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RESUMO

SEMINARIO-HUERTAS, P. N. Dinfimica assintética de equagfies de onda sobre variedades
Riemannianas compactas: dissipagfio localizada 6tima e forgas supercriticas. 2019. 107 p.
Tese (Doutorado em Ciéncias — Matematica) — Instituto de Ciéncias Mateméticas e de Computa-
gao, Universidade de 850 Paulo, 850 Carlos — SP, 2019.

A presente tese é dedicada ao estudo da dinfimica a longo prazo de equaqées de ondas definidas
sobre variedades Riemannianas compactas, com bordo, que possuam dissipagfio localizada

e forgas corn crescimento Sobolev supercrl’tico. O objetivo principal é construir regiées de

dissipagao com medida total (interior c fronteira) arbitrariamente pcquena, de forma a garantir a
existéncia de atratores globais regulates dc dimensao finita. Entre outros resultados, provaremos
uma versfio supercritica de um teorema de continuagao finica de Triggiani and Yao (2002).

Palavras-chave: Equagées da onda Riemannianas, amortecimento nao linear localizado, atrato-
res globais.





ABSTRACT

SEMINARIO-HUERTAS, P. N. Asymptotic dynamics of wave equations on compact Ri-
emannian manifolds: sharp localized damping and supercritical forcing. 2019. 107 p.
Tese (Doutorado em Ciéncias — Matematica) — Instituto de Ciéncias Matematicas e de Computa-
cao, Universidade de sac Paulo, 8510 Carlos — SP, 2019.

The present thesis is concerned with long-time dynamics of wave equations, defined on compact
Riemannian manifolds, with boundary, and featuring localized damping and nonlinear forcing
terms with supercritical Sobolev growth. The main objective is to construct optimal damping
regions with arbitrarily small summed interior/boundary measure that imply the existence of
a regular finite-dimensional global attractor. To this end, among other results, we prove a

supercritical extension of a unique continuation theorem of Triggiani and Yao (2002).

Keywords: Riemannian wave equations, nonlinear localized damping, global attractors.
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CHAPTER

1

INTRODUCTION

In the field of partial differential equations, the asymptotic analysis of the dynamics of
the evolution system is always a constant subject of study that generates a great interest within
the mathematical community, in particular for systems with localized dissipation, since they
allow us to model more realistic problems

Studying equations with localized dissipation involves a geometric study of the spatial
domain, which often leads to a deeper understanding on the geometry of these domains.

Therefore, this work has both a geometric approach and an functional approach, comple-
mented with an applications in Chapter 5 and 6.

1.1 Framework

An important question in differential equations has always been regarding the study of

energy decay, stabilization and controllability, where damping plays an important role. In the

case of wave equations, for example, Ralston (RALSTON, 1969) and Russell (RUSSELL, 197la;
RUSSELL, 1971b) are pioneers in studying the stability and controllability of these equations.
Rauch (RAUCH, 1976) studied the action of damping on limited domains based on what is

proposed in (RAUCH; TAYLOR; PHILLIPS, 1974) by showing the exponential decay of energy.

In 1975, Rauch and Taylor (RAUCH; TAYLOR, 1975a; RAUCH; TAYLOR, 1975b)
developed an idea in relation to the decay of energy with respect to the location of the damping
on a certain region a) of the domain in such a way that it suffices to locate the dissipation on
said region in order to achieve the exponential decay of the energy. Finding minor region of
dissipation has several of applications in science and technology, from constructions or analysis
of seismic waves, among others. In order to construct such a the region a) they studied the effects
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of the geometrical optics on the whole domain as proposed in (RALSTON, 1969), defining
a Geometric Control Condition (GCC for short) that was later generalized in the context of
Riemannian manifolds by Bardos et al. (BARDOS; LEBEAU; RAUCH, 1992) from the study of
the geodesics.

This idea of being able to locate the dissipation had repercussions in different areas of the
study of the wave equations, for example, applications are obtained in the exact controllability
on the boundary of the region (e.g. (BURQ; GERARD, 1997; ALABAU-BOUSSOUIRA, 2005;

MARTINEZ, 1999)), in the localized dissipations in exterior domains (e.g. (NAKAO, 1996b;

NAKAO, l996a; NAKAO, 2005; BAE; NAKAO, 2005)) or in the study of attractors and stability

of waves with localized damping exposed to subcritical, critical or supercritical forces (e.g.

(DEHMAN; LEBEAU; ZUAZUA, 2003; FEIREISL; ZUAZUA, 1993; JOLY; LAURENT, 2013;
CHUESHOV; LASIECKA; TOUNDYKOV, 2008; CHUESHOV; LASIECKA; TOUNDYKOV,
2009; CAVALCANTI et al., 2010; CAVALCANTI et al., 2009)).

In the Euclidean case, an example of the construction of a) satisfying the condition
(GCC), used in several of the aforementioned references (see Figure l) for a wave equation with

damping located on a domain M C R3, given by

3,214 — Au +xwa,u = o in M x (o, co),

is to set a x0 6 R3 \M, i.e. an observer outside the M such that a) is a neighborhood of the closure
is R3 of the set

{xedM : (x-x0)-n(x)20},
where n(x) represents the outward normal unit vector in x G M.

27 " $0 n(:c)

Figure 1 — Because the distribution of a) over the boundary of M, the measure of a) with respect to M can
be as small as desired.

The concept of the observer point leads to the study of different properties generated
by a). Different authors (cf. (RAUCH; TAYLOR, 1975a; RAUCH; TAYLOR, 1975b; BAR-
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DOS; LEBEAU; RAUCH, 1992; ENRIKE, 1990; ZUAZUA, 1991; TRIGGIANI et al., 2002;
LASIECKA; TRIGGIANI; ZHANG, 2000) among others) study the effects of said location,
such as the properties of observability related to the boundary conditions on the equation, or the

unique continuation property, that is, if the solution is nukk on a) then it is null on the whole.
These properties are fundamental in the study of the decay of energy, as in the theory of attractors
(see, e. g. (CAVALCANTI et al., 2010; CAVALCANTI et al., 2009; JOLY; LAURENT, 2013;
CHUESHOV; LASIECKA; TOUNDYKOV, 2008; CHUESHOV; LASIECKA; TOUNDYKOV,
2009)), which are mainly based on the Carleman estimates (see, e.g. (LASIECKA; TRIGGIANI;
ZHANG, 2000; TRIGGIANI et al., 2002; YAO, 2011)) or on Hormander’s results (see, e.g.
(HORMANDER, 1997; ??; TATARU, 1999; JOLY; LAURENT, 2013; ROBBIANO; ZUILY,
1998».

On the other hand, regarding the optimization of the location a), Cavalcanti et al. (CAV-
ALCANTI et al., 2010; CAVALCANTI et al., 2009) study a sharp localization, in the sense of
the control of the measure co, not only with respect to the domain measure, also with respect
to the measure of the boundary, where the construction of the dissipation region involves the

boundary and the interior of the set, always taking into account the property of being (GCC) (see

Figure 2).

aMflw_/t
Q

Figure 2 — M represents the whole square. It is easy to see that there is full control in the area that occupies
a) in relation to M as well as, the measure of a) 0 3M.

It is important to note that the construction of the sharp dissipation regions presented in

(CAVALCANTI et al., 2010; CAVALCANTI et al., 2009) not only depends on the geometry of
the manifold, but also on the equation to be studied. This is a disadvantage when we want to use
the construction for other systems.
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Regarding the study of asymptotic dynamics for the Riemannian wave equation with
nonlinear localized damping and nonlinear forces, Chueshov et al. (CHUESHOV; LASIECKA;
TOUNDYKOV, 2009) prove the existence of a smooth global attractor with finite fractal di-
mension, being characterized by the unstable manifolds of stationary points, from the method
of contractive functions and proof a new observability inequality from the use of Carleman
estimates. It should be noted that in this case the nonlinearity has Sobolev’s critical growth.

For the supercritical case with linear localized damping, Joly and Laurent (JOLY; LAU-

RENT, 2013) show the gradient structure of the system and the existence of a global attractor
for it, by means of the Strichartz estimates (cf. (STRICHARTZ et al., 1977; KAPITANSKI,
1995; KAPITANSKI, 1989; IVANOVICI, ; GINIBRE; VELO, 1985; GINIBRE; VELO, 1989))

and the works of Hormander. It is important to observe that the optimal regularity and the finite
fractal dimension are not possible to prove mainly by the observability inequality, since the
initial energy is controlled from the kinetic energy of the system, this does not allow to possess
the sufficient regularity in the control, which makes the authors use the decomposition method
of the semigroup in an exponentially decaying part and a compact part.

In (CHUESHOV; LASIECKA; TOUNDYKOV, 2009; JOLY; LAURENT, 2013), the
location of the damping is in the classical sense, that is, it is not sharp.

Thus, after a review in the literature, the main objective is to study the effects of a new
observability inequality and unique continuity property in the existence of a smooth global
attractor with a finite fractal dimension and caracaterized by the unstable manifolds of stationary
points, for two waves equations: a Riemannian wave equation with nonlinear localized damping
and critical forces and a Riemannian wave equation with linear localized damping and super-
critical forces; where the damping region is sharp in the sense of (CAVALCANTI et al., 2010;
CAVALCANTI et al., 2009).

To this end, we will divide the present work into six Chapters, the first of which is

intended to describe the previous notions for the subsequent analysis of the results, highlighting
the observability inequality and unique continuation property for finite collection overlapping
subdomains from the study of Carleman estimates as shown in (TRIGGIANI et al., 2002).

Chapter 2 is intended to proof the construction of the sharp admissible damping regions,
which is distinctly geometric and independent of the equation. While in Chapter 3 the geometric

consequences of this construction are shown, highlighting the decomposition in overlapping sets

of the spatial domain.

One of the important results shown in this work is described in Chapter 4, showing
new observability inequality and unique continuity property, that when applied in two wave
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equations: a Riemannian wave equation with nonlinear localized damping and critical forces and

a Riemannian wave equation with linear localized damping and supercritical forces; is achieved

prove the quasi-stability of the systems. This is detailed in the Chapter 5 and 6, respectively.

1.2 Setting
Given that the most important results of this work can be divided into three parts, we

will divide the hypotheses and considerations for each of the objectives into three sections: the
first of these being the proof of an inequality of observability and unique continuity property
on a N—dimensional Riemannian manifold; the second is with respect to the prove of a global
attractor for a three—dimensional Riemannian wave equation with nonlinear localized damping
and critical forces; while the third one is with respect to the study of the properties of a global
attractor for a three—dimensional Riemannian wave equation with linear localized damping and

supercritical forces. Note that our results and their proofs should easily extend to any space
N>3.

1.2.1 About the observability inequality and unique continuation
prOperty

Let (M, g) be a N—dimensional connected compact Riemannian manifold of class C°°

with smooth boundary (9M. Let us consider the wave problem with T > O sufficiently large,
given by

{
atzw—AW=P0W+P13tWinMX(O’TL

(11)w:Oon aMx (0,T],

where A represents the Laplace Beltrami operator on M and 170,171 : M x (0, T] —> R such that

pl 6 L°°(O, T;L°°(M)), po 6 L2(0, T;L2(M)). (1.2)

We assume that: ,

1. For all z 6 H2’2(M >< (0,T])

poz e H1’1(M x (o, T]), a,(poz) e L2(0, T;L2(M)). (1.3)

2. There exists CpoT > 0 such that

”pOZHL2(O,T;L2(M)) 5 CpoTHZHL2(0,T;H1(M))i V2 6 H2’2(M X (0,T]) (1-4)

Taking into account that

H“(M x (0,T]) := L2(0,T;H1(M))nH1(0,T;L2(M)),

H2’2(M >< (0,T]) := L2(0,T;H2(M))nH2(0,T;L2(M)).
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1.2.2 About the applications to wave equations with critical forces

Let (M , g) be a three—dimensional connected compact Riemannian manifold of class C°°

with smooth boundary 9M. Let us consider the damped wave problem with localized damping

8,2u — Au+a(x)g(8tu) +f(u) = h(x) in M x (0,00),

u=00n 8MX(0,°°), (1.5)

“(x70) = Ll0(X), atu(x,0) = Lt1(X), X G M,

where A represents the Laplace Beltrami operator on M.

We assume that:

1. Respect to damping:

Existen constantes m1,m2 > 0 such that

gGC‘OR), g(0)=0 and misg'(2)smz, VzeR, (1.6)

a €L°°(M) such that a(x) ZOfor allxeM. (1.7)

2. Respect to forces:

There exists a constants Cf > 0 such that

f e C‘GR), f(0) = 0, (1.8)

|f(z)|scf(1+lzl3), |f/(Z)ISCf(1+|Z|2)a tf”(z)lscf(1+1zl), (1.9)

f<z>z 2 Hz) — %<1 — v>|u|2—mf, mo 2 —%<1-u>lul2—mf, (1.10)

for some v > O and mf 2 0. Here A] > 0 denotes the first eigenvalue of the Dirichlet

operator —A and F (z) = f; f(y)dy.
The external force it is time-independent and

h GL2(M). (1.11)

Later we will add a hypothesis of location with respect to damping, that is to say that there will

be a constant cm > 0 such that for a certain open subset a) C M is fulfilled

a2a0>0, a.e. in a), (1.12)

This hypothesis is fundamental for the proof of the existence of a global attractor in Chapter 5.
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1.2.3 About the applications to wave equations with supercritical
forces

Let (M, g) be a three—dimensional connected compact Riemannian manifold of class C°°

with smooth boundary 8M. Let us consider the damped wave problem with localized damping

atzu—Au+a(x)3,u+f(x,n) = 0 inM x (0,00),

u=00n 8Mx(0,oo), (1.13)
u(x,0) = uo(x), 8,u(x,0) = u1(x), x e M,

where A represents the Laplace Beltrami operator on M.

We assume that:

1. Respect to damping:

aEL°°(M) such that a(x) ZOfor allxeM. (1.14)

There exist and open set a) C M, do > 0, x0 6 M and R 2 0 such that

Vx e co, a(x) _>_ ac > O, M\B(x0,R) C a). (1.15)

(0 satisfies the geometric control condition. (1.16)

The definition of a) satisfiing the geometric control condition is discussed in detail in
Section 3.1.

2. Respect to forces:

There exists a constants Cf > 0,1) 6 [3,5) and R > 0 such that all (x, u) E M x JR

feC°°(M><]R,R), f(0)=0, (1.17)

lf(x,u)|SCf(1+|u|p), l9xf(x,u)|SCf(1+lu|"), |<9uf(x,u)|SC(1+|u|)”_1 (1-18)

(x 52 B(xo,R) or |u| 2 R) => f(x,u)u 2 0. (1.19)

where x0 denotes a fixed point of the manifold.
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1.3 Goals and new results
As commented when reviewing the previous literature that involves the work, the main

objective is to prove two great results:

The first main result, the Theorem 1.1, shows a new observability inequality and unique
continuation property for a class of e-controllable. The definition of e-controllable is shown later

in the work, in the Definition 3.1:

Theorem 1.1. Let (M, g) be a N—dimensional connected compact Riemannian manifold of
class O” with smooth boundary 8M. Assume that statements (1.2)—( 1.4) hold and that s > O

and T > O sufficiently large is given. Then for all e-controllable set a) C M sharp admissible

damping region and assuming that T > O is , and

w e L2(0,T;H(](M)) nH1(0, T;L2(M))

is a solution of the linear wave equation (1.1) where pg, pl : M x [0, T] —> R satisfy the hypothesis
3 in Theorem 2.25. Then there exists KT > 0 depending on e, T, g and kT such that

T
/0 /w|Vw|2dwdt2KT(||(w,a,w)(0)||§ig(me2(m+||(w,a,w)(T)||},,(Q)xL2(Q)). (1.20)

If in addition w = O in w x [0, T], it follows that w = O in M x [O, T].

The proof of this Theorem is found in Chapter 4.

