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Both of us were thinking about that. Does Suzumiya-san have any opinion?

’Isn’t that the Euler formula?’

Haruhi says that without even thinking, what a bummer.

Koizumi responds: ’You mean Leonhard Euler? The mathematician?’

’Yes, the mathematician, but I don’t know his name.’

Koizumi re-examines the strange interface panel again, and stares for several seconds.

’Yes’

He snapped his fingers as if he were acting before someone

’This is the Euler’s Planar Graph Formula, or rather a variation. As expected from

Suzumiya-san.’

’It might to be it. That D thought must mean the dimensional factor. I guess.’

(The Rampage of Haruhi Suzumiya, Nagaru Tanigawa)





RESUMO

PÉREZ, E. T. Grupo de Congruência de Tesoura e a Terceira Homología de SL2. 2023. 83 p.
Tese (Doutorado em Ciências – Matemática) – Instituto de Ciências Matemáticas e de Computa-
ção, Universidade de São Paulo, São Carlos – SP, 2023.

O objetivo principal deste trabalho é estudar a terceira homología inteira do grupo especial
linear SL2(A) para um anel comutativo A e a sua relação com o grupo de congruência de tesoura
RP1(A) (BLOCH, 2000), (HUTCHINSON, 2013a), (CORONADO; HUTCHINSON, ).

Uma ferramenta importante para estudar a terceira homología de SL2 é a existência de uma
sequência exata refinada de Bloch-Wigner. Nesta tese mostramos que existe uma sequência exata
refinada de Bloch-Wigner sobre domínios locais de característica 2. Na verdade, mostramos que
se char(A) = 2, então existe uma sequencia exata

0→ Tor(µ(A),µ(A))→ H3(SL2(A),Z)→RB(A)→ 0,

onde RB(A)⊆RP1(A) é o grupo refinado de Bloch de A. Além disso mostramos que se A é
um dominio local tal que −1 é um quadrado, então existe uma sequencia exata da forma

H3(SM2(A),Z)→ H3(SL2(A),Z)→RB(A)→ 0,

onde SM2(A) é o grupo de matrizes monomiais em SL2(A). O resultados da tese podem-se
encontrar nos artigos (MIRZAII; PÉREZ, a), (MIRZAII; PÉREZ, b).

Palavras-chave: K-Teoria Algébrica, Homologia de grupos, refined Bloch group, refined
Scissors-congruence group.





ABSTRACT

PÉREZ, E. T. Scissors Congruence Group and the Third Homology of SL2. 2023. 83 p.
Tese (Doutorado em Ciências – Matemática) – Instituto de Ciências Matemáticas e de Computa-
ção, Universidade de São Paulo, São Carlos – SP, 2023.

The main goal of this work is to study the third integer homology of the special linear group
H3(SL2(A),Z) for a commutative ring A and its relationship with the refined scissors congruence
group RP1(A) (BLOCH, 2000), (HUTCHINSON, 2013a), (CORONADO; HUTCHINSON, ).

An important tool to study the third homology of SL2 is the existence of a refined Bloch-Wigner
exact sequence. In this thesis we show that there exist a refined Bloch-Wigner exact sequence
over local domains of characteristic 2. In fact, we show that if char(A) = 2, then there exists an
exact sequence

0→ Tor(µ(A),µ(A))→ H3(SL2(A),Z)→RB(A)→ 0,

where RB(A)⊆RP1(A) is the refined Bloch group of A. Moreover, we show that if A is a
local domain such that −1 is an square, then there exists an exact sequence

H3(SM2(A),Z)→ H3(SL2(A),Z)→RB(A)→ 0,

where SM2(A) is the group of monomial matrices in SL2(A). The results of this thesis can be
found in (MIRZAII; PÉREZ, a), (MIRZAII; PÉREZ, b).

Keywords: Algebraic K-theory, Group homology, refined Bloch group, refined scissors-congruence
group.
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CHAPTER

1
INTRODUCTION

The study of the third homology of the group SL2(A) is important because of its close
connection to the third K-group of A (SUSLIN, 1991), (HUTCHINSON; MIRZAII; MOKARI,
2022), its appearance in the scissors congruence problem in 3-dimensional hyperbolic geometry
(DUPONT; SAH, 1982), (SAH, 1989), etc.

The classical Bloch-Wigner exact sequence studies the indecomposable part of the third
K-group of a field (DUPONT; SAH, 1982). The general Bloch-Wigner exact sequence for fields,
claims that for any field F we have the exact sequence

0→ TorZ1 (µ(F),µ(F))∼→ Kind
3 (F)→B(F)→ 0.

Here B(F), called the Bloch group of F , is a certain subgroup of the classical scissors congruence
group P(A) (see Section 3.2) and TorZ1 (µ(F),µ(F))∼ is the unique nontrivial extension of
µ2(F) by TorZ1 (µ(F),µ(F)) (SUSLIN, 1991), (HUTCHINSON, 2013b). This exact sequence
can be extended to any local domain, where its residue field has more than 9 elements (MIRZAII,
2017).

When F is quadratically closed, we have a natural isomorphism H3(SL2(F),Z) '
Kind

3 (F) (MIRZAII, 2008),(SAH, 1989). In general we have a natural surjective map

H3(SL2(F),Z)� Kind
3 (F)

(see (HUTCHINSON; TAO, 2009)). The indecomposable group Kind
3 (F) has been studied exten-

sively in the literature (see for example (MERKUR’EV; SUSLIN, 1990) or (LEVINE, 1989)).
In many applications in algebraic K-theory and number theory it is important to understand the
structure of the group H3(SL2(F),Z). When F is not quadratically closed, the above map has a
nontrivial, and often quite large, kernel (see (HUTCHINSON, 2013b), (HUTCHINSON, 2021)).

The homology groups H•(SL2(A),Z) are naturally RA := Z[A×/(A×)2]-modules and
this module structure plays a central role in the study of the homology group H3(SL2(A),Z).
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The refined Bloch group of a ring A, introduced by Hutchinson, is a certain subgroup of
the refined scissors congruence group of A. The refined scissors congruence group RP1(A) of
A is defined by a presentation analogous to P(A) but as a module over the group ring RA rather
than as an abelian group.

In a series of papers (HUTCHINSON, 2013b), (HUTCHINSON, 2013a), (HUTCHIN-
SON, 2017a), (HUTCHINSON, 2017b), (HUTCHINSON, 2021), Hutchinson extensively studied
the homology group H3(SL2(A),Z) when A is a field or a local ring with sufficiently large residue
field. Recently it has been proved that the third homology of SL2 over discrete valuation rings
satisfies a localization property (HUTCHINSON; MIRZAII; MOKARI, 2022).

Let RB(A) ⊆ RP1(A) be the refined Bloch group of A. Usually there is a natural
map from the third homology of SL2(A) to RB(A). In this thesis we study this map assuming
minimum conditions on A. Let T (A) and B(A) be the group of diagonal and upper triangular
matrices in SL2(A), respectively. Assume that

(i) A is a universal GE2-ring,

(ii) µ2(A) = {±1} and −1 ∈ A×2,

(iii) Hn(T (A),Z)' Hn(B(A),Z) for n = 2,3.

As the first main result of this thesis we prove a refined version of the Bloch-Wigner exact
sequence when 2 = 0 (3.4.5). In particular, we show that for any local domain of characteristic 2,
where its residue field has more than 64 elements, we have the exact sequence

0→ TorZ1 (µ(A),µ(A))→ H3(SL2(A),Z)→RB(A)→ 0.

This gives a positive answer to a question raised by Coronado and Hutchinson in (CORONADO;
HUTCHINSON, ) over such rings. Moreover it improves similar results of Hutchinson (see
(HUTCHINSON, 2013a), (HUTCHINSON, 2017a)), as it leaves no ambiguity on 2-torsion
elements.

As the second main result of this thesis we show that the sequence

H3(SM2(A),Z)→ H3(SL2(A),Z)→RB(A)→ 0 (1.0.1)

is exact, where SM2(A) is the group of monomial matrices in SL2(A) (Theorem 4.2.6). Moreover,
if A satisfies in conditions (i) and (iii), we show that there is an exact sequence

I(A)⊗Z µ2(A)→ H3(SL2(A),SM2(A),Z)→
RP1(A)

〈ψ1(a2) : a ∈ A×〉
→ 0, (1.0.2)

where I(A) is the fundamental ideal of A (Theorem 4.4.2). As a particular case, we show that if
−1 ∈ A×2, then we have the isomorphism

H3(SL2(A),SM2(A),Z)'RP1(A).
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The homology groups of SL2(A) relative to its subgroups T (A) and SM2(A) seems to be
important. As the third main result of this thesis we show that for any ring A satisfying conditions
(i) and (iii), we have the isomorphisms

H2(SL2(A),SM2(A),Z)'W (A), H2(SL2(A),T (A),Z)' KMW
1 (A),

where W (A) is the Witt ring of A and KMW
1 (A) is the first Milnor-Witt K-group of A. Moreover

we show that
H3(SL2(A),T (A),Z

[
1
2

]
)'RP1(A)

[
1
2

]
(for the last two isomorphism we need to assume that SL2(A) is perfect.)

It seems that KMW
1 (A)

[
1
2

]
and RP1(A)

[
1
2

]
should be part of a chain of groups (WENDT,

2018, App. A) with certain properties similar to K-groups. These two groups appear in the
unstable analogues of the fundamental theorem of K-theory for the second and third homology
of SL2 over an infinite field (HUTCHINSON, 2015), which can be used to calculate the low-
dimensional homology of SL2 of Laurent polynomials over certain fields. Moreover they have
certain interesting localization property (GILLE; SCULLY; ZHONG, 2016, Theorem 6.3),
(HUTCHINSON; MIRZAII; MOKARI, 2022, Theorem A).

Our main results follows from a careful analysis of a spectral sequence which converge to
the homology of SL2. Our spectral sequence is a variant of a spectral sequence which is studied
by Hutchinson in his series of papers and is similar to the one studies for GL2 in (MIRZAII,
2011). As we will see in this thesis this variant has certain advantage when it comes to calculation
of some differentials.

In this thesis all rings are commutative, except probably group rings, and have the unit
element 1.
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CHAPTER

2
HOMOLOGY

In this chapter we give a short account on the homology of groups. The study of the third
homology of SL2 is te main topic of this thesis.

2.1 Chain Complexes

In this section A is a ring with the unit element 1 and all modules are left A-modules. The
constructions can be applied to right A-modules, almost with no change.

Definition 2.1.1. A chain complex of A-modules is a family C• = {Ci,∂i}i∈Z of A-modules and
A-homomorphisms ∂i : Ci→Ci−1 called differentials, such that ∂i−1 ◦∂i = 0 for any i ∈ Z.

For any chain complex C•, let Zi = Zi(C•) := ker(∂i) and Bi = Bi(C•) := im(∂i+1). The
elements of Zi and Bi are called i-cycles and i-boundaries of C•, respectively. It is easy to see
that 0⊆ Bi ⊆ Zi ⊆Ci. The i-th homology of C• is the quotient group Hi(C•) = Zi(C•)/Bi(C•).
When Hi(C•) = 0 we say that C• is exact in dimension i (or at Ci). If that property is satisfied for
any i ∈ Z, then we say that C• is exact.

A morphism f• : C•→ D• of chain complexes is a family { fi}i∈Z of A-homomorphisms
fi : Ci→ Di such that the diagram

· · · Ci+1 Ci Ci−1 · · ·

· · · Di+1 Di Di−1 · · ·

∂i+2 ∂i+1

fi+1

∂i

fi

∂i−1

fi−1

∂i+2 ∂i+1 ∂i ∂i−1

is commutative, i.e. for any i ∈ Z, ∂i ◦ fi = fi−1 ◦∂i (note that here we use the same notation for
the differentials of C• and D•. When necessary we denote them with different notation). Thus we
have the category Ch(A−mod) of chain complexes of A-modules. This is an abelian category.
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A morphism f• : C• → D• between chain complexes induces a natural A-morphism
f∗ : Hi(C•)→ Hi(D•), given by x+Bi(C•) 7→ fi(x)+Bi(D•). If f• : C•→ D• and g• : D•→ E•
are morphisms of chain complexes, then we have (g• ◦ f•)∗ = g∗ ◦ f∗. Moreover, the identity
morphism idC• induces the identity map idHi(C•).

The chain complexes have arbitrary and direct sums, if {C•, j} j∈J is a family of chain
complexes, it is not difficult to show the commutativity of homology with direct sum, i.e.

Hi

(⊕
j∈J

C•, j

)
'
⊕
j∈J

Hi(C•, j)

An important particular of complexes is the concept of short exact sequence. We say that
the complex

0 C D E 0
f g

(we can complete the complex with zeros on the left and right side) is a short exact sequence if it
is exact everywhere. This condition implies that f is an injection, g is a surjection and obviously
im( f ) = ker(g).

The sequence of chain complexes

0 C• D• E• 0
f g

is called exact if for any i ∈ Z the sequence

0 Ci Di Ei 0
fi gi

is exact.

For the proof of the next theorem we need the following useful lemma.

Lemma 2.1.2 (Snake lemma). For any commutative diagram with exact rows of A-modules

A B C 0

0 A′ B′ C′

α

f

β

g h

α ′ β ′

there is a connecting homomorphism δ : ker(h)→ coker( f ) such that the sequence

ker( f ) ker(g) ker(h) coker( f ) coker(g) coker(h)α β δ α ′ β ′

is exact. Moreover, if α is injective, then the induced map ker( f ) α→ ker(g) is injective. If β ′ is

surjective then the induced map coker(g)
β ′→ coker(h) is surjective.

Proof. The maps on the left and right sides of δ are induced by α , β , α ′ and β ′ respectively. So,
the exactness in ker(g) and coker(g) are easy to verify.



2.1. Chain Complexes 23

The important part is the construction of the connecting homomorphism δ . For this
consider c ∈ ker(h). By the surjectivity of β there exists an element b ∈ B such that β (b) = c.
By the commutativity of the diagram we have that β ′(g(b)) = h(β (b)) = h(c) = 0. Thus g(b) ∈
ker(β ′) = im(α ′), so there is a′ ∈ A′ such that g(b) = α ′(a′). We define δ (c) = a′. A routine
"diagram chasing" shows that this definition does not depend to the choice of b and is in fact an
homomorphism. Moreover, it is straightforward to check the exactness of the sequence in ker(h)
and coker( f ).

Proposition 2.1.3 (Long exact sequence). For any a short exact sequence of chain complexes of

A-modules

0 C• D• E• 0.
f• g•

and for any i ∈ Z there is a connecting homomorphism δi : Hi(E•)→ Hi−1(C•) such that the

sequence

· · · Hi(C•) Hi(D•) Hi(E•) Hi−1(C•) Hi−1(D•) · · · .f∗ g∗ δi f∗ g∗

is exact.

Proof. Here we only construct the map δi. For the rest of proof we refer the reader to (WEIBEL,
1994, Theorem 1.3.1). Consider the following commutative diagram with exact rows:

...
...

...

0 Ci Di Ei 0

0 Ci−1 Di−1 Ei−1 0

0 Ci−2 Di−2 Ei−2 0

...
...

...

fi

∂i

gi

∂i ∂i

fi−1

∂i−1

gi−1

∂i−1 ∂i−1

fi−2 gi−2

Let e∈ Zi(E•) = ker(∂i) represents the element e∈Hi(E•). Take d ∈Di such that e= gi(d). Then
(as in the proof of the snake lemma) we know that ∂i(d) ∈ ker(gi−1). Hence ∂i(d) = fi−1(c) for
some c∈Ci−1. We show that c∈ Zi−1(C•). Since fi−2(∂i−1(c)) = ∂i−1( fi−1(c)) = ∂i−1(∂i(d)) =

0, by the injectivity of fi−2 we have ∂i−1(c) = 0. Thus c ∈ Zi−1(C•) represents an element of
Hi−1(C•). Now, we define δ (e) = c.

The connecting homomorphisms have the following naturality property.
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Proposition 2.1.4. From the commutative diagram of chain complexes with exact rows

0 C• D• E• 0

0 C′• D′• E ′• 0

f•

φ•

g•

ϕ• ψ•

f ′• g′•

we obtain the commutative diagram with exact rows

· · · Hi(C•) Hi(D•) Hi(E•) Hi−1(C•) Hi−1(D•) · · ·

· · · Hi(C′•) Hi(D′•) Hi(E ′•) Hi−1(C′•) Hi−1(D′•) · · ·

f∗

φ∗

g∗

ϕ∗

δ

ψ∗

f∗

φ∗

g∗

ϕ∗

f ′∗ g′∗ δ ′ f ′∗ g′∗

Proof. See (WEIBEL, 1994, Proposition 1.3.4).

The following definition has its origin in algebraic topology.

Definition 2.1.5. We say that two chain maps f•,g• : C• → D• are chain homotopic if there
exists a family of homomorphisms {si : Ci→ Di+1}i∈Z such that

fi−gi = ∂i ◦ si + si−1 ◦∂i.

The family {si}i∈Z is called a chain homotopy from f• to g•. We say that f• : C•→D• is
a chain homotopy equivalence if there is a morphism g• : D•→C• such that g• ◦ f• and f• ◦g•
are chain homotopic to the identity morphisms of C• and D•, respectively.

Two chain homotopic maps induce equal maps on homology of complexes. More pre-
cisely:

Lemma 2.1.6. If f•,g• : C•→ D• are chain homotopic, then the maps f∗,g∗ : Hi(C•)→ Hi(D•)

are equal for all i ∈ Z.

Proof. It is sufficient to proof that if f• and the zero morphism 0• : C•→D• are chain homotopic,
then f∗ : Hi(C•)→ Hi(D•) is the zero map. Let the element x ∈ Hi(C•) is represented by x ∈
Zi(C•). Then fi(x) = ∂i(si(x)). Thus fi(x) ∈ Bi(D•) which represents the zero element of Hi(D•).

For the definition of homology of groups, we need to define projective modules. These
modules can be considered as a generalization of vector spaces over rings.

Definition 2.1.7. An A-module P is called projective if for any given, diagram with exact row
( f : M→ N is surjective)

P

M N 0,

ρ

f
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there is a lifting of ρ , i.e. there is a map h : P→M such that the diagram

P

M N 0

ρ
h

f

is commutative.

It is a well-known fact that for any A-module M there exists a surjective map F � M

where F is free. The module F can be taken as the free A-module generated by a set of indexed
by elements of M and the map F � M can be defined by taking a basis element um ∈ F to the
element m ∈M. When M is projective, then the map F � M has a splitting map M→ F .

