma 3.2.2, f (c2(J)) is contained in a
sphere whose normal vector along c2 is given by f*e1. But since f*e1(c2(t)) belongs to the
plane that contains the e1-line of curvature passing through c2(t), for all t ∈ J, we see that
every such plane passes through the center of that sphere, which is parametrized by the map
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g = f +(1/β ) f*e1. On the other hand,

g*e1 = f*e1 −
e1(β )

β 2 f*e1 +
1
β

∇̃e1 f*e1

=

(
1− e1(β )

β 2

)
f*e1 +

1
β
( f*∇e1e1 + ⟨Ae1,e1⟩N)

=

(
1− e1(β )

β 2

)
f*e1 +

1
β
(α f*e2 + k1N),

(3.22)

and since k1 is nowhere zero, this implies that the map g can not be constant along the e1-lines
of curvature, that is, the spheres containing each e2-line of curvature can not be concentric.
Therefore, all the planes containing the e1-lines of curvature intersect along a common straight
line.

3.3 Examples
We end this chapter by presenting some examples of Joachimsthal surfaces in R3. The

computations here were made by using a computational software.

Let γ : R→H2 be the unit speed curve given by

γ(t) =
(

2
r0

cosh t
)

v1 +

(
x0

r0
cosh t + sinh t

)
v2 +

(
r2

0 + x2
0

2r0
cosh t + x0 sinh t

)
v3,

where r0 > 0 and x0 ∈ R are constants. This family of unit speed curves are the geodesics
corresponding to the half circles with centers on the x-axis in the hyperbolic upper half-plane
model. Let h : J → R a smooth function with positive derivative defined on some open interval
J ⊂ R. By Corollary 3.1.2.1, the corresponding Joachimsthal surface f : M2 ⊂ R× J → R3 is
given by

f (t,s) =


x0 coshscosh t + x0 sinhs+ r0 coshssinh t

2coshscosh t +2sinhs
r0 cos(h(s))

2coshscosh t +2sinhs
r0 sin(h(s))

2coshscosh t +2sinhs

 ,
see Figure 4. The Gaussian curvature of f is

K(t,s) =
4h′(s)((1+ cosh t tanhs)(h′(s)+h′(s)3)−h′′(s)(cosh t + tanhs))

r2
0(1+h′(s)2)2 .

Now, let γ : R→H2 be the unit speed curve given by

γ(t) =
(

2
et

)
v1 +

(x0

et

)
v2 +

(
x2

0 + e2t

2et

)
v3,

where x0 ∈ R is a constant. This is the family of geodesics corresponding to the straight lines
through the x-axis in the hyperbolic upper half-plane model. In this case, the corresponding
Joachimsthal surface f : M2 ⊂ R× J → R3 is given by
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Figure 4 – Joachimsthal Surfaces (x0 = 0 and r0 = 1)

(a) h(s) = s

(b) h(s) = sinhs

Source: Elaborated by the author.

f (t,s) =
1
2

(
x0 + et tanhs,

et

coshs
cos(h(s)),

et

coshs
sin(h(s))

)
and the Gaussian curvature of f is identically zero, see Figure 5.

The next surfaces are classical Joachimsthal surfaces of nonzero constant Gaussian
curvature found in the literature.

The Dini’s Helicoid is a surface obtained by twisting a pseudosphere along its axis (Fig.
6).
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Figure 5 – Joachimsthal Flat Surfaces (x0 = 0)

(a) h(s) = es

(b) h(s) = sinhs

Source: Elaborated by the author.

It can be parametrized by

f (u1,u2) =

(
m(u1 − tanhu1)+nu2,m

cosu2

coshu1
,m

sinu2

coshu1

)
,

where m and n are constants with m ̸= 0. If U = {(u1,u2)∈R2 |u1 ̸= 0}, then f : U →R3 defines
a surface satisfying

K =− 1
m2 +n2 .
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Figure 6 – Dini’s Helicoid

(a) m = 6,n = 1.4,0 < u1 < π,−2π < u2 < 2π

(b) m = 6,n = 0.4,−2π < u1 < 0,−2π < u2 < 2π

Source: Elaborated by the author.

We have

f*∂u1(u1,u2) = m
(

tanh2 u1,−
tanhu1

coshu1
cosu2,−

tanhu1

coshu1
sinu2

)
f*∂u2(u1,u2) =

(
n,−m

sinu2

coshu1
,m

cosu2

coshu1

)
N(u1,u2) =

1√
m2 +n2

(
m

coshu1
,mcosu2 tanhu1 +nsinu2,msinu2 tanhu1 −ncosu2

)
,
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whence
N*∂u1(u1,u2) =

m√
m2 +n2

(
− tanhu1

coshu1
,

cosu2

cosh2 u1
,

sinu2

cosh2 u1

)
.

Then, we see that
N*∂u1(u1,u0

2) =− 1√
m2 +n2 sinhu1

f*∂u1(u1,u0
2),

and this implies that the u1-coordinate curves coincide with one family of lines of curvature of
the surface. On the other hand, we have

⟨ f (u1,u0
2),(0,sinu0

2,−cosu0
2)⟩∼ = 0,

hence the u1-lines of curvature are contained in planes that intersect along the x-axis. Except for
n = 0, in which case the surface reduces to the Pseudosphere, the u2-coordinate curves are not
lines of curvature of f , that is, f is not parametrized by lines of curvature.

If n ̸= 0, the map
x(u1,u2) =

(
u1 +

n
m

u2,−
n
m

u2

)
is a diffeomorphism and its inverse is given by

x−1(t,s) =
(

t + s,−m
n

s
)
.

Thus, on M2 = x(U)= {(t,s)∈R2 | t+s ̸= 0}, the surface f = f ∘x−1 : M2 →R3 is a parametriza-
tion of f given by

f (t,s) =
(

m(t − tanh(t + s)),
mcos(m

n s)
cosh(t + s)

,−
msin(m

n s)
cosh(t + s)

)
.

This new parametrization is by lines of curvature. Now, assuming, for simplicity, that m = n = 1
in terms of Corollary 3.1.2.1, a straightforward computation gives that the surface F̄ = Φ̄∘ f :
M2 →H2 ×S1 is given by(cosh(t + s))v1 +(t cosh(t + s)− sinh(t + s))v2 +(−2t sinh(t + s)+(1+ t2)cosh(t + s))v3

coss

sins


whence the corresponding surface F : M2 →H2 ×R becomes[
(cosh(t + s))v1 +(t cosh(t + s)− sinh(t + s))v2 +(−2t sinh(t + s)+(1+ t2)cosh(t + s))v3

s

]
.

