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RESUMO

SEMINARIO-HUERTAS, P. N. Dindmica assintética de equacgdes de onda sobre variedades
Riemannianas compactas: dissipacio localizada 6tima e forcas supercriticas. 2019. 107 p.
Tese (Doutorado em Cié€ncias — Matemética) — Instituto de Ci€ncias Matematicas € de Computa-
¢d0, Universidade de Sdo Paulo, Sio Carlos — SP, 2019.

A presente tese é dedicada ao estudo da dinamica a longo prazo de equagdes de ondas definidas
sobre variedades Riemannianas compactas, com bordo, que possuam dissipag¢@o localizada
e for¢as com crescimento Sobolev supercritico. O objetivo principal é construir regides de
dissipagdo com medida total (interior e fronteira) arbitrariamente pequena, de forma a garantir a
existéncia de atratores globais regulares de dimensao finita. Entre outros resultados, provaremos

uma versdo supercritica de um teorema de continuag¢do unica de Triggiani and Yao (2002).

Palavras-chave: Equagdes da onda Riemannianas, amortecimento néo linear localizado, atrato-

res globais.






ABSTRACT

SEMINARIO-HUERTAS, P. N. Asymptotic dynamics of wave equations on compact Ri-
emannian manifolds: sharp localized damping and supercritical forcing. 2019. 107 p.
Tese (Doutorado em Ciéncias — Matemadtica) — Instituto de Ciéncias Matemaéticas ¢ de Computa-
¢do, Universidade de Sdo Paulo, Sao Carlos — SP, 2019.

The present thesis is concerned with long-time dynamics of wave equations, defined on compact
Riemannian manifolds, with boundary, and featuring localized damping and nonlinear forcing
terms with supercritical Sobolev growth. The main objective is to construct optimal damping
regions with arbitrarily small summed interior/boundary measure that imply the existence of
a regular finite-dimensional global attractor. To this end, among other results, we prove a

supercritical extension of a unique continuation theorem of Triggiani and Yao (2002).

Keywords: Riemannian wave equations, nonlinear localized damping, global attractors.
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CHAPTER

1

INTRODUCTION

In the field of partial differential equations, the asymptotic analysis of the dynamics of
the evolution system is always a constant subject of study that generates a great interest within
the mathematical community, in particular for systems with localized dissipation, since they

allow us to model more realistic problems

Studying equations with localized dissipation involves a geometric study of the spatial
domain, which often leads to a deeper understanding on the geometry of these domains.

Therefore, this work has both a geometric approach and an functional approach, comple-

mented with an applications in Chapter S and 6.

1.1 Framework

An important question in differential equations has always been regarding the study of
energy decay, stabilization and controllability, where damping plays an important role. In the
case of wave equations, for example, Ralston (RALSTON, 1969) and Russell (RUSSELL, 1971a;
RUSSELL, 1971b) are pioneers in studying the stability and controllability of these equations.
Rauch (RAUCH, 1976) studied the action of damping on limited domains based on what is
proposed in (RAUCH; TAYLOR; PHILLIPS, 1974) by showing the exponential decay of energy.

In 1975, Rauch and Taylor (RAUCH; TAYLOR, 1975a; RAUCH; TAYLOR, 1975b)
developed an idea in relation to the decay of energy with respect to the location of the damping
on a certain region @ of the domain in such a way that it suffices to locate the dissipation on
said region in order to achieve the exponential decay of the energy. Finding minor region of
dissipation has several of applications in science and technology, from constructions or analysis
of seismic waves, among others. In order to construct such a the region @ they studied the effects



18 Chapter 1. INTRODUCTION

of the geometrical optics on the whole domain as proposed in (RALSTON, 1969), defining
a Geometric Control Condition (GCC for short) that was later generalized in the context of
Riemannian manifolds by Bardos et al. (BARDOS; LEBEAU; RAUCH, 1992) from the study of

the geodesics.

This idea of being able to locate the dissipation had repercussions in different areas of the
study of the wave equations, for example, applications are obtained in the exact controllability
on the boundary of the region (e.g. (BURQ; GERARD, 1997; ALABAU-BOUSSOUIRA, 2005;
MARTINEZ, 1999)), in the localized dissipations in exterior domains (e.g. (NAKAO, 1996b;
NAKAO, 1996a; NAKAO, 2005; BAE; NAKAO, 2005)) or in the study of attractors and stability
of waves with localized damping exposed to subcritical, critical or supercritical forces (e.g.
(DEHMAN; LEBEAU; ZUAZUA, 2003; FEIREISL; ZUAZUA, 1993; JOLY; LAURENT, 2013;
CHUESHOV; LASIECKA; TOUNDYKOV, 2008; CHUESHOV; LASIECKA; TOUNDYKOV,
2009; CAVALCANTI et al., 2010; CAVALCANTI et al., 2009)).

In the Euclidean case, an example of the construction of w satisfying the condition
(GCC), used in several of the aforementioned references (see Figure 1) for a wave equation with

damping located on a domain M C R3, given by

02U — Au+ Y= 0in M x (0,c0),
is to set a xo € R¥\ M, i.e. an observer outside the M such that @ is a neighborhood of the closure

is R3 of the set

{x€adM : (x—xp)-n(x) > 0},

where n(x) represents the outward normal unit vector in x € M.

-2 n(r)

Figure 1 — Because the distribution of @ over the boundary of M, the measure of @ with respect to M can
be as small as desired.

The concept of the observer point leads to the study of different properties generated
by w. Different authors (cf. (RAUCH; TAYLOR, 1975a; RAUCH; TAYLOR, 1975b; BAR-



1.1. Framework 19

DOS; LEBEAU; RAUCH, 1992; ENRIKE, 1990; ZUAZUA, 1991; TRIGGIANI et al., 2002;
LASIECKA; TRIGGIANI; ZHANG, 2000) among others) study the effects of said location,
such as the properties of observability related to the boundary conditions on the equation, or the
unique continuation property, that is, if the solution is nukk on ® then it is null on the whole.
These properties are fundamental in the study of the decay of energy, as in the theory of attractors
(see, e.g. (CAVALCANTI et al., 2010; CAVALCANTI et al., 2009; JOLY; LAURENT, 2013;
CHUESHOV; LASIECKA; TOUNDYKOV, 2008, CHUESHOV; LASIECKA; TOUNDYKOV,
2009)), which are mainly based on the Carleman estimates (see, e.g. (LASIECKA; TRIGGIANI;
ZHANG, 2000; TRIGGIANI et al., 2002; YAO, 2011)) or on Hérmander’s results (see, e.g.
(HORMANDER, 1997; ??; TATARU, 1999; JOLY; LAURENT, 2013; ROBBIANO; ZUILY,
1998)).

On the other hand, regarding the optimization of the location @, Cavalcanti et al. (CAV-
ALCANTI et al., 2010; CAVALCANTI et al., 2009) study a sharp localization, in the sense of
the control of the measure @, not only with respect to the domain measure, also with respect
to the measure of the boundary, where the construction of the dissipation region involves the
boundary and the interior of the set, always taking into account the property of being (GCC) (see
Figure 2).

OM Nw

|

-

Figure 2 — M represents the whole square. It is easy to see that there is full control in the area that occupies
® in relation to M as well as, the measure of @ NJdM.

It is important to note that the construction of the sharp dissipation regions presented in
(CAVALCANTI et al., 2010; CAVALCANTI et al., 2009) not only depends on the geometry of
the manifold, but also on the equation to be studied. This is a disadvantage when we want to use

the construction for other systems.
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Regarding the study of asymptotic dynamics for the Riemannian wave equation with
nonlinear localized damping and nonlinear forces, Chueshov et al. (CHUESHOV; LASIECKA;
TOUNDYKOV, 2009) prove the existence of a smooth global attractor with finite fractal di-
mension, being characterized by the unstable manifolds of stationary points, from the method
of contractive functions and proof a new observability inequality from the use of Carleman
estimates. It should be noted that in this case the nonlinearity has Sobolev’s critical growth.

For the supercritical case with linear localized damping, Joly and Laurent (JOLY; LAU-
RENT, 2013) show the gradient structure of the system and the existence of a global attractor
for it, by means of the Strichartz estimates (cf. (STRICHARTZ et al., 1977, KAPITANSKI,
1995; KAPITANSKI, 1989; IVANOVICI, ; GINIBRE; VELO, 1985; GINIBRE; VELO, 1989))
and the works of Hormander. It is important to observe that the optimal regularity and the finite
fractal dimension are not possible to prove mainly by the observability inequality, since the
initial energy is controlled from the kinetic energy of the system, this does not allow to possess
the sufficient regularity in the control, which makes the authors use the decomposition method

of the semigroup in an exponentially decaying part and a compact part.

In (CHUESHOV; LASIECKA; TOUNDYKOV, 2009; JOLY; LAURENT, 2013), the

location of the damping is in the classical sense, that is, it is not sharp.

Thus, after a review in the literature, the main objective is to study the effects of a new
observability inequality and unique continuity property in the existence of a smooth global
attractor with a finite fractal dimension and caracaterized by the unstable manifolds of stationary
points, for two waves equations: a Riemannian wave equation with nonlinear localized damping
and critical forces and a Riemannian wave equation with linear localized damping and super-
critical forces; where the damping region is sharp in the sense of (CAVALCANTI et al., 2010;
CAVALCANTI ez al., 2009).

To this end, we will divide the present work into six Chapters, the first of which is
intended to describe the previous notions for the subsequent analysis of the results, highlighting
the observability inequality and unique continuation property for finite collection overlapping
subdomains from the study of Carleman estimates as shown in (TRIGGIANI et al., 2002).

Chapter 2 is intended to proof the construction of the sharp admissible damping regions,
which is distinctly geometric and independent of the equation. While in Chapter 3 the geometric
consequences of this construction are shown, highlighting the decomposition in overlapping sets

of the spatial domain.

One of the important results shown in this work is described in Chapter 4, showing

new observability inequality and unique continuity property, that when applied in two wave
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equations: a Riemannian wave equation with nonlinear localized damping and critical forces and
a Riemannian wave equation with linear localized damping and supercritical forces; is achieved
prove the quasi-stability of the systems. This is detailed in the Chapter 5 and 6, respectively.

1.2 Setting

Given that the most important results of this work can be divided into three parts, we
will divide the hypotheses and considerations for each of the objectives into three sections: the
first of these being the proof of an inequality of observability and unique continuity property
on a N—dimensional Riemannian manifold; the second is with respect to the prove of a global
attractor for a three—dimensional Riemannian wave equation with nonlinear localized damping
and critical forces; while the third one is with respect to the study of the properties of a global
attractor for a three—dimensional Riemannian wave equation with linear localized damping and
supercritical forces. Note that our results and their proofs should easily extend to any space

N >3.

1.2.1 About the observability inequality and unique continuation
property

Let (M, g) be a N—dimensional connected compact Riemannian manifold of class C*
with smooth boundary dM. Let us consider the wave problem with T > 0 sufficiently large,
given by

{ atzw.—Aw:pow—*-platW in M x (O7T]) (1 1)

w=0o0ndM x (0,T],
where A represents the Laplace Beltrami operator on M and po, p; : M X (0,T] — R such that

p1 EL™(0,T;L>(M)), po € L*(0,T;L*(M)). (1.2)
We assume that: )

1. Forall z € H»?(M x (0,T])
poz € HY (M x (0,T]), d(poz) € L*(0,T;L*(M)). (1.3)
2. There exists Cpyr > 0 such that
Ipozll20r,22(m) < Crorl2llzzo,rsmanyys V2 € HY*(M x (0,T)). (1.4)
Taking into account that
HY (M x (0,T)) :=L*(0,T;H' (M)) nH (0, T; L2 (M)),

HYY(M x (0,T)) := L*(0,T; H*(M)) N H*(0, T; L*(M)).
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1.2.2 About the applications to wave equations with critical forces

Let (M, g) be a three—dimensional connected compact Riemannian manifold of class C*
with smooth boundary dM. Let us consider the damped wave problem with localized damping

02u— Au+a(x)g(du) + f(u) = h(x) in M x (0,),
u=0o0ndM x (0,0), (1.5)
u(x,0) = uo(x), du(x,0) =u1(x), x € M,

where A represents the Laplace Beltrami operator on M.

We assume that:
1. Respect to damping:
Existen constantes my,mp > 0 such that

g€CYR), g(0)=0 and m; <g'(z)<my, VzeR, (1.6)

a € L™ (M) such that a(x) > 0 for all x € M. (1.7)

2. Respect to forces:

There exists a constants C 'r > 0 such that

feC!R), £(0)=0, (1.8)

IF@I S Cr(1+12), 1F @IS Cr1+12P), 1" @IS CrA+ ), (1.9

F@e2 FQ) = 2P —my, F) > =Bl —my,  (L10

for some v > 0 and my > 0. Here A1 > 0 denotes the first eigenvalue of the Dirichlet
operator —A and F(z) = [§ f(y)dy.

The external force A is time-independent and

h e L*(M). (1.11)

Later we will add a hypothesis of location with respect to damping, that is to say that there will
be a constant ag > 0 such that for a certain open subset @ C M is fulfilled

a>agp>0, ae.in o, (1.12)

This hypothesis is fundamental for the proof of the existence of a global attractor in Chapter 5.
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1.2.3 About the applications to wave equations with supercritical

forces

Let (M, g) be a three—dimensional connected compact Riemannian manifold of class C*
with smooth boundary dM. Let us consider the damped wave problem with localized damping

02u— Au+ a(x)du+ f(x,u) = 0in M x (0,e0),
u=0o0n M x (0,00), (1.13)
u(x,0) = up(x), du(x,0) =u(x), xe M,

where A represents the Laplace Beltrami operator on M.
We assume that:
1. Respect to damping:

a € L*(M) such that a(x) > 0 for all x € M. (1.14)

There exist and open set @ C M, ag > 0, xo € M and R > 0 such that

Vx € w, a(x)>ap>0, M\B(x,R) C o. (1.15)

o satisfies the geometric control condition. (1.16)

The definition of @ satisfying the geometric control condition is discussed in detail in

Section 3.1.

2. Respect to forces:

There exists a constants Cy > 0, p € [3,5) and R > 0 such that all (x,u) € M xR

feC™(MxR,R), £(0)=0, (1.17)

FGm)] < Cr(1+1ulP), 13:f Gey)] < Cr(1+1ulP), [3uf (s,)] < C(1L )P~ (118)

(x & B(xo,R) or |u| > R) = f(x,u)u > 0. (1.19)

where x¢ denotes a fixed point of the manifold.
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1.3 Goals and new results

As commented when reviewing the previous literature that involves the work, the main

objective is to prove two great results:

The first main result, the Theorem 1.1, shows a new observability inequality and unique
continuation property for a class of £-controllable. The definition of €-controllable is shown later
in the work, in the Definition 3.1:

Theorem 1.1. Let (M, g) be a N—dimensional connected compact Riemannian manifold of
class C* with smooth boundary dM. Assume that statements (1.2)-(1.4) hold and that € > 0
and T > O sufficiently large is given. Then for all e-controllable set w0 C M sharp admissible
damping region and assuming that 7 > 0 is , and

w e L*(0,T; H} (M)) NH'(0,T;L*(M))

is a solution of the linear wave equation (1.1) where po, p1 : M X [0,T] — R satisfy the hypothesis
3 in Theorem 2.25. Then there exists K7 > 0 depending on €, T, g and k7 such that

T
/0 /w IVw|2da)dtZKT(||(w,atw)(O)llz&(Q)xLz(Q)+||(w,9,w)(T)||%11(Q)xL2(Q)). (1.20)

If in addition w = 0 in @ X [0, T}, it follows that w = 0 in M x [0, T].
The proof of this Theorem is found in Chapter 4.