The second main result, is a direct application of Theorem 1.1, getting to proof a smooth

global attractor with finite fractal dimension characterized by unstable manifolds of stationary
points of the dynamical system associated with the wave equation with nonlinear localized
damping and critical forces (1.5). This result is presented below:

Theorem 1.2. Let (M, g) be a three—dimensional connected compact Riemannian manifold of
class C°° with smooth boundary 9M. Assume that assumption (1.6)-(1.11) hold and that 8 > 0 is

given. Then for some s-controllable set a) C M sharp admissible damping region, such that (1.12)
is fulfilled, the dynamical system associated to the problem (1.5) possesses a global attractord of
finite fractal dimension characterized by unstable manifolds of stationary points of the dynamical
system. Moreover, the attractor is smooth in the sense ofM C (H 2 (M ) flHé (M)) >< H6 (M), i.e.,

any full trajectory {(u(t), 8,u(t)) ] t e R} C d has the property that

am e L°°(R;H(](M))F1C(R;L2(M)), (1.21)

with bound
||V91u(t)ll% + ||9t2u(t)||% S C, (122)

where the constant C independent of t.
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The proof of this Theorem is found in Chapter 5.

Finally, the third main result, is an application of the observability inequality (1.20) for
the wave equation with localized linear damping and supercritical forces (1.13), getting to show

the fractal dimension and optimal regularity for a global attractor of the system.

Theorem 1.3. Let (M, g) be a three—dimensional connected compact Riemannian manifold
of class C“ with smooth boundary 8M. Assume that assumption (1.17)-(1.l9) hold and that
8 > O is given. Then for some e-controllable set a) C M sharp admissible damping region,
such that (1.14)—(l.l6) is fulfilled, the dynamical system associated to the problem (1.13)

possesses a global attractor 42? of finite fractal dimension characterized by unstable manifolds
of stationary points of the dynamical system. Moreover, the attractor is smooth in the sense of
M C (H2(M)DH(§(M)) x H01 (M), i.e., any full trajectory {(u(t),8,u(t)) I t 6 R} C d has the

property that
atu e L°°(1R;Hg (M)) mC(1R;L2(M)), (1.23)

with bound
||Vazu(t)||% + ||8,2u(t)||% s c, (1.24)

where the constant C independent of t.

The proof of this Theorem is found in Chapter 6.

In addition to the previous theorems, the work presents a series of new results in terms of
literature. These are listed below:

1. Recover Carleman estimates for supercritical wave equations (see Chapter 1 and 4).

2. From a 8 > 0, construct a class of sets sharp admissible damping region from the new
definition of s-controllable sets (see Chapter 2). In addition, this construction is distinctly
geometric (independent of any PDE).

3. Prove a series of geometric consequences for the class of sharp admissible damping region
sets, highlighting a result of decomposition in overlapping sets and a coarea formula (see
Chapter 3).

4. Prove the existence of a smooth global attractor for the dynamic systems associated with

(1.5) and (1.13), through the study of quasi-stable dynamical systems (see Chapter 5 and
6).





27

CHAPTER

2

MATHEMATICAL BACKGROUND

Now we recall the different notations and results regarding the differential geometry
that will be used throughout the present work. For more details see (ABRAHAM; MARS-

DEN; RATIU, 2012; O’NEILL, 1983; SAKAI, 1996; BURKE; BURKE, 1985; CARMO, 1992;
TAYLOR, 2013).

Let (M, g) be a compact Riemannian manifold, N ~dimensional, with smooth boundary,
with the Riemannian metric g(-, ) = (-, ).

The interior of M will be denoted by int(M) and the boundary of M by 8M. On the
other hand, we will denote the tangent space of M in the point p E M by TPM. Let’s set a
coordinate system (U, 111 = (x1, . . . ,xN)) ofM. The canonical basis of TpM associated with this

neighborhood is B'V = (e1,...,eN) such that e,-(p) = 3x,(p).

Given d 6 C°° (M ) and vp = [y] a vector tangent to M in p, we define the derivative of d
in the direction of V1, with vp(d) = %I,:o(d o y) E R. We will denote the differential of d in p by
Dd(p) such that

Dd(p) : TpM —> R

vp »——> vp(d).

Let M be another differentiable manifold and f : M —-> M a differentiable application

among them. The differential of f in p will be denoted by Df (p) and is defined as

Df(p) : TPM —> Tflmfi
[7] H [f o 7].

A vector field X on M is an application that assigns to each point p 6 M a vector tangent
to M at that point, X (p) E TpM. That is, an application X : M —-> TM such that noX = IdM

where TM is the tangent manifold ofM and 71: : TM —> M the canonical projection.
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An X field is said to be differentiable if X is C°° differentiable as an application between
manifolds.

We will denote by 36 (M) the set of all vector fields on M. Note with the internal operator
the sum and product by real scalars, (If (M), +, R) is a real vector space of infinite dimension, and
with the product defined by (d -X)(p) = d(p)X(p) for all p e M and d E C°°(M), (X(M), +, )
is a module on the ring C°°(M).

Fix X e %(M), for each function d e C°°(M) we can define the application

X(d): M——>R

p+—>X(p)(d),

that satisfies Leibniz’s rule, this is

X(f'g) =X(f)-g+f-X(g)-

Given X e 3€(M) a vector field and y: I —> M, with I C R a differentiable curve. We

will say that y is an integral curve of X if 7/(t) = X (y(t)) for all t E I . In the case that I = R we
will say that y is complete and that X is complete along 'y. IfX is complete throughout all of its

integral curves, it is said that X is complete.

Remark 2.1: An important result about complete vector fields is that ifM is a compact manifold
then any vector field X E 3€(M) is c0mplete (cf. eg. (O’NEILL, 1983».

Let (V, R) be a vector space. A tensor r times covariant and s times contravariant (or
type (r, s)) on “I/ is a multilinear application

T: "I/’x(7*)‘——)R
(u1,...,u,, W1,..., 1/15) »—-> T(u1,...,u,, 1/11,...,1[/s).

We will denote by {763014 the set of tensors type (r, s) over (7, R) . It is easily verified
that (9,147 ), +, R) has vector space structure.

Let T E $,s(“//) and T’ E $,s/(V). The tensor product of T by T’ is defined as

T ® T': "Wt" >< (1/*)S+S’ —> R
((ula"'7ur+r'aw17"'7WS+S/) H T®Tl(u17”"ur+r’a W1) "’) Ws+s’)’

where

I IT®T(M1,---,ur+r',II/1,---,1Vs+sf)= T(u1,...,ur,lV1,...,l/Is)'T (u,+1,...u,+rl,ws+1,...,q/s+sl).
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In the particular case that "I/ = TM and ‘I/* = (TpM)*, we will call the flat application b

(lowering an index) between TM and (TM )* associated to the metric g,

b: TM—>(TM)*
V») v" := (v,-),

with

(v,-): TM———>lR

va" := (v,w).

We will denote by 11 to the inverse application of b, which will be called sharp application
(raising an index), and is characterized by the relation (ll/”WW = ul(w) for all 111 6 (TM )* and
w 6 TM.

A tensor field T type (r, s) over M is an assignment of a tensor 7}, e %,s(7},M) at each

point p e M. Given T and a coordinate system (U, 111), there exist functions 42:13“, i1,..., js 6
{1,2, 3} defined in U such that

3
. .

Tp = Z t!""".’-‘(p) ~Dx,-,(p) ® ®Dxi,(p) ®ej1 (p) (X) ®ejs(p), Vp E U, (2.1)
. _

l],...,l,-
l],...,j_r=1

where Bp : {e1(p),e2(p),e3(p)} and B; = {Dx1(p),sz(p),Dx3(p)} they are basis of TpM
and (TpM)* respectively.

We say that T is continuous (resp. differentiable C’ (M)) in p if for all functions 41,111}?

are continuous (resp. differentiable C’ (M )) in p, in particular if T is differentiable C°° (M) we
say that T is a tensor field.

We denote $,S(M) 2= UpeM $,S(TPM). A tensor field type (r, s) is an application T :

M —> $,S(M) such that um o T = IdM, where “as : $S(M) —> M is the canonical projection, that

is, 70,5(Tp) = p for all Tp e ZAM). We denote by %,,s(M) the set of all tensor fields (r, s) over
M.

A differential form type (1,0) or 1-differentia1 form a is a field of linear forms, that is,
tensors type (1 , 0). We will denote by A1 (M) the set of all 1-differential forms, endowed with
their natural operations.

A differential form type (2,0) or 2-differential form [3 on a manifold M is a tensor field

(2,0) that is antisymmetric, this is, flp(vp,wp) = —fi(wp,vp) for all v,,,wp E TpM and for all

p E M. We will denote by A2 (M) the set of all 2-differentia1 forms, endowed with their natural

operations.

We say that 1-differential form a e A1 (M) is exact if there exists a function (1 e C°°(M)

such that a = Dd. Let a = 2521 alii be the expression of a differential form in a coordinate
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system (U, 111) of M, and define the external differential of a as

N N
Doc = Z Z axjai-ijADxi,

i=1 j=l

with IVA d) = v1® q) — ¢ (8) 111. Moreover, if y: [a, b] —) M is a differentiable curve, we denote the

circulation of 06 along 7 as

A a := fag/(mm.

On (M, g), we denote by X b 6 A1 (M) to the flat differential form of a field X e $(M),
and 05ti E x(M) to the field of a sharp differential form a E A1 (M) In coordinates (U, 1/1) these
fields have the expressions

N
b

N

X: Xiei, X = Z ginlij,
izl i,j=1

N
4

a = alii, a” = Z g’faiej,
i,j:1

where gij and gif as in (2.1) with T = g, so for d E C°°(M) we will denote the gradient vector
field of d by

‘M2

~ II _.

Vd(p) = (Dd(p>)“, VP 6 M,

using the above coordinates, we can call the Vf as

3
. .

Vd = E g’faxid - ej.
iJ=N

Additionally, for all X G 3 we have that

w := (Vd,X) =X(d).

In what follows, we will denote the application V : 36(M) >< Z£(M) —> x(M) given by
V(X,Y) = VXY as the Levi-Civita connection of (M, g) such that VXY satisfies the Koszul
formula and for the coordinates (U, III) it has to

N

Veiej = E riff-6k,
k=1

where the coefficients Ff]. are the Christoffel symbols of g and are given by

1 3

I—V. Z (axigjm + axj'gim ‘ axmgij) ghk-

mzl
rtf=
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Given 7: [a, b] —-> M a differentiable curve, we define the length of 7 as

to) = [1mm = /" Maggi/(amend:-

Moreover, if (M, g) is connected, we will denote the distance between two points p, q E M
as

d(p,q) = igf{l(7) I 7: [cub] —> M, Y(a) = p, 707) = q}, (2.2)

Let 7: [a, b] —> M be a differentiable curve and to E (a, b) such that 7/ (to) aé 0. We say that
X 6 $01), if there exists 8 > O and X E ZflM) such that X7(,) = X(t) provided that It — fol < 8.

We denote the covariant derivative of X 6 $01) in to, by

DX
71;- (to) 2= VyowX.

In particular, about the coordinates (U, IV) will be given by

DX N 3

7,7— = Z (IX/2+Z (xiOY)IXj(rij°Y)> 6k,
k=l 1,121

where X = if; Xiei and Ff]. are the Christoffel symbols in that chart.

A regular curve y: [41,19] —> M is said to be a geodesic ofM if % = O in (a, b).

Let be X E 3K(M). The divergence of X is the function div(X) : M —> R given by

: (Vei(p)Xaei(p)>'

Note that if d E C°° (M) is a function defined on M, then

div(d ~X) = d - divX +g(Vd,X).

On the other hand, if p E M is a critical point of d, the Hessian of d in the critical point
p, (Vzd),, : TpM x TpM —> R, is defined through

(Vzd)p(X,Y) =X(W(d)),

where W e if(M) satisfies W(p) = Y.

In particular,
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(Vzd)p(X,X) = (d07)"(0),

with ye C°°((—-s,e),M) holds that y(0) = p, 7/(0) = X.

Given d 6 C°°(M), the Hessian of d is defined as Vzd : f (M) x £(M) —> C°°(M) where

(Vzdxxm) = X(Y(d>> — (VXY)(d) = <vath Wu 6 36W)-

The Laplace-Beltrami operator of a given function d on a manifold, it is given by

Ad = div(Vd) = Trace(V2d) e 6” (M).

For the LP spaces on Riemannian manifolds, the notations and definitions presented in

(TAYLOR, 2013) will be followed. Thus, over the space £01,6(M) of all tensor fields on type
(0, k) the internal product is defined by

(TlaT2>1£07k(M)=/M<T1’T2>,%’k(M)dVg: T1,T2€3€o,k(M),

where,
N

(T1)T2>%,k(M)= Z Tl(ei17"')eik)T2(ei1)"'7eik))
i1)""ik

and 01Vg is the volumen form ofM for the metric g.

Remark 2.2: Note that t%,k(M) = UpeM TgM.

We denote

you, some) = {T e 350,k(M) | /M<T, Manda < w}-

Analogously, L2 (M) is the completion of C°° (M) with the inner product

(u,v)L2(M) = /Mu(x)v(x)dVg, u,v 6 C°°(M).

2.1 Sobolev spaces on Riemannian manifolds

This section is intended to show the main definitions and results about Sobolev spaces
on Riemannian manifolds. For this we will continue as the main reference (HEBEY, 2000).

Let (M, g) be a Riemannian manifold. For k an integer and u E C°°(M), Vku denotes the

k — th covariant derivative of u (with the convention Vou = u). As an example, the components
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of Vu in local coordinates are given by (Vu),~ = 8m, while the components of Vzu in local
coordinates are given by

(Vzu),'j = aiju — Ffjaku.

By definition one has that

leu|2 = gi‘J‘ .. . gik’j" (Vku)i1...ik(Vku)j1---jk-

For k an integer and p 2 1 real, we denote by C}: (M) the Space of smooth functions u E C°°(M)

such that WM] 6 LP(M) for any j = 0, . . . ,k. Hence,

c,f(M) = {u e C°°(M) |w = O,...,k,/ |Vju|pdVg < co},
M

where, in local coordinates, dVg = . /det(g,~j)dx, and where dx stands for the Lebesgue’s volume

element of R”, N = dimM. IfM is compact, one has that Cf (M) = C°°(M) for all k and p 2 1.

Remark 2.3: When the dependency of g on the volume form dVg is clear, the classic dx or dM
notations will be used instead.

Definition 2.4: The Sobolev space W” (M) is the completion of C5 (M) with reSpecto to the

norm
k

_

l/p
Ilullwmw) = z (/M|v1u|"dvg) .

1:0

Proposition 2.5. If p = 2, Hk(M) := Wk’2(M) is a Hilbert space when equipped with the

equivalent norm

||”||Hk(M) =
k

Vjude.Igo/y I

g

The scalar product (-, >Hk(M) associated to H - H is defined by

k
a .

(woman): Z/M(g'1’“...g’m’j'"(Vmu),-,_“,-m(V"'v)J-]...jm)dVg.
m=0

Proposition 2.6. IfM is compact, W” (M) does not depend on the Riemannian metric.

Proposition 2.7. If p > 1, WW (M) id reflexive.

Definition 2.8: The Sobolev space W6“ (M) is the closure of D(M) in W” (M) where

D(M) : {(p e C°°(M) | (p have compact support in M}.

Theorem 2.9. If (M, g) is complete, then, for any 17 2 1, W01 ”7 (M) = WI’P (M)
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Theorem 2.10. Let (M, g) be a complete Riemannian manifold with positive injectivity radius
and let k 2 2 be an integer. Suppose that there exists a positive constant C such that for any

j = o, . . . ,k— 2, |VchM,g| g G. Then for any p z 1, WJWM) = WWW).

Theorem 2.11. Let (M, g) be a compact Riemannian N —manifold. For any real numbers 1 S
q < p and any integers 0 S m < k satisfying 117 = 5 — “Tm, it is true that the embedding

Wk’q(M) C Wm” (M) is continuous.