Then, the corresponding curve in H2 becomes

γ(t) = F(t,0) = (cosh t)v1 +(t cosh t − sinh t)v2 +(−2t sinh t +(1+ t2)cosh t)v3.

We have
γ
′(t) = (sinh t)v1 +(t sinh t)v2 +((t2 −1)sinh t)v3
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and hence
⟨γ ′(t),γ ′(t)⟩∼ =−(t2 −1)sinh2 t + t2 sinh2 t = sinh2 t,

so that the arc length is u(t) = cosh t, and consequently t = arccoshu. Therefore, in this case
we obtain b(t) = t arccosh t − sinh(arccosh t) = t arccosh t −

√
t2 −1 and h(s) = s for which the

condition (i) of Proposition 3.1.1 is satisfied when σ =−1.

The Kuen’s Surface is parametrized by

f (t,s) =
1

1+ t2 sin2 s

log(tan(s/2))(1+ t2 sin2 s)+2coss

2(cos t + t sin t)sins

2(sin t − t cos t)sins

 .
This parametrization yields on M2 = (0,2π)×(0,π) a surface parametrized by lines of curvature
of constant Gaussian curvature −1 (Fig. 7). Since

⟨ f (t0,s),(0,sin t0 − t0 cos t0,−cos t0 − t0 sin t0)⟩∼ = 0

we see that Kuen’s Surface is indeed a Joachimsthal surface. Now, arguing as in the preceding
example we may obtain that

b(t) =− t
2

(
8+

√
16+

1
t2 log

(
4t + t

√
16+

1
t2

))

and
h(s) = arctan

(
sin(θ(s))−θ(s)cos(θ(s))
cos(θ(s))+θ(s)sin(θ(s))

)
,

where

θ(s) =

√
−2sinhs

coshs+ sinhs
.

In this case, the functions b and h satisfy the condition (ii) of Proposition 3.1.1 for a1 = 1,
a2 =−1/2, a3 = 0 and σ =−1.
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Figure 7 – Kuen’s Surface

This surface was obtained by Theodor Kuen in 1984. It comes from the Pseudosphere through
the Bianchi Transform (a geometric transformation that preserves the Gaussian curvature).

Source: Elaborated by the author.
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CHAPTER

4
MINIMAL SURFACES OF ENNEPER TYPE

So far, we have been able to give an explicit description of some special classes of
surfaces of Enneper type. The aim of this chapter is to give a full classification of minimal
surfaces of Enneper type with one family of planar lines of curvature. In this case, we will see
that the other family also consists of planar lines of curvature. Then, by analyzing the orthogonal
systems of circles on S2, we are able to recover the corresponding minimal surfaces.

The theory of minimal surfaces is one of the most developed subjects of differential
geometry. The condition H ≡ 0 is necessarily satisfied by surfaces which minimize area with a
given boundary configuration, and this explains why we use the word minimal for such surfaces.
We refer the reader to the books of Dierkes, Hildebrandt and Sauvigny (2010) and Nitsche (1989)
for a discussion of this subject, as well as for many other results on minimal surfaces.

4.1 Minimal surfaces
Minimal surfaces can be constructed from a careful choice of complex functions, using

the Weierstrass-Enneper Representation formula. In the first two sections, we develop the
necessary tools to study this formula and then derive the representation formula of Weierstrass.
Using the latter we can easily introduce principal coordinates that are also conformal parameters
on a minimal surface, which play a key role in the wished classification.

Let f : U → R3 be a surface defined on the open subset U ⊂ R2 and let N : U → S2 be
its Gauss map given by

N =

∥∥∥∥ ∂ f
∂u1

∧ ∂ f
∂u2

∥∥∥∥−1
∂ f
∂u1

∧ ∂ f
∂u2

,

where (u1,u2) denote the coordinates of U .

Recall that the coordinates (u1,u2) are isothermal if〈
∂ f
∂u1

,
∂ f
∂u1

〉∼
=

〈
∂ f
∂u2

,
∂ f
∂u2

〉∼
and

〈
∂ f
∂u1

,
∂ f
∂u2

〉∼
= 0, (4.1)
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or equivalently
ds2 = g11(du2

1 +du2
2),

which means that the metric induced by f is conformal to the Euclidean metric on U .

Next, we see how harmonic functions are related to isothermal coordinates on minimal
surfaces.

Proposition 4.1.1. Let f : U → R3 be a surface given by isothermal coordinates. Then,

∂ 2 f
∂u2

1
+

∂ 2 f
∂u2

2
= (2g11H)N.

In particular, f is a minimal surface if and only if its coordinate functions are harmonic.

Proof. Differentiating the first equation of (4.1) with respect to u1 and the second one with
respect to u2, we obtain〈

∂ 2 f
∂u2

1
,

∂ f
∂u1

〉∼
=

〈
∂ 2 f

∂u2∂u1
,

∂ f
∂u2

〉∼
=−

〈
∂ f
∂u1

,
∂ 2 f
∂u2

2

〉∼
.

Combining these equations gives 〈
∂ 2 f
∂u2

1
+

∂ 2 f
∂u2

2
,

∂ f
∂u1

〉∼
= 0.

Similarly, differentiating the first equation of (4.1) with respect to u2 and the second one
with respect to u1, we conclude that〈

∂ 2 f
∂u2

1
+

∂ 2 f
∂u2

2
,

∂ f
∂u2

〉∼
= 0.

Thus, the vector ∂ 2 f/∂u2
1 +∂ 2 f/∂u2

2 must be a multiple of N. Since the coordinates are isother-
mal, we have

H =
1
2

b11g22 −2b12g12 +b22g11

g11g22 −g2
12

=
1
2

b11 +b22

g11
=

1
2g11

〈
∂ 2 f
∂u2

1
+

∂ 2 f
∂u2

2
,N
〉∼

and hence
∂ 2 f
∂u2

1
+

∂ 2 f
∂u2

2
= (2g11H)N.

