• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Doctoral Thesis
DOI
10.11606/T.55.2009.tde-26022009-214414
Document
Author
Full name
Daniela Paula Demuner
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Carlos, 2009
Supervisor
Committee
Federson, Márcia Cristina Anderson Braz (President)
Apaza, Carlos Alberto Maquera
Cortez, Milton Edwin Cobo
Moreira, Carlos Gustavo Tamm de Araujo
Pires, Benito Frazão
Title in Portuguese
O Teorema de Poincaré-Bendixson para campos vetoriais contínuos na garrafa de Klein
Keywords in Portuguese
Campos vetoriais contínuos
Garrafa de Klein
Teorema de Poincaré-Bendixson
Trajetória fracamente recorrente
Trajetória recorrente
Abstract in Portuguese
Neste trabalho apresentamos uma versão do Teorema de Poincaré-Bendixson para campos vetoriais contínuos na garrafa de Klein. Como conseqüência, mostramos que a garrafa de Klein não possui campo vetorial contínuo com trajetória injetiva recorrente
Title in English
The Poincaré-Bendixson Theorem for continuous vector fields on the Klein bottle
Keywords in English
Continuous vector fields
Klein bottle
Poincaré-Bendixson Theorem
Recurrent trajectory
Weakly recurrent trajectory
Abstract in English
We present a version of the Poincaré-Bendixson Theorem on the Klein bottle for continuous vector fields. As a consequence, we obtain the fact that the Klein bottle does not admit continuous vector fields having a recurrent injective trajectory
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
tese.pdf (935.28 Kbytes)
Publishing Date
2009-05-18
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
Centro de Informática de São Carlos
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2021. All rights reserved.