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RESUMO

TRAVAGLINI, A. M. Integrabilidade e geometria de sistemas diferenciais quadráticos com
hipérboles invariantes. 2021. 395 p. Tese (Doutorado em Ciências – Matemática) – Instituto
de Ciências Matemáticas e de Computação, Universidade de São Paulo, São Carlos – SP, 2021.

Os sistemas diferenciais polinômiais planares ocorrem com muita frequência em vários ramos
da matemática aplicada, na modelagem de fenômenos naturais, na astrofísica, nas equações de
continuidade que descrevem as interações de íons, elétrons e espécies neutras na física de plasma,
entre outras situações. Tais sistemas diferenciais também têm importância teórica. Vários
problemas expostos a mais de cem anos atrás em sistemas diferenciais polinomiais ainda estão
em aberto, por exemplo, a segunda parte do 16º problema de Hilbert relatado por Hilbert em
(HILBERT, 1902), o problema de integrabilidade algébrica relatado por Poincaré (POINCARÉ,
1891a), (POINCARÉ, 1891b), problemas de integrabilidade resultantes do trabalho de Darboux
(DARBOUX, 1878) e o problema do centro também relatado por Poincaré (POINCARÉ, 1885).
Estes problemas ainda estão em aberto, exceto pelo problema do centro que foi resolvido no caso
quadrático. Nesta tese, denotamos por QSH toda a classe de sistemas diferenciais quadráticos
planares não degenerados que possuem pelo menos uma hipérbole invariante. QSH é uma rica
família de sistemas que exibem vários tipos de integrabilidade: polinomial, algébrica (racional),
Darboux, Darboux generalizado e Liouvilliana. O objetivo desta investigação é estudar esta classe
do ponto de vista da teoria de Darboux: Separar os sistemas integráveis em QSH, classificá-los
de acordo com o tipo de integral primeira que eles possuem e estudar sua geometria. Nossa
principal motivação e objetivo, além de coletar dados, é estudar a relação entre a integrabilidade
e a geometria dos sistemas expressa em suas configurações das curvas algébricas invariantes,
estudar as bifurcações de suas configurações, bem como suas relações com as bifurcações dos
retratos de fase.

Palavras-chave: Sistema diferencial quadrático, curva algébrica invariante, hipérbole invariante,
integrabilidade de Darboux, integrabilidade Liouvilianna, configuração das curvas algébricas
invariantes, bifurcação de configurações, singularidade, bifurcação de singularidades.





ABSTRACT

TRAVAGLINI, A. M. Integrability and geometry of quadratic differential systems with
invariant hyperbolas. 2021. 395 p. Tese (Doutorado em Ciências – Matemática) – Instituto de
Ciências Matemáticas e de Computação, Universidade de São Paulo, São Carlos – SP, 2021.

Planar polynomial differential systems occur very often in various branches of applied mathemat-
ics, in modeling natural phenomena, in astrophysics, in the equations of continuity describing
the interactions of ions, electrons and neutral species in plasma physics, among other situations.
Such differential systems have also theoretical importance. Several problems stated more than
one hundred years ago on polynomial differential systems are still open, for instance, the second
part of Hilbert’s 16th problem stated by Hilbert in (HILBERT, 1902), the problem of algebraic
integrability stated by Poincaré in (POINCARÉ, 1891a), (POINCARÉ, 1891b), problems on
integrability resulting from the work of Darboux (DARBOUX, 1878) and the problem of the
center also stated by Poincaré (POINCARÉ, 1885). They are still unsolved, except for the
problem of the center solved only in the quadratic case. In this thesis we denote by QSH be
the whole class of non-degenerate planar quadratic differential systems possessing at least one
invariant hyperbola. QSH is a rich family of systems displaying various kinds of integrability:
polynomial, algebraic (rational), Darboux, generalized Darboux, Liouvillian. The goal of this
investigation is to study this class from the viewpoint of the theory of Darboux: To separate the
integrable system in QSH, to classify them according to the kind of first integral they possess
and study their geometry. Our main motivation and goal, apart from gathering data, is to study
the relationship between integrability and the geometry of the systems as expressed in their
configurations of invariant algebraic curves, to study the bifurcations of their configurations as
well as their relations with the bifurcations of the phase portraits.

Keywords: Quadratic differential system, Invariant algebraic curve, Invariant hyperbola, Dar-
boux integrability, Liouvillian integrability, configuration of invariant algebraic curves, bifurca-
tion of configurations, singularity, bifurcation of singularities.
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CHAPTER

1
INTRODUTION

Let F[x,y] be the set of all polynomials with coefficients in F and in the variables x and y

where F= R or C. Consider the planar system

ẋ = P(x,y),

ẏ = Q(x,y),
(1.1)

where ẋ = dx/dt, ẏ = dy/dt and P, Q ∈ R[x,y]. We define the degree of a system (1.1) as
max{degP,degQ}. In the case where the polynomials P and Q are relatively prime i. e. they do
not have a non-constant common factor, we say that (1.1) is non-degenerate.

Consider
χ = P(x,y)

∂

∂x
+Q(x,y)

∂

∂y
(1.2)

the polynomial vector field associated to (1.1).

A real quadratic differential system is a polynomial differential system of degree 2, i.e.

ẋ = p0 + p1(ã,x,y)+ p2(ã,x,y)≡ p(ã,x,y),

ẏ = q0 +q1(ã,x,y)+ q2(ã,x,y)≡ q(ã,x,y)
(1.3)

with max{deg p,degq}= 2 and

p0 = a, p1(ã,x,y) = cx+dy, p2(ã,x,y) = gx2 +2hxy+ ky2,

q0 = b, q1(ã,x,y) = ex+ f y, q2(ã,x,y) = lx2 +2mxy+ny2.

Here we denote by ã = (a,c,d,g,h,k,b,e, f , l,m,n) the 12-tuple of the coefficients of system
(1.3). Thus a quadratic system can be identified with a point ã in R12.

The class of all quadratic differential systems is denoted by QS.

Planar polynomial differential systems appear in various branches of applied mathematics,
in modeling natural phenomena, such as, modeling the time evolution of conflicting species,
in biology, in chemical reactions, in economics, in astrophysics, in the equations of continuity
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describing the interactions of ions, electrons and neutral species in plasma physics (see, for
example (LOTKA, 1920), (VOLTERRA, 1931), (CHANDRASEKHAR, 1939) and (ROTH,
1969)). Polynomial systems occur also in shock waves, in neural networks etc. This kind of
differential systems have also theoretical importance since several problems on polynomial
differential systems, which were stated more than one hundred years ago, are still open: the
second part of Hilbert’s 16th problem stated by Hilbert in 1900, the problem of algebraic
integrability stated by Poincaré in 1891 (POINCARÉ, 1891a), (POINCARÉ, 1891b), the problem
of the center stated by Poincaré in 1885 (POINCARÉ, 1885), and problems on integrability
resulting from the work of Darboux (DARBOUX, 1878) published in 1878. Except for the
problem of the center for quadratic differential systems, which was solved, all the other problems
mentioned above, are still unsolved even in the quadratic case.

Although the theory of Darboux is for complex differential systems, we can use it also
for real systems. Every system (1.1) with real coefficients yields also a complex system by
considering x,y ∈ C. The integrability theory of Darboux is based on the notion of invariant
algebraic curve.

Definition 1. (DARBOUX, 1878) An algebraic curve f (x,y) = 0 with f (x,y) ∈ C[x,y] is called
an invariant algebraic curve of system (1.1) if it satisfies the following identity:

fxP+ fyQ = K f , (1.4)

for some K ∈ C[x,y] where fx and fy are the derivative of f with respect to x and y. K is called
the cofactor of the curve f = 0.

For simplicity we write the curve f instead of the curve f = 0 in C[x,y]. Note that if
system (1.1) has degree m then the cofactor of an invariant algebraic curve f of the system has
degree m−1.

Definition 2. (DARBOUX, 1878) Consider a planar polynomial system (1.1). An algebraic
solution of (1.1) is an algebraic invariant curve f which is irreducible over C.

Definition 3. Let U be an open subset of R2. A real function H: U → R is a first integral of
system (1.1) if it is constant on all solution curves (x(t),y(t)) of system (1.1), i.e., H(x(t),y(t)) =

k, where k is a real constant, for all values of t for which the solution (x(t),y(t)) is defined on U .
If H is differentiable in U then H is a first integral on U if and only if

HxP+HyQ = 0. (1.5)

Observation 4. Any system has a constant first integral.

Definition 5. Let U be an open subset of R2 and a consider differential system (not necessarily
polynomial). We say the system is integrable on U if there exists a first integral which is
nonconstant in any open subset of U .
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The problem of integrating a polynomial system by using its algebraic invariant curves
over C was considered for the first time by Darboux in (DARBOUX, 1878).

Theorem 6. (DARBOUX, 1878) Suppose that a polynomial system (1.1) of degree n has m

invariant algebraic curves fi(x,y) = 0, i≤ m, with fi ∈ C[x,y] and with m > n(n+1)/2 where n

is the degree of the system. Then we can compute complex numbers λ1, ...,λm not all zero such
that f λ1

1 ... f λm
m is a first integral of the system.

Definition 7. If a system (1.1) has a first integral of the form

H(x,y) = f1
λ1... fp

λp (1.6)

where fi are the invariant algebraic curves of system (1.1) and λi ∈ C not all zero then we say
that system (1.1) is Darboux integrable and we call the function H a Darboux function.

Consider the divergence of system (1.1) defined as div(P,Q) = Px +Qy. The next defini-
tion leads to a generalization of the notion of Darboux integrability.

Definition 8. Let U be an open subset of R2 and let R : U → R be a differentiable function
which is not identically zero on U . The function R is an integrating factor of a polynomial system
(1.1) on U if one of the following two equivalent conditions holds:

div(RP,RQ) = 0, RxP+RyQ =−R div(P,Q),

on U.

A first integral H of
ẋ = RP, ẏ = RQ

associated to the integrating factor R is given by

H(x,y) =
∫

R(x,y)P(x,y)dy+h(x),

where H(x,y) is a function satisfying Hx =−RQ. Then,

ẋ = Hy, ẏ =−Hx.

In order that this function H be well defined the open set U must be simply connected.

The condition in Darboux’ theorem is only sufficient for Darboux integrability and it is
not always necessary. For instance, consider the system{

ẋ = 3+2x2 + xy

ẏ = 3+ xy+2y2.
(1.7)

This system admits the invariant line x− y = 0 and the invariant hyperbola 2+ xy = 0. Then,
m = 2 < 3 = n(n+ 1)/2. However we still have here a Darboux first integral H(x,y) = (x−
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y)−3/2(2+ xy). Thus the lower bound on the number of invariant curves sufficient for Darboux
integrability stated in the theorem of Darboux is in general greater than necessary. The following
question arises then naturally: Could we find a necessary and sufficient condition for Darboux

integrability?

The theory of Darboux has been improved by including for example independent singular
points, exponential factor and the multiplicity of invariant algebraic curves (see (LLIBRE;
ZHANG, 2009a)). But a deeper understanding about Darboux integrability is still lacking.

The simplest integrable systems (1.1) are the Hamiltonian ones having a polynomial first
integral. Next we have the systems (1.1) which admit a rational first integral. These were called
by Poincaré algebraically integrable systems. In (POINCARÉ, 1891a) and (POINCARÉ, 1891b),
Poincaré stated the following problem (which remains open): Can we recognize when a system

(1.1) admits a rational first integral?

To advance knowledge on algebraic or more general Darboux integrability it is useful to
have a large number of examples to analyze. In the literature, scattered isolated examples were
analyzed but a more systematic approach is still needed.

This more systematic approach was initiated in the papers of Schlomiuk and Vulpe
(SCHLOMIUK; VULPE, 2008b), (SCHLOMIUK; VULPE, 2008c), (SCHLOMIUK; VULPE,
2008a), (SCHLOMIUK; VULPE, 2008d) and (SCHLOMIUK; VULPE, 2004) where they
classified topologically the phase portraits of quadratic systems with invariant lines of at least
four total multiplicity as well as the quadratic systems with the line at infinity filled up with
singularities and proved their Liouvillian integrability.

In (OLIVEIRA et al., 2017) the authors classified the family QSH of non-degenerate
quadratic differential systems possessing an invariant hyperbola according to “configurations
of invariant hyperbolas and lines". They proved that the family QSH is geometrically rich as
it has 205 distinct configurations of invariant hyperbolas (see Chapter 3). The authors did not
study the integrability of the systems in this family. We do this in this work. This family is very
interesting since it displays a considerable amount of systems of various kinds of integrability
as we see in the next chapters. This thesis is motivated by the desire to explore the relationship
between the integrability according to the theory of Darboux and the geometric properties of the
configurations of invariant curves of a system. We believe that the data and results collected in
our work will be pertinent for the deeper exploration of the Darboux theory of integrability.

The work is organized as follows:

In Chapter 2 we give an overview of Darboux theory, including all essential new notions
not used in Darboux’ work, as well as new results, extensions of his theory.

In Chapter 3 we discuss the class QSH, that is, the class of non-degenerate planar
quadratic systems possessing at least one invariant hyperbola. We list all the normal forms
of QSH (given in (OLIVEIRA et al., 2017)) and we explain briefly how they were split. In
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(OLIVEIRA et al., 2017) the authors also calculated the invariant algebraic curves (lines and
hyperbolas) of each normal form in QSH.

In Chapter 4 we introduce a number of geometrical concepts which are very helpful
in understanding the relation between the geometry of the configuration of invariant algebraic
curves and the integrability of the systems.

In Chapter 5 we present in section 5.1 tables containing the invariant algebraic curves,
exponential factors, cofactors and integrating factors or first integrals (whenever they can be
calculated) for each one of the normal forms in QSH. We also display in these tables the
corresponding normal forms in (OLIVEIRA et al., 2017) as well as the configurations of
invariant algebraic curves and we give information about their integrability. In section 5.2 we
prove the non-integrability for the cases where the number of invariant curves and exponential
factors were not enough to find a first integral or integrating factor for normal forms in QSH.

In Chapter 6 we present a detailed geometric analysis for 22 normal forms in QSH. We
exhibit the bifurcation diagrams of the configurations of invariant algebraic curves as well as
the bifurcation diagrams of the systems and study the interactions between these two kinds of
bifurcations. Phase portraits for quadratic system with an invariant hyperbola and an invariant
straight line were also constructed in (LLIBRE; YU, 2018). However, we point out that the
authors of (LLIBRE; YU, 2018) did not get all of the phase portraits. This is due to the fact that
their normal form for this family misses some of the systems in the family. In this chapter we
point out 16 missing phase portraits. We also point out 1 missing phase portraits in (CAIRÓ;
FEIX; LLIBRE, 1999), 3 missing configurations in (OLIVEIRA et al., 2017) and 1 missing
configuration in (SCHLOMIUK; VULPE, 2008c). Furthermore, we solve the Poincaré problem
of algebraic integrability for 6 of the families studied.

In Chapter 7 we highlight some significant points raised in this work, explain the relation
between the bifurcations of configurations of invariant curves and topological bifurcations, raise
a number of questions and state some problems.

The main results of our work are given in section 3.2 and in Chapter 6.

Interested in studying the integrable systems in QSH from the topological, dynamical
and algebraic geometric viewpoints, we perform the study of three normal forms (H), (J) and
(O) (see section 3.1) of QSH. We construct their topological bifurcation diagrams as well as the
bifurcation diagrams of their configurations of invariant hyperbolas and lines and point out the
relationship between them. We give a global answer to the problem of Poincaré for the normal
form (H) by producing a Diophantine geometric necessary and sufficient condition for a system
in this family to have a rational first integral. This is content of the following paper

OLIVEIRA, R.; SCHLOMIUK, D.; TRAVAGLINI, A.M. Geometry and integrability of

quadratic systems with invariant hyperbolas. Electronic Journal of Qualitative Theory of
Differential Equations, v. 2021, n.6, p. 1-56, 2021.
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The theory of integrability of Darboux has been very much extended and it is now an
active area of research. In surveys it is not usually presented following its conceptual historical
evolution and its significant connections to Poincaré’s problem. Motived by this fact we give, in
a concise way, following the history of the subject, its conceptual development. This is the first
main goal of the paper

OLIVEIRA, R.; SCHLOMIUK, D.; TRAVAGLINI, A.M.; VALLS, C. Geometry, integrabil-

ity and bifurcation diagrams of a family of quadratic differential systems as application of the

Darboux theory of integrability. Submitted, 2021.

Our second goal in this paper is first to display the many aspects of the theory of Darboux
as we have today, by using it for studying the special family of planar quadratic differential
systems possessing an invariant hyperbola, and having either two singular points at infinity or
the infinity filled up with singularities. We investigate the integrability for the normal forms
of this class and we perfom the geometric analysis for the families (P), (Q) (see section 3.1).
Furthermore, we study the interaction between bifurcation of configurations of invariant algebraic
curves and the bifurcation of phase portraits for each one of the normal forms considered. Finally,
we solve the problem of Poincaré of algebraic integrability for some of the normal forms we
studied.

We have a third work, in progress,

OLIVEIRA, R.; SCHLOMIUK, D.; TRAVAGLINI, A.M.; VALLS, C. The interplay between

the geometry and the Darboux integrability of a family of quadratic differential systems with

invariant hyperbolas. Preprint, 2021.

Our objective in this paper is to present the investigation of the integrability of the class
of planar quadratic differential systems possessing an invariant hyperbola, and having three
singular points at infinity and its geometric analysis. The interplay between the geometry of the
systems in this class and their integrability, as well as investigate the solutions for Poincaré’s
problem for this family is the main target of this work.
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CHAPTER

2
THE EXTENSIONS OF DARBOUX THEORY

Poincaré was enthustiastic about the work of Darboux (DARBOUX, 1878) which he
called “oeuvre magistrale" in (POINCARÉ, 1891b). He stated the problem of algebraic inte-
grability which asks to recognize when a polynomial vector field has a rational first integral. In
further exploring the evolution of ideas and development of the theory of Darboux it is important
to mention the connections between this theory and the problem of the center also stated by
Poincaré in (POINCARÉ, 1885). These connections have done much to draw attention to the
theory of Darboux and its unifying power in proving integrability of families of polynomial
systems. We indicate here some of these connections as well as the story of the solution of the
problem of the center for quadratic systems and in proving their integrability in a unified way by
the method of Darboux.

For quadratic systems the problem of the center was solved by Dulac. But unlike Poincaré,
Dulac considered differential systems defined over C. In (DULAC, 1904) he defined the following
notion of center: A singular point of a planar holomorphic differential system with non-zero

eigenvalues is a center if and only if the quotient of its eigenvalues is negative and rational and

the system has a local analytic first integral. In his paper (DULAC, 1908), Dulac mentions that
the general case is more difficult to treat, he supposes that the quotient of the eigenvalues is −1.
Placing the singular point at the origin, he used the following normal form for quadratic systems:

ẋ = x+a20x2 +a11xy+a02y2

ẏ =−y+b20x2 +b11xy+b02y2.

To solve the problem of the center for quadratic systems means to find necessary and sufficient
conditions in terms the coefficients ai j and bi j so that the origin be a center. He solved this
problem in (DULAC, 1908) by using the method of integration of Darboux.

This work of Dulac could not be readily applied for real systems. Indeed, in the normal
form considered by Dulac, if we assume that the coefficients of the equations are real than this
real system has a saddle at the origin and we cannot pass from this normal form to the normal
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form used by Poincaré (where the linear terms of the two equations are respectively −y, x) by a
real linear transformation. Thus the conditions for the center obtained by Dulac cannot be readily
used in the case of real systems for centers as defined by Poincaré.

The first major result after the publication of the work of Darboux followed up by the
work of Poincaré and Dulac was a result of Jouanolou published a century after Darboux’ work.
In (JOUANOLOU, 1979) Jouanolou gave a sufficient condition for algebraic integrability.

Theorem 9. (JOUANOLOU, 1979) Consider a polynomial system (1.1) of degree n and suppose
that it admits m invariant algebraic curves fi(x,y) = 0 where fi ∈ C[x,y] and 1≤ i≤ m, then if

m≥ 2+ n(n+1)
2 , there exists integers N1,N2, ...,Nm not all zero such that I(x,y) =

m

∏
i=1

f Ni
i is a first

integral of (1.1).

In the previous chapter we mentioned only three types of first integrals: polynomial,
rational and Darboux first integrals (which could be rational or transcendental). But we have
other types of first integrals in this hierarchy, for instance, the elementary first integrals. Roughly
speaking these are functions which are constructed by using addition, multiplication, composition
of finitely many rational functions, trigonometric and exponential functions and their inverses.
In general, elementary first integrals are defined in the context of differential algebra (for more
details see (CHRISTOPHER; LLIBRE, 1999)).

Definition 10. 1) A derivation over a ring A is an operation δ : A→ A such that, for all
x,y ∈ A we have:

δ (x+ y) = δ (x)+δ (y), δ (xy) = δ (x)y+ xδ (y).

2) A differential field is a pair (F,δ ) where F is a field and δ is a derivation δ : F → F.

3) A set of differential fields (Fi,δi) where i ∈ {0,1, ...,n} is called a tower of differential

fields if

F0 ⊂ F1 ⊂ ...⊂ Fn

and δi : Fi→ Fi where δi−1 = δi |Fi−1 for all i ∈ {0,1, ...,n}.

This next tower of fields, arise by adding exponentials, logarithms or the solutions of
algebraic equations based on the previous set of functions.

Definition 11. Consider the tower of fields Fi = F0(θ1, ...,θi), where one of the following holds:

(i) δθi = θiδg, for some g ∈ Fi−1 and for each derivation δ .

(ii) δθi = g−1
δg, for some g ∈ Fi−1 and for each derivation δ .

(iii) θi is algebraic over Fi−1.
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We say that F is an elementary extension of F0 if there exists a tower of differential fields (Fi,δi)

where i ∈ {0,1, ...,n} such that F = Fn.

Definition 12. The set of all elements of a differential field which are annihilated by all the
derivations of the field is called field of constants.

We shall always assume that the field of constants is algebraically closed.

Definition 13. We say that system (1.1) has an elementary first integral if there is an element u

in an elementary extension field of the field of rational functions C(x,y) with the same field of
constants such that δu = 0.

The derivations on C(x,y) are of course d/dx and d/dy.

The next result was obtained by Prelle and Singer in 1983 and it involves elementary
first integrals. The original result was stated for more general vector fields in Cn in differential
algebra language. Here we consider only the case of planar differential systems (1.1).

Theorem 14. (PRELLE; SINGER, 1983) If a polynomial differential system (1.1) has an
elementary first integral, then the system has a first integral of the following form:

f (x,y)+ c1log( f1(x,y))+ c2log( f2(x,y))+ ...+ cklog( fk(x,y))

where f and fi, are algebraic functions over C(x,y) and ci ∈ C, i = 1,2, . . .k.

Taking the exponential of the above expression we obtain the following Corollary:

Corolário 1. If a polynomial differential system (1.1) possesses an elementary first integral then
it also admits a first integral of the form:

e f (x,y) f1(x,y)c1 f2(x,y)c2 . . . f ck
k .

where f and fi, are algebraic functions over C(x,y) and ci ∈ C, i = 1,2, . . .k.

The expression for the first integral in this result differs from a Darboux first integral
by the exponential factor e f (x,y) which appears in the first integral for the first time, though not
explicitly, in Prelle-Singer’s paper and also fi’s are here algebraic and not just polynomials over
C.