Proposition 2.1.8. 1. An A-module M is projective if and only if there exists an A-module N

such that M⊕N is free.

2. If 0→M′
f→M

g→M′′→ 0 is an exact sequence of left A-modules and P a right projective

A-module, then

0 P⊗A M′ P⊗A M P⊗A M′′ 0
idP⊗ f idP⊗g

is exact.

Proof. 1. Let M be projective. Take a free A-module F with a surjective map f : F →M.
Let N be the kernel of this map. Then by the projectivity of M we have a map k : M→ F

such that f ◦ k = idM. Thus the exact sequence 0→ N→ F
f→M→ 0 splits and we have

F ' N⊕M. Now let there is a module N such that M⊕N is free. Consider the following
diagram with exact row

M

Q Q′ 0.

ρ

f

Composing ρ with the projection M⊕N
πM−→M, and using the projectivity of M⊕N, there

is a morphism k : M⊕N→ Q such tat the diagram

M⊕N

M

Q Q′ 0.

πM

k

ρk◦iM

iM

f

Commutes. Now if iM : M→M⊕N is give by m 7→ (m,0), then the map k ◦ iM : M→ Q

makes the first diagram commutative and we’re done.
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2. If F is a free right A-module, then F⊗A M′, F⊗A M and F⊗A M′′ are direct sum of copies
of the respective A-modules M′, M and M′′. This gives the exactness of the sequence

0 F⊗A M′ F⊗A M F⊗A M′′ 0.
idF⊗ f idF⊗g

If Q is a module such that P⊕Q is free, then the distributivity of the direct sum with
respect to the tensor product gives the exactness of the sequence

0 P⊗A M′ P⊗A M P⊗A M′′ 0.
idP⊗ f idP⊗g

Definition 2.1.9. Let M be an A-module. A resolution of M is a family of modules {Mi}i≥0,
together with a family of morphisms {di : Mi→Mi−1}i≥1 and a map ε : M0→M such that the
sequence

· · · Mi Mi−1 · · · M1 M0 M 0
di di−1 d1 ε

is an exact complex. This resolution of M is called free or projective if the A-modules Mi are free
or projective, respectively. We denote this resolution by M•

ε→M.

Proposition 2.1.10. Any A-module M has a free resolution. In particular, any module M has a

projective resolution.

Proof. Let F0
d0=ε

� M be a surjective map, where F0 is free. Let M0 = ker(ε). Let F1
r1
� M0 be a

surjective map where F1 is free. Let d1 be the composite F1
r1
� M0 ↪→ F0, clearly the sequence

F1
d1→ F0

ε→ M is exact. Suppose by induction that we have constructed Fn−1
dn−1
� Fn−2. Let

Mn−1 = ker(dn−1) and take Fn
rn
� Mn−1 a surjective map such that Fn is free. Take dn as the

composition of rn and the inclusion Mn−1→ Fn−1. It is easy to see that the sequence

Fn Fn−1 · · · F0 M 0
dn d1 ε

is exact. For clarity see the following diagram:

M3 M1

· · · F3 F2 F1 F0 M

M2 M0

d3

r3

d2

r2

d1

r1

r0=ε

Theorem 2.1.11 (Comparison Theorem). Let P•
ε→M be a projective resolution of an A-module

M and f ′ : M→ N a homomorphism of A-modules. Then for any resolution Q•
η→ N there is a

chain map f• : P•→ Q• such that η ◦ f0 = f ′ ◦ ε . The chain map f• is unique up homotopy.
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Proof. Let Z−1(P•) := M, Z−1(Q•) = N, f−1 := f ′ : Z−1(P•)→ Z−1(Q•), ∂0 = ε : P0→M and
∂0 = η : Q0→ N. By the projectivity of P0 there is f0 : P0→ Q0 such that f ′ ◦ ε = f−1 ◦∂0.

Inductively suppose that we have constructed fi for i≤ n. Thus we have the commutative
diagram

0 Zn(P•) Pn Pn−1

0 Zn(Q•) Qn Qn−1,

f ′n

∂n

fn fn−1

∂n

where f ′n is the map induced by the commutativity of the right square. By the projectivity of Pn+1

and the diagram

Pn+1 Zn(P•) 0

Qn+1 Zn(Q•) 0

∂n+1

fn+1 f ′n
∂n+1

f ′n∂n+1 lifts to a map fn+1 : Pn+1 → Qn+1. Thus we can construct a chain map f• : P• → Q•
with the required properties. For the uniqueness of f• up to homotopy we refer the reader to
(WEIBEL, 1994, Comparison Theorem 2.2.6).

2.2 The functors Tor

In this section we introduce and study the functor Tor. For this we need the following
theorem.

Theorem 2.2.1. Let M be a right A-module and P•→M and P′•→M two projective resolutions

of M. Then for any left A-module N we have Hn(P•⊗A N)' Hn(P′•⊗A N) for all n≥ 0.

Proof. By Comparison Theorem 2.1.11 we have morphisms f• : P•→ P′• and g• : P′•→ P•. Again
by Comparison Theorem g• ◦ f• : P•→ P• is chain homotopic to idP• and f• ◦ g• : P′•→ P′• is
chain homotopic to idP• .

Now, consider the morphisms f•⊗ idN and g•⊗ idN . The compositions g• ◦ f•⊗ idN and
f• ◦g•⊗ idN are chain homotopic to the respective identity maps. Thus the homology of f•⊗ idN

gives an isomorphism.

Theorem 2.2.2. Let M be a right A-module and N a left A-module. If P•→M and Q•→ N are

projective resolutions of M and N respectively, then for any n≥ 0,

Hn(P•⊗A N)' Hn(M⊗A Q•).

Proof. See (ROTMAN, 1979, Theorem 7.9).
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Definition 2.2.3. Let M be a right A-module and P•→M a projective resolution of M. For a left
A-module N we define

TorA
n (M,N) := Hn(P•⊗A N).

By Theorem 2.2.1, this definition does not depends to the chosen projective resolution of M.

The commutativity of the direct sums and direct limits with tensor product gives the
following important result

Lemma 2.2.4. If {M j} j∈J is a family of A-modules, then

TorA
n

(
M,
⊕
j∈J

N j

)
'
⊕
j∈J

TorA
n (M,N j), TorA

n

(⊕
j∈J

M j,N

)
'
⊕
j∈J

TorA
n (M j,N),

if {M j} j∈J is a direct system of A-modules, then

TorA
n

(
M, lim−→

j∈J
N j

)
' lim−→

j∈J
TorA

n (M,N j), TorA
n

(
lim−→
j∈J

M j,N

)
' lim−→

j∈J
TorA

n (M j,N).

Proof. The Theorem 2.2.2 gives the commutativity of TorA
n with direct sums and direct limits at

the first component.

In the examples below, we present some properties of the Tor-functor and its connection
with the torsion subgroup of abelian groups.

Example 2.2.5. Let M and N be A-modules. Take a projective resolution F•→M of M. Since
the tensor product is a right exact functor, we have the exact sequence

F1⊗A N F0⊗A N M⊗A N 0.
d1⊗id ε⊗id

This gives the isomorphism

TorA
0 (M,N) = H0(F•⊗A M) = coker(ε⊗ id)'M⊗N.

Example 2.2.6. Let A, B abelian groups. Let π : F → A be a surjective map where F is a free
abelian group (a free Z-module). Since subgroups of free abelian groups are free, the complex

0 ker(π) F A 0π

is free resolution of A. So, the complex

0 ker(π)⊗Z B F⊗Z B 0

can be used to calculate TorZn (A,B). Thus

TorZn (A,B) = 0, for n≥ 2.
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Example 2.2.7. Let M and N be A-modules. If M is projective, for the calculation of TorA
n (M,N)

we can take the projective resolution F•→M of M with F0 = M, Fi = 0 for i≥ 1 and ε = idM.
Thus

TorA
n (M,N) = 0

for any n ≥ 1. Now, let N be projective. If F• → M is a projective resolution of M, then
· · · → F1⊗N→ F0⊗N→M⊗N→ 0 is exact. Thus TorA

n (M,N) = 0 for any n≥ 1.

Example 2.2.8. We know that any finitely generated abelian group is direct sum of its free and
torsion parts. Thus if A and B are finitely generated abelian groups we have that

TorZ1 (A,B)' TorZ1 (TA,TB)' TA⊗Z TB

where TA, TB are the torsion parts of A and B respectively and the right isomorphism can be
found in (VERMANI, 2003, Corollary 6.3.16).

Now, we know that every abelian group is a direct limit of its finitely generated subgroups.
Thus by lemma 2.2.4, we have

TorZ1 (A,B)' TorZ1 (TA,TB).

which is a torsion group.

In the next theorem, we study the long exact sequence for the Tor-functor.

Theorem 2.2.9. 1. Let 0→ N′ α→ N
β→ N′′ → 0 be a short exact sequence of A-modules.

Then for any A-module M we have the long exact sequence

· · · → TorA
n (M,N′) α∗→ TorA

n (M,N)
β∗→ TorA

n (M,N′′) δ→ TorA
n−1(M,N′)→ ···

2. Let 0→M′ α ′→M
β ′→M′′→ 0 be a short exact sequence of right A-modules, then for any

A-module N we have the long exact sequence

· · · → TorA
n (M

′,N)
α ′∗→ TorA

n (M,N)
β ′∗→ TorA

n (M
′′,N)

δ→ TorA
n−1(M

′,N)→ ···

Proof. The first claim follows from the definition of Tor and the long exact sequence for the
homology of chain complexes (Proposition 2.1.3). For the second claim, take any projective
resolution of N, tensorize it with the exact sequence 0→M′→M→M′′→ 0 and then apply
the Theorem 2.2.2 and proposition 2.1.3.

2.3 Homology of groups
Now we are ready to define the homology of groups. This can be done using the Tor

functor. Thus it inherits most of properties of the Tor functor.
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Let G be a group and let ZG be the group ring of G. In this thesis we will work with left
ZG-modules. Any left ZG-module has a natural structure of a right ZG-module with the right
action mg := g−1m. Thus it is natural just talk about ZG-modules. In the following we will use
the notation M⊗G N for the tensor product of M and N as left and right ZG-modules discussed
in above. We reserve the notation M⊗ZG N to the case when M has a natural left and right action
by G (for example, when M = ZH, where H ≤ G).

Remark 2.3.1. Observe that the definition of M⊗G N comes from M⊗ZN by adding the relations
mg⊗n = g−1m⊗n = m⊗gn. If we change m by gm, the last equality turns to m⊗n = gm⊗gn.
Now we define a diagonal action of G on M⊗Z N as g(m⊗n) := gm⊗gn, this last equality turns
to m⊗n = g(m⊗n). Thus

M⊗G N 'M⊗Z N/〈g(m⊗n)− (m⊗n)|m ∈M,n ∈ N,g ∈ G〉.

Definition 2.3.2. Let G be a group and M a G-module i.e. a ZG-module. The n-th homology of
G with coefficients in M is defined as follows:

Hn(G,M) := TorZG
n (Z,M),

where Z is considered as G-module with the trivial action of G, i.e. g ·n = n. When M = Z has
the trivial action of G, then Hn(G,Z) is called the n-th integral homology of G.

Observe that, the homology group Hn(G,M) is a functor on the coefficient module M

and inherits most of the properties of the Tor-functor. One important property is the long exact
sequence.

Theorem 2.3.3. Let G be a group and 0→ N′ α→ N
β→ N′′→ 0 be a short exact sequence of left

G-modules (ZG-modules). Then there exists the following long exact sequence

· · · Hn(G,N′) Hn(G,N) Hn(G,N′′) Hn−1(G,N′) · · ·α∗ β∗ δ

of homology groups.

Proof. Just apply Theorem 2.2.9 to the homology functor Hn(G, ·) = TorZG
n (Z, ·).

By Lemma 2.2.4, Hn(G, ·) commutes with direct sums and direct limits. That is for any
family {M j} j∈J of G-modules and any n≥ 0, we have

Hn(G,
⊕
j∈J

M j)'
⊕
j∈J

Hn(G,M j)

and for any direct system {M j} j∈J of G-modules, we have

Hn(G, lim−→
j∈J

M j)' lim−→
j∈J

Hn(G,M j).

By the following theorem, direct limit can be taken on the group G.
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Theorem 2.3.4. Let {G j} j∈J be a direct system where J is a directed set. If G = lim−→ j∈J
G j, then

for any G-module M

lim−→
j∈J

Hn(G j,M)' Hn(G,M).

Proof. (BROWN, 2012, Page 121, Exercise 3(a)).

For any group G, the augmentation map ε : ZG→ Z is defined by ∑nigi 7→ ∑ni. The
kernel of this map will be denoted by IG = ker(ε) and is called the augmentation ideal if G. It is
easy to see that IG is generated by {g−1|g ∈ G} as free Z-module.

For any G-module M, the ZG-submodule IGM is generated by the elements gm−m with
g ∈ G and m ∈M. The quotient

MG := M/IGM

is called the group of coinvariants of M. Take the exact sequence of ZG-modules

0→ IG→ ZG ε→ Z→ 0

(G acts trivially on Z). Tensoring this sequence by M we obtain the exact sequence

IG⊗ZG M M Z⊗ZG M 0.ε⊗id

This gives us the isomorphism

Z⊗ZG M ' coker(IG⊗ZG M→M) = M/IGM = MG.

Therefore

H0(G,M) = TorZG
0 (Z,M) = Z⊗ZG M 'MG.

In particular, for any group G we have H0(G,Z) = Z.

Example 2.3.5. In this example we study the homology group H1(G,Z). From the short exact
sequence 0→ IG→ ZG ε→ Z→ 0 of G-modules, we get the long exact sequence

H1(G,ZG) H1(G,Z) H0(G, IG) H0(G,ZG) H0(G,Z) 0.
ε∗ δ ε∗

Since ZG is free as ZG-module, we have H1(G,ZG) = TorZG
1 (Z,ZG) = 0 (by Example 2.2.7).

Moreover

H0(G,ZG) = Z⊗G ZG' Z' H0(G,Z).

But the map

ε∗ : Z' Z⊗ZG→ Z⊗G Z' Z

is given by

n 7→ 1⊗n 7→ 1⊗n 7→ n.
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Thus
H1(G,Z)' H0(G, IG) = (IG)G = IG/I2

G.

As we will see below IG/I2
G is isomorphic to the abelianization of G. We will show this using the

standard resolution of G.

Example 2.3.6. Let G be a finite cyclic group of order n with generator t. Consider the element
N = 1+ t + · · ·+ tn−1 ∈ ZG. It is not difficult to verify that the sequence

· · · ZG ZG ZG ZG ZG Z 0N t−1 N t−1 ε

is a free resolution of Z over ZG. Note that the maps are defined by multiplication by N or t−1.
Tensoring this resolution with a G-module M and dropping the last term we obtain the complex

· · · M M M M M 0.N (t−1) N (t−1)

Thus

Hn(G,M)'


MG n = 0
MG

imN if n is odd

ker(N : MG→MG) if n is even

where MG := {m ∈M : gm = m for all g ∈ G}.

Now, we will present the standard resolution of Z over ZG, which will be very useful in
future calculations. Let C′n(G) be the free abelian group generated by Gn+1. Let Cn(G) be the
quotient of C′n(G) by the subgroup generated by the elements (g0, . . . ,gn) where gi = gi+1 for
some i. We denote the element of Cn(G) represented by (g0, . . . ,gn) again by (g0, . . . ,gn).

The group Cn(G) = Gn+1 is a left G-module with the action:

g · (g0,g1, . . . ,gn) = (gg0,gg1, . . . ,ggn)

We convert this left action of G to a right action by m ·g := g−1 ·m. It is not difficult to see that
the elements (1,g1,g2, . . . ,gn), gi ∈ G generate Cn(G) as free ZG-module. The maps

dn(g0,g1, . . . ,gn) :=
n

∑
k=0

(−1)k(g0, . . . ,gk−1,gk+1, . . . ,gn), n≥ 1

ε : C0(G)→ Z, (1) 7→ 1,

turns C•(G)→ Z to a free resolution of Z on ZG called the standard resolution of G.

Let Bn(G) the free ZG-modules generated by the symbols [g1|g2| · · · |gn], gi 6= 1. Let the
map dn : Bn(G)→ Bn−1(G) be given by

dn([g1|g2| · · · |gn]) = g1[g2| · · · |gn]+
n−1

∑
i=1

(−1)i[g1| · · · |gigi+1| · · · |gn]+ (−1)n[g1| · · · |gn−1].
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In above if gigi+1 = 1, we remove the element [g1| · · · |gigi+1|gn] from the above map. Moreover,
let ε : B0(G)→ Z be given by [] 7→ 1. Then B•(G)→ Z is a free resolution of Z over ZG, called
the bar resolution of G.

We have the chain isomorphism θ• : C•(G)→ B•(G) defined by

(1,g1, . . . ,gn) 7→ [g1|g−1
1 g2| · · · |g−1

n−1gn] (2.3.1)

with the inverse morphism η• : B•(G)→ C•(G) given by

[g1|g2| · · · |gn] 7→ (1,g1,g1g2, . . . ,g1g2 · · ·gn). (2.3.2)

Lemma 2.3.7. Let G be a group. Then H1(G,Z) ' G
[G,G] , where [G,G] is the commutator

subgroup of G. In other words, H1(G,Z) coincides with the abelianization of G.

Proof. We calculate H1(G,Z) using the bar resolution B•(G). Consider the chain complex

· · · B2(G)⊗G Z B1(G)⊗G Z B0(G)⊗G Z 0.
d3⊗idZ d2⊗idZ d1⊗idZ

Clearly B1(G) = ker(d1⊗ idZ). Thus H1(G) = B1(G)/im(d2⊗ idZ). In this group we have
(d2⊗ idZ){([g1|g2])⊗1}= 0. and thus

[g1g2]⊗1 = [g1]⊗1+[g2]⊗1.

This implies that the maps G/[G,G] → H1(G,Z), g 7→ [g]⊗1, and H1(G,Z) → G/[G,G],
[g]⊗1 7→ g are well defined and one is the inverse of the other.

Remark 2.3.8. Note that by the example 2.3.5 and the above lemma we have

H1(G,Z)' G/[G,G]' IG/I2
G.

A direct map G/[G,G]→ IG/I2
G can be given by g 7→ g−1.