In order to study results that enable us to construct minimal surfaces, we need to link
ideas from functions of a complex variable to minimal surfaces. Let R : U ⊂C→C be a complex
function. Here we identify the complex plane C with R2 by setting w= u1+ iu2,w∈C,(u1,u2)∈
R2. Recall that R is holomorphic when, by writing

R(w) = R1(u1,u2)+ iR2(u1,u2),
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the real functions R1 and R2 have continuous partial derivatives of first order and satisfy the
Cauchy-Riemann equations:

∂R1

∂u1
=

∂R2

∂u2
,

∂R1

∂u2
=−∂R2

∂u1
,

or, in terms of the differential operators

∂

∂w
=

1
2

(
∂

∂u1
− i

∂

∂u2

)
,

∂

∂ w̄
=

1
2

(
∂

∂u1
+ i

∂

∂u2

)
,

if and only if
∂R
∂ w̄

= 0.

In this case, we can write the differential of R as

R*(w)X =
∂R
∂w

·X := R′(w) ·X , w ∈U,X ∈ C,

where the dot stands for the complex number multiplication.

Returning now to the surface f : U ⊂ R2 → R3, it is useful to associate with f the
complex map ϕ : U → C3 given by

ϕ(w) =
1
2

(
∂ f
∂u1

− i
∂ f
∂u2

)
:=

∂ f
∂w

,

with coordinate complex functions

ϕ1(w) =
1
2

(
∂x
∂u1

− i
∂x
∂u2

)
, ϕ2(w) =

1
2

(
∂y
∂u1

− i
∂y
∂u2

)
, ϕ3(w) =

1
2

(
∂ z

∂u1
− i

∂ z
∂u2

)
,

where x,y and z are the coordinate functions of f . We say that ϕ is the associated phi function of
f . It is easy to see that

ϕ
2
1 +ϕ

2
2 +ϕ

2
3 =

1
4
(g11 −g22 +2ig12),

hence, the coordinates (u1,u2) are isothermal, if and only if

ϕ
2
1 +ϕ

2
2 +ϕ

2
3 ≡ 0. (4.2)

Proposition 4.1.2. Let f : U ⊂ R2 → R3 be a surface given by isothermal coordinates and let
ϕ be its associated phi function. Then f is a minimal surface if and only if ϕ1,ϕ2 and ϕ3 are
holomorphic functions.

Proof. We have from Proposition 4.1.1 that f is minimal if and only if

∂ 2 f
∂u2

1
+

∂ 2 f
∂u2

2
= 0. (4.3)
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This means that

∂

∂u1

(
∂x
∂u1

)
=

∂

∂u2

(
− ∂x

∂u2

)
,

∂

∂u1

(
∂y
∂u1

)
=

∂

∂u2

(
− ∂y

∂u2

)
,

∂

∂u1

(
∂ z

∂u1

)
=

∂

∂u2

(
− ∂ z

∂u2

)
,

(4.4)

which is one of the Cauchy-Riemann equations for ϕ1,ϕ2 and ϕ3, respectively. Since the other
equation follows directly from

∂

∂u1

(
∂ f
∂u1

)
=

∂

∂u2

(
∂ f
∂u1

)
,

we obtain that (4.3) is equivalently to the complex functions ϕ1,ϕ2 and ϕ3 being holomorphic.

We present next some examples of minimal surfaces in R3. The two first ones were in
fact the first nonplanar minimal surfaces to be discovered.

Example 4.1.1 (Catenoid). The Catenoid is the revolution surface obtained by rotating a catenary
u1 ∈ R ↦→ (α cosh(u1/α),u1), about the z-axis, where α ∈ R is a nonzero constant. Then, the
catenoid is given by

f (u1,u2) = (α coshu1 cosu2,α coshu1 sinu2,αu1). (4.5)

We have

∂ f
∂u1

= α(sinhu1 cosu2,sinhu1 sinu2,1),
∂ 2 f
∂u2

1
= α(coshu1 cosu2,coshu1 sinu2,0)

and
∂ f
∂u2

= α(−coshu1 sinu2,coshu1 cosu2,0),
∂ 2 f
∂u2

2
=−∂ 2 f

∂u2
1

whence
ds2 = α

2 cosh2 u1(du2
1 +du2

2)

and ∂ 2 f/∂u2
1 +∂ 2 f/∂u2

2 ≡ 0. Thus, the catenoid is a minimal surface by Proposition 4.1.1. It is
straightforward to check that

K =− 1
α2 cosh4 u1

.

which implies that f is free of umbilical points. Thus, the catenoid is a surface of Enneper type
with the two families of lines of curvature being planar (Fig. 8).

Example 4.1.2 (Helicoid). The Helicoid is the surface parametrized by

f (u1,u2) = (α sinhu1 cosu2,α sinhu1 sinu2,αu2).
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Figure 8 – Catenoid

The Catenoid is the only nonplanar minimal surface of revolution.

Source: Elaborated by the author.

Similarly to the catenoid, it is easy to check that

ds2 = α
2 cosh2 u1(du2

1 +du2
2)

and that ∂ 2 f/∂u2
1 +∂ 2 f/∂u2

2 ≡ 0. Thus, the helicoid is a minimal surface (Fig. 9).

Example 4.1.3 (Enneper Minimal Surface). The Enneper minimal surface is given by

f (u1,u2) =

(
u1 −

u3
1

3
+u1u2

2,u2 −
u3

2
3
+u2u2

1,u
2
1 −u2

2

)
.

We have
∂ f
∂u1

= (1−u2
1 +u2

2,2u1u2,2u1),
∂ 2 f
∂u2

1
= (−2u1,2u2,2)

and
∂ f
∂u2

= (2u1u2,1+u2
1 −u2

2,−2u2),
∂ 2 f
∂u2

2
=−∂ 2 f

∂u2
1
.

Hence the induced metric is

ds2 = (1+u2
1 +u2

2)
2(du2

1 +du2
2),

and since ∂ 2 f/∂u2
1+∂ 2 f/∂u2

2 ≡ 0, we conclude that f is a minimal surface. We also obtain that

N =
1

1+u2
1 +u2

2
(−2u1,2u2,1− (u2

1 +u2
2))
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Figure 9 – Helicoid

The helicoid is generated by a screw motion of some straight line meeting the z-axis
perpendicularly.

Source: Elaborated by the author.

and
∂ 2 f

∂u1∂u2
= (2u2,2u1,0)

which implies that b12 ≡ 0. Moreover, we easily compute that

K =− 4
(1+u2

1 +u2
2)

4 .

Thus, f is free of umbilical points and it is parametrized by lines of curvature. Now, we see that

⟨ f (u0
1,u2),(1,0,u0

1)⟩= u0
1 −

(u0
1)

3

3
+u0

1u2
2 +u0

1((u
0
1)

2 −u2
2)

= u0
1 +

2
3
(u0

1)
2 = const

and

⟨ f (u1,u0
2),(0,1,u

0
2)⟩=−u0

2 −
2
3
(u0

2)
2 = const.