In (PRELLE; SINGER, 1983) Prelle and Singer talk about “Algorithmic considerations”
and they say:

The preceding work was motivated by our desire to develop a decision procedure for

finding elementary first integrals. These results show that we need only look for elementary inte-

grals of a prescribed form. In this section we shall discuss the problem of finding an elementary
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first integral for a two-dimensional autonomous system of differential equations and reduce this

problem to that of bounding the degrees of algebraic solutions of this system.

Their algorithm was based on the following two propositions:

Proposition 15. (PRELLE; SINGER, 1983) If the planar system (1.1) has an elementary first
integral, then there exists an integer n and an invariant algebraic curve f such that

P fx +Q fy =−n(Px +Qy) f .

Proposition 16. If the equations of (1.1) have an elementary first integral, then there exists an
element R algebraic over C(x,y) such that RxP+RyQ =−(Px +Qy)R.

The next result is a version of the Prelle-Singer algorithm provided in (GORIELY, 2001).

Theorem 17. (PRELLE; SINGER, 1983), (GORIELY, 2001)

(1) Let N = 1.

(2) Find all the invariant algebraic curves C : f (x,y) = 0 with

P fx +Q fy = K f

such that K(x,y) ∈ C[x,y] and deg( f )≤ N.

(3) Decide if there exist constants λ1,λ2, ...,λm ∈ C, not all zero, such as

m

∑
i=0

λiKi = 0,

where Ki is cofactor of a curve fi found in (2). If such λi’s exist, then I =
m

∏
i=0

fi
λi is a first

integral. Otherwise, go to (4).

(4) Decide if there exist constants λ1,λ2, ...,λm ∈ C, not all zero, such as

m

∑
i=0

λiKi =−(Px +Qy),

where Ki is cofactor of a curve fi found in (2).

If such λi’s exist, then R=
m

∏
i=0

fi
λi is an integrating factor and a first integral can be obtained

by integrating the equations:
Ix = RQ

Iy =−RP.

If such λi’s do not exist, return to (1) increasing N by 1 and continue the process.
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There is still another type of first integrals we need to mention, the Liouvillian first

integrals. In (SINGER, 1992) Singer describes Liouvillian functions as follows: Liouvillian
functions are functions that are built up from rational functions using exponentiation, integration,
and algebraic functions.

In general, Liouvillian functions are defined in the context of differential algebra (for
more details see (CHRISTOPHER; LLIBRE, 1999)).

Definition 18. We say that an extension Fn is a Liouvillian extension of F0 if there is a tower of
differential fields as in Definition 11 which satisfies conditions (i), (iii) or

(ii)
′
δkθi = hk for some elements hk ∈ Fi−1 such that δkh j = δ jhk.

This last condition, mimics the introduction of line integrals into the class of functions.
Clearly (ii) is included in (ii)

′
.

This class of functions represents those functions which are obtainable “by quadratures”.

Definition 19. An element u of a Liouvillian extension field of C(x,y) with the same field of
constants is said to be a Liouvillian first integral.

The following result was proved by Singer in 1992.

Theorem 20. (SINGER, 1992) If the system (1.1) has a Liouvillian first integral, then it has an
integrating factor of the form

e
∫

Udx+V dy, Uy =Vx,

where U and V are rational functions over C[x,y].

A consequence of Singer’s theorem is the following.

Corolário 2. (SINGER, 1992) A system of differential equations (1.1) has a Liouvillian first
integral if and only if it has an integrating factor of the form

R(x,y) = e
∫

Udx+V dy, Uy =Vx (U,V are rational function over C[x,y])

in which case
F(x,y) =

∫
R(x,y)Q(x,y)dx−R(x,y)P(x,y)dy

is a Liouvillian first integral.

It is important to mention that a Liouvillian integrable system does not necessarily have
an affine (finite) invariant algebraic curve. An example of such a polynomial differential system
is presented in (GINÉ; LLIBRE, 2012).

The following notion was defined by Christopher in 1994 (see (CHRISTOPHER, 1994))
where he called it “degenerate invariant algebraic curve".
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Definition 21. Let F(x,y) = exp
(

G(x,y)
H(x,y)

)
with G, H ∈ C[x,y] coprime. We say that F is an

exponential factor of system (1.1) if it satisfies the equality

FxP+FyQ = LF, (2.1)

for some L ∈ C[x,y]. The polynomial L is called the cofactor of the exponential factor F .

Proposition 22. (CHRISTOPHER, 1994) If F = exp(G/H) is an exponential factor of system
(1.1) with cofactor L then H = 0 is an invariant algebraic curve of the system (1.1) with cofactor
KH and G satisfies the equation

PGx +QGy = KHG+LH, where G,H,L,KH ∈ C[x,y]. (2.2)

See (CHRISTOPHER; LLIBRE, 2000) for a detailed proof.

We need the following concept for the next result.

If S(x,y) =
m−1

∑
i+ j=0

ai jxiy j is a polynomial of degree at most m− 1 with m(m + 1)/2

coefficients in C, then we write S ∈ Cm−1[x,y]. We identify the linear space Cm−1[x,y] with
Cm(m+1)/2 through the isomorphism

S→ (a00,a10,a01, ...,am−1,0,am−2,1, ...,a0,m−1).

Definition 23. (CHAVARRIGA; LLIBRE; SOTOMAYOR, 1997) We say that r singular points
(xk,yk) ∈ C2, k = 1, ...,r of a differential system (1.1) of degree m are independent with respect
to Cm−1[x,y] if the intersection of the r hyperplanes

m−1

∑
i+ j=0

xi
ky j

kai j = 0, k = 1, ...,r,

in Cm(m+1)/2 is a linear subspace of dimension [m(m+1)/2]− r.

We remark that the maximum number of isolated singular points of the polynomial
system (1.1) of degree m is m2 (by Bézout’s Theorem), that the maximum number of independent
isolated singular points of the system is m(m+1)/2, and that m(m+1)/2 < m2 for m≥ 2.

The next result we present is an extension of the theory of Darboux involving the notion
of independent singular points. This result is due to Chavarriga, Llibre and Sotomayor (see
(CHAVARRIGA; LLIBRE; SOTOMAYOR, 1997)).

Theorem 24. (CHAVARRIGA; LLIBRE; SOTOMAYOR, 1997) Assume that a real (complex)
polynomial system of degree m admits q = m(m+1)/2+1− p algebraic solutions fi = 0, i =

1,2, . . .q, not passing through p real (complex) independent singular points (xk,yk), k = 1,2, . . . p,
then the system has a first integral of the form f λ1

1 f λ2
2 . . . f λq

q with λi ∈ R (C).
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Observation 25. (i) This result is interesting because it reduces the number of invariant algebraic
curves we need to have when compared with Darboux’ Theorem.

(ii) The theory of Darboux was formulated by Darboux over the complex projective space. In
(CHAVARRIGA; LLIBRE; SOTOMAYOR, 1997) as in the other extensions of Darboux theory
we mention in this thesis, we deal with the affine Darboux theory done over C. As every system
(1.1) with real coefficients generates a complex system we can apply Darboux theory to systems
with real coefficients and even obtain integrability results leading to a real first integral.

Example 26. {
ẋ = 3+2x2 + xy

ẏ = 3+ xy+2y2.

The line f1(x,y) = x− y = 0 and the hyperbola f2(x,y) = 2+ xy = 0 are invariant for
this system with cofactors K1(x,y) = 2x+2y and K2(x,y) = 3x+3y. Here m = 2 = n and hence
m < n(n+1)/2. Still, the number of curves suffices to compute the first integral H(x,y) = (x−
y)−3/2(2+ xy) although the condition in the theorem of Darboux is not satisfied by this number.
But here we have that the singular points P1,2 =±(−i

√
3, i
√

3) of the system are independent.
Indeed, solving the system H1 = a00− i

√
3a10 + i

√
3a01 = 0, H2 = a00 + i

√
3a10− i

√
3a01 = 0,

we get a00 = 0 and a10 = a01 and hence dim(H1∩H2) = 1. Also f1(Pi) 6= 0 and f2(Pi) 6= 0. So
the points Pi’s are independent. Applying the above theorem we have q = 2, p = 2, n = 2 and
we have q = n(n+1)/2+1− p.

Definition 27. A singular point (x0,y0) of system (1.1) is called weak if the divergence of system
(1.1) at (x0,y0) is zero.

The next result is also a generalization of Darboux’s theorem, now taking into account
exponential factors, independent points and invariants. This result was stated and proved by
Christopher and Llibre in 2000 (CHRISTOPHER; LLIBRE, 2000). An earlier version appeared
in (CAIRÓ; FEIX; LLIBRE, 1999).

Theorem 28. (CHRISTOPHER; LLIBRE, 2000) Suppose that a C−polynomial system (1.1)
of degree m admits p algebraic solutions fi = 0 with cofactors Ki for i = 1, ..., p, q exponential
factors Fj = exp(g j/h j) with cofactors L j for j = 1, ...,q, and r independent singular points
(xk,yk) ∈ C2 such that fi(xk,yk) 6= 0 for i = 1, ..., p and for k = 1, ...,r.

(i) There exist λi,µ j ∈ C not all zero such that

p

∑
i=1

λiKi +
q

∑
j=1

µ jL j = 0,

if and only if the (multi-valued) function

f λ1
1 ... f λp

p Fµ1
1 ...Fµq

q (2.3)
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is a first integral of system (1.1).

(ii) If p+q+ r ≥ [m(m+1)/2]+1, then there exist λi,µ j ∈ C not all zero such that

p

∑
i=1

λiKi +
q

∑
i=1

µ jL j = 0.

(iii) If p+q+ r ≥ [m(m+1)/2]+2, then system (1.1) has a rational first integral, and conse-
quently all trajectories of the system are contained in invariant algebraic curves.

(iv) There exist λi,µ j ∈ C not all zero such that

p

∑
i=1

λiKi +
q

∑
j=1

µ jL j =−div(P,Q),

if and only if function (2.3) is an integrating factor of system (1.1).

(v) If p+q+ r = m(m+1)/2 and the r independent singular points are weak, then function
(2.3) is a first integral if

p

∑
i=1

λiKi +
q

∑
i=1

µ jL j = 0,

or an integrating factor if
p

∑
i=1

λiKi +
q

∑
j=1

µ jL j =−div(P,Q),

under the condition that not all λi,µ j ∈ C are zero.

(vi) If there exist λi,µ j ∈ C not all zero such that

p

∑
i=1

λiKi +
q

∑
j=1

µ jL j =−s

for some s ∈ C\{0}, then the (multi-valued) function

f λ1
1 ... f λp

p Fµ1
1 ...Fµq

q exp(st) (2.4)

is an invariant of system (1.1).

Of course, each irreducible factors of each h j is one of the fi’s.

Definition 29. If system (1.1) has a first integral of the form

H(x,y) = f1
λ1... fp

λpF1
µ1...Fq

µq (2.5)

where fi and Fj are respectively the invariant algebraic curves and exponential factors of a system
(1.1) and λi,µ j ∈ C, then we say that the system is generalized Darboux integrable. We call the
function H a generalized Darboux function.
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Observation 30. In (DARBOUX, 1878) Darboux considered functions of the type (1.6), not of
type (2.5). In recent works functions of type (2.5) were called Darboux functions. Since in this
work we need to pay attention to the distinctions among the various kinds of first integral we call
(1.6) a Darboux and (2.5) a generalized Darboux first integral.

Proposition 31. (DUMORTIER; LLIBRE; ARTÉS, 2006) For a real polynomial system (1.1)
the function exp(G/H) is an exponential factor with cofactor K if and only if the function
exp(G/H) is an exponential factor with cofactor K.

Observation 32. (DUMORTIER; LLIBRE; ARTÉS, 2006) If among exponential factors of
the real system (1.1) a complex pair F = exp(G/H) and F = exp(G/H) occurs, then the first
integral (2.5) has a real factor of the form

(exp(G/H))µ
(
exp(G/H)

)µ
= exp(2 Re(µ(G/H))) ,

where µ ∈ C and Im(µ)Im(F) 6= 0. This means that function (2.5) is real when system (1.1) is
real.

Considering the definition of generalized Darboux function we can rewrite Corollary 2
as follows.

Theorem 33. (SINGER, 1992), (CHRISTOPHER, 1994) A planar polynomial differential
system (1.1) has a Liouvillian first integral if and only if it has a generalized Darboux integrating
factor.

For a proof see also (ZHANG, 2017), page 134.

We can also state easily the following result of Preller-Singer.

Theorem 34. (PRELLE; SINGER, 1983), (CHAVARRIGA et al., 2003) If a planar polynomial
vector field (1.2) has a generalized Darboux first integral, then it has a rational integrating factor.

In 2019, a converse of the previous result was proved in (CHRISTOPHER et al., 2019)
as a consequence of (ROSENLICHT, 1976).

Theorem 35. (CHRISTOPHER et al., 2019) If a planar polynomial vector field (1.2) has a
rational integrating factor, then it has a generalized Darboux first integral.

We have the following table summing up these results.

First integral Integrating factor

Generalized Darboux ⇔ Rational

Liouvillian ⇔ Generalized Darboux
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To study how the integrability change within families of polynomial differential systems
we must consider perturbations in a system of such a family. For instance, if we have a system
possessing two invariant algebraic curve we could have, after a perturbation, that one of this
invariant curves splits in several others. Or we could also have the coalescence of these two
invariant curves. So there arises the necessity of the concept that today is known as multiplicity

of an invariant algebraic curve.

Suppose that a polynomial differential system has an algebraic solution f (x,y) = 0 where
f (x,y) ∈ C[x,y] is of degree n given by

f (x,y) = c0 + c10x+ c01y+ c20x2 + c11xy+ c02y2 + ...+ cn0xn + cn−1,1xn−1y+ ...+ c0nyn,

with ĉ = (c0,c10, ...,c0n) ∈ CN where N = (n+ 1)(n+ 2)/2. Consider PN−1(C) the complex
projective space of degree N−1. We note that the equation

λ f (x,y) = 0, λ ∈ C∗ = C−{0}

yields the same locus of complex points in the plane as the locus induced by f (x,y) = 0.
Therefore, a curve of degree n is defined by ĉ where

[ĉ] = [c0 : c10 : ... : c0n] ∈ PN−1(C).

We say that a sequence of curves fi(x,y) = 0, each one of degree n, converges to a curve
f (x,y) = 0 if and only if the sequence of points [ci] = [ci0 : ci10 : ... : ci0n] converges to [ĉ] = [c0 :
c10 : ... : c0n] in the topology of PN−1(C).

We observe that if we rescale the time t ′ = λ t by a positive constant λ the geometry of
the systems (1.1) (phase curves) does not change. So for our purposes we can identify a system
(1.1) of degree n with a point

[a0 : a10 : ... : a0n : b0 : b10 : ... : b0n] ∈ SN−1(R)

where N = (n+1)(n+2). We compactify the space of all the polynomial differential systems of
degree n on SN−1 by multiplying the coefficients of each system with 1/(∑(a2

i j +b2
i j))

1/2.

Definition 36. (SCHLOMIUK; VULPE, 2004)

(1) We say that an invariant curve

L : f (x,y) = 0, f ∈ C[x,y]

for a polynomial system (S) of degree n has geometric multiplicity m if there exists a
sequence of real polynomial systems (Sk) of degree n converging to (S) in the topology of
SN−1(R) where N = (n+1)(n+2) such that each (Sk) has m distinct invariant curves

L1,k : f1,k(x,y) = 0, ...,Lm,k : fm,k(x,y) = 0

over C, deg( f ) = deg( fi,k) = r, converging to L as k→ ∞, in the topology of PR−1(C),
with R = (r+1)(r+2)/2 and this does not occur for m+1.
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(2) We say that the line at infinity
L∞ : Z = 0

of a polynomial system (S) of degree n has geometric multiplicity m if there exists a
sequence of real polynomial systems (Sk) of degree n converging to (S) in the topology of
SN−1(R) where N = (n+1)(n+2) such that each (Sk) has m−1 distinct invariant lines

L1,k : f1,k(x,y) = 0, ...,Lm−1,k : fm−1,k(x,y) = 0

over C, converging to the line at infinity L∞ as k→ ∞, in the topology of P2(C) and this
does not occur for m.

In 2007 the authors of (CHRISTOPHER; LLIBRE; PEREIRA, 2007) introduced the
following notion of geometric multiplicity:

Definition 37. (CHRISTOPHER; LLIBRE; PEREIRA, 2007) Consider χ a polynomial vector
field of degree d. An invariant algebraic curve f = 0 of degree n of the vector field χ has
geometric multiplicity m if m is the largest integer for which there exists a sequence of vector
fields (χi)i>0 of bounded degree, converging to hχ , for some polynomial h, not divisible by
f , such that each χr has m distinct invariant algebraic curves, fr,1 = 0, fr,2 = 0, ..., fr,m = 0, of
degree at most n, which converge to f = 0 as r goes to infinity. If h = 1, then we say that the
curve has strong geometric multiplicity m.

Definition 38. (PEREIRA, 2001), (CHRISTOPHER; LLIBRE; PEREIRA, 2007) Let Cm[x,y] be

the C-vector space of polynomials in C[x,y] of degree at most m and of dimension R=

(
2+m

2

)
.

Let {v1,v2, ...,vR} be a base of Cm[x,y]. We denote by MR(m) the R×R matrix

MR(m) =


v1 v2 ... vR

χ(v1) χ(v2) ... χ(vR)

: : . . . :
χ

R−1(v1) χ
R−1(v2) ... χ

R−1(vR)

 , (2.6)

where χ
k+1(vi) = χ(χk(vi)). The mth extactic curve of χ , Em(χ), is given by the equation

detMR(m) = 0. We also call Em(χ) the mth extactic polynomial.

From the properties of the determinant we note that the extactic curve is independent of
the choice of the base of Cm[x,y].

Theorem 39. (PEREIRA, 2001) Consider a planar vector field (1.2). We have Em(χ) = 0 and
Em−1(χ) 6= 0 if and only if χ admits a rational first integral of exact degree m.

Observe that if f = 0 is an invariant algebraic curve of degree m of χ , then f divides
Em(χ). This is due to the fact that if f is a member of a base of Cm[x,y], then f divides the whole
column in which f is located.
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Definition 40. (CHRISTOPHER; LLIBRE; PEREIRA, 2007) We say that an invariant algebraic
curve f = 0 of degree m≥ 1 has algebraic multiplicity k if detMR(m) 6= 0 and k is the maximum
positive integer such that f k divides detMR(m); and it has no defined algebraic multiplicity if
detMR(m)≡ 0.

Definition 41. (CHRISTOPHER; LLIBRE; PEREIRA, 2007) We say that an invariant algebraic
curve f = 0 of degree m≥ 1 has integrable multiplicity k with respect to χ if k is the largest integer
for which the following is true: there are k−1 exponential factors exp(g j/ f j), j = 1, ...,k−1,
with degg j ≤ jm, such that each g j is not a multiple of f .

In the next result we see that the algebraic and integrable multiplicity coincide if f = 0
is an irreducible invariant algebraic curve.

Theorem 42. (CHRISTOPHER; LLIBRE; PEREIRA, 2007) Consider an algebraic solution
f = 0 of degree m≥ 1 of χ . Then f has algebraic multiplicity k if and only if the vector field
(1.2) has k− 1 exponential factors exp(g j/ f j), where (g j, f ) = 1 and g j is a polynomial of
degree at most jm, for j = 1, ...,k−1.

In (CHRISTOPHER; LLIBRE; PEREIRA, 2007) the authors show that the definitions
of geometric, algebraic and integrable multiplicity are equivalent when f = 0 is an algebraic
solution of the vector field (1.2). The algebraic multiplicity has the advantage that we have
the possibility of calculating it via the extactic curve and if the curve is irreducible then this
coincides with either the integrable (reflected in the exponential factors) or the geometric one.
Christopher, Llibre and Pereira also stated and proved the following theorem about Darboux
theory of integrability that takes into account the multiplicity of the invariant algebraic curves.

Theorem 43. (CHRISTOPHER; LLIBRE; PEREIRA, 2007) Consider a planar vector field
(1.2). Assume that (1.2) has p distinct irreducible invariant algebraic curves fi = 0, i = 1, ..., p of

multiplicity mi, and let N =
p

∑
i=1

mi. Suppose, furthermore, that there are q critical points p1, ..., pq

which are independent with respect to Cm−1[x,y], and f j(pk) 6= 0 for j = 1, ..., p and k = 1, ...,q.
We have:

(a) If N +q≥ [m(m+1)/2]+2, then χ has a rational first integral.

(b) If N +q≥ [m(m+1)/2]+1, then χ has a Darboux first integral.

(c) If N +q≥ [m(m+1)/2] and p1 are weak, then χ has either a Darboux first integral or a
Darboux integrating factor.

This theorem was generalized by Llibre and Zhang in (LLIBRE; ZHANG, 2009a) for
invariant hypersurfaces in Cn. In the same paper they also generalized the theorem of Jouanolou
and gave a simplified, elementary proof.
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We consider now the result of Llibre and Zhang in (LLIBRE; ZHANG, 2009b). To state
it the authors generalized the Poincaré compactification on the sphere for planar differential
systems to the Poincaré compactification of polynomial differential systems in Rn which they
constructed in the Appendix of (LLIBRE; ZHANG, 2009b).

To talk about multiplicity of the hyperplane at infinity they only needed to pass by central
projection from the systems in Rn, considered as the hyperplane Z = 1 in Rn+1 tangent to the
n-sphere with radius 1 centered at the origin of Rn+1, and then further into the chart x1 = 1 and
obtain (x1, . . . ,xn,1) = λ (1,y2, . . . ,yn,Z) for some non-zero real λ . Hence we must have λ = x1

and therefore y2 = x2/x1,. . . , yn = xn/x1, Z = 1/x1 and x1 = 1/Z, x2 = y2/Z,. . . , xn = yn/Z.
Transferring the vector field in this chart we obtain that it has a pole on Z = 0. In complete
analogy with the compactification of the plane we can obtain an analytic vector field on the
n-sphere which is conjugate to the vector field thus obtained. In this way our initial hyper-surface
at infinity, becomes just an affine hypersurface in the chart x1 = 1 and hence we can apply to it
our notions of multiplicity. Let χ = (P1(x),P2(x), ...,Pn(x)) be the expression of the compactified
vector field χ . We say that the infinity of χ has algebraic multiplicity k if Z = 0 has algebraic
multiplicity k for the vector field χ ; and that it has no defined algebraic multiplicity if Z = 0 has
no defined algebraic multiplicity for χ . One thing the authors did not say is that this definition of
the multiplicity of the infinite hypersurface does not depend on the chart x1 we chose, and that it
leads to the same value if we replace this chart by any other chart xi = 1 with i 6= 1.

Theorem 44. (LLIBRE; ZHANG, 2009b) Let χ be the expression of the compactified vector
field χ . Assume that χ restricted to Z = 0 has no rational first integral. Then Z = 0 has algebraic
multiplicity k for χ if and only if χ has k−1 exponential factors exp(g j/Z j) where j = 1, ...,k−1
with g j ∈ C j[Z,y2, ...,yn] having no factor Z.

The next result provides a relation between the exponential factors of χ and those of χ

associated with Z = 0.

Proposition 45. (LLIBRE; ZHANG, 2009b) For the exponential factors associated with the
hyperplane at infinity the following statements hold.