Example 2.3.9. Let G be an abelian group, and consider B•(G)→ Z the bar resolution of Z
over ZG. Consider the map

G×G −→ B2(G)⊗G Z
(g1,g2) 7−→ ([g1|g2]− [g2|g1])⊗1.

Since (d2⊗ idZ)(([g1|g2]− [g2|g1])⊗1) = 0, we have the map

G×G −→ H2(G,Z)
(g1,g2) 7−→ c(g1,g2) := ([g1|g2]− [g2|g1])⊗1.

Now, for any g1,g2,g3 ∈ G we have the following identities

c(g1g2,g3) = c(g1,g3)+ c(g2,g3),

c(g1,g2g3) = c(g1,g2)+ c(g1,g3),

c(g1,g2) =−c(g2,g1).

These identities, induce the homomorphism
∧2 G → H2(G) given by g ∧ h 7→ c(g,h). By

(BROWN, 2012, Chapter V, Theorem 6.4), this map is an isomorphism.
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Let H be a subgroup of G. Let P•→ Z be a free resolution of Z over ZG. Then this
complex is a free resolution of Z over ZH since ZG is a free ZH-module. Thus for any H-module
M and any projective resolution Q•→ Z of Z over ZH, we have

Hn(H,M)' Hn(P•⊗H M)' Hn(Q•⊗H M).

Example 2.3.10. Let H be a subgroup of a group G. Consider the standard resolutions C•(G)→
Z and C•(H)→ Z. Let G\H be the set of right cosets and s : G\H → G any section of the
canonical projection π : G→ G\H. Define the map

Θ•(s) : C•(G)−→C•(H)

as

(g0,g1, . . . ,gn) 7−→ (g0,g1, . . . ,gn),

where g := g · s(π(g))−1 ∈ H for any g ∈ G. It is easy to show that this is a morphism of chain
complexes. Note that if inc• : C•(H)→C•(G) is the chain map induced by the inclusion, then
as in the proof of Theorem 2.2.1, we can show that Θ•(s)◦ inc• is chain homotopic to idC•(H).
Tensoring this by a left H-module M, we get

(Θ•(s)⊗idM)∗◦(inc•⊗idM)∗=(Θ•(s)⊗idM ◦inc•⊗idM)∗=((Θ•(s)◦inc•)⊗idM)∗= idHn(H,M).

2.4 Hn as a functor of two variables

In this section we study the homology of groups as a functor on the category of pairs
(G,M), where G is a group and M is a left G-module. A morphism between (G,M) and (G′,M′)

is a pair of maps (α, f ), where α : G→ G′ is a group homomorphism and f : M → M′ is a
homomorphism of G-modules where take M′ as a G-module with the action g ·m′ := α(g)m′.
More precisely we have

f (gm) = α(g) f (m). (2.4.1)

Let P•→ Z and P′•→ Z be two projective resolutions of Z over G and G′, respectively.
Observe that P′•→ Z is a resolution of Z over G. By Comparison Theorem 2.1.11, the identity
map id : Z→ Z extends to a chain map τ• : P•→ P′• which is compatible with α , i.e. τn(gm) =

α(g)τn(m). Thus we have the morphism

τ•⊗ f : P•⊗G M→ P′•⊗G′ M
′.

For any n ≥ 0 this morphism induces the homomorphism (α, f )∗ : Hn(G,M)→ Hn(G′,M′),
which is given by zn 7→ (τ⊗ f )(zn).

Example 2.4.1. Let H be a subgroup of G and consider the morphism of pairs (inc, idM) :
(H,M)→ (G,M). The map corG

H : Hn(H,M)→ Hn(G,M) is called the corestriction map.
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Let H be a subgroup of G and M a H-module. The induced G-module is defined as
follows

IndG
H(M) := ZG⊗ZH M.

With this notation we have:

Lemma 2.4.2 (Shapiro’s Lemma). Let H be a subgroup of a group G and M a H-module. Then

the map (inc,α) : (H,M)→ (G,ZG⊗H M), where α(m) = 1⊗m, induces the isomorphism

Hn(H,M)' Hn(G, IndG
H(M)).

Proof. Let P•→ Z be a projective resolution of Z over G. Then

Hn(G,ZG⊗ZH M)' Hn(P•⊗G (ZG⊗H M))' Hn((P•⊗G ZG)⊗H M)

' Hn(P•⊗H M) = Hn(H,M).

Example 2.4.3. Let H be a subgroup of G and M a H-module. Then HomH(ZG,M) is a G-
module with the G-action (g · f )(x) := f (xg). Let ϕ : M→HomH(ZG,M) be given by m→ ϕm,
where

ϕm(x) =

xm, x ∈ H

0, x /∈ H.

This map can be extended to a G-homomorphism ϕ : ZG⊗H M→ HomH(ZG,M) such
that the diagram

M HomH(ZG,M)

ZG⊗H M

ϕ

ϕ

is commutative, where the morphism M→ ZG⊗H M is defined by m 7→ 1⊗m. Explicitly we
define

ϕ

(
s

∑
i=1

gi⊗mi

)
:=

s

∑
i=1

gi ·ϕmi.

Let (G : H)< ∞ and consider E as a set of representatives of left cosets. Let

ψ : HomH(ZG,M)−→ ZG⊗H M,

f 7−→ ∑
s∈E

s⊗ f (s−1).

It is straightforward to show that this is an inverse of ϕ . So we have

ZG⊗H M ' HomH(ZG,M).
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For a G-module M consider the composition

M
ϕ−→ HomH(ZG,M)

ψ→ ZG⊗H M.

By applying the homology functor Hn(G, ·), we have the composite

Hn(G,M)
ϕ∗−→ Hn(G,HomH(ZG,M))

ψ∗−→ Hn(G,ZG⊗H M)' Hn(H,M).

Note that ψ∗ is an isomorphism and the last isomorphism is given by Shapiro’s lemma. This
composition is called the restriction map or the transfer map and is denoted by resG

H or trG
H .

Another classic and very useful case for the homology of groups is the morphism that
arises from the conjugation isomorphism.

Example 2.4.4. Let G be a group, H a normal subgroup of G and M a G-module. Fix g ∈G and
consider the morphism of pairs (αg, fg) : (H,M)→ (H,M), where

αg : H→ H, h 7→ ghg−1

and
fg : M→M, m 7→ gm.

Take a projective resolution P•→ Z of Z over ZG. Note that this is a projective resolution of
Z over ZH. Consider the morphism τ• : P•→ P• defined by x 7→ gx. Note that τ• satisfy 2.4.1
because

τ(hx) = ghx = ghg−1gx = αg(h)τ(x).

By tensoring τ• with fg, we have τ•⊗ fg which induces

(αg, fg)∗ : H∗(H,M)→ H∗(H,M)

Note that this is given by x⊗m 7→ gx⊗gm. Thus we have the following

1. If g ∈ H, then the action in the chain level is given by x⊗m 7→ gx⊗ gm = x⊗m. Thus
(α, f )∗ = idH∗(H,M).

2. The map (αg, fg)∗ : Hn(H,M)→ Hn(H,M) induces an action of G on Hn(H,M). Thus by
item (1), we have an action of G/M on Hn(H,M).

The next two lemmas will be very useful in future calculations. The first lemma is useful
for the application of Shapiro’s lemma while the second lemma involves the maps corG

H and
resG

H .

Lemma 2.4.5. Let G be a group and X a G-set. Let T be a set of representatives of the orbits of

X. Then

ZX '
⊕
x∈T

(ZG⊗StabG(x)Z)
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where ZG is the free Z-module generated by G. In particular,

Hn(G,ZX)'
⊕
x∈T

Hn(StabG(x),Z).

Proof. Let x ∈ T and consider the G-homomorphism

φx : ZG⊗StabG(x)Z−→ ZX

defined by
N

∑
i=1

gi⊗mi 7−→
N

∑
i=1

mi(gix).

Taking the direct sum of φx’s we have

Φ :=
⊕
x∈T

φx :
⊕
x∈T

(ZG⊗StabG(x)Z)−→ ZX

which is given by (
N

∑
i=0

gi,x⊗mi,x

)
x∈T

7−→ ∑
x∈T

(
N

∑
i=0

mi,x(gi,xx)

)
.

The inverse of Φ is the following G-map

Ψ : ZX −→
⊕
x∈T

ZG⊗StabG(x)Z

defined by
N

∑
i=1

niyi 7−→
N

∑
i=1

(gi⊗ni)xi,

where yi belongs to its orbit of xi and gixi = yi. Moreover (gi⊗ni)xi is the element of
⊕

x∈T ZG⊗StabG(x)

Z with gi⊗ni in the xi-component and 0 in other places. It is not difficult to see that this map is
well-defined and is the inverse of Φ. The second part follows from Shapiro’s lemma.

Lemma 2.4.6. Let G be a group and X1 and X2 two transitive G-sets. Let xi ∈ Xi (i = 1,2) and

Hi = StabG(xi). Let ϕ : Z[X1]→ Z[X2] be a map of G-modules with

ϕ(x1) = ∑
g∈G/H2

nggx2,

where ng ∈ Z. Then

1. ng depends only on the class of g ∈ E, where E = H1\G/H2 (the set of double cosets).

2. If ng 6= 0, [H1 : H1∩gH2g−1]< ∞.

3. The map induced by ϕ from Hn(H1,Z)→ H2(H2,Z) is given by the formula

ϕn(z) = ∑
g∈E

ngcorH2
g−1H1g∩H2

◦ resg−1H1g
g−1H1g∩H2

g−1z.

Proof. See (HUTCHINSON, 1989, Proof of Lemma 3, pp. 183-184).
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2.5 Relative group homology
This short section presents the relative homology of groups.

Let G be a group and M a G-module. Let G′ be a subgroup of G and M′ a G′-submodule
of M. The inclusions define a morphism of pairs (i, j) : (G′,M′)→ (G,M). Then we have a
morphism of complexes

inc := i•⊗ j : C•(G′)⊗G′ M
′→C•(G)⊗G M

where C•(H)→ Z denotes the standard resolution of a group H. This morphism is injective. To
see this consider the composite C•(G′)⊗G′ M′→C•(G′)⊗G′ M→C•(G)⊗G M. The injectivity
of the first morphism is obvious (because Cn(G′) is a free G-module). For the injectivity of the
second morphism see (KNUDSON, 2001, page 153). Now we can define the relative homology
groups of the pair (G,G′) as follows:

Hn(G,G′;M,M′) = Hn

(
C•(G)⊗G M

C•(G′)⊗G′ M′

)
.

When M = M′, we will denote Hn(G,G′,M,M′) by Hn(G,G′;M). From the short exact sequence

0 C•(G′)⊗G′ M′ C•(G)⊗G M C•(G)⊗GM
C•(G′)⊗G′M′

0inc

of complexes we obtain the long exact sequence

· · · → Hn(G′,M′)
inc∗−→ Hn(G,M)−→ Hn(G,G′;M,M′) δ−→ Hn−1(G′,M)→ ·· · . (2.5.1)

Moreover, for a chain of subgroups G′′ ≤ G′ ≤ G and a G-module M, the natural morphism

inc := i•⊗ j :
C•(G′)⊗G′ M
C•(G′′)⊗G′′ M

→ C•(G)⊗G M
C•(G′′)⊗G′′ M

is injective.Thus from the short exact sequence of complexes

0 C•(G′)⊗G′M
C•(G′′)⊗G′′M

C•(G)⊗GM
C•(G′′)⊗G′′M

C•(G)⊗GM
C•(G′)⊗G′M

0inc

we obtain the long exact sequence of relative homology groups

· · ·→Hn(G′,G′′,M)
inc∗−→Hn(G,G′′,M)−→Hn(G,G′;M)

δ−→Hn−1(G′,G′′,M)→··· . (2.5.2)

2.6 Spectral sequences
In next two sections, we will explore our main tool for the study of homology of SL2,

spectral sequences. Spectral sequences are very powerful computational tools.

Definition 2.6.1. A spectral sequence E, starting in a≥ 0, in an abelian category A is consist
of the following ingredients:
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1. A family {Er
p,q} of objects in A , p,q ∈ Z, r ≥ a.

2. A family of morphisms dr
p,q : Er

p,q→ Er
p−r,q+r−1, called differentials, such that for every

p,q ∈ Z, r ≥ a:

dr
p+r,q−r+1 ◦dr

p,q = 0.

3. For every p,q ∈ Z, r ≥ a, we have the isomorphism:

Er+1
p,q '

ker(dr
p,q)

im(dr
p+r,q−r+1)

.

The upper indexes r ≥ a denotes the "page" of the spectral sequence. If we fix r ≥ a,
the family {Er

p,q}p,q∈Z is called the r-th page (or the Er-page) of the spectral sequence. Note
that, if we fix p,q ∈ Z and r ≥ a, then the objects {Er

p−kr,q+k(r−1)}k∈Z with the differentials
dr

p−kr,q+k(r−1), k ∈ Z form a complex. If we arrange the objects Er
p,q in a pq-plane, then the

complex {Er
p−kr,q+k(r−1)}k∈Z lies in the line with slope −(r−1)/r if r 6= 0, and in a vertical line

if r = 0. With this last observation we understand that the elements in the (r+1)-th page are
homologies of the complexes on the r-th page.

Definition 2.6.2. A morphism f : E→ E ′ of spectral sequences is a family of maps f r
p,q : Er

p,q→
E ′rp,q in A with the conditions dr

p,q ◦ f r
p,q = f r

p−r,q+r−1 ◦dr
p,q, such that each f r+1

p,q : Er+1
p,q → E ′r+1

p,q

is the induced map by f r
p,q on homology.

Note that the family { f r
p−kr,q+k(r−1)}k∈Z with p, q and r fixed form a chain map from the

complex {Er
p−kr,q+k(r−1)}k∈Z to {E ′rp−kr,q+k(r−1)}k∈Z. The spectral sequences in A with these

morphisms forms a category.

The total degree of an object Er
p,q is the number n := p+q. If we fix n, we see that the

objects Er
p,q with total degree n lie in the line with slope −1 (on the pq-plane). We will work

with spectral sequences which have finite non-null objects on the lines of slope −1.

Definition 2.6.3. A spectral sequence is bounded if for each n have only finite number of
non-null objects with total degree n.

Note that the differentials dr
p,q : Er

p,q → Er
p−r,q+r−1 decrease the total degree by −1.

This implies that if a spectral sequence is bounded, the objects Er
p,q (with p, q fixed) will be

eventually constant as long as r grows, this means that by passing the pages we will eventually
have Er

p,q = Er+1
p,q , because the outgoing and incoming differentials will be zero for sufficiently

large r. We write E∞
p,q for this stable object of Er

p,q.

Example 2.6.4. A spectral sequence E such that Er
p,q = 0 for p < 0 and q < 0 is called a first

quadrant spectral sequence. In a such spectral sequence, if r > max{p,q+1}, then Er
p,q = Er+1

p,q .



40 Chapter 2. Homology

Definition 2.6.5. We say that a bounded spectral sequence starting in a≥ 0 converges to a family
{Hn}, if for any n we have a finite filtration

0 = FsHn ⊆ ·· · ⊆ Fp−1Hn ⊆ FpHn ⊆ Fp+1Hn ⊆ ·· · ⊆ FtHn = Hn

such that for any p,q ∈ Z,

E∞
p,n−p '

FpHn

Fp−1Hn
.

In this case we write:

Ea
p,q⇒ Hp+q

Definition 2.6.6. Let Ea
p,q⇒ Hp+q and E ′ap,q⇒ H ′p+q be two spectral sequences. We say that

a family of morphisms hn : Hn→ H ′n are compatible with a morphism f : E → E ′ of spectral
sequences if hn maps FpHn to FpH ′n such the diagram

FpHn/Fp−1Hn FpH ′n/Fp−1H ′n

E∞
p,q E ′∞p,q

hn

∼ ∼

f ∞
p,q

is commutative.

The spectral sequences will allow us to approximate the homology of a chain complex
C• by filtrations.

Definition 2.6.7. A filtration F of a chain complex C• is an ordered family of subcomplexes of
C• as follows:

· · · ⊆ Fp−1C• ⊆ FpC• ⊆ Fp+1C• ⊆ ·· ·

A filtration F of C• is called bounded if for each n there are integers s < t such that FsCn = 0
and FtCn =Cn.

Theorem 2.6.8 (Classical Convergence Theorem). Let C• be a chain complex and F a filtration

of C•. If F is bounded, then we have the following spectral sequence

E1
p,q = Hp+q

(
FpC•

Fp−1C•

)
⇒ Hp+q(C•)

Moreover, if f• : C•→C′• is a map of filtered complexes, then the map f∗ : H∗(C•)→ H∗(C′•) is

compatible with the corresponding morphism of spectral sequences induced by f•.

Proof. See (WEIBEL, 1994, Theorem 5.5.1).

The spectral sequences that we will study in this thesis, mostly arises from double
complexes, we will apply the theory above to construct these type of spectral sequences.
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Definition 2.6.9. A double complex in A is a family C•,• = {Cp,q} of objects in A , together
with maps dh : Cp,q→Cp−1,q and dv : Cp,q→Cp,q−1 such that

dh ◦dh = dv ◦dv = dvdh +dhdv = 0.

The Total complex of C•,• is the complex Tot(C)• defined by

Tot(C)n =
⊕

p+q=n
Cp,q,

with the differential maps dn : Tot(C)n→ Totn−1(C) that makes (cp,q)p+q=n 7→ (c′p′,q′)p′+q′=n−1

where:

c′p′,q′ = dh(cp′+1,q′)+dv(cp′,q′+1)

We can represent a double complex C•,• as an anti-commutative diagram, i.e. we have a
lattice

· · · · · · · · ·

· · · Cp−1,q+1 Cp,q+1 Cp+1,q+1 · · ·

· · · Cp−1,q Cp,q Cp+1,q · · ·

· · · Cp−1,q−1 Cp,q−1 Cp+1,q−1 · · ·

· · · · · · · · ·

dv

dh

dv

dh

dv

dv

dh

dv

dh

dv

dh dh

where dv ◦dh +dh ◦dv = 0.

We have two filtrations of Tot(C)•

IF pTot(C)n =
⊕

i+ j=n
i≤p

Ci, j

IIF pTot(C)n =
⊕

i+ j=n
j≤p

Ci, j.