Therefore, the two families of lines of curvature consist of planar curves.

4.2 Representation formulas
Let f : U →R3 be a minimal surface free of umbilical points, or equivalently, free of flat

points. Since its Gauss map N : U → S2 ⊂ R3 is a local diffeomorphism and H ≡ 0, it follows
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Figure 10 – Enneper Minimal Surface

The Enneper minimal surface is a self-intersecting surface.

Source: Elaborated by the author.

from Remark 1 that the metric induced by N is conformal to the metric induced by f on U .
Now, let (V,x) be a chart of S2 by stereographic projection. Then x : V → Ũ is a conformal
diffeomorphism onto an open subset Ũ ⊂ R2 with respect to the Euclidean metric. By restricting
to an open subset if necessary, we may assume that N : U → N(U) is a diffeomorphism and
that N(U)⊂V . Therefore, the surface f̃ = f ∘ (x∘N)−1 : Ũ → R3 is a reparametrization of f by
isothermal coordinates.

A well-known result in Geometry guarantees that any surface in R3 can be locally
parametrized by isothermal coordinates; however, the proof of this fact in the C∞ case is signifi-
cantly more complicated, see (SPIVAK, 1999, p. 345) for example. From now on, when we say
that a surface f : U ⊂ R2 → R3 is minimal we are meaning that f is minimal and parametrized
by isothermal coordinates.

Theorem 4.2.1. Let U ⊂ C be a simply connected open subset, let (x0,y0,z0) ∈ R3 and let
w0 ∈U . Suppose that ϕ(w) = (ϕ1(w),ϕ2(w),ϕ3(w)) is an holomorphic map of U into C3 which
is never zero and satisfies

ϕ
2
1 +ϕ

2
2 +ϕ

2
3 ≡ 0. (4.6)

Then the formula

f (u1,u2) = (x0,y0,z0)+2Re
∫ w

w0

ϕ(ω)dω, w = u1 + iu2 ∈U (4.7)

defines a minimal surface f : U → R3.
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Conversely, any minimal surface f : U → R3 defined on a simply connected open subset
U ⊂ C can be parametrized in this way.

Proof. We can write f (w) = 2Re Φ(w), where Φ : U →C is a holomorphic map with derivative

Φ
′ = ϕ.

On the other hand, using ∂Φ/∂ w̄ = 0 and the Cauchy-Riemann equations we obtain

∂Φ

∂w
=

∂ReΦ

∂u1
+ i

∂ ImΦ

∂u1
=

∂ReΦ

∂u1
− i

∂ReΦ

∂u2

=
1
2

(
∂ f
∂u1

− i
∂ f
∂u2

)
,

(4.8)

which implies that

ϕ =
∂ f
∂w

. (4.9)

Note that (4.6) shows that Re ϕ ∧ Im ϕ ̸= 0, since ϕ is never zero. Thus, by (4.9) we have

∂ f
∂u1

∧ ∂ f
∂u2

= (2Re ϕ)∧ (−2Im ϕ) ̸= 0.

This shows that f : U → R3 defines a surface with ϕ as its associated phi function. Therefore, f

is a minimal surface by Proposition 4.1.2.

For the converse statement, just take ϕ to be the associated phi function of f and the
result follows immediately from (4.2) and Proposition 4.1.2.

Let us now study a minimal surface f : U → R3 in terms of the parametrization given by
(4.7). Since

∂ f
∂u1

= 2Re ϕ,
∂ f
∂u2

=−2Im ϕ

it follows that 2⟨Re ϕ,Re ϕ⟩∼ = |ϕ1|2 + |ϕ2|2 + |ϕ3|2 := |ϕ|2, whence

ds2 = 2|ϕ|2(du2
1 +du2

2).

Furthermore, the Gauss map of f becomes

N =
(2Re ϕ)× (−2Im ϕ)

2|ϕ|2
= 2|ϕ|−2Im (ϕ2ϕ̄3,ϕ3ϕ̄1,ϕ1ϕ̄2). (4.10)

By differentiating ϕ and using that f is harmonic we have

2ϕ
′ =

(
∂ 2 f
∂u2

1
− ∂ 2 f

∂u1∂u2
i
)
=−∂ 2 f

∂u2
1
− ∂ 2 f

∂u1∂u2
i,
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and taking the inner product of the real and imaginary parts of the preceding equation with N we
obtain 〈

2ϕ
′,N
〉∼

= b11 −b12i =−b22 −b12i.

In particular, we see that b11 = −b22, which agrees with the fact that g11 = g22,g12 = 0 and
H = 0.

Denoting v2
1 := 2|ϕ|2 and using the isothermal conditions, we obtain

∇∂u1
∂u2 =

∂ (logv1)

∂u2
∂u1 +

∂ (logv1)

∂u1
∂u2,

∇∂u1
∂u1 =

∂ (logv1)

∂u1
∂u1 −

∂ (logv1)

∂u2
∂u2.

Thus, it follows that

⟨A∂u1,∇∂u2
∂u1⟩−⟨A∂u2,∇∂u1

∂u1⟩=
∂ (logv1)

∂u2
b11 +

∂ (logv1)

∂u1
b12

−
(

∂ (logv1)

∂u1
b12 −

∂ (logv1)

∂u2
b22

)
= 0,

(4.11)

since b11 =−b22. The Codazzi equation for ∂u1 and ∂u2 gives

∇∂u1
A∂u2 = ∇∂u2

A∂u1,

and taking the inner product with ∂u1 yields

⟨∇∂u1
A∂u2,∂u1⟩= ⟨∇∂u2

A∂u1 ,∂u1⟩. (4.12)

On the other hand, since

∂bi j

∂ui
= ∂ui(⟨A∂ui,∂u j⟩) = ⟨∇∂ui

A∂ui,∂u j⟩+ ⟨A∂ui,∇∂ui
∂u j⟩,

it follows from (4.12) that

∂b11

∂u2
− ∂b12

∂u1
= ⟨A∂u1,∇∂u2

∂u1⟩−⟨A∂u2,∇∂u1
∂u1⟩= 0, (4.13)

taking (4.11) into account. Similarly, we obtain

∂b11

∂u1
+

∂b12

∂u2
= 0. (4.14)

Remark 4. In virtue of (4.13) and (4.14), for a minimal surface defined on a connected domain
such that b12 = 0, the Codazzi equation implies that b11 =−b22 is a nonzero constant.