Theorem 2.12. Let (M, g) be a compact Riemannian N —manifold. For any integers j 2 0 and

m 2 1, any real number q 2 l, and any real number p such that l S p <fl, the embedding
> ‘

N—mq

of W1+m*q(M) in W1 “D (M) is compact.

Corollary 2.13. Let (M, g) be a compact Riemannian three-manifold. Then:

(i) for any 1 S p S 6, the embedding of H1 (M) in LP (M) is continuous,

(ii) for any 1 S p < 6, the embedding ofH1 (M) in U’(M) is compact.

2.2 Carleman estimates for wave equations
For this section, we will follow the works of Triggini and Yao (TRIGGIANI et al.,

2002) in order to show a result of observability inequality and unique continuation property.
With this objective, we will study these results for two different cases: for a subdomain of
an compact Riemannian manifold and for an finite collection overlapping subdomains for an
compact Riemannian manifold.

We consider (M, g) a N —dimensional connected compact Riemannian manifold of class
C°° with metric g(-, ) : (~, -), squared norm |X|2 = g(X,X), and with smooth boundary 8M.

Moreover, for the temporary space, we will consider T > 0 large enough.

2.2.1 Case I: Observability inequality and unique continuation prop-
erty for subdomains ofM

Let us consider Q such that is an open bounded, conected, compact set of M with smooth

boundary 952 C (9M. We let n denote the outward unit normal field along the boundary 9M.

In this section we will study a observability and unique continuation result for the next

system on Q,

{
atzw—AWZPOW‘l'PIatWin QQ,T :=QX(07T]>

(2 3)
w=Oon 29,1 :=Q>< (O,T],
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where po,p1 : Q9; ——) R such that

pl 6 L°°(O, T;L°°(Q)), po 6 L2(O, T;L2(Q)). (2.4)

We assume that:

1. For all z e H2’2(M x (0, T])

pow e H1’1(QQ,T), a,(pow) e L2(o, T;L2(o)), (2.5)

2. There exists Cp07 > 0 such that

||P0W||L2(0,T;L2(n)) S CpoT||W||L2(o,T;H1(o))- (2-6)

Taking into account that

H"1(QQ,T) := L2(0,T;H1(Q)) oH‘(0,T;L2(Q)),

H2v2(QQ,T) := L2(O,T;H2(Q)) fiH2(O, T;L2(Q)).

Moreover, we will denote by é’h : [0,oo) —> R to the energy of the system with respect to
the norm in H1(Q) x L2(Q), i.e.

air) = /Q (I9:W(t)|2 + IVw(t)I2 + Iw(t)|2) cm. (2.7)

Functional Approaches

We will start by defining an generator of the local escape vector fields,
denoted by the functional d. This functional and its local escape vector fields Vd

are fundamental for the application of Carleman estimates.

Definition 2.14: Let d : a —> R a function such that

(d.1)g d e C365), minqe§d(q) > 0,

(61.2)Q v2d(x,x) > mg, vx e TqM, Vq 6 Q,

(d.3)Q 1an |Vd| > o,
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Consider the following definitions from the definition of d:

For T or sufficiently large, note that there is a 5 > 0 such that

T2 > 4mtgtd(x) +45.
x69

For this 5 > 0, there is a constant c such that 0 < c < 1, where

CT2 > 4ma_xd(x) +46
x69

Thus, we define the pseudo-convex function q) : M x R —+ R of class C3 given by

2

¢(x,t)=d(x)—c(t—-§-> , OStST, xEM.

Note that q) satisfies the following properties

(«p-1.)

T2 T2 _¢_(x,0) = ¢(x, T) = d(x) ~CT S ma_xd(x) —CT 5 —6, uniformemente em x E Q.
x69

(¢.2.) Let to,t1 such that 0 < to < T/2 < I1 < T, then

n_1in ¢(x,t)20‘, 0<0'<m,
(x,t)€Qx[t0,t1]

Where m := minxe§d(x) > 0.

Now, repeating the done in (TRIGGIANI et al., 2002; LASIECKA; TRIG-
GIANI; ZHANG, 2000), there is a rescaling for d such that we can define the
function

Ot(x) := Ad(x) —c— l,

satisfying the following properties

(a.1.)
Ad(x) —2c——a(x) = l —c > 0, Vxefi,
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(a.2.)

T 2

[2c+Ad—a]|Vd|2+2V2d(Vd,Vd)—4c2(Ad+6c—oc) (t—E) 24(1+7c)¢*(x

for all (x,t) 6 QQJ‘, where

2

¢*(x,r> = d<x> —c2 Q ~ g) , Wm) e Qw-

Remark 2.15: Note that

(WM) 2 ¢(x,t), WW) 6 QM.

We now define the following sets in QQ’T,

QQ,T(G) = {(xat) E QQ,T I ¢(xat) Z O- > 0},

QE,T(0'*) = {(x1t) E QQ,T | ¢*(x,t) 2 0'* > O}, O < 0'* < 0",

for some constant 0'* such that 0 < 0'* < 0“ < m. Observe that

99] le0,11]C QQ,T(0') C Q5,T(0'*) C Q9;-

In addition, an important property regarding the function ¢>|< is the control

estimate of the terms it lot. This is

4(1+7c)¢*(x,t) 2 4(1+7c)6* > 0, Wu) 6 Q5,T(G*>-
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Figure 3 —- In this example we consider (M, g) : ([O,L], I - |), Q : (O,L), d : flx— 10|2 with c z % and
T = 20. The plane denotes the region Q, on the other hand the surface generated by ¢* is
represented by the top surface and the surface generated by (l) by the bottom surface. Note that
both functions are pseudo-convex functions.

Operational notations

Let f(x,t),h(x,t) E C1(M x R) e X E %(M), then, we will use the fol-

lowing notations for the this section

(i) Vf 2: (ft, —-Vf),

(ii) (flour) := ht +divX,

(iii) (h,X)(f) r= hf: +X(f),

(iv) 527W := cilifiw.

The following lemma, found in (TRIGGIANI et al., 2002, Lemma 3.0.),
shows some important equivalences referring to the new notations

Lemma 2.16. Considering (i) — (iv), we have the following identities:
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(0) WW = th —Aw,

(b) Jamar» = fc7i\v(h,X) + (mom,
(e) We) = ftht — we),
(at) vafm = fc7i\vX +X(f)~

Auxiliary functions

Since the objective is to approximate the solution w E C2(Qg,°°) from
the pseudo-convex function (1), it is necessary to construct different auxiliary
functions that have goods properties over Q5” and szj- Therefore, given

w 6 C2(QQ,°°), d E C3(Q) and a(x) 6 C1(Q) the functions defined above, and

let 1“ > 0 be an arbitrary parameter, we define

T 2

l(x,t) =t(d(x)—c(t—-2—> > =T¢(x,t), (2.8)

‘P(x) = ta(x), 9(x,t) = elm) = emu"), (2.9)

a(x,t) =12(|¢t|2—|Vd|2) +(c—1)T= (2.10)

T 2
12 <4c2 (t — E) — |Vd|2> +2ct+ rAd—‘P.

Note that next to the operational notations is clearly the following Lemma

Lemma 2.17. In the context of the functions defined above with c 6 (0,1). The

following identities are satisfied

(i) ‘Pt 2 0,

(ii) It = —21.'c (t — g),

(Ill) It! I —2CT,

(iv) VI = rVd,
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(v) V‘P = Na,
(V1) V]; f:- 0,

(vii) Al = TAd,

(viii) a z 1'2 (402 (t — %)2 — |Vd|2) + 605), Where fi(t‘) represents a positive
linear error dependent on tau, in particular T(c — 1).

On the other hand, given that one of the objectives is to be able to prove
an observability result, we need estimates on 89. Note that Carleman estimates
do not require a particular condition on the boundary of the manifold. So, in
order to facilitate the mathematical calculations, we will consider that the system
has Dirichlet conditions. We will denote the term that contains the terms about

EQT as BTIQJ‘ such that

2
92 (523) (Vd,n)dZQ’T. (2.11)

(LT
BTIQJ‘ =217/ an2

Also, we define

r?={x€39 |(Vd(x),n(x)) SO}, r‘?=99\ffiz, (212)

well, we have to

awT 2

BTIQT§2r/ / 92<—) (Vd,n)dZQT.
7

0 F? n 7

Carleman estimates

As seen in (LASIECKA; TRIGGIANI; ZHANG, 2000; TRIGGIANI et
al., 2002), Carleman estimates are fundamental to the demonstration of the
observability inequality and unique continuation property result. Next, we state
the result found in (TRIGGIANI et al., 2002) for the case of classical solutions

” and strong solutions in H2’2(QQ,T).
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Theorem 2.18. Let d as in the definition 2.14 and in the context of the functional
approaches and auxiliary functions defined above. Given w e C2(Q9”) solution
of the system (2.3), with po, P1 satisfying (2.4)—(2.6), then for p = 1 — c and 8 > 0

small enough, can be defined fl := 4(1+ 7c)o* — Ep “13me (|a,¢|2 + |V¢|2) >
O for all T > 0 large enough, such that

T T
BT|Q,T+c1,Te2w /0 £Q(t)dt2[r8p—2CpoplT]/O Aezwuawfiflwmdodr

+ (21313 + 60:2) - 2cp0plT)/ e21¢|w|2dxdr
QQ,T(0)

‘ C2,T1«'3“f2fls [mm + 59W”,

where C1,T,C2,T > 0 they are constant depending on T > 0 e d.

Remark 2.19: The previous Theorem is also valid for solutions in H 2’2(QQ’T).

Observability inequality and unique continuation property

One of the most important results found in (TRIGGIANI et al., 2002), are
the result of observability and unique continuation. Next we present the version
for subdomains ofM.

Theorem 2.20. Let d as in the Definition 2.14 and in the context of the functional
approaches and auxiliary functions defined above. Given w 6 Hail solution of
the system (2.3), with p0,p1 satisfying (2.4)—(2.6). Then, considering (2.12) and

T > 0 sufficiently large, there exists kT > 0 depending on d, T and CT such that

T aw 2

_ > ' ./0 Ag (an) dlildt — kT(5Q(0) +£Q(T)) (213)

If in addition
al = 0, (2.14)3” r?x(o,T)

then w = 0 in Q9].

Remark 2.21: The above Theorem is a modification of Theorem 8.1. presented
in (TRIGGIAN I et al., 2002), which takes advantage of the key estimates about
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the system solutions (2.3) that generate the inequality (2.13), which they are at

first in the strong space H 2’2(QQ’T) analogously to that shown in (LASIECKA;
TRIGGIANI; ZHANG, 2000). The inequality (2.13) is satisfied for the weak so—

lutions in H1’1(QQ’T) by a passage of density, continuity and convergence, as in

(LASIECKA; TRIGGIANI; ZHANG, 2000, Theorem 8.2.). When decreasing the

regularity of the function po it is necessary to have the same approximations with

respect to the space H 2‘2( QQ’T) and to be able to pass through a limit to the space
H1’1(QQ,T), is so considering po 6 L1(0, T;L2(Q)) instead of L2(O, T;L2(Q)),
we need the estimates of po with respect to the space H 2’2(QQ’T) (hypothesis
(2.4)-(2.6)) ensuring that (2.13) is met over H2’2(QQ’T), in addition to satisfy-
ing the elliptical regularity as it is shown in (LIONS; MAGENES, 1968). For
the passage to the limit on the boundary, we use the continuation property for

a trace function of the space L2(0,T;L2(8Q)) into space L1(0, T;L2(Q)) (cf.

(??LASIECKA; TRIGGIANI, 1987; ??)). It is important to keep in mind that
the hypothesis (2.6) allows an approximation of the energy of the system in

space H1’1(QQ,T), where the term pow will be absorbed by the energy at the
initial moment.

2.2.2 Case II: Observability inequality and unique continuation prop-
erty for finite collection overlapping subdomains ofM

Another important result about Carleman estimates found in (TRIGGIANI
et al., 2002; LASIECKA; TRIGGIANI; ZHANG, 2000) is respect to manifold

decomposed in a finite collection overlapping subdomains {Qj}j€1 ofM, such
that

(m) ujezszj =M,

(9.2) for all Qj E {ij‘eb there is at least one Qk in the {Qj}jel family such
that QjflQk 75 (D.

For this case we will focus on studying the system (1.1) with po,p1 :

QMJ‘ -—> R satisfying (1.2)-(1.4), where
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QM,T I=M X (0, T], EM; := 8M x (O,T].

Also, we will denote by 5M : [0, co) —> R to the energy of the system with

respect to the norm in H 1 (M) x L2(M), this is

aw): /M (|8,w(t)|2+|Vw(t)|2+|w(t)|2) dM. (2.15)

Functional environment

We will proceed analogously to what was developed for Case I. So, for
this case, consider that for each Q]. 6 {Qj}j€1, there is a function dj : M -—> R
such that it is satisfied

(dj.l) dj E Cm(M), minqefidflq) > 0,

(djz) Vsz-(X,X) > |X|g, \7’X e TqM, W, e o,-,

(dj.3) ianj IVdj' > 0.

In addition, it will be considered:

(i) Qj,T 1= QQj,Ta Em 2=Zoj,T, Qj,T(0')1= Qo,,T(G), §,T(G*) I: Qfij,T(0'*),
for all j E 1,

(ii) repeating the same as in Case I, the functions related to dj, will be denoted
with the sub-index j,

(iii) Let w E C2(QM,°°) solution of the system (1.1), we will define wj(x,t) by

wj(x,t) = xjco(x,t), j G I, (2.16)

such that it satisfies the system

dwj' = 8t2w1' —Aw; = Powj+P1Wj+ [3:2 —A—Po —P13anlw, 16 I,
(2.17)
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Mh®=xwflWh®,dwh®=xfiflWfi®+mb®%%fit
ai&

where, xj (x, t) be a smooth cutt-off function such that

ini < 00) Xj(x,t) =1 OI] Qj,T(O-)a

and [8,2 — A —— pg ~ p18,, 70] is the commutator active only on suppxj for

ijL
Remark 2.22: Given the above definitions, we will have to:

(i) Boundary condition:

Wj|3M=0, jEI. (2.19)

(ii) Estimate for w E H2’2(M) solution of system (1.1):
T T

/O Allelzscpw(”atwjuizwzwfi||wj||22(0,T,H1(M,)+/O £M<t>),je1.

Carleman estimates: observability inequality and unique continuation

property

Proceeding as in Case I, the following result will be obtained with respect
to Carleman estimates:

Theorem 2.23. In the context of the above definitions, let w E C2(QM,oo) solution

of the system (1.1) with wj E C2(Qj,m) like in (2.16), with p0,p1 fulfilling
(1.2)-(1.4), then for p = 1 — c and 8 > 0 small enough, can be defined fl :=
4(1+7c)0'* — 8p max-QL—Tqaqufi + |V¢j|2) > O for all 1: > 0 large enough, such

that
T T

Brlwwmezw [O £M<t>dr zlfep dew] /O /M e2f¢ft|azwj|2+ lef-Izla’Mdt

+ (2133 +6112) —2c,,0,,,T) / (
)e21¢f|w|2dxdt

Q o‘

—Cz,Tr3e-”5[£M<o>+£M<T>L
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where C11, C21 > 0 they are constant depending on T > 0 e dj.

Remark 2.24: (i) The previous Theorem is also valid for solutions inH 2'2(M ).

ii In (TRIGGIANI et al., 2002) the Theorem 2.23 is roof for the case I =( ) p
{1,2}. The extension for a finite number of domains is immediate, provided
it is considered that if Qj C {Q1} 1-61 has no geometric boundary, then

BNQI=0
(iii) We note that

a
ZBTle,T=21'Z/ e2(-—aw-J) <Vdj,n)d2j,T
jEI jelz

aw
321 /T/ e2(-—-—f) Vd, dxdt,12610 moan,- an

< J n)

where

F0 2 U {x 6 3M | (Vdj(x),n(x)) = 8356) _<_ 0}, F1: 8M\F0.
jEI

(2.20)

Regarding the observability inequality and the unique continuation prop-
erty, we will have an analogous version to that of case I, which will be funda-

mental for the proof of the existence of a global attractor presented in Chapter
5.