Let Cp,q = 0 for p < 0 and q < 0. In this case we say that C•,• is a first quadrant double
complex, and the filtrations above are bounded. By the theorem 2.6.8, we have two first quadrant
spectral sequences

IE1
p,q = Hp+q

( IF pTot(C)•
IF p−1Tot(C)•

)
⇒ Hp+q(Tot(C)•)
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and

IIE1
p,q = Hp+q

( IIF pTot(C)•
IIF p−1Tot(C)•

)
⇒ Hp+q(Tot(C)•).

Observe that in the first spectral sequence we have

IF pTot(C)•
IF p−1Tot(C)•

=Cp,•

with differential dv. Then the (p+q)-homology of this complex is in fact the homology group
Hq(Cp,•). Thus

IE1
p,q = Hq(Cp,•)⇒ Hp+q(Tot(C)•) (2.6.1)

with the differential d1
p,q = dh

∗ : Hq(Cp,•)→ Hq(Cp−1,•). Similarly we have

IIF pTot(C)•
IIF p−1Tot(C)•

=C•,p

with differential dh. Hence

IIE1
p,q = Hq(C•,p)⇒ Hp+q(Tot(C)•) (2.6.2)

with the differential d1
p,q = dv

∗ : Hq(C•,p)→ Hq(C•,p−1).

Remark 2.6.10. The differentials dr
p,q usually are very difficult to calculate. Fortunately there

is an algorithm that will be very helpful in this case. For example, suppose that we need to
calculate the differential d3

p,q(u) with u ∈ E3
p,q ' ker(d2

p,q)/im(d2
p+2,q−1). Let x represents u:

u = x. Consider the diagram

Cp−3,q+2 Cp−2,q+2

Cp−2,q+1 Cp−1,q+1

Cp+1,q Cp,q.

dh
p−2,q+2

dv
p−2,q+2

dh
p−1,q+1

dv
p−1,q+1

dh
p,q

In here, we can take x ∈Cp,q (because in general Er+1
p,q is a subquotient of Er

p,q for every r). First
we apply dh. Thus dh

p,q(x) = dv
p−1,q+1(y) for some y ∈Cp−1,q+1. Now we apply dh and assume

that dh
p−1,q+1(y) = dv

p−2,q+2(z) for some z ∈Cp−2,q+2 then dh
p−2,q+2(z) ∈Cp−3,q+2 represents

the element d3
p,q(x).

Note that the images of the maps dh of x and y are images of the maps dv, because
u ∈ E3

p,q. For a justification of this algorithm see (MAC LANE, 1994, Theorem 6.1).
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2.7 The spectral sequences in group homology
In this section we study the spectral sequence that are useful for the study of homology of

groups. Let G be a group and C• a complex of G-modules. Take a projective resolution P•→ Z
of Z over G and consider the double complex Dp,q = Pp⊗G Cq. For any n≥ 0 we define the n-th
homology of G with coefficients in C• as follows:

Hn(G,C•) := Hn(Tot(D)•).

For example, if M is a G-module and M• the complex

· · · 0 M 0 · · ·

with M0 = M, then Hn(G,M•) = Hn(G,M).

Theorem 2.7.1. Let G be a group and C• a complex of G-modules such that Cn = 0 for n < 0.

Then there is a first quadrant spectral sequence as follows

E1
p,q = Hq(G,Cp)⇒ Hp+q(G,C•).

If C• is exact in dimension i≥ 1, then Hn(G,C•)' Hn(G,H0(C•)) for any n≥ 0.

Proof. Take a projective resolution P•→ Z of Z over G and, consider the double complex D•,•
with Dp,q = Pp⊗G Cq. By 2.6.1 and 2.6.2 we have two first quadrant spectral sequences

IE1
p,q = Hq(Dp,•)⇒ Hp+q(Tot(D)•),

IIE1
p,q = Hq(D•,p)⇒ Hp+q(Tot(D)•).

Since IIE1
p,q = Hq(D•,p) = Hq(P•⊗GCp) = Hq(G,Cp), the second spectral sequence find

the following form:
IIE1

p,q = Hq(G,Cp)⇒ Hp+q(G,C•).

Now let M = H0(C•) and let C•→M be exact. Then for any p the complex Pp⊗G C•→
Pp⊗G M is exact (Pp is projective), and thus

IE1
p,q =

Pp⊗G M, q = 0

0, q > 0.

Passing to the E2-page we have

IE2
p,q =

Hp(P•⊗G M) = Hp(G,M), q = 0

0, q > 0

and by the convergence IE1
p,q⇒Hp+q(G,C•), we have that Hn(G,C•)'Hn(G,M) for any n.
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Another useful spectral sequence for groups is the Lyndon/Hochschild-Serre spectral
sequence, which relates the homology of a group and a normal subgroup.

Theorem 2.7.2 (Lyndon/Hochschild-Serre Spectral Sequence). Let G be a group and H a normal

subgroup of G. If M is a G-module, then there is a first quadrant spectral sequence

E2
p,q = Hp(G/H,Hq(H,M))⇒ Hp+q(G,M).

Moreover, this convergence is natural.

Proof. Let P• → Z be a projective resolution of Z over G. Let C• := P•⊗H M. Note that C•
is a complex of G/H-modules and Cp = Pp⊗H M = (Pp⊗Z M)H . Let P′•→ Z be a projective
resolution of Z over G/H. As the proof of Theorem 2.7.1 the double complex D•,• with Dp,q =

P′p⊗G/H Cq gives us the spectral sequences

IE1
p,q = Hq(P′p⊗G/H C•)⇒ Hp+q(G/H,C•)

and
IIE1

p,q = Hq(P′•⊗G/H Cp)⇒ Hp+q(G/H,C•)

Since P′p is projective, the functor P′p⊗G/H− is exact. Thus

IE1
p,q = Hq(P′p⊗G/H C•)' P′p⊗G/H Hq(C•) = P′p⊗G/H Hq(P•⊗H M) = P′p⊗G/H Hq(H,M).

Passing to the E2-page we have

IE2
p,q = Hp(G/H,Hq(H,M))⇒ Hp+q(G/H,C•)

where the action of G/H over Hq(H,M) is defined by conjugation as the example 2.4.4. Note
that the differential is horizontal and takes homology over p.

On the other hand, IIE1
p,q = Hq(G/H,Cp) = Hq(G/H,Pp⊗H M) = 0 when q > 0. In fact,

since Pp is projective, it is direct summand of a free module F '
⊕

ZG. Thus Hq(G/H,ZG⊗H

M)' Hq(G/H,Z[G/H]⊗Z M)' Hq({1},M) = 0 for q > 0. This last isomorphism is given by
Shapiro’s lemma 2.4.2). Hence we have

IIE1
p,q =

(Cp)G/H , q = 0

0, q 6= 0.

But (Cp)G/H = ((Pp⊗M)H)G/H ' (Pp⊗M)G ' Pp⊗G M. Now passing to the E2-page we have

IIE2
p,q =

Hp(P•⊗G M) if q = 0

0 if q 6= 0
=

Hp(G,M) if q = 0

0 if q 6= 0.
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Therefore analysing the convergence of the spectral sequence IIE2
p,q⇒ Hp+q(G/H,C•) (taking

the filtrations of Hn(G/H,C•)) we have that Hn(G/H,C•)' Hn(G,M) for any n≥ 0. Finally if
we take E2

p,q := IE2
p,q then we have the spectral sequence

E2
p,q = Hp(G/H,Hq(H,M))⇒ Hp+q(G,M).

From the previous theorem we can obtain the famous five term exact sequence

H2(G,M)→ H2(G/H,MH)→ H1(H,M)G/H → H1(G,M)→ H1(G/H,MH)→ 0.

But we have this five term exact sequence in more general context.

Theorem 2.7.3 (Five-term exact sequence). If E2
p,q⇒Hp+q is a first quadrant spectral sequence,

then we have the five term exact sequence

H2 E2
2,0 E2

0,1 H1 E2
1,0 0.

d2
2,0

Proof. From the spectral sequence we have a filtration 0⊆ F0H1 ⊆ F1H1 = H1, such that F0H1 '
E∞

0,1 = E3
0,1 = E2

0,1/im(d2
2,0) and E2

1,0 = E∞
1,0 ' F1H1/F0/H1. Thus we have the exact sequences

0 im(d2
2,0) E2

0,1 F0H1 0,

0 F0H1 F1H1 = H1 E2
1,0 0

from these two we obtain the exact sequence

E2
2,0 E2

0,1 H1 E2
1,0 0

d2
2,0

Again from the spectral sequence we obtain a filtration 0 ⊆ F0H2 ⊆ F1H2 ⊆ F2H2 = H2, such
that F2H2/F1H2 ' E∞

2,0 = ker(d2
2,0). This gives the exact sequence

0 F1H2 F2H2 = H2 ker(d2
2,0) 0

combining this with the above exact sequence, we obtain the desired exact sequence

H2 E2
2,0 E2

0,1 H1 E2
1,0 0

d2
2,0

Corollary 2.7.4. If H is a normal subgroup of a group G, then we have the Five-term exact

sequence

H2(G,M)→ H2(G/H,MH)→ H1(H,M)G/H → H1(G,M)→ H1(G/H,MH)→ 0.
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Proof. This is obtained from the Theorems 2.7.2 and 2.7.3.

The following result will be used in the next chapters.

Proposition 2.7.5. Let G be a group and H a normal subgroup of G such that the extension

1 H G G/H 1
j

splits. Then for any r ≥ 2 and p≥ 0, the differentials dr
p,0 are trivial.

Proof. Consider the commutative diagram

1 1 G/H G/H 1

1 H G G/H 1

i

idG/H

α idG/H

j

where α : G/H→G is a split map of j : G→G/H. Then by Theorem 2.7.2 we have a morphism
of spectral sequences

Ê2
p,q = Hp(G/H,Hq(1,Z)) Hp+q(G/H,Z)

Ep,q = Hp(G/H,Hq(H,Z)) Hp+q(G,Z).

(id,i)∗ α∗

Since Hq(1,Z) = 0 for q > 0 and H0(1,Z) =Z, we have E2
p,q = 0 for q > 0 and E2

p,0 = Hp(G/H).
Clearly the map i∗ : H0(1,Z)→H0(H,Z) is an isomorphism, and thus for r≥ 2, (i, id)∗ : Ê2

p,0→
E2

p,0 is an isomorphism. Now from the commutative diagram

Ê2
p,q = Hp(G/H,H0(1,Z)) Ê2

p−2,1 = 0

E2
p,q = Hp(G/H,Hq(H,Z)) Er

p−2,1

d̂2
p,0

∼

d2
p,0

it follows that d2
p,0 = 0 for any p≥ 0.

Since d2
p,0 = 0 from the above diagram follows that Ê3

p,0' E3
p,0. With similar argument as

in above we have d3
p,0. By continuing this process we have dr

p,0 = 0 for any r ≥ 2 and p≥ 0.
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CHAPTER

3
SCISSORS CONGRUENCE GROUPS

3.1 The GE2-rings and the complex of unimodular vec-
tors

Let A be a commutative ring. Let E2(A) be the subgroup of GL2(A) generated by the

elementary matrices E12(a) :=

(
1 a

0 1

)
and E21(a) :=

(
1 0
a 1

)
, a ∈ A. The group E2(A) is

generated by the matrices

E(a) :=

(
a 1
−1 0

)
, a ∈ A.

In fact we have the following formulas

E12(a) = E(−a)E(0)−1, E21(a) = E(0)−1E(a), E(0) = E12(1)E21(−1)E12(1).

Let D2(A) be the subgroup of GL2(A) generated by diagonal matrices. Let GE2(A) be the
subgroup of GL2(A) generated by D2(A) and E2(A). A ring A is called a GE2-ring if

GE2(A) = GL2(A).

Since E2(A) = SL2(A)∩GE2(A) and GL2(A) = SL2(A)D2(A), this condition is equivalent to
E2(A) = SL2(A).

For any a ∈ A×, let D(a) :=

(
a 0
0 a−1

)
. Observe that D(−a) = E(a)E(a−1)E(a). Thus

D(a) ∈ E2(A). For any x,y ∈ A and a ∈ A×, we have the following relations between matrices
E(x) and D(a):

(1) E(x)E(0)E(y) = D(−1)E(x+ y),

(2) E(x)D(a) = D(a−1)E(a2x),
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(3) D(a)D(b) = D(ab).

A ring A is called universal for GE2 if the relations (1), (2) and (3) form a complete
set of defining relations for E2(A). A GE2-ring which is universal for GE2 is called a universal

GE2-ring. Thus a universal GE2-ring is characterized by the property that SL2(A) is generated
by the matrices E(x) and D(a), with (1)-(3) as a complete set of defining relations.

Any local ring is a universal GE2-rings (COHN, 1966, Theorem 4.1). Moreover Euclidean
domains are GE2-rings (COHN, 1966, §2). For more example of GE2-rings and rings universal
for GE2 see (COHN, 1966) and (HUTCHINSON, 2022).

A (column) vector uuu =

(
u1

u2

)
∈ A2 is said to be unimodular if there exists a vector

vvv =

(
v1

v2

)
such that the matrix (uuu,vvv) :=

(
u1 v1

u2 v2

)
is an invertible matrix.

For any non-negative integer n, let Xn(A2) be the free abelian group generated by the set
of all (n+1)-tuples (〈vvv0〉, . . . ,〈vvvn〉), where every vvvi ∈ A2 is unimodular and for any two distinct
vectors vvvi,vvv j, the matrix vvvi,vvv j is invertible. Observe that 〈vvv〉 ⊆ A2 is the line {vvva : a ∈ A}.

We consider Xl(A2) as a left GL2(A)-module (resp. left SL2(A)-module) in a natural way.
If necessary, we convert this action to a right action by the definition m.g := g−1m. Let us define
the l-th differential operator

∂l : Xl(A2)→ Xl−1(A2), l ≥ 1,

as an alternating sum of face operators which throws away the i-th component of generators. Let
∂−1 = ε : X0(A2)→ Z be defined by ∑i ni(〈v0,i〉) 7→ ∑i ni. Hence we have the complex

X•(A2)→ Z : · · · −→ X2(A2)
∂2−→ X1(A2)

∂1−→ X0(A2)→ Z→ 0.

We say that the above complex is exact in dimension < k if the complex

Xk(A2)
∂k−→ Xk−1(A2)

∂k−1−→ ·· · ∂2−→ X1(A2)
∂1−→ X0(A2)→ Z→ 0

is exact.

Proposition 3.1.1 (Hutchinson). Let A be a commutative ring.

(i) The complex X•(A2)→ Z is exact in dimension < 1 if and only if A is a GE2-ring.

(ii) If A is universal for GE2, then X•(A2) is exact in dimension 1, i.e. H1(X•(A2)) = 0.

Proof. See (HUTCHINSON, 2022, Theorem 3.3, Theorem 7.2 and Corollary 7.3).

Remark 3.1.2. In (HUTCHINSON, 2022, Theorem 3.3, Theorem 7.2) Hutchinson calculated
H0 and H1 of the complex X•(A2) for any commutative ring A.



3.1. The GE2-rings and the complex of unimodular vectors 49

Let the complex X•(A2)→ Z be exact in dimension < 1, (i.e. A is a GE2-ring by Propo-
sition 3.1.1) and let Z1(A2) := ker(∂1). From the complex

0→ Z1(A2)
inc→ X1(A2)

∂1→ X0(A2)→ 0, (3.1.1)

we obtain the double complex

D•,• : 0→ F•⊗SL2(A) Z1(A2)
idF•⊗inc
−−−−→ F•⊗SL2(A) X1(A2)

idF•⊗∂1
−−−−→ F•⊗SL2(A) X0(A2)→ 0,

where F•→Z is a projective resolution of Z over SL2(A). This gives us the first quadrant spectral
sequence

E1
p.q =


Hq(SL2(A),Xp(A2)) p = 0,1
Hq(SL2(A),Z1(A2)) p = 2
0 p > 2

=⇒ Hp+q(SL2(A),Z).

In our calculations we usually use the bar resolution B•(SL2(A))→ Z (BROWN, 2012, Chap.I,
§5).

The group SL2(A) acts transitively on the sets of generators of Xi(A2) for i = 0,1. Let

∞∞∞ := 〈eee1〉, 000 := 〈eee2〉, aaa := 〈eee1 +aeee2〉, a ∈ A×,

where eee1 :=

(
1
0

)
and eee2 :=

(
0
1

)
. We choose (∞∞∞) and (∞∞∞,000) as representatives of the orbit of

the generators of X0(A2) and X1(A2), respectively. Therefore

X0(A2)' IndSL2(A)
B(A) Z, X1(A2)' IndSL2(A)

T (A) Z,

where

B(A) := StabSL2(A)(∞) =
{(a b

0 a−1

)
: a ∈ A×,b ∈ A

}
,

T (A) := StabSL2(A)(∞∞∞,000) =
{(a 0

0 a−1

)
: a ∈ A×

}
.

Note that T (A)' A×. In our calculations usually we identify T (A) with A×. Thus by Shapiro’s
lemma we have

E1
0,q ' Hq(B(A),Z), E1

1,q ' Hq(T (A),Z).

In particular, E1
0,0 ' Z ' E1

1,0. Moreover d1
1,q = Hq(σ)−Hq(inc), where σ : T (A)→ B(A) is

given by σ(X) = wXw−1 = X−1 for w := E(0) =

(
0 1
−1 0

)
. This easily implies that d1

1,0 is

trivial, d1
1,1 is induced by the map T (A)→ B(A), X 7→ X−2, and d1

1,2 is trivial. Thus ker(d1
1,1) =

µ2(A) = {a ∈ A× : a2 = 1}. It is straightforward to check that d1
2,0 : H0(SL2(A),Z1(A2))→ Z is

surjective and for any b ∈ µ2(A), d1
2,1([b]⊗∂2(∞∞∞,000,aaa)) = b. Hence E2

1,0 = 0 and E2
1,1 = 0.
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3.2 The refined scissors congruence group
For a ring A, let WA be the set of a ∈ A× such that 1−a ∈ A×. Thus

WA := {a ∈ A : a(1−a) ∈ A×}.

Let GA := A×/(A×)2 and set RA := Z[GA]. The element of GA represented by a ∈ A× is denoted
by 〈a〉. We set 〈〈a〉〉 := 〈a〉−1 ∈RA.

Let Z2(A2) := ker(∂2). Following Coronado and Hutchinson (CORONADO; HUTCHIN-
SON, , § 3) we define

RP(A) := H0(SL2(A),Z2(A2)) = Z2(A2)SL2(A).

