• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Master's Dissertation
DOI
10.11606/D.55.2018.tde-26032018-114004
Document
Author
Full name
Marcio Roberto Weissmann
Institute/School/College
Knowledge Area
Date of Defense
Published
São Carlos, 1997
Supervisor
Committee
Godoy, Sandra Maria Semensato de (President)
Fichmann, Luiz
Ladeira, Luiz Augusto da Costa
Title in Portuguese
Existência de Soluções Periódicas para uma Classe de Equações Diferenciais Funcionais Retardadas e Aplicações
Keywords in Portuguese
Não disponível
Abstract in Portuguese
Estamos interessados no estudo da equação: - x(t) = λx(t) + λf(x(t-1)), λ > 0. (0.1) Sob algumas hipóteses gerais a respeito de f : R → R, nós primeiramente investigamos a existência de soluções periódicas lentamente oscilantes de (0.1). Em seguida, a existência de um contínuo ilimitado de tais soluções que aparece por bifurcação de Hopf é estabelecida. Finalmente, algumas aplicações a modelos biológicos e físicos são feitas.
Title in English
Not available
Keywords in English
Not available
Abstract in English
We are concerned with the equation: x(t) - λx(t) + λf(x(t - 1)), λ > 0. (0.1) Under some general hypotheses on f : R → R, we firstly state the existence of slowly oscillating periodic solutions of (0.1). After this, the existence of an unbounded continuum of such solutions that appears by Hopf bifurcation is established. Finally, some applications on biological and phisical models are made.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2018-03-26
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2022. All rights reserved.