Next, we introduce the complex function l : U → C defined by

l(w) := b11(w)− ib12(w) =
〈
2ϕ

′,N
〉∼

.
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We have

∂ l
∂ w̄

=
1
2

(
∂b11

∂u1
− i

∂b12

∂u1
+ i
(

∂b11

∂u2
− i

∂b12

∂u2

))
=

1
2

(
∂b11

∂u1
+

∂b12

∂u2
+ i
(

∂b11

∂u2
− ∂b12

∂u1

))
= 0,

(4.15)

on account of (4.13) and (4.14), hence l is holomorphic in U .

Moreover, the Gaussian curvature of f becomes

K =
b11b22 −b2

12
g11g22 −g2

12
=

−(b2
11 +b2

12)

4|ϕ|4
=− |l|2

4|ϕ|4
. (4.16)

We then conclude from (4.16) that the umbilical points of f must either be isolated or else
b11 ≡ b22 ≡ b12 ≡ 0, which implies that f is a planar surface. In other words, the umbilical
points of a nonplanar minimal surface are isolated.

Finally, it turns out that the lines of curvature of f can be obtained by means of the
holomorphic function l. Indeed, let w(t) = (u1(t),u2(t)), t ∈ I, be a curve in U . Then w(t) is a
line of curvature of f if and only if N*w′(t) =−k(t) f*w′(t), for some k ∈C∞(I), or equivalently,

u′1(t)N*∂u1 +u′2(t)N*∂u2 =−k(t)(u′1(t) f*∂u1 +u′2(t) f*∂u2) (4.17)

Taking the inner product of both sides of (4.17) first with f*∂u1 and then with f*∂u1 , and using
the isothermal condition, yields the following equivalent system of equations

u′1(t)⟨N*∂u1, f*∂u1⟩
∼+u′2(t)⟨N*∂u2, f*∂u1⟩

∼ =−k(t)u′1(t)g11,

u′1(t)⟨N*∂u1, f*∂u2⟩
∼+u′2(t)⟨N*∂u2, f*∂u2⟩

∼ =−k(t)u′2(t)g11.

Using that ⟨N*∂ui, f*∂u j⟩∼ = ⟨− f*A∂u2, f*∂u2⟩∼ =−⟨A∂ui,∂u j⟩=−bi j and that b11 =−b12 the
above system becomes

−u′1(t)b11 −u′2(t)⟨b12 =−k(t)u′1(t)g11,

−u′1(t)b12 +u′2(t)b11 =−k(t)u′2(t)g11.
(4.18)

Now, multiplying the first equation with u′2(t), the second with −u′1(t) and adding the resulting
equations, we obtain the differential equation of the lines of curvature,

(u′1(t)
2 −u′2(t)

2)b12 −2u′1(t)u
′
2(t)b11 = 0. (4.19)

Here b12 and b11 have to be understood as b12(w(t)) and b11(w(t)). If we now consider the
holomorphic quadratic differential

l(w)(dw)2, dw = du1 + idu2
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the differential equation (4.19) transforms into

Im l(w)(dw)2 = 0. (4.20)

Once one determines all the holomorphic functions ϕ1,ϕ2 and ϕ3 satisfying the condition
ϕ2

1 +ϕ2
2 +ϕ2

3 ≡ 0, the Theorem above yields all minimal surfaces defined on simply connected
domains. This is achieved by the following elementary result whose proof uses only basic facts
of complex functions and can be found on (DIERKES; HILDEBRANDT; SAUVIGNY, 2010, p.
111).

Lemma 4.2.2. Let µ(w) be a holomorphic function and ν(w) be a meromorphic function in a
domain U in C such that µν2 is holomorphic. Furthermore, assume that if w is a pole of order n

of ν , then w is a zero of order 2n of µ , and that these are the only zeros of µ . Then the complex
map

ϕ =

(
1
2

µ(1−ν
2),

i
2

µ(1+ν
2),µν

)
is holomorphic in U and satisfies the conditions of Theorem 4.2.1.

Conversely, every such ϕ satisfying the conditions of Theorem 4.2.1 can be written in
the form above if and only if ϕ1 − iϕ2 ̸≡ 0.

If we now consider a minimal surface f given as in Theorem 4.2.1, and suppose that
ϕ1 − iϕ2 ≡ 0, it follows that

−ϕ
2
3 = ϕ

2
1 +ϕ

2
2 = (ϕ1 − iϕ2)(ϕ1 + iϕ2) = 0.

Hence

l =
〈
2ϕ

′,N
〉∼

= 2⟨(ϕ ′
1,ϕ

′
2,0),(0,0,2|ϕ|−2Im ϕ1ϕ̄2)⟩∼ = 0,

which shows that K ≡ 0, and consequently f must be planar.

Therefore, combining Theorem 4.2.1 with Lemma 4.2.2 we obtain the Weirstrass-

Enneper Representation Formula:

Theorem 4.2.3. For every nonplanar minimal surface f : U → R3 defined on the simply con-
nected open U ⊂ C, there exist a holomorphic function µ and a meromorphic function ν in U

such that µν2 is holomorphic in U , µ and µν2 have no common zeros, and such that the formula

f (w) = f (w0)+Re
∫ w

w0

µ(ω)
(
1−ν(ω)2, i(1+ν(ω)2),2ν(ω)

)
dω (4.21)

holds for arbitrary w,w0 ∈U .

Conversely, two complex functions µ and ν defined on a simply connected domain U in
C as above define by means of (4.21) a nonplanar minimal surface f : U → R3.
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Let f : U → R3 be a minimal surface given in the form (4.21). By virtue of (4.10) and
using that

ϕ1 =
1
2

µ(1−ν
2), ϕ2 =

i
2

µ(1+ν
2), ϕ3 = µν ,

a straightforward computation yields the formula

N =
1

1+ |ν |2
(
2Re ν ,2Im ν , |ν |2 −1

)
(4.22)

for the Gauss map of f .

Next, we address the problem of giving a representation formula that only involves
an arbitrary complex function instead of two as in (4.21). We start by considering C̄ as the
compactified complex plane, that is, C̄ = C∪{∞}. Now, let σ : S2 → C̄ be the stereographic
projection from the north pole P = (0,0,1), where P is mapped to ∞.

The formula for the stereographic projection is

σ(x,y,z) =
x+ iy
1− z

, (x,y,z) ̸= P,

and
σ
−1(ω) =

1
1+ |ω|2

(
2Re ω,2Im ω, |ω|2 −1

)
, ω ̸= ∞.