Note that RP(A) is a GA-module. The inclusion inc : Z2(A2)→ X2(A2) induces the map

λ : RP(A) = Z2(A2)SL2(A)
inc−→ X2(A2)SL2(A).

The orbits of the action of SL2(A) on X2(A) is represented by 〈a〉[ ] := (∞∞∞,000,aaa), 〈a〉 ∈ GA.
Therefore X2(A2)SL2(A) ' Z[GA]. The GA-module

RP1(A) := ker
(
λ : RP(A)→ Z[GA]

)
is called the refined scissors congruence group of A. We call

GW(A) := H0(SL2(A),Z1(A2))

the Grothendieck-Witt group of A. Let ε := d1
2,0 : GW(A)→ Z. The kernel of ε is called the

fundamental ideal of A and is denoted by I(A).

Consider the sequence

X4(A2)SL2(A)
∂4→ X3(A2)SL2(A)

∂3→RP(A)→ 0

of GA-modules. The orbits of the action of SL2(A) on X3(A) and X4(A) are represented by

〈a〉[x] := (∞∞∞,000,aaa,axaxax), and 〈a〉[x,y] := (∞∞∞,000,aaa,axaxax,ayayay), 〈a〉 ∈ GA,x,y,x/y ∈WA,

respectively. Thus X3(A2)SL2(A) is the free Z[GA]-module generated by the symbols [x], x ∈WA

and X4(A2)SL2(A) is the free Z[GA]-module generated by the symbols [x,y], x,y,x/y ∈WA. It is
straightforward to check that

∂4([x,y]) = [x]− [y]+ 〈x〉
[y

x

]
−〈x−1−1〉

[
1− x−1

1− y−1

]
+ 〈1− x〉

[
1− x
1− y

]
.

Let RP(A) be the quotient of the free GA-module generated by the symbols [x], x ∈WA over
the subgroup generated by the elements

[x]− [y]+ 〈x〉
[y

x

]
−〈x−1−1〉

[
1− x−1

1− y−1

]
+ 〈1− x〉

[
1− x
1− y

]
, x,y,x/y ∈WA.
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Thus we have the natural map RP(A)→ RP(A). It is straightforward to check that the
composite

RP(A)→RP(A) λ−→ Z[GA]

is given by

[x] 7→ −〈〈x〉〉〈〈1− x〉〉.

Let RP1(A) be the kernel of this composite. Thus we have a natural map

RP1(A)→RP1(A).

The sequence

X3(A2)SL2(A)
∂3→ X2(A2)SL2(A)

∂2→ GW(A)→ 0

induces the natural map

GW(A) := Z[GA]/
〈
〈〈a〉〉〈〈1−a〉〉 : a ∈WA

〉
→ GW(A).

Let IA be the kernel of the augmentation map Z[GA]→ Z and set

I(A) := IA/
〈
〈〈a〉〉〈〈1−a〉〉 : a ∈WA

〉
.

Thus we have a natural map I(A)→ I(A).

If the complex X•(A2)→ Z is exact in dimension < 2, then I(A)→ I(A) is surjective. If
the complex is exact in dimension < 3, then the maps

RP(A)→RP(A) and RP1(A)→RP1(A)

are surjective and I(A) ' I(A). Moreover, if the complex is exact in dimension < 4, then
RP(A)'RP(A) and RP1(A)'RP1(A).

Remark 3.2.1. Let X•(A2)→ Z be exact in dimension < 2. From the exact sequence

0→ Z2(A2)→ X2(A2)→ Z1(A2)→ 0

we obtain the exact sequence RP(A) λ−→ Z[GA]→ GW(A)→ 0. This induces the exact se-
quence

RP(A) λ−→IA→ I(A)→ 0.

If we set

[a]′ = (∞∞∞,000,aaa)+(000,∞∞∞,aaa)− (∞∞∞,000,111)− (000,∞∞∞,111) ∈RP(A),

then λ ([a]′) = p+−1〈〈a〉〉, where p+−1 := 〈−1〉+1 ∈ Z[GA]. This induces a natural surjection

IA/p+−1IA � I(A).
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3.3 The map Hn(T (A),Z)→ Hn(B(A),Z)

The groups B(A) and T(A) sit in the extension 1→ N(A)→ B(A)→ T (A)→ 1, where

N(A) :=
{(

1 b

0 1

)
: b ∈ A

}
' A.

This extension splits canonically and T (A) acts as follow on N:

a.

(
1 b

0 1

)
:=

(
a 0
0 a−1

)(
1 b

0 1

)(
a 0
0 a−1

)−1

=

(
1 a2b

0 1

)
.

So if we assume that T (A) = A× and N(A) = A, then the action of A× on A is given by a.b := a2b.
Thus

Hn(B(A),Z)' Hn(T (A),Z)⊕Hn(B(A),T (A),Z).

We denote the relative homology group Hn(B(A),T (A),Z) by Sn. (See Section 4.4 for an exact
sequence involving this relative homology group).

By studying the Lyndon/Hochschild-Serre spectral sequence of the above extension, it
follows that

S1 ' H0(A×,A) = AA× = A/〈a2−1|a ∈ A×〉

and S2 sits in the exact sequence

H2(A×,A)→ H2(A,Z)A× →S2→ H1(A×,A)→ 0.

Lemma 3.3.1. Let G be an abelian group, A a commutative ring, M an A-module and ϕ : G→A×

a homomorphism of groups which turns A and M into G-modules. If H0(G,A) = 0, then for any

n≥ 0, Hn(G,M) = 0.

Proof. See (SUSLIN; NESTERENKO, 1989, Lemma 1.8).

Corollary 3.3.2. Let A be a ring and let A× acts on A as a.x := a2x. If H0(A×,A) = 0, then

Hn(A×,A) = 0 for any n≥ 0.

Proof. Use the above lemma by considering ϕ : A×→ A×, a 7→ a2.

Example 3.3.3. (i) If A is a local ring such that |A/mA| > 3, then always we can find a ∈ A×

such that a2−1 ∈ A×. Thus H0(A×,A) = 0.

(ii) Let A be a ring such that 6 ∈ A×. Then

1 = 3(22−1)+(−1)(32−1) ∈ 〈a2−1 : a ∈ A×〉.

Hence H0(A×,A) = 0.
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Example 3.3.4. If H0(A×,A) = 0, then by the above corollary Hn(A×,A) = 0 for n≥ 0. Thus
S1 = 0 and S2 ' H2(A,Z)A× . Therefore H1(T (A),Z) ' H1(B(A),Z) and we have the exact
sequence

0→ H2(A,Z)A× → H2(B(A),Z)→ H2(T (A),Z)→ 0.

Moreover we have the exact sequence

H3(A,Z)A× →S3→ H1(A×,A∧A)→ 0.

Lemma 3.3.5. If A is a subring of Q, then for any n≥ 0,

Hn(B(A),Z)' Hn(T (A),Z)⊕Hn−1(A×,A).

In particular if 6 ∈ A×, then Hn(T (A),Z)' Hn(B(A),Z).

Proof. It is well known that any finitely generated subgroup of Q is cyclic. Thus A is a direct
limit of infinite cyclic groups. Since Hn(Z,Z) = 0 for any n≥ 2 (BROWN, 2012, page 58) and
since homology commutes with direct limit (BROWN, 2012, Exer. 6, § 5, Chap. V), we have
Hn(A,Z) = 0 for n≥ 2. Now the claim follows from an easy analysis of the Lyndon/Hochschild-
Serre spectral sequence associated to the split extension 1→ N(A)→ B(A)→ T (A)→ 1.

If 6 ∈ A×, then by Example 3.3.3(ii) we have H0(A×,A) = 0. So by Corollary 3.3.2,
Hn(A×,A) = 0 for any n. Therefore the claim follows from the first part of the lemma.

Example 3.3.6. (i) Let A = Z. Since Z× = {±1}, the action of Z× on A = Z is trivial. Thus
Hn(Z×,Z) is Z if n = 0, is trivial if n is even and is Z/2 if n is odd. Now by the previous lemma
we have

H1(B(Z),Z)' H1(T (Z),Z)⊕Z,

and for any positive integer m,

H2m(B(Z),Z)' H2m(T (Z),Z)⊕Z/2' Z/2,

H2m+1(B(Z),Z)' H2m+1(T (Z),Z)' Z/2.

(ii) Let p be a prime and let A := Z(p) = {a/b ∈ Q|a,b ∈ Z, p - b}. Then Z(p) is local
and its residue field is isomorphic to Fp. If p 6= 2,3, then the residue field of A has more than 3
elements. Thus

Hn(T (Z(p)),Z)' Hn(B(Z(p)),Z)

for any n≥ 0 (Example 3.3.3).

Let B = Z(2). Consider the action of B× on Q as usual: b.x := b2x. It is straightforward
to check that H0(B×,Q) = 0. Thus by Lemma 3.3.1, Hn(B×,Q) = 0 for any n ≥ 0. Consider
the exact sequence 0→ B→Q→Q/B→ 0. Note that Q/B' Z2∞ := Z

[1
2

]
/Z. From the long

exact sequence associated to this short exact sequence, we obtain

Hn−1(B×,B)' Hn(B×,Z2∞), n≥ 1.
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We have a similar result for B = Z(3). Therefore for p = 2,3, we have

Hn(B(Z(p)),Z)' Hn(T (Z(p)),Z)⊕Hn(Z×(p),Zp∞).

Note that Hn(Z×(2),Z2∞) and Hn(Z×(3),Z3∞) are 2-power and 3-power torsion groups, respectively.
One easily can show that H0(Z×(2),Z(2))' Z/8 and H0(Z×(3),Z(3))' Z/3.

Lemma 3.3.7. Let p be a prime number and let Ap = Z[ 1
p ]. Then

(i) H1(B(Ap),Z)' H1(T (Ap),Z)⊕Z/(p2−1),

(ii) for any n≥ 2, Hn(T (A2),Z)' Hn(B(A2),Z),

(iii) for p 6= 2 and n≥ 2, we have Hn(B(Ap),Z)' Hn(T (Ap),Z)⊕Z/2.

Proof. We need to calculate Hn(A×p ,Ap). The rest follows from Lemma 3.3.5. In the following
we will use the calculation of the homology groups of cyclic groups (BROWN, 2012, page 58).

From the extension 1→ µ2(Ap)→ A×p → 〈p〉 → 1 we obtain the Lyndon/Hochschild-
Serre spectral sequence

E ′2r,s = Hr(〈p〉,Hs(µ2(Ap),Ap))⇒ Hr+s(A×p ,Ap).

Since 〈p〉 is an infinite cyclic group, we have E ′2r,s = 0 for r ≥ 2. Moreover

Hs(µ2(Ap),Ap)'


Ap if s = 0

Ap/2 if s is odd

0 if s is even.

(i) This follows from the isomorphism H0(A×p ,Ap) = Ap/〈p2−1〉 ' Z/(p2−1).

(ii) Since 2 ∈ A×2 , A2/2 = 0. This implies that E ′2r,s = 0 for any s ≥ 1. Now from the
above spectral sequence we obtain Hn(A×2 ,A2) = 0 for any n≥ 1.

(iii) We need to calculate E ′20,s and E ′21,s for any s≥ 1. Note that Ap/2' Z/2. Now it is
easy to see that H0(〈p〉,Ap/2)' Z/2 and H1(〈p〉,Ap/2)' Z/2. Thus for any s≥ 1,

E ′20,s ' E ′21,s '

0 if s is even

Z/2 if s is odd.

Now from the above spectral sequence it follows that Hn(A×p ,Ap)' Z/2 for any n≥ 1.

Proposition 3.3.8. (i) Let A be a local domain such that either A/mA is infinite or if |A/mA|= pd ,

we have (p−1)d > 2n. Then Hn(T (A),Z)' Hn(B(A),Z).

(ii) Let A be a local ring such that either A/mA is infinite or if |A/mA| = pd , we have

(p−1)d > 2(n+1). Then Hn(T (A),Z)' Hn(B(A),Z).



3.4. The refined Bloch group 55

Proof. (i) For this see (HUTCHINSON, 2017a, Proposition 3.19).

(ii) Similar to the proof of part (i) presented in (HUTCHINSON, 2017a, Proposition
3.19), we can show that Hn(T (A),k)' Hn(B(A),k), where k is a prime field and (p−1)d > 2n.
Now the claim follows from (MIRZAII, 2017, Lemma 2.3).

3.4 The refined Bloch group

Let the complex X•(A2)→ Z be exact in dimension < 2. Then from the exact sequence

0→ Z2(A2)→ X2(A2)→ Z1(A2)→ 0

we obtain the long exact sequence

H1(SL2(A),Z2(A2))→H1(SL2(A),X2(A2))→H1(SL2(A),Z1(A2))
δ→H0(SL2(A),Z2(A2))

→ H0(SL2(A),X2(A2))→ H0(SL2(A),Z1(A2))→ 0.

Choose (∞∞∞,000,aaa), 〈a〉 ∈ GA, as representatives of the orbits of the generators of X2(A2). Then

X2 '
⊕
〈a〉∈GA

IndSL2(A)
µ2(A)

Z〈a〉,

where µ2(A)' StabSL2(A)(∞∞∞,000,aaa). Thus

H1(SL2(A),X2(A2))'
⊕
〈a〉∈GA

H1(µ2(A),Z)' Z[GA]⊗µ2(A).

From the above exact sequence we obtain the exact sequence

H1(SL2(A),Z2(A2))→ Z[GA]⊗µ2(A)→ H1(SL2(A),Z1(A2))→RP1(A)→ 0.

The exact sequence 0→ Z1(A2)
inc→ X1(A2)

∂1→ X0(A2) induces the commutative diagram

H1(SL2(A),Z2(A2)) Z[GA]⊗µ2(A) H1(SL2(A),Z1(A2)) RP1(A) 0

0 µ2(A) µ2(A) 0 0

γ

ε⊗idµ2(A)

δ

d1
2,1

By the Snake lemma we have the exact sequence

H1(SL2(A),Z2(A2))→IA⊗µ2(A)
γ→ E2

2,1→RP1(A)→ 0.

Let G be a group and let g,g′ be two commuting elements of G. Set

ccc(g,g′) := ([g|g′]− [g′|g])⊗1 ∈ H2(G,Z) = H2(B•(G)⊗G Z).
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Lemma 3.4.1. The composite

IA⊗µ2(A)
γ−→ E2

2,1
d2

2,1−→ H2(B(A),Z)' (A×∧A×)⊕S2

sends 〈〈a〉〉⊗b to
(
a∧b,ccc(

(
1 a+1
0 1

)
,

(
b 0
0 b

)
)
)
.

Proof. The element 〈〈a〉〉⊗b ∈IA⊗µ2(A) is represented by [b]⊗ ((∞∞∞,000,aaa)− (∞∞∞,000,111)). Now
we want to apply γ (that is induced by ∂2). We see that γ(〈〈a〉〉⊗ (b)) is represented by [b]⊗
∂2((∞∞∞,000,aaa)− (∞∞∞,000,111)) ∈ B1(SL2(A))⊗Z1(A2). Consider the diagram

B2(SL2(A))⊗X0(A2) B2(SL2(A))⊗X1(A2)

B1(SL2(A))⊗X1(A2) B1(SL2(A))⊗Z1(A2).

idB2⊗∂1

d2⊗idX1

idB1⊗inc

If Xa,b := [b]⊗∂2((∞∞∞,000,aaa)− (∞∞∞,000,111)), then

(idB1⊗ inc)(Xa,b) =[b]⊗ ((000,aaa)− (∞∞∞,aaa)− (000,111)+(∞∞∞,111))

=(g−1
a −h−1

a −g−1
1 +h−1

1 )[b]⊗ (∞∞∞,000)

=(d2⊗ idX1)(Za,b⊗ (∞∞∞,000))

where

Za,b := [g−1
a |b]− [b|g−1

a ]− [g−1
1 |b]+ [b|g−1

1 ]− [h−1
a |b]+ [b|h−1

a ]+ [h−1
1 |b]− [b|h−1

1 ],

with gz =

(
0 1
−1 z

)
and hz =

(
1 z−1

0 1

)
for z ∈ A×. Applying idB2⊗∂1 we have

(idB2⊗∂1)(Za,b⊗ (∞∞∞,000)) = (wZa,b−Za,b)⊗ (∞∞∞).

Now (wZa,b−Za,b)⊗1 is a representative of (d2
2,1 ◦ γ)(〈〈a〉〉⊗b). We have the following facts:

1. For any g ∈ SL2(A), h ∈ B(A) and b,b′ ∈ µ2(A),

ccc(hg,b) = ccc(h,b)+ccc(g,b), ccc(h,bb′) = ccc(h,b)+ccc(h,b′).

2. For any g ∈ SL2(A), w([g|b]− [b|g])⊗1 is a representative of ccc(wg,b)−ccc(w,b), i.e.

ccc(wg,b)−ccc(w,b) = w([g|b]− [b|g])⊗1.

3. For any h ∈ B(A) and b ∈ µ2(A), we have

ccc(h−1,b) =−ccc(h,b) = ccc(h,b−1) = ccc(h,b).
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Now, for any z ∈ A×, from the identity g−1
z =−hz−1w, we obtain

ccc(g−1
z ,b) = ccc(hz−1,b)+ccc(w,b)+ccc(−1,b)

(by just adding the null element (d3⊗ id)([−ha−1|w|b]+ [b|−ha−1|w]− [−ha−1 |b|w]) and using
the first fact above). On the other hand, the second fact above gives, for any z ∈ A×, the equality

w([g−1
z |b]− [b|g−1

z ])⊗1 = ccc(wg−1
z ,b)−ccc(w,b).

Moreover the formula wg−1
z = z−1h−1

z−1wh−1
z and (1) in above gives the equality

w([g−1
z |b]− [b|g−1

z ])⊗1 = ccc(z−1,b)+ccc(h−1
z−1,b)+ccc(wh−1

z ,b)−ccc(w,b).

Also using (2) we have

w([h−1
z |b]− [b|h−1

z ])⊗1 = ccc(wh−1
z ,b)−ccc(w,b).

Now joining all the formulas above we have:

(wZa,b−Za,b)⊗1 = ccc(a−1,b)+ccc(h−1
a−1,b)−ccc(h−1

1 ,b)−ccc(ha−1 ,b)+ccc(ha,b)

= ccc(a,b)+ccc(hah1,b) = ccc(a,b)+ccc
((1 a−1 +1

0 1

)
,

(
b 0
0 b

))
(in the last equality, we use (1) and (3)). Substituting a with a−1 we see that

(d2
2,1 ◦ γ)(〈〈a〉〉⊗b) = ccc(a,b)+ccc

((1 a+1
0 1

)
,

(
b 0
0 b

))
.