(a) If E = exp(g(x)) with g a polynomial of degree k is an exponential factor of χ with
cofactor LE(x), then E = exp

(
g

Zk

)
with g = Zkg

( 1
Z ,

y2
Z , ...,

yn
Z

)
is an exponential factor of

χ with cofactor LE = Zd−1LE
( 1

Z ,
y2
Z , ...,

yn
Z

)
.

(b) Conversely if F = exp
(

h
Zk

)
with h ∈ Rk[Z,y2, ...,yn] is an exponential factor of χ with

cofactor LF , then F = exp(h(x)) with h(x) = xkh
(

1
x1
, x2

x1
, ..., xn

x1

)
is an exponential factor

of χ with cofactor LF = xd−1LF

(
1
x1
, x2

x1
, ..., xn

x1

)
.

The following result was proved in 2009 by Llibre and Zhang.
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Theorem 46. (LLIBRE; ZHANG, 2009b) Assume that the polynomial vector field χ in Rn of
degree d > 0 has irreducible invariant algebraic hypersurfaces fi = 0 for i = 1, ..., p and the
invariant hyperplane at infinity.

(i) If one of these irreducible invariant algebraic hypersurfaces or the invariant hyperplane
at infinity has no defined algebraic multiplicity, then the vector field χ has a rational first
integral.

(ii) Suppose that all the irreducible invariant algebraic hypersurfaces fi = 0 have algebraic
multiplicity mi for i = 1, ..., p and that the invariant hyperplane at infinity has algebraic
multiplicity k. If the vector field restricted to the hyperplane at infinity or any invariant
hypersurface with multiplicity larger than 1 has no rational first integrals, then the following
hold

(a) If
p

∑
i=1

mi + k = N +2, then the vector field χ has a real Darboux first integral, where

N =
( n+d−1

n

)
.

(b) If
p

∑
i=1

mi + k = N +n+1, then (1.2) has a real rational first integral.

For two-dimensional polynomial vector fields, the additional condition in Theorem 46 on
the nonexistence of rational first integrals of the vector field restricted to the invariant algebraic
curves including the line at infinity is not necessary.

Darboux constructed his theory over the complex projective space which we think
is the natural field and natural space for this theory. Firstly the complex numbers form an
algebraically closed field. So an essential ingredient in his theory, the theory of algebraic curves,
can be properly done (Bézout theorem cannot be proved over the reals). Secondly the complex
projective plane is a compact space and in particular "the line at infinity" of the affine plane
completely looses its special status in the projective plane. It is like any other line.

On the other hand it is important to observe that when we consider the theory of Darboux
for real systems, we can go to their complexification and these systems could have complex
invariant algebraic curves f (x,y) = 0 with f ∈ C[x,y]. We can therefore end up with more
invariant curves than those with real coefficients. Let us consider an example.

Example 47. {
ẋ = x2 +1
ẏ = x+ y.

This system clearly has two invariant lines which are complex x± i = 0 with respective
co-factors x∓ i. It can easily be checked that the line at infinity has the multiplicity two. So the
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total multiplicity of invariant lines over C is four. This system was proved to be integrable in
(SCHLOMIUK; VULPE, 2008c) having the inverse Darboux integrating factor

(x+ i)1+i/2(x− i)1−i/2.

Let us now consider this real system without taking into consideration its complexifica-
tion. Suppose now that we want to prove just by using real curves that the system is integrable.
The lines x± i = 0 are defined over C and it is only their union, the conic x2 +1 = 0 which is
defined over R. This is an invariant curve of the real system with the cofactor α1 = 2x. We also
have an exponential factor eg0+g2y with cofactor α2 = g2(x+ y) where g0,g2 ∈ C. However this
is insufficient for proving integrability as we can check by trying to apply the usual algorithm for
computing an integrating factor. Indeed, considering λ1,λ2 ∈ C such that

λ1 α1 +λ2 α2 =−div(P1,Q1)

(2λ1 +g2λ2)x+g2λ2y =−2x−1,

this equality does not have a solution. So although the real system is integrable and has a real
first integral, we cannot compute this real first integral without considering the two invariant
lines. So this supports the idea that the full extension of the Darboux theory that also covers the
line at infinity with its own multiplicity cannot produce all the real integrable systems.

In conclusion we really need an extension of the Darboux theory over C that includes
the multiplicity of the line at infinity.
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CHAPTER

3
THE FAMILY QSH OF QUADRATIC

DIFFERENTIAL SYSTEMS WITH AN
INVARIANT HYPERBOLA

The notion of configuration of invariant curves of a polynomial differential system
appears in several works, see for instance (SCHLOMIUK; VULPE, 2004).

Definition 48. (SCHLOMIUK; VULPE, 2004) Consider a real planar polynomial system (1.1)
with a finite number of singular points. By configuration of algebraic solutions of the system we
mean a set of algebraic solutions over C of the system, each one of these curves endowed with
its own multiplicity and together with all the real singular points of this system located on these
curves, each one of these singularities endowed with its own multiplicity.

Definition 49. (OLIVEIRA et al., 2017) Suppose we have two systems (S1), (S2) in QSH with a
finite number of singularities, finite or infinite, a finite set of invariant hyperbolas H 1

i : h1
i (x,y) =

0, i = 1, ...,k of (S1) (respectively H 2
i : h2

i (x,y) = 0, i = 1, ...,k of (S2)) and a finite set (which
could also be empty) of invariant straight lines L1

j : g1
j(x,y) = 0, j = 1, ...,k′ of (S1) (respectively

L2
j : g2

j(x,y) = 0, j = 1, ...,k′ of (S2)). We say that the two configurations C1, C2 of hyperbolas
and lines of these systems are equivalent if there is a one-to-one correspondence Φh between the
hyperbolas of C1 and C2 and a one-to-one correspondence Φl between the lines of C1 and C2

such that:

(i) the correspondences conserve the multiplicities of the hyperbolas and lines (in case there
are any) and also send a real invariant curve to a real invariant curve and a complex
invariant curve to a complex invariant curve;

(ii) for each hyperbola H : h(x,y) = 0 of C1 (respectively each line L : g(x,y) = 0) we have a
one-to-one correspondence between the real singular points on H (respectively on L) and
the real singular points on Φh(H ) (respectively Φl(L)) conserving their multiplicities,
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their location on branches of hyperbolas and their order on these branches (respectively on
the lines);

(iii) Furthermore, consider the total curves F 1 : ∏H1
i (X ,Y,Z)∏G1

j(X ,Y,Z)Z = 0 (respec-
tively F 2 : ∏H2

i (X ,Y,Z)∏G2
j(X ,Y,Z)Z = 0 where H1

i (X ,Y,Z) = 0, G1
j(X ,Y,Z) = 0

(respectively H2
i (X ,Y,Z) = 0, G2

j(X ,Y,Z) = 0) ) are the projective completions of H 1
i , L1

j

(respectively H 2
i , L2

j ). Then, there is a one-to-one correspondence ψ between the singu-
larities of the curves F 1 and F 2 conserving their multiplicities as singular points of the
total curves.

This notion was used in (SCHLOMIUK; VULPE, 2008b), (SCHLOMIUK; VULPE,
2008c), (SCHLOMIUK; VULPE, 2008a), (SCHLOMIUK; VULPE, 2008d), (SCHLOMIUK;
VULPE, 2004) and (OLIVEIRA et al., 2017) also to classify systems in QS possessing invariant
algebraic curves according to the kind of configurations these systems could possess. In particular,
in the last one (OLIVEIRA et al., 2017), QSH was classified according to the configuration
of invariant hyperbolas and lines the systems possess. This classification led to 205 distinct
configurations. The family QSH is rich, displaying all kinds of Liouvillian integrability and as
well as non-integrable systems.

It is important to assume that the systems (1.3) are non-degenerate because otherwise
doing a time rescaling, they can be reduced to linear or constant systems. Under this assumption
all the systems in QSH have a finite number of finite singular points.

In the family QSH we also have cases where we have an infinite number of hyperbolas.
In these cases, by a Jouanolou result (see Theorem 9 on Chapter 2), we have a rational first
integral.

In (OLIVEIRA et al., 2017) the authors study the class QSH of non-degenerate quadratic
differential systems having an invariant hyperbola. They classified the family QSH, according to
their geometric properties encoded in the configurations of invariant hyperbolas and invariant
straight lines which these systems possess. If a quadratic system has an infinite number of
hyperbolas then the system has a finite number of invariant affine straight lines (see (ARTÉS;
GRÜNBAUM; LLIBRE, 1998)). Therefore, we can talk about equivalence of configurations of

the invariant affine lines associated to the system. Given two such configurations C1l and C2l

associated to systems (S1) and (S2) of (1.1), we say they are equivalent if and only if there is a
one-to-one correspondence Φ between the lines of C1l and C2l such that:

(i) the correspondence preserve the multiplicities of the lines and also sends a real (respectively
complex) invariant line to a real (respectively complex) invariant line;

(ii) for each line L : g(x,y) = 0 we have a one-to-one correspondence between the real singu-
larities on L and the real singularities on Φ preserving their multiplicities and their order
on the lines.
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Definition 50. (OLIVEIRA et al., 2017) Consider two systems (S1) and (S2) in QSH each
one with an infinite number of invariant hyperbolas. Consider the configurations C1l and C2l of
invariant affine straight lines L1

j : g1
j(x,y) = 0 where j = 1,2, ...,k of system (S1) and respectively

L2
j : g2

j(x,y) = 0 where j = 1,2, ...,k of system (S2). We say that the two configurations C1l and
C2l are equivalent with respect to the hyperbolas of the systems if and only if:

(i) they are equivalent as configurations of invariant lines, and

(ii) taking any hyperbola H1 : h1(x,y) = 0 of (S1) and any hyperbola H2 : h2(x,y) = 0 of (S2),
then we must have a one-to-one correspondence between the real singularities of system
(S1) located on H1 and of real singularities of system (S2) located on H2, preserving their
multiplicities, their location and order on branches.

Furthermore, consider the curves F1 : ∏h1(x,y)∏g1
j = 0 and F2 : ∏h2(x,y)∏g2

j =

0. Then, we have a one-to-one correspondence between the singularities of the curve F1 with
those in the curve F2 preserving their multiplicities as singularities of these curves.

The definition above is independent of the choice of the two hyperbolas H1 : h1(x,y) = 0
of (S1) and H2 : h2(x,y) = 0 of (S2).

Here we introduce some invariant polynomials that play an important role in the study
of polynomial vector fields. Considering C2(ã,x,y) = yp2(ã,x,y)− xq2(ã,x,y) as a cubic binary
form of x and y we calculate

η(ã) = Discrim[C2,ξ ], M(ã,x,y) = Hessian[C2],

where ξ = y/x or ξ = x/y. It is known that the singular points at infinity of quadratic systems
are given by the solutions in x and y of C2(ã,x,y) = 0. If η < 0 then this means we have one real
singular point at infinity and two complex ones.

Observation 51. We note that since a system in QSH always has an invariant hyperbola then
clearly we always have at least 2 real singular points at infinity. So we must have η ≥ 0.

The family QSH can be splitted as: QSH(η=0) of systems which possess either exactly
two distinct real singularities at infinity or the line at infinity filled up with singularities and
QSH(η>0) of systems which possess three distinct real singularities at infinity in P2(C).

In (OLIVEIRA et al., 2017) the authors give necessary and sufficient conditions for a
quadratic system to have an invariant hyperbola. These conditions were given in terms of 59
affine invariant polynomial so they are independent of the normal forms in which the systems
may be presented. For the sake of completeness, we give below in the following tables these
conditions.
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In the next two tables (i) and (ii) we present in the first column the number associated
with the equations in (OLIVEIRA et al., 2017), which are the normal forms for the systems in
QSH. In the second column are the necessary and sufficient conditions.

For a proof see (OLIVEIRA et al., 2017).

(i) η > 0

Equations Invariants

(3.4) [η > 0,θ 6= 0],β1 6= 0,β 2
2 +β

2
3 6= 0 (C1),B1 6= 0

(3.25) [η > 0,θ 6= 0],β1 6= 0,C2 [(C2)],χ
(2)
A < 0

[η > 0,θ 6= 0],β1 6= 0,C2 [(C2)],χ
(2)
A > 0

(3.49) [η > 0,θ 6= 0], [β1 = 0],β6 6= 0,C7 [β2 = 0,γ5 = 0,R4 6= 0]

(3.13) [η > 0,θ 6= 0],β1 6= 0,C1 [(C1),B1 = 0],χ(1)
E 6= 0

(3.23) [η > 0,θ 6= 0],β1 6= 0,β 2
2 +β

2
3 6= 0,B1 6= 0

(3.66) [η > 0,θ = 0],N 6= 0,β6 6= 0,β10 6= 0,γ7 = 0,R6 6= 0,B1 6= 0

(3.66) h = 1/3 [η > 0,θ = 0],N 6= 0,β6 6= 0,β10 = 0,γ4 = 0,β2R3 6= 0

(3.66) h = 1/2 [η > 0,θ = 0],N 6= 0,β6 6= 0,β10 6= 0,γ7 = 0,R6 6= 0,B1 = 0

(3.15) a = 1/4h2 [η > 0,θ 6= 0],β1 6= 0,C2 [(C2)],χ
(2)
A = 0

(3.20) [η > 0,θ 6= 0],β1 6= 0,C4 [(C1),B1 = 0,χ(1)
E = 0,B2 = 0]

(3.15) [η > 0,θ 6= 0],β1 6= 0,C1 [(C1),B1 = 0],χ(1)
E = 0,B2 6= 0

(3.29) [η > 0,θ 6= 0],C3 [β1 = 0],β6 6= 0,β2 6= 0,γ4 = 0,R5 6= 0,δ1 6= 0,B1 6= 0

(3.33) [η > 0,θ 6= 0], [β1 = 0],β6 6= 0,β2 6= 0,C5 [δ1 6= 0,B1 = 0],χ(3)
E 6= 0

(3.35) [η > 0,θ 6= 0], [β1 = 0],β6 6= 0,β2 6= 0,C5 [δ1 6= 0,B1 = 0],χ(3)
E 6= 0,B2 6= 0

(3.41) [η > 0,θ 6= 0], [β1 = 0],β6 6= 0,β2 6= 0,C5 [δ1 6= 0,B1 = 0],χ(3)
E 6= 0,B2 = 0

(3.43) [η > 0,θ 6= 0], [β1 = 0],β6 6= 0,β2 6= 0,C6 [δ1 = 0]

(3.50) [η > 0,θ 6= 0], [β1 = 0],C8 [β6 = 0],β7 6= 0,γ5 = 0,R5 6= 0,β 2
8 +δ

2
2 6= 0

(3.50) h = 1/4 [η > 0,θ 6= 0], [β1 = 0,β6 = 0],β7 6= 0,C11 [β8 = δ2 = 0]

(3.55) [η > 0,θ 6= 0], [β1 = 0,β6 = 0],C12 [β7 = 0],β9 6= 0,γ5 = 0,R5 6= 0,δ3 6= 0

(3.58) [η > 0,θ 6= 0], [β1 = 0,β6 = 0],C12 [β7 = 0],β9 6= 0,γ5 = 0,R5 6= 0,δ3 = 0,β8 6= 0

(3.58) h = 1/4 [η > 0,θ 6= 0], [β1 = 0,β6 = 0],C12 [β7 = 0],β9 6= 0,γ5 = 0,R5 6= 0,δ3 = 0,β8 = 0

(3.62) [η > 0,θ 6= 0], [β1 = 0,β6 = 0],C12 [β7 = 0],β9 = 0,γ6 = 0,R5 6= 0

(3.73) [η > 0,θ = 0],N 6= 0 [β6 = 0],β2 6= 0,β7 6= 0,δ4 6= 0,B2 6= 0,C13 [µ0 6= 0]

(3.73) h = 0 [η > 0,θ = 0],N 6= 0 [β6 = 0],β2 6= 0,β7 6= 0,δ4 6= 0,B2 6= 0,C14 [µ0 = 0]

(3.76) [η > 0,θ = 0],N 6= 0 [β6 = 0],β2 6= 0,β7 6= 0,δ4 6= 0,C15 [β2 = 0]

(3.79) [η > 0,θ = 0],N 6= 0 [β6 = 0],β2 6= 0,β7 6= 0,C16 [δ4 = 0]

(3.82) [η > 0,θ = 0],N 6= 0 [β6 = 0],C17 [β2 6= 0,β7 = 0,γ9 = 0,R8 6= 0]

(3.85) [η > 0,θ = 0],N 6= 0 [β6 = 0],C18 [β2 = 0],β7 6= 0,β10 6= 0,γ7γ8 = 0,R5 6= 0,β 2
8 +δ

2
2 6= 0,γ7 = 0

(3.88) [η > 0,θ = 0],N 6= 0 [β6 = 0],C18 [β2 = 0],β7 6= 0,β10 6= 0,γ7γ8 = 0,R5 6= 0,β 2
8 +δ

2
2 6= 0,γ8 = 0

(3.91) [η > 0,θ = 0],N 6= 0 [β6 = 0],C18 [β2 = 0],β7 6= 0,β10 6= 0,γ7γ8 = 0,R5 6= 0,β8 = δ2 = 0
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(3.95) [η > 0,θ = 0],N 6= 0 [β6 = 0],C18 [β2 = 0],β7 6= 0,β10 = 0,R3 6= 0,γ7 6= 0,γ10 < 0,B2 6= 0

(3.95) 4a+ v2 = 0 [η > 0,θ = 0],N 6= 0 [β6 = 0],C18 [β2 = 0],β7 6= 0,β10 = 0,R3 6= 0,γ7 6= 0,γ10 < 0,B2 = 0

(3.97) [η > 0,θ = 0],N 6= 0 [β6 = 0],C18 [β2 = 0],β7 6= 0,β10 = 0,R3 6= 0,γ7 6= 0,γ10 > 0,B2 6= 0

(3.97) 4a− v2 = 0 [η > 0,θ = 0],N 6= 0 [β6 = 0],C18 [β2 = 0],β7 6= 0,β10 = 0,R3 6= 0,γ7 6= 0,γ10 > 0,B2 = 0

(3.97) v = 0 [η > 0,θ = 0],N 6= 0 [β6 = 0],C18 [β2 = 0],β7 6= 0,β10 = 0,R3 6= 0,γ7 6= 0,γ10 = 0

(3.99) [η > 0,θ = 0],N 6= 0 [β6 = 0],C18 [β2 = 0],β7 6= 0,β10 = 0,R3 6= 0,γ7 = 0

(3.102) [η > 0,θ = 0],N 6= 0 [β6 = 0],C18 [β2 = 0],β7 = 0,γ7 = 0,R3 6= 0

(3.105) C19 [η > 0,θ = 0,N = 0],β2 6= 0,β1 = γ11 = 0,R9 6= 0,χ(8)
A < 0

C19 [η > 0,θ = 0,N = 0],β2 6= 0,β1 = γ11 = 0,R9 6= 0,χ(8)
A > 0

(3.105) b = 0 C19 [η > 0,θ = 0,N = 0],β2 6= 0,β1 = γ11 = 0,R9 6= 0,χ(8)
A = 0

(3.107) C19 [η > 0,θ = 0,N = 0],β2 = 0 (C3),γ12 = 0

(3.109) C19 [η > 0,θ = 0,N = 0],β2 = 0 (C3),γ13 = 0,R9 < 0

C19 [η > 0,θ = 0,N = 0],β2 = 0 (C3),γ13 = 0,R9 > 0

(3.109) a = 0 C19 [η > 0,θ = 0,N = 0],β2 = 0 (C3),γ13 = 0,R9 = 0

(ii) η = 0

Equations Invariants

(4.4) η = 0,M 6= 0,θ 6= 0,β2 6= 0,β1 6= 0,R1 6= 0,B1 6= 0

(4.10) η = 0,M 6= 0,θ 6= 0,β2 6= 0,β1 6= 0,R1 6= 0,B1 = 0

(4.11) η = 0,M 6= 0,θ 6= 0,β2 6= 0,β1 = 0,γ1 = 0,R3 6= 0

(4.13) η = 0,M 6= 0,θ 6= 0,β2 = 0,β1 = γ14 = 0,R10 6= 0

(4.13) g = 1/4 η = 0,M 6= 0,θ 6= 0,β2 = 0,β1 = γ14 = 0,R10 6= 0,β7β8 = 0,R10 < 0,β8 = 0

η = 0,M 6= 0,θ 6= 0,β2 = 0,β1 = γ14 = 0,R10 6= 0,β7β8 = 0,R10 > 0,β8 = 0

(4.13) g = 1/2 η = 0,M 6= 0,θ 6= 0,β2 = 0,β1 = γ14 = 0,R10 6= 0,β7β8 = 0,R10 < 0,β7 = 0

η = 0,M 6= 0,θ 6= 0,β2 = 0,β1 = γ14 = 0,R10 6= 0,β7β8 = 0,R10 > 0,β7 = 0

(4.16) η = 0,A1 [M 6= 0,θ = 0],µ0 6= 0,β3 = γ8 = 0,R7 6= 0,χ(7)
A < 0

η = 0,A1 [M 6= 0,θ = 0],µ0 6= 0,β3 = γ8 = 0,R7 6= 0,χ(7)
A > 0

(4.16) c2 = a η = 0,A1 [M 6= 0,θ = 0],µ0 6= 0,β3 = γ8 = 0,R7 6= 0,χ(7)
A = 0

(4.18) η = 0,A1 [M 6= 0,θ = 0],µ0 = 0,N 6= 0,(C1),β12 6= 0,µ2 6= 0

(4.18) g = 0 η = 0,A1 [M 6= 0,θ = 0],µ0 = 0,N 6= 0,(C1),β12 6= 0,µ2 = 0,γ16 6= 0

(4.18) c = 0 η = 0,A1 [M 6= 0,θ = 0],µ0 = 0,N 6= 0,(C1),β12 6= 0,µ2 = 0,γ16 = 0

(4.22) η = 0,A1 [M 6= 0,θ = 0],µ0 = 0,N 6= 0,(C1),β12 = 0,γ17 < 0

η = 0,A1 [M 6= 0,θ = 0],µ0 = 0,N 6= 0,(C1),β12 = 0,γ17 > 0

(4.22) ε = 0 η = 0,A1 [M 6= 0,θ = 0],µ0 = 0,N 6= 0,(C1),β12 = 0,γ17 = 0

(4.25) c 6= 0 η = 0,A1 [M 6= 0,θ = 0],µ0 = 0,N = 0,β13 6= 0,γ10 = γ17 = 0,R11 6= 0,γ16 6= 0

(4.25) c = 0 η = 0,A1 [M 6= 0,θ = 0],µ0 = 0,N = 0,β13 6= 0,γ10 = γ17 = 0,R11 6= 0,γ16 = 0

(4.27) η = 0,A1 [M 6= 0,θ = 0],µ0 = 0,N = 0,β13 = 0, γ̃18 = γ̃19 = 0,µ2 6= 0
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(4.28) η = 0,A1 [M 6= 0,θ = 0],µ0 = 0,N = 0,β13 = 0, γ̃18 = γ̃19 = 0,µ2 = 0

(4.30) η = 0,A2 [C2 = 0,M = 0],N7 = 0,H10 6= 0,H9 < 0

η = 0,A2 [C2 = 0,M = 0],N7 = 0,H10 6= 0,H9 > 0

(4.31) η = 0,A2 [C2 = 0,M = 0],N7 = 0,H10 6= 0,H9 = 0

(4.34) η = 0,A2 [C2 = 0,M = 0],N7 = 0,H10 = 0,H12 6= 0,H2 6= 0

(4.36) η = 0,A2 [C2 = 0,M = 0],N7 = 0,H10 = 0,H12 6= 0,H2 = 0

(4.38) η = 0,A2 [C2 = 0,M = 0],N7 = 0,H10 = 0,H12 = 0

In this table we denote by (4.25) the following system that appears in (OLIVEIRA et al.,
2017) without number

ẋ =−3c2

16 + cx− x2, ẏ = 1−2xy.