The second main result, is a direct application of Theorem 1.1, getting to proof a smooth
global attractor with finite fractal dimension characterized by unstable manifolds of stationary
points of the dynamical system associated with the wave equation with nonlinear localized

damping and critical forces (1.5). This result is presented below:

Theorem 1.2. Let (M, g) be a three—dimensional connected compact Riemannian manifold of
class C* with smooth boundary dM. Assume that assumption (1.6)-(1.11) hold and that € > 0 is
given. Then for some €-controllable set @ C M sharp admissible damping region, such that (1.12)
is fulfilled, the dynamical system associated to the problem (1.5) possesses a global attractor &7 of
finite fractal dimension characterized by unstable manifolds of stationary points of the dynamical
system. Moreover, the attractor is smooth in the sense of o/ C (H2(M)NH} (M)) x H} (M), i.e.,
any full trajectory {(u(t),du(t)) | t € R} C & has the property that

du € L™(R; Hy (M)) NC(R; LA(M)), (1.21)

with bound
IVau()ll3 + 197u()l3 < C, (1.22)

where the constant C independent of ¢.
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The proof of this Theorem is found in Chapter 5.

Finally, the third main result, is an application of the observability inequality (1.20) for
the wave equation with localized linear damping and supercritical forces (1.13), getting to show
the fractal dimension and optimal regularity for a global attractor of the system.

Theorem 1.3. Let (M, g) be a three—dimensional connected compact Riemannian manifold
of class C* with smooth boundary dM. Assume that assumption (1.17)-(1.19) hold and that
€ > 0 is given. Then for some €-controllable set @ C M sharp admissible damping region,
such that (1.14)-(1.16) is fulfilled, the dynamical system associated to the problem (1.13)
possesses a global attractor &7 of finite fractal dimension characterized by unstable manifolds
of stationary points of the dynamical system. Moreover, the attractor is smooth in the sense of
& C (H*(M)NH}(M)) x H} (M), i.e., any full trajectory {(u(t),d,u(t)) | t € R} C & has the
property that

du € L™(R; Hy (M)) NC(R; L2(M)), (1.23)

with bound
IVou(®)|I3+ 197u() |} < C, (1.24)

where the constant C independent of ¢.

The proof of this Theorem is found in Chapter 6.

In addition to the previous theorems, the work presents a series of new results in terms of

literature. These are listed below:

1. Recover Carleman estimates for supercritical wave equations (see Chapter 1 and 4).

2. From a € > 0, construct a class of sets sharp admissible damping region from the new
definition of g-controllable sets (see Chapter 2). In addition, this construction is distinctly

geometric (independent of any PDE).

3. Prove a series of geometric consequences for the class of sharp admissible damping region
sets, highlighting a result of decomposition in overlapping sets and a coarea formula (see
Chapter 3).

4. Prove the existence of a smooth global attractor for the dynamic systems associated with
(1.5) and (1.13), through the study of quasi-stable dynamical systems (see Chapter 5 and
6).
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CHAPTER

2

MATHEMATICAL BACKGROUND

Now we recall the different notations and results regarding the differential geometry
that will be used throughout the present work. For more details see (ABRAHAM; MARS-
DEN; RATIU, 2012; O’NEILL, 1983; SAKAI, 1996; BURKE; BURKE, 1985; CARMO, 1992;
TAYLOR, 2013).

Let (M, g) be a compact Riemannian manifold, N—dimensional, with smooth boundary,

with the Riemannian metric g(-,-) = (-,-).

The interior of M will be denoted by int(M) and the boundary of M by dM. On the
other hand, we will denote the tangent space of M in the point p € M by T,M. Let’s set a
coordinate system (U, ¥ = (xy,...,xn)) of M. The canonical basis of T,M associated with this

neighborhood is BY = (ey, ..., en) such that ¢;(p) = Jx,(p).

Given d € C*(M) and vp, = [] a vector tangent to M in p, we define the derivative of d
in the direction of v, with v,(d) = £ |,—o(d o ¥) € R. We will denote the differential of d in p by

Dd(p) such that
Dd(p): T,M —R
vp > vp(d).

Let M be another differentiable manifold and f : M — M a differentiable application
among them. The differential of f in p will be denoted by Df(p) and is defined as

Df(p) . TPM -— Tf(p)M
(M= [forl.
A vector field X on M is an application that assigns to each point p € M a vector tangent

to M at that point, X(p) € T,M. That is, an application X : M — TM such that 7o X = Idy
where TM is the tangent manifold of M and 7 : TM — M the canonical projection.



28 Chapter 2. MATHEMATICAL BACKGROUND

An X field is said to be differentiable if X is C* differentiable as an application between

manifolds.

We will denote by X(M) the set of all vector fields on M. Note with the internal operator
the sum and product by real scalars, (X(M), +, -R) is a real vector space of infinite dimension, and
with the product defined by (d-X)(p) =d(p)X(p) for all p € M and d € C*(M), (X(M),+,")
is a module on the ring C*(M).

Fix X € X(M), for each function d € C*(M) we can define the application

X(d): M—R
p— X(p)(d),

that satisfies Leibniz’s rule, this is

X(f-g)=X(f)-g+f X(g)

Given X € X(M) a vector field and y: I — M, with I C R a differentiable curve. We
will say that 7 is an integral curve of X if ¥/(¢) = X(y(¢)) for all ¢ € I. In the case that ] = R we
will say that v is complete and that X is complete along ¥. If X is complete throughout all of its

integral curves, it is said that X is complete.

Remark 2.1:  An important result about complete vector fields is that if M is a compact manifold
then any vector field X € X(M) is complete (cf. eg. (O’NEILL, 1983)).

Let (#,R) be a vector space. A tensor r times covariant and s times contravariant (or

type (r,5)) on ¥ is a multilinear application
T: V"'x(7V*)y —R
(U1y ey Uy Wiy ooy Ws) > T (01 Upy Y1, oo, W)

We will denote by ;.5(7') the set of tensors type (r,s) over (¥, R) . It is easily verified
that (J,.4(7),+,-R) has vector space structure.

LetT € J.(¥) and T’ € Jy ¢(¥). The tensor product of T by T is defined as
TRT : Y x (v*)+ —R

((ula ceosUpgp s W1y eeny Ws—f—s’) — T®Tl(u1"“’ur+r’) Y1y l/’s+s')’

where

! !
TQRT (UyyeeuyUpyry Wy ooy Wogst) = Ty ey ry Wiy oo, Ws) T Uy 1y oo Uty Wk 1y eeey Wig! )-
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In the particular case that ¥ = TM and ¥™* = (T,M)*, we will call the flat application b
(lowering an index) between TM and (TM)* associated to the metric g,

b: TM — (TM)*
Vi V= (1),
with

(v)y: TM —R

wis V= (v, w).

We will denote by f to the inverse application of b, which will be called sharp application
(raising an index), and is characterized by the relation (y!, w) = y(w) for all ¥ € (TM)* and
weTM.

A tensor field T type (r,s) over M is an assignment of a tensor 7, € J;.+(T,M) at each
point p € M. Given T and a coordinate system (U, ), there exist functions tijl"j::';-fx, i1,..,js €
{1,2,3} defined in U such that

3 .
=Y " (p) Dxi(p)®...0Dx;,(p)®e)y(p)® ... ®¢;(p), YPEU, (2.1)

il!"'rj.r':l
where B, = {e1(p),e2(p),e3(p)} and B, = {Dx1(p),Dx2(p),Dx3(p)} they are basis of T,M
and (T,M)* respectively.

We say that T is continuous (resp. differentiable C"(M)) in p if for all functions t,-j; ‘;‘_:‘)}{‘
are continuous (resp. differentiable C"(M)) in p, in particular if T is differentiable C*(M) we

say that T is a tensor field.

We denote J,,s(M) := Upenm Ts(TpM). A tensor field type (r,s) is an application 7 :
M — J; (M) such that 7, ;o T = Idy, where 7,5 : T (M) — M is the canonical projection, that
is, m.5(Tp) = p for all T, € F;.(M). We denote by X, (M) the set of all tensor fields (r,s) over
M.

A differential form type (1,0) or 1-differential form « is a field of linear forms, that is,
tensors type (1,0). We will denote by Al(M) the set of all 1-differential forms, endowed with

their natural operations.

A differential form type (2,0) or 2-differential form 3 on a manifold M is a tensor field
(2,0) that is antisymmetric, this is, B,(v,,wp) = —B(wp,Vp) for all vy, w, € T,M and for all
p € M. We will denote by A2(M) the set of all 2-differential forms, endowed with their natural

operations.

We say that 1-differential form o € A!(M) is exact if there exists a function d € C*(M)
such that @ = Dd. Let @ = Y | o;Dx; be the expression of a differential form in a coordinate



30 Chapter 2. MATHEMATICAL BACKGROUND

system (U, y) of M, and define the external differential of o as

N N
Do = Z Z 3xj(Xi-DXj/\Dx,',
i=1j=1

with W A9 = y® ¢ — ¢ ® yw. Moreover, if y: [a,b] — M is a differentiable curve, we denote the

circulation of ¢ along ¥ as

/y o= / ’ oy (1))t

On (M, g), we denote by X* € A!(M) to the flat differential form of a field X € X(M),
and af € ¥(M) to the field of a sharp differential form ot € A1(M). In coordinates (U, y) these

fields have the expressious

N N
X=Y X, X'=Y g;XiDx;,
i=1 ij=1

N N )
a=Y aDx, o= Y glae;
i=1 ij=1
where g;; and g as in (2.1) with T =g, so for d € C*(M) we will denote the gradient vector
field of d by
Vd(p) = (Dd(p))', VpeM,

using the above coordinates, we can call the V f as
3 ..
Vd=Y glo.d-ej.
i,j=N

Additionally, for all X € X we have that

Vxd := (Vd,X) = X(d).

In what follows, we will denote the application V : X(M) x X(M) — X(M) given by
V(X,Y) = VxY as the Levi-Civita connection of (M,g) such that VxY satisfies the Koszul

formula and for the coordinates (U, y) it has to

N
Ve,'ej = Z l—\:'(jek)
k=1

where the coefficients Ffi are the Christoffel symbols of g and are given by

1

3
~ Y (0ugjm+ Or;8im — Or,8ij) €.

m=1

rf =
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Given 7: [a,b] — M a differentiable curve, we define the length of ¥ as

1) = [ Wl = [ o707 Ot

Moreover, if (M, g) is connected, we will denote the distance between two points p,qg € M
as

d(p,q) =inf{I(y) | 7:[a,b] = M, ¥(a) = p, ¥(b) =g}, (2:2)

Let v: [a, b] — M be a differentiable curve and t € (a, b) such that ¥/ (zp) # 0. We say that
X € X(y), if there exists £ > 0 and X € X(M) such that X (1) = X (¢) provided that |t — o] < &.

We denote the covariant derivative of X € X(y) in #y, by

DX

71;— (t()) = V/)/(,O)X.

In particular, about the coordinates (U, y) will be given by

N 3
%)t—( =) <X£+ )y (xioy)’Xj(f“,-‘jOY)> ek,

k=1 ij=1

where X = Y'¥| X;e; and I'}; are the Christoffel symbols in that chart.
A regular curve ¥ : [a,b] — M is said to be a geodesic of M if % =01in (a,b).

Let be X € X(M). The divergence of X is the function div(X) : M — R given by

ToM — TyM

divX = Trace
(@) (p) { R

} = (Vei(p)Xaei(p)>'

Note that if d € C*(M) is a function defined on M, then

div(d-X) =d-divX +g(Vd,X).
On the other hand, if p € M is a critical point of d, the Hessian of d in the critical point

p, (V2d), : T,M x T,M — R, is defined through

(V2d),(X,Y) = X(W(d)),
where W € X(M) satisfies W(p) =Y.

In particular,
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(V2d)p(X,X) = (do7)"(0),
with ¥ € C*((—¢,€),M) holds that ¥(0) = p, Y (0) = X.

Given d € C*(M), the Hessian of d is defined as V2d : X(M) x ¥(M) — C*(M) where

(VZd)(X,Y) = X(Y(d)) - (VxY)(d) = (VxVd,Y), VX,Y € E(M).

The Laplace-Beltrami operator of a given function d on a manifold, it is given by

Ad = div(Vd) = Trace(V*d) € C*(M).

For the L? spaces on Riemannian manifolds, the notations and definitions presented in
(TAYLOR, 2013) will be followed. Thus, over the space X (M) of all tensor fields on type
(0,k) the internal product is defined by

<TlaT2>x07k(M)=/M<T1’T2>%’k(M)dVga 71, T € Xox(M),

where,
N

(TI)T2>%,/¢(M)= Z Tl(ei17"')eik)TZ(eil)"'7eik))
ihyenik

and dVj is the volumen form of M for the metric g.

Remark 2.2:  Note that Jp (M) = Uper TAM.
We denote

LM, Xo,(M)) ={T € Xou(M) | [ (T,T) g3, 1)V% < =}

Analogously, L?(M) is the completion of C*(M) with the inner product
(u,v)20) = /Mu(x)v(x)dVg, u,v € C*(M).

2.1 Sobolev spaces on Riemannian manifolds
This section is intended to show the main definitions and results about Sobolev spaces
on Riemannian manifolds. For this we will continue as the main reference (HEBEY, 2000).

Let (M, g) be a Riemannian manifold. For k an integer and u € C*(M), V*u denotes the

k — th covariant derivative of u (with the convention Vou = u). As an example, the components
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of Vu in local coordinates are given by (Vu); = d;u, while the components of V2u in local
coordinates are given by
(Vzu),’j = aiju - F{-‘jaku.

By definition one has that

IVEul? = gt gl (Vou)y i (VEu) jyo

For k an integer and p > 1 real, we denote by C/ (M) the space of smooth functions u € C*(M)
such that |V/u| € LP(M) for any j = 0,...,k. Hence,

CP(M) = {ueC(M) |Vj=0,... k, / IVulPdVy < oo},
M

where, in local coordinates, dVg = , /det(g; j)dx, and where dx stands for the Lebesgue’s volume
element of RY, N = dimM. If M is compact, one has that Cf (M) = C=(M) for all k and p > 1.

Remark 2.3: When the dependency of g on the volume form dVj is clear, the classic dx or dM

notations will be used instead.

Definition 2.4: The Sobolev space W*? (M) is the completion of C{ (M) with respecto to the

norm

k _ 1/p
litweegu = X ([, 197uPa)
j=0 \YM

Proposition 2.5. If p = 2, H*(M) := Wk2(M) is a Hilbert space when equipped with the

equivalent norm

k
Iy = | X [ VPV
j=0'M

The scalar product (-, ) g« (s associated to || - || is defined by

k . .
(W on = Y /M (gr ... gimim (V™) o (VM) i) dVy.
m=0

Proposition 2.6. If M is compact, W*P (M) does not depend on the Riemannian metric.

Proposition 2.7. If p > 1, WhP (M) id reflexive.

Definition 2.8: The Sobolev space Wé‘ (M) is the closure of D(M) in W*P (M) where
D(M) = {¢ € C*(M) | ¢ have compact support in M }.

Theorem 2.9. If (M, g) is complete, then, for any p > 1, Wo1 P(M) = WP (M).
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Theorem 2.10. Let (M, g) be a complete Riemannian manifold with positive injectivity radius
and let £ > 2 be an integer. Suppose that there exists a positive constant C such that for any
j=0,...,k—2, [V/Rcy 4| < C. Then for any p > 1, Wy'? (M) = WhP(M).