We believe that the element ccc
((1 a+1

0 1

)
,

(
b 0
0 b

))
, appearing in the previous lemma,

is trivial for many interesting rings.

For a ∈ A and b ∈ µ2(A), let xa := ccc
((1 a

0 1

)
,

(
b 0
0 b

))
∈ H2(B(A),Z). This element

has order 2 and xa = x−a. Since

(
c 0
0 c−1

)(
1 a

0 1

)(
c 0
0 c−1

)−1

=

(
1 ac2

0 1

)
, for any c ∈ A×

we have xa = xac2 . (In particular xc2 = x1.) Thus

xa(c2−1) = 0, xc = xc−1.

For example if a ∈WA, then a+1 := 1
(a−1)(a

2−1) and hence

xa+1 = x(a−1)−1(a2−1) = 0.
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Example 3.4.2. (i) If H0(A×,A) = 0, then A = 〈c2−1|c ∈ A×〉. Thus any a ∈ A is of the form
a = ∑d(c2−1). This implies that xa = 0 for any a ∈ A.

(ii) If 2 ∈ A×, then for any a ∈ A× we have xa = x2(a/2) = 2x(a/2) = 0.

(iii) If F = A is a field, then xa = 0: If char(F) = 2, then b = 1 and thus xa = 0. If
char(F) 6= 2, then 2 ∈ F×, and the claim follows from (ii).

(iv) If A is a local ring such that A/mA has at least 3 elements, then xa = 0: If |A/mA|= 3,
then 2 ∈ A×, and thus the claim follows from (ii). If |A/mA|> 3, then there is c ∈ A×, such that
c2−1 ∈ A×. Thus H0(A×,A) = 0 and the claim follows from (i).

(v) Let A = Z(p), where p is a prime. Then xa+1 = 0 for any a ∈ A×: For p > 2 the
claim follows from (iv). Let p = 2 and let a = a′/b′ ∈ Z(2). Then a′,b′ are odd and so a+1 =

(a′+b′)/b′ = 2c′, c′ ∈ Z(2). Now xa+1 = x2c′ = 2xc′ = 0.

(vi) Let A = Z
[ 1

p

]
, where p is a prime. Then xa+1 = 0 for any a ∈ A×: If p = 2, then by

(ii), xa+1 = xa = 0. If p 6= 2, then a =±pn, n ∈ Z. Now we have a+1 = 2c, where c ∈ A. Thus
xa+1 = 0.

(vii) If µ2(A) = 1, then xa = 0: Since µ2(A) = 1, we have b = 1 and thus xa = 0.

In the rest of this article we will mostly assume that xa+1 = 0 for any a ∈ A×, i.e.

im(d2
2,1 ◦ γ) = A×∧µ2(A).

For example in our important results, for technical reasons, we will assume that

H2(B(A),Z)' H2(T (A),Z),

i.e. S2 = 0. So the above condition will be satisfied.

Now by the above lemma we have the commutative diagram with exact rows

IA⊗µ2(A) E2
2,1 RP1(A) 0

0 A×∧µ2(A) (A×∧A×)⊕S2
A×∧A×

A×∧µ2(A)
⊕S2 0.

γ δ

(3.4.1)

Let ψ1(a) := [a]+ 〈−1〉[a−1] ∈RP(A). It is easy to check that

g(a) := p+−1[a]+ 〈〈1−a〉〉ψ1(a) ∈RP1(A),

where p+−1 = 〈−1〉+ 1 ∈ Z[GA]. We denote the image of this elements in RP1(A) by g(a)

again.

Proposition 3.4.3. Then under the composite

RP1(A)→
A×∧A×

A×∧µ2(A)
⊕S2→

A×∧A×

A×∧µ2(A)
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we have

g(a) 7→ a∧ (1−a).

Proof. From the complex 0→ Z1(A2)
inc→ X1(A2)

∂1→ X0(A2)→ 0 we obtain the first quadrant
spectral sequence

E 1
p.q =


Hq(GL2(A),Xp(A2)) p = 0,1
Hq(GL2(A),Z1(A2)) p = 2
0 p > 2

=⇒ Hp+q(GL2(A),Z).

This spectral sequence have been studied in (MIRZAII, 2011, §3). Let P(A) :=H0(GL2(A),Z2(A2)).
We have a RA-map RP(A)→P(A), where P(A) has the trivial action of GA. Under this
map g(a) 7→ 2[a]. This induces a map RP1(A)→P(A). One can show that E 2

2,1 'P(A) (see
(MIRZAII, 2011, Lemma 3.2)). The map SL2(A)→ GL2(A) induces the morphism of spectral
sequences

E1
p,q Hp+q(SL2(A),Z)

E 1
p,q Hp+q(GL2(A),Z).

This induces the commutative diagram

E2
2,1 H2(B(A),Z) H2(T (A),Z)

P(A)
H2(B2(A),Z)

d2
1,2(H2(T2(A),Z))

H2(T2(A),Z)
d2

1,2(H2(T2(A),Z))
,

d2
2,1

d2
2,1

where

B2(A) := StabGL2(A)(∞∞∞) =

{(
a b

0 d

)
: a,d ∈ A×,b ∈ A

}
,

T2(A) := StabGL2(A)(∞∞∞,000) =
{(

a 0
0 d

)
: a,d ∈ A×

}
.

This together with diagram (3.4.1) induce the commutative diagram

RP1(A)
A×∧A×

A×∧µ2(A)

P(A) (A×∧A×)⊕S2
Z(A),

where S2
Z(A) := (A×⊗A×)/〈a⊗b+b⊗a : a,b ∈ A×〉. Moreover the vertical map on the right

is given by a∧b→ (2a∧b,2(a⊗b)) and the bottom horizontal map is given by [a] 7→ (a∧ (1−
a),−a⊗ (1−a)). Now the claim follows from the fact that the composite

RP1(A)→P(A)→ (A×∧A×)⊕S2
Z(A)
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maps g(a) to 2(a∧ (1−a),−a⊗ (1−a)).

We denote the differential d2
2,1 by λ1:

λ1 : RP1(A)→ H2(B(A),Z)'
A×∧A×

A×∧µ2(A)
⊕S2.

The kernel of λ1 is called the refined Bloch group of A and is denoted by RB(A):

RB(A) := ker(λ1).

From the spectral sequence we obtain a natural surjective map

H3(SL2(A),Z)� RB(A).

Let B be an abelian group. Let σ1 : TorZ1 (B,B)→TorZ1 (B,B) be obtained by interchanging
the group B. It is not difficult to show that σ1 is induced by the involution B⊗B→ B⊗B,
a⊗b 7→ −b⊗a.

Let Σ′2 = {1,σ ′} be the symmetric group of order 2. Consider the following action of Σ′2
on TorZ1 (B,B):

(σ ′,x) 7→ −σ1(x).

Proposition 3.4.4. For any abelian group B we have the exact sequence

0→
∧3
ZB→ H3(B,Z)→ TorZ1 (B,B)

Σ′2 → 0,

where the right side homomorphism is obtained from the composition

H3(B,Z)
∆B∗−→ H3(B⊕B,Z)→ TorZ1 (B,B),

∆B being the diagonal map B→ B⊕B, b 7→ (b,b).

Proof. See (SUSLIN, 1991, Lemma 5.5), (BREEN, 1999, Section 6).

Theorem 3.4.5 (Refined Bloch-Wigner in char = 2). Let A be a ring such that

(i) µ2(A) = 1,

(ii) X•(A2)→ Z is exact in dimension < 2

(iii) H3(T (A),Z)' H3(B(A),Z).
Then we have the exact sequence

TorZ1 (µ(A),µ(A))
Σ′2 → H3(SL2(A),Z)→RB(A)→ 0.

If A is a domain then we have the exact sequence

0→ TorZ1 (µ(A),µ(A))→ H3(SL2(A),Z)→RB(A)→ 0.
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Proof. By definition we have E∞
2,1 ' E3

2,1 'RB(A). We show that the differential

d1
2,2 : H2(SL2(A),Z1(A2))→ A×∧A×

is surjective. For a ∈ A×, denote (∞∞∞,000,aaa) ∈ X2(A2) by Xa. Let Y = (∞∞∞,000)+(000,∞∞∞) ∈ Z1(A2). For
a,b ∈ A×, let

λ (a,b) ∈ H2(SL2(A),Z1(A)) = H2(B•(SL2(A))⊗SL2(A) Z1(A))

be the element

λ (a,b) :=([a|b]+ [w|ab]− [w|a]− [w|b])⊗Y +[wab|wab]⊗∂2(Xab)

− [wa|wa]⊗∂2(Xa)− [wb|wb]⊗∂2(Xb)+ [w|w]⊗∂2(X1).

Recall that w =

(
0 1
−1 0

)
=

(
0 1
1 0

)
. We have

d1
2,2(λ (a,b)) =(w+1)([a|b]+ [w|ab]− [w|a]− [w|b])⊗ (∞∞∞,000)

+(g−1
ab −h−1

ab +1)([wab|wab])⊗ (∞∞∞,000)

− (g−1
a −h−1

a +1)([wa|wa])⊗ (∞∞∞,000)

− (g−1
b −h−1

b +1)([wb|wb])⊗ (∞∞∞,000)

+(g−1
1 −h−1

1 +1)([w|w])⊗ (∞∞∞,000),

where gx :=

(
0 1
1 x

)
and hx :=

(
1 x−1

0 1

)
.

This element is in H2(SL2(A),X1(A2))=H2(B•(SL2(A))⊗SL2(A)X1(A)). The morphisms

B•(SL2(A))⊗SL2(A) X1(A)→ B•(SL2(A))⊗T (A)Z→C•(SL2(A))⊗T (A)Z,

[g1| · · · |gn]⊗ (∞∞∞,000) 7→ [g1| · · · |gn]⊗1 7→ ⊗(1,g1, . . . ,g1 · · ·gn)⊗1,

induce the isomorphisms

H2(B•(SL2(A))⊗SL2(A) X1(A))' H2(B•(SL2(A))⊗T (A)Z)' H2(C•(SL2(A))⊗T (A)Z).

Following these maps we see that d1
2,2(λ (a,b)) as an element of H2(C•(SL2(A))⊗T (A)Z) find

the following form

d1
2,2(λ (a,b)) =

(
(w,wa,wab)+(w,1,ab)− (w,1,a)− (w,1,b)

+(1,a,ab)+(1,w,wab)+(1,w,wa)+(1,w,wb))⊗1

+((g−1
ab ,g

−1
ab wab,g−1

ab )− (h−1
ab ,h

−1
ab wab,h−1

ab )+(1,wab,1))⊗1

− ((g−1
a ,g−1

a wa,g−1
a )− (h−1

a ,h−1
a wa,h−1

a )+(1,wa,1))⊗1

− ((g−1
b ,g−1

b wb,g−1
b ))− (h−1

b ,h−1
b wb,h−1

b )+(1,wb,1)⊗1

+((g−1
1 ,g−1

1 w,g−1
1 )− (h−1

1 ,h−1
1 w,h−1

1 )+(1,w,1)
)
⊗1.
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Now we want to find a representative of this element in C•(T (A))⊗T (A)Z by the isomorphism

H2(C•(SL2(A))⊗T (A)Z))' H2(C•(A×))⊗A× Z).

Let s : SL2(A)\T (A)→ SL2(A) be any (set-theoretic) section of the canonical projection π :
SL2(A)→ SL2(A)\T (A). For g ∈ SL2(A), set g = (g)(s◦π(g))−1. Then the morphism

C•(SL2(A))⊗T (A)Z
s•−→C•(T (A))⊗T (A)Z, [g1| . . . |gn]⊗1 7→ [g1| . . . |gn]⊗1

induces the desired isomorphism. Choose a section s : SL2(A)\T (A)→ SL2(A) such that

s(T (A)

(
a b

c d

)
) =

(
1 a−1b

ac ad

)
, if a ∈ A×,

and

s(T (A)

(
a b

c d

)
) =

(
0 1
1 bd

)
, if a = 0.

We see that d1
2,2(λ (a,b)) in H2(C•(T (A))⊗T (A) Z) = H2(C•(A×)⊗A× Z) is of the following

form

d1
2,2(λ (a,b)) =

(
(1,a−1,(ab)−1)+(1,a,ab)+(1,(ab)−1,1)− (1,a−1,1)− (1,b−1,1)

)
⊗1.

In H2(B•(A×)⊗A× Z) this elements corresponds to

d1
2,2(λ (a,b)) =

(
[a−1|b−1]+ [a|b]+ [a−1b−1|ab]− [a−1|a]− [b−1|b]

)
⊗1.

Now by adding the following null element in H2(A×,Z) = H2(B•(A×)⊗A× Z)

d3([a−1|b−1|ab]− [b−1|b|a])⊗1,

it is easy to see that

d1
2,2(λ (a,b)) =

(
[a|b]− [b|a]

)
⊗1 ∈ H2(B•(A×)⊗A× Z).

This shows that d1
2,2 is surjective. Therefore E2

1,2 = 0.

Now we need to study E∞
0,3 = E3

0,3. To do this, first consider the differential

d1
1,3 = H3(σ)−H3(inc) : H3(T (A),Z)→ H3(B(A),Z)' H3(T (A),Z).

By Proposition 3.4.4, we have the exact sequence

0→
∧3
ZA×→ H3(T (A),Z)→ TorZ1 (µ(A),µ(A))

Σ′2 → 0.

It is straightforward to check that d1
1,3 |∧3

Z A× coincides with multiplication by 2. Thus we have
the exact sequence

∧3
ZA×/2→ E2

0,3→ TorZ1 (µ(A),µ(A))
Σ′2/T → 0,
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for some subgroup T of TorZ1 (µ(A),µ(A))
Σ′2 . By an easy analysis of the spectral sequence we

have the exact sequence

E3
0,3→ H3(SL2(A),Z)→RB(A)→ 0.

We denote the image of a∧ b∧ c ∈
∧3
ZA×/2 in E2

0,3 again by a∧ b∧ c. Since d1
2,2(λ (ab,c)−

λ (a,c)−λ (b,c)) = 0, we have λ (ab,c)−λ (a,c)−λ (b,c) ∈ E2
2,2. We show that

d2
2,2(λ (ab,c)−λ (a,c)−λ (b,c)) =−a∧b∧ c ∈ E2

0,3. (3.4.2)

This would imply that there is a surjective map TorZ1 (µ(A),µ(A))
Σ′2 � E3

0,3 and therefore we
obtain the exact sequence

TorZ1 (µ(A),µ(A))
Σ′2 → H3(SL2(A),Z)→RB(A)→ 0,

which proof the first claim of the theorem. Now we prove the equality (3.4.2).

Consider the diagram

B3(SL2(A))⊗X0(A2) B3(SL2(A))⊗X1(A2)

B2(SL2(A))⊗X0(A2) B2(SL2(A))⊗Z1(A2).

idB3⊗∂1

d3⊗idX1

idB2⊗inc

The element Λ(a,b,c) := λ (ab,c)−λ (a,c)−λ (b,c) is

Λ(a,b,c) :=
(
[ab|c]−[a|c]−[b|c]+[w|abc]−[w|ac]−[w|bc]−[w|ab]+[w|a]+[w|b]+ [w|c]

)
⊗Y

+[wabc|wabc]⊗∂2(Xabc)− [wab|wab]⊗∂2(Xab)− [wbc|wbc]⊗∂2(Xbc)

− [wac|wac]⊗∂2(Xac)+ [wa|wa]⊗∂2(Xa)+ [wb|wb]⊗∂2(Xb)

+ [wc|wc]⊗∂2(Xc)− [w|w]⊗∂2(X1).

For an element z∈ A×, consider [wz|wz]⊗∂2(Xz)∈ B2(SL2(A))⊗SL2(A)Z1(A2). For the matrices
gz and hz we have the identities

z−1gz−1 = gzz, zhz = hz−1z, g−1
z w = hz−1 , h−1

z = hz.

Using these identities we obtain

[wz|wz]⊗∂2(Xz)=[wz|wz]⊗(∞∞∞,0)

+(d3⊗idX1)(([g
−1
z |wz|wz]−[hz|wz|wz]+[z−1|g−1

z |wz]−[z|hz|wz])⊗(∞∞∞,000))

+(d3⊗ idX1)(([z|z
−1|gz]− [z−1|z|hz]+ [z−1|z|z−1])⊗ (∞∞∞,0)).

If

θz :=[g−1
z |wz|wz]−[hz|wz|wz]+[z−1|g−1

z |wz]−[z|hz|wz]

+[z|z−1|gz]−[z−1|z|hz]+[z−1|z|z−1],
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then by a direct calculation we have

Λ(a,b,c) = (d3⊗ idX1)(([w|ab|c]− [w|a|c]− [w|b|c])⊗Y +(Φa,b,c +Ψa,b,c)⊗ (∞∞∞,000)),

where

Φa,b,c = θabc−θab−θbc−θac +θa +θb +θc−θ1

Ψa,b,c = [wab|wab|c]− [wa|wa|c]− [wb|wb|c]+ [w|w|c]

+ [c|wabc|wabc]− [c|wac|wac]− [c|wbc|wbc]+ [c|wc|wc]

+ [ab|wab|c]− [a|wa|c]− [a|c|wac]+ [ab|c|wabc]− [c|ab|wabc]+ [c|a|wac]

− [b|wb|c]− [b|c|wbc]+ [c|b|wbc]− [b|a|c]+ [b|c|a]− [c|b|a].

Since ∂1(Y ) = 0, we need only to study

(idB3⊗∂1)((Φa,b,c +Ψa,b,c)⊗ (∞∞∞,000)).

Through the maps

B3(SL2(A))⊗SL2(A) X1(A2)
idB3⊗∂1−→ B3(SL2(A))⊗SL2(A) X0(A2)

the above element maps to

(wΦa,b,c−Φa,b,c)⊗ (∞∞∞)+(wΨa,b,c−Ψa,b,c)⊗ (∞∞∞).

Now consider the composite

B3(SL2(A))⊗SL2(A) X0(A2)→C3(SL2(A))⊗SL2(A) X0(A2)→C3(SL2(A))⊗B(T )Z.