If c 6= 0 we may assume c = 4 by the rescaling (x,y, t) 7→ (cx/4,4y/c,4t/c). So we obtain the
system denoted by (4.25) in (OLIVEIRA et al., 2017) which we denote here by (4.25) c 6= 0.

3.1 Normal forms in QSH
The normal forms numbered in the tables indicated by the number (3.4) up to (4.38)

and obtained in (OLIVEIRA et al., 2017) appear below in two more condensed tables in the
following two propositions.

Proposition 52. (OLIVEIRA et al., 2017) Every system in QSH(η>0) can be brought by an affine
transformation and time rescaling to one of the following 13 normal forms, where a,g,h,b,v are
real parameters. Next to each normal form we present the respective invariant hyperbola.

{
ẋ = a(2h−1)+ x+gx2 +(h−1)xy

ẏ = a(2g−1)− y+(g−1)xy+hy2,

where a(g−1)(h−1)(3g−1)(3h−1) 6= 0.

Φ(x,y) = a+ xy (A)

{
ẋ = a(2h−1)+gx2 +(h−1)xy

ẏ = a(2g−1)+(g−1)xy+hy2,

where a(g−1)(h−1)(2g−1)(2h−1) 6= 0.

Φ(x,y) = a+ xy (B)

{
ẋ = a+

(1−2h
2

)
x2 +(h−1)xy

ẏ = a−
(2h+1

2

)
xy+hy,

where ah(h−1)(2h±1) 6= 0.

Φ1(x,y) =− a
2h−1 + x(x− y)

Φ2(x,y) = a
h +2y(x− y)

(C)

{
ẋ =(a−1)(2h−1)+(3h−1)x−hx2+(h−1)xy

ẏ =2a(h−1)+(3h−1)y−(h+1)xy+hy2,

where (a−1)(h±1)(2h±1)(3h±1) 6= 0.

Φ(x,y) = 1−a−2x+ x(x− y) (D)
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{
ẋ = x− x2

2 −
xy
2

ẏ = b+ y− 3xy
2 + y2

2 ,

where (b+4) 6= 0.

Φ(x,y) = 4+b−4x+ x(x− y) (E)

{
ẋ = a(2h−1)−hx2 +(h−1)xy

ẏ = 2a(h−1)− (h+1)xy+hy2,

where a(h±1)(2h±1)(3h±1) 6= 0.

Φ(x,y) = a− x(x− y) (F)

{
ẋ = a− x2

3 −
2xy
3

ẏ = 4a+3v2− 4xy
3 + y2

3

where av 6= 0.

Φ(x,y) = 3a±3ivx+ x(x− y) (G)

{
ẋ = a− x2

3 −
2xy
3

ẏ = 4a−3v2− 4xy
3 + y2

3 ,

where a 6= 0.

Φ1,2(x,y) = 3a±3vx+ x(x− y) (H)

{
ẋ = a− x2

3 −
2xy
3

ẏ = 5a− 4xy
3 + y2

3

where a 6= 0.

Φ1,2(x,y) = 3a±
√
−3ax+ x(x− y)

Φ3(x,y) =−3a+ xy
(I)

{
ẋ =−x2

2 −
xy
2

ẏ = b− 3xy
2 + y2

2

where b 6= 0.

Φ1(x,y) = b−2xy

Φ2(x,y) = b+ x(x− y)
(J)

{
ẋ = 4b−1+4y+ x2

ẏ = b+ y2

where (b+1) 6= 0.

Φ(x,y) = b−1− x+3y+ y(x− y) (K)

{
ẋ = a+ x2

ẏ = 4a+ y2,

where a 6= 0.

Φ(x,y) = a− x(x− y) (L)

{
ẋ = a+ x2

ẏ = a+ y2.
Φ(x,y) = 2a− r(x− y)+2xy (M)

Observation 53. Consider the class of all non-degenerate quadratic systems possessing at least
one invariant hyperbola and three distinct real singularities at infinity. Using the invariants
described earlier in this chapter (see pages 52,53 and 54) which guarantees the existence of an
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invariant hyperbola for systems (1.3), in (OLIVEIRA et al., 2017) the authors arrived at the
system:

(3.1)

{
ẋ = a+ cx+dy+gx2 +(h−1)xy

ẏ = b+ ex+ f y+(g−1)xy+hy2.

with invariants η = 1 and θ =−(g−1)(h−1)(g+h)/2.

(i) The case θ 6= 0 gives the condition (g−1)(h−1)(g+h) 6= 0 for (3.1) and we arrive at
the normal forms

• (A) where a(g−1)(h−1)(g+h) 6= 0,

• (B) where a(g−1)(h−1)(g+h) 6= 0,

• (C) where ah(h−1)(2h±1) 6= 0.

(ii) For the case θ = 0 we consider g = −h in (3.1) and we arrive at another invariant
N = 9(h2−1)(x− y)2.

(ii.1) For N 6= 0 we arrive at the normal forms:

• (A) where g =−h,

• (B) where g =−h,

• (D) where (a−1)(h±1)(2h±1)(3h±1) 6= 0,

• (E) where b 6=−4,

• (F) where a(h±1)(2h±1)(3h±1) 6= 0,

• (G) where av 6= 0,

• (H) where a 6= 0,

• (I) where a 6= 0,

• (J) where b 6= 0.

(ii.2) The case N = 0 we arrive at the normal forms:

• (K) where b 6=−1,

• (L) where a 6= 0,

• (M).

Proposition 54. (OLIVEIRA et al., 2017) Every system in QSH(η=0) can be brought by an
affine transformation and time rescaling to one of the following 13 normal forms, where a,g,c,ε

are real parameters. Next to each normal form we present the respective invariant hyperbola.

{
ẋ = 2a+ x+gx2 + xy

ẏ = a(2g−1)− y+(g−1)xy+ y2,

where a(g−1) 6= 0

Φ(x,y) = a+ xy (N)
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{
ẋ = 2a+gx2 + xy,

ẏ = a(2g−1)+(g−1)xy+ y2,

where a(g−1) 6= 0

Φ(x,y) = a+ xy (O)

{
ẋ = 2a+3cx+ x2 + xy

ẏ = a− c2 + y2,

where a 6= 0

Φ(x,y) = a+ cx+ xy (P)

{
ẋ = (c+ x)(c(2g−1)+gx)

ẏ = 1+(g−1)xy,

where (g±1)(3g−1)(2g−1) 6= 0

Φ(x,y) = 1
(−1+2g) + cy+ xy (Q)

{
ẋ = x2 + ε

ẏ = 1−2xy
Φ1,2(x,y) =−1± i

√
εy+ xy (R)

{
ẋ = (x−1)(3− x)

ẏ = 1−2xy.
Φ(x,y) = 1

3 + y− xy (S)

{
ẋ =−x2

ẏ = 1−2xy.
Φ(x,y) =−1+3xy (T)

{
ẋ = (2x−1)(2x+1)/4
ẏ = y.

Φ(x,y) =−q
2 +qx+ y

2 +2xy, q 6= 0 (U)

{
ẋ = x2

ẏ = 1.
Φ(x,y) = 1+ rx+ xy (V)

{
ẋ = a+ y+ x2

ẏ = xy.
Φ(x,y) = a+2y+ x2−m2y2 (W)

{
ẋ = (1+3x)(2+3x)/9
ẏ = xy.

Φ(x,y) = 4+12x+9x2 +my+3mxy (X)

{
ẋ = a+ x2

ẏ = xy,

where a 6= 0.

Φ(x,y) = a+ x2−m2xy (Y)

{
ẋ = x2

ẏ = 1+ xy.
Φ(x,y) = 1+mx2 +2xy (Z)

Observation 55. Consider the class of all non-degenerate quadratic systems possessing at least
one invariant hyperbola. Using the invariants described previously in order to guarantee the
existence of an invariant hyperbola for systems (1.3), in (OLIVEIRA et al., 2017) the authors
arrived at two possibilities: M(ã,x,y) 6= 0 (i.e. at infinity we have two distinct real singularities)
and M = 0 =C2 (when we have an infinite number of singularities at infinity).
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(i) M(ã,x,y) 6= 0: This brings systems (1.3) to the systems

(4.1)


ẋ = a+ cx+dy+gx2 +hxy

ẏ = b+ ex+ f y+(g−1)xy+hy2.

with invariants C2(x,y) = x2y and θ =−h2(g−1)/2.

(i.1) The case θ 6= 0 gives the condition h(g−1) 6= 0 for (4.1) and we arrive at the normal
forms

• (N) where a(g−1) 6= 0,

• (O) where a(g−1) 6= 0.

(i.2) The case θ = 0 gives the condition h(g−1) = 0 for (4.1) and we arrive at another
invariant µ0 = gh2.

(i.2.1) For µ0 6= 0 we have the normal form

• (P) where a 6= 0.

(i.2.2) For µ0 = 0 they calculated the invariant N = 9(g−1)(g+1)x2 and we need to
consider two possibilities.

(i.2.2.1) For the case N 6= 0 we have the normal forms

• (Q) where (g−1)(g+1)(2g−1)(3g−1) 6= 0,

• (R) where ε 6= 0.

(i.2.2.2) The case N = 0 gives the condition (g− 1)(g+ 1) = 0 and we have the
normal forms

• (S),

• (T),

• (U),

• (V).

(ii) M(ã,x,y) = 0 =C2: We arrive at the normal forms

• (W),

• (X),

• (Y) where a 6= 0,

• (Z).

Observation 56. The invariant hyperbolas involve:

(i) sometimes all the parameters of the system (such as (C));

(ii) sometimes only some parameters (such as (N)) and
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(iii) sometimes additional parameters (such as (W)).

Observation 57. We studied the integrability and the geometric aspects of the normal forms
with their respective conditions given in Propositions 52 and 54. When one of these conditions is
not satisfied then either the system does not belong to the family, even though we may have an
invariant hyperbola such as for the family (F) when h =−1/2, or the system does not belong to
QSH. It is important to mention that the conditions for the normal forms of QSH were given in
(OLIVEIRA et al., 2017).

3.2 Main Theorems
The next two resuls are part of the main results of this thesis, they treat about the

integrability in the classe QSH. The proofs of this theorems are given in Chapter 5.

Consider the following sets:

E1 = {(a,g,h) : h = 1/2 and a 6= 0}, E2 = {(a,g,h) : g = 0 and a 6= 0},

E3 = {(a,g,h) : g = 1/2 and a 6= 0}, E4 = {(a,g,h) : h = 0 and a 6= 0},

E5 = {(a,g,h) : g = h and a 6= 0},

E6 = ∪k∈NE6,k, where E6,k = {(a,g,h) : g+h =−k and a 6= 0}, k ∈ N,

E7 = ∪k∈NE7,k, where E7,k = {(a,g,h) : g+h =− k
2 and a 6= 0}, k ∈ N,

E8 = {(a,g,h) : g+h = 1 and a 6= 0}, E9 = {(a,g,h) : 4agh = 1},

E10 =
{
(a,g,h) : a(g+h)2 = 1

}
, E11 = {(a,g,h) : g = 1/4 and a 6= 0},

E12 = {(a,g,h) : h = 1/4 and a 6= 0}, E13 = {(a,g,h) : g =−h and a 6= 0},

E14 = {(a,g,h) : g = 2, h =−2/5 and a 6= 0}, E15 = {(a,g,h) : h = 2, g =−2/5 and a 6= 0}.

Main Theorem 1. Consider the polynomial systems in QSH(η>0).

(a) The 11 normal forms (C)− (M) are all Liouvillian integrable. The following table sums
up the results regarding the types of integrability:

Systems Parameters Type of first integral

(C) h = 1/4 and a 6= 0 Polynomial

(C) ah(h−1)(2h±1)(4h−1) 6= 0 Darboux

(D) a = 0 Darboux

(D) a =−(h−1)2(2h+1)/(3h+1)2 Darboux

(D) a = h = 0 Generalized Darboux

(D) h = 0 and a =−1 Generalized Darboux
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(D) (a−1)(h±1)(2h±1)(3h±1) 6= 0 Liouvillian

(E) b = 0 or b = 8/25 Rational

(E) b 6=−4 Darboux

(F) h = 1/4, a =−a/2 and a 6= 0 Rational

(F) a(h±1)(2h±1)(3h±1)(4h±1) 6= 0 Liouvillian

(G) a = 3v2 or a =−3v2/4 or a =−8v2/9 and a 6= 0 Rational

(G) av(a+ v2)(a−3v2)(a+3v2/4)(a+8v2/9) 6= 0 Darboux

(G) a =−v2 and a 6= 0 Generalized Darboux

(H) a =−3v2 or a = 3v2/4 or a = 8v2/9 and a 6= 0 Rational

(H) av(a− v2)(a+3v2)(a−3v2/4)(a−8v2/9) 6= 0 Darboux

(H) a = v2 or v = 0 and a 6= 0 Generalized Darboux

(I) a 6= 0 Rational

(J) b 6= 0 Rational

(K) b 6=−1,−1/4 Liouvillian

(K) b =−1/4 Generalized Darboux

(L) a 6= 0 Rational

(M) a ∈ R Rational

(b) For the normal forms (A) and (B) we have the following:

(i) If (a,g,h) ∈ R3−E, where E = ∪10
i=1Ei then systems (A) are not Liouvillian inte-

grable.

(i.1) If (a,g,h) ∈ E9∪E10 then systems (A) are not Liouvillian integrable.

(i.2) If (a,g,h) ∈ E5∪ (E10∩E3) then systems (A) are Liouvillian integrable.

(ii) If (a,g,h) ∈ R3−F, where F = E2 ∪E4 ∪
(
∪8

i=5Ei
)
∪
(
∪15

i=11Ei

)
then systems (B)

are not Liouvillian integrable.

(ii.1) If (a,g,h) ∈ ∪15
i=11Ei∪E5 then systems (B) are Liouvillian integrable.

The following table sums up the results regarding the types of integrability:

Systems Parameters Type of first integral

(A) g = h and a 6= 0 Darboux

(A) a = 1/(g+h)2 and g = 1/2 Liouvillian

(A) a =−36/289, h = 1/3 and g =−4/3 Liouvillian

(A) a =−3/(3g+1)2, h = 1/3 and g = 1/2 Liouvillian

(A) (a,g,h) ∈ R3− Ẽ, where Ẽ = ∪8
i=1Ei Not Liouvillian integrable
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(B) g = h and a 6= 0 Darboux

(B) g = 1/2, h = 0, a =−a and a 6= 0 Generalized Darboux

(B) g = 1/4 or h = 1/4 or g =−h and a 6= 0 Liouvillian

(B) g = 2, h =−2/5 and a 6= 0 Liouvillian

(B) h = 2, g =−2/5 and a 6= 0 Liouvillian

(B) (a,g,h) ∈ R3− F̃, where F̃ = E2∪E4∪8
i=6 Ei Not Liouvillian integrable

Observation 58. The Liouvillian integrability of any system in class (A) with (a,g,h)∈∪4
i=1Ei∪(

∪8
i=6Ei

)
or in class (B) with (a,g,h) ∈ E2∪E4∪

(
∪8

i=6Ei
)

is still open. The reason is that the
methods applied in this thesis for proving the existence or non-existence of a Liouvillian first
integral do not work in these cases and so new ideas are needed for proving or disproving their
Liouvillian integrability.

Consider the following sets:

L1 = ∪k∈N L1,k, where L1,k =
{
(a,g) ∈ R2 : g = k/2 and a 6= 0

}
, k ∈ N,

L2 = ∪k∈N L2,k, where L2,k =
{
(a,g) ∈ R2 : g = k/3 and a 6= 0

}
, k ∈ N,

L3 =
{
(a,g) ∈ R2 : g = 1/4 and a 6= 0

}
,

C′ = ∪k∈N Ck, where Ck =
{
(a,g) ∈ R2 : g = (2+a−2ak)/4a and a 6= 0

}
, k ∈ N.

Main Theorem 2. Consider the polynomial systems in QSH(η=0).

(a) The 11 normal forms (P)− (Z) are all Liouvillian integrable. The following table sums up
the results regarding the types of integrability:

Systems Parameters Type of first integral

(P) a = 8c2/9 and a 6= 0 Generalized Darboux

(P) a(a−8c2/9) 6= 0 Liouvillian

(Q) g(g±1)(2g−1)(3g−1) 6= 0 Darboux

(Q) g = 0 and c 6= 0 Generalized Darboux

(R) ε ∈ R Polynomial (hamiltonian)

(S) - Rational

(T) - Rational

(U) - Rational

(V) - Rational

(W) a ∈ R Rational

(X) - Rational

(Y) a 6= 0 Rational

(Z) - Rational
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(b) For the normal forms (N) and (O) we have the following:

(i) If (a,g) ∈ R2− (L1∪L2∪C′), then systems (N) are not Liouvillian integrable.

(i.1) If (a,g) ∈ L1,1 then systems (N) are not Liouvillian integrable.

(i.2) If (a,g) ∈ L2,1 then systems (N) are not Liouvillian integrable.

(ii) If (a,g) ∈ R2− (L1∪L3), then systems (O) are not Liouvillian integrable.

(ii.1) If (a,g) ∈ L1,1 then systems (O) are generalized Darboux integrable.

(ii.2) If (a,g) ∈ L3 then systems (O) are Liouvillian integrable.

The following table sums up the results regarding the types of integrability:

Systems Parameters Type of first integral

(N) (a,g) ∈ R− (L1∪L2∪C′) Not Liouvillian integrable

(O) g = 1/2 and a 6= 0 Generalized Darboux

(O) g = 1/4 and a 6= 0 Liouvillian

(O) (a,g) ∈ R− (L1∪L3) Not Liouvillian integrable

Observation 59. The Liouvillian integrability of any system in class (N) with (a,g) ∈ (L1−
L1,1)∪L2 ∪C′ or in class (O) with (a,g) ∈ (L1−L1,1) is still open. The reason is that the
methods applied in this thesis for proving the existence or non-existence of a Liouvillian first
integral do not work in these cases and so new ideas are needed for proving or disproving their
Liouvillian integrability.

Observation 60. Note that we have very interesting cases where arithmetic or algebraic condi-
tions change the type of integrability (such as systems (P)).
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CHAPTER

4
GEOMETRICAL CONCEPTS AND RESULTS

In the theory of Darboux presented in the preceding chapter the main tools used to
prove the integrability are the number of invariant curves, their multiplicities and the number of
independent points. In 1993 Christopher and Kooij stated a theorem in (KOOIJ; CHRISTOPHER,
1993) that can be reformulate in geometric terms. This result shows a relation between the
geometry of the “configuration of invariant curves” and their Darboux integrability. This theorem
was proved in (CHRISTOPHER et al., 2002).

Theorem 61. (KOOIJ; CHRISTOPHER, 1993) Consider a polynomial system (1.1) that has k
algebraic solutions Ci = 0 such that

(a) all curves Ci = 0 are non-singular and have no repeated factor in their highest order terms,

(b) no more than two curves meet at any point in the finite plane and are not tangent at these
points,

(c) no two curves have a common factor in their highest order terms,

(d) the sum of the degrees of the curves is n+1, where n is the degree of system (1.1).

Then system (1.1) has an integrating factor

µ(x,y) = 1/(C1C2...Ck).

This theorem has a geometric content which is not completely explicit in the algebraic
way they stated the result. We rewrite the theorem above in geometric terms as follows:

Theorem 62. Consider a polynomial system (1.1) that has k algebraic solutions Ci = 0 such that

(a) all curves Ci = 0 are non-singular and they intersect transversally the line at infinity Z = 0,
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(b) no more than two curves meet at any point in the finite plane and are not tangent at these
points,

(c) no two curves intersect at a point on the line at infinity Z = 0,

(d) the sum of the degrees of the curves is n+1, where n is the degree of system (1.1).

Then system (1.1) has an integrating factor

µ(x,y) = 1/(C1C2...Ck).

In the hypotheses of this theorem the way the curves are placed with respect to one
another in the totality of the curves, in other words the “geometry of the configuration of invariant
algebraic curves" has an impact of the kind of integrating factor we could have.

One of our motivations is relating the geometry of the invariant algebraic curves curves
taken in their totality with the various kinds of integrability. To begin doing this we need to recall
some concepts.

Poincaré stated a number of definitions and among them we have the following.

Let H = f/g be a rational first integral of the polynomial vector field (1.2). We say that
H has degree n if n is the maximum of the degrees of f and g. We say that the degree of H

is minimal among all the degrees of the rational first integrals of χ if any other rational first
integral of χ has a degree greater than or equal to n. Let H = f/g be a rational first integral of
χ . According to Poincaré (POINCARÉ, 1891b) we say that c ∈ C∪{∞} is a remarkable value

of H if f + cg is a reducible polynomial in C[x,y]. Here, if c = ∞, then f + cg denotes g. Note
that for all c ∈ C the algebraic curve f + cg = 0 is invariant. The curves in the factorization of
f + cg, when c is a remarkable value, are called remarkable curves.

Now suppose that c is a remarkable value of a rational first integral H and that uα1
1 ...uα

r

is the factorization of the polynomial f + cg into reducible factors in C[x,y]. If at least one of
the αi is larger than 1 then we say, following again Poincaré (see for instance (FERRAGUT;
LLIBRE, 2007)), that c is a critical remarkable value of H, and that ui = 0 having αi > 1 is a
critical remarkable curve of the vector field (1.2) with exponent αi.

Since we can think of C∪{∞} as the projective line P1(R) we can also use the following
definition.

Definition 63. Consider F(c1,c2) : c1 f − c2g = 0 where f/g is a rational first integral of (1.2).
We say that [c1 : c2] is a remarkable value of the curve F(c1,c2) if F(c1,c2) is reducible over C.

It is proved in (CHAVARRIGA et al., 2003) that there are finitely many remarkable
values for a given rational first integral H and if (1.2) has a rational first integral and has no
polynomial first integrals, then it has a polynomial inverse integrating factor if and only if the
first integral has at most two critical remarkable values.



67

Given H = f/g a rational first integral, consider F(c1,c2)= c1 f −c2g where f1, f2 ∈C[x,y]
and degF(c1,c2) = n. If F(c1,c2) = f1 f2 where deg fi = ni < n then necessarily the points on the
intersection of f1 = 0 and f2 = 0 must be singular points of the curve F(c1,c2).

Lemma 64. (CHRISTOPHER, 1994) Assume that system (1.1) with degree m has an invariant
algebraic curve f of degree n. Let fn,Pm and Qm be the homogeneous parts of f with degree n,
P and Q with degree m. Then each one of the irreducible factors of fn divides yPm− xQm.

In geometric terms, this lemma means that the points at infinity of any algebraic invariant
curve f = 0 of a system (1.1) are singularities of this system.

Let us recall the algebraic-geometric definition of an r-cycle on an irreducible algebraic
variety of dimension n.