Theorem 2.25. Let (M, g) be a N —dimensional connected compact Riemannian

manifold of class O” with smooth boundary 8M such that there is a finite collec-

tion overlapping subdomains {Qj}je1- We assume that the following statements

are holds

1. The collection {Q1} 1-61 satisfies (QI) — (9.2).

2. The collection {djh'g with dj : M —> R satisfies (dj.1) —- (d133) for all

j 6 I.
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3. p0,p1 : QM; —> R satisfies (1.2)-(1.4) where T > 0 is a temporary constant

sufficiently large.

Then, there exists kT > 0 depending on dj, T and CT such that

T 3w 2

/0 /F1 (5?) “Tl d’ 2kT(”(W, atW)(0)||12r11(Q)xL2(Q)+||(W, atW)(T)||,%11(Q)XL2(Q)).

(2.21)
where w E H1>1(QM,T) is solution of the linear problem ( 1.1) and F1 is given in

. . . aw : Z .(2.20). If in addition 97 F1Xl0,T]
0, then w 0 in M x [0,T]

2.3 Dynamical systems and global attractors
In this section, we will review some topics related to the theory of dy-

namic systems in a Banach space 3? . We will review the results presented in
Temam (TEMAM, 2012), Hale (HALE, 2010), Babin and Vishik (BABIN, ), and

we will make a more detailed study of the (CHUESHOV; LASIECKA, 2008;
CHUESHOV; LASIECKA, 2010).

Definition 2.26: A dynamical system is a pair of objects (S(t),.%”) consisting
of a Banach space 3? and a family of continuous mappings {S (t) | t 2 0} of £3”
into itself with the semigroup properties:

S(0) = ij, S(t+s) = S(t)S(s) Vt,s 2 0.

We also assume that the map [0,oo) x 3? 9 (t,x) |—> S(t)(x) G X is continuous
for any x E if. Moreover, the liner operator A defined by

D(A) = {z E if | lim S<t>f~Z exists},
t—>0+

and
S dSt — tAz= lim iii—Z =

——(—)—§

forz ED(A)
t—>0+ t dt t=0

is the infinitesimal generator of the dynamical system (S(t) , fifl), with domain

D(A).

Remark 2.27: Therewith 32” is called a phase space and S(t) is called an
evolution semigroup (or evolution operator).
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Definition 2.28: Let (S(t),3f) be a dynamical system.

(i) A closed set B C if is said to be absorbing for (S(t),<%fl) iff for any
bounded set D C 32” there exists to (D) such that S (t)D C B for all t 2 to (D)

(ii) (S (t),%” ) is said to be (bounded, or ultimately) dissipative iff it possesses
a bounded absorbing set B.

(iii) (S(t), if) is said to be asymptotically compact iff there exists an attracting

compact set K; that is, for any bounded set D we have

tle d3g(S(t)D,K) = o, (2.22)

where djf(A,B) = supxeA distjflx, B) = supxeA infyeg ”x — y”)?

(iv) (S(mi? ) is said to be asymptotically smooth iff for any bounded set D
such that S (t)D C D for t > 0 there exists a compact set K in the closure D
of D, such that (2.22) holds.

Proposition 2.29. Assume that (S(t),jf) is a dissipative dynamical system.
Then the following assertions are equivalent

0 ($10,930) is asymptotically compact.

o (S(0,3?) is asymptotically smooth.

Definition 2.30: A bounded closed set 4217 C if is said to be global attractor of

the dynamical system (S(t),jf) iff the following properties hold

(i) d is an invariant set; that is, $0)th = a? for t 2 0,

(ii) 527 is uniformly attracting; that is, for all bounded set D C it”

tlgno d3g(S(t)D, a?) = 0.

Definition 2.31: Let K be a compact set in a Banach space it”, the fractal
dimension dimfK of K is defined by

lnn(K,8)dim K=limsu —-————,f Hop Ina/8)
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where n(K, 8) is the minimal number of closed balls of the radius 8 which cover
the set K.

Definition 2.32: Let JV be the set of stationary points of the dynamical system

(SW/f)
JV: {26% | S(t)z=z forallt20}.

Definition 2.33: Given a set B C iii”, its unstable manifold M” (B) is the set of
points z 6 ff that belong to some complete trajectory {y(t)},eR and satisfy

y(0) =z and tgirp d%(Y(t),B)=O-

Definition 2.34: A function ‘I’ e C(if , R) is called a Lyapunov functional if

(i) t |—> ‘I’(S(t)z) is decreasing for all z E Jf;
(ii) If <I>(S(t)z) = ‘P(z) for all t 2 0, then z is a stationary point of S(-).

A dynamical system (S(0,3? ) is called gradient if there exists a Lyapunov
functional ‘I’.

Now we will present a known result about the existence of global attractors
for semigroups that will be the cornerstone for the proof of the existence of the
global attractor in our work, the interested reader can consult Hale (HALE,
2010).

Theorem 2.35. Let ($00,320) be a dynamical system. We assume that:

(H.1.) (S (my? ) is gradient with Lyapunov functional ‘I’ E C(if ,]R),
(H .2.) the set of stationary points JV of the dynamical system (S(t),3f) is

bounded in f,
(H .3.) (S(t), if) is asymptotically compact,

(H,4.) ‘I’(z) —> 00 if and only if ”lejf —-> °°,

then, (S(t), 3?) possesses a global attractor 427 such that 42? = MILK/V).
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Remark 2.36: Thanks to hypothesis (H .1.) and (H .4.) It is possible to consider

that the dynamic system (S(t),.%”) is asymptotically smooth instead of being
asymptotically compact.

Since the system presented in Chapter 5 presents too many difficulties in

the verification of asymptotic compactness, we introduce the concept of quasi-
stable, which will be used together with the results studied by Chueshov and
Lasiecka (CHUESHOV; LASIECKA, 2008; CHUESHOV; LASIECKA, 2010).
In addition, this result allows a study regarding the optimal regularity of the
global attractor and the fractal dimension.

Definition 2.37: We say that the dynamical system (S (0,320 ) is quasi—stable on

the set B C if, if there exist a compact semi-norm nJ; on if and nonnegative
scalar functions a(t) and c(t), locally bounded in [0, co), and b(t) e L1(O,oo) with
limHoob(t) = 0, such that,

||S(t)z1 _S(t)32”.2%” S a(OllZ1 —z2l|§zo,

and

||S(t)z1 _S(t)22”5f S b(t)||21 —zzl|§f +C(t)osup |”920(”1(s)— u2(S))|2,
<S<t

(2.23)
for any 21 ,z2 e B, where S(t)zi : (ui(t),8,ui(t)),i = 1,2.

Theorem 2.38. Let X and Y be reflexive Banach spaces, X is compactly embed-

ded in Y. We endow the space if = X x Y with the norm

2 2 2Ilzllao = Iluollx+llu1||y, z =(uo,u1)-

We assume that (S (t), 32” ) is a quasi-stable dynamical system on every bounded

forward invariant set B E 32” Ge. S(t)B C B) with the evolution operator of the
form

S(t)z = (u(t),3tu(t)), z : (u0,u1) 6 fl”,
where the function a(t) possess the propertie

u e C([O,oo),X)flC1([O,oo),Y).
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Then, (S (fly)? ) is asymptotically smooth. In addition, if the dynammical system
(S(t),.%”) possesses a global attractor 4a? and is quasi-stable on d then the

attractor d of has a finite fractal dimension. Moreover, we assume that (2.23)
holds with the function c(t) possessing the property coo : suptzo c(t) < co, then

any full trajectory {(u(t),8tu(t)) I t E R} that belongs to the global attractor

enjoys the following regularity properties,

am e L°°(R,X) flC(R,Y), aft: 6 L°°(R,Y),

and there exists R > 0 such that

lMMflfi+fl¥MWfi§Rat6R
where R depends on the constant coo, on the seminorm n3? in Definition 2.37,
and also on the embedding properties ofX into Y.

i

2.4 Preliminaries for the wave equation with critical forces

In this section we will show the basic results to prove the well-posedness
of the wave equation described in Chapter 5. Thus, the basic theory will be
followed regarding about the Cauchy abstract problem (cf. (BARBU, 1976;
PAZY, 2012)). It is important to note that for the case with super critical forces,
this theory does not apply, because the forces are not locally Lipschitz.

2.4.1 Abstract Cauchy Problem

Let A : D(A) C j? —> 32” be the infinitesimal generator of a dynamical

system (S(t),3f) a and ]F : [0,T) >< ff —> % an arbitrary function. Let us
consider the following inhomogeneous initial value problem

E),U = AU+lF(t,U(t)), t > O (2.24)

U(O) = U0 6 at”. (2.25)
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Definition 2.39:

(i) A- classical solution of the system (2.24)-(2.25) in the interval [0,T) it
is a function U : [O, T) ——> it” if U is continuous on (O,T], continuously
differentiable on (O,T), U (t) E D(A) for O < t < T and (2.24)-(2.25) is

satisfied on [O, T),

(ii) A strong solution of the system (2.24)—(2.25) in the interval [0,T) it is
a function U : [0,T) —> flip if U is differentiable almost everywhere on
[0,T] such that 8,U e L1(O,T;.%”) and (2.24)—(2.25) is satisfied almost

everywhere on [O, T].

(iii) A weak solution of the system (2.24)—(2.25) in the interval [0, T) it is a
func’tiOn U : [O, T) —> 36” if U E C([O,T];.%”) such that satisfy

U(t) = S(t)Uo + /0tS(t — s)]F(z, U(s))ds, t e [O, T].

Theorem 2.40. Let IF : [0,oo) x it” ——> if be continuous in t for t 2 0 and

locally Lipschitz continuous in if, uniformly in [0,oo) on bounded intervals.
If A : D(A) C 32” ——> jig is the infinitesimal generator of the dynamical system
(S (t),,%” ) then for every initial date U0 6 it” there is a Tmx _<_ 00 such that the

initial value problem (2.24)-(2.25) has a unique weak solution U on [0, Tmax).

Moreover, if Tmax < oo then limHTIRLax ||U(t)||% z 00. In addition, if ]F is also

continuously differentiable, there are strong solutions Un : [O, Tmax) —> it”, with
n 6 N such that

lim sup ||Un(t) — U(t)||jf = 0.
"*’°"05z<1rmax

Theorem 2.41. In the context of the previous Theorem with if a reflexive

Banach space. If U0 6 D(A) and U E C ([O, Tmaxfii” ) is the weak solution of the

problem (2.24)-(2.25), then U is the strong solution of this problem.
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2.5 Preliminaries for the wave equation with supercritical
forces

In this section we present some known results for the wave equations
with supercritical forces, mainly with respect to the well-posedness and the

existence of a global attractor. Therfore, we will state the most important results
shown in Joly and Laurent (JOLY; LAURENT, 2013). It is important to note
that the Strichartz estimaties, the result of Hormander (HORMANDER, 1997)
and Robbiano-Zuily (ROBBIANO; ZUILY, 1998) play a fundamental role in
the study of the asymptotic dynamics of these equations (cf. (GINIBRE; VELO,
1985; GINIBRE; VELO, 1989; STRICHARTZ et al., 1977; KAPITANSKI, 1989;

BURQ; LEBEAU; PLANCHON, 2008; BLAIR; SMITH; SOGGE, 2009)).

One of the main difficulties with respect to proof of well-posedness for

supercritical three-dimensional wave equations is that the forces are not 10-
cally Lipschitz for p E (3, 5), this prevents the method from being semigroups,
shown in the previous section. Ginibre and Velo (GINIBRE; VELO, 1989; GINI-

BRE; VELO, 1985), Kapitanski (KAPITANSKI, 1995) and Joly and Laurent
(JOLY; LAURENT, 2013) manage to show the well-posedness of the problem
from the study of certain intermediary spaces, initially proving the existence

on Besov spaces and then via density get well-posed in the expected phase
space. Kalantarov et al. (KALANTAROV; SAVOSTIANOV; ZELIK, 2016) get
the well—posedness from a Galerkin scheme and studying the solutions in the

sense of Shatah-Struwe. The prove in detail of the well-posedness, as well as
the existence of a global attractor for the problem (1.13) is not a subject of study
in the present work, given that the objective is to study the properties on said

attractor.

Theorem 2.42 (Strichartz estimates). Let T > 0 and (q, r) satisfying

3 1

+;=§, qe [goo]. (2.26)
1

61

There exists C = C(T, q) > 0 such that for every H E L1(0, T;L2(M)) and every
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(uo,u1) e ff, the solution u of

{8,2M_Au+a<x>atu=H
in MW,” (2.27)

u(0) : uo, drum) = ul in M,

satisfies the estimate

”uIlL‘1(O,T;L'(M)) S C (||”0||H3(M) + ||“1||L2(M) + ||H||L1(O,T;L2(M))) - (228)

Remark 2.43: For the case p = 3, the previous Theorem is valid, considering
the equation

azu—Auz au+H in M>< O,T,
{ ’ p“ ( )

(2.29)
u(0) = no, 8,u(0) = ul in M,

provided that pl 6 L°°(O, T;L°°(M)), and p1(x,t) < 0 ac. (x,t) e M x [o, T].

Theorem 2.44 (Well-possedness). Assume that (l.14)-(l.19) hold. Then

(i) For any initial data (uo,u1) 6 if, problem (1.5) possesses a unique weak
solution

u e C(R+;H5(M)) mc1(R+;L2(M)), (230)

(ii) Given T > 0 and (q,r) satisfying (2.26), there exists a constant C =
C(T, q) > 0 such that

ilul|L4<o,T;Lr(M>) s c (uuonfim + Hui um) (2.31)

(iii) Given T > O and two solutions zi = (ui, 8m”) with initial value zf) e B, where
B is a bounded set of if, i = 1,2, one has

||z1(t) —z2(t)||§f s (fund)will? v: e [0,T], (2.32)

where CBT > O is constant.

Theorem 2.45. Let the assumptions of Theorem 2.44 and the initial data be

more smooth, i.e.,

(uo,u1) e jfl := [H2(M) mH5(M)] >< H5 (M). (2.33)
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Then, the corresponding weak solution (en el sentido de (6.3)) is more regular as
well:

(u(t),a,u(t)) e 3201, (2.34)

for all t 2 0.

Corollary 2.46. Under the assumptions of Theorem 2.44, then the solution

operator of problem (1.5) generates a strongly continuous semigroup defined by

S(t) : if ——> 32”, (u0,u1) H (u(t),atu(t)), t2 0, (2.35)

where (u, am) is the weak solution corresponding to initial data (uo, M1).

Theorem 2.47 (Global attractor). Under the assumptions of Theorem 2.44. Then,
the dynamical system generated by (1.13) in if is gradient and admits a compact
global attractor m7 :: M“(./V), where JV is the set of stationary points in the

system.



55

CHAPTER

3

SHARP TYPE GEOMETRIC
CONSTRUCTION

One of the most important results in the present work, is to construct an
admissible. damping region where the dissipation of different systems can be
located such that this location in a sense is sharp. This has a huge physical sense
when you want to optimize the region where the damping will be placed for

a certain modeling. For example, when you want to study the vibrations on a
plate, and you want to place a certain material that allows these vibrations to be

damped, the most convenient thing is for that material to occupy minus possible

space inside the plate in order to optimize expenses. This idea of occupy less is

translated within the domain, that the admissible damping region possesses the

smallest possible measure.

In this sense, the literature (cf. (BARBU, 1993; RAUCH; TAYLOR, 1975a;

RAUCH; TAYLOR, 1975b; ENRIKE, 1990; ZUAZUA, 1991) among others)
shows that, regarding the measure of the set, we can always build a clamping

region as small as we want.