Theorem 2.11. Let (M,g) be a compact Riemannian N—manifold. For any real numbers 1 <

g < p and any integers 0 < m < k satisfying 117 = % - "‘T’", it is true that the embedding

W4 (M) c W™P(M) is continuous.

Theorem 2.12. Let (M, g) be a compact Riemannian N—manifold. For any integers j > 0 and
m > 1, any real number g > 1, and any real number p such that 1 < p < N#—;nq, the embedding

of W/t™4(M) in W/P (M) is compact.

Corollary 2.13. Let (M, g) be a compact Riemannian three-manifold. Then:

(i) forany 1 < p < 6, the embedding of H!(M) in LP (M) is continuous,

(ii) forany 1 < p < 6, the embedding of H!(M) in LP (M) is compact.

2.2 Carleman estimates for wave equations

For this section, we will follow the works of Triggini and Yao (TRIGGIANI et al.,
2002) in order to show a result of observability inequality and unique continuation property.
With this objective, we will study these results for two different cases: for a subdomain of
an compact Riemannian manifold and for an finite collection overlapping subdomains for an

compact Riemannian manifold.

We consider (M, g) a N—dimensional connected compact Riemannian manifold of class
C> with metric g(-,-) = (-,+), squared norm |X|> = g(X,X), and with smooth boundary dM.

Moreover, for the temporary space, we will consider T > 0 large enough.

2.2.1 Case I: Observability inequality and unique continuation prop-
erty for subdomains of M

Let us consider  such that is an open bounded, conected, compact set of M with smooth
boundary @Q C dM. We let n denote the outward unit normal field along the boundary JM.

In this section we will study a observability and unique continuation result for the next

system on £,

{ 9tzw—AWZP0W+PlatWin QQ,T :ZQX(O7T]> (2 3)

w=0onZqr:=Qx(0,T],
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where po, p1 : Qq,r — R such that

p1 €L7(0,T;L™(Q)), po € L*(0,T;L*(Q)). (2.4)
We assume that:
1. For all z € H»*(M x (0,T))
pow € H"'(Qa 1), 8 (pow) € L*(0,T;L%(Q)), 2.5)
2. There exists Cpyr > 0 such that
lPowllz20,7:22(0)) < Cpor W2 0,701 () (2.6)
Taking into account that
H"(Qqr) :=L*0,T;H'(Q))NH"(0,T;L*(R)),
H>*(Qqr) :=L*(0,T; H*(Q)) NH?*(0,T; L*(Q)).

Moreover, we will denote by &g : [0,00) — R to the energy of the system with respect to
the norm in H!(Q) x L*(Q), i.e.

o) = /Q (10w(e) 2+ [Vw() 2+ [w(t)|2) dM. @7

Functional Approaches

We will start by defining an generator of the local escape vector fields,
denoted by the functional d. This functional and its local escape vector fields Vd

are fundamental for the application of Carleman estimates.

Definition 2.14: Letd : Q — R a function such that
(d.1)q d € C3(Q), min,_d(q) >0,
(d2)q V¥(X,X) > |X|2, VXET,M, VqeQ,

(d.3)q infq|Vd| >0,
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Consider the following definitions from the definition of d:

For T or sufficiently large, note that there is a 8 > 0 such that

T? > 4maxd(x) + 46.
xXeQ

For this 6 > 0, there is a constant ¢ such that 0 < ¢ < 1, where

¢T? > 4maxd(x) + 46

x€Q

Thus, we define the pseudo-convex function ¢ : M x R — R of class C given by
T\ 2
¢ (x,t) :d(x)—c(t——2—> , 0<t<T, xeM.
Note that ¢ satisfies the following properties

(9.1

T2 T2 —_
¢(x,0)=0¢(x,T)=d(x) s < maxd(x) —er < —46, uniformemente em x € Q.
xeQ

(¢.2.) Letty,ty suchthat0 <ty < T/2 <t; < T, then

min  ¢(x,t) >0, 0< o <m,
(x,t)EQX[to,tl]

where m := min, g d(x) > 0.
Now, repeating the done in (TRIGGIANI et al., 2002; LASIECKA,; TRIG-

GIANI; ZHANG, 2000), there is a rescaling for d such that we can define the

function

o(x) :=Ad(x)—c—1,

satisfying the following properties

(a.1.)
Ad(x) —2c—a(x)=1-c>0, Vx€ Q,
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(a.2.)
T 2
[2c+Ad — a)|Vd|?+2V2d(Vd,Vd) — 4c*(Ad +6¢c — o) (r—E) >4(1+7¢)¢* (x

for all (x,t) € Qq 7, where

T\ 2
o*(x,t) = d(x) —c? (t — E) , V(x,t) € Qar.
Remark 2.15: Note that

0*(x,t) > ¢(x,t), V(x,t) € Qar.

We now define the following sets in Qg r,

QQ,T(G) = {(xat) € QQ,T l ¢(xat) >0 > O}’
Oor(c*)={(xt)€Qar|¢*(x,t) > 6" >0}, 0<o* <0,

for some constant o* such that 0 < 6* < ¢ < m. Observe that
Qar x[to,t1] CQar(0) C Qo r(0%) CQar.

In addition, an important property regarding the function ¢ is the control

estimate of the terms it l.o.t.. This is

4(147c)¢*(x,1) > 4(14+7c)ox >0, V(x,t) € Qg r(07).
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Figure 3 - In this example we consider (M,g) = ([0,L],]-]), @ = (0,L), d = }|x — 10]? with ¢ = % and
T = 20. The plane denotes the region @, on the other hand the surface generated by ¢* is
represented by the top surface and the surface generated by ¢ by the bottom surface. Note that
both functions are pseudo-convex functions.

Operational notations

Let f(x,1),h(x,t) € C}(M x R) e X € 2 (M), then, we will use the fol-
lowing notations for the this section
(i) Vf:=(fr,=Vf),
(if) div(h,X) := hy + divX,
(iii) (h,X)(f) := hfi +X(),
(iv) w:= divVw.
The following lemma, found in (TRIGGIANI et al., 2002, Lemma 3.0.),

shows some important equivalences referring to the new notations

Lemma 2.16. Considering (i) — (iv), we have the following identities:
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(@) Lw=wy—Aw,

(b) div(f(h,X)) = fdiv(h,X)+ (b, X)(f),
(c) V(h) = fihy —V£(h),

(d) divf(X) = fdivX +X(f).

Auxiliary functions

Since the objective is to approximate the solution w € C*(Qgq ..) from
the pseudo-convex function ¢, it is necessary to construct different auxiliary
functions that have goods properties over Qg r and Q?z,T- Therefore, given
w € C*(Qq ), d € C3(Q) and a(x) € C!(Q) the functions defined above, and

let 7 > 0 be an arbitrary parameter, we define

T 2
I(x,t) ='L'(d(x)—c(t—-2—) ) = 1¢(x,1), 2.8)
W(x) = ta(x), O(x,r)=e ") = 0t (2.9)
a(x,1) = 72 (l¢t|2—|Vd|2) +le—1)T= (2.10)

T 2
72 <4c2 (t — 5) — |Vd|2> +2¢cTt4TAd — .

Note that next to the operational notations is clearly the following Lemma

Lemma 2.17. In the context of the functions defined above with ¢ € (0,1). The

following identities are satisfied
(l) lPt = 0,

(ii) b = —21c(r - %),

(lll) ltt = —2(,'1:,

(iv) VI =1Vd,
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(v) V¥ = tVa,
(Vl) Vlt = O,
(vii) Al = TAd,

(viii) a = 7* (402 (- %)2 —|Vd |2) + O(7), where O() represents a positive

linear error dependent on tau, in particular 7(c —1).

On the other hand, given that one of the objectives is to be able to prove
an observability result, we need estimates on dQ. Note that Carleman estimates
do not require a particular condition on the boundary of the manifold. So, in
order to facilitate the mathematical calculations, we will consider that the system

has Dirichlet conditions. We will denote the term that contains the terms about

Lo as BT |g 1 such that

ow

2
BT|qr =27 / 62 (-—) (Vd,n)dXq 1. (2.11)
Tor on ’

Also, we define

I5 = {x€9Q|(Vd(x),n(x)) <0}, T{ = 0Q\Ig, (2.12)

well, we have to
T ow\ 2
BT <2r//92 MY (Vd,nydEar.
IQ,T_ o Jro <8n)< n) QT

Carleman estimates

As seen in (LASIECKA; TRIGGIANI; ZHANG, 2000; TRIGGIANI et
al., 2002), Carleman estimates are fundamental to the demonstration of the
observability inequality and unique continuation property result. Next, we state

the result found in (TRIGGIANI et al., 2002) for the case of classical solutions

" and strong solutions in H Z’Z(QQ,T).
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Theorem 2.18. Let d as in the definition 2.14 and in the context of the functional
approaches and auxiliary functions defined above. Given w € C?( 0Q ) solution
of the system (2.3), with pg, p; satisfying (2.4)-(2.6), thenforp =1—-cande >0
small enough, can be defined B := 4(1+7c)c™ — £p maxg— (19,0)>+|V$|?) >
0 for all T > 0 large enough, such that

T T
BTl 7 +C 762 /0 alt)dt 2[1€p — 2Cpup1] /O /Q 25|02 + |Vw|2dQdr

+ (2B + O(12) = 2Cpopy7) / ¢2% | w|2dxdt
o

o.r(0)

~ G772 [65(0) + Ea(T)),
where Cy r,C, 7 > 0 they are constant dependingon 7 > 0 e d.

Remark 2.19: The previous Theorem is also valid for solutions in H 2’2(QQ’T).

Observability inequality and unique continuation property

One of the most important results found in (TRIGGIANI et al., 2002), are
the result of observability and unique continuation. Next we present the version

for subdomains of M.

Theorem 2.20. Let d as in the Definition 2.14 and in the context of the functional
approaches and auxiliary functions defined above. Given w € Hé’;T solution of
the system (2.3), with pg, p1 satisfying (2.4)-(2.6). Then, considering (2.12) and
T > 0 sufficiently large, there exists k7 > 0 depending on d, 7T and Cr such that

T dw 2
—— > ' '
/o /rgz (an) dT{dt 2 kr (6a(0) + 6a(T)) (2.13)
If in addition )
o =0, (2.14)
I |rox(o,1)

thenw=01n Qg 7.

Remark 2.21: The above Theorem is a modification of Theorem 8.1. presented
in (TRIGGIANI et al., 2002), which takes advantage of the key estimates about
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the system solutions (2.3) that generate the inequality (2.13), which they are at
first in the strong space H 2’2(QQ’T) analogously to that shown in (LASIECKA;
TRIGGIANI; ZHANG, 2000). The inequality (2.13) is satisfied for the weak so-
lutions in A1 (Qa.r) by a passage of density, continuity and convergence, as in
(LASIECKA; TRIGGIANI; ZHANG, 2000, Theorem 8.2.). When decreasing the
regularity of the function py it is necessary to have the same approximations with
respect to the space H22(Qgq r) and to be able to pass through a limit to the space
HY(Qq 1), is so considering po € L(0,T;L?(Q)) instead of L2(0,T;L?(Q)),
we need the estimates of pg with respect to the space H 2’2(QQ’T) (hypothesis
(2.4)-(2.6)) ensuring that (2.13) is met over H 2’2(QQ’T), in addition to satisfy-
ing the elliptical regularity as it is shown in (LIONS; MAGENES, 1968). For
the passage to the limit on the boundary, we use the continuation property for
a trace function of the space L*(0,T;L*(dQ)) into space L!(0,T;L%(Q)) (cf.
(??LASIECKA; TRIGGIANI, 1987; ??)). It is important to keep in mind that
the hypothesis (2.6) allows an approximation of the energy of the system in
space H11(Qq 1), where the term pow will be absorbed by the energy at the

initial moment.

2.2.2 Case llI: Observability inequality and unique continuation prop-

erty for finite collection overlapping subdomains of M

Another important result about Carleman estimates found in (TRIGGIANI
et al., 2002; LASIECKA; TRIGGIANI; ZHANG, 2000) is respect to manifold
decomposed in a finite collection overlapping subdomains {Q;} je; of M, such

that

(@.1) Ujer @)= M.

(Q.2) for all Q; € {Q;} jes, there is at least one L in the {Q}} jc; family such
that Q; Ny # 0.

For this case we will focus on studying the system (1.1) with pg, p; :
Om,r — R satisfying (1.2)-(1.4), where
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Omr:=Mx(0,T], Zp1:=0M x (0,T).

Also, we will denote by &) : [0,%0) — R to the energy of the system with
respect to the norm in H!(M) x L?>(M), this is

Elt) = /M (1w(6) P+ VW) + () ) dM. (2.15)

Functional environment

We will proceed analogously to what was developed for Case 1. So, for
this case, consider that for each Q; € {Q;} ey, there is a functiond; : M — R

such that it is satisfied
(dj.l) dj € CM(M), minqeﬁdj(q) >0,
(d;.2) V¥d;(X,X) > |X|g, VX E€TM, VqgeQ;
(dj.3) ianj IVdj' > 0.
In addition, it will be considered:
() Qjr:=Qa,r, Ljr:=Eq,r, Q;r(0):=0q,r(0), &jr(c*):=05 r(c%),
forall jel,

(ii) repeating the same as in Case I, the functions related to d;, will be denoted

with the sub-index j,
(iii) Let w € C?(Qu ) solution of the system (1.1), we will define ;(x,?) by
wj(x,t) = xjo(x,t), jel, (2.16)
such that it satisfies the system

dwj=twj—Awj = pow;+piw;+ [0} —A—po—p1d;, 1w, jEI,
2.17)
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wj(+,0) = 2;(-,0)w(-,0), dw;(-,0) = x;(-,0)w(:,0) + x;(-,0)dw(:,0),
(2.18)

where, x;(x,t) be a smooth cutt-off function such that

|xj| <o, xj(x,t)=1 onQjr(0),

and [9% — A — po — p19}, %] is the commutator active only on suppy; for
all jel.

Remark 2.22: Given the above definitions, we will have to;

(i) Boundary condition:
Wj|3M=0, JEL (2.19)

(ii) Estimate for w € H>2(M) solution of system (1.1):

T T
| [ 1w < Copr (llatwle%Z(o,T;LZ(M>+||w,-n22(0,T;H1(M))+ JA @“Mm), jel.

Carleman estimates: observability inequality and unique continuation
property

Proceeding as in Case I, the following result will be obtained with respect

to Carleman estimates:

Theorem 2.23. In the context of the above definitions, let w € C?(Qj ) solution
of the system (1.1) with w; € C2(Q ) like in (2.16), with pg, p; fulfilling
(1.2)-(1.4), then for p = 1 — ¢ and € > 0 small enough, can be defined f :=
4(14+7c)o* —¢ep maxm(|a,¢j]2 +|V¢;|?) > 0 for all 7 > 0 large enough, such
that

T T
BTlor+Ciae™ [ Su(t)dr 2(rep —2Cppir] [ [ 110w, +|Vow; Pldbta
+ (2038 + 6(t%) = 2Cpp 1) / ( )ezwf'lwlzdxdt
Qo

~Cyr73e ¥ [E4(0) + Eu(T)],
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where Cj r,Co 7 > 0 they are constant depending on T > 0 € d;.

Remark 2.24: (i) The previous Theorem is also valid for solutions in H22(M).