Definition 65. Let V be an irreducible algebraic variety of dimension n over a field K. A cycle
of dimension r or r-cycle on V is a formal sum

∑
W

nWW

where W is a subvariety of V of dimension r which is not contained in the singular locus of V ,
nW ∈ Z, and only a finite number of nW ’s are non-zero. We call degree of an r-cycle the sum

∑
W

nW .

An (n−1)-cycle is called a divisor.

Definition 66. For a non-degenerate polynomial differential system (S) possessing a finite
number of algebraic solutions

F = { fi}m
i=1, fi(x,y) = 0, fi(x,y) ∈ C[x,y],

each with multiplicity ni and a finite number of singularities at infinity, we define the algebraic
solutions divisor (also called the invariant curves divisor) on the projective plane,

ICDF = ∑
ni

niCi +n∞L∞

where Ci : Fi(X ,Y,Z) = 0 are the projective completions of fi(x,y) = 0, ni is the multiplicity of
the curve Ci = 0 and n∞ is the multiplicity of the line at infinity L∞ : Z = 0.

Proposition 67. (ARTÉS; GRÜNBAUM; LLIBRE, 1998) Every polynomial differential system
of degree n and with a finite number of invariant lines has at most 3n invariant straight lines,
including the line at infinity.
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In particular the maximum number of invariant lines for a quadratic system with a finite
number of invariant lines is six. In the case we consider here, we have a particular instance of
the divisor ICD because the invariant curves will be invariant hyperbolas and invariant lines of
a quadratic differential system, in case these are in finite number. In case we have an infinite
number of hyperbolas we can construct the divisor of the invariant straight lines which are always
in finite number.

Another ingredient of the configuration of algebraic solutions are the real singularities
situated on these curves. We also need to use here the notion of multiplicity divisor of real
singularities of a system, located on the algebraic solutions of the system.

Definition 68. 1. Suppose a real quadratic system (1.3) has a non-empty finite set of invariant
hyperbolas

Hi : hi(x,y) = 0, i = 1,2, ...k

and a finite number of affine invariant lines

L j : f j(x,y) = 0, j = 1,2, ..., l

where hi, f j ∈ C[x,y]. We denote the line at infinity L∞ : Z = 0. Let us assume that on the
line at infinity we have a finite number of singularities. The divisor of invariant hyperbolas
and invariant lines on the complex projective plane of the system is the following

ICD = n1H1 + ...+nkHk +m1L1 + ...+mlLl +m∞L∞

where ni (respectively m j) is the multiplicity of the hyperbola Hi (respectively m j of the
line L j), and m∞ is the multiplicity of L∞. We also mark the complex (non-real) invariant
hyperbolas (respectively lines) denoting them by H C

i (respectively L C
i ). We define the

total multiplicity T M of the divisor as the sum ∑
i

ni +∑
j

m j +m∞.

2. The zero-cycle on the real projective plane, of singularities of a quadratic system (1.3)
located on a configuration of invariant lines and invariant hyperbolas, is given by

M0CS = r1P1 + ...+ rlPl + v1P∞
1 + ...+ vnP∞

n

where Pi (respectively P∞
j ) are all the finite (respectively infinite) real singularities of the

system and ri (respectively v j) are their corresponding multiplicities. We mark the complex
singular points denoting them by PC

i . We define the total multiplicity T M of zero-cycles
as the sum ∑

i
ri +∑

j
v j.

Definition 69. (1) In case we have an infinite number of hyperbolas and just two or three
singular points at infinity but we have a finite number of invariant straight lines we define
the invariant lines divisor as

ILD = m1L1 + ...+mlLl +m∞L∞.
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(2) In case we have an infinite number of hyperbolas, the line at infinity is filled up with
singularities and we have a finite number of affine lines, we define the invariant lines
divisor as

ILD = m1L1 + ...+mlLl.

Definition 70. (1) Suppose we have a finite number of invariant hyperbolas and invariant
straight lines of a system (S) and that they are given by equations

fi(x,y) = 0, i ∈ {1,2, ...,k}, fi ∈ C[x,y].

Set Fi(X ,Y,Z) = 0 the projection completion of the invariant curves fi = 0 in P2(C). The
total invariant algebraic curve of the system (S) in QSH, on P2(R), is the curve

T (S) = ∏
i

Fi(X ,Y,Z)miZm∞ = 0,

where mi is the multiplicity of fi = 0, i = 1, ...,k and m∞ is the multiplicity of the line at
infinity.

(2) Suppose that a system (S) has an infinite number of invariant hyperbola. Then the system
(S) has a finite number of invariant affine straight lines (see (OLIVEIRA et al., 2017)). In
this case, the total invariant curve is formed only by the invariant lines of system (S). Set
Li(X ,Y,Z) = 0 the projective completions of the invariant lines li(x,y) = 0, i ∈ {1,2, ...,k}
in P2(C).

(i) If there are just two or three singular points at infinity, the total invariant curve of
system (S) is

T (S) = ∏
i

Li(X ,Y,Z)miZm∞ = 0,

where mi is the multiplicity of the line li = 0, i = 1, ...,k and m∞ is the multiplicity
of the line at infinity.

(ii) If the line at infinity is filled up with singularities, the total invariant curve of system
(S) is

T (S) = ∏
i

Li(X ,Y,Z)mi = 0,

where mi is the multiplicity of the line li = 0, i = 1, ...,k.

For example, if a system (S) admits a invariant hyperbola h(x,y) with multiplicity two
and the line at infinity Z = 0 has multiplicity one, then the total invariant curve of this system is

T (S) = H(X ,Y,Z)2Z = 0

where H(X ,Y,Z) is the projection completion of h = 0. The degree of T (S) is 5.

The singular points of the system (S) situated on T (S) are of two kinds: those which are
simple (or smooth) points of T (S) and those which are multiple points of T (S).
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Observation 71. To each singular point of the system we have its associated multiplicity as a
singular point of the system. In addition, when these singular points are situated on the total
curve, we also have the multiplicity of these points as points on the total curve T (S). Through a
singular point of the systems there may pass several of the curves Fi = 0 and Z = 0. Also we
may have the case when this point is a singular point of one or even of several of the curves in
case we work with invariant curves with singularities. This leads to the multiplicity of the point
as point of the curve T (S). The simple points of the curve T (S) are those of multiplicity one.
They are also the smooth points of this curve.

Definition 72. (i) Suppose a system (S) has a finite number of singularities finite or infinite.
The zero-cycle of the total curve T (S) of system (S) is given by

M0CT = r1P1 + ...+ rlPl + v1P∞
1 + ...+ vnP∞

n

where Pi (respectively P∞
j ) are all the finite (respectively infinite) singularities situated on

T (S) and ri (respectively v j) are their corresponding multiplicities as points on the total
curve T (S). We mark the complex singular points denoting them by PC

i . We define the
total multiplicity T M of zero-cycles of the total invariant curve as the sum ∑

i
ri +∑

j
v j.

(ii) Suppose a system (S) possesses the line at infinity filled up with singularities. The zero-
cycle of the total curve T (S) of system (S) is given by

M0CT = r1P1 + ...+ rlPl

where Pi are all the finite singularities situated on T (S) and ri are their corresponding
multiplicities as points on the total curve T (S). We mark the complex singular points
denoting them by PC

i . We define the total multiplicity T M of zero-cycles of the total
invariant curve as the sum ∑

i
ri.

Observation 73. If two curves intersects transversally, this point will be a simple point of
intersection. If they are tangent, we would have an intersection multiplicity higher than or equal
to two.

Definition 74. Two polynomial differential systems S1 and S2 are topologically equivalent if
and only if there exists a homeomorphism of the plane carrying the oriented phase curves of S1

to the oriented phase curves of S2 and preserving the orientation.

To cut the number of non equivalent phase portraits in half we use here another equiva-
lence relation.

Definition 75. Two polynomial differential systems S1 and S2 are topologically equivalent if
and only if there exists a homeomorphism of the plane carrying the oriented phase curves of S1

to the oriented phase curves of S2, preserving or reversing the orientation.

Notation: ∼=top .
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In (ARTÉS et al., 2020) the authors provide a complete classification of QS according to
the equivalence relation of topological configurations of singularities, finite or infinite. In this
thesis we choose to use a terminology and notation for singularities introduced in (ARTÉS et

al., 2020) except by the way to describe the parabolic sectors and the multiplicities of the finite
singularities. We give more details in what follows.

We say that a singular point is elemental if it possess two non-zero eigenvalues; semi-

elemental if it possess exactly one eigenvalue equal to zero and nilpotent it possesses two zero
eigenvalues and the linear part is not zero. We call intricate a singular point with its Jacobian
matrix identically zero.

We will place first the finite singular points which will be denoted with lower case letters
and secondly we will place the infinite singular points which will be denoted by capital letters,
separating them by a semicolon ‘;’.

In our study we will have real and complex finite singular points for real systems and
from the topological viewpoint only the real ones are interesting. When we have a simple
(respectively double) complex finite singular point we use the notation © (respectively ©(2)).

For the elemental singular points we use the notation ‘s’, ‘S’ for saddles, ‘n’, ‘N’ for
nodes, ‘ f ’ for foci and ‘c’ for centers.

Non-elemental singular points are multiple points. We denote by (a
b) the maximum

number a (respectively b) of finite (respectively infinite) singularities which can be obtained
by perturbation of the multiple point at infinity. For example, (1

1)SN and (0
2)SN correspond to

two saddle-nodes at infinity which are locally topologically distinct since the first arise from the
coalescence of a finite with an infinite singularity and the second from the coalescence of two
infinity singularities.

The semi-elemental singular points can either be nodes, saddles or saddle-nodes (finite
or infinite). If they are finite singular points we will denote them by ‘n(3)’, ‘s(3)’ and ‘sn(2)’,
respectively and if they are infinite singular points by ‘(a

b)N’, ‘(a
b)S’ and ‘(a

b)SN’, where (a
b)

indicates their multiplicity. We note that semi-elemental nodes and saddles are respectively
topologically equivalent with elemental nodes and saddles.

The nilpotent singular points can either be saddles, nodes, saddle-nodes, elliptic-saddles,
cusps, foci or centers. The only finite nilpotent points for which we need to introduce notation
are the elliptic-saddles and cusps which we denote respectively by ‘es(4)’ and ‘cp(4)’.

In the case of nilpotent infinite points, we use the similar notation described below for
the intricate singular points.

The intricate singular points are degenerate singular points. The neighbourhood of any
singular point of a polynomial vector field (except for foci and centers) is formed by a finite
number of sectors which could only be of three types: parabolic (p), hyperbolic (h) and elliptic
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(e) (see (DUMORTIER; LLIBRE; ARTÉS, 2006)). In this work we have the following finite
intricate singular points of multiplicity four described according their sectoral decomposition:

• hpphpp(4), pphpph(4), phph(4)

• epep(4)

• hhhhhh(4)

where (4) indicates that the points have multiplicity four.

For intricate and nilpotent singular points at infinity, we insert a dash (hyphen) between
the sectors to split those which appear on one side or the other of the equator of the sphere. In this
way we will distinguish between (2

2)P−HHP and (2
2)PH−HP, for instance. When describing

a single finite nilpotent or intricate singular point, one can always apply an affine change of
coordinates to the system, so it does not really matter which sector starts the sequence, or the
direction(clockwise or counter-clockwise) we choose. If it is an infinite nilpotent or intricate
singular point, then we will always start with a sector bordering the infinity (to avoid using two
dashes). The lack of finite singular points after the removal of degeneracies, will be encapsulated
in the notation /0 (i.e. small size /0). In similar cases when we need to point out the lack of an
infinite singular point, we will use the symbol /0. Finally there is also the possibility that we have
an infinite number of finite or of infinite singular points. In the first case, this means that the
quadratic polynomials defining the differential system are not coprime. Their common factor
may produce a line or conic with real coefficients filled up with singular points.

The line at infinity is filled up with singularities, then it is known that any such system
has in a sufficiently small neighbourhood of infinity one of 7 topological distinct phase portraits
(see (SCHLOMIUK; VULPE, 2008a)). The way to determine these portraits is by studying
the reduced systems on the infinite local charts after removing the degeneracy of the systems
within these charts. Following (ARTÉS et al., 2021) we use the notation [∞; /0], [∞;N], [∞;Nd]

(one-direction node, that is, a node with two identical eigenvalues whose Jacobian matrix cannot
be diagonal), [∞;S], [∞;C], [∞;(0

2)SN], [∞;(0
3)ES] indicating the singularities obtained after

removing the line filled with singularities.

The degenerate systems are systems with a common factor in the polynomials defining
the system. We will denote this case with the symbol 	. The degeneracy can be produced by a
common factor of degree one which defines a straight line or a common quadratic factor which
defines a conic. Following (ARTÉS et al., 2021) we will indicated each case by the following
symbols:

• 	[|] for a real straight line;

• 	[)(] for an hyperbola;
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• 	[×] for two real straight lines intersecting at a finite point.

Moreover, we also want to determine whether after removing the common factor of
the polynomials, singular points remain on the curve defined by this common factor. If some
singular points remain on this curve we will use the corresponding notation of their various kinds.
In this situation, the geometrical properties of the singularity that remain after the removal of
the degeneracy, may produce topologically different phenomena, even if they are topologically
equivalent singularities. So, we will need to keep the geometrical information associated to that
singularity. In this study we use the following notations:

• (	[|];n∗) denotes the presence of a real straight line filled up with singular points in the
system such that the reduced system has a node n∗ on this line where n∗ is a star node, that
is, a node with two identical eigenvalues whose Jacobian matrix is diagonal;

• (	[|];nd) denotes the presence of a real straight line filled up with singular points in the
system such that the reduced system has a node nd on this line where nd is a one-direction
node, that is, a node with two identical eigenvalues whose Jacobian matrix cannot be
diagonal;

• (	[|];s) denotes the presence of a real straight line filled up with singular points in the
system such that the reduced system has a saddle on this line;

• (	[×]; /0) denotes the presence of two real straight lines filled up with singular points in
the system such that the reduced system has no singularity on these lines;

• (	[)(]; /0) denotes the presence of a hyperbola filled up with singular points in the system
such that the reduced system has no singularity on this hyperbola.

The existence of a common factor of the polynomials defining the differential system
also affects the infinite singular points. We point out that the projective completion of a real
affine line filled up with singular points has a point on the line at infinity which will then be also
a non-isolated singularity. There is a detailed description of this notation in (ARTÉS et al., 2021).
In case that after the removal of the finite degeneracy, a singular point at infinity remains at the
same place, we must denote it with all its geometrical properties since they may influence the
local topological phase portrait. In this study we use the following notations:

• N,N,(	[|]; /0) means that the system has at infinity two nodes and one non-isolated singular
point which is part of a real straight line filled up with singularities (other that the line at
infinity), and that the reduced linear system has no infinite singular point in that position;

• N,(	[×]; /0, /0) means that the system has at infinity one node and two non-isolated singular
point which are part of two real intersecting straight lines filled up with singularities, and
that the reduced constant system has no singularity in those positions;
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• (0
2)SN,(	[|]; /0) that means that the system has at infinity a saddle-node, and one non-

isolated singular point which is part of a real straight line filled up with singularities (other
that the line at infinity), and that the reduced linear system has no infinite singular point in
that position;

• (	[)(];N, /0) that means that the system has at infinity two non-isolated singular points
which are part of a hyperbola filled up with singularities, and that the reduced constant
system has a node in one of those positions and no singularity in the other.

Degenerate systems with the line at infinity filled up with singularities: According to
(ARTÉS et al., 2021) there are only two geometrical configurations of this class which are also
topologically distinct, and which produce just the two phase portraits given in Figure 1. The
notations of configurations of infinite singularities in (ARTÉS et al., 2021) are [∞;(	[|]; /03)] for
picture (a) and [∞;(	[|]; /02)], for picture (b).

Figure 1 – Phase portraits of quadratic degenerate systems with infinite line filled up with singularities.

(b)(a)

Source: Elaborated by the author.

See (ARTÉS et al., 2021) and (ARTÉS et al., 2020) for more details.

In order to distinguish topologically the phase portraits of the systems we obtained, we
also use some invariants introduced in (SCHLOMIUK; VULPE, 2008c). Let SC be the total
number of separatrix connections, i.e. of phase curves connecting two singularities which are
local separatrices of the two singular points. We denote by

• SC f
f the total number of SC connecting two finite singularities,

• SC∞
f the total number of SC connecting a finite with an infinite singularity,

• SC∞
∞ the total number of SC connecting two infinite.

A graphic as defined in (DUMORTIER; ROUSSARIE; ROUSSEAU, 1994) is formed by
a finite sequence of singular points p1, p2, ..., pn, pn+1 = p1 and oriented regular orbits s1, ...,sn

connecting them such that s j has p j as α-limit set and p j+1 as ω-limit set for j < n and sn has
pn as α-limit set and p1 as ω-limit set. Graphics may or may not have a return map. Particular
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graphics are given special names. A loop is a graphic through a unique singular point and with a
return map. A polycycle is a graphic through several singular points and with a return map. A
degenerate graphic as defined in (DUMORTIER; ROUSSARIE; ROUSSEAU, 1994) is formed
by singular points p1, p2, ..., pn, pn+1 = p1, oriented regular orbits and segments s1, . . . sn of
curves of singular points (which are also oriented) such that either s j is a orbit that has p j as
α-limit and p j+1 as ω-limit for j < n and sn has pn as α-limit set and p1 as ω-limit set or
an open segment of a curve of singular points with end points p j and p j+1, for each j < n.
Moreover, the regular orbits and the curves of singular points have coherent corientations in the
sense that if s j−1 has left hand orientation then so does s j. For more details, see (DUMORTIER;
ROUSSARIE; ROUSSEAU, 1994).

Now let us give some details on the notations used in the drawings of the configurations
and phase portraits.

(i) In the bifurcation diagrams of configurations:

(i.i) The dashed lines in the parameter space are limit cases of the family studied,

(i.ii) the multiple invariant curves of the configurations are emphasized and we indicated
the multiplicities next to the drawing of each curve,

(i.iii) the complex curves in the configurations are drawn as dashed,

(i.iv) the dots represents the real singular points that are located on the invariant curves,

(i.v) the numbers indicated inside the parenthesis are the multiplicities of each singular
points,

(i.vi) the curves appearing drawn as dotted represents a curve filled up with singularities.

(ii) In the topological bifurcation diagrams we use the following notations.

Figure 2 – Notations used on the phase portraits.

Semi-elemental Saddle-node
Semi-elemental Saddle
Semi-elemental Unstable Node
Semi-elemental Stable Node

Saddle
Unstable Node
Stable Node

Non-elemental

Stable Strong Focus
Unstable Strong Focus

Center or Weak focus

Curve of Singularities
Separatrices
Orbits
Graphics
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In what follows we present an example of the notation used in this thesis to describe the
global configuration of singularities of QSH.

Figure 3 – Some examples of configurations and phase portraits.

(1)

(1)

(1)

(1)

(1)

(1)

(1)

2

(2)

(1)

(1)

(2)

(1)

(2,2)

(1,1)(1)

2

The notation used to describe the topological type of the singularities is

(n,s,n,s;(0
2)SN,N)

(s,sn(2),n;(0
2)SN,N)

(s;(2
2)PPEP−PEPP,(1

1)SN)

for each phase portrait apearing in the respective order. The first letters appearing with lower
case represents the topological type of the finite singularities. Here ‘sn(2)’ denotes a saddle-node
which arises from the coalescence of a finite saddle with a finite node so this is a singularity of
multiplicity two. When we do not indicate the multiplicity this means the singularity is simple,
which is the case of ‘n’ (elemental node) and ‘s’ (elemental saddle). The capital letters give the
topological type of the singularities at infinity, starting from north pole following clockwise:
‘(0

2)SN’ denotes a saddle-node which arises from the coalescence of two infinite singularities
(saddle and node) so this is a double singularity, ‘(1

1)SN’ also denotes a saddle-node but here this
multiplicity arises from the coalescence of a finite with an infinite singularity, ‘(2

2)PPEP−PEPP’
denotes an intricate singularity arising from the coalesce of two finite singularities with two
infinite singularities and the neighbourhood of this singularity is formed by two parabolic sectors
(PP), one elipctic sector (E) and other parabolic sector (P) and the dash (hyphen) between the
sectors split those which appear on one side or the other of the equator of the sphere. The cases
where we do no indicate the multiplicity means the singularity is simple, which is the case of ‘S’
(elemental saddle) and ‘N’ (elemental node).
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CHAPTER

5
INTEGRABILITY IN QSH

5.1 Proof of Main Theorem 1 and Main Theorem 2 for
the integrable cases

The family QSH displays all the features of the theory of Darboux as we know it today.
We apply here this theory and the Prelle-Singer algorithm (including the exponential factors,
when they exist) in order to prove the integrability as stated in Main theorem 1 and Main theorem
2. The proof for the cases which do not have a Liouvillian first integral will be done in section 5.2.

The result of our calculations are given in the tables presented in subsection 5.1.1 where
we have the invariant algebraic curves, exponential factors and their cofactors, first integrals or
integrating factors for each normal form of Proposition 52 and Proposition 54, obtained using
the software Mathematica.

In the first column are the normal forms for QSH. In the second column are the invariant
algebraic curves, the exponential factors and the respective cofactors. In the third column are
the expressions of the first integrals or the expressions of the integrating factors. If we give the
expression for the first integral then it is not necessary to give the integrating factor to guarantee
the integrability. When we give the expression for the integrating factor instead of the first integral
this means that we could not compute the expression for the first integral using Mathematica and
we use the notation “—". When “—" appears in both the first integral and integrating factor this
means that we could find neither of them applying the Prelle-Singer algorithm. In the fourth and
fifth columns are the normal forms and their possible configurations as in (OLIVEIRA et al.,
2017). The notation “—" appears when we do not have them appearing in (OLIVEIRA et al.,
2017). In the sixth column are indicated the types of integrability of each normal form using the
following notations.
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Notation
N-I : Systems admit neither a Darboux nor a Liouvillian first integral;

D: Systems are Darboux integrable;

GD: Systems are generalized Darboux integrable;

L: Systems are Liouvillian integrable;

P: Systems admit a polynomial first integral;

R: Systems admit a rational first integral;

HAM: Systems are Hamiltonian;

open case: We could prove neither the integrability nor the non-integrability;

R : Represents an integrating factor;

F : Represents a first integral;

J : Represents invariant algebraic curves;

α : Represents cofactors;

[*] : Equation in (OLIVEIRA et al., 2017).