Then

(wθz−θz)⊗ (∞∞∞) 7→
{
(w,wg−1

z ,wg−1
z wz,wg−1

z )− (w,whz,whzwz,whz)

+(w,wz−1,wz−1g−1
z ,wz−1g−1

z wz)− (w,wz,wzhz,wzhzwz)

+(w,wz,w,wg−1
z )− (w,wz−1,w,whz)

+(w,wz−1,w,wz−1)− (1,g−1
z ,g−1

z wz,g−1
z )

+(1,hz,hzwz,hz)− (1,z−1,z−1g−1
z ,z−1g−1

z wz)

+(1,z,zhz,zhzwz)− (1,z,1,g−1
z )

+(1,z−1,1,hz)− (1,z−1,1,z−1)
}
⊗1
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and

(wΨa,b,c−Ψa,b,c)⊗ (∞∞∞) 7→
{
(w,ab,w,wc)− (w,a,w,wc)− (w,b,w,wc)+(w,1,w,wc)

+(w,wc,ab,wc)− (w,wc,a,wc)− (w,wc,b,wc)+(w,wc,1,wc)

+(w,wab,1,c)− (w,wa,1,c)− (w,wa,wac,1)+(w,wab,wabc,1)

− (w,wc,wabc,1)+(w,wc,wac,1)− (w,wb,1,c)− (w,wb,wbc,1)

+(w,wc,wbc,1)− (w,wb,wab,wabc)+(w,wb,wbc,wabc)

− (w,wc,wbc,wabc)− (1,wab,1,c)+(1,wa,1,c)+(1,wb,1,c)

− (1,w,1,c)− (1,c,wab,c)+(1,c,wa,c)+(1,c,wb,c)− (1,c,w,c)

− (1,ab,w,wc)+(1,a,w,wc)+(1,a,ac,w)− (1,ab,abc,w)

+(1,c,abc,w)− (1,c,ac,w)+(1,b,w,wc)+(1,b,bc,w)

− (1,c,bc,w)+(1,b,ab,abc)− (1,b,bc,abc)+(1,c,bc,abc)
}
⊗1.

Now we want to follow these elements through the maps

C3(SL2(A))⊗B(A)Z
s−→C3(B(A))⊗B(A)Z→C3(T (A))⊗T (A)Z→ B3(T (A))⊗T (A)Z

where s : SL2(A)\T (A)→ SL2(A) is the section discussed in above. It is straightforward to check
that modulo im(d4) we have

(wθz−θz)⊗ (∞∞∞) 7→ −[z−1|z|z−1]⊗1 = [z|z−1|z]⊗1

Moreover

(wΨa,b,c−Ψa,b,c)⊗ (∞∞∞) 7→
{
[c−1|abc|(abc)−1]− [c−1|ac|(ac)−1]− [c−1|bc|(bc)−1]+ [c−1|c|c−1]

− [a−1|c−1|ac]+ [(ab)−1|c−1|abc]− [c−1|(ab)−1|abc]+ [c−1|a−1|ac]

− [b−1|c−1|bc]+ [c−1|b−1|bc]− [b−1|a−1|c−1]+ [b−1|c−1|a−1]

− [c−1|b−1|a−1]− [c|(abc)−1|abc]+ [c|(ac)−1|ac]+ [c|(bc)−1|bc]

− [c|c−1|c]+ [a|c|(ac)−1]− [ab|c|(abc)−1]+ [c|ab|(abc)−1]

− [c|a|(ac)−1]+ [b|c|(bc)−1]− [c|b|(bc)−1]+ [b|a|c]− [b|c|a]

+ [c|b|a]
}
⊗1.
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Combining all these we see that d2
2,2(Λ(a,b,c)) is the following element of E2

0,3

d2
2,2(Λ(a,b,c)) =

{
[c−1|abc|(abc)−1]− [c−1|ac|(ac)−1]− [c−1|bc|(bc)−1]+ [c−1|c|c−1]

− [a−1|c−1|ac]+ [(ab)−1|c−1|abc]− [c−1|(ab)−1|abc]+ [c−1|a−1|ac]

− [b−1|c−1|bc]+ [c−1|b−1|bc]− [b−1|a−1|c−1]+ [b−1|c−1|a−1]

− [c−1|b−1|a−1]− [c|(abc)−1|abc]+ [c|(ac)−1|ac]+ [c|(bc)−1|bc]

+ [a|c|(ac)−1]− [ab|c|(abc)−1]+ [c|ab|(abc)−1]− [c|a|(ac)−1]

+ [b|c|(bc)−1]− [c|b|(bc)−1]+ [b|a|c]− [b|c|a]+ [c|b|a]

+ [abc|(abc)−1|abc]− [ab|(ab)−1|ab]− [bc|(bc)−1|bc]

− [ac|(ac)−1|ac]+ [a|a−1|a]+ [b|b−1|b]
}
⊗1

By adding the null element

d4

({
− [c|c−1|abc|(abc)−1]+ [c|c−1|ac|(ac)−1]+ [c|c−1|bc|(bc)−1]− [c|c−1|a−1|ac]

− [c|c−1|c|c−1]− [c|c−1|b−1|bc]+ [c−1|c|(abc)−1|abc]+ [ac|a−1|c−1|ac]

− [abc|(ab)−1|c−1|abc]+ [bc|b−1|c−1|bc]+ [c|ab|(ab)−1|ab]− [c|b|b−1|b]− [c|a|a−1|a]

− [c|a|b|(ab)−1]− [a|b|c|(abc)−1]+ [abc|b−1|a−1|c−1]− [abc|b−1|c−1|a−1]

+ [a|c|c−1|a−1]− [a|bc|b−1|c−1]+ [a|c|b|b−1]+ [ac|b|b−1|a−1]− [a|bc|(bc)−1|a−1]

− [b|c|(bc)−1|a−1]+ [c|c−1|b−1|a−1]− [c|c−1|c|(abc)−1]
}
⊗1
)

we see that, modulo im(d4),

d2
2,2(Λ(a,b,c)) =−([a|b|c]+ [c|a|b]+ [b|c|a]− [b|a|c]− [c|b|a]− [a|c|b])⊗1

=−a∧b∧ c.

Thus we obtain the desired exact sequence

TorZ1 (µ(A),µ(A))
Σ′2 → H3(SL2(A),Z)→RB(A)→ 0.

Now let A be a domain. Since µ(A) is direct limit of finite cyclic groups, then

TorZ1 (µ(A),µ(A))
Σ′2 = TorZ1 (µ(A),µ(A)).

Let F be the quotient field of A and F the algebraic closure of F . It is very easy to see that
RB(F) = B(F). The classical Bloch-Wigner exact sequence claims that the sequence

0→ TorZ1 (µ(F),µ(F))→ H3(SL2(F),Z)→B(F)→ 0

is exact. Now the final claim follows from the commutative diagram with exact rows

TorZ1 (µ(A),µ(A)) H3(SL2(A),Z) RB(A) 0

0 TorZ1 (µ(F),µ(F)) H3(SL2(F),Z) B(F) 0

and the fact that the natural map TorZ1 (µ(A),µ(A))→ TorZ1 (µ(F),µ(F)) is injective.
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Corollary 3.4.6. Let A be a local domain of characteristic 2, where its residue field has more

than 26 elements. Then we have the refined Bloch-Wigner exact sequence

0→ TorZ1 (µ(A),µ(A))→ H3(SL2(A),Z)→RB(A)→ 0.

Proof. This follows from Proposition 3.1.1, Proposition 3.3.8 and Theorem 3.4.5.

Let study the map IA⊗ µ2(A)→ A× ∧ µ2(A) ⊆ A× ∧A× given by 〈〈a〉〉⊗ b 7→ a∧ b

(when A is a domain). Clearly I 2
A ⊗µ2(A) is in the kernel of this map. This induces the map

GA⊗µ2(A)' (IA/I
2

A )⊗µ2(A)→ A×∧µ2(A),

〈a〉⊗b 7→ 〈〈a〉〉⊗b 7→ a∧b.

Lemma 3.4.7. Let A be a domain. Then the kernel of the map GA⊗µ2(A)→ A×∧A×, given by

〈a〉⊗ (−1) 7→ a∧ (−1), has at most two elements.

Proof. We may assume that char(A) 6= 2. In this case GA⊗ µ2(A) ' GA. Let a∧ (−1) = 0 in
A×∧A×. We know that A× = lim−→H, where H runs through all finitely generated subgroups of
A×. As the direct limit commutes with wedge product, we have A×∧A× = lim−→H ∧H. We may
take a finitely generated subgroup H such a,−1 ∈ H and a∧ (−1) = 0 ∈ H ∧H.

Let H ' F×T , where F is torsion free and T is a finite cyclic group. Thus −1 ∈ T and
we have

H ∧H ' (F ∧F)⊕ (F⊗T )⊕ (T ∧T ).

Clearly T ∧T = 0. Let a = pω with p ∈ F and T = 〈ω〉. From a∧ (−1) = 0 ∈H∧H, it follows
that p⊗ (−1) = 0 and ω ∧ (−1) = 0. As −1 ∈ T , T has even order. Thus p⊗ (−1) = 0 implies
that p is a square. Therefore 〈a〉= 〈ω〉. This completes the proof.

Now let A be a domain. Then from the commutative diagram (3.4.1), we obtain the exact
sequence

H1(SL2(A),Z2(A2))→ J
γ→ E3

2,1→RB(A)→ 0,

where J sits in the exact sequence I 2
A ⊗µ2(A)→ J→ (Z/2)′→ 0 with (Z/2)′ a subgroup of

Z/2 (Lemma 3.4.7).
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CHAPTER

4
THIRD HOMOLOGY OF SL2

4.1 The low dimensional homology of SM2

Let SM2(A) denotes the group of monomial matrices in SL2(A). Then SM2(A) consists

of matrices

(
a 0
0 a−1

)
and

(
0 a

−a−1 0

)
, where a ∈ A×. Let X̂0(A2) and X̂1(A2) be the free

Z-modules generated by the sets

SM2(A)(∞∞∞) := {g.(∞∞∞) : g ∈ SM2(A)}, SM2(A)(∞∞∞,000) := {g.(∞∞∞,000) : g ∈ SM2(A)},

respectively. It is easy to see that the sequence of SM2(A)-modules

X̂1(A2)
∂̂1→ X̂0(A2)

ε̂→ Z→ 0

is exact and
ker(∂̂1) = Z{(∞∞∞,000)+(000,∞∞∞)}.

We denote this kernel by Ẑ1(A2). Observe that Ẑ1(A2)' Z and SM2(A) acts trivially on it. From
the complex

0→ Ẑ1(A2)
ˆinc→ X̂1(A2)

∂̂1→ X̂0(A2)→ 0, (4.1.1)

we obtain the first quadrant spectral sequence

Ê1
p.q =


Hq(SM2(A), X̂p(A2)) p = 0,1
Hq(SM2(A), Ẑ1(A2)) p = 2
0 p > 2

⇒ Hp+q(SM2(A),Z).

Since the complex (4.1.1) is a SM2(A)-subcomplex of (3.1.1), we have a natural morphism of
spectral sequences

Ê1
p,q Hp+q(SM2(A),Z)

E1
p,q Hp+q(SL2(A),Z).

(4.1.2)
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As in case of SL2(A), we have X̂0 ' IndSM2(A)
T (A) Z and X̂1 ' IndSL2(A)

T (A) Z. Thus by Shapiro’s lemma
we have

Ê1
0,q ' Hq(T (A),Z), Ê1

1,q ' Hq(T (A),Z).

Therefore

Ê1
p.q =


Hq(T (A),Z) p = 0,1
Hq(SM2(A),Z) p = 2
0 p > 2

⇒ Hp+q(SM2(A),Z).

Moreover, d̂1
1,q = Hq(σ̂)−Hq( ˆinc) = σ̂∗− ˆinc∗, where σ̂ : T (A) → T (A) is given by X →

wXw−1 = X−1. Thus d̂1
1,0 is trivial, d̂1

1,1 is induced by the map X 7→ X−2 and d̂1
1,2 is trivial.

A direct calculation shows that the map d̂2,q : Hq(SM2(A),Z)→ Hq(T (A),Z) is the
transfer map (BROWN, 2012, §9, Chap. III). Hence the composite

Hq(SM2(A),Z)
d̂2,q→ Hq(T (A),Z)

inc∗→ Hq(SM2(A),Z)

coincides with multiplication by 2 (BROWN, 2012, Proposition 9.5, Chap. III). In particular,
d̂2,0 : Z→ Z is multiplication by 2. From these we obtain the exact sequence

1→ GA→ H1(SM2(A),Z)→ Z/2→ 0.

If fact this can be obtain directly from the extension 1→ T (A)→ SM2(A)→ 〈w〉 → 1:

1→ GA→ H1(SM2(A),Z)→ 〈w〉 → 1.

Observe that w2 =

(
−1 0
0 −1

)
∈ T (A). A direct calculation shows that d̂1

2,1(w) = −1 and

d̂1
2,1 |GA= 0. Thus

Ê2
1,1 = µ2(A)/{±1}, Ê2

2,1 = GA.

Again a direct calculation shows that

d̂2
2,1 : GA→ H2(T (A),Z)' A×∧A×

is given by 〈a〉 7→ a∧ (−1). Therefore from the spectral sequence Ê1
p,q⇒ Hp+q(SM2(A),Z) we

obtain the exact sequence

0→ A×∧A×

A×∧{±1}
→ H2(SM2(A),Z)→ µ2(A)/{±1}→ 1.

Thus we have:

Lemma 4.1.1. If µ2(A) = {±1}, then H2(SM2(A),Z)'
A×∧A×

A×∧µ2(A)
.

Now if µ2(A) = {±1}, then it follows from this lemma that the image of the map

d̂1
2,2 : H2(SM2(A),Z)→ A×∧A× is 2(A×∧A×). Thus Ê2

1,2 '
A×∧A×

2(A×∧A×)
. Moreover one can

show that Ê2
2,2 '

2(A×∧A×)
A×∧µ2(A))

.
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4.2 The third homology of SL2

Let the complex X•(A2)→ Z be exact in dimension < 2. Then the natural map α : GA =

Ê2
2,1→ E2

2,1 sits in the diagram

GA

IA⊗µ2(A) E2
2,1 RP1(A)−→ 0.

α

γ δ

Recall that for any a ∈ A×, we defined ψ1(a) := [a]+ 〈−1〉[a−1] ∈RP(A).

Lemma 4.2.1. The composite map δ ◦α : GA→RP1(A) is given by 〈a〉 7→ ψ1(a2).

Proof. The element 〈a〉 ∈ GA is represented by

[a]⊗{(∞∞∞,000)+(000,∞∞∞)} ∈ H1(SM2(A), Ẑ1(A2)).

Its image in H1(SL2(A),Z1(A2)), through α , is represented by the element

S := [a]⊗∂2((∞∞∞,000,aaa2)+(000,∞∞∞,aaa2)).

We have

δ (S) = (d1⊗ idZ2(X2))
(
[a]⊗∂2((∞∞∞,000,aaa2)+(000,∞∞∞,aaa2))

)
= [ ]⊗

(
(∞∞∞,000,111)+(000,∞∞∞,111)− (∞∞∞,000,aaa2)− (000,∞∞∞,aaa2)

)
= [ ]⊗∂3

(
(∞∞∞,000,111,aaa2)+(000,∞∞∞,aaa2,111)

)
.

It is straightforward to check that this element represent −ψ1(a2). Thus

δ (S) =−ψ1(a2) = ψ1(a2).

For any a ∈ A×, let Xa and X ′a denote the elements (∞∞∞,000,aaa) and (000,∞∞∞,aaa) of X2(A2)

respectively. Let χa ∈ H1(SL2(A),Z1(A2)) be represented by [wa]⊗∂2(X−a−Xa). We usually
write

χa := [wa]⊗∂2(X−a−Xa).

We remind that usually

(
a 0
0 a−1

)
is denoted by a.

Lemma 4.2.2. For any a ∈ A×, γ(〈〈a〉〉⊗ (−1))−α(〈a〉) = 〈−1〉〈〈a〉〉.χ1.

Proof. Let Y := (∞∞∞,000)+(000,∞∞∞) ∈ Z1(A2). For any a ∈ A×, we have
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(a) d2([wa|wa]) = wa[wa]− [−1]+ [wa],

(b) d2([w|a]) = w[a]− [wa]+ [w].

Thus modulo im(d2⊗ idZ1(A2)), we have

1. [−1]⊗∂2(X−a) = [wa]⊗∂2(X ′a)+ [wa]⊗∂2(X−a),

2. [wa]⊗Y = [a]⊗Y +[w]⊗Y .

Hence

[wa]⊗∂2(X−a−Xa) =[wa]⊗∂2(X−a)− [wa]⊗∂2(Xa)

=[−1]⊗∂2(X−a)− [wa]⊗∂2(X ′a)− [wa]⊗∂2(Xa)

=[−1]⊗∂2(X−a)− [wa]⊗Y

=[−1]⊗∂2(X−a)− ([a]⊗Y +[w]⊗Y )

=[−1]⊗∂2(X−a)− [w]⊗Y −α(〈a〉)

=[−1]⊗∂2(X−a)− [w]⊗∂2(X1 +X ′1)−α(〈a〉)

Now, using the identity (1) in above for a = 1, we get

[wa]⊗∂2(X−a−Xa)− [w]⊗∂2(X−1−X1) = [−1]⊗∂2(X−a−X−1)−α(〈a〉)

= 〈−1〉γ(〈〈a〉〉⊗ (−1))−α(〈a〉).

On the other hand,

[wa]⊗∂2(X−a−Xa)−[w]⊗∂2(X−1−X1)=〈a〉([w]⊗∂2(X−1−X1))− [w]⊗∂2(X−1−X1)

= 〈〈a〉〉([w]⊗∂2(X−1−X1))

= 〈〈a〉〉χ1.

Therefore 〈〈a〉〉 ·χ1 = 〈−1〉γ(〈〈a〉〉⊗ (−1))−α(〈a〉).

Remark 4.2.3. It is straightforward to show that δ (χ1) = ψ1(−1) ∈RP1(A).

Corollary 4.2.4. If −1 ∈ (A×)2, then for any a ∈ A×, γ(〈〈a〉〉⊗ (−1)) = α(〈a〉).

Proof. First observe that for any s ∈ A× and X ∈ X2(A2), we have

[w]⊗ (sX−X) = [s]⊗ (wX + sX).

Now if i2 =−1, then by the above relation we have

[w]⊗∂2(X−1−X1) = [w]⊗∂2(iX1−X1)

= [i]⊗∂2(wX1 + iX1)

= [i]⊗∂2(X ′1 +X1)

= [i]⊗Y = α(〈i〉).