(ii) In (TRIGGIANI et al., 2002) the Theorem 2.23 is proof for the case ] =
{1,2}. The extension for a finite number of domains is immediate, provided

it is considered that if Q; C {}} je; has no geometric boundary, then

BTle,T =0.

(iii) We note that

J
Y BTlo;r _212/ 92( wf) (Vdj,n)dX;r

JEl jer’z
aw
<27t // 92( ’) Vd;,n)dxdt,
JZ’QO riNIQ; on (Vdj,n)dx
where
I'p= U {x € oM | <Vdj(X),n(x)> — aéj’gx) < O} . Ty =oM\Ty.
Jel
(2.20)

Regarding the observability inequality and the unique continuation prop-
erty, we will have an analogous version to that of case I, which will be funda-
mental for the proof of the existence of a global attractor presented in Chapter
5.

Theorem 2.25. Let (M, g) be a N—dimensional connected compact Riemannian
manifold of class C* with smooth boundary dM such that there is a finite collec-
tion overlapping subdomains {Q;} jc;. We assume that the following statements

are holds

1. The collection {Q;} jes satisfies (Q.1) — (2.2).

2. The collection {d;}je; with d;j : M — R satisfies (d;.1) — (d;.3) for all
JEL
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3. po,p1: Om,r — Rsatisfies (1.2)-(1.4) where T > 0 is a temporary constant
sufficiently large.

Then, there exists k7 > 0 depending on d;, T and Cr such that

T ow\ >
L (55) dridnke (1m0 OB ayersiay 1040 (D By
1
(2.21)
where w € 1! (QOm,T) is solution of the linear problem (1.1) and I'y is given in
. e Ow . 0
(2.20). If in addition 2 ’n oy =0 thenw=0in b x[0,7]

2.3 Dynamical systems and global attractors

In this section, we will review some topics related to the theory of dy-
namic systems in a Banach space ¢ . We will review the results presented in
Temam (TEMAM, 2012), Hale (HALE, 2010), Babin and Vishik (BABIN, ), and
we will make a more detailed study of the (CHUESHOV; LASIECKA, 2008;
CHUESHOV; LASIECKA, 2010).

Definition 2.26: A dynamical system is a pair of objects (S(¢),.7) consisting
of a Banach space ¢ and a family of continuous mappings {S(¢) | # > 0} of S#

into itself with the semigroup properties:
S(0) =Ly, S(t+s)=S(t)S(s) Vvt,s >0.

We also assume that the map [0,00) X J# > (¢,x) — S(¢)(x) € X is continuous
for any x € 2. Moreover, the liner operator A defined by

D(A) = {z € ¢ | lim S(t)f~Z exists},

t—0t

and

- t
Az= lim S(t)z—z _ ds( )z’
=0+ ¢t dt It=0
is the infinitesimal generator of the dynamical system (S(¢),7#), with domain

D(A).

for z € D(A)

Remark 2.27: Therewith S is called a phase space and S(¢) is called an

evolution semigroup (or evolution operator).
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Definition 2.28: Let (S(¢), 7#) be a dynamical system.

(i) A closed set B C 4% is said to be absorbing for (S(z),7#) iff for any
bounded set D C S there exists #o(D) such that S(¢)D C B for all ¢ > to(D).

(ii) (S(z), %) is said to be (bounded, or ultimately) dissipative iff it possesses

a bounded absorbing set B.

(iii) (S(z),#¢) is said to be asymptotically compact iff there exists an attracting

compact set K; that is, for any bounded set D we have
lim dy (S(1)D, K) =0, (2.22)
where d (A, B) = sup,¢c, dist 5 (x,B) = sup, ¢4 infyep ||x — y|| .

(iv) (S(¢),7#) is said to be asymptotically smooth iff for any bounded set D
such that S(+)D C D for ¢ > 0 there exists a compact set K in the closure D
of D, such that (2.22) holds.

Proposition 2.29. Assume that (S(¢),7¢) is a dissipative dynamical system.

Then the following assertions are equivalent

e (S (t),;%” ) is asymptotically compact.
e (S(t),7¢) is asymptotically smooth.

Definition 2.30: A bounded closed set & C S is said to be global attractor of
the dynamical system (S(¢),.7¢) iff the following properties hold

(i) & is an invariant set; that is, S(¢t)2/ = & fort > 0,
(ii) & is uniformly attracting; that is, for all bounded set D C 3¢

lim d - (S(t)D, &) = 0.

t—o0

Definition 2.31: Let K be a compact set in a Banach space JZ, the fractal
dimension dim¢K of K is defined by

Inn(K, €)
dim¢K = limsup ————=,
15T In(1/e)
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where n(K, €) is the minimal number of closed balls of the radius £ which cover

the set K.

Definition 2.32: Let .4 be the set of stationary points of the dynamical system
(8(t), )
N ={ze€ | S(t)z=1z forallt > 0}.

Definition 2.33: Given a set B C 47, its unstable manifold M*(B) is the set of
points z € S that belong to some complete trajectory {y(¢)};cr and satisfy

¥(0)=z and 1im dy(y(s),B) =0.

Definition 2.34: A function ¥ € C(4#,R) is called a Lyapunov functional if

(i) t — W(S(¢)z) is decreasing for all z € 7,
(ii) If P(S(t)z) = ¥(z) for allt > 0, then z is a stationary point of S(-).

A dynamical system (S(¢),.7¢) is called gradient if there exists a Lyapunov

functional Y.

Now we will present a known result about the existence of global attractors
for semigroups that will be the cornerstone for the proof of the existence of the
global attractor in our work, the interested reader can consult Hale (HALE,
2010).

Theorem 2.35. Let (S(¢),.7¢°) be a dynamical system. We assume that:

(H.1.) (S(z),7#) is gradient with Lyapunov functional ¥ € C(4#,R),

(H.2.) the set of stationary points .#" of the dynamical system (S(¢),.7) is
bounded in J7,

(H.3.) (S(¢),s2) is asymptotically compact,

(H.4.) ¥(z) — oo if and only if ||z|| s — o,

then, (S(¢), %) possesses a global attractor 27 such that &/ = M*(.4").
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Remark 2.36: Thanks to hypothesis (H.1.) and (H .4.) It is possible to consider
that the dynamic system (S(z), 5¢) is asymptotically smooth instead of being

asymptotically compact.

Since the system presented in Chapter 5 presents too many difficulties in
the verification of asymptotic compactness, we introduce the concept of quasi-
stable, which will be used together with the results studied by Chueshov and
Lasiecka (CHUESHOV; LASIECKA, 2008; CHUESHOV; LASIECKA, 2010).
In addition, this result allows a study regarding the optimal regularity of the

global attractor and the fractal dimension.

Definition 2.37: We say that the dynamical system (S(z), .5¢) is quasi-stable on
the set B C 2, if there exist a compact semi-norm n - on ¢ and nonnegative
scalar functions a(z) and c(t), locally bounded in [0, ), and b(t) € L*(0,0) with
lim; .. b(¢) = 0, such that,

IS(8)2" — S(1)2*13 < a(t)ll2 — 2213,
and

IS(r)z! —S(1)2%|% < b(n)llz! — %1% +C(t)osup s (u' (s) — u? (s)) 2,
<s<t
(2.23)
for any z!,z2 € B, where S(t)Z' = (¥'(t), ,u'(¢)),i = 1,2.

Theorem 2.38. Let X and Y be reflexive Banach spaces, X is compactly embed-
ded in Y. We endow the space s = X x Y with the norm

2 2 2
Izll5 = lluollx + [lwlly, z= (uo,u1).

We assume that (S(¢), #¢) is a quasi-stable dynamical system on every bounded
forward invariant set B € S (i.e. S(¢)B C B) with the evolution operator of the

form
S(t)z = (u(2),0u(t)), z= (ug,u1) € 3,

where the function u(t) possess the propertie

u € C([0,%0),X)NC([0,00),Y).
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Then, (S(¢), %) is asymptotically smooth. In addition, if the dynammical system
(S(¢),##) possesses a global attractor 2/ and is quasi-stable on &/ then the
attractor 7 of has a finite fractal dimension. Moreover, we assume that (2.23)
holds with the function c(#) possessing the property c.. = sup,qc(t) < o, then
any full trajectory {(u(t),d:u(t)) | t € R} that belongs to the global attractor

enjoys the following regularity properties,
dueL”(R,X)NC(R,Y), d*uec L>(R,Y),
and there exists R > 0 such that
19u() 1% +197u(t) |l < R?, 1 €R,

where R depends on the constant c.., on the seminorm 7 in Definition 2.37,

and also on the embedding properties of X into Y.

2.4 Preliminaries for the wave equation with critical forces

In this section we will show the basic results to prove the well-posedness
of the wave equation described in Chapter 5. Thus, the basic theory will be
followed regarding about the Cauchy abstract problem (cf. (BARBU, 1976;
PAZY, 2012)). It is important to note that for the case with super critical forces,
this theory does not apply, because the forces are not locally Lipschitz.

2.4.1 Abstract Cauchy Problem

Let A : D(A) C S — S be the infinitesimal generator of a dynamical
system (S(¢),7#) a and F : [0,T) x S# — S an arbitrary function. Let us

consider the following inhomogeneous initial value problem
U =AU +F(t,U(t)), t>0 (2.24)

U(0) =Uy € H. (2.25)
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Definition 2.39:

(i) A classical solution of the system (2.24)-(2.25) in the interval [0,T) it
is a function U : [0,T) — 4 if U is continuous on (0,T], continuously
differentiable on (0,7T), U(t) € D(A) for 0 <t < T and (2.24)-(2.25) is
satisfied on [0,7),

(if) A strong solution of the system (2.24)-(2.25) in the interval [0,7T) it is
a function U : [0,T) — 5% if U is differentiable almost everywhere on

[0,T] such that g,U € L'(0,T;5#) and (2.24)-(2.25) is satisfied almost

everywhere on [0, T].

(iii) A weak solution of the system (2.24)-(2.25) in the interval [0,7) it is a
function U : [0,T) — 42 if U € C([0,T]; 5) such that satisfy

U(t) =S(t)Uo+ /Ot S(t —5)F(¢,U(s))ds, t €]0,T].

Theorem 2.40. Let I : [0,00) X J# — ¢ be continuous in ¢ for t > 0 and
locally Lipschitz continuous in ¢, uniformly in [0,c) on bounded intervals.
If A: D(A) C £ — S is the infinitesimal generator of the dynamical system
(S(t), 7€) then for every initial date Uy € F€ there is a Tpax < oo such that the
initial value problem (2.24)-(2.25) has a unique weak solution U on [0, Tax)-
Moreover, if Tnax < oo then lim, 7+ [[U(t)|| s = 0. In addition, if F is also
continuously differentiable, there are strong solutions Uy, : [0, Tiax) — #€, with
n € N such that
lim sup [[Un(r) ~U )] =0.

n.—»wost<Tmax

Theorem 2.41. In the context of the previous Theorem with J# a reflexive
Banach space. If Uy € D(A) and U € C([0, Tax; 7€) is the weak solution of the
problem (2.24)-(2.25), then U is the strong solution of this problem.
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2.5 Preliminaries for the wave equation with supercritical

forces

In this section we present some known results for the wave equations
with supercritical forces, mainly with respect to the well-posedness and the
existence of a global attractor. Therfore, we will state the most important results
shown in Joly and Laurent (JOLY; LAURENT, 2013). It is important to note
that the Strichartz estimaties, the result of Hormander (HORMANDER, 1997)
and Robbiano-Zuily (ROBBIANO; ZUILY, 1998) play a fundamental role in
the study of the asymptotic dynamics of these equations (cf. (GINIBRE; VELO,
1985; GINIBRE; VELQ, 1989; STRICHARTZ et al., 1977; KAPITANSK]I, 1989;
BURQ; LEBEAU; PLANCHON, 2008; BLAIR; SMITH; SOGGE, 2009)).

One of the main difficulties with respect to proof of well-posedness for
supercritical three—dimensional wave equations is that the forces are not lo-
cally Lipschitz for p € (3,5), this prevents the method from being semigroups,
shown in the previous section. Ginibre and Velo (GINIBRE; VELO, 1989; GINI-
BRE; VELO, 1985), Kapitanski (KAPITANSKI, 1995) and Joly and Laurent
(JOLY; LAURENT, 2013) manage to show the well-posedness of the problem
from the study of certain intermediary spaces, initially proving the existence
on Besov spaces and then via density get well-posed in the expected phase
space. Kalantarov et al. (KALANTAROV; SAVOSTIANOV; ZELIK, 2016) get
the well-posedness from a Galerkin scheme and studying the solutions in the
sense of Shatah-Struwe. The prove in detail of the well-posedness, as well as
the existence of a global attractor for the problem (1.13) is not a subject of study
in the present work, given that the objective is to study the properties on said

attractor.

Theorem 2.42 (Strichartz estimates). Let T > 0 and (g, r) satisfying

1 3 1 ;
Z+2-3 e i), (226)

There exists C = C(T,q) > 0 such that for every H € L!(0,T;L*(M)) and every
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(up,u1) € S, the solution u of

{ tu—Au+ax)du=H in Mx(0,T), 227

u(0) =ug, Ju(0)=wu; in M,
satisfies the estimate
el oo, 7507 (b)) < C (”u()“H(}(M) + [l [l z2ary + ”H”LI(O,T;LZ(M))) . (228)

Remark 2.43: For the case p = 3, the previous Theorem is valid, considering

the equation

0’u—Au=pdu+H in M x(0,T),
{ ' piet (0.7) (2.29)

u(0) =ug, u(0)=wu; in M,
provided that p; € L=(0,T;L=(M)), and p;(x,t) < 0 a.e. (x,t) € M x [0,T].

Theorem 2.44 (Well-possedness). Assume that (1.14)-(1.19) hold. Then

(i) For any initial data (ug,u;) € S, problem (1.5) possesses a unique weak

solution
ue C(RY;H (M) NCHRT; L2 (M)), (2.30)

(ii) Given T > 0 and (q,r) satisfying (2.26), there exists a constant C =
C(T,q) > 0 such that

lellzsio;rzray) <€ (luollggiony + harlzany) 23D

(iif) Given T > 0 and two solutions z* = (', d,u') with initial value z}) € B, where
B is a bounded set of J7, i = 1,2, one has

Iz (1) = 22(0) 13 < Carlleg — 2ll%e, Vi€ (0,T], (2.32)
where Cgr > 0 is constant.

Theorem 2.45. Let the assumptions of Theorem 2.44 and the initial data be

more smooth, i.e.,

(g, u1) € ' .= [HX(M)NH} (M)] x HY(M). (2.33)
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Then, the corresponding weak solution (en el sentido de (6.3)) is more regular as

well:

(u(t), du(t)) € A", (2.34)
forallt > 0.

Corollary 2.46. Under the assumptions of Theorem 2.44, then the solution
operator of problem (1.5) generates a strongly continuous semigroup defined by

S(t): H# — , (ug,uy) v (u(t),du(t)), t>0, (2.35)
where (u, d;u) is the weak solution corresponding to initial data (ug, u1).

Theorem 2.47 (Global attractor). Under the assumptions of Theorem 2.44. Then,
the dynamical system generated by (1.13) in ¢ is gradient and admits a compact
global attractor & := M¥(.#"), where ./ is the set of stationary points in the

system.
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CHAPTER

SHARP TYPE GEOMETRIC
CONSTRUCTION

One of the most important results in the present work, is to construct an
admissible damping region where the dissipation of different systems can be
located such that this location in a sense is sharp. This has a huge physical sense
when you want to optimize the region where the damping will be placed for
a certain modeling. For example, when you want to study the vibrations on a
plate, and you want to place a certain material that allows these vibrations to be
damped, the most convenient thing is for that material to occupy minus possible
space inside the plate in order to optimize expenses. This idea of occupy less is
translated within the domain, that the admissible damping region possesses the

smallest possible measure.