The precise integrating factor, first integral, invariant algebraic curve and cofactor that
did not fit in the table will be given subsequently using the notations above.
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=
a(

2h
−

1)
+

gx
2
+
(h
−

1)
xy

ẏ
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ẏ
=

2a
(h
−

1)
+
(3

h−
1)

y−
(h
+

1)
xy
+

hy
2

J D
,1
,

J D
,2
,

J D
,3

R
D

(3
.7

3)
78

,
79

,8
7,

88
,

89
,9

0,
92

,9
3,

94
,9

5,
96

,9
7,

98
,

99
,

10
0,

10
1,

10
2,

10
3

L

w
he

re
ah

(a
−

1)
(h
±

1)
(2

h±
1)
(3

h±
1)
( a+

(2
h+

1)
(h
−

1)
2

(3
h+

1)
2

) 6=0
α

D
,1
,

α
D
,2
,

α
D
,3

—

(D
)w

he
re

h
=

0
−

1
−

a
+

x
−

y,
−

1
+

a
+

x(
2
−

x+
y)
,

ex−
y+

1
R

D
,1

—
10

4,
10

5,
10

6,
10

7
L

−
1,
−

2
−

y,
a
−

x+
y+

1
—



5.1. Proof of Main Theorem 1 and Main Theorem 2 for the integrable cases 85

(D
)w

he
re

a
=

0
y,
−

1
+

x
−

y,
1
−

2h
+

hx
−

hy
,
−

1
+

2x
−

x2
+

xy

(3
.7

6)
11

0,
11

1,
11

2
D

(3
h
−

1)
+

(−
1
−

h)
x
+

hy
,

(2
h
−

1)
−

hx
+

hy
,

h
−

hx
+

hy
,

2(
−

1
+

2h
)
−

2h
x+

(−
1
+

2h
)y

F
D
,2

(D
)w

he
re

a
=

h
=

0
y,
−

1
+

x−
y,
−

1
+

2x
−

x2
+

xy
,

ex−
y+

1
—

11
6

G
D

−
1
−

x,
−

1,
2
−

y,
−

x
+

y+
1

F
D
,3

(D
)w

he
re

a=
−
(h
−

1)
2 (

2h
+

1)
/(

3h
+

1)
2

J D
,5
,

J D
,6
,

J D
,7
,

J D
,8

(3
.7

9)
13

9,
14

0
D

α
D
,5
,

α
D
,6
,

α
D
,7
,

α
D
,8

F
D
,4

(D
)w

he
re

h
=

0
an

d
a
=
−

1
x
−

y,
−

x2
+

xy
+

2x
−

2,
xy
−

y2
+

2y
−

2,
ex−

y+
1

—
14

6
G

D

−
1,

−
2
−

y,
−

2
−

x,
−

x+
y

F
D
,5

(E
)          ẋ
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ẏ
=

4a
−

3v
2
−

4x
y 3
+

y2 3

−
3√ −

a
+

v2
−

x
+

y,
3√ −

a
+

v2
−

x
+

y,
−

3a
+

x(
3v
−

x
+

y)
,
−

3a
+

x(
−

3v
−

x+
y)

(3
.9

7)
13

7,
13

8,
14

2
D

w
he

re
av
(a
−

v2 )
(a
+

3v
2 )
(a
−

3v
2 /

4)
(a
−

8v
2 /

9)
6=

0
√ −a

+
v2

−
x 3

+
y 3
,

−
√ −a

+
v2
−

x 3
+

y 3
,
−

v−
2x 3
−

y 3
,

v−
2x 3
−

y 3

F
H

(H
)w

he
re

a
=

v2
x
−

y,
−

3v
2
+

x(
3v
−

x
+

y)
,
−

3v
2
+

x(
−

3v
−

x
+

y)
,

e
1 x−

y

—
15

2
G

D

−
x 3
+

y 3
,
−

v−
2x 3
−

y 3
,

v−
2x 3
−

y 3
,

1 3

F
H
,1

(H
)w

he
re

a
=
−

3v
2

−
6v

+
x
−

y,
6v

+
x
−

y,
9v

2
+

xy
,

9v
2
+

3v
x
−

x2
+

xy
,

9v
2
−

3v
x
−

x2
+

xy

—
—

R

−
2v
−

x 3
+

y 3
,

2v
−

x 3
+

y 3
,
−

5x 3
−

y 3
,
−

v
−

2x 3
−

y 3
,

v−
2x 3
−

y 3

F
H
,2



90 Chapter 5. Integrability in QSH

(H
)w

he
re

a
=

3v
2 /

4
−

3v 2
+

x
−

y,
3v 2

+
x
−

y,
y,
−

x2 3v
+

xy 3v
−

3v 4
+

x,
x2 3v
−

xy 3v
+

3v 4
+

x

—
14

9
R

1 6
(−

3v
−

2x
+

2y
),

1 6
(3

v−
2x

+
2y
),

y 3
−

4x 3
,

1 3
(−

3v
−

2x
−

y)
,

v−
2x 3
−

y 3

F
H
,3

(H
)w

he
re

v
=

0
−

3i
√

a
+

x
−

y,
3i
√

a
+

x
−

y,
−

3a
−

x2
+

xy
,

e
x

x(
y−

x)
−

3a

—
15

4,
15

5
G

D

−
i√

a
−

x 3
+

y 3
,

i√
a
−

x 3
+

y 3
,
−

2x 3
−

y 3
,
−

1 3

F
H
,4

(H
)w

he
re

a
=

8v
2 /

9
−

v
+

x
−

y,
v
+

x
−

y,
y(

x
−

y)
−

v2 3
,
−

8v
2 3
+

3v
x
+

x(
y
−

x)
,
−

8v
2 3
−

3v
x+

x(
y−

x)

—
—

R

1 3
(−

v
−

x
+

y)
,

1 3
(v
−

x
+

y)
,

2y 3
−

5x 3
,
−

v
−

2x 3
−

y 3
,

v−
2x 3
−

y 3

F
H
,5



5.1. Proof of Main Theorem 1 and Main Theorem 2 for the integrable cases 91

(I
)          ẋ
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√ c2
−

a,
y
−

√ c2
−

a,
a
+

cx
+

xy

R
P

(4
.1

6)
18

,2
0,

21
,

22
,3

3
L

w
he

re
a(

c2 −
a)
(9

a−
8c

2 )
6=

0
y
−
√ c2
−

a,
y

+
√ c2
−

a,
2c

+
x+

2y
—

(P
)w

he
re

a
=

c2
y,

c2
+

cx
+

xy
,

e1 y
R

P
,1

—
23

L
y,

2c
+

x+
2y
,
−

1
—

(P
)w

he
re

a
=

8c
2 /

9
3y
−

c,
3y

+
c,

8c
2
+

9c
x+

9x
y,

e−
cx
+

48
cy
+

63
xy
−

24
y2

48
c (

8c
2 +

9c
x+

9x
y )

—
33

G
D

c 3
+

y,
y
−

c 3,
2c

+
x
+

2y
,

y 18
c
−

1 54

F
P
,2

(Q
){ ẋ

=
(c
+

x)
(c
(2

g
−

1)
+

gx
)

ẏ
=

1
+
(g
−

1)
xy

x+
c,

c(
2g
−

1)
+

gx
,

1
(−

1
+

2g
)
+

cy
+

xy
(4

.1
8)

19
D

w
he

re
cg
(g
±

1)
(2

g−
1)
(3

g−
1)
6=

0
c(
−

1
+

2g
)
+

gx
,

cg
+

gx
,

c(
−

1
+

2g
)
+
(−

1
+

2g
)x

F
Q

(Q
)w

he
re

g
=

0
an

d
c
6=

0
c+

x,
−

1
+

cy
+

xy
,

ex+
1

—
24

G
D

−
c,
−

c−
x,
−

c2
−

cx
F

Q
,1
=

ex+
1 (

y(
c+

x)
−

1)
−

c

(Q
)w

he
re

c
=

0
an

d
g
6=

0,
1/

2
x,

1
−

1+
2g
+

xy
,

e1 x
,

e2g
xy
+

1
x2

—
25

,3
4

D

gx
,
(−

1
+

2g
)x
,
−

g,

−
2g

y
F

Q
,2
=

x1 g
−

2 (
2g

xy
−

xy
+

1)
2g
−

1
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(R
){ ẋ

=
x2

+
ε

ẏ
=

1
−

2x
y,

x+
i√

ε
,

x−
i√

ε
,

−
1
+

i√
ε

y+
xy
,

−
1
−

i√
ε

y+
xy

(4
.2

2)
27

,2
8

P/
H

A
M

w
he

re
ε
6=

0
x−

i√
ε
,

x+
i√

ε
,

−
x−

i√
ε
,
−

x+
i√

ε
F

R
=
(x

2 +
ε
)(

(x
y−

1)
2 +

y2 ε
)

(R
)w

he
re

ε
=

0
x,
−

1
+

xy
,

e1 x
,

e2x
y+

1
x2

,e
y

xy
−

1
,

ey2
(2

xy
−

3)
(x

y−
1)

2
—

34
P/

H
A

M

x,
−

x,
−

1,
−

6y
,
−

1,
−

6y
F

R
,1
=

x(
−

1
+

xy
)

(S
){ ẋ

=
(x
−

1)
(3
−

x)

ẏ
=

1
−

2x
y

1
−

x,
3
−

x,
1 3
−

y+
xy
,

−
19 8
+

x+
3y
−

x2 8

(4
.2

5)
19

R

3
−

x,
1
−

x,
3
−

3x
,

−
2x

F
S
=

(3
−

x)
2

1 3
−

y+
xy

(T
){ ẋ

=
−

x2

ẏ
=

1
−

2x
y

x,
−

1
+

3x
y,

e1 x

e1−
2x

y
x2

,
e1−

3x
y−

2x
2 y

+
x

x3
—

26
R

−
x,
−

3x
,

1,
2y
,

2y
F

T
=

x3

−
1
+

3x
y

(U
){ ẋ

=
(2

x−
1)
(2

x+
1)
/4

ẏ
=

y

1
+

2x
,

1
−

2x
,

y,

−
q 2
+

qx
+

y+
2x

y,

ey ,
e−

2x
+

y+
1

1−
2x

(4
.2

7)
35

R

−
1 2
+

x,
1 2
+

x,
1,

1 2
+

x,
y,

y 2

F
U
=

(2
x+

1)
y

q
( x−

1 2

) +2
xy

+
y
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(V
){ ẋ

=
x2

ẏ
=

1

x,
1
+

rx
+

xy
,

ex+
1 x

ex2
+

2x
y+

x+
1

x2
,

ey2 +
y+

1
(4

.2
8)

36
R

x,
x,
−

1,
−

1
−

2y
,

2y
+

1
F

V
=

x
1
+

rx
+

xy

(W
){ ẋ

=
a
+

y+
x2

ẏ
=

xy

y,
−

i√
a
+

x−
iy √

a
,

i√
a
+

x+
iy √

a
,

a
+

2y
+

x2
−

m
2 y2

(4
.3

0)
39

,4
1

R

w
he

re
a
6=

0
x,

i√
a
+

x,

−
i√

a
+

x,
2x

F
W
=

y2

a
+

2y
+

x2
−

m
2 y

2

(W
)w

he
re

a
=

0
y,

2y
+

x2
−

m
2 y2 ,

ex y
,

ex2
+

2x
y+

2y
2

2y
2

—
43

R

x,
2x
,

1,
1

F
W
,1
=

y2

2y
+

x2
−

m
2 y

2

(X
){ ẋ

=
(1

+
3x
)(

2
+

3x
)/

9
ẏ
=

xy
y,

2
+

3x
,

1
+

3x
,

4
+

12
x+

9x
2
+

m
y+

3m
xy

(4
.3

4)
37

R

x,
1 3
+

x,
2 3
+

x,
2 3
+

2x
F

X
=

(3
x+

1)
y

(3
x+

2)
2

(Y
){ ẋ

=
a
+

x2

ẏ
=

xy

y,
1
−

ix √
a
,

1
+

ix √
a
,

a
+

x2
−

m
2 y2

(4
.3

6)
38

,4
0

R

w
he

re
a
6=

0
x,
−

i√
a
+

x,
i√

a
+

x,
2x

F
Y
=

x2
+

a
ay

2
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(Z
){ ẋ

=
x2

ẏ
=

1
+

xy

x,
1
+

m
x2

+
2x

y,

e1/
x ,

ex2
+

2x
y+

x+
1

x2
(4

.3
8)

42
R

x,
2x
,
−

1,
−

1
F

Z
=

x2

1
+

m
x2

+
2x

y
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RA,1 =

(
−
√

1−4ah−1
2h + y

) 2a(h−1)
4ah+

√
1−4ah−1

(√
1−4ah−1

2h + y
) (h−1)(2ah+

√
1−4ah−1)

h(4ah+
√

1−4ah−1)

(a+ xy)2 ;

FA,3 = (a+ xy)(h(x− y)+1)
1
h−2;

RA,4 = 8y
1
2−h(2hx− (2h+1)y+ x+4)−h− 1

2
(
(2h+1)2xy+4

)h−1
;

FA,5 =

(
1
h
+ x− y

) 1−2h
h
(

1
4h2 + xy

)
;

JA,5 =
(3g+1)2x2

54g−18
− (3g+1)2xy

18(3g−1)
+

(3g+1)x
3(3g−1)

+1;

αA,5 = 2gx+
2

3g+1
− y

3
;

JA,6 =−
68x2

147
+

136xy
147

+ x− 68y2

147
+

76y
49
− 708

833
;

JA,7 =−
x3

2
+ x2y+

18x2

17
− xy2

2
+

30xy
17
− 252x

289
+

18y
289
− 216

4913
;

αA,6 =−
8x
3
+

2y
3
− 15

17
;

αA,7 =
3

17
−4x;

RA,9 = 1

3
√

xy− 36
289

(
− x3

2 +x2(y+ 18
17)−

1
578 x(17y(17y−60)+504)+ 18(17y−12)

4913

)5/6 6
√
− 68x2

147 +
136xy
147 +x− 4(17y(17y−57)+531)

2499

;

RA,10 =
6
√

y(
x− y+ 12

5

)5/6 (
xy+ 36

25

)2/3 ;

RB,8 =
1√

(x− y)2−4a (a+ xy)
;

FB,8 =
(√

(x−y)2−4a+x−y
)−h−1

(a+xy)h
(

y2
(√

(x−y)2−4a−x+y
)
−a
(√

(x−y)2−4a+x+3y
))−h

;

RB,9 =−
125a

3
√

a+ xy(225a2−5a(25x2−30xy+3y2)+ y4)
;

RB,10 =−
45a

3
√

a+ xy(225a2−5a(3x2−30xy+25y2)+ x4)
;

FB,11 = ey(x−y)+1(xy−a)a;

FC =

(
a

2h−1
− x2 + xy

)(
− a

2h
+ xy− y2

)− 2h−1
2h ;

FC,1 = (x− y)2(−(2a+ x(x− y)))(2a− xy)(2a+ y(y− x));

JD,1 =−
3
2
+

1
2h
−
√

1+h(−2+4a+h)
2h

+ x− y;
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JD,2 =−
3
2
+

1
2h

+

√
1+h(−2+4a+h)

2h
+ x− y;

JD,3 =−1+a+ x(2− x+ y);

αD,1 =
1
2
(−1−

√
1+h(−2+4a+h)+h(3−2x+2y));

αD,2 =
1
2
(−1+

√
1+h(−2+4a+h)+h(3−2x+2y));

αD,3 = 2(−1+2h)−2hx+(−1+2h)y;

RD =

(√
h(4a+h−2)+1+1

2h +x−y− 3
2

) (h−1)(
√

h(4a+h−2)+1+h+1)
2h
√

h(4a+h−2)+1
(
−
√

h(4a+h−2)+1+3h−1
2h +x−y

) (h−1)(
√

h(4a+h−2)+1−h−1)
2h
√

h(4a+h−2)+1

(a+x(−x+y+2)−1)2
;

RD,1 =
e−x+y−1(−a+ x− y−1)1−a

(a+ x(−x+ y+2)−1)2 ;

FD,2 = yh(h(x− y−2)+1)h−1(x(−x+ y+2)−1)−h;

FD,3 =
ye−x+y−1

x(−x+ y+2)−1
;

JD,5 = x− y− 4h
3h+1

;

JD,6 = x− y+
1−5h2

h(3h+1)
;

JD,7 =
2(−1+h)3

(3h+1)2 +
(2−6h)y
(3h+1)

+ xy− y2;

JD,8 =−
2(1+h)3

(3h+1)2 +2x− x2 + xy;

αD,5 =
5h2−1
3h+1

−hx+hy;

αD,6 =
4h2

3h+1
−hx+hy;

αD,7 =
2(−1+h+6h2)

3h+1
+(−1−2h)x+2hy;

αD,8 = 2(−1+2h)−2hx+(−1+2h)y;

FD,4 =

(
x− y+ 1−5h2

h(3h+1)

)(
−2(1+h)3

(3h+1)2 +2x− x2 + xy
)h

(
2(−1+h)3

(3h+1)2 + (2−6h)y
(3h+1) + xy− y2

)h ;

FD,5 =
e−x+y−1 (−(x+2)y+ y2 +2

)
x2− x(y+2)+2

;

JE,1 = 1−
√

1−2b− x+ y;
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JE,2 = 1+
√

1−2b− x+ y;

JE,3 = x;

JE,4 =−4−b+4x− x2 + xy;

αE,1 =
1
2
(1+
√

1−2b− x+ y);

αE,2 =
1
2
(1−
√

1−2b− x+ y);

αE,3 = 1− x
2
− y

2
;

αE,4 =−x;

FE =−x
2b−3

√
1−2b−1

b+4 (
√

1−2b+x−y−1)(
√

1−2b−x+y+1)
b−3
√

1−2b−5
b+4 (−b+x(−x+y+4)−4)

−2b+3
√

1−2b+1
b+4 ;

FE,1 =
y

x(−x+ y+2)2 ;

FE,2 =
25x(25x(x− y−4)+108)(5x−5y−8)3(−5x+5y+2)2

(5y(−5x+5y+4)+4)2 ;

RF =

(
(x− y)2− a

h

) h−1
2h

(a+ x(y− x))2 ;

RF ,1 =

(
e−

x2
2 +xy− y2

2 +1
)−1/a

(a− x2 + xy)2 ;

FF ,2 =−
(2a+ x(x− y))2 (8a+(x− y)2)

2a− xy
;

FG =
(−3i
√

a+ v2− x+ y)(−3a+ x(3iv− x+ y))
√

a+v2
v

(3i
√

a+ v2− x+ y)(−3a+ x(−3iv− x+ y))
√

a+v2
v

;

FG,1 =

(
e

1
x−y

)6iv (
3v2 +3ivx− x2 + xy

)
3v2−3ivx− x2 + xy

;

FG,2 =

(
9v2−3ivx+ x(x− y)

)2
(6iv+ x− y)

xy−9v2 ;

FG,3 =

(
9v2 +4(x− y)2)2 (4xy+(3v−2ix)2)(4xy+(3v+2ix)2)

2304v2y2 ;

FG,4 =
(−iv+ x− y)3 (8v2−9ivx+3x(y− x)

)
v2 +3y(x− y)

;

FH =
(−3
√
−a+ v2− x+ y)(−3a+ x(3v− x+ y))

√
−a+v2

v

(3
√
−a+ v2− x+ y)(−3a+ x(−3v− x+ y))

√
−a+v2

v

;
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FH,1 =

(
e

1
x−y

)6v (
3v2−3vx+ x(x− y)

)
3v2 +3vx+ x(x− y)

;

FH,2 =
(−6v+ x− y)

(
9v2−3vx+ x(y− x)

)2

9v2 + xy
;

FH,3 =
(3v−2x+2y)2 ((3v+2x)2−4xy

)
48vy

;

FH,4 =

(
e

x
x(y−x)−3a

)−6i
√

a
(−3i
√

a+ x− y)

3i
√

a+ x− y
;

FH,5 =−
(
8v2 +9vx+3x(x− y)

)
(v− x+ y)3

v2 +3y(y− x)
;

FI =
(12a+(x− y)2)(9a2 +3ax(3x−2y)+ x2(x− y)2)2

(−3a+ xy)2 ;

FJ =−
2(b+ x(x− y))2

b−2xy
;

RK =

(
1− i y√

b

)−i+
√

b√
b
(

1+ i y√
b

) i−
√

b√
b

(−1+b− x+3y+ xy− y2)2 ;

RK,1 =
y2 exp2/y

(−1− x+3y+ xy− y2)2 ;

FK,2 = (1−2y)16e
4(4x(y−8)y+x+52y2−44y+1)

4x(y−1)−4(y−3)y−5

FL =

(
1− i y

2
√

a

)(
1+ i x√

a

)2

(
1+ i y

2
√

a

)(
1− i x√

a

)2 ;

FM =
(
√

a+ ix)(
√

a− iy)
a(x− y)

;

RP = (y+
√

c2−a)
1
2

(
1+ c√

c2−a

)
(y−

√
c2−a)

1
2

(
1− c√

c2−a

)
(a+ cx+ xy)−2;

RP,1 = y
(

c+ x+
xy
c

)−2
e
−c
y ;

FP,2 = (c+3y)

(
e
−cx+48cy+63xy−24y2

48c(8c2+9cx+9xy)

)−18c

;

FQ = (c(2g−1)+gx)
(

y(c+ x)+
1

2g−1

)− g
2g−1

.
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5.2 Proof of Main Theorem 1 and Main Theorem 2 for
the non-integrable cases

5.2.1 Systems with η > 0

Consider the following sets:

E1 = {(a,g,h) : h = 1/2 and a 6= 0}, E2 = {(a,g,h) : g = 0 and a 6= 0},

E3 = {(a,g,h) : g = 1/2 and a 6= 0}, E4 = {(a,g,h) : h = 0 and a 6= 0},

E5 = {(a,g,h) : g = h and a 6= 0},

E6 = ∪k∈NE6,k where E6,k = {(a,g,h) : g+h =−k and a 6= 0}, k ∈ N,

E7 = ∪k∈NE7,k where E7,k = {(a,g,h) : g+h =− k
2 and a 6= 0}, k ∈ N,

E8 = {(a,g,h) : g+h = 1 and a 6= 0}, E9 = {(a,g,h) : 4agh = 1},

E10 =
{
(a,g,h) : a(g+h)2 = 1

}
,E11 = {(a,g,h) : g = 1/4 and a 6= 0},

E12 = {(a,g,h) : h = 1/4 and a 6= 0}, E13 = {(a,g,h) : g =−h and a 6= 0},

E14 = {(a,g,h) : g = 2, h =−2/5 and a 6= 0}, E15 = {(a,g,h) : h = 2, g =−2/5 and a 6= 0}.

5.2.1.1 The systems (A)

{
ẋ = a(2h−1)+ x+gx2 +(h−1)xy

ẏ = a(2g−1)− y+(g−1)xy+hy2,

where a(g−1)(h−1)(3g−1)(3h−1) 6= 0.

Theorem 76. (a) If (a,g,h) /∈ E :=
7⋃

i=1

Ei then the only affine invariant algebraic curves of a

system in the family (A) are of the form Jm
1 = 0 where J1(x,y) = a+xy and m is a positive

integer.

(b) If (a,g,h) /∈ Ẽ := E ∪E8 then any system in the family (A) has no exponential factors.

(c) If (a,g,h) /∈ Ẽ then any system in the family (A) is not Liouvillian integrable.

Proof.

(a) By a simple calculation can be verified that J1(x,y) = a+xy is an invariant algebraic curve
with cofactor α1(x,y) = (−1+2g)x+(−1+2h)y.

STEP 1: Set C =
n

∑
i=0

Ci(x,y) = 0 another invariant algebraic curve of the systems (A) with

cofactor K = K0 +K1x+K2y, where Ci are homogeneous polynomial of degree i where
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0≤ i≤ n. From the definition of the invariant algebraic curve, we have:[
a(2h−1)+ x+gx2 +(h−1)xy

] n

∑
i=0

Ci,x+

+
[
a(2g−1)− y+(g−1)xy+hy2] n

∑
i=0

Ci,y =

= (K0 +K1x+K2y)
n

∑
i=0

Ci

(5.1)

Separating from (5.1) the terms of degree n+1 :[
gx2 +(h−1)xy

]
Cn,x +

[
(g−1)xy+hy2]Cn,y = (K1x+K2y)Cn. (5.2)

For the systems (A) we have:

yP2− xQ2 = xy(x− y).