Note that, if we compare the formula 4.22 with the expression of σ−1, we see that

N(w) = σ
−1(ν(w)),

hence
ν(w) = σ(N(w)). (4.23)

In other words, the meromorphic function ν is the stereographic projection of the Gauss
map N, hence w ∈ U is either a singularity or a zero of ν , according to whether the point
N(w) ∈ S2 is the north or the south pole, respectively.

In a neighborhood of a nonumbilic point of f , after possibly restricting U to a smaller
subset and relabeling the coordinate axes if necessary, we can assume that N : U → S2 is a
diffeomorphism and that N(w) is not parallel to the z-axis, for all w ∈U . Then, by (4.23) and the
inverse function theorem for holomorphic functions, we infer that ν : U → Ω is biholomorphic
of U onto some simply connected open Ω ⊂ C∖{0}.

Before we proceed, let us note that if (u1,u2) are isothermal coordinates of f and R is a
holomorphic function, with R′ ̸= 0, then R∘ (u1,u2) are also isothermal coordinates of f , since
R is a conformal map.

Then, f̃ = f ∘ ν−1 : Ω → R3 is a reparametrization of f in Ω, which is again a min-
imal surface, and we can assume that the Jacobian of the coordinate change is positive, by
interchanging u1 and u2, if necessary.
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Finally, using the rules for the change of variables for integrals, we obtain from (4.21)
the following representation formula of Weirstrass:

f̃ (ω) = f̃ (ω0)+Re
∫

ω

ω0

F(ζ )
(
1−ζ

2, i(1+ζ
2),2ζ

)
dζ , ω,ω0 ∈ Ω, (4.24)

where

F(ω) :=
µ(ν−1(ω))

ν ′(ν−1(ω))
= (ν−1)′(ω)µ(ν−1(ω)), ω ∈ Ω.

The Gaus map of f̃ is therefore given by

Ñ(ω) = N(ν−1(ω)) = σ
−1(ω) =

1
1+ |ω|2

(
2Re ω,2Im ω, |ω|2 −1

)
.

Furthermore, we have〈
ϕ
′(ω), Ñ(ω)

〉∼
=

F ′(ω)

1+ |ω|2
(
2Re ω(1−ω

2)+2iIm ω(1+ω
2)+2ω(|ω|2 −1)

)
+

F(ω)

1+ |ω|2
(
2Re ω(−2ω)+2Im ω(2iω)+2(|ω|2 −1)

)
=

F ′(ω)

1+ |ω|2
2ω
(
1+ω

2 −2Re ω(ω)+ |ω|2 −1
)

+
F(ω)

1+ |ω|2
−2
(
1+ |ω|2

)
=−2F(ω),

hence
l̃(ω) =

〈
2ϕ

′(ω), Ñ(ω)
〉∼

=−4F(ω), (4.25)

and, using (4.20), the differential equation of the lines of curvature of f̃ becomes

Im F(ω)(dω)2 = 0.

Conversely, for every nowhere vanishing holomorphic function F defined on a simply
connected open subset Ω ⊂ C∖{0}, the formula

f (ω) = Re
∫

ω

ω0

F(ζ )
(
1−ζ

2, i(1+ζ
2),2ζ

)
dζ , ω,ω0 ∈ Ω (4.26)

defines a minimal surface, since we can choose µ(ω) = F(ω) and ν(ω) = ω in (4.21).

Remark 5. Consider the holomorphic function given by

F(ζ )≡ k,

where k ∈ R is a nonzero constant. Substituting F in (4.26) we have

f (ω) = kRe
(

ω − ω3

3
, i
(

ω +
ω3

3

)
,ω2
)
+(x0,y0,z0)

= k
(

u1 −
u3

1
3
+u1u2

2,−
(

u2 −
u3

2
3
+u2u2

1

)
,u2

1 −u2
2

)
+(x0,y0,z0),



88 Chapter 4. Minimal surfaces of Enneper type

where ω = u1 + iu2. Hence, the corresponding minimal surface f is, up to an isometry and a
homothety of R3, a piece of the Enneper minimal surface.

Remark 6. We now consider the holomorphic function

F(ζ ) =
k

ζ 2 ,

for some nonzero constant k ∈ R. Looking at (4.26), we obtain

f (ω) = kRe
(
−ω

−1 −ω, i(−ω
−1 +ω),2logω

)
+(x0,y0,z0).

By introducing the new variable w = logω , the expression for f can be rewritten as

f (w) = kRe
(
−(ew + e−w), i(ew − e−w),2w

)
+(x0,y0,z0)

= kRe (−2coshw, i2sinhw,2w)+(x0,y0,z0)

= 2k (−coshu1 cosu2,−coshu1 sinu2,u1)+(x0,y0,z0)

where w = u1 + iu2. Therefore, in this case, f is a reparametrization of a piece of a catenoid, up
to isometries of R3.

Nitsche (1989, p. 148) lists several other specific examples for the use of the representa-
tion formula of Weierstrass. For example, the choice F(ζ ) =℘(ζ ) (the Weierstrass ℘ function)
leads to Costa’s Surface (Fig. 11).

Figure 11 – Costa’s Surface

The Costa surface is a complete minimal embedded surface in R3. This surface was discovered
in 1984 by the Brazilian mathematician Celso José da Costa.

Source: (WEISSTEIN, 2022)

4.3 The classification

Let f : M2 → R3 be a minimal surface free of umbilical points. After composing f with
an isometry of R3, if necessary, the representation formula of Weierstrass allows us to consider
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f : Ω → R3 locally represented on the simply connected open subset Ω ⊂ C∖{0} by means of a
nowhere vanishing holomorphic function F : Ω → C in the form

f (ω) = f (ω0)+Re
∫

ω

ω0

F(ζ )
(
1−ζ

2, i(1+ζ
2),2ζ

)
dζ , ω,ω0 ∈ Ω. (4.27)

As we saw in the last section, for a surface given in this form we have

N(ω) = σ
−1(ω) or σ(N(ω)) = ω, (4.28)

where σ : S2 → C is the stereographic projection from the north pole. Moreover,

l(ω) = b11(ω)− ib12(ω) =−4F(ω), (4.29)

and the differential equation of the lines of curvature becomes

Im F(ω)(dω)2 = 0,

which is also equivalent to

Re
√

F(ω)dω Im
√

F(ω)dω = 0,

since Im ω = 2Re
√

ω Im
√

ω , for a complex number ω . Thus, by integrating Re
√

F(ω)dω =

0 and Im
√

F(ω)dω = 0, we conclude that the lines of curvature of f are given by the equations

Re
∫

ω

ω0

√
F(ζ )dζ = const, Im

∫
ω

ω0

√
F(ζ )dζ = const. (4.30)

The preceding equation leads us to introduce principal coordinates which are also
isothermal on the minimal surface. Indeed, fix some ω0 ∈ Ω and set

R(ω) :=
∫

ω

ω0

√
F(ζ )dζ , ω ∈ Ω. (4.31)

This defines a holomorphic function

ζ = R(ω), ω ∈ Ω.