Now the claim follows from Lemma 4.2.2.
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Corollary 4.2.5. Let µ2(A) = {±1} and −1 ∈ (A×)2. Then γ(I 2
A ⊗µ2(A)) = 0. In particular,

we have the exact sequence

GA
α−→ E2

2,1
δ−→RP1(A)→ 0.

Proof. The ideal I 2
A is generated by the elements 〈〈a〉〉〈〈b〉〉= 〈〈ab〉〉−〈〈a〉〉−〈〈b〉〉. Thus by the

above corollary

γ(〈〈a〉〉〈〈b〉〉⊗ (−1)) = α(〈ab〉)−α(〈a〉)−α(〈b〉) = α(〈aba−1b−1〉= α(〈1〉) = 0.

The second part follows from the first part and the fact that IA/I
2

A 'GA and im(γ)= im(α).

Theorem 4.2.6. Let A be a commutative ring such that

(i) µ2(A) = {±1} and −1 ∈ (A×)2,

(ii) X•(A2)→ Z is exact in dimension < 2.

(iii) Hi(T (A),Z)' Hi(B(A),Z) for i = 2,3.

Then we have the exact sequence

H3(SM2(A),Z)→ H3(SL2(A),Z)→RB(A)→ 0.

Proof. The morphism of spectral sequences (4.1.2) induces a map of filtration

0⊆ F̂0 ⊆ F̂1 ⊆ F̂2 ⊆ F̂3 = H3(SM2(A),Z)
↓ ↓ ↓ ↓

0⊆ F0 ⊆ F1 ⊆ F2 ⊆ F3 = H3(SL2(A),Z)

where E∞
p,3−p = Fp/Fp−1 and Ê∞

p,3−p = F̂p/F̂p−1. Clearly F2 = F3 and F̂2 = F̂3. Consider the
following commutative diagram with exact rows

0 F̂1 H3(SM2(A),Z) Ê∞
2,1 0

0 F1 H3(SL2(A),Z) E∞
2,1 0.

inc∗ (4.2.1)

By Corollary 4.2.5, we have the exact sequence Ê2
2,1→ E2

2,1→RP1(A)→ 0. From the com-
mutative diagram with exact rows

Ê2
2,1 E2

2,1 RP1(A) 0

0 A×∧µ2(A) (A×∧A×)
A×∧A×

A×∧µ2(A)
0

d̂2
2,1 d2

2,1

we obtain the exact sequence

Ê∞
2,1→ E∞

2,1→RB(A)→ 0.
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Now consider the commutative diagram with exact rows

0 F̂0 F̂1 Ê∞
1,2 0

0 F0 F1 E∞
1,2 0.

Since Ê1
0,3 ' E1

0,3, the natural map F̂0→ F0 is surjective. Moreover, since Ê1
1,2 ' E1

1,2, the map
Ê∞

1,2→ E∞
1,2 is surjective. These imply that the map F̂1→ F1 is surjective. Now the claim follows

by applying the snake lemma to the diagram (4.2.1).

Remark 4.2.7. We think that the condition −1 ∈ A×2 in Theorem 4.2.6 is not essential (at
least when A is a domain). To remove this condition we need to prove that under the map
γ : IA⊗µ2(A)→ E2

2,1, I 2
A ⊗µ2(A) maps to zero. Having this, then

GA ' GA⊗µ2(A)
γ̄−→ E2

2,1→ A×∧µ2(A) and GA
α−→ E2

2,1→ A×∧µ2(A)

have the same kernel by Lemma 3.4.7. Then we can proceed as in the above proof.

Example 4.2.8. Here we give examples of rings that satisfy the conditions of Theorem 4.2.6:

(1) Any local domain of characteristic 2 such that its residue field has more than 64
elements satisfies in the conditions of the theorem (Proposition 3.1.1, Theorem 3.3.8).

(2) Let B be a domain such that −1 is square. Let p be a prime ideal of B such that either
B/p is infinite or if |B/p|= pd , then (p−1)d > 6. Then A := Bp satisfies in the conditions of
Theorem 4.2.6 (Proposition 3.1.1, Theorem 3.3.8).

(3) Any domain with many units such that −1 is an square (e.g F-algebras which are
domains and F is an algebraically closed) (MIRZAII, 2011, §2).

(4) Let A = Z[ 1
m ], where m can be expressed as a product of primes m = pα1

1 · · · p
αt
t

(αi ≥ 1) with property that (Z/pi)
× is generated by the residue classes {−1, p1, . . . , pi−1} for

all i≤ t. In particular, p1 ∈ {2,3}. Then A satisfies in the above conditions of Theorem 4.2.6
(Lemma 3.3.5, (HUTCHINSON, 2022, Example 6.14)).

4.3 A spectral sequence for relative homology

Let G be a group and M a G-module. We denote these by a pair (G,M). A morphism of
pairs ( f ,σ) : (G′,M′)→ (G,M) is a pair of group homomorphisms f : G′→G and σ : M′→M

such that

σ(g′m′) = f (g′)σ(m′).

This means that σ is a map of G′-modules.
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For a group H let C•(H)→ Z be the standard resolution of Z over Z[H] (BROWN,
2012, Chap.I, §5). The map f : G′→ G, induces in a natural way a morphism of complexes
f• : C•(G′)→C•(G).

The morphism of the pairs ( f ,σ) : (G′,M′)→ (G,M), induces a morphism of complexes

f•⊗σ : C•(G′)⊗G′ M
′→C•(G)⊗G M.

Let G′ be a subgroup of G and M′ be a G′-submodule of M. We take (i,σ) : (G′,M′) ↪→
(G,M) as the natural pair of inclusion maps. Then the morphism

i•⊗σ : C•(G′)⊗G′ M
′→C•(G)⊗G M

is injective. We denote the n-homology of the quotient complex C•(G)⊗G M/C•(G′)⊗G′ M′ by
Hn(G,G′,M′,M):

Hn(G,G′,M,M′) := Hn(C•(G)⊗G M/C•(G′)⊗G′ M
′).

If M′ = M, then Hn(G,G′,M,M′) is the usual relative homology group Hn(G,G′,M).

From the exact sequence of complexes

0→C•(G′)⊗G′ M
′→C•(G)⊗G M→C•(G)⊗G M/C•(G′)⊗G′ M

′→ 0

we obtain the long exact sequence

· · · → Hn(G′,M′)→ Hn(G,M)→ Hn(G,G′,M,M′)→ Hn−1(G′,M′)

→ Hn−1(G,M)→ Hn−1(G,G′,M,M′)→ ···

Proposition 4.3.1. Let G′ be a subgroup of G. Let L′•→M′ be an exact G′-subcomplex of an

exact G-complex L•→M. Then we have the first quadrant spectral sequence

E1
p,q = Hq(G,G′,Lp,L′p)⇒ Hp+q(G,G′,M,M′).

Proof. Let i : G′ ↪→ G and σ• : L′• ↪→ L• be the usual inclusions. The morphism of double
complexes

i•⊗σ• : C•(G′)⊗G′ L
′
•→C•(G)⊗G L•

is injective. We denote its quotient by D•,•: D•,• = coker(i•⊗ σ•). This double complexes
induces two spectral sequences

E 1
p,q(I) = Hq(Dp,•)⇒ Hp+q(Tot(D•,•)), E 1

p,q(II) = Hq(D•,p)⇒ Hp+q(Tot(D•,•)).

These are the spectral sequences

E 1
p,q(I) = Hq

(
Cp(G)⊗G L•
Cp(G′)⊗G′ L′•

)
⇒ Hp+q(Tot(D•,•)),
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and
E 1

p,q(II) = Hq

(
C•⊗G Lp

C′•⊗G′ L′p

)
⇒ Hp+q(Tot(D•,•)).

By definition E 1
p,q(II) = Hq(G,G′,Lp,L′p). Moreover since L• and L′• are exact in dimension

> 0, we have E 1
p,q(I) = 0 for any q > 0. For q = 0, we have E 1

p,0(I)'
Cp(G)⊗G M

Cp(G′)⊗G′ M′
. Now the

homology of the sequence E 1
p+1,0(I)→ E 1

p,0(I)→ E 1
p,0(I) is

E 2
p,0(I)' Hq(G,G′,M,M′).

Now by an easy analysis of the spectral sequence E 1
p,q(I), for any n≥ 0 we obtain the isomor-

phism
Hn(Tot(D•,•))' Hn(G,G′,M,M′).

Thus if we take E1
p,q := E 1

p,q(II), then we obtain the spectral sequence

E1
p,q = Hq(G,G′,Lp,L′p)⇒ Hp+q(G,G′,M,M′).

4.4 The groups RP1(A) and H3(SL2(A),SM2(A),Z)

Let µ2(A) = {±1} and the complex X•(A2)→Z be exact in dimension < 1. The complex

0→ Ẑ1(A2)→ X̂1(A2)→ X̂0(A2)→ 0

is a SM2(A)-subcomplex of the SL2(A)-complex

0→ Z1(A2)→ X1(A2)→ X0(A2)→ 0.

By Proposition 4.3.1, from the morphism of complexes

0 Ẑ1(A2) X̂1(A2) X̂0(A2) 0

0 Z1(A2) X1(A2) X0(A2) 0,

we obtain the first quadrant spectral sequence

E1
p,q=


Hq(SL2(A),SM2(A),Xp(A2), X̂p(A2)) if p = 0,1

Hq(SL2(A),SM2(A),Z1(A2), Ẑ1(A2)) if p = 2

0 if p > 2

⇒Hp+q(SL2(A),SM2(A),Z).

Consider the long exact sequence

· · · → Hq(SM2(A), X̂p(A2))→ Hq(SL2(A),Xp(A2))→ E1
p,q→ Hq−1(SM2(A), X̂p(A2))
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→ Hq−1(SL2(A),Xp(A2))→ ··· .

Since

Hq(SL2(A),X0(A2))' Hq(B(A),Z), Hq(SL2(A),X1(A2))' Hq(T (A),Z),

and
Hq(SM2(A), X̂0(A2))' Hq(T (A),Z), Hq(SM2(A), X̂1(A2))' Hq(T (A),Z),

from the above exact sequence, for any q, we get

E1
0,q 'Sq ' Hq(B(A),T (A),Z), E1

1,q = 0.

Therefore
E2

0,q ' E1
0,q, E2

1,q = 0, E2
2,q ' E1

2,q.

Now by easy analysis of the spectral sequence we get the exact sequence

· · ·→Hn+2(SL2(A),SM2(A),Z)→E2
2,n→Hn+1(B(A),T (A),Z)→Hn+1(SL2(A),SM2(A),Z)

→ E2
2,n−1→ Hn(B(A),T (A),Z)→ ···

where the maps Hn(B(A),T (A),Z)→Hn(SL2(A),SM2(A),Z) is induced by the natural inclusion
of pairs (B(A),T (A)) ↪→ (SL2(A),SM2(A)).

It is easy to see that E2
0,0 = 0 = E2

1,0. Moreover we have the exact sequence

H0(SM2(A),Z)→ H0(SL2(A),Z1(A2))→ E2
2,0→ 0.

Note that H0(SM2(A),Z) ' Z and H0(SL2(A),Z1(A2)) = GW(A). Moreover the map Z→
GW(A) is injective and sends 1 to p+−1 = 〈−1〉+1. Thus

E2
2,0 ' GW(A)/〈〈−1〉+1〉 'W (A).

where W (A) is the Witt group of A. Furthermore we have the exact sequence

H1(SM2(A),Z)→ H1(SL2(A),Z1(A2))→ E2
2,1→ 0.

From the commutative diagram

H1(SM2(A),Z) H1(SL2(A),Z1(A2)) E2
2,1→ 0

H1(SM2(A), X̂1(A2) H1(SL2(A),X1(A2) 0

we obtain the exact sequence
GA

α−→ E2
2,1→ E2

2,1→ 0.

On the other hand we have the exact sequence

H3(B(A),T (A),Z)→ H3(SL2(A),SM2(A),Z)→ E2
2,1→ H2(B(A),T (A),Z)→

H2(SL2(A),SM2(A),Z)→W (A)→ AA× → H1(SL2(A),SM2(A),Z)→ 0.
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Proposition 4.4.1. Let A be a GE2-ring such that Hi(T (A),Z)' Hi(B(A),Z) for i≤ 3. Then

(i) H2(SL2(A),SM2(A),Z)'W (A)' GW(A)/〈〈−1〉+1〉

(ii) H3(SL2(A),SM2(A),Z)' E2
2,1. In particular we have the exact sequence

GA
α−→ E2

2,1→ H3(SL2(A),SM2(A),Z)→ 0.

Proof. It follows from our hypothesis that Hi(B(A),T (A),Z) = 0 for 0≤ i≤ 3. Now the claims
follows from the above discussions.

Theorem 4.4.2. Let A be a universal GE2-ring such that Hi(T (A),Z)' Hi(B(A),Z) for i≤ 3.

Then we have an exact sequence

I(A)⊗µ2(A)→ H3(SL2(A),SM2(A),Z)→
RP1(A)

〈ψ1(a2) : a ∈ A×〉
→ 0.

In particular, if −1 ∈ (A×)2, then H3(SL2(A),SM2(A),Z)'RP1(A).

Proof. The first claim follows from the above Proposition, Lemma 4.2.1 and the following
diagram with exact row and column:

IA⊗µ2(A)

GA E2
2,1 H3(SL2(A),SM2(A),Z)→ 0

RP1(A)

0

α

(Note that in above diagram we may replace IA with I(A).) The second claim follows from the
first claim, Lemma 4.2.4 and the fact that ψ1(a2) = 0.

Theorem 4.4.3. Let A be ring such that Hi(T (A),Z)'Hi(B(A),Z) for i≤ 3. Let H1(SL2(A),Z)=
0.

(i) If A is a GE2-ring, then H2(SL2(A),T (A),Z)' KMW
1 (A).

(ii) If A is a universal GE2-ring, then H3(SL2(A),T (A),Z
[1

2

]
)'RP1(A)

[1
2

]
.

Proof. (i) From the inclusions T (A)⊆ SM2(A)⊆ SL2(A), we obtain the long exact sequence

· · · → Hn(SM2(A),T (A),Z)→ Hn(SL2(A),T (A),Z)→ Hn(SL2(A),SM2(A),Z)→

Hn−1(SM2(A),T (A),Z)→ ·· ·
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Since H1(SL2(A),Z) = 0, we have

H1(SL2(A),SM2(A),Z) = 0 = H1(SL2(A),T (A),Z).

It is easy to see that

H1(SM2(A),T (A),Z)' Z/2.

We already have seen that H2(SL2(A),SM2(A),Z)'W (A) (Proposition 4.4.1). Form the exact
sequences

H2(T (A),Z)→H2(SL2(A),Z)→H2(SL2(A),T (A),Z)→H1(T (A),Z)→H1(SL2(A),Z) = 0

and

H2(T (A),Z)→ H2(SL2(A),Z)→ I2(A)→ 0

we obtain the exact sequence

0→ I2(A)→ H2(SL2(A),T (A),Z)→ KM
1 (A)→ 0. (4.4.1)

Now consider the exact sequence

H2(T (A),Z)→ H2(SM2(A),Z)→ H2(SM2(A),T (A),Z)→ H1(T (A),Z)

→ H1(SM2(A),Z)→ H1(SM2(A),T (A),Z)→ 0.

Since H2(T (A),Z)→ H2(SM2(A),Z) is surjective (by Lemma 4.1.1) and H1(SM2(A),Z) sites
in the exact sequence 1→ GA→ H1(SM2(A),Z)→ Z/2→ 0, we have

H2(SM2(A),T (A),Z)' A×2 ' 2KM
1 (A).

Thus we have the exact sequence

0→ 2KM
1 (A)→ H2(SL2(A),T (A),Z)→ I(A)→ 0. (4.4.2)

It is known that the first Milnor-Witt K-group of A, KMW
1 (A), satisfies in the exact

sequences (4.4.1) and (4.4.2) ((HUTCHINSON; TAO, 2010, §2)). From the exact sequences
(4.4.1) and (4.4.2) we obtain the commutative diagram

H2(SL2(A),T (A),Z) KM
1 (A)

I(A) I(A)/I2(A)

Since I(A)/I2(A)' GA ' KM
1 (A)/2KM

1 (A), the above diagram is Cartesian. Thus

H2(SL2(A),T (A),Z)' KM
1 (A)×I(A)/I2(A) I(A).
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But it is well-known that KMW
1 (A) is the Cartesian product of the maps KM

1 (A)→ I(A)/I2(A)

and I(A)→ I(A)/I2(A) (or we can take this as definition). Thus

H2(SL2(A),T (A),Z)' KM
1 (A)×I(A)/I2(A) I(A)' KMW

1 (A).

(ii) Consider the long exact sequence

H3(SM2(A),T (A),Z)→ H3(SL2(A),T (A),Z)→ H3(SL2(A),SM2(A),Z)

→ 2KM
1 (A)→ KMW

1 (A)→W (A).

This gives us the exact sequence

H3(SM2(A),T (A),Z)→ H3(SL2(A),T (A),Z)→ H3(SL2(A),SM2(A),Z)→ 0.

Consider the exact sequence

H3(T (A),Z)→H3(SM2(A),Z)→H3(SM2(A),T (A),Z)→H2(T (A),Z)→H2(SM2(A),Z)

We have seen that the kernel of the right hand side map is isomorphic to A×∧µ2(A). Moreover
using the spectral sequence Êp,q⇒ Hp+q(SM2(A),Z) we obtain the exact sequence

0→ (A×∧A×)/2→ H3(SM2(A),Z)/H3(T (A),Z)→ GA→ A×∧A×.

These show that H3(SM2(A),T (A),Z
[1

2

]
) = 0 Thus

H3(SL2(A),T (A),Z
[1

2

]
)' H3(SL2(A),SM2(A),Z

[1
2

]
)'RP1(A)

[1
2

]
.

Remark 4.4.4. It is known that KMW
1 (A) and RP1(A) have certain localization property

(GILLE; SCULLY; ZHONG, 2016, Theorem 6.3), (HUTCHINSON; MIRZAII; MOKARI,
2022, Theorem A). Wendt in (WENDT, 2018, App. A) have introduced a higher version of
these groups. It would be interesting to see what is the connection of these groups to the relative
homology groups Hn(SL2(A),SM2(A),Z

[1
2

]
).
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