Then, from Lemma 64 we can assume that:

Cn = xm yl (x− y)p, where n = m+ l + p.

Substituting Cn into (5.2) and doing some computations we obtain:

K1 = gm+(g−1)l +gp,

K2 = (h−1)m+hl +hp.

STEP 2: We rename by J the hyperbola J1 and by α its cofactor α1. Consider the change
using a birational transformation:

(x,y)−→
(
x, J−a

x

)
.

Considering the new variables x and J, set

Φ : R2 −→ R2

(x,J) 7−→
(
x, J−a

x

)
.

We have that the transformed invariant algebraic curve

f̂ = J ◦Φ(x,J) = a+ x
(J−a

x

)
= J

with transformed cofactor

K̂ = α ◦Φ(x,J) = (−1+2g)x+(−1+2h)J−a
x

is associated to the new system obtained by this change
ẋ = ah+ x+(h−1)J+gx2 =: P̃(x,J)

J̇ =
(
(−1+2g)x+(−1+2h)J−a

x

)
J =: Q̃(x,J).

(5.3)
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(For a reference, see (FERRAGUT; GASULL, 2015)). If before we wanted to find an
invariant algebraic curve

C(x,y) =
n

∑
i+ j=0

ai, jxiy j

now the transformed curve is

h̃(x,J) =C ◦Φ(x,J) =C
(
x, J−a

x

)
=

n

∑
i+ j=0

ai, jxi (J−a
x

) j
=

n

∑
j=0

h̃ j(x)J j,

where h̃ j(x) =
D j(x)

xñ with D j(x) a polynomial in x and ñ ∈ N. If before the cofactor was

K(x,y) = K0 +K1x+K2y,

now after the transformation K becomes

K̃(x,J) = K ◦Φ(x,J) = K
(
x, J−a

x

)
= K0 +K1x+K2

(J−a
x

)
.

Doing y = J−a
x in (5.1) and simplifying the result we observe that in fact we can put the

result in this form:

h̃xP̃+ h̃JQ̃ = K̃h̃.

Therefore, (
∂ h̃0

∂x
+

∂ h̃1

∂x
J+

∂ h̃2

∂x
J2 + ...

)
P̃+

(
h̃1 +2h̃2J+3h̃3J2 + ...

)
Q̃ =

=
(
K0 +K1x+K2

(J−a
x

))(
h̃0 + h̃1J+ h̃2J2 + ...

)
.

By doing J = 0 we have:

∂ h̃0

∂x
(ah+ x+gx2) =

(
K0 +K1x−K2

(a
x

))
h̃0

∫ dh̃0

h̃0
=
∫ (K0 +K1x−K2

(a
x

))
ah+ x+gx2 dx

Therefore,

h̃0(x) =
(
−1+4agh

4g

)β

x−
k2
h

(
1− i(2gx+1)√

4agh−1

)β+α(
1+

i(2gx+1)√
4agh−1

)β−α

where

β =
1
2

(
K1

g
+

K2

h

)
, α =

i(g(2hK0 +K2)−hK1)

2gh
√

4agh−1
, (a,g,h) /∈ E2,E4,E9.

We know that
h̃0(x) =

D0(x)
xñ ,

where D0 is a polynomial. Then,

K2

h
= ñ, ñ ∈ N.
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Consider the linear map

σ : x→−y, y→−x, g→ h, h→ g. (5.4)

Note that the system

W (X) :=


ẋ = a(2g−1)+ x+gx2 +(h−1)xy

ẏ = a(2h−1)− y+(g−1)xy+hy2

ġ = 0
ḣ = 0

is invariant by the transformation ((x,y,g,h), t)→ (σ(x,y,g,h),−t) since

σ(W (X)) = (−1)W (σ(X)), for (a,g,h) /∈ ∪4
i=1Ei.

Then, by lemma 2.2 of (FERRAGUT; GASULL, 2015) we obtain the change in the
cofactor:

K0 +K1x+K2y →−K0 +K2x+K1y, (5.5)

where Ki = Ki |{g→h, h→g}, i = 0,1,2. Therefore,

K1→ K2 = K2 |{g→h, h→g} .

Then, as
K2 = hñ, ñ ∈ N

it follows that
K1 = gñ, ñ ∈ N.

Therefore, we have:
β = ñ, α =

iK0√
−1+4agh

, ñ ∈ N.

On the other hand, for(
1− i(2gx+1)√

4agh−1

)β+α(
1+

i(2gx+1)√
4agh−1

)β−α

to be a polynomial we must have{
β +α = n1, n1 ∈ N
β −α = n2, n2 ∈ N

and −1+4agh =−p2 or n1 = n2.

Case 1: Suppose −1+4agh =−p2. Then,
K1 =

(
n1 +n2

2

)
g, K2 =

(
n1 +n2

2

)
h, K0 =

(
n1−n2

2

)
p,

h̃0(x) = C̃ x−
(

n1+n2
2

)
(p− (1+2gx))n1(p+(1+2gx))n2,



106 Chapter 5. Integrability in QSH

where (a,g,h) /∈
4⋃

i=1

Ei∪E9.

STEP 3:

By step 1, we have:

Cn = xmyl(x− y)p.

If (a,g,h) /∈ ∪4
i=1Ei, then W (X) is invariant by the transformation

((x,y,g,h), t)→ (σ(x,y,g,h),−t)

and by lemma 2.2 of (FERRAGUT; GASULL, 2015), we have:

Cn = xmyl(x− y)p→ (−1)m+lxlym(x− y)p.

Therefore, m = l and Cn = (xy)l(x− y)n−2l. By step 2, we have:

K1 = ñg, K2 = ñh, where ñ =
n1 +n2

2
.

Now, let’s use Cn,K1 and K2 to find conditions over ñ or l. Separating from (5.1) the terms
of degree n+1, we have:[

gx2 +(h−1)xy
]
Cn,x +

[
(g−1)xy+hy2]Cn,y = (K1x+K2y)Cn.

That is,

−(x− y)n−2l(xy)l((gñ+ l−gn)x+(hñ+ l−hn)y) = 0.

Then, {
h = g and l = g(n− ñ) or
l = 0 and ñ = n.

If (a,g,h) /∈ E5 then l = 0 and ñ = n. Therefore,
Cn = (x− y)n,

K1 = ng,

K2 = nh.

(5.6)

Using (5.6), let’s obtain Cn−1.

STEP 4: Separating from (5.1) the terms of degree n :

x Cn,x +[gx+(h−1)y]x Cn−1,x− y Cn,y +[(g−1)x+hy]y Cn−1,y =

= K0Cn +(K1x+K2y)Cn−1.

(5.7)
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It is a know result that: x CN,x + y CN,y = N CN , for all N ∈ N (for a reference see
(WEISSTEIN, 2011)). Then,

x CN,x = NCN− y CN,y, for all N ∈ N. (5.8)

Replacing (5.8) and (5.6) in (5.7), we obtain:

(x− y)
[
−y Cn−1,y +(x− y)n−2 (n(x+ y)−K0(x− y))

]
=

= (gx+(h+n−1)y)Cn−1.

Then,
Cn−1 = (x− y) Tn−2,

where g 6=−h−n+1 and Tn−2 is a polynomial of degree n−2. Using that

Cn−1,y =−Tn−2 +(x− y)Tn−2,y

and replacing above, we obtain:

(x− y)
[
−y Tn−2,y +(x− y)n−3 (n(x+ y)−K0(x− y))

]
=

= (gx+(h+n−2)y)Tn−2.

Then,
Tn−2 = (x− y)Tn−3,

where g 6=−h−n+2 and Tn−3 is a polynomial of degree n−3. Using that

Tn−2,y =−Tn−3 +(x− y)Tn−3,y

and continuing this recursively, we concluded that:

(x− y)
[
−y T1,y +(x− y)0 (n(x+ y)−K0(x− y))

]
= (gx+(h+1)y)T1.

Then,
T1 = (x− y)T0,

where g 6=−h−1 and T0 is a constant. Using that

T1,y =−T0 +(x− y)T0,y =−T0,

we have:
[y T0 +(n(x+ y)−K0(x− y))] = (gx+(h+1)y)T0,

(n−K0−gT0)x+(n+K0−hT0)y = 0.

Therefore,

K0 =
(−g+h)n

g+h
, T0 =

2n
g+h

, Cn−1 =
2n

g+h
(x− y)n−1, (5.9)
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where (a,g,h) /∈ E6.

Separating from (5.1) the terms of degree n−1 :

a(2h−1) Cn,x + x Cn−1,x +[gx+(h−1)y]x Cn−2,x +a(2g−1) Cn,y− y Cn−1,y+

+[(g−1)x+hy]y Cn−2,y = K0Cn−1 +(K1x+K2y)Cn−2.
(5.10)

Replacing (5.8), (5.6) and (5.9) in (5.10) we have:

(x− y)
[(

a(2h−1)n−a(2g−1)n− (−g+h)
(g+h)2 2n2

)
(x− y)n−2+

+
2n(n−1)

g+h
(x+ y)(x− y)n−3− y Cn−2,y

]
= (2gx+(2h+n−2)y)Cn−2.

Then,

Cn−2 = (x− y) T̃n−3,

where 2g 6=−2h−n+2 and T̃n−3 is a polynomial of degree n−3. Using that

Cn−2,y =−T̃n−3 +(x− y)T̃n−3,y

and replacing above, we have:

(x− y)
[(

a(2h−1)n−a(2g−1)n− (−g+h)
(g+h)2 2n2

)
(x− y)n−3+

+
2n(n−1)

g+h
(x+ y)(x− y)n−4− y T̃n−3,y

]
= (2gx+(2h+n−3)y) T̃n−3.

Then,

T̃n−3 = (x− y)T̃n−4,

where 2g 6=−2h−n+3 and T̃n−4 is a polynomial of degree n−4. Using that

T̃n−3,y =−T̃n−4 +(x− y)T̃n−4,y

and continuing this recursively, we concluded that:

(x− y)
[(

a(2h−1)n−a(2g−1)n− (−g+h)
(g+h)2 2n2

)
(x− y)+

+
2n(n−1)

g+h
(x+ y)(x− y)0− y T̃1,y

]
= (2gx+(2h+1)y) T̃1.

Then,

T̃1 = (x− y)T̃0,
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where 2g 6=−2h−1 and T̃0 is a constant. Using that

T̃1,y =−T̃0 +(x− y)T̃0,y =−T̃0

we have:

(x− y)
[(

a(2h−1)n−a(2g−1)n− (−g+h)
(g+h)2 2n2

)
(x− y)+

+
2n(n−1)

g+h
(x+ y)

]
= (2gx+2hy) T̃0.

Therefore, 

n = 0 and T̃0 = 0 or

a =
1

(g+h)2 , n = 1 and T̃0 = 0 or

g = h, n = 1 and T̃0 = 0, for (a,g,h) /∈ E7.

We conclude that for (a,g,h) /∈
7⋃

i=1

Ei∪E9∪E10 the systems (A) will not have an algebraic

solution different from the hyperbolas a+ xy = 0.

Note that if (a,g,h) ∈ E10, this is a = 1
(g+h)2 , then we also do not have additional algebraic

solutions according to the above proof. This concludes the case 1.

Case 2: Suppose n1 = n2. Then,
K1 = n1g, K2 = n1h, K0 = 0,

h̃0(x) = C̃ x−n1(4g(ah+ x+gx2))n1.

By STEP 3 done above, we have exactly the same calculations. Therefore,

Cn = (x− y)n, K1 = ng, K2 = nh.

By STEP 4, following the same calculations above and doing K0 = 0 we arrive at the
conditions: {

g = h or
n = 0 and T0 = 0.

We conclude that for (a,g,h) /∈
4⋃

i=1

Ei ∪E9 the systems (A) will not have an algebraic

solution different from the hyperbolas a+ xy = 0. This concludes case 2.
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Now, if (a,g,h) ∈ E9 then a = 1
4gh and returning to STEP 2 we have:

h̃0(x) =
(
− 1

2gx

) (−2gK0+K1)
g

(1+2gx)
K1
g +

(−2gK0+K1)
h .

Using the transformation (5.4) we obtain:

K0 = 0, K1 = gñ, K2 = hñ, where ñ ∈ N.

Then,

h̃0(x) =
(
− 1

2gx

)K1
g
(1+2gx)

K1
g +

K1
h .

Following STEP 3 done previously, we have:

Cn = (x− y)n, K1 = ng, K2 = nh.

Following STEP 4, as we have that K0 = 0, we arrive at the conditions:


T̃0 = 0 and n = 0 or

g = h.

Then, if (a,g,h) /∈ E5 it follows that the system (A) for (a,g,h) ∈ E9 does not admit an
algebraic solution different from the hyperbolas J1(x,y) = a+ xy.

(b) Considering (a,g,h) /∈ E :=
7⋃

i=1

Ei, the only algebraic solution of systems (A) are the

hyperbolas J1(a,y) = a+ xy. Calculating the 2th extactic polynomial, we obtain that the
multiplicity of J1 is 1. Then, if systems (A) have an exponential factor, we can assume that
it has the form

F = exp(G)

with a cofactor L = L0 +L1x+L2y, where l is non-negative integers and

G(x,y) =
n

∑
i=0

Gi(x,y),

where Gi is a homogeneous polynomial of degree i. From (2.2) we have that G satisfy:[
a(2h−1)+ x+gx2 +(h−1)xy

]
Gx +

[
a(2g−1)− y+(g−1)xy+hy2]Gy =

= L0 +L1x+L2y

(5.11)

Note that the degree from the first part of the above equality is n+1. We have the following
cases to consider:
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(i) If n = 0 then G(x,y) is a constant. Therefore, L≡ 0 what can not happen.

(ii) If n = 1 then
G(x,y) = g0 +g1x+g2y.

Replacing G(x,y) in (5.11) we obtain that for (a,g,h) /∈ E,

L0 = L1 = L2 = 0.

Therefore, L≡ 0 what can not happen.

(iii) If n+1 > 1 consider Gn =
n

∑
i=0

cn−i xn−iyi, where cn−i are constants.

Equating of (5.11) the terms of degree n+1 we have:

[gx2 +(h−1)xy]
n

∑
i=0

(n− i)cn−i xn−i−1yi+

+[(g−1)xy+hy2]
n

∑
i=0

icn−i xn−iyi−1 = 0

Doing some calculations we can write this last equation as
n+1

∑
i=0

[(gn− i)cn−i +((h−1)n+ i− l)cn−i+1]xn−i+1yi = 0,

where ci = 0 for i < 0 and i > n. The last equation is equivalent to

(gn+(h−1)n) cn +(gn+(h−1)n) cn−1 +(gn+(h−1)n) cn−2 + ...

...+(gn+(h−1)n) c1 +(gn+(h−1)n) c0 = 0.

Therefore, if (a,g,h) /∈ E8, where E8 = {(a,g,h) : g+h = 1} it follows that:

G(x,y)≡ 0,

what can not happen. Then, for (a,g,h) /∈ Ẽ =
8⋃

i=1

Ei ⊃ E, systems (A) do not admit

exponential factors.

(c) If (a,g,h) /∈ Ẽ according to (a) and (b) systems (A) have only the algebraic solution

J1(x,y) = a+ xy

with cofactors α1(x,y) = (−1+2g)x+(−1+2h)y and they have no exponential factor.
Under this assumptions 

λ1α1 = 0⇔ λ1 = 0,

λ1α1 =−div(P,Q)⇔ λ1 = 0.

Hence, from the Darboux theory of integrability it follows that systems (A) are not
Liouvillian integrable.
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�

5.2.1.2 The systems (B)

{
ẋ = a(2h−1)+gx2 +(h−1)xy

ẏ = a(2g−1)+(g−1)xy+hy2,

where a(g−1)(h−1)(2g−1)(2h−1) 6= 0.

Theorem 77. (a) If (a,g,h) /∈ E := E2∪E4

7⋃
i=5

Ei∪E13 then the only affine invariant algebraic

curves of a system in the family (B) are of the form Jm
1 = 0 where J1(x,y) = a+ xy and m

is a positive integer.

(b) If (a,g,h) /∈ Ẽ := E ∪E8 then any system in the family (B) has no exponential factors.

(c) If (a,g,h) /∈ Ẽ then any system in the family (B) is not Liouvillian integrable.

Proof.

(a) By a simple calculation can be verified that J1(x,y) = a+xy is an invariant algebraic curve
with cofactor α1(x,y) = (−1+2g)x+(−1+2h)y.

STEP 1: Set C =
n

∑
i=0

Ci(x,y) = 0 another invariant algebraic curve of the systems (A) with

cofactor K = K0 +K1x+K2y, where Ci are homogeneous polynomial of degree i where
0≤ i≤ n. From the definition of the invariant algebraic curve, we have:

[
a(2h−1)+gx2 +(h−1)xy

] n

∑
i=0

Ci,x +
[
a(2g−1)+(g−1)xy+hy2] n

∑
i=0

Ci,y =

= (K0 +K1x+K2y)
n

∑
i=0

Ci.

(5.12)
Separating from (5.12) the terms of degree n+1 :[

gx2 +(h−1)xy
]
Cn,x +

[
(g−1)xy+hy2]Cn,y = (K1x+K2y)Cn. (5.13)

For the systems (B) we have:

yP2− xQ2 = xy(x− y).

Then, from Lemma 64 we can assume that:

Cn = xm yl (x− y)p, where n = m+ l + p.
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Substituting Cn into (5.13) and doing some computations we obtain:

K1 = gm+(g−1)l +gp,

K2 = (h−1)m+hl +hp.

STEP 2: We rename by J the hyperbola J1 and by α its cofactor α1. Consider the change
using a birational transformation:

(x,y)−→
(
x, J−a

x

)
.

Considering the new variables x and J, set

Φ : R2 −→ R2

(x,J) 7−→
(
x, J−a

x

)
.

We have that the transformed invariant algebraic curve

f̂ = J ◦Φ(x,J) = a+ x
(J−a

x

)
= J

with transformed cofactor

K̂ = α ◦Φ(x,J) = (−1+2g)x+(−1+2h)J−a
x

is associated to the new system obtained by this change
ẋ = ah+(h−1)J+gx2 =: P̃(x,J)

J̇ =
(
(−1+2g)x+(−1+2h)J−a

x

)
J =: Q̃(x,J).

(5.14)

(For a reference, see (FERRAGUT; GASULL, 2015)). If before we wanted to find an
invariant algebraic curve

C(x,y) =
n

∑
i+ j=0

ai, jxiy j

now the transformed curve is

h̃(x,J) =C ◦Φ(x,J) =C
(
x, J−a

x

)
=

n

∑
i+ j=0

ai, jxi (J−a
x

) j
=

n

∑
j=0

h̃ j(x)J j,

where h̃ j(x) =
D j(x)

xñ with D j(x) a polynomial in x and ñ ∈ N. If before the cofactor was

K(x,y) = K0 +K1x+K2y,

now after the transformation K becomes

K̃(x,J) = K ◦Φ(x,J) = K
(
x, J−a

x

)
= K0 +K1x+K2

(J−a
x

)
.
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Doing y = J−a
x in (5.12) and simplifying the result we observe that in fact we can put the

result in this form:

h̃xP̃+ h̃JQ̃ = K̃h̃.

Therefore, (
∂ h̃0

∂x
+

∂ h̃1

∂x
J+

∂ h̃2

∂x
J2 + ...

)
P̃+

(
h̃1 +2h̃2J+3h̃3J2 + ...

)
Q̃ =

=
(
K0 +K1x+K2

(J−a
x

))(
h̃0 + h̃1J+ h̃2J2 + ...

)
.

By doing J = 0 we have:

∂ h̃0

∂x
(ah+gx2) =

(
K0 +K1x−K2

(a
x

))
h̃0

∫ dh̃0

h̃0
=
∫ (K0 +K1x−K2

(a
x

))
ah+gx2 dx

Therefore,

h̃0(x) =
( 1

ah

)β
x−

K2
h

(
1−

i
√

gx
√

ah

)β+α(
1+

i
√

gx
√

ah

)β−α

where
β =

1
2

(
K1

g
+

K2

h

)
, α =

iK0

2
√

agh
, (a,g,h) /∈ E2,E4.

We know that
h̃0(x) =

D0(x)
xñ ,

where D0 is a polynomial. Then,

K2

h
= ñ, ñ ∈ N.

Consider the linear map

σ : x→−y, y→−x, g→ h, h→ g. (5.15)

Note that the system

W̃ (X) :=


ẋ = a(2g−1)+gx2 +(h−1)xy

ẏ = a(2h−1)+(g−1)xy+hy2

ġ = 0
ḣ = 0

is invariant by the transformation ((x,y,g,h), t)→ (σ(x,y,g,h),−t) since

σ(W̃ (X)) = (−1)W̃ (σ(X)), for (a,g,h) /∈ E2∪E4.

Then, by lemma 2.2 of (FERRAGUT; GASULL, 2015) we obtain the change in the
cofactor:

K0 +K1x+K2y →−K0 +K2x+K1y, (5.16)
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where Ki = Ki |{g→h, h→g}, i = 0,1,2. Therefore,

K1→ K2 = K2 |{g→h, h→g} .

Then, as
K2 = hñ, ñ ∈ N

it follows that
K1 = gñ, ñ ∈ N.

Therefore, we have:
β = ñ, α =

iK0

2
√

agh
, ñ ∈ N.

On the other hand, for (
1−

i
√

gx
√

ah

)β+α(
1+

i
√

gx
√

ah

)β−α

to be a polynomial we must have{
β +α = n1, n1 ∈ N
β −α = n2, n2 ∈ N.

and
g

ah
=−p2 or n1 = n2.

Case 1: Suppose that
g

ah
=−p2. Then,

K1 =

(
n1 +n2

2

)
g, K2 =

(
n1 +n2

2

)
h, K0 =

(
n1−n2

2

)
ahp,

h̃0(x) = C̃ x−
n1+n2

2 (1+ px)n1(1− px)n2 ,

where (a,g,h) /∈ E2∪E4.

STEP 3: By step 1, we have:
Cn = xmyl(x− y)p.

If (a,g,h) /∈ E2∪E4, then W̃ (X) is invariant by the transformation

((x,y,g,h), t)→ (σ(x,y,g,h),−t)

and by lemma 2.2 of (FERRAGUT; GASULL, 2015), we have:

Cn = xmyl(x− y)p→ (−1)m+lxlym(x− y)p.

Therefore, m = l and Cn = (xy)l(x− y)n−2l. By step 2, we have:

K1 = ñg, K2 = ñh, where ñ ∈ N.
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Now, let’s use Cn, K1 and K2 to find conditions over ñ or l. Separating from (5.12) the
terms of degree n+1 we have:[

gx2 +(h−1)xy
]
Cn,x +

[
(g−1)xy+hy2]Cn,y = (K1x+K2y)Cn.

That is,

−(x− y)n−2l(xy)l((gñ+ l−gn)x+(hñ+ l−hn)y) = 0

Then, {
h = g and l = g(n− ñ) or
l = 0 and ñ = n.

If (a,g,h) /∈ E5 then l = 0 and ñ = n. Therefore,
Cn = (x− y)n,

K1 = ng,

K2 = nh.

(5.17)

Using (5.17), let’s obtain Cn−1.

STEP 4: Separating from (5.12) the terms of degree n :

[gx+(h−1)y]x Cn−1,x +[(g−1)x+hy]y Cn−1,y =

= K0Cn +(K1x+K2y)Cn−1.