More recently in (CAVALCANTI et al., 2010; ??) show that the interest

to optimize the measurement of the region, now not only lies in optimizing the

measurement with respect to the domain, but also in relation to the boundary of
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it, so in this meaning, these new admissible damping regions that optimize both

measures are sharp.

A major problem that arises with respect to these constructions it is not
possible to separate the construction of the admissible damping region with the

equation to be studied. This does not allow the same construction to be used for

a different group of systems, but it has to be repeated and adapted for each one
of them, even though the intrinsic idea of the dissipation of the systems from
the damping is a concept clearly geometric, from the study of geodesics in the
manifold.

Thus, in this Chapter a clearly geometric construction of admissible damp—

ing regions in a sharp sense will be presented, allowing to study later uses in
different systems (see Chapter 5), as well as certain geometric consequences (see

Chapter 3) and consequences with Carleman estimates (see Chapter 4). To this

end, we will divide the chapter into two sections, the first of which shows the
basic definitions on the subject and the idea of the optimization of the measure
with respect to the domain and its boundary. While the second section will be

responsible for showing the distinctly geometric construction of the admissible

damping regions in the sharp sense.

3.1 8-controllable sets

The objective of this section is to study the construction of s-controllable
sets with the purpose of obtaining sharp admissible damping regions. Throughout
the section, we will consider (M, g) be a N—dimensional connected compact
Riemannian manifold of class C°° with smooth boundary 8M.

Definition 3.1: We say that measurable subset a) of M, with the Lebesgue

measure, is s-controllable in measure if given 8 > 0,

measM(a))+measaM(a)flaM) < 8, (3.1)

where measA (B) represents the measure of B with respect to the Lebesgue
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measure defined in A. Moreover, the class of e—controllable set ofM is denoted

by 758 (M)

Note that thanks to the properties of the Lebesgue measure (cf. eg. (??)),
the following result is satisfied.

Proposition 3.2. Let 8, Si > 0 for all i : 1, ...,N with N 6 N, then:

(i) If wj E 758,- (M) then Uéyzl wj E X81+82+...+8N (M),

(ii) The (arbitrary) intersection of elements of Xe (M) is an element of 958 (M),

(iii) Any set with null measures with respect to the measure of 8M and M,

belongs to xg(M),

(iv) Given 8’ > 0 such that 8 < 8’ then 758 (M) C Xg/ (M),

~(v) GivenM C A71, then x£(M) C x£(M),

(vi) Given r 6 R, a) E xg(M) and p E M such that rco+p := {rx+p : x E

{D} C M, then rCO-l-p E X|rl8(M)'

3.2 Construction to the sharp admissible damping re-
gions on compact Riemannian manifolds

We will take advantage of the definition and properties of the sets 8-

controllable to establish one of the main results of (CAVALCANTI et al., 2010),
which is summarized in the following

Theorem 3.3. Let (M, g) be a connected compact Riemannian N——manifold of
class C°° with smooth boundary 8M. Then, given 8 > 0 and 80 6 (0,8), the
following holds:

1. There exists an open set V C M, with smooth boundary dV flint (M), that

intercepts 8M transversally and satisfies

M\V 6 95800”)
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2. There exists a function d : M —> R satisfying:

(d 1 ) d e C3 (V)
(d..2) V2d(x,X)>O, VXeTxM, er,
(d. 3.) ian |Vd| > 0,

(d.4.) (Vd,n) < 0 on 8MflV.

3. There exists an open set a) 6 958 (M), such that

M\V c: a), (00V 6 x£_go(M).

Proof. We follow the ideas from (CAVALCANTI et al., 2010; ??), We start by
proving the existence of d and V locally, both in the case that a neighborhood of
an interior point ofM and a a neighborhood of boundary point ofM. Then taking
advantage of the compactness ofM, we build globally both d and V. We split
the proof in three parts: local analysis for points in the interior, local analysis for

points on the boundary and global construction.

Claim 1: For any p e int(M) there exist a neigborhood Vp of p and a

function d : Vp —> R such that satisfying (d.1) — (d.3) with V : VP.

Let p e int(M), so there is an orthonormal basis (e1,. . . ,e1v) of TpM and

a coordinate system (x1, . . . ,xN) over a neighborhood VI, of p contained in some
(U, 1,11) chart of the atlas ofM such that 8xi(p) = (fl-(p) for i : 1,...,N. Note
that the Chistoffel symbols respect to (x1, . . . ,xN) satisfy that Ff]. (p) = 0 (see,
for instance, (CARMO, 1992) for details).

We define the function d : Vp —> R by

1 N
2q) = 5 lejlq) +1"-I:

for some m > 0. It is clear that (d .1) is fulfilled and also

lVd(p)]>O, Ad(p)=N, igfd(qq)>m>0, forsomem>0,
‘1 Vp

therefore Vzd (p) (X , Y ) = g(X, Y) for allX, Y E TpM, which implies that Vzd (p) (X ,X ) z
|X|2 > o for all X e TpM.
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Figure 4 — The figure shows the previous constructions in the two-dimensional case‘ In this case (U, it!)
represents the chart with respect to an atlas. Note that the coordinate system can be considered
the same for all elements in Vp.

Note that taking VP CC U small enough, (d.2) is satisfied with V : Vp,

and because the coordinate system is the same for any element in Vp, we can
define the same function d on V], such that

V2d(q)(X,X) :W, X e TqM,

for some other point q 6 Vp, which proves (d.3). Then the Claim 1 is fulfilled.

Claim 2: Let p 6 8M. Then there exists a neigborhood VP of p with
smooth boundary an 0 int (M) which intercepts 8M transversally and a function
d : Vp —> IR satisfying (d.l) — (d.4) with V = Vp.

Fix p 6 8M. Due to a Riemannian geometry result (CAVALCANTI et
al., 2010, Lemma 6.4.), there exist a Riemannian manifold A7 and an isometric

immersion f : M —> A7] such that f (M) C int(M).

Taking the orthonormal basis (e1,. .. ,eN) of TPM such that n(p) = —el

be the outward normal vector field in the point p respect to 8M. Proceeding as in

the previous case taking A7 instead of M we have that there exists a neighborhood
l}; C A? of p. Due to the regularity of M71; 0 8M_there is an open set V; CC ‘71;

with p e V], such that n(q) = —-e1 for all q E VP 0 8M. Moreover, we define

d : ‘717 —> IR such that

N
d<q> =x1(q> +£— 213601) +m,
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for some m > 0. It is evident that infqevp |Vd(q)| > 0, infqevp d (q) 2 m, Ad (p) =
N, and Vzd (p) (X , Y) = g(X,Y) for all X, Y E TpM and proceeding analogously
that Claim 1, it holds that (d. l) — (d.3) for V = V}. Additionally,

<Vd(q),n(q)> < 0, q E V}. (3.2)

Finally, as shown in Figure 5, we can find a neighborhood Vp C V; 0M
such that anflint(M) intercepts 8M transversally, completing the proof of
claim 2.

Figure 5 — In the figure (U, 111) and (61, VI) represent the charps M and A7! respectively containing 1). Note
that 1/1(V,,) C VI(U) C IT/(U) so we can use the same coordinate system for every point in
v, c M.

Claim 3: Conclusion of Proposition 3.3.

In order to prove this claim we borrow the next auxiliary Lemma from

(CAVALCANTI et al., 2010).

Lemma 3.4. ((CAVALCANTI et al., 2010, Lemma 6. 9)) Consider two subsets

A and B such that d (AB): zinf((x”EAx B d (x y) > 0. Suppose thatA and B are

compact. Then there exist open subsets 0A 33 A and 03 33 B with smooth

boundaries such that d(0A, 03) > 0. Moreover, there exists a smooth (cut-off)
function p :M——> R such thatploA =1,p|OB = O and p(M) C [O, l].
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Remark 3.5: The sets 0A and 03 in the above lemma can be constructed, for

any 8 E (0,d(A,B)/3), such thatA CC 0A CC Ag andB CC 03 CC Be, where

A8 = {x e M | d(x,A) < a}, BS = {x e M | d(x,B) < e},

and d (x,Y ) is the usual point-set distance defined by a'(x,Y) : infyey d (x, y)
with d (x, y) z [x — ylg, since M is compact.

Repeating the strategy applied in the Claim 2, we can extend M to a Rie—

mannian manifold A? such that, for each p e M, one can choose a neighborhood
W; of p, and a function dp 6 C°°(l/fl7;) such that

0 If p 6 int (M), then choose VT’; = Vp as in the Claim 1.

0 If p 6 HM, then choose W; = V; C inth) as in the Claim 2.

Then, due to the compactness of M, we can choose a finite sub-cover
{W} 15:1 ofM such that ifp 6 W,- for some j =1,...,k denote by a; = dple.
Let B = Uljzl ally/1- 0M where clearly M\B is an open subset ofM. As seen in

Figure 6, denoting (M \ B) nW; for W1 and (M \B) n (W; \ UL—f W) for Wj for

j = 2,...,k, it is show thatM\B = u’;:1 Wj.

Figure 6 — Note that each Wj C 17V; for j = 1, ..,k is an open set of M being the union of connected
components of M \B where it is well defined dj.

On the other hand, fixed 8 > 0, for each 80 6 (O, 8) and Wj with j = 1, ...,k,
it is possible to build an open Uj of M such that 7, C Wj and measM(Wj\
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Uj) < 23]; (see Figure 7). In addition, if Wj is a neighborhood of a boundary

point ofM, then we can take Uj such that measaM(8M n (W,- \ UI» < 5% (see
(CAVALCANTI et al., 2010, Lemma 6.7) for more details).

W,~\Uj

Figure 7 — Given j,i : 1, ...,k, we have total control over the measure of W,~ \ U,- and 3M 0 (W,- \ Ui) for M
and 9M provided they are positive. Note that if % 2 min{measM(W,~), meas3M(3M flWi)} > 0
it is possible to choose some 0 < 571 < {measM(W,-),measaM(9M OW,~)} such that the measure
of the aforementioned sets are less than £1 where k’ = k—EEP .

Because 7] C Wj, we can define dj = 331W Also, from the compactness
of B and U}, there are numbers 6j > 0, j = l,...,k, such that d(B,T]7) = 6j.
Then by Lemma 3.4, exist open sets Vj 33 U1- and Oj 33 M \ Wj of M with
smooth boundaries, and a function pj : M —+ IR such that plej z 1, pj|0j z 0

and pj (M ) C [0,1]. Note that in View of the Remark 3.5, we can construct V]-

such that Vj C W-, so that {VJ-F];l is a disjoint family of open and (71 is defined

on each Vj.

Note that if Vj is a neighborhood intersecting 8M, then it is possible as-

sume that Vj has smooth boundary 8Vj 0 int (M) that intercepts 8M transversally.
Thus, we define dj = (2171, p = 21521 pj and

k

v = U V], (3.3)
j=1

so that ply = 1 and (3.2) it is satisfied.
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For the construction of d, it is enough to define

d(x) = dj(x)p(x) if x6 Wj,
(3 4)

0 otherwise,
'

which clearly satisfy (d.1)—(d.4).

Finally, from the construction of V, there is an open set a) D M \ V such
that a) flV E xg_80(M) From (3.2) we see that a) is 8-controllable. This ends
the proof to Theorem. I]

Remark 3.6: The choice of 80 E (O, 8) is independent of any other condition,
that is, the result is valid for any £0 6 (0, 8) that is chosen. This value represents
the measure that is to be granted to the setN where the damping will be
effective that will allow to prove a unique continuation property (more details

see Chapter 4).

We note that in the Theorem 3.3, once taken 80, V and the function d, the
choice of (1) involves mainly three properties:

(a) a) is an open subset to M,

(b) (W) U(amV) = w,

(C) W 6 how) and amv e ice—MM).

Therefore, let M \ V C M, it is possible to build different sets a) such

that a) D V e x8—£0(M) This motivates the definition of the class of admissible
S—controllable sets

[we] = {a} 6 xg(M) | a) is given by Theorem 3.3 for some 80 6 (0,8)}, (3.5)

which is sharp in the sense of (CAVALCANTI et al., 2010). This class be called

the class of sharp admissible damping regions associated to 8.
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CHAPTER

4

GEOMETRICAL CONSEQUENCES

The construction presented in 3.3 allows a series of consequences applied
both in the geometry and in the equations, in this Chapter it will show some
relevant applications and facts in the geometry regarding said result. Throughout
the Chapter, we will consider (M, g) be a N——dimensional connected compact
Riemannian manifold of class C°° with smooth boundary 8M.

4.1 Geometric control condition and the sharp admissible
damping regions

The objective of this section is to study the consequence of sets s-controllable

built in the Theorem 3.3 regarding the geometric control condition (GCC for

short), this is:

(GCC) The set (0 satisfies (GCC) (E) There exists To > 0 such that every geodesic

traveling at speed 1 and issued at t = 0 enter the open set a) before the time

To.

Which implies having a observability inequality (cf. (BARDOS; LEBEAU;

RAUCH, 1992; BURQ; GERARD, 1997» of type
T

||(u(0),9tu(0)||2% _<_ CT / / |a,u|2dxdt, T > To, (4.1)
0 w
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for (u, 8,u) 6 H3 (M) x L2(M) solution of the problem (1.5) with f : h = a(x) =
0 and some constant CT > 0 that depends on T.

Note that each element of the class [we] contains M—\V, and this property
will play a fundamental role in the proof the unique continuation theorem in the

next Chapter. The part a) m V guarantees that the set a) is open inM and because

we have a control 8 — 80 in its measure, it is possible to build all the elements of
this class, which will allow to prove the existence of a a) 6 [me] that satisfies the

(GCC), that is, the part 60 0 V has a close relationship with the (GCC) and the

observability inequality (4.1).

Another detail to take into account is regarding the observability is seen
in (CAVALCANTI et al., 2010), where the authors prove the exponential decay
of energy for the system

83a —Au+a(x)g(8,u) = 0 in M x (0,00),
u = 0 on 8M x (0,00), (4.2)

u(x,0) = u0(x), 8,u(x,0) = u1(x), x e M,

where a(x) > 0 on a open set a) 6 (V, d) and g is a monotonically increasing
function such that k|s| S |g(s)| S K |s| for all |s| 2 1. This result, together with
the fact that a) is e-controllable, shows that the system (4.2) has sharp localized

damping, which inspires the name for [we] Additionally, it is proved in this

same work, that the solution of the system (4.2) for a = 0 satisfies an inequality
of the type (4.1), which makes us think that the construction of V and d directly

proof the property (GCC) for a), but, for exemple, for the typical case ofM as
the hemisphere, the observability inequality is satisfied but not the (GCC) for a).

Motivated by this fact, we will prove that it is always possible to choose a

a) 6 [we] satisfying Theorem 3.3 that complies with the (GCC).

Proposition 4.1. Fix 8 > 0. In the context of Theorem 3.3, given £0 6 (0,8),
V C M as in (3.3) and d : M ——> R as in (3.4), then it is possible to choose the

open set 66 6 [we] satisfying the (GCC).
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Proof Because for every p 6 Vj with j = 1,2, ...,k of the definition of V in The-

orem 3.3, there exists a Nj totally normal neighborhood of p, such that Nj C Vj.

Thus, for all q 6 Nj and X E TqM, the only geodesic such that 'y(0) = q, y,(0) = X,
satisfies that ’y(0) C exp(Ba (0)), where 6 > 0 depends on Nj, but for the com-
pactness of M, all geodesic is defined above R, then all geodesic associated with

q and X intersects Nj, that is, the whole geodesic associated with every point of
Nj and each field of this point intersects Nj. Again by the compactness of M, we

can choose the finite family of totally normal neighborhoods {N}}i=1,...,r that

cover Vj, making them sufficiently small and repeating the process of construct-
ing V on these families, there will be a 66 6 [we] such that a) C CT) and (1) satisfies
(GCC). E!