In this sense, the literature (cf. (BARBU, 1993; RAUCH; TAYLOR, 1975a;
RAUCH; TAYLOR, 1975b; ENRIKE, 1990; ZUAZUA, 1991) among others)
shows that, fegarding the measure of the set, we can always build a damping

region as small as we want.

More recently in (CAVALCANTI et al., 2010; ??) show that the interest
to optimize the measurement of the region, now not only lies in optimizing the

measurement with respect to the domain, but also in relation to the boundary of
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it, so in this meaning, these new admissible damping regions that optimize both

measures are sharp.

A major problem that arises with respect to these constructions it is not
possible to separate the construction of the admissible damping region with the
equation to be studied. This does not allow the same construction to be used for
a different group of systems, but it has to be repeated and adapted for each one
of them, even though the intrinsic idea of the dissipation of the systems from
the damping is a concept clearly geometric, from the study of geodesics in the

manifold.

Thus, in this Chapter a clearly geometric construction of admissible damp-
ing regions in a sharp sense will be presented, allowing to study later uses in
different systems (see Chapter 5), as well as certain geometric consequences (see
Chapter 3) and consequences with Carleman estimates (see Chapter 4). To this
end, we will divide the chapter into two sections, the first of which shows the
basic definitions on the subject and the idea of the optimization of the measure
with respect to the domain and its boundary. While the second section will be
responsible for showing the distinctly geometric construction of the admissible

damping regions in the sharp sense.

3.1 &-controllable sets

The objective of this section is to study the construction of €-controllable
sets with the purpose of obtaining sharp admissible damping regions. Throughout
the section, we will consider (M,g) be a N—dimensional connected compact

Riemannian manifold of class C* with smooth boundary dM.

Definition 3.1: We say that measurable subset @ of M, with the Lebesgue

measure, is £-controllable in measure if given € > 0,
measy (@) +measyy(@NIM) < €, (3.1

where meas,(B) represents the measure of B with respect to the Lebesgue
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measure defined in A. Moreover, the class of €-controllable set of M is denoted
by xe(M).

Note that thanks to the properties of the Lebesgue measure (cf. eg. (??)),

the following result is satisfied.

Proposition 3.2. Let €,&; >0 foralli=1,...,N with N € N, then:

(i) If w; € Xe; (M) then U?Izl W € Xey+er+...+ey (M),
(if) The (arbitrary) intersection of elements of x:(M) is an element of ¥ (M),

(iif) Any set with null measures with respect to the measure of dM and M,

belongs to x¢(M),

(iv) Given €’ > 0 such that € < €’ then x:(M) C x¢(M),

~

(v) Given M C M, then x:(M) C xe(M),

(vi) Given r € R, w € x¢(M) and p € M such that ro+p:={rx+p : x€
w} CM,thenro+pe€ X|r[8(M)

3.2 Construction to the sharp admissible damping re-

gions on compact Riemannian manifolds

We will take advantage of the definition and properties of the sets &-
controllable to establish one of the main results of (CAVALCANTI et al., 2010),

which is summarized in the following

Theorem 3.3. Let (M, g) be a connected compact Riemannian N—manifold of
class C= with smooth boundary dM. Then, given € > 0 and & € (0,¢€), the
following holds:

1. There exists an open set V C M, with smooth boundary dV Ninz(M), that

intercepts dM transversally and satisfies

M\V € 2e(M).
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2. There exists a function d : M — R satisfying:
(d.1.) d € C3(V),

(d.2.) V2d(X,X) >0, VX €T M, xcV,
(d.3.) infy |Vd| > 0,

(d.4.) (Vd,n) <0 on dIMNV.

3. There exists an open set @ € X¢(M), such that

M\VCo, oNV E Ye_g(M).

Proof. We follow the ideas from (CAVALCANTI et al., 2010; ??). We start by
proving the existence of d and V locally, both in the case that a neighborhood of
an interior point of M and a a neighborhood of boundary point of M. Then taking
advantage of the compactness of M, we build globally both 4 and V. We split
the proof in three parts: local analysis for points in the interior, local analysis for

points on the boundary and global construction.

Claim 1: For any p € int(M) there exist a neigborhood V), of p and a
function d : V, — R such that satisfying (d.1) — (d.3) with V =V,

Let p € int(M), so there is an orthonormal basis (e, ...,ex) of T,M and
a coordinate system (x1,...,xy) over a neighborhood V), of p contained in some
(U, y) chart of the atlas of M such that dx;(p) = e;(p) fori =1,...,N. Note
that the Chistoffel symbols respect to (x,...,xy) satisfy that I‘f-‘j (p) =0 (see,
for instance, (CARMO, 1992) for details).

We define the function d : V,, — R by

1Y,
7) =3 Lx(@)+m
j:
for some m > 0. It is clear that (d.1) is fulfilled and also

|[Vd(p)| >0, Ad(p)=N, 1é1fd( g) > m >0, for somem >0,
9€Vp

therefore V2d(p)(X,Y) = g(X,Y) forall X,Y € T,M, which implies that V2d(p)(X,X) =
1X|? >0 forall X € T,M.
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Figure 4 — The figure shows the previous constructions in the two-dimensional case. In this case (U, y)
represents the chart with respect to an atlas. Note that the coordinate system can be considered
the same for all elements in V,,.

Note that taking V,, CC U small enough, (d.2) is satisfied with V =V,
and because the coordinate system is the same for any element in V), we can

define the same function d on Vp such that

V2d(g)(X,X) = |X|>, X e T,M,
for some other point g € V,,, which proves (d.3). Then the Claim 1 is fulfilled.
Claim 2: Let p € dM. Then there exists a neigborhood V, of p with

smooth boundary 0V, Nint(M) which intercepts M transversally and a functién
d :V, — R satisfying (d.1) — (d.4) withV =V,,.

Fix p € dM. Due to a Riemannian geometry result (CAVALCANTI e?
al., 2010, Lemma 6.4.), there exist a Riemannian manifold M and an isometric
immersion f : M — M such that f(M) C int(M).

Taking the orthonormal basis (ey,...,eyx) of Tpﬂ such that n(p) = —e;
be the outward normal vector field in the point p respect to dM. Proceeding as in
the previous case taking M instead of M we have that there exists a neighborhood
‘7;; C M of p. Due to the regularity of 817;; NoM _there is an open set 17,, CcC ‘7,§
with p € V,, such that n(g) = —e; for all g € V, N dM. Moreover, we define
d: \7,, — R such that

N

dg)=ni(g)+3 Y. 55a) +m.
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for some m > 0. It is evident that inf,ey, |Vd(q)| > 0, infyey, d(q) > m, Ad(p) =
N, and V2d(p)(X,Y) = g(X,Y) for all X,Y € T,M and proceeding analogously
that Claim 1, it holds that (d.1) — (d.3) for V = V;,. Additionally,

(Vd(q),n(q)) <0, g€V, (3.2)

Finally, as shown in Figure 5, we can find a neighborhood V), C \7,, NnM
such that 9V, Nint(M) intercepts dM transversally, completing the proof of

claim 2.

Figure 5 — In the figure (U, y) and (ﬁ:, i) represent the charps M and M respectively containing p. Note
that y(V,) C y(U) C y(U) so we can use the same coordinate system for every point in
V, C M.

Claim 3: Conclusion of Proposition 3.3.

In order to prove this claim we borrow the next auxiliary Lemma from
(CAVALCANTI et al., 2010).

Lemma 3.4. ((CAVALCANTI et al., 2010, Lemma 6.9)) Consider two subsets
A and B such that d(A,B) := inf(, )caxpd(x,y) > 0. Suppose that A and B are
compact. Then there exist open subsets O4 DD A and Op DD B with smooth
boundaries such that d(Oy4, Op) > 0. Moreover, there exists a smooth (cut-off)
function p : M — R such that p|o, = 1,p|0, = 0 and p(M) C [0,1].
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Remark 3.5: The sets O4 and Op in the above lemma can be constructed, for
any € € (0,d(A,B)/3), such that A CC O4 CC A¢ and B CC Op CC Bg, where

Ae = {xeM|d(x,A) <&}, Be={xeM|d(x,B)<Ee},

and d(x,Y) is the usual point-set distance defined by d(x,Y) = infyey d(x,y)
with d(x,y) = |x — y|g, since M is compact.

Repeating the strategy applied in the Claim 2, we can extend M to a Rie-
mannian manifold M such that, for each p € M, one can choose a neighborhood
W, of p, and a function d,, € C(W,,) such that

e If p € int(M), then choose VT’;) =V, as in the Claim 1.

o If p € dM, then choose VT’;, =V, C int(M) as in the Claim 2.

Then, due to the compactness of M, we can choose a finite sub-cover
{WJ ’j‘-:l of M such that if p € W; for some j = 1,...,k denote by c?} = dp|w,.
LetB = U’j‘-:1 afij N M where clearly M \ B is an open subset of M. As seen in
Figure 6, denoting (M \ B) W, for W; and (M \ B) N (W; \UZ; W,) for W; for
j=2,...,k, itis show that M\ B = Js_, W;.

Figure 6 ~ Note that each W; C VV; for j = 1,..,k is an open set of M being the union of connected
components of M \ B where it is well defined d.

On the other hand, fixed € > 0, for each & € (0,€) and W; with j =1, ...,k,
it is possible to build an open U, of M such that U; C W; and measy (W; \
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U;) < 5% (see Figure 7). In addition, if W; is a neighborhood of a boundary
point of M, then we can take U; such that measgp (M N (W;\U;)) < 52 (see
(CAVALCANTI et al., 2010, Lemma 6.7) for more details).

Wi\ U;

Figure 7 — Given j,i = 1,...,k, we have total control over the measure of W; \ U; and dM N (W; \ U;) for M
and oM provided they are positive. Note that if £2 > min{measy (W), measyp (OMNW;)} >0
it is possible to choose some 0 < ;—,Ic < {measy (W;),measzp;(dM NW;)} such that the measure

of the aforementioned sets are less than % where k' = "—;;Q .

Because U; C W, we can define d; = cz'lyj. Also, from the compactness
of B and Uj, there are numbers 8; > 0, j = 1,...,k, such that d(B,U;) = §;.
Then by Lemma 3.4, exist open sets V; DD Uj and O; DD M\ W; of M with
smooth boundaries, and a function p; : M — R such that p;ly, = 1,pjlo ;=0
and p;(M) C [0, 1]. Note that in view of the Remark 3.5, we can construct V;
such that V; C Wj, so that {V; I}:l is a disjoint family of open and JJ is defined

on each V.

Note that if V; is a neighborhood intersecting dM, then it is possible as-
sume that V; has smooth boundary dV; Nint(M) that intercepts M transversally.
Thus, we define d; = c}}lvj, p= EI;'=1 p;j and

k
v=_Vv, (3.3)
j=1

so that p|ly = 1 and (3.2) it is satisfied.
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For the construction of d, it is enough to define

d(x) = dj(x)p(x) if xeW;j, 3.4)
0 otherwise, '

which clearly satisfy (d.1)-(d.4).

Finally, from the construction of V, there is an open set @ D M \ V such
that @NV € xe—g(M). From (3.2) we see that  is e-controllable. This ends
the proof to Theorem. O

Remark 3.6: The choice of g € (0, €) is independent of any other condition,
that is, the result is valid for any & € (0, €) that is chosen. This value represents
the measure that is to be granted to the set W where the damping will be
effective that will allow to prove a unique continuation property (more details

see Chapter 4).

We note that in the Theorem 3.3, once taken &y, V and the function d, the

choice of w involves mainly three properties:
(a)  is an open subset to M,
(b) (W) U(@NV) = o,
(¢) M\V € xe,(M) and @ NV € xe_g,(M).

Therefore, let M\ V C M, it is possible to build different sets @ such
that @NV € Ye—_g(M). This motivates the definition of the class of admissible

g-controllable sets
[we] = {a) € xs(M)| @ is given by Theorem 3.3 for some & € (0,8)}, (3.5)

which is sharp in the sense of (CAVALCANTI et al., 2010). This class be called

the class of sharp admissible damping regions associated to €.
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oo
4

GEOMETRICAL CONSEQUENCES

The construction presented in 3.3 allows a series of consequences applied
both in the geometry and in the equations, in this Chapter it will show some
relevant applications and facts in the geometry regarding said result. Throughout
the Chapter, we will consider (M, g) be a N—dimensional connected compact

Riemannian manifold of class C> with smooth boundary JM.

4.1 Geometric control condition and the sharp admissible
damping regions
The objective of this section is to study the consequence of sets £-controllable

built in the Theorem 3.3 regarding the geometric control condition (GCC for

short), this is:

(GCC) The set o satisfies (GCC) <=> There exists Tp > 0 such that every geodesic
traveling at speed 1 and issued at # = O enter the open set @ before the time

Tp.

Which implies having a observability inequality (cf. (BARDOS; LEBEAU;
RAUCH, 1992; BURQ; GERARD, 1997)) of type

T
1(u(0), 3u(0) |3, < Cr / / Ou2dxdt, T>Tp, @.1)
0 0]
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for (u,du) € H} (M) x L*(M) solution of the problem (1.5) with f =h = a(x) =
0 and some constant C7 > 0 that depends on 7.

Note that each element of the class [w¢] contains M\ V, and this property
will play a fundamental role in the proof the unique continuation theorem in the
next Chapter. The part @ NV guarantees that the set @ is open in M and because
we have a control € — & in its measure, it is possible to build all the elements of
this class, which will allow to prove the existence of a @ € [wg] that satisfies the
(GCC), that is, the part @ NV has a close relationship with the (GCC) and the
observability inequality (4.1).

Another detail to take into account is regarding the observability is seen
in (CAVALCANTI et al., 2010), where the authors prove the exponential decay

of energy for the system

92u— Au+a(x)g(du) = 0in M x (0,e0),
u=0ondM x (0,), (4.2)
u(x,0) = up(x), du(x,0) =u;(x), xe M,

where a(x) > 0 on a open set @ € (V,d) and g is a monotonically increasing
function such that k|s| < |g(s)] < K|s| for all |s| > 1. This result, together with
the fact that w is e-controllable, shows that the system (4.2) has sharp localized
damping, which inspires the name for [we]. Additionally, it is proved in this
same work, that the solution of the system (4.2) for a = 0 satisfies an inequality
of the type (4.1), which makes us think that the construction of V and d directly
proof the property (GCC) for w, but, for exemple, for the typical case of M as
the hemisphere, the observability inequality is satisfied but not the (GCC) for w.

Motivated by this fact, we will prove that it is always possible to choose a
o € [wg] satisfying Theorem 3.3 that complies with the (GCC).