Since R′(ω) =
√

F(ω) ̸= 0, we may assume that R : Ω → R(Ω) is biholomorphic, after possibly
restricting Ω to a smaller subset. Then, (ζ1,ζ2) defined by ζ = ζ1+ iζ2 are isothermal coordinates
of f ∘R−1, and by (4.30) the coordinate curves ζ1 = const and ζ2 = const are its lines of curvature.

We point out that local parameterizations that are both isothermal and by lines of
curvature at the same time do not exist on most surfaces. Besides minimal surfaces, other
examples of surfaces with this property are quadrics and surfaces with constant mean curvature,
among others, see (CANEVARI, 2004). Making use of these special coordinates for minimal
surfaces, we are able to prove the following key fact.
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Theorem 4.3.1. Let f : M2 → R3 be a minimal surface free of umbilical points. If the lines of
curvature of one family are contained in planes, then the same holds for those of the other family.

Proof. Let f be locally parametrized by lines of curvature with isothermal coordinates (u1,u2).
Then the induced metric can be written as

ds2 = v2
1(du2

1 +du2
2).

We have 〈
∂ 2 f

∂ui∂u j
,

∂ f
∂uk

〉∼
=
〈

∇̃∂ui
f*∂u j , f*∂uk

〉∼
=
〈

f*∇∂ui
∂u j , f*∂uk

〉∼
= ⟨∇∂ui

∂u j ,∂uk⟩.

It follows that 〈
∂ 2 f

∂ui∂u j
,

∂ f
∂uk

〉∼
=


−∂ (logv1)

∂uk
v2

1 if i = j ̸= k,
∂ (logv1)

∂ui
v2

1 if j = k,
∂ (logv1)

∂u j
v2

1 if k = i ̸= j.

We also have 〈
∂N
∂ui

,
∂ f
∂u j

〉∼
=−⟨ f*A∂ui, f*∂u j⟩

∼ =−⟨A∂ui,∂u j⟩=−bi j.

Since ∂u1 and ∂u2 are eigenvectors of the shape operator, we obtain b12 = 0, and con-
sequently the Codazzi equation implies that b11 =−b22 is a nonzero constant (see Remark 4).
Thus, the Gauss and Weingarten formulas become

−∂ 2 f
∂u2

2
=

∂ 2 f
∂u2

1
=

∂ (logv1)

∂u1

∂ f
∂u1

− ∂ (logv1)

∂u2

∂ f
∂u2

+b11N,

∂ 2 f
∂u1∂u2

=
∂ (logv1)

∂u2

∂ f
∂u1

+
∂ (logv1)

∂u1

∂ f
∂u2

and

∂N
∂u1

=−b11

v2
1

∂ f
∂u1

,

∂N
∂u2

=
b11

v2
1

∂ f
∂u2

.

A straightforward computation now yields

∂ 3 f
∂u3

1
=

[
∂ 2(logv1)

∂u2
1

+

(
∂ (logv1)

∂u1

)2

−
(

∂ (logv1)

∂u2

)2

−
b2

11
v2

1

]
∂ f
∂u1

+

[
−∂ 2(logv1)

∂u1∂u2
−2

∂ (logv1)

∂u1

∂ (logv1)

∂u2

]
∂ f
∂u2

+b11
∂ (logv1)

∂u1
N
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and

∂ 3 f
∂u3

2
=

[
∂ 2(logv1)

∂u2
2

−
(

∂ (logv1)

∂u1

)2

+

(
∂ (logv1)

∂u2

)2

−
b2

11
v2

1

]
∂ f
∂u2

+

[
−∂ 2(logv1)

∂u1∂u2
−2

∂ (logv1)

∂u1

∂ (logv1)

∂u2

]
∂ f
∂u1

−b11
∂ (logv1)

∂u2
N

Fixing an orientation we obtain

∂ f
∂u1

∧ ∂ 2 f
∂u2

1
=−b11

∂ f
∂u2

− ∂ (logv1)

∂u2
v2

1N,
∂ f
∂u2

∧ ∂ 2 f
∂u2

2
=−b11

∂ f
∂u1

+
∂ (logv1)

∂u1
v2

1N.

Now, a simple calculation shows that〈
∂ f
∂ui

∧ ∂ 2 f
∂u2

i
,
∂ 3 f
∂u3

i

〉∼
= b11v2

1

(
∂ (logv1)

∂u1

∂ (logv1)

∂u2
+

∂ 2(logv1)

∂u1∂u2

)
. (4.32)

Therefore, the u1-lines of curvature are planar if and only if its torsion (as a curve in R3) are
everywhere vanishing, which is by (4.32) equivalent to

∂ (logv1)

∂u1

∂ (logv1)

∂u2
+

∂ 2(logv1)

∂u1∂u2
≡ 0,

and, again by (4.32), this last equation holds if and only if the u2-lines of curvature are planar.

We now address the mentioned classification. Let f : M2 → R3 be a minimal surface
of Enneper type with one family of planar lines of curvature, and sufficient for the following
considerations, let us assume that f is locally represented on some simply connected open subset
Ω ⊂ C∖{0} by (4.27).

By virtue of the preceding Theorem, the Gauss map of f transforms the lines of curvature
into an orthogonal system of circles on the unit sphere, see the analysis of the orthogonal system
of circles in Chapter 2 and Theorem 2.2.2. Moreover, considering that the Gauss map is given by
(4.28), the image by the stereographic projection σ of such circles yield the lines of curvature of
f in Ω.

In the case a = 1, the equations of the pencils of planes are given by

x+λ (z−1) = 0, and y+µ(z−1) = 0, λ ,µ ∈ R. (4.33)

Intersecting the planes in (4.33) with S2, it follows by applying σ that

ω1 =
x

1− z
= λ , and ω2 =

y
1− z

= µ,

whence the lines of curvature corresponding to this orthogonal system of circles are the coor-
dinate curves ω1 = const and ω2 = const (Fig. 12). Hence, using (4.29) we obtain Im F(ω) =

(1/4)b12(ω) = 0, which implies that the holomorphic function F must be identically equal to
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Figure 12 – Orthogonal system of circles in case a = 1.