(5.18)

Replacing (5.8) and (5.17) in (5.18), we obtain:

(x− y)
[
−y Cn−1,y−K0(x− y)n−1]= (gx+(h+n−1)y)Cn−1.

Then,

Cn−1 = (x− y) Tn−2,

where g 6=−h−n+1 and Tn−2 is a polynomial of degree n−2. Using that

Cn−1,y =−Tn−2 +(x− y)Tn−2,y

and replacing above, we have:

(x− y)
[
−y Tn−2,y−K0(x− y)n−2]= (gx+(h+n−2)y)Tn−2.

Then,

Tn−2 = (x− y)Tn−3,

where g 6=−h−n+2 and Tn−3 is a polynomial of degree n−3. Using that

Tn−2,y =−Tn−3 +(x− y)Tn−3,y
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and continuing this recursively, we concluded that:

(x− y)
[
−y T1,y−K0(x− y)

]
= (gx+(h+1)y)T1.

Then,
T1 = (x− y)T0,

where g 6=−h−1 and T0 is a constant. Using that

T1,y =−T0

we have:
[y T0−K0(x− y)] = (gx+(h+1)y)T0,

(K0 +gT0)x+(−K0 +hT0)y = 0.

Therefore, 
K0 =−gT0 and h =−g or

K0 = 0 and T0 = 0, for (a,g,h) /∈ E6.

(5.19)

Suppose that (a,g,h) /∈ E13. Then, K0 = 0 and Cn−1 ≡ 0.

Separating from (5.12) the terms of degree n−1 :

a(2h−1) Cn,x +[gx+(h−1)y]x Cn−2,x +a(2g−1) Cn,y +

+[(g−1)x+hy]y Cn−2,y = (gnx+hny)Cn−2.

(5.20)

Replacing (5.8), (5.17) and (5.19) in (5.20), we have:

(x− y)
[
(2h−2g)an(x− y)n−2− y Cn−2,y

]
= (2gx+(2h+n−2)y)Cn−2.

Then,
Cn−2 = (x− y) T̃n−3,

where 2g 6=−2h−n+2 and T̃n−3 is a polynomial of degree n−3. Using that

Cn−2,y =−T̃n−3 +(x− y)T̃n−3,y

and replacing above, we have:

(x− y)
[
(2h−2g)an(x− y)n−3− y T̃n−3,y

]
= (2gx+(2h+n−3)y) T̃n−3.

Then,
T̃n−3 = (x− y)T̃n−4,

where 2g 6=−2h−n+3 and T̃n−4 is a polynomial of degree n−4. Using that

T̃n−3,y =−T̃n−4 +(x− y)T̃n−4,y
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and continuing this recursively, we concluded that:

(x− y)
[
(2h−2g)an(x− y)− y T̃1,y

]
= (2gx+(2h+1)y) T̃1.

Then,
T̃1 = (x− y)T̃0,

where 2g 6=−2h−1 and T̃0 is a constant. Using that

T̃1,y =−T̃0

we have:
(2h−2g)an(x− y) = (2gx+2hy) T̃0

(2gT̃0− (2h−2g)an)x+(2hT̃0 +(2h−2g)an)y = 0.

Therefore, 

g = h = 0 or

h =−g and T̃0 =−2an or

h = g and T̃0 = 0 or

T̃0 = 0 and n = 0 or

g = 0, n = 0 and T̃0 = 0, for (a,g,h) /∈ E7.

We conclude that for (a,g,h) /∈ E2∪E4

7⋃
i=5

Ei∪E13 =: E the systems (B) will not have an

algebraic solution different from the hyperbolas a+ xy = 0.

Case 2: Suppose that n1 = n2. Then,
K1 = n1g, K2 = n1h, K0 = 0,

h̃0(x) = C̃ x−n1(ah+gx2))n1.

By STEP 3 done above, we have exactly the same calculations. Therefore,

Cn = (x− y)n, K1 = ng, K2 = nh.

By STEP 4, following the same calculations above and doing K0 = 0 we arrive at the
conditions: 

g = h = 0 or

T0 = 0, for (a,g,h) /∈ E6.
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Then, for (a,g,h) /∈ E2∪E4∪E6 we have Cn−1 ≡ 0. Separating the terms of degree n−1
to obtain Cn−2 we obtain again that:

g = h = 0 or

h =−g and T̃0 =−2an or

h = g and T̃0 = 0 or

T̃0 = 0 and n = 0 or

g = 0, n = 0 and T̃0 = 0, for (a,g,h) /∈ E7.

We conclude that for (a,g,h) /∈ E2∪E4

7⋃
i=5

Ei∪E13 =: E the systems (B) will not have an

algebraic solution different from the hyperbolas a+ xy = 0. This concludes case 2.

(b) Considering (a,g,h) /∈ E, the only algebraic solution of systems (B) are the hyperbolas
J1(a,y) = a+ xy. Calculating the 2th extactic polynomial, we obtain that the multiplicity
of J1 is 1. Then, if systems (B) have an exponential factor, we can assume that it has the
form

F = exp(G)

with a cofactor L = L0 +L1x+L2y, where l is non-negative integers and

G(x,y) =
n

∑
i=0

Gi(x,y),

where Gi is a homogeneous polynomial of degree i. From (2.2) we have that G satisfy:[
a(2h−1)+gx2 +(h−1)xy

]
Gx +

[
a(2g−1)+(g−1)xy+hy2]Gy =

= L0 +L1x+L2y

(5.21)

Note that the degree from the first part of the above equality is n+1. We have the following
cases to consider:

(i) If n = 0 then G(x,y) is a constant. Therefore, L≡ 0 what can not happen.

(ii) If n = 1 then
G(x,y) = g0 +g1x+g2y.

Replacing G(x,y) in (5.21) we obtain that for (a,g,h) /∈ E,

L0 = L1 = L2 = 0.

Therefore, L≡ 0 what can not happen.
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(iii) If n+1 > 1 consider Gn =
n

∑
i=0

cn−i xn−iyi, where cn−i are constants.

Equating the terms of (5.21) with degree n+1 we have:

[gx2 +(h−1)xy]
n

∑
i=0

(n− i)cn−i xn−i−1yi+

+[(g−1)xy+hy2]
n

∑
i=0

icn−i xn−iyi−1 = 0

Doing some calculations we can write this last equation as

n+1

∑
i=0

[(gn− i)cn−i +((h−1)n+ i− l)cn−i+1]xn−i+1yi = 0,

where ci = 0 for i < 0 and i > n. The last equation is equivalent to

(gn+(h−1)n) cn +(gn+(h−1)n) cn−1 +(gn+(h−1)n) cn−2 + ...

...+(gn+(h−1)n) c1 +(gn+(h−1)n) c0 = 0.

Therefore, if (a,g,h) /∈ E8, where E8 = {(a,g,h) : g+ h = 1 and a 6= 0} it follows
that:

G(x,y)≡ 0,

what can not happen. Then, for (a,g,h) /∈ Ẽ := E ∪E8, systems (A) do not admit
exponential factors.

(c) If (a,g,h) /∈ Ẽ according to (a) and (b) systems (B) have only the algebraic solution

J1(x,y) = a+ xy

with cofactors α1(x,y) = (−1+2g)x+(−1+2h)y and they have no exponential factor.
Under this assumptions

λ1α1 = 0⇔ λ1 = 0 or g = h =
1
2
.

λ1α1 =−div(P,Q)⇔ λ1 = 0 or g = h.

Hence, from the Darboux theory of integrability it follows that systems (B) are not
Liouvillian integrable.

�
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5.2.2 Systems with η = 0

Consider the sets:

L1 = ∪k∈N L1,k, where L1,k =
{
(a,g) ∈ R2 : g = k/2 and a 6= 0

}
, k ∈ N,

L2 = ∪k∈N L2,k, where L2,k =
{
(a,g) ∈ R2 : g = k/3 and a 6= 0

}
, k ∈ N,

L3 =
{
(a,g) ∈ R2 : g = 1/4 and a 6= 0

}
,

C′ = ∪k∈N Ck, where Ck =
{
(a,g) ∈ R2 : g = (2+a−2ak)/4a and a 6= 0

}
, k ∈ N.

5.2.2.1 The systems (N)

{
ẋ = 2a+ x+gx2 + xy,

ẏ = a(2g−1)− y+(g−1)xy+ y2,

where a(g−1) 6= 0.

Theorem 78. (a) If (a,g) /∈ L1 then the only affine invariant algebraic curves of a system in
the family (N) are of the form Jm

1 = 0 where J1(x,y) = a+ xy and m is a positive integer.

(b) If (a,g) /∈ (L1∪L2∪C′) then any system in the family (N) has no exponential factors.

(c) If (a,g) /∈ (L1∪L2∪C′) then any system in the family (N) is not Liouvillian integrable.

Observation 79. When (a,g) ∈ L1,1 the systems (N) also posses the invariant line y = 0
but this additional invariant curve is still not enough to prove the existence of a first integral.
The proof for the non existence of a Liouvillian first integral in this case can be done just
by adapting g = 1/2 in the proof below. The only invariant algebraic curves will be of the
form yl(a+ xy)m where l and m are positive integers.

Proof.

(a) By a straightforward computation, we can verify that J1(x,y) = a+ xy is an invariant
hyperbola with cofactor α1(x,y) = (−1+2g)x+2y. Assume that

C =
n

∑
i=0

Ci(x,y) = 0

is an invariant algebraic curve of the system (N) with cofactor K = K0 +K1x+K2y, where
Ci are homogeneous polynomial of degree i where 0 ≤ i ≤ n. From the definition of
invariant algebraic curve (1.4), we have:

(2a+ x+gx2 + xy)
n

∑
i=0

Ci,x +(a(2g−1)− y+(g−1)xy+ y2)
n

∑
i=0

Ci,y =

= (K0 +K1x+K2y)
n

∑
i=0

Ci.
(5.22)
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Taking from (5.22) the terms of degree n+1 we have:

(
gx2 + xy

)
Cn,x +

(
(g−1)xy+ y2) Cn,y = (K1x+K2y) Cn. (5.23)

For this system we have
yP2− xQ2 = x2y.

Then, from Lemma 64 we can assume that

Cn = xmyl where n = m+ l.

Substituting Cn in (5.23) and doing some computations we terminate that

K1 = gm+(g−1)l; K2 = m+ l.

Now, taking from (5.22) the terms of degree n we have:

x Cn,x +(gx2 + xy) Cn−1,x− y Cn,y +((g−1)xy+ y2) Cn−1,y

= K0 Cn +[(gm+(g−1)l) x+(m+ l) y] Cn−1.

(5.24)

Set Cn−1 =
n−1

∑
i=0

cn−1−ixn−1−iyi. Replacing Cn,Cn−1 in (5.24) and doing some calculations,

we obtain
m+l−1

∑
i=0

(l− i−g) cm+l−1−i xm+l−i yi−
m+l−1

∑
i=0

cm+l−1−i xm+l−1−i yi+1

= (K0−m+ l) xmyl.

Note that this equation can be written as

m+l

∑
i=0

[(l− i−g) cm+l−1−i− cm+l−i] xm+l−i yi = (K0−m+ l) xmyl,

where ci = 0 for i < 0 and i > m+ l− 1. Equating the coefficients of xiy j in the above
equation, we get:

(l− i−g) cm+l−1−i− cm+l−i = 0, where i = 0,1, ..., l−1, l +1, ...,m+ l

(−g) cm−1− cm = K0−m+ l.

(5.25)

For i = m+ l,m+ l−1, ..., l +1 we have

c0 = c1 = ...= cm−1 = 0.

Then cm =−K0 +m− l. Working recursively we have

cm+1 = (−g+1)(−K0 +m− l),

cm+2 = (−g+2)(−g+1)(−K0 +m− l), ...

cm+l−1 = (−g+ l−1)...(−g+2)(−g+1)(−K0 +m− l).
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Replacing cm+l−1 in (5.25) where i = 0, we get

(−g+ l)(−g+ l−1)...(−g+2)(−g+1)(−K0 +m− l) = 0.

Note that

(−g+ l)(−g+ l−1)...(−g+2)(−g+1)

is a polynomial of degree l in the variable g, which has at most l real roots. Denote by Sl
1

the set of roots. If g /∈ Sl
1 then K0 = m− l. Therefore, we can conclude that

K = (m− l)+(gm+(g−1)l)x+(m+ l)y,

since g /∈ Sl
1. This is

Cn−1 ≡ 0.

Now, taking from (5.22) the terms of degree n−1 we have:

2a Cn,x +(gx2 + xy) Cn−2,x +a(2g−1) Cn,y +((g−1)xy+ y2) Cn−2,y

= [(gm+(g−1)l) x+(m+ l) y] Cn−2.

(5.26)

Setting Cn−2 =
n−2

∑
i=0

cn−2−ixn−2−iyi and replacing Cn,Cn−2 in (5.26) we obtain

m+l−2

∑
i=0

(l− i−2g) cm+l−2−i xm+l−1−i yi +
m+l−2

∑
i=0

(−2) cm+l−2−i xm+l−2−i yi+1 =

=−a(2g−1)l xmyl−1−2am xm−1yl.

This equation can be written as

m+l−2

∑
i=0

[(l− i−2g) cm+l−2−i +(−2) cm+l−1−i] xm+l−1−i yi =

=−a(2g−1)l xmyl−1−2am xm−1yl

where ci = 0 for i < 0 and i > m+ l− 2. Equating the coefficients of xiy j in the above
equation, we get

(l− i−2g) cm+l−2−i−2 cm+l−1−i = 0, where i = 0,1, ..., l−2, l +1, ...,m+ l−1,

(−2g+1)cm−1−2cm =−a(2g−1)l,

(−2g)cm−2−2cm−1 =−2am.
(5.27)
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For i = m+ l−1,m+ l−2, ..., l +1 we have

c0 = c1 = ...= cm−2 = 0.

Then cm−1 = am. Working recursively we have

cm =
a(−2g+1)(m− l)

2
,

cm+1 =
a(−2g+1)(−2g+2)(m− l)

4
, ...

cm+l−2 =
a(−2g+1)(−2g+2)...(−2g+ l−1)(m− l)

2l−1 .

Replacing cm+l−2 in (5.27) where i = 0, we get

a(−2g+1)(−2g+2)...(−2g+ l−1)(−2g+ l)(m− l)
2l−1 = 0.

Note that

(−2g+1)(−2g+2)...(−2g+ l−1)(−2g+ l)

is a polynomial of degree l in the variable g, which has at most l real roots. Denote by Sl
2

the set of roots. If g /∈ Sl
1∪Sl

2 then a = 0 or m = l.

The hyperbola is not an invariant algebraic curve when a = 0 and this cases does not matter
for us. We assume m = l. Then, we have the following:

K = (2g−1)m x+2m y,

Cn = xmym, Cn−1 ≡ 0, Cn−2 = amxm−1ym−1,

(5.28)

for g /∈ Sm
1 ∪Sm

2 which is a numerable set.

Following similar arguments for terms of degree n−2,n−3, ... in (5.22) we conjecture
that C = (a+ xy)m. Now we prove this statement by induction:

Suppose that for k = 1,2, ...,L we have

Cn−(2k−1) ≡ 0, Cn−2k =
ak(m− (k−1))!

k!
xm−kym−k. (5.29)

We shall prove that:

Cn−2L−1 ≡ 0, Cn−2L−2 =
aL+1(m−L)!

(L+1)!
xm−L−1ym−L−1.

Considering in (5.22) the terms of degree n−2L we have:
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2a Cn−2L+1,x + x Cn−2L,x +(gx2 + xy) Cn−2L−1,x +a(2g−1) Cn−2L+1,y+

−y Cn−2L,y +
(
(g−1)xy+ y2) Cn−2L−1,y = ((2g−1)m x+2m y) Cn−2L−1.

By the induction hypothesis Cn−2L+1 ≡ 0 then:

x Cn−2L,x +(gx2 + xy) Cn−2L−1,x− y Cn−2L,y +((g−1)xy+ y2) Cn−2L−1,y =

= [(2g−1)m x+2m y] Cn−2L−1.

(5.30)

Setting Cn−2L−1 =
2m−2L−1

∑
i=0

c2m−2L−1−ix2m−2L−1−iyi and replacing Cn−2L,Cn−2L−1 in (5.30)

we obtain
2m−2L−1

∑
i=0

(m− i−g(2L+1)) c2m−2L−1−i x2m−2L−i yi +

+
2m−2L−1

∑
i=0

(−2L−1) c2m−2L−1−i x2m−2L−1−i yi+1 = 0.

This equation can be written as

2m−2L

∑
i=0

[(m− i−g(2L+1)) c2m−2L−1−i +(−2L−1) c2m−2L−i] x2m−2L−i yi = 0,

where ci = 0 for i < 0 and i > 2m−2L−1. Equating the coefficients of xiy j in the above
equation, we have:

(m− i−g(2L+1)) c2m−2L−1−i +(−2L−1) c2m−2L−i = 0,

for i = 0,1, ...,2m−2L. As L ∈ N then L 6=−1/2 and:

c2m−2L−1 = c2m−2L−2 = ...= c1 = c0 = 0.

Therefore,
Cn−2L−1 ≡ 0.

Now, considering in (5.22) the terms of degree n−2L−1 we have:

2a Cn−2L,x + x Cn−2L−1,x +(gx2 + xy) Cn−2L−2,x +a(2g−1) Cn−2L,y+

−y Cn−2L−1,y +((g−1)xy+ y2) Cn−2L−2,y = [(2g−1)m x+2m y] Cn−2L−2.

We just proved that Cn−2L−1 ≡ 0, then we have:

2a Cn−2L,x +(gx2 + xy) Cn−2L−2,x +a(2g−1) Cn−2L,y+

+((g−1)xy+ y2) Cn−2L−2,y = [(2g−1)m x+2m y] Cn−2L−2

(5.31)
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By the induction hypothesis follows that Cn−2L =
aL(m− (L−1))!

L!
xm−Lym−L. Setting

Cn−2L−2 =
2m−2L−2

∑
i=0

c2m−2L−2−ix2m−2L−2−iyi and replacing Cn−2L,Cn−2L−2 in (5.31) we

have:

2m−2L−2

∑
i=0

(m− i−g(2(L+1)) c2m−2L−2−i x2m−2L−1−i yi+

+
2m−2L−2

∑
i=0

(−2L−2) c2m−2L−2−i x2m−2L−2−i yi+1 =

=−(2g−1)
aL+1(m−L)!

L!
xm−Lym−L−1− 2aL+1(m−L)!

L!
xm−L−1ym−L.

This equation can be rewritten as

2m−2L−1

∑
i=0

[(m− i−g(2(L+1)) c2m−2L−2−i +(−2L−2) c2m−2L−1−i] x2m−2L−1−i yi =

=−(2g−1)
aL+1(m−L)!

L!
xm−Lym−L−1− 2aL+1(m−L)!

L!
xm−L−1ym−L

where ci = 0 for i < 0 and i > 2m−2L−2. Equating the coefficients of xiy j in the above
equation, we get the following equations

(m− i−g(2(L+1))) c2m−2L−2−i +(−2L−2) c2m−2L−1−i = 0,

(L+1−g(2(L+1)))cm−L−1 +(−2L−2)cm−L =−(2g−1)
aL+1(m−L)!

L!
,

(L−g(2(L+1)))cm−L−2 +(−2L−2)cm−L−1 =−
2aL+1(m−L)!

L!
,

for i = 0,1, ...,m−L−2,m−L+1, ...,2m−2L−1. As L ∈ N then L 6=−1 and

cm−L−2 = ...= c1 = c0 = 0.

Then,

cm−L−1 =
aL+1(m−L)!

(L+1)!
, cm−L = 0.

When i = m−L−2, ...,0, we obtain

cm−L+1 = cm−L+2 = ...= c2m−2L−2 = 0.

Therefore,

Cn−2L−2 =
aL+1(m−L)!

(L+1)!
xm−L−1ym−L−1.
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This finishes the induction proof. It follows that

C = Jm
1 , m ∈ N

for all (a,g) /∈ L1, where L1 =
⋃

k∈N
L1,k =

⋃
k∈N

{
(a,g) ∈ R2 : g = k

2 and a 6= 0
}
.

(b) From (a) systems (N) have only the algebraic solution J1(x,y)= a+xy for (a,g)∈R2−L1.

Then by Proposition 22, if systems (N) have an exponential factor, it must have the form:

F = exp
(

G/Jl
1

)
with cofactor L = L0 +L1x+L2y and where l is non-negative integer. Since the invariant
algebraic curve Jl

1 = 0 has the cofactor

K = lα1 = l(−1+2g)x+2ly,

it follows by (2.2) that G satisfies the following equation:[
2a+ x+gx2 + xy

]
Gx +

[
a(2g−1)− y+(g−1)xy+ y2]Gy+

+[l(1−2g)x−2ly]G =
[
L0 +L1x+L2y

] l

∑
k=0

(
l

k

)
akxl−kyl−k

(5.32)

From now on we assume G(x,y) =
n

∑
i=0

Gi(x,y), where Gi is a homogeneous polynomial of

degree i and split the study in cases.

Case 1: n+1 < 2l.

By equating the homogeneous terms of highest degree in (5.32) we obtain that

L1 = L2 = 0 and L0 = 0.

Thus, G is an invariant algebraic curve. Then, G = c Jl
1 where c is a constant. Therefore, F

is constant and it cannot be an exponential factor of systems (N).

Case 2: n+1 = 2l.

By equating the homogeneous terms of highest degree in (5.32) we obtain that

L1 = L2 = 0.

Set Gn =
n

∑
i=0

cn−ixn−iyi where cn−i are constants. Equating the terms of degree n+ 1 in

(5.32) and using that n+1 = 2l, we have:

2l

∑
i=0

[(−g− i+ l)c2l−i−1 +(−1)c2l−i]x2l−iyi = L0xlyl,
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where ci = 0 for i < 0 and i > n. Equating the coefficients of xiy j in the above equation,
we have:

(−g− i+ l) c2l−i−1− c2l−i = 0, where i = 0,1, ..., l−1, l +1, ...,2l

(−g) cl−1− cl = L0.

For i = 2l,2l−1, ..., l +1 we obtain:

c0 = c1 = ...= cl−1 = 0.

Then cl =−L0. Working recursively,

cl+1 = (−g+1)(−L0),

cl+2 = (−g+2)(−g+1)(−L0), ...

c2l−1 = (−g+ l)(−g+ l−1)...(−g+1)(−L0).

Therefore, if (a,g) /∈ L1 we have L0 = 0 then

L = 0.

Consequently, systems (N) have no exponential factors for (a,g) ∈ R2−L1.

Case 3: n = 2l.

Consider the notation for Gn introduced in the study of Case 2. Equating the terms of
degree n+1 in (5.32) we have

2l+1

∑
i=0

(l− i) c2l−ix2l−i+1yi = L1 xl+1yl +L2 xlyl+1,

where ci = 0 for i < 0 and i > n. These equations are equivalent to

(l− i) c2l−i = 0, where i = 0,1, ..., l−1, l +2, l +3, ...,2l +1

0 cl = L1,

(−1) cl−1 = L2,

(5.33)

For i = 2l,2l−1, ..., l +2 we obtain:

c0 = c1 = ...= cl−2 = 0.

Then,
cl−1 =−L2, cl is free, L1 = 0 and cl+1 = cl+2 = ...= c2l = 0.

Therefore,
Gn = cl xlyl−L2xl−1yl+1.
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Since cl 6= 0, without loss of generality, we assume that cl = 1.