Proposition 4.1. Fix € > 0. In the context of Theorem 3.3, given & € (0,¢€),
VCcMasin(3.3)and d: M — R as in (3.4), then it is possible to choose the
open set @ € [@] satisfying the (GCC).
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Proof. Because for every p € V; with j = 1,2, ...,k of the definition of V in The-
orem 3.3, there exists a N; totally normal neighborhood of p, such that N; C V.
Thus, for all g € Nj and X € T,M, the only geodesic such that y(0) = ¢, %(0) =X,
satisfies that y(0) C exp(Bs(0)), where 6 > 0 depends on N;, but for the com-
pactness of M, all geodesic is defined above R, then all geodesic associated with
g and X intersects Nj, that is, the whole geodesic associated with every point of
N; and each field of this point intersects N;. Again by the compactness of M, we
can choose the finite family of totally normal neighborhoods {N ;} i=1,...r that
cover V;, making them sufficiently small and repeating the process of construct-
ing V on these families, there will be a @ € [@g] such that @ C ® and @ satisfies
(GCO). O

4.2 Smooth boundary of the sharp admissible damping

regions

On the other hand, note that the Theorem 3.3, allows the construction
of the set V with smooth boundary, in this sense, you have to understand the
smoothness of dV in the following sense (see (CARMO, 1992; CAVALCANTI
et al., 2010; ABRAHAM; MARSDEN; RATIU, 2012) among others):

Definition 4.2: An open set V C M is an open set of the topological space M.
Therefore it can intercept the boundary. We say that an open subset V C M has
smooth boundary dV Nint(M) if dV Nint(M) is a smooth hypersurface of M
with smooth boundary dV Nint(M) N dM. Therfore the term smooth ignores

dVNIM.

Thus, we will try to gain regularity at the boundary of @, given as in
Theorem 3.3, from the regularity of V. For this, the following classical result of

Riemannian Geometry shows the existence of an intermediate set between M \ V

and  with the same regularity of V.

Proposition 4.3. Let M be a differentiable manifold with boundary. Suppose that
V C M is an open subset with smooth boundary dV Nint(M) which intercepts
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dM transversally. Let @ be an arbitrary open subset of M such that M\ V C .
Then there exists an open subset W C M with smooth boundary dW Nint(M)
which intercepts dM transversally such that M\ V C W and W C .

Theorem 4.4. Fix € > 0. In the context of the Theorem 3.3, given & € (0, ),
V CMasin (3.3)and d : M — R as in (3.4), then exists a set (GCC) W € [wg]
with smooth boundary W Nint(M) that intersects transversally to M.

Proof. Fix € > 0, for some & € (0,€), we have that exist @ € y¢(M),V and d
as in Theorem 3.3, and by Proposition 4.1, we can consider @ satisfying (GCC).
Therefore, by Theorem 3.3 and by Proposition 4.3, there is a Se (0,€ — &) small
enough such that there is a set @ € [wg] satisfying (GCC) with VN o € xg(M),
and exists an open subset W C M with smooth boundary dW Nint(M) which
intercepts dM transversally such that M\ V CC @ CC W CC w. The chain of
inclusions shows that (W ) U(WNV) =W and that there is a & € (5 ,€— &)
such that VW € x5 (M). Then, given that W € x¢(M) we have to W € ]
and as o satisfying (GCC), then W is also (GCC). This ensures that it is always
possible to choose a set (GCC) W € [w,] with smooth boundary oW Nint (M)
that intersects transversally to JM. O

4.3 Construction of the local escape vector fields

An important hypothesis in the analysis of observability, unique continua-
tion theorem and control theory in several PDE’s, is a geometric condition on
the domain. A classical condition (see (YAQO, 2011)) is given by the existence of

an escape vector field over an open set in the manifold, in this sense we have the

following definition

Definition 4.5: Given (M, g) a Riemannian manifold. Let Q C M be an open
set of M, and let H be a vector field on Q. The vector field H is said to be an

escape vector field for Q of there is a function v on Q such that

VH(X,X) < v(x)|X|g, forX e T,M, p€Q,
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and

inf |H| >0, inf v(x) > 0.

x€Q xeQ

This field H is commonly used to divide the boundary of Q into two

regions depends on the boundary conditions of the equations to be studied.
This division is given by a signal condition on (H,n) for all x € dQ, where n
represents the outward unit normal field along the boundary dM. For example,
in Theorem ref prop-marcelol, H := Vd is a escape vector field for V, with the

signal condition

(Vd,n) <0, oMNV.

In Cavalcanti et al. (CAVALCANTI et al., 2010), we observe the need
for a vector field escape for an open small enough that intersects M \ V and is
included in w, in order to prove an inequality of observability (4.1) and unique

continuation theorem.
The Theorem 3.3, allows us to construct locally within @ an escape vector

field in the context of sets €-controllable, independent of the equation. So we

have the following result.

Theorem 4.6. Fix € > 0. In the context of the Proposition 3.3, given & € (0,€),
VCMasin(3.3)andd : M — Ras in (3.4), then for all @ C [w;] exists a smooth
escape vector field H € X(M) over an open small enough U C M, such that

(H,n) =1, ondMN(M\V).

Proof. It is enough to make the geometric construction made in Cavalcanti et
al. (CAVALCANTI et al., 2010, Theorem 5.1.), considering the existence of a
W € [a] as in Theorem 4.4, O

Note that the H construction in the previous Theorem is a natural extension
of Lion’s vector field defined in (LIONS, 1988, Lemma 3.1.) for the Euclidean

casc.
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4.4 Decomposition in overlapping sets

In order to prove a unique observability and continuation result from
Carleman estimates (see 2.25), it is often not possible to hide a single escape
vector field over the entire domain of the equation. For example, for the Euclidean
case, as can be seen in (LASIECKA; TRIGGIANI; ZHANG, 2000) for domains
with a part of the boundary of the flat type, it is usually necessary to have more

than one vector field escape allowing to divide the total boundary from different

conditions of sign over (H,n) (see Figure 8)

Figure 8 — Let us consider (R?, |- |gz). In this case the region ® = @; U @; with ®, N, # 0, where the
functions associated with each one ; are given by d;(x) = ||x — x;]|%, with the escapes vector
fields h;(x) = 2Vd;(x) for all i = 1,2. This generates a sign condition (h;,n) for every point on
the boundary of the domain.

This is due to the convexity of the functional, since it can not always be
guaranteed that, for a one escape vector field, it is fulfilled that does not have
critical points over the whole domain, or that the Hessian does not cancel; but

locally each of the functional ones if they possess these properties.

As seen in the Theorem 2.25, we present a generalization of the applica-
tions of the Carleman estimates for domains decomposed in a finite collection
overlapping subdomains, such that an escape vector field is associated to each of

the elements of the decomposition. With this in mind, we proof a decomposition

by overlapping domains over ®.
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Theorem 4.7. Fix € > 0. In the context of Theorem 3.3, given & € (0,€),V C M
asin (3.3) and d : M — R as in (3.4), then for all ® C [wg] exits a finite collection
overlapping subdomains {®j} jea in M such that

(wj'l) UjeA w; =M,
(@;.2) for all @; € {®;}jen, there is at least one @y in the {@;} jea family such

that w; N @y, # 0.

Moreover, for each @; € {®;} jea, there is a function d; : M — R such that is
fulfilled

dj1)e dj € C*(M), mingegdj(q) >0,

(
(dj.2)e V?d;i(X,X) > |X|g, VX €ETM, Yq€< 0,
(dj.3)w infy, |Vd;| >0,

(

d;.4)e thereis aset of indexes J C A such that @;NIM 0 for all j € J. Moreover:

1. (UJGA\Ia)j)ﬂﬁM:@,
2. (Vdj,n) >0 on IMN®;, VjeJ.

Proof. We note that by constructing @, @ N JdM can be divided into a finite

number of connected components denoted by {I‘{o §'=1 for some [ € N.

Observe that, setting j = 1,2,...,] and proceeding analogously to the
Theorem 3.3, given p € I'}), we can take an orthonormal basis (dxys--.,0xy) Of
T,,IVI , where M is the Riemannian manifold given in Claim 2 in proof of Theorem
3.3. Thus, we can assume that n(p) = —dy,(p) outward unit normal field at
the point p in dM. Then, for a neighborhood V), C M of p small enough that
n(x) = —0, (x) for all x € V,N dM, we define the function d; : V, — R given by

1
4j(q) = ~ax1(g) + B+ 33(a), 4€Vp,
for an o > 0 large enough, and 8 > %2, such that

inf dj(q) >m >0, for some m >0,
qev,
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(Vdj(p),n(p)) <0, (Vdj(q),n(q)) <0, g€V,NIM.

Also, we have to dj € C*(M), Adj(q) > 0 and V2d;(q)(X,Y) = g(X,Y)
forall X,Y € TyM with g € V),.

On the other hand, without loss of generality, we can assume that measg, (" {,,)
is small enough, that there is an open set V; C V), neighborhood of p and exist a
8; > 0, such that I'y, C V; and 85 (V;) NI, =0 forall k € {1,2,...,1}\ {j}.
Considering the function of the partition of the unit p; : M — R such
that pjly, = l’ple\(U§:, ﬁsj(Vj)) = 0,p(M) C [0,1], we have that there is an

open set ; = J._; V;N® C @ and a function d; : M — R in C*(M) such that
dy = Zi_ ;p;d; satisfies

(i) V2di(X,X) > |X|g, VX € T,M, Vp € wy,
(i) infyew, |Vdi(g)| > 0, mingeg, d(q) >0,
(iii) (Vdy,n) >0, ondM Ny,
(iv) (w\w)NIM =0.

Now, on the open set @\ @; C int(M), proceeding similarly to the previous
one, and given the compactness of M, there exists a finite index K, such that
@ can be decomposed into {®;}; € A satisfying (®;.1) — (@;.2), to which are
associated functionals d; : M — R fulfilling (d;.1), — (d;.3) . Finally, we note
that not necessarily @, is connected. Then, decomposing the set into its connected
components, there is a finite set of indexes J such that (d;.4) is fulfilled. In
addition, it is important to note that, as @ is connected, then for everything ®;
with j € I, there will be a i € A such that @; N ; # 0. Thus, taking A = AUI
- the Theorem is proved.

O

Remark 4.8: It is possible to construct a function dg, € C3(M) that satisfies
(dj.1)o — (dj.4)p mostly @ under certain conditions on the sectional curva-

ture using inf-convolutions, provided that you can construct convex functions,
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strictly convex or lower semicontinuous functions on (M, g). (Cf. (GREENE;
WU; CHERN, 1973; GREENE; WU; CHERN, 1976; GREENE; WU, 1979;
AZAGRA; FERRERA, 2005) among others).

4.5 Coarea formula for the sharp admissible damping re-

gions

One of the main objectives of the construction of the @ is to proofs the
observability inequality and unique continuation property analogous to the fact
in Theorem 2.25. For this, a geometric technical lemma is needed in a context
of Riemannian manifolds, which will allow carrying area integrals over volume
integrals. To this end, it is necessary a result of coareas for subdomains of small
volume, this will allow the application on sets €-controllable. Thus we enunciate
a known result about the coareas and Sard’s theorem, the interested reader can
consult for example Chavel (CHAVEL, 2006) among others.

Proposition 4.9. Let (W, g) be a C* N—dimensional Riemannian manifold, and
let ¢ : W — R € C*(W). Then, for any measurable function f : M — R, which

is everywhere nonnegative or is in L' (W), one has

/ J Ve = / /ra) G

where I'(¢) := ¢~ 1(t) = {p € W | ¢(p) =t} and dV}, is the induced measure
onI'(z).

Using the previous Proposition and Theorem 3.3 it is possible to have the
following result for it cubes small enough

Theorem 4.10. Fix € > 0. In the context of Theorems 3.3 and 4.7, exist 0 <
€] < € such that for all & € (0, &), there is a constant C > 0 that depends of
€ > 0 and the metric g, such that

/ fdv,, <C /w fav,, @.3)

for all w € [we] and

f>0 ae. inM, feL(M), (4.4)
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where I'; is defined in (2.20), this is
I =|J{xeoM| (Vd;n) >0},
JjEA

and dVg is the volume form on JdM.

lam

Proof. Step 1. Let € > 0, by Theorem 3.3, for all 0 < g < € it is possible to
build the class [@¢] so that if @ € [@], then

M\V € xe,(M), @NV € Ye_g(M).

Moreover, by constructing @ € M and by the compactness of M, we have a finite
number of connected components of @ that intersect dM, that is, there exists a

number k£ € N such that 1

wNoM = | T,
j=1

where I’ {,, is the j-th connected component of @NJM. Note that 'y C |J et @j C
@ (see Theorem 4.7), that is

measyy L' < &.

Given the I') C @ N JdM, then we will denote by I' { to the connected

components of I'; for all j = 1,2,.../, given by
I =T;NIY,
such that measaMF{ < & foreach j=1,2,...,1.

Step 2. We define about RY the set P,(A) associated with the constant
h > 0 and the set A C R¥~1, given by

Pu(A) :={(x1,...,xn) ERN| (x1,...,xn—1) €int(A) Vi=1,...,N—1 and 0<xy<h},

which we call open prism of base A and height 4.

P,(A) will play a fundamental role in the proof of Theorem.
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We will fix j =1,2,...,k. Be 8{ € (0, €) small enough, such that there is
ape I‘{ and a chart related to that point (U;,¢; = (x1,...,xn)) with ¢;(p) =
(0,...,0) such that the connected component I, be totally within that chart.
Thus, there is a constant £ > 0 small enough, such that Ph(F{ ycThcco i(Uj)
of M and I'| = 8¢J-_1(Ph(r‘{)) (see Figure 9).

671 (P(IY))

Figure 9 — Note that 4 > 0 depends directly on g > 0, thus, the open set ¢ j_l (Ph(I‘{)) C Uj depends on
the class [@g].

Observe that ((pj_1 (Py(I° { ), gl o1 (Ph(Fj))) is a smooth Riemannian sub-
J 1
manifold of M with boundary and dimension N, with the induced metric of M,

in particular, we have to

(i) The Lebesgue o-algebra associated with (¢ j_l(Ph(F { ), 8l -1 (P, (r{))) is the
j .
Lebesgue o-algebra associated to (M, g) intersected with ¢ LPu (),

(i) If BC ¢j"1(Ph(l"{ )) C @ is a measurable set in (M,g), then in particular it
is measurable in (@, g|») and (¢J-—1(Ph(r{)),g|¢,—l(p, (r{)))' Moreover,
J g

measy (B) = measy(B) = meas 67 (Bu(TY)) (B).
This is because the three manifolds have the same dimension. Also (®,g|e)
—1 Jj ) . .
and (¢j (Pr(I))), 8l ¢,~'1(Ph(l‘{))) they have the M metric restricted to each

of the manifolds.
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Step 3. Consider the Riemannian N —manifold (¢ N 1 (P, (F{ )), gl 671 (By(T {)))
, Jj
with boundary and the map in C*(¢ j_l (Py(IY))) given by xy : ¢ ].‘1 (Pr(T))) = R,

where

Y = x31(0) = T(0), Img(xy) = [0,h), 0 < |Van|< Cq, (4.5)

for a constant Cg > 0 that depends on the metric g.

Thus, by Proposition 4.9, with y = xy and (W,¢) = (¢j_1 (Ph(F{ ), 8l o7 (P,,(I‘{)))’

we have to

f
fdVy = / / av, i
/¢,~"(Ph(r{>>f oty ~ SR [Van] Bty

for all f : M — R which is everywhere nonnegative or is in L! (¢; . (Ph(l“{ )))-

Then, taking f fulfilling (4.4), (i) — (i{) and (4.5), we obtain

v, < / av, |

< dv, - dt
_/]R/F(t)f gla'pj—l(Ph(r{))

<Gf s,
& ¢.—'(P,,(r{))f g'¢,-‘1(Ph(r{)>

J

<G / favy,
()

Finally, repeating the process for each j =1,2,...,1 the proof is completed.
O
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CHAPTER

CONSEQUENCES WITH CARLEMAN
ESTIMATES

One of the main consequences of the class of sharp admissible damp-
ing regions is the proof of a it new inequality of observability and a unique

continuation property.