(a) Orthogonal circles on S2 (b) Stereographic projection

Source: Elaborated by the author.

a real constant. We then conclude by Remark 5 that the corresponding minimal surface f is a
piece of the Enneper minimal surface.

In the case a = 0, the line r1 coincides with the y-axis, and the second pencil, the planes
through the line at infinity, must be all the planes parallel to the plane y = 0. Since the planes
x = 0 and z = 0 pass through r1, in this case we have the pencils of planes x−λ z = 0 and y = µ ,
or, by relabeling the coordinate axes of R3,

x−λy = 0, and z = µ, λ ,µ ∈ R. (4.34)

Again, intersecting the planes given in (4.34) with S2 and by applying σ we obtain

ω1 =
x

1− z
= λ

y
1− z

= λω2

for the system of circles with respect to r1, and

ω
2
1 +ω

2
2 =

1−µ2

(1−µ)2

for the second system (Fig. 13). In other words, the lines of curvature corresponding to this
system are the straight lines through the origin and the concentric circles ω2

1 +ω2
2 = const in Ω.

Recall that these lines of curvature are also described by Re R(ω)= const and Im R(ω)=

const, where R : Ω → C is the holomorphic function defined by (4.31). Moreover, since R′ ̸= 0,
we obtain that R is a conformal map that takes the straight lines through the origin and the
concentric circles centered at the origin that are contained in Ω into coordinate curves.

Next, we consider L : Ω → C a branch of the complex logarithm defined on Ω and the
composition G = R∘ exp : L(Ω)→ C of R with the complex exponential. Then, the coordinate
curves of L(Ω) are mapped by the conformal map G into the coordinate curves of Ω. This implies
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Figure 13 – Orthogonal system of circles in case a = 0.

(a) Meridians and parallels (b) Stereographic projection

Source: Elaborated by the author.

that
G(ζ1,ζ2) = (G1(ζ1),G2(ζ2)), or G(ζ1,ζ2) = (G1(ζ2),G2(ζ1)).

We have |∂G/∂ζ1| = |∂G/∂ζ2|, and consequently G′
1(ζ1) = G′

2(ζ2) or G′
1(ζ2) = ±G′

2(ζ1). It
follows that

G(ζ1,ζ2) = (kζ1 +ζ
0
1 ,±kζ2 +ζ

0
2 ), or G(ζ1,ζ2) = (kζ2 +ζ

0
2 ,±kζ1 +ζ

0
1 ),

for some k,ζ 0
1 ,ζ

0
2 ∈ R. Since G is holomorphic, it remains only the following two possibilities

G(ζ1,ζ2) = (kζ1 +ζ
0
1 ,kζ2 +ζ

0
2 ), or G(ζ1,ζ2) = (−kζ2 +ζ

0
2 ,kζ1 +ζ

0
1 ),

and this can be written as

G(ζ ) = kζ +ζ0, or G(ζ ) = kiζ +ζ0.

Hence
R(ω) = kL(ω)+ζ0, or R(ω) = kiL(ω)+ζ0.

Taking into account the fact that R′(ω) =
√

F(ω), we conclude that

F(ω) =± k2

ω2 ,

for all ω ∈ Ω. Therefore, by Remark 6, the corresponding minimal surface f is a piece of a
Catenoid.

In the case where 0 < a < 1, with respect to the parameters of lines of curvature (u1,u2)

the Gauss map has the expression

N(u1,u2) =

( √
1−a2 sinu1

coshu2 +acosu1
,−

√
1−a2 sinhu2

coshu2 +acosu1
,
acoshu2 + cosu1

coshu2 +acosu1

)
,
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and the metric induced by N is

ds2 = (1−a2)(coshu2 +acosu1)
−2(du2

1 +du2
2).

Since f is a minimal surface and g12 = b12 = 0, we have

∂N
∂u1

=−b11

g11

∂ f
∂u1

,

∂N
∂u2

=
b11

g11

∂ f
∂u2

,

whence it follows that (u1,u2) are also conformal parameters and the Codazzi equation now
implies that b11 =−b22 ≡ α is a nonzero constant. Furthermore, we have

(1−a2)(coshu2 +acosu1)
−2 =

〈
∂N
∂u1

,
∂N
∂u1

〉∼
=

−b11

g11
(−b11),

and hence

∂ f
∂u1

=
α

1−a2 (coshu2 +acosu1)
2 ∂N

∂u1
,

∂ f
∂u2

=
−α

1−a2 (coshu2 +acosu1)
2 ∂N

∂u2
.

Now, using the expressions for ∂N/∂u1 and ∂N/∂u2 obtained in (2.20) and 2.21, respectively,
we then conclude that

∂ f
∂u1

=
α√

1−a2

(
cosu1 coshu2 +a,−asinhu2 sinu1,−

√
1−a2 sinu1 coshu2

)
,

∂ f
∂u2

=
α√

1−a2

(
sinu1 sinhu2,1+acoshu2 cosu1,

√
1−a2 sinhu2 cosu1

)
.

Finally, by integrating and choosing the constant of integration appropriately, we arrive
at the following explicit parametric equation for f :

f (u1,u2) =
α√

1−a2

 au1 + sinu1 coshu2

u2 +acosu1 sinhu2√
1−a2 coshu2 cosu1

 .
For a = 0, this surface reduces to the Catenoid (here the catenary is rotated about the y-axis), and
this agrees with the analysis we made in Theorem 2.2.2. We have therefore proved the following
theorem.

Theorem 4.3.2. Let f : M2 → R3 be a minimal surface of Enneper type with one family of
planar lines of curvature. Then f is locally, up to isometries and homotheties of R3, a piece of
one, and only one, of

∙ Enneper minimal surface,

∙ Catenoid, or
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∙ one surface of the family {Ba : R2 → R3 ; 0 < a < 1} given by

Ba(u1,u2) =
1√

1−a2

 au1 + sinu1 coshu2

u2 +acosu1 sinhu2√
1−a2 coshu2 cosu1.

 (4.35)

According to Nitsche, the family of surfaces (4.35) was discovered by Bonnet (1855)
(Fig. 14).
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Figure 14 – Bonnet family Ba

(a) a = 0.5

(b) a = 0.2

(c) a = 0.05

Source: Elaborated by the author.
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