4.2 Smooth boundary of the sharp admissible damping
regions

On the other hand, note that the Theorem 3.3, allows the construction
of the set V with smooth boundary, in this sense, you have to understand the
smoothness of 8V in the following sense (see (CARMO, 1992; CAVALCANTI

et al., 2010; ABRAHAM; MARSDEN; RATIU, 2012) among others):

Definition 4.2: An open set V C M is an open set of the topological space M.
Therefore it can intercept the boundary. We say that an open subset V C M has

smooth boundary 8V flint (M) if av flint (M) is a smooth hypersurface of M
with smooth boundaryMm 8M. Therfore the term smooth ignores
av m 8M.

Thus, we will try to gain regularity at the boundary of a), given as in

Theorem 3.3, from the regularity of V. For this, the following classical result of
Riemannian Geometry shows the existence of an intermediate set between M \ V
and a) with the same regularity of V.

Proposition 4.3. Let M be a differentiable manifold with boundary. Suppose that

V C M is an open subset with smooth boundary 8V 0 int(M) which intercepts
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8M transversally. Let a) be an arbitrary open subset ofM such thatM \ V C to.

Then there exists an open subset W C M with smooth boundary 8W 0 int (M)

which intercepts 9M transversally such that M \ V C W and W C to.

Theorem 4.4. Fix 8 > O. In the context of the Theorem 3.3, given £0 E (O, 8),
V C M as in (3.3) and d : M ——> R as in (3.4), then exists a set (GCC) W G [mg]

with smooth boundary 3W 0 int (M) that intersects transversally to 8M.

Proof. Fix 8 > O, for some 80 6 (0,8), we have that exist a) E x8(M), V and d

as in Theorem 3.3, and by Proposition 4.1, we can consider a) satisfying (GCC).
Therefore, by Theorem 3.3 and by Proposition 4.3, there is a 5 G (0, 8 — 80) small

enough such that there is a set (7) 6 [mg] satisfying (GCC) with V O 53 e xg(M),
and exists an open subset W C M with smooth boundary 8W flint (M) which

intercepts 8M transversally such that M \ V CC (7) CC W CC to. The chain of
inclusions shows that (W) U(Wfl V) = W and that there is a 50 6 (5, 8 — 80)

such that V (WW 6 9550 (M) Then, given that W E Xe (M) we have to W 6 [we]

and as CT) satisfying (GCC), then W is also (GCC). This ensures that it is always
possible to choose a set (GCC) W 6 [mg] with smooth boundarymthat intersects transversally to 3M. D

4.3 Construction of the local escape vector fields

An important hypothesis in the analysis of observability, unique continua-
tion theorem and control theory in several PDE’s, is a geometric condition on
the domain. A classical condition (see (YAO, 2011)) is given by the existence of

an escape vector field over an open set in the manifold, in this sense we have the

following definition

Definition 4.5: Given (M, g) a Riemannian manifold. Let Q C M be an open
set ofM, and let H be a vector field on Q. The vector field H is said to be an

escape vector field for Q of there is a function v on 5 such that

VH(X,X) S v(x)|X|g, forX E TpM, p E Q,
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and

in£|H| > 0, inf v(x) > 0.
x69 er

This field H is commonly used to divide the boundary of fi into two
regions depends on the boundary conditions of the equations to be studied.
This division is given by a signal condition on (H ,n) for all x E 852, where n

represents the outward unit normal field along the boundary 8M. For example,
in Theorem ref prop-marcelol, H := Vd is a escape vector field for V, with the

signal condition

(Vd,n) < 0, dMflV.

In Cavalcanti et al. (CAVALCANTI et al., 2010), we observe the need
for a vector field escape for an open small enough that intersects M \ V and is

included in a), in order to prove an inequality of observability (4.1) and unique
continuation theorem.

The Theorem 3.3, allows us to construct locally within a) an escape vector
field in the context of sets s-controllable, independent of the equation. So we
have the following result.

Theorem 4.6. Fix 8 > 0. In the context of the Proposition 3.3, given 80 6 (0, 8),
V C M as in (3.3) and d : M —> R as in (3.4), then for all a) C [we] exists a smooth

escape vector field H e £(M) over an open small enough U C M, such that

(H,n)=1, on 8Mfl(M\V).

Proof. It is enough to make the geometric construction made in Cavalcanti et
al. (CAVALCANTI et al., 2010, Theorem 5.1.), considering the existence of a
W 6 [we] as in Theorem 4.4. E]

Note that the H construction in the previous Theorem is a natural extension

of Lion’s vector field defined in (LIONS, 1988, Lemma 3.1.) for the Euclidean

case.
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4.4 Decomposition in overlapping sets

In order to prove a unique observability and continuation result from
Carleman estimates (see 2.25), it is often not possible to hide a single escape
vector field over the entire domain of the equation. For example, for the Euclidean

case, as can be seen in (LASIECKA; TRIGGIANI; ZHANG, 2000) for domains
with a part of the boundary of the flat type, it is usually necessary to have more
than one vector field escape allowing to divide the total boundary from different

conditions of sign over (H, 11) (see Figure 8)

Figure 8 —- Let us consider (R2, | - |R2). In this case the region a) = 601 U a); with (01 fl (oz 7é (I), where the
functions associated with each one (oi are given by di(x) : ||x — xin, with the escapes vector
fields hi(x) = 2Vdi(x) for all i = 1,2. This generates a sign condition (him) for every point on
the boundary of the domain.

This is due to the convexity of the functional, since it can not always be
guaranteed that, for a one escape vector field, it is fulfilled that does not have
critical points over the whole domain, or that the Hessian does not cancel; but

locally each of the functional ones if they possess these properties.

As seen in the Theorem 2.25, we present a generalization of the applica-
tions of the Carleman estimates for domains decomposed in a finite collection

overlapping subdomains, such that an escape vector field is associated to each of
the elements of the decomposition. With this in mind, we proof a decomposition

by overlapping domains over a).
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Theorem 4.7. Fix 8 > 0. In the context of Theorem 3.3, given so 6 (0,8), V C M

as in (3.3) and d : M —> R as in (3.4), then for all a) C [we] exits a finite collection

overlapping subdomains {wj}j€A inM such that

(mil) UjeA (”j Z M,

(ml-2) for all (oj 6 {wjbeA’ there is at least one wk in the {wj}j€A family such
that (Djfl (0k 75 0.

Moreover, for each coj E {wjijEA’ there is a function dj :M —) R such that is
fulfilled

dj.1)a, dj 6 C°°(M), minqewjdflq) > O,(

(cg-2)“, v2dj(X,X) > mg, vx e TqM, W; e w,-,

(dj.3)w infwj |Vdj| > 0,

(d1-4)“, there is a set of indexes J C A such that Ejfl 8M 3A (2) for all j 6 J. Moreover:

1. (Uj€A\1wJ-)08M=0,
2. (Vdj,n) 20 on aMmoy, We].

Proof We note that by constructing a), a) n 8M can be divided into a finite

number of connected components denoted by {F5 $21 for some I E N.

Observe that, setting j = 1,2,...,l and proceeding analogously to the

Theorem 3.3, given p 6 Fig, we can take an orthonormal basis (an, . . . 73”) of
Tpll71 , whereM is the Riemannian manifold given in Claim 2 in proof of Theorem
3.3. Thus, we can assume that n(p) = —9x, (p) outward unit normal field at
the point p in 8M. Then, for a neighborhood Vp C M of p small enough that

n(x) = “3x1 (x) for all x E V_pfl 8M, we define the function dj : Vp -—> IR given by

1
dj(q) = —ax1(q) +13 + 596W), q 6 Vp,

for an a > 0 large enough, and [3 > C72, such that

inf dj(q) 2 m > 0, for some m > 0,
qEVp
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(Vdj(p),n(p)> < 0, (Vdj(q),n(q)> S 0, q e v, 0 3M.

Also, we have to dj 6 C°°(M), Adj-(q) > 0 and V2dj(q)(X,Y) = g(X,Y)
for all X,Y E TqM with q E Vp.

On the other hand, without loss of generality, we can assume that measaM (Fin)
is small enough, that there is an open set Vj C Vp neighborhood of p and exist a
6,- > 0, such that H, C v, and 631.011) nr’g, = (D for all k e {1,2,...,l}\{j}.

Considering the function of the partition of the unit pj : M —> R such

that leVj = l’pj|M\(U§-:, 051W») = O,p(M) C [0,1], we have that there 18 an

open set 601 = Ule Vj D a) C a) and a function dl : M —> R in C°°(M) such that

dl = zgszjdj satisfies

(i) V2d1(X,X) > |x|g, VX e TpM, vp e (01,

(ii) infqea,1 [Vd1(q)| > O, minqealdw) > 0,

(iii) (Vd1,n) 2 O, on 8Mfl—661,

(iv) (a)\co1) flaM = (1).

Now, on the open set a) \Wl C int (M), proceeding similarly to the previous

one, and given the compactness of M, there exists a finite index A, such that

a) can be decomposed into {wjb' e A satisfying (w,-. 1) — (raj-2), to which are
associated functionals dj :M —+ R fulfilling (dj.1)w — (dj.3)w. Finally, we note
that not necessarily (01 is connected. Then, decomposing the set into its connected

components, there is a finite set of indexes 1 such that (d1-4)“, is fulfilled. In

addition, it is important to note that, as a) is connected, then for everything (01-

with j E I, there will be a i E A such that (hi 0 (oj 76 (2). Thus, taking A = AU]
the Theorem is proved.

D

Remark 4.8: It is possible to construct a function dw e C3 (M) that satisfies

(ell-J)“, —— (dj.4)w mostly a) under certain conditions on the sectional curva-
ture using inf-convolutions, provided that you can construct convex functions,
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strictly convex or lower semicontinuous functions on (M ,g). (Cf. (GREENE;
WU; CHERN, 1973; GREENE; WU; CHERN, 1976; GREENE; WU, 1979;
AZAGRA; FERRERA, 2005) among others).

4.5 Coarea formula for the sharp admissible damping re-
gions

One of the main objectives of the construction of the a) is to proofs the

observability inequality and unique continuation property analogous to the fact
in Theorem 2.25. For this, a geometric technical lemma is needed in a context
of Riemannian manifolds, which will allow carrying area integrals over volume

integrals. To this end, it is necessary a result of coareas for subdomains of small
volume, this, will allow the application on sets s-controllable. Thus we enunciate

a known result about the coareas and Sard’s theorem, the interested reader can
consult for example Chavel (CHAVEL, 2006) among others.

Proposition 4.9. Let (W, g) be a C°° N —dimensional Riemannian manifold, and
let (I) : W —> R e C°°(W). Then, for any measurable function f : M ——> R, which
is everywhere nonnegative or is in L1 (W), one has

fdV 2 ——dV~ d,/Wf g /R/r‘(t) |V¢| g’t t

where F(z‘) := ¢‘1(t) = {p E W | ¢(p) = t} and dVgJ is the induced measure
on F(t)

Using the previous Proposition and Theorem 3.3 it is possible to have the

following result for it cubes small enough

Theorem 4.10. Fix 8 > 0. In the context of Theorems 3.3 and 4.7, exist 0 <
81 < 8 such that for all 80 6 (0,81), there is a constant C > 0 that depends of
81 > 0 and the metric g, such that

[Afdvgw 5 c/ deg, (4.3)
F] (0

for all a) 6 [we] and

fZO a.e.inM, f€L1(M), (4-4)
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where F1 is defined in (2.20), this is

F1: U {x 6 mm (mm) > 0},
jeA

and dVg is the volume form on 8M.IaM

Proof. Step 1. Let 8 > O, by Theorem 3.3, for all 0 < 80 < 8 it is possible to

build the class [we] so that if a) 6 [we], then

M\V e xeo(M), (MW e xg_go(M).

Moreover, by constructing to eM and by the compactness ofM, we have a finite
number of connected components of a) that intersect 8M, that is, there exists a
number k E N such that

l

comaM = U Fig,
j=1

where Pi, is the j-th connected component of (0 0 8M. Note that F1 C Ujg1 wj C

(0 (see Theorem 4.7), that is

measaMrl < 80.

Given the F1 C a) 0 8M, then we will denote by F{ to the connected

components of F1 for all j = 1,2, ...l, given by

r{ = F1 org,

such that measaMF{ < 80 for each j = 1,2, ...,l.

Step 2. We define about RN the set Ph(A) associated with the constant
k > O and the setA C Riv—1, given by

Ph(A)::{(x1,...,xN)€RN| (x1,...,xN_1)€int(A) Vi=1,...,N—l and OSXN<h},

which we call open prism of base A and height h.

Ph (A) will play a fundamental role in the proof of Theorem.
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We will fix j = 1,2, ...,k. Be sf 6 (0,8) small enough, such that there is

a p 6 If and a chart related to that point (Uj,¢j = (x1, . . . ,xN)) with ¢,~(p) =
(O, . . . ,0) such that the connected component Pg, be totally within that chart.

Thus, there is a constant h > 0 small enough, such that Ph(F{) C Ti, CC (PI-(U1)

ofM and F4 : 8¢j_l(Ph(F{)) (see Figure 9).

¢j

¢;‘(Ph(ri))

Figure 9 — Note that h > 0 depends directly on 80 > 0, thus, the open set ¢j_1 (Ph(I‘{)) C Uj depends on
the class [we].

Observe that (4571(Ph(F{)),g|¢_1(Ph(F,-))) is a smooth Riemannian sub-
j 1

manifold ofM with boundary and dimension N, with the induced metric ofM,
in particular, we have to

(i) The Lebesgue G-algebra associated with (¢j_1(Ph(F{)),g]¢j¢1(Ph(r{))) is the

Lebesgue G-algebra associated to (M, g) intersected with (P171 (Ph(F{)),

(ii) If B C ¢j"1(Ph(l"{)) C a) is a measurable set in (M, g), then in particular it

is measurable in (co, glw) and (¢J.“1(Ph(f‘{)), g| ¢,~‘1(Ph(l“{)))' Moreover,

measM(B) = measm (B) = meas¢j_1(Ph(r{-)) (B)

This is because the three manifolds have the same dimension. Also (a), g|w)
and (¢j—1(Ph(F{)),g|¢j_1(Ph(r{))) they have the M metric restricted to each

of the manifolds.
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Step 3. Consider the Riemannian N—manifold (ti);
1
(Pk (If )) , g| ¢._1 (Ph (Fm)

. J
,

with boundary and the map in C°°(¢J.‘1(Ph(I“{))) given by xN ; ¢171(Ph(1“{)) ._> R,
where

r{_——xN (0) : rm), Img(xN) : [0,h), 0 < |Vle < cg, (4.5)

for a constant Cg > 0 that depends on the metric g.

Thus, by Proposition 49, with 1/1: xN and (W,g): (qu 1(Ph(1“l)),g|¢j_1 (MP/D),
1

we have to

f,dV :// ——dV .dt,/¢,~"(Ph(r{))f mic-”Putin R r<t>|VxN| g'a¢f’<l’h<rl>>

for all f : M ——> R which is everywhere nonnegative or is in L1 ($171 (Ph(l“{)))

Then, taking f fulfilling (4.4), (i) — (ii) and (4.5), we obtain

dV </ dV .

< dV . dt._ /]R/F(t)f gla¢I1(Ph(r{))

5c / , dv .g j—l(p,,(r{))f g'¢;1(Ph<r{)>

gcg/ deg.
0)

Finally, repeating the process for each j = 1,2, ...,l the proof is completed.
[I
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CHAPTER

5

CONSEQUENCES WITH CARLEMAN
ESTIMATES

One of the main consequences of the class of sharp admissible damp-
ing regions is the proof of a it new inequality of observability and a unique
continuation property.

As explained in Chapter 3, because we can always choose a representative
in the class that is (GCC), for a linear wave equation (for example (4.2)), we have

an observability inequality as (4.1). Thanks to this inequality in the literature,
several results are found for these equations, but it has a certain limitation when

we want to study these wave equations with supercritical external forces.