As explained in Chapter 3, because we can always choose a representative
in the class that is (GCC), for a linear wave equation (for example (4.2)), we have
an observability inequality as (4.1). Thanks to this inequality in the literature,
several results are found for these equations, but it has a certain /imitation when

we want to study these wave equations with supercritical external forces.

Regarding the critical case of Sobolev, it can be observed in (CHUESHOV;
LASIECKA; _TOUNDYKOV, 2008), that it is possible to prove the existence of
a global attractor for the problem, showing a geometric characterization from
the study of unstable manifolds of stationary points for dynamic systems of the
gradient type and the finitude of the fractal dimension on the attractor, as well
as the optimal regularity of this. It is important to remember that in this work,
the authors prove a new inequality of observability based on a new Carleman
estimates for the system. Another important detail is regarding the strategy used

for the global attractor proof, since the authors use the method of contractive
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functions (e.g. (CHUESHOV; LASIECKA, 2010; CHUESHOV; LASIECKA,
2008)) and not the quasi-stability (see Definition 2.37).

In the recent work of Joly and Laurent cite joly-laurent, the authors
studied the supercritical case for the nonlinearity in the wave equation, from the
Strichartz Estimates (see (2.26)-(2.28)). In this case the authors do a first study
for nonlinearity belonging to the class of analytic functions (cf. (??TATARU,
1999; HORMANDER, 1997; ROBBIANO; ZUILY, 1998)) among others), and
by density they get the expected result, being able to demonstrate the existence
of a global attractor characterized by unstable varieties of stationary points. The
study of the fractal dimension and optimal regularity of the attractor are not

proven, mainly because of the limitations in the observability inequality.

For the proof of existence of a global attractor, the literature shows us that
the inequality (4.1) is compatible with the method of contractive functions and
the decomposition of the semigroup into a compact part and a part that decays
exponentially. Regarding quasi-stability method, both for the critical case of

Sobolev or subcritical Strichartz, (4.1) is not compatible.

The advantage of studying quasi-stable systems is the extra properties
that the attractor gains (see Theorem 2.38). The lack of compatibility with the
inequality (4.1) is due to the regularity of the propagation speed of the waves.

Thus, in this section, a new observability inequality is proof for the class
of sharp admissible damping regions, where the control of the initial energy
is given by the gravitational potential energy and not the kinetic energy. This
allows to have a greater regularity with the control term, which makes this
new inequality compatible with the quasi-stable systems for supercritical non-
linearity of Sobolev or subcritical Strichartz (see Theorem 6.7). In addition, the
unique continuation, proven as a consequence of this new observability, allows

us to prove characterizations of the global attractor from the unstable manifolds

of the stationary points.
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5.1 New observability inequality and unique continuation

property

The goal of this section is to establish a new observability inequality and
unique continuation property for the system (1.1) where po,p; : M x [0,T] - R
satisfy (1.2)-(1.4). That is, we will proof Theorem 1.1.

As explained above, the objective of the new observability inequality is
to be able to control the initial energy from the gravitational potential energy.
So the methodology to be able to achieve this inequality will be via Carleman
Estimates using the results shown by Triggiani and Yao (TRIGGIANI et al.,
2002), more exactly, will be used Theorem 2.25.

Since Theorem 2.25 needs a finite collection overlapping subdomains of
M associated with a collection of functions satisfying (d;j.1)e — (d;.4)e, the
construction to the sharp admissible damping regions [w] plays a fundamental
role, since from a € > 0, the Theorem 3.3 allows a decomposition of M in two

overlapping open sets, this is
M=wUV.

Note that @ C M is connected, while V is divided into k connected components
“as in (3.3), where, by construction, each of these components intersects @ . In

addition, V is associated with a functional d : M — R satisfying (d.1.) — (d 4.).

On the other hand, the Theorem 4.7 shows a decomposition in overlapping
subdomains of @ such that each element of the collection is associated with a
functional d; : M — R satisfying (dj.1)e — (d;.4). Note that this will allow

you to use Theorem 2.25 over M.

It is important to note that the inequality (2.21) in Theorem 2.25, shows the
control of the initial energy from the gravitational potential energy on I'y C dM
defined as in (2.20), that is, the form volume is defined on dM and not on M, so

a geometric result of coarea, in particular Theorem 4.10, will be necessary.
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Proof of Theorem 1.1:

Proof. Fix € > 0, for Theorem 2.20 and Theorem 4.7, there is a finite index
A={1,...,A} and an integer k > 0 such that

I

k
M=|Jojuv, Vv=JV;, Vino#£0Vj=1,... k.
JEA j=1

I1. There is a functional d : M — R satisfying

e deC3(V),
e V2d(X,X) >0, VXE€T,M, xcV,
e infy |Vd| > 0,
e (Vd,n) <0 on dMNV.

I11. For each w; € {®;} jca, there is a function d; : M — R such that is fulfilled
e dj € C*(M), mingg:dj(q) >0,
e V2d;(X,X) > |X|g, VX €ETM, Vg€ 0,
e infy, |Vd;| >0,
e there is a set of indexes J C A such that @;NJM # 0 for all j € J.

Moreover:

a) (UjGA\I (DJ> NoM = 0,
b) (Vdj,n) >0 on IMN®;, VjeJ.

Then, considering AN{1,...,k} # @, we can define finite collection overlapping
subdomains of M, denoted by {Q j} jer for a finite index I = 1,...,kUA, such

that

Vi if j={1,...,k},

{0 =ik G.)
w; if jEA.

Analogously, we define a collection of functional associates, denoted by {3}} jel

such that

~ d if j={1,...,k},

G4 ti={lh 52)
d;j if jeA.
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Note that {€} jer and {cfj} jer fulfil hypotheses 1 and 2 of Theorem 2.25, since
the collection {V;} - .. x is connected. Then, we have all the hypotheses of the
Theorem 2.25, therefore there exists kr > 0 depending on €, T and Cr such that

r ow\ 2
/0 /F] (%) drydt > kr ([|(w(0), dw(O) Iz w2y + 1 W(T), dw(T)) i 0y xrz(c

where
I = J{x€oM|(Vdj(x),n(x)) >0} .
jel
Again, by Theorem 4.7 and Theorem 3.3 we have to I'y C U¢; @; C @ and
I = U{x € IM | (Vdj(x),n(x)) > 0}.
jeJ

2 (1.20) is fulfilled, since

Finally, using the Theorem 4.10 with f = |Vw
(Vw,m) 2 <|Vw]?, T =T

Additionally, if w = 0 in @ x [0,T] is clear that w = 0 on M x [0,T], proving
Theorem. O
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CHAPTER

APPLICATIONS TO WAVE EQUATIONS:
CRITICAL CASE

The objective of this Chapter is to proof the Theorem 1.2. For this purpose,
the new inequality of observability and unique continuation property shown in

Theorem 1.1 will play a fundamental role.

The strategy to be followed will be using gradient and quasi-stable dy-
namic systems, that is, we will use the Theorem 2.38 (cf. (CHUESHOV; LASIECKA,
2010; CHUESHOV; LASIECKA, 2008)). This is how we will divide the Theo-
rem 1.2 proof into four sections: the first is intended to show the well-posedness
of the problem (1.5) and some notable inequalities that will serve as the basis
for the subsequent proofs, the second section shows that the dynamical system
associated with (1.5) has a gradient structure, while the third section proves that
this dynamic system is also quasi-stable. Finally, the Theorem 1.2 proof will be

concluded in the fourth section.

Let us write (with A = —A)

R
ol A a(x)g() f() 0

Then problem (1.5) is equivalent to the Cauchy problem

0

. (6.1
L (6.1)

U +AU+FU =H, U(0)= (up,u1) (6.2)
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defined in % := H} (M) x L*(M) with domain
D(A) = {(u,v) € (Hy(M))*|Au+a(x)g(v) € L} (M)} =: 5",
In order to solve Cauchy problem 6.2, we can use Sobolev embedding to

obtain estimates of the solutions. See for instance (BARBU, 1993; CHUESHOV;,
ELLER; LASIECKA, 2002; CHUESHOV; LASIECKA; TOUNDYKOV, 2008)

for details.

Theorem 6.1 (Well-possedness). Assume that (1.6)-(1.11) hold. Then

(i) For any initial data (ug,u;) € 5%, problem (1.5) possesses a unique weak

solution
u € C(RY; H (M))NCY(R*; L2 (M)), (6.3)

(i) Given T > 0 and two solutions z' = (i, d;u') with initial value z}, € B, where

B is a bounded set of 47, i = 1,2, one has
I2'(£) = 22 ()13 < Corllzo— Bl %, VE€[0,T], (64
where Cgr > 0 is constant.

The total energy of the system defined by
1
&u(t) = §||(u,9,u)||§f+ /MF(u(t))dx——/Mh(x)u(t)dx, (6.5)

with F(s) = 5 f(r)dr.

Proposition 6.2 (Energy identity). Under the assumptions of Theorem 6.1, then

the corresponding solution of (1.5) satisfies
t
Eultr) + / i /M a(x)g Q) Qudxdt = &), Vi, >11 >0,  (6.6)
3

where (the subscript is included just for the sake of clarity, indicating the solution
to problem (1.5))

Proof. Once g is assumed linearly bounded at infinity the argument is standard

and readily follows for strong solutions from multiplication by d;« and integration
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by parts. After that, the identity can be extended by density to all weak solutions,
since the functionals in (6.6) are continuous with respect to the topology of
T . U

d
9 5u0)= [ ale@uauds, 120 )

There exist positive constants 8,Crpp and Crj 1, the two last ones
depending on f,h and M such that

Bll(u(2), 2u())3% —Crum < E(t) < Crap(1+ I (e(2), Qeu()))|*),  (6.8)

An important consequence of the energy identity is that the forward-in-
time evolution of the linear energy is controlled by the linear energy at the initial

time. We state it rigorously now.

Proposition 6.3. Under the assumptions of Theorem 6.1, there exists Cy > 0,
depending on f,h and M, such that for any (up,u;) € S the solution associated
to problem (1.5) with initial data (ug, ;) fulfils

1G(2), (1)) 15 < Co(1+ Il (uo,ur) %), Ve 20. (6.9)

Proof. Since &, is non-increasing, we have that &,(t) < &,(0) for any 7 > 0.

Combining this with (6.8) at time # = 0 in the right hand side, the result follows.
]

Lemma 6.4. Let us consider (u,du) € C([0,T]; 5#") strong solutions for the
problem (1.1) and f € C!(R) satisfying (1.9)-(1.10). Then, considering po =
f'(u) and py € L*(0,T;L>(M)), (1.3)-(1.4) they are fulfilled.

Proof. It is clear starting from the Sobolev embedding. O

6.1 Gradient structure

Theorem 6.5 (Gradient structure). Assume that hypotheses (1.6)-(1.11) are

satisfied and € > 0 be given.Then, for some &-controllable measure set @ C M
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sharp admissible damping region, such that (1.12) is fulfilled where ap > 0 is
a constant that depend on ®, the dynamical system (S(¢),5#°) corresponding
to the problem (1.5) is gradient and if it possesses a global attractor, it will
be characterized as the unstable manifold M“(.#") of the set .4 of stationary

solutions to (1.5).
Proof. For z = (u,d;u), let us define

W(e) = 3lel+ [ (P) ~hxu)ds

Thus, we need to prove (i) — (ii) according to the definition of the Lyapunov

functional (see Definition 2.34)

From the definition the energy of the system (1.5), is fulfilled
d
Lp(s(t)z) = — / a(x)g () Ayudx (6.10)
dt M
and using (1.6), the right-hand-side is negative, this yields (7).
For to prove (ii), suppose that z satisfies
W(S(t)z0) =20, Vt > 0. (6.11)
Then (6.10) implies that S(¢)zo = (u, dyu)

/M a(x)g(dhu)dudx = 0,

and from assumption (1.6) we infer that
/ 9u’dx =0 and / a(x)|g(du)2dx = 0.
® M

Therefore S(t)zo = (u(t),du(t)) is a C°([0, T]; 5#) solution of the undamped

system
Qtu—Au+f(u)=h inMx(0,T],

u=0 ondMx (0,T], (6.12)
u(0) =ug, u(0)=u; inM,

with supplementary condition

du=0 ae.inwx(0,7T]. (6.13)
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To conclude that u is stationary, we shall apply unique continuation prop-
erty (Theorem 1.1) with w = du, in order to show that d,u = 0 in M. However,

we need (u, J;u) regular.

We first observe that (6.13) implies d;u(0) = 0 in @. Then, it turns out that
any point zo = (up,u;) satisfying (6.11) must satisfy compatibility condition

u; =0 ae.in w. (6.14)

Thus, the system (6.12)-(6.13) is equivalent to the Cauchy problem

U +BU +F(U) =H, U(0) = [“"J (6.15)
y

IR 5 O
ou f() A 0 h

with A = —A and

where

V={veDA?)|v=0 in o}, | (6.17)
then D(B) = D(A) x V. We will denote by
¥ ={(z,v) € |v=0 in 0} C 7, (6.18)

to the phase space of the problem (6.15). It is clear that (¥, || - || ») is a Hilbert
space with the internal product of # and D(A) x V C ¥ with compact imbed-
ding D(A) xV — 7.

It is not difficult to prove that by Theorem 6.1, in this new contex, the
solution operator of problem (6.15) generates a strongly continuous semigroup
defined by

CT@): V=Y, (vo,v1)— (v(2),0v(t)), t >0,
where (v,0d,v) is the weak solution corresponding to initial data (vp,vi). In
addition, T'(¢) is also strongly continuous semigroup on ¥ associated with the
system (6.12) satisfying the compatibility condition (6.13).

Then, (u, d;u) is also a solution to the problem (6.15), that is

(u,du) € C°([0,T]; ¥). (6.19)
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Remark 6.6: It is not difficult to show that a solution (u,du) € C°([0,T];#)
of the system (6.15), is also a solution for (6.12). In particular

(u,du) € C°([0,T];5#) and du=0 in o x[0,T]. (6.20)

Then, thanks to (6.19), exists a sequence (45, u¥) ey C H?(M)NH} (M) x
V such that (uf,u¥) — (uo,u1) in ¥ and (uf,dpu*) == T () (uk,u%) — (u,du)
in C%([0,T]; 7) where (u*, du¥)en C CO([0, T]; H2(M) OV HL (M) x V) is a se-
quence of strong solutions of the system (6.15). Additionally, by Remark 6.6,
for each k € N we have to (¥, d,u*) satisfy

(02uF — Auk + f(u*) = h, in M x (0,T]
uF=0 on oM x(0,T],
¥ =0 inwx|[0,T],

u*(x,0) = uk(x), duk(x,0) =uk(x), xe M,
w1th( k uk) e CO([O T]; 5#1).

On the other hand, setting v* = d,u* and differentiating (6.21) with respect

(6.21)

to time, we obtain, in the distributional sense
I — AVE+ f' (W =0, in M x (0,T],
V=0 inwx][0,T], (6.22)
V=0 ondM x (0,T].

Note that the previous system fits the system (1.1), where py = f(u¥)
and p; = 0. Now, fix k£ € N and using the Lemma 6.4 it is possible to apply
the Theorem 1.1. So, we get v = 0 in M x [0, T] for each k € N, from which
it follows that v¥(¢) — 0 in H} (M) for all # € [0,T], in particular v*(¢) — 0 in
L?(M). Thus, of the uniqueness of the limit, (6.12) and (6.13), we have a,u( )=
a.e. in M, for all ¢ € [0,T]. Thus, we conclude that

S(t)zo = z0 = (u0,0),

which means that zg is a stationary point. This proves that solution operator of

(1.5) is a gradient system on J2°.



6.2. Quasi-stability inequality 89

Additionally, note that
Y(z) = o < ||z]| sz — o, (6.23)

owing to (6.7)-(6.8) this immediately establishs.

For the final statement, suppose that then exists a global attractor for the
dynamical system (S(¢),.¢"). Then due a well-known abstract result for gradient
systems e.g., cf. (HALE, 2010, Theorem 2.4.6) or (MIRANVILLE; ZELIK,
2008, Theorem 2.26). It asserts that an asymptotically compact gradient system
(S(2),57) the set A of its stationary points is bounded, then it has a compact
global attractor characterized by &/ = M*(_#"). Then it suffices to prove that the
set of stationary points is bounded. To this aim, note that any stationary solution
(u,0) of S(-) satisfy

—Au+ f(u) = h,

whence ||u|| #)(m) < ¢ for some ¢ > 0, completing the proof. O

6.2 Quasi-stability inequality

Theorem 6.7 (Quasi-stability). Assume the assumptions (1.6)-(1.11) are sat-
isfied and € > 0 be given. Then, for some g-controllable set @ C M sharp
admissible damping region, and given a bounded set B C 7, let z! = (u!, d,u')
and z% = (u?,d,u?) be two solutions to problem (1.5) such that z!(0),7z%(0) € B,

there are time independent constants Cy, ¢ > ( such that

Iz (7) = 22 (1) 13 < Cre 12" (0) — 2%(0) 1 3 + C Sl[tp] lie" () = 12 () 73 a0)-
s€f0,
(6.24)

Remark 6.8: The quasi-stability system show to decomposition of the flow
into exponentially stable and compact part. An immediate consequence of the
quasi-stabiliiy inequality presented in (6.24) is the existence of a regular global
attractor with finite fractal dimension. For more details the interested reader can

consult (CHUESHOV; LASIECKA, 2008; CHUESHOV; LASIECKA, 2010;
CHUESHOV, 2015).



90 Chapter 6. APPLICATIONS TO WAVE EQUATIONS: CRITICAL CASE

Proof. Let us denote w = u! — u?. Then (w, d;w) satisfies the equation

92w — Aw = pow+ p19yw in M x (0,0),
w=0on dM x (0,),
w(x,0) = ul (0) —u?(0) =: wy, Iw(x,0) =v!(0) —v*(0) =:wy, x €M,

(6.25)
where
po(x,t) = f(Agu' + (1 = 2g)u?), (6.26)
and
pi(x,1) = —a(x)g' (M + (1 — X)) du?), (6.27)

for some Ag, A € [0,1].
Remark 6.9: Of the hypotheses about g and a(-), we have to

—a(x)my < p1(x,t) < —a(x)m.

In particular,
pi1(x,t) < —agmy, x€ ,Vt > 0.
It is clear to note that (1.6)-(1.12) py € L~(0,T;L>(M)). Also, pow €

L'(0,T;L*(M)) for (w,dw) € C°([0,T); 5#). On the other hand, if (i, du’) €
C%([0,T]; ##") with i = 1,2, then

/ If/(AOul + (1 —%)u2)|2|w|2 S COHW”%II(M) +/ |u1|4lw|2dx+/ lu2|4|w|2dx

M M M
< Collwsgany + (1 Wsoqany + 1630y ) 199100
< Collwllzz ary-

Moreover, we need to use the Strichartz estimates with (4,12), (see Theorem
2.42) for the system (6.25) with H = pow € L1(0,T;L*(M)). Then, it is clear
that (for detail, see (7.6))

IpowllLro,7:02my) < Cor sup |[Wllz3(ag)- (6.28)
t€(0,7T] ,

¥
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From what was seen before and from the Theorem 1.1 and Lemma 6.4,

we have that observability inequality (1.20) is valid for the system (6.25), then

T T
1(w(0), aw(0)) % < kr /0 /w IVl = kg /0 VWl (629)

Nuevamente, por las Strichartz estimates with (4,12) se tiene que (for

detail, see Theorem 7.2):

t
2 2
polw|® < Cgr sup ||lw , (6.30)
/0 M i BTte[O,T]” “L3(M) ,
t 0 2 Vw2 6.3
<Cpr s + / , 31
/o Vi BTte[l(ll?T]“w”p(M) P Jo IV#lz20) (3D

for some p > 0.
These estimates will be the cornerstone in the proof of (6.24).

Now, for each U € C°([0, T}; HL(M)) NCL([0, T); L3(M)), we define the
functional Ey : [0,T] — R, such that

Ey(1) = 31U, aU0) g, (632)

in particular, E,,(¢) is the linear energy of the equation (6.25).

Besides that, we define the functional Y : [0,7] — R by

Y(t) = HEw(t) +nx () + Ok(t)

Where p > 0,1n,9 > 0 will be fixed later, and

(1) = /M w(O)ow()dx, K(1) = (xow,dw),

Lemma 6.10. There exist constants f3;, 8> > 0 such that

BLEy(t) <Y(t) < BoEw(t), t >0, (6.33)

with Aju > n+ 9.
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Proof. From the definition of 2 e x

n+9 2 n+1v 2 n+9
2 ||3tW(f)||L2(M) +T“w(t)”L2(M) < TEw(f),

INZ (1) +0k(t)| <

then
Bi1Ew(t) <X (2) < B2Ew(2),

for By =u— 3{1—1’ and 3, = u+1%'—9-. Thus, we have the result for all n, 9%, u >0
such that A;jpu > n+ 9. O

Lemma 6.11. Given ag,m; > 01in (1.6)-(1.12), then

EL,(t) < —aom; |||l 2(0) — /M powdswds.

Proof. We note that by the equation (6.25) and using (1.6)-(1.12), be get that

Ev’v(t)z/ p1|8,w|2dx—/ powdiwdx
M M
< —aoml/ |8,w|2a'x—/ powoywdx,
) M

this completes the proof. _ O

Lemma 6.12. There exists a constant Cr g 4 o > 0 such that

1
() < ~Bu(t) = 31Vl 0y + 20008320 + Crasl Wy + | polwla,
for any € > 0.

Proof. Since

t%/(t)z/MatZW(t)w(t)dX-l-”atW(t)HI%Z(M)’

by applying w in the equation (6.25), comparing with x’(¢) and using (??)-(1.6)

we have that
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Z(1) < ~ VWl + /M 1 wwdx+ /M polwlPdx+ 118w 22 4
< =19l + (54 1) 100y + Cr sl + [ pools
< (1) = 3 IVW1sany+ 2000 4 + Cras Wiy + [ polwPi,
thus proving the result. |
Lemma 6.13. There exists a constant Cs g 4 o > 0 such that
K1) < VWl + 20001350 + CrmaglWlsy + [ polwlPa
Proof. Since
K'(£) = (Xwdw, W) + (Xaw, o} w) = l[&,w(t)ll,%z(w) + (Xaw, 37w)
by applying w in the equation (6.25), comparing with k’(¢), then
() = — | VWl 2o + /w prdwwdx + /w polwdx+ w2 ).
So, proceeding the same as the previous Lemma, we have to
(1) < — VW) + /w prowwdx+ /w polwlPdx -+ 19wl

<~ 19wy + 21001 )+ Crmag Wy + | polwla

Then, thanks to Lemmas 6.11-6.13, we obtain that

Y'(6) = REL (1) + n2(1) + ()
< -NE,(t) +M(t)

where

M(t) = “19“VW||%2(0,)+277||Wr||%2(M)—N/MPOWW1+(19+77)/M|P0WI|W|dx
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+(N+8)Cr.agl s (6.34)
provided that
u > %. (6.35)
Considering
Ap>n+9, (6.36)

and using Lemma 6.10 and applying the inequality of Gronwall in the differential

form, one has to

Y(¢) ge_%Y(O) +/0te_n_(3§ﬂM(t)dr.

(t=1)
For the properties of the function J(7) = e 7 with e [0,T], for the
estimates (6.4), (6.29) and (6.28), and inequalities (6.28), (6.30) e (6.31) there
has to be a constant Cy > 0 depending on f,B,a, g, T such that

aT

Ve B

Y(1) < e BY(0) - /O Vw1220 o sup IWIZs

for % > 0 large enough, p,n > 0 small enough and fulfilling (6.35), (6.36). Also,
note that for the estimate (6.29) we have to

_r
_p Skre
Y(r) < e Hr(0) - ZL—E,(0)+Co sup wlsy
t€[0,T)

Now, for the Lemma 6.10,by inequality 6.4 and considering ¥ > 23,Cpr
with Cpr > 0 given by inequality (6.4), we have

E,(t) < Coe ”tE,(0)+Cp sup ||W||1%3(M),
tel0,T]

Ew(T) < Cr(Ew(0) = En(T)) +Co sup |WliZs),
t€[0,T]
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For a certain T > 0 large enough and 3¢ > 0 a positive constant.

Note that (i) already shows the property of quasi-stability, but (i) has to
exist ¥ € (0,1/2) independent of time T > 0, such that

Ew(T) < YEw(0)+Co sup ”WHIZ}(M)-
t€[0,T]

Then proceeding analogously to what is shown by Chueshov and Lasiecka

(CHUESHOV, LASIECKA, 2010, Lemma 8.5.5.), there is a constant time
independent C; > 0 such that

Ey(t) < Cre " Ey(0) +C1 sup ||y,
t€0,T]

proving the Theorem 6.7. [J

6.3 Proof of Theorem 1.2

We will divide the proof in three steps:

Step 1. Note that due to Theorem 6.5, the dynamic system (S(z), ##) associated
with (1.5) is gradient, where the Lyapounov function satisfies (6.23). In
addition, it was shown that the set of stationary points .4 is bounded in
.

Step 2. From the Theorem 6.7 the dynamical system (S(¢),#¢) is quasi-stable on
every bounded forward invariant set B C ¢ (see Definition 2.37), then
by the Theorema 2.38, the dynamic system (S(¢),#¢) is asymptotically

smooth.

Step 3. By the Theorem 2.35 and the Remark 2.36, there is a global attractor
& = M*(A"). In particular, again by the Theorem 6.7, (S(¢),.7¢) is quasi-
stable on &7, and for the indepence at the time of the constant C; > 0, &/

has finite fractal dimension and optimal regularity (see Theorem 2.38),

which proves the Theorem.
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CHAPTER

APPLICATIONS TO WAVE EQUATIONS:
| SUPERCRITICAL CASE

In this Chapter we present a proof of Theorem 1.3. The methodology will

be the same as that used for the critical case (see Chapter 5).

So it is necessary to use the Theorem 1.1. To this end, we will show that
the Theorem 2.47 is valid for @ a sharp admissible damping region.

Lemma 7.1. Let € > 0, the Theorems 2.44 and 2.47 they are valid for some &-
controllable set @ C M sharp admissible damping region, such that (1.15)-(1.16)
is fulfilled for the system (1.13).

Proof. For Theorem 3.3, there is a @ C M that defines the class of sharp admis-

sible damping regions associated to €: [w;].

Note that associated with this class, there is an open set V such that
M\ onV #0. So, there is a xo € M and R > 0 such that B(xg,R) C V and
N B(xg,R) = 0. Now, by Theorem 4.1 we can always choose within the class
[@¢] a representative that satisfies (GCC). So, without loss of generality, we can

consider o satisfying (GCC).

That is, there is @ € [@;] such that fulfills (1.15)-(1.16).
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This shows that we can change the hypothesis (1.15)-(1.16) for the follow-

ing statement:

(Sharp H.) There exist and open set @ C M €-controllable such that

a(x) > ap >0, Vx€ o.

What proves the result. O

7.1 Quasi-stability inequality

Theorem 7.2 (Quasi-stability). Assume the assumptions (1.14)-(1.19) are sat-
isfied and € > 0 be given. Then, for some g-controllable set @ C M sharp
admissible damping region, and given a bounded set B C Z, let z! = (u!, d,u!)
and z? = (u?, d,u?) be two solutions to problem (1.13) such that 7! (0),z%(0) € B,
there are time independent constants Cp, >z > 0 such that

Iz () = 2() 134, < Cre™*[|2'(0) =2 (0) |5 +Ci1 sup ||u1(S)—u2(S)IIZ 12

s€[0y] P (M)
(7.1)

Proof. Let us denote w = u! — u?. Then (w, dyw) satisfies the equation
2w — Aw = pow + p13:w in M x (0,0),

w =0 on dM x (0,),
w(x,0) = u! (0) —u2(0) =: wp, dw(x,0) = v1(0) —v2(0) =: wy, x € M,

(7.2)
where
po(x,1) = f' (Ao’ + (1= Ao)u?), (7.3)
and
pi1(x,t) = —a(x), (7.4)

for some A € [0,1].
The test is analogous to that performed for the critical case, provided that

the estimates are available (6.28)-(6.31).
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Thus, for p € [3,5) given that
p—1 T—p p—1 S5—p

6 76 b g T =t
we have to
(e 2|w|2dx) s [ Itz
< ”ul”y(OTLn(M) Iwll -5,11—7 71_P(M))
<
- CBT“w”Lm(o,T;L%(M))’

fori=1,2¢(q,r) = (4,12) in (2.31).

Then, there is a constant Cgy > 0, depending on the initial data, such that

lPowllLi0,7;2280)) < CT Wl 20,7522 (a0)) +CBTHWHL°°(0,T;L’T]—27 )
<cC
S BT||W||L°°(0’T;L7':2;(M))

< Car||(w(0),0w(0))l| -

From what was seen before and from the Theorem 1.1, we have that

observability inequality (1.20) is valid for the system (7.2), then

T T
100(0), (), <kr [ [ (Vw2 =kr [ VWl )
Furthermore, is fulfilled

§ ' 7.6
lPowllzso,7:22a1)) < CBTtES[ng] 072 o

T t
L[ pobel < [ llpowllaun wllzan

< llpowllzs 0T;L2(M))||W||L°°(0,T;L2(M))

<C
BT”w“L =(0,T; L7—(M))

and
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this is
2 2
polw|“ <Cpr sup ||w||“1n . (7.7)
/ / tefo,r] LT (M)

On the other hand, notice that of the observability inequality (1.20), we

have to .
oy <kr [ 1Vl

Thus, it is true that

T
/0 /M poworw < I|p0W||L1(O,T;L2(M)“atW”L""(O,t;U(M))

< llpowll L o,7:22(m) SI[BP]”atW“LZ
se|0,t

< Cpr sup ||w|* +P sup (/ “VWHL2 )

te[0,T) LT-P (M s€[0,]
this is

T t
ow < Cgr s 2 + / Vw251, 7.8
/o /Mp()w = BTte[g?T] HWHU%(M) P Jo IV9iz2(a) 78

for some p > 0.

Proceeding analogously to the critical case has the result. UJ

7.2 Proof of Theorem 1.3

We will divide the proof in two steps:

Step 1. Thank to Lemma 7.1, it is enough to assume the hypothesis (Sharp H.)
instead of (1.15)-(1.16). Moreover, Theorems 2.44 and 2.47 are satisfied.
Therefore, the dynamic system associated with (1.13) is a gradient and has

a global attractor characterized by the unstable manifolds of the stationary

points.

Step 2. From the Theorems 6.7 and 2.38, the dynamic system associated to (1.13)

has a smooth global attractor with finite fractal dimension, proving the

Theorem.
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