Regarding the critical case of Sobolev, it can be observed in (CHUESHOV;

LASIECKA; TOUNDYKOV, 2008), that it is possible to prove the existence of
a global attractor for the problem, showing a geometric characterization from

the study of unstable manifolds of stationary points for dynamic systems of the

gradient type and the finitude of the fractal dimension on the attractor, as well

as the optimal regularity of this. It is important to remember that in this work,
the authors prove a new inequality of observability based on a new Carleman

estimates for the system. Another important detail is regarding the strategy used

for the global attractor proof, since the authors use the method of contractive
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functions (e.g. (CHUESHOV; LASIECKA, 2010; CHUESHOV; LASIECKA,
2008)) and not the quasi-stability (see Definition 2.37).

In the recent work of Joly and Laurent cite joly—laurent, the authors

studied the supercritical case for the nonlinearity in the wave equation, from the

Strichartz Estimates (see (2.26)-(2.28)). In this case the authors do a first study
for nonlinearity belonging to the class of analytic functions (cf. (??TATARU,
1999; HORMANDER, 1997; ROBBIANO; ZUILY, 1998)) among others), and

by density they get the expected result, being able to demonstrate the existence

of a global attractor characterized by unstable varieties of stationary points. The

study of the fractal dimension and optimal regularity of the attractor are not

proven, mainly because of the limitations in the observability inequality.

For the proof of existence of a global attractor, the literature shows us that
the inequality (4.1) is compatible with the method of contractive functions and
the decomposition of the semigroup into a compact part and a part that decays

exponentially. Regarding quasi-stability method, both for the critical case of
Sobolev or subcritical Strichartz, (4.1) is not compatible.

The advantage of studying quasi-stable systems is the extra properties
that the attractor gains (see Theorem 2.38). The lack of compatibility with the

inequality (4.1) is due to the regularity of the propagation speed of the waves.

Thus, in this section, a new observability inequality is proof for the class
of sharp admissible damping regions, where the control of the initial energy
is given by the gravitational potential energy and not the kinetic energy. This
allows to have a greater regularity with the control term, which makes this

new inequality compatible with the quasi-stable systems for supercritical non-
linearity of Sobolev or subcritical Strichartz (see Theorem 6.7). In addition, the

unique continuation, proven as a consequence of this new observability, allows

us to prove characterizations of the global attractor from the unstable manifolds

of the stationary points.
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5.1 New observability inequality and unique continuation
property

The goal of this section is to establish a new observability inequality and

unique continuation property for the system (1.1) where pg, P1 : M x [O, T] ——> R
satisfy (1.2)-(1.4). That is, we will proof Theorem 1.1.

As explained above, the objective of the new observability inequality is

to be able to control the initial energy from the gravitational potential energy.
So the methodology to be able to achieve this inequality will be via Carleman
Estimates using the results shown by Triggiani and Yao (TRIGGIANI et ol.,
2002), more exactly, will be used Theorem 2.25.

Since Theorem 2.25 needs a finite collection overlapping subdomains of
M associated with a collection of functions satisfying (dj.1)w —- (dj.4)a,, the
construction to the sharp admissible damping regions [608] plays a fundamental

role, since from a 8 > O, the Theorem 3.3 allows a decomposition ofM in two
overlapping open sets, this is

M = a) U V.

Note that a) C M is connected, while V is divided into k connected components

‘
as in (3.3), where, by construction, each of these components intersects a) . In

addition, V is associated with a functional d : M —> R satisfying (d.1.) — (d4)
On the other hand, the Theorem 4.7 shows a decomposition in overlapping

subdomains of a) such that each element of the collection is associated with a
functional dj : M —> R satisfying (dj.1)w — (dj.4)a,. Note that this will allow

you to use Theorem 2.25 over M.

It is important to note that the inequality (2.21) in Theorem 2.25, shows the

control of the initial energy from the gravitational potential energy on F1 C 8M
defined as in (2.20), that is, the form volume is defined on 8M and not on M, so

a geometric result of coarea, in particular Theorem 4.10, will be necessary.
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Proof of Theorem 1.1:

Proof. Fix 8 > 0, for Theorem 2.20 and Theorem 4.7, there is a finite index
A = {1, . . . ,20} and an integerk > 0 such that

I.
k

M: UwJ-uv, V= Uvj, Vjflwyéfl Vj=1,...,k.
jeA j:1

II. There is a functional d : M —+ R satisfying

0 d E C3(V),

. V2d(X,X) > o, VX 6 EM, x e V,

o infv |Vd| > O,

o (Vd,n) <0 on aMflV.

III. For each (Dj 6 {m1} jeA, there is a function dj :M —+ JR such that is fulfilled

0 dj E C°°(M), minqewjdflq) > O,

. V2dj(X,X) > |X|g, VX 6 TM, vq e (of,

o infwj lVdjl > O,

a there is a set of indexes J C A such that 6170 8M 79 (I) for all j E J.
Moreover:

a) (Uj€A\I (DJ) flaM = 0,

b) (Vdjfl‘L) 20 on 8MflEO7, VjEJ.

Then, considering Am {1, . . . ,k} 7S 0, we can define finite collection overlapping
subdomains ofM, denoted by {Qj}jel for a finite index I = l, . . . ,k U A, such

that
V- ’f '= 1,...,k,Qj= J I. J.

{ }
(5.1)

(Dj If ] E A.

Analogously, we define a collection of functional associates, denoted by {CZ}]’EI

suchthat
A a’ ‘f '= 1,...,k,dj= ff. { }

(5.2)
dj ifJEA.
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Note that {Q1} 1-61 and {£71} jg fulfil hypotheses 1 and 2 of Theorem 2.25, since

the collection {Vj}j:1,...,k is connected. Then, we have all the hypotheses of the

Theorem 2.25, therefore there exists kT > 0 depending on 8, T and CT such that

T 8w 2

/0 /F] (5) drld’2’<T(||(W(0)’atW(0))llimgnxum)Jr|I(W(T),3tW(T))llinmbdflg

where

F1: U {x6 9M I (Vdj(x),n(x)) > O}.
jeI

Again, by Theorem 4.7 and Theorem 3.3 we have to F1 C UjeJ wj C a) and

F1: U{x E 8M| (Vdj(x),n(x)) > O}.
jeJ

2, (1.20) is fulfilled, sinceFinally, using the Theorem 4.10 with f = |Vw

|<VWJt>|2 S IVWIZ, 1? = F1.

Additionally, if w z 0 in a) x [O, T] is clear that w = 0 on M x [O, T], proving
Theorem. D
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CHAPTER

APPLICATIONS TO WAVE EQUATIONS:
CRITICAL CASE

The objective of this Chapter is to proof the Theorem 1.2. For this purpose,
the new inequality of observability and unique continuation property shown in
Theorem 1.1 will play a fundamental role.

The strategy to be followed will be using gradient and quasi-stable dy-
namic systems, that is, we will use the Theorem 2.38 (cf. (CHUESHOV; LASIECKA,
2010; CHUESHOV; LASIECKA, 2008)). This is how we will divide the Theo-

rem 1.2 proof into four sections: the first is intended to show the well-posedness
of the problem (1.5) and some notable inequalities that will serve as the basis

for the subsequent proofs, the second section shows that the dynamical system
associated with (1.5) has a gradient structure, while the third section proves that

this dynamic system is also quasi-stable. Finally, the Theorem 1.2 proof will be
concluded in the fourth section.

Let us write (with A z —A)

hm A40 _, 1 H" “l mm8m A a(x)g(-) f(‘) 0 h

Then problem (1 .5) is equivalent to the Cauchy problem

atU-i-AU-l—IFU = H, U(O) = (140,141) (6.2)
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defined in if :: H6 (M) x L2 (M) with domain

D(A\-) = NW) 6 (11’6(1V1))2 IAu+a(x)g(V) 6 L2(M)} =:%1,

‘In order to solve Cauchy problem 6.2, we can use Sobolev embedding to

obtain estimates of the solutions. See for instance (BARBU, 1993; CHUESHOV;
ELLER; LASIECKA, 2002; CHUESHOV; LASIECKA; TOUNDYKOV, 2008)
for details.

Theorem 6.1 (Well-possedness). Assume that (1.6)—(1.11) hold. Then

(i) For any initial data (uo,u1) E jf, problem (1.5) possesses a unique weak
solution

u e C(R+;H5(M)) flC1(lR+;L2(M)), (6.3)

(ii) Given T > 0 and two solutions zi = (ui, atui) with initial value 26 E B, where
B is a bounded set of if, i : 1,2, one has

||z1(t)—z2(t)||?;f s CBTllzé will? w 6 [OJ]. (6.4)

where CBT > 0 is constant.

The total energy of the system defined by
1

62,0) = §||(u,9,u)||§f+ /MF(u(t))dx——/Mh(x)u(t)dx, (6.5)

with F(s) = f5f(r)dr.

Proposition 6.2 (Energy identity). Under the assumptions of Theorem 6.1, then

the corresponding solution of (1.5) satisfies
t

£u(t2)+ / 2/ a(x)g(c7,u)8tudxdt=éau(t1), Vtg _>_t1 20, (6.6)
fl M

where (the subscript is included just for the sake of clarity, indicating the solution

to problem (1.5))

Proof. Once g is assumed linearly bounded at infinity the argument is standard

and readily follows for strong solutions from multiplication by 8m and integration
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by parts. After that, the identity can be extended by density to all weak solutions,
since the functionals in (6.6) are continuous with respect to the topology of
fl”. D

d
mm = /Ma<x>g<atu>atudx, tz 0‘ (67>

There exist positive constants [3,Cf,h,M and CF,h,M’ the two last ones
depending on f, h andM such that

fi||(u(t),8,u(t))||§f _Cf,h,M S 6&0) S CF,h,M(1+”(u(t)781u(t))”4)a (6-8)

An important consequence of the energy identity is that the forward-in-
time evolution of the linear energy is controlled by the linear energy at the initial

time. We state it rigorously now.

Proposition 6.3. Under the assumptions of Theorem 6.1, there exists Co > 0,

depending on f, h and M, such that for any (u0,u1) 6 it” the solution associated

to problem (1.5) with initial data (uo, ul) fulfils

Il(u(t),9tu(t))||.2;sfl S CO(1+||(uo,u1)l|§f), Vt Z 0- (69)

Proof Since 52, is non-increasing, we have that (53,0) 3 é”;,(0) for any I 2 0.

Combining this with (6.8) at time t : O in the right hand side, the result follows.
D

Lemma 6.4. Let us consider (u, am) e C ([O, T];.%” 1) strong solutions for the

problem (1.1) and f E C1(R) satisfying (1.9)-(1.10). Then, considering po :
f’(u) and p] 6 L°°(0, T;L°°(M)), (1.3)-(1.4) they are fulfilled.

Proof. It is clear starting from the Sobolev embedding. D

6.1 Gradient structure

Theorem 6.5 (Gradient structure). Assume that hypotheses (1.6)-( 1.11) are

satisfied and 8 > 0 be given.Then, for some 8-controllable measure set a) C M
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sharp admissible damping region, such that (1.12) is fulfilled where ao > O is

a constant that depend on a), the dynamical system (S (fly)? ) corresponding
to the problem (1.5) is gradient and if it possesses a global attractor, it will
be characterized as the unstable manifold M“(./V) of the set ./V of stationary
solutions to (1.5).

Proof For z = (u, Btu), let us define

W) = guznéw /M<F<u> —h<x>u>dx.

Thus, we need to prove (i) — (ii) according to the definition of the Lyapunov
functional (see Definition 2.34)

From the definition the energy of the system (1.5), is fulfilled

dAnson) : —/ a(x)g(8,u)8tudx (6.10)dt M

and using (1.6), the right-hand-side is negative, this yields (i).

For to prove (ii), suppose that zo satisfies

‘P(S(t)zg) = 20, Vt _>_ 0. (6.11)

Then (6.10) implies that S (t)zo = (u, am)

/Ma(x)g(8,u)8,udx = o,

and from assumption (1.6) we infer that

/ l8tu|2dx = o and / a(x)|g(8tu)|2dx = o.
a) M

Therefore S(t)zO = (u(t), 8,u(t)) is a C0([O, T];.}f) solution of the undamped
system

3,2u—Au+f(u) =h inMx (O,T],

u=0 on aMx (O,T], (6.12)

u(0) = uo, 8,u(0) = m in M,
with supplementary condition

Btu = O a.e. in a) x (O, T]. (6.13)
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To conclude that u is stationary, we shall apply unique continuation prop-
erty (Theorem 1.1) with w = 8m, in order to show that 8m = O in M. However,
we need (u, am) regular.

We first observe that (6.13) implies 8,u(0) = O in (0. Then, it turns out that

any point zo = (uo,u1) satisfying (6.11) must satisfy compatibility condition

u1 = 0 ac. in a). (6.14)

Thus, the system (6.12)-(6.13) is equivalent to the Cauchy problem

8,U+IBU+1F(U)=]HI, U(O)= [qu (6.15)
m

urn—101MiG-“nit8m f(-) A O h

with A z —.-A and

where

V={v€D(A1/2) | v=0 in w},
'

(6.17)

then D(lB) : D(A) x V. We will denote by

"I/={(z,v)E%”|v=O inw}C.%”, (6.18)

to the phase space of the problem (6.15). It is clear that (7, || ' Hag») is a Hilbert

space with the internal product of 3? and D(A) x V C “I/ with compact imbed-

ding D(A) x V ——> V.

It is not difficult to prove that by Theorem 6.1, in this new contex, the

solution operator of problem (6.15) generates a strongly continuous semigroup
defined by

'

T<r> : r —> r, (mm) H (v(r>,a,v(t>>, rz o,

where (v,8tv) is the weak solution corresponding to initial data (v0,v1). In

addition, T(t) is also strongly continuous semigroup on “If associated with the

system (6.12) satisfying the compatibility condition (6.13).

Then, (u, am) is also a solution to the problem (6.15), that is

(u,a,u) e C0([O,T];“//). (6.19)
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Remark 6.6: It is not difficult to show that a solution (u, 8,01) 6 CO([O, T],W)
of the system (6.15), is also a solution for (6.12). In particular

(14,9tu) e comma?) and am = 0 in a) x [0,T]. (6.20)

Then, thanks to (6.19), exists a sequence (u'é, HID/cent C H2(M) flHé (M) x
V such that (Lt/éfltlf) —> (u0,u1) in ”I/ and (ukfituk) :: T(t)(u’6,u’f) —+ (u,8,u)
in CO([O,T];“//) where (uk,8,uk)k€N C C0([O, T];H2(M) flHé (M) x V) is a se—

quence of strong solutions of the system (6.15). Additionally, by Remark 6.6,
for each k e N we have to (uk, Btuk) satisfy

aft." —Auk + f(uk) = h, inM x (o, T]

uk = O on aMx (O,T],

3th = o in a) x [0,T],

‘

uk(x,0) = u16(x), 8tuk(x,0) = u'l‘(x), x E M,

with (uhatuk) e c°([o, T];.%”1).

On the other hand, setting vk = 8m" and differentiating (6.21) with respect

(6.21)

to time, we obtain, in the distributional sense

(9ka —Avk—|~f’(uk)vk = O, in M x (0, T],

vk = 0 in co x [0, T], (6.22)
vk = 0 on 3M x (O,T],

Note that the previous system fits the system (1.1), where po = f'(uk)
and p1 = 0. Now, fix k 6 N and using the Lemma 6.4 it is possible to apply
the Theorem 1.1. So, we get vk = O in M x [O, T] for each k E N, from which
it follows that vk(t) —> 0 in H6 (M) for all t E [0, T], in particular vk (t) ——> O in
L2 (M) Thus, of the uniqueness of the limit, (6.12) and (6.13), we have 8tu(t) : 0
a.e. in M, for all t E [0, T]. Thus, we conclude that »

'

S(t)z() = 20 = (“0,0),

which means that m is a stationary point. This proves that solution operator of
(1.5) is a gradient system on if.
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Additionally, note that

‘I’(z) —+ co <==> HZ”)? —> oo, (6.23)

owing to (6.7)-(6.8) this immediately establishs.

For the final statement, suppose that then exists a global attractor for the

dynamical system (S (10,3?) Then due a well—known abstract result for gradient

systems e.g., cf. (HALE, 2010, Theorem 2.4.6) or (MIRANVILLE; ZELIK,
2008, Theorem 2.26). It asserts that an asymptotically compact gradient system
(S (t),.%” ) the set JV of its stationary points is bounded, then it has a compact
global attractor characterized by 42? = M“(./V) Then it suffices to prove that the
set of stationary points is bounded. To this aim, note that any stationary solution

(u,0) of S() satisfy
—-Au + f(u) = h,

whence ”MHHMM) S c for some 0 > 0, completing the proof. III

6.2 Quasi-stability inequality

Theorem 6.7 (Quasi-stability). Assume the assumptions (1.6)-(1.11) are sat-
isfied and 8 > 0 be given. Then, for some e-controllable set a) C M sharp
admissible damping region, and given a bounded set B C if, let 21 = (u1,8,u1)

and z2 = (uz, 8,122) be two solutions to problem (1.5) such that z1(0),22(0) E B,

there are time independent constants C1, 14 > 0 such that

||Z1(t)—Zz(t)”.?}f S C16"”’|lzl(0)—z2(0)||§f+ci Sig]
Ilu1(S) —u2(S)||12,3(M).

se ,t
(6.24)

Remark 6.8: The quasi-stability system show to decomposition of the flow

into exponentially stable and compact part. An immediate consequence of the
quasi-stability inequality presented in (6.24) is the existence of a regular global
attractor with finite fractal dimension. For more details the interested reader can
consult (CHUESHOV; LASIECKA, 2008; CHUESHOV', LASIECKA, 2010;

CHUESHOV, 2015).
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Proof. Let us denote w = u1 —- uz. Then (w, 8tw) satisfies the equation

8,2w—Aw = pow—l—pldtw inM x (0,00),

w=00n 3M>< (0,00),

w(x,0) z u1(0) — u2(0) =: wo, 8,w(x,0) : v1(0) —v2(0) =: W1, x 6 M,
(6.25)

where

po(x,t) = f’(7toul + (1 — Muz), (6.26)

and

p1(x,t) = —a(x)g'(tla,u1 + (1 — mate), (6.27)

for some AOJLI 6 [0,1].

Remark 6.9: Of the hypotheses about g and a(-), we have to

——a(x)m2 S p1(x,t) 5 —a(x)m1.

In particular,

p10“) 5 —aom1, x e a),\7’t 2 0.

It is clear to note that (1.6)-(1.12) P1 6 L°°(O,T;L°°(M)). Also, pow e
L1(O,T;L2(M)) for (w,8,w) E C0([O,T];Jf). On the other hand, if (ui,8,ui) E

c°([o,T];9fl) with i = 1,2, then

/ If/(Aou1+(1-A0)u2)lzlwlz S COHWHT-IKM) +/ |u1|4|w|2dx+/ lu214|w|2dx
M M M

s CollWl|§11(M)+ (IlulllilswfiI|u21l216(M)) IIWII%4(M)

5 COHWHiMMy

Moreover, we need to use the Strichartz estimates with (4,12), (see Theorem
2.42) for the system (6.25) with H = pow e L1(O,T;L2(M)). Then, it is clear

that (for detail, see (7.6))

||P0W||L1(0,T;L2(M)) SCBT SUP ||W||L3(M)- (6-28)
t€[0 T] ,7
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From what was seen before and from the Theorem 1.1 and Lemma 6.4,

we have that observability inequality (1.20) is valid for the system (6.25), then
T T

||<w<o>,atw<o>>n§M5kT/O flewlz=kT/O uwuizw (629)

Nuevamente, por las Strichartz estimates with (4,12) se tiene que (for
detail, see Theorem 7.2):

/()/P0|W|2<CBTIG[sup ]|Iw||L3(M), (6.30)

t t
a <c + / V 2

, 6.31/0 Mpow ,w Brtsgglllwlmw) p
0

|| wllma ( >

for some p > 0.

These estimates will be the cornerstone in the proof of (6.24).
New, for each U 6 c°([0, T];H5(M)) nc1([o, T];L2(M)), we define the

functional EU : [0, T] a R , such that

Bum = §||<U<z>.a,u(r>>nifw, (6.32)

in particular, Ew(t) is the linear energy of the equation (6.25).

Besides that, we define the functional T : [O, T] —> R by

T0) = MEMO) + 17950) +M0)

Where ,u > 0,17, 19 > 0 will be fixed later, and

3m): Alw(t)8,w(t)dx, K(t)=(xww,3tw),

Lemma 6.10. There exist constants [31,[32 > 0 such that

Ble(t) 5 T(t) _<_ flzEw(t), t _>_ 0, (6.33)

mmhu>n+d
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Proof. From the definition of 53,” e K

2 ||3tW(f)||L2(M) +T||W(’)||L2(M) S TEwU),ln<%’(t)+t91<(t)l s
then

I31Ew(t) SW) S fizEw(t)>

for [31 = u — Hit—19 and fig : “+9722 Thus, we have the result for all 77,19,“ > 0

such that My > 174-19. D

Lemma 6.11. Given a0,m1 > 0 in (1.6)-(1.12), then

Em) 5 —a0m1||3,w||Lz(w)— /Mpow8twdx.

Proof We note that by the equation (6.25) and using (1.6)-( 1.12), be get that

Ev’v(t)=/ p1|8tw|2dx—/ powatwdx
M M

_<_ —a0m1/ |8tw|2dx—/ pow8,wdx,
a) M

this completes the proof.
_

[1

Lemma 6.12. There exists a constant nygfl,g > 0 such that

l3M) s —Ew<r>—gnwnzzw)+2natw||§z<m+cf,B,a,g||w||i3(M)+/Mpo|w|2dx,

for any 8 > 0.

Proof. Since

g/(t)z/M8t2w(t)w(t)dx+”atWONIIZJZW)’

by applying w in the equation (6.25), comparing with x’ (t) and using (??)-(1.6)

we have that
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%’(t) s —||vw||§2(M) +/Mp1¢9,wwdx+/Mp0|w|2dx+ lla,w||§2(M)

s —1|uni2(M) + (5 + 1) natwnim +cf,B,a,gnwuia(M> + / po|W|2dx
M

s —Ew(r> — éuwuizw)+2||atwnizW>+cf,B,a,g||w|123(M)+/Mpo|w|2dx,

thus proving the result. [I

Lemma 6.13. There exists a constant Cf,3,a,g > 0 such that

x'a) 5 awning»”warn/Him)+cf,B,a,g||wu%3(M)+ /wpo|w|2dx.

Proof Since

K/(t) = (Xwatwfitw + (meatzw) = llatw(t)|lz%2(w) + (xww,9fW>

by applying win the equation (6.25), comparing with K’ (t), then

rag) = —||vw||L2(a,) +/wp18twwdx+/wp0|w|2dx+ ||a,w||§2(w).

So, proceeding the same as the previous Lemma, we have to

m) g —||Vw||L2(w> +/wp18twwdx+/wp0|w|2dx+ ||a,w||§2(w)

s —an||,%2<0,)+2||atwnizw+cf,B,a,guwuis(M) + /po|WI2dx~

Then, thanks to Lemmas 6.11-6.13, we obtain that

wt) =mm +nan) +Mr)
S “nEw(t) +M(t)

where

MU) = “19“VW||%2(0,)+277||Wr||%2(M)—N/MPOWW1+(19+77)/M|P0W||W|dx
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+(n + 19)Cf,B,a,gnwllis(M), (6.34)

provided that

,u >%. (6.35)

Considering
Alli > 11 + 19, (6.36)

and using Lemma 6.10 and applying the inequality of Gronwall in the differential

form, one has to

T(t) §e_%Y(O) +/0te_n_(3§flM(t)dr.

(Pd
For the properties of the function J (17) = {LB— with 17 6 [O, T], for the

estimates (6.4), (6.29) and (6.28), and inequalities (6.28), (6.30) e (6.31) there
has to be a constant Co > 0 depending on f,B, a, g, T such that

T
de—l t

T0) 5 e hm) —
O

IIVWIIizm) ”0.3331 ”WHin)’

for 19 > 0 large enough, p, 17 > 0 small enough and fulfilling (6.35), (6.36). Also,
note that for the estimate (6.29) we have to

_ 1 19k e_ B;

r(t)§e %T(0)*—T§——Ew(0)+C0 S[“P ||W||L3<M)
[60

Now, for the Lemma 6.10,by inequality 6.4 and considering 19 > 2fi2CBT

with C37 > 0 given by inequality (6.4), we have

(i)

Ew(t) §C0e_”th (OH—Co sup ||w||L3(M),
t6[0,T]

Ew(T)SCT(Ew(0)—Ew (T ))+C0 Sig] ”WHL3(M)
£60
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For a certain T > 0 large enough and x > O a positive constant.

Note that (i) already shows the property of quasi-stability, but (ii) has to
exist 3! e (O, l /2) independent of time T > 0, such that

EW(T) .<_ YEw(O)+C0 SUP iiW,|12,3(M)-
t€[0,T]

Then proceeding analogously to what is shown by Chueshov and Lasiecka

(CHUESHOV; LASIECKA, 2010, Lemma 8.5.5), there is a constant time

independent C1 > 0 such that

Ew(t)§C1e_”’Ew(O)-|—C1 sup ”wlli3(M)’
t€[O,T]

proving the Theorem 6.7. E]

6.3 Proof of Theorem 1.2

We will divide the proof in three steps:

Step 1. Note that due to Theorem 6.5, the dynamic system (S(t),,%”) associated

with (1.5) is gradient, where the Lyapounov function satisfies (6.23). In

addition, it was shown that the set of stationary points JV is bounded in

if.
Step 2. From the Theorem 6.7 the dynamical system (S (t),,%” ) is quasi-stable on

every bounded forward invariant set B C if (see Definition 2.37), then

by the Theorema 2.38, the dynamic system (S(t),,%”) is asymptotically
smooth.

Step 3. By the Theorem 2.35 and the Remark 2.36, there is a global attractor
527 = M“(./V). In particular, again by the Theorem 6.7, (S (0,3?) is quasi—

stable on 427, and for the indepence at the time of the constant C1 > 0, of
has finite fractal dimension and optimal regularity (see Theorem 2.38),
which proves the Theorem.
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CHAPTER

7

APPLICATIONS TO WAVE EQUATIONS:
' SUPERCRITICAL CASE

In this Chapter we present a proof of Theorem 1.3. The methodology will
be the same as that used for the critical case (see Chapter 5).

So it is necessary to use the Theorem 1.1. To this end, we will show that
the Theorem 2.47 is valid for a) a sharp admissible damping region.

Lemma 7.1. Let 8 > O, the Theorems 2.44 and 2.47 they are valid for some 8-

controllable set a) C M sharp admissible damping region, such that (1.15)-(l.16)
is fulfilled for the system (1.13).

Proof. For Theorem 3.3, there is a a) C M that defines the class of sharp admis-

sible damping regions associated to 8: [608].

Note that associated with this class, there is an open set V such that

M\ 600V 75 0). So, there is a x0 6 M and R > 0 such that B(x0,R) C V and

a) flB(x0,R) : (2). Now, by Theorem 4.1 we can always choose within the class

[we] a representative that satisfies (GCC) So, without loss of generality, we can
consider a) satisfying (GCC).

That is, there is a) 6 [me] such that fulfills (1.15)-(1.16).
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This shows that we can change the hypothesis (1.15)-(l.16) for the follow-

ing statement:

(Sharp H.) There exist and open set a) C M E-controllable such that

a(x) _>_a0 > O, Vxe a).

What proves the result. D

7.1 Quasi-stability inequality

Theorem 7.2 (Quasi-stability). Assume the assumptions (l.l4)-(l.l9) are sat—

isfied and 8 > 0 be given. Then, for some s-controllable set a) C M sharp
admissible damping region, and given a bounded set B C fl”, let z1 = (u1,8tu1)
and Z2 = (uz, 8tu2) be two solutions to problem (1.13) such that z1(0),22(0) E B,

there are time independent constants C1, % > 0 such that

j“|l21(f)—22(f)l|§fwScle—mflzlm)”22(0)||§sfl+C1 SUP ||HI(S)—u2(s)||2
s€[0,t] L — (MY

an
Proof. Let us denote w = u1 — 142. Then (w, aw) satisfies the equation

8,2w —Aw = pow—l-platw in M x (0,00),

w=Oon 8M>< (0,00),
w(x,0) = u1(0) —u2(0) z: wo, 8,w(x,0) z v1(0) —v2(0) 2: w, x E M,

(7.2)
where

mmnzfmw+u-awa no
and

pl (x, t) = —a(x), (7.4)

for some kg 6 [O, 1].

The test is analogous to that performed for the critical case, provided that

the estimates are available (6.28)-(6.31).
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Thus, for p 6 [3, 5) given that

p—l 7—p p—l S—pp—————:1—————=16+6 ’4+4 ’

we have to

/oT(/Ml”llz”‘zlwlzdx)%dt</0T”“1”L12(M”W”L7L(M

< ”uilIL;(°’T’)L12(M) “WHLFf‘pioT
L7l-_2P(M))

< CBTHWHL (,oT,L7_(M)),

for i = 1,2 e (q,r) = (4,12) in (2.31).

Then, there is a constant CBT > 0, depending on the initial data, such that

“pOWHL1(O,T;L2(M)) S CT||WHL=°(0,T;L2(M)) +CBTHWHL°°(0,T;L71—2—P (M))

< C— BT|lWHL°°(0,T;L7¥5(M))

S CBT” (W(0), atW(0))“9f-

From what was seen before and from the Theorem 1.1, we have that

observability inequality (1.20) is valid for the system (7.2), then
T T

|1(w(o>,a,w<o>>n§fwszq /O /w|w|2=kT/O ”Wm, (7.5)

Furthermore, is fulfilled

||P0W||Ll(O,TL2(M))_< CBT
SEPT] ||w||L7lTZP(M)' (76)

T t/ / P0|W|2S / ||powan<M>||w||Lz<M>
0 M O

< IIPOW||L1(,OT;L2(M))||W||L°°(0,T;L2(M))

< CBTHWHme
T, L’7—(M))’

and
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this is
2 2polWI <CBT SUP “WI! 12 - (77)/OT /M

t€[0,T] L770”)

On the other hand, notice that of the observability inequality (1.20), we
have to

t

natwmnim 3 [CT /0 uwuizm).
Thus, it is true that

T

/0 /MP0W3tWS ||P0W||L1(0,T;L2(M)llatW||L°°(0,z;L2(M))

S HPOWI|L‘(O,T;L2(MM) S%p]llatw||L2(A4)
SE t

SCBT SUP ||W||212 )+P SUP (I: “VWHL2((0 )>
t€[0,T] L770” s6[[0 ,z]

this is
T t

a <C s 2 + / V 2
,, 7.8/o /Mng ,w_ ”£1311 ”WHL7%(M) p

0
H WNW“) ( )

for some p > 0.

Proceeding analogously to the critical case has the result. D

7.2 Proof of Theorem 1.3

We will divide the proof in two steps:

Step 1. Thank to Lemma 7.1, it is enough to assume the hypothesis (Sharp H.)
instead of (1.15)-(1.16). Moreover, Theorems 2.44 and 2.47 are satisfied.

Therefore, the dynamic system associated with (1.13) is a gradient and has

a global attractor characterized by the unstable manifolds of the stationary
points.

Step 2. From the Theorems 6.7 and 2.38, the dynamic system associated to (1.13)
has a smooth global attractor with finite fractal dimension, proving the

Theorem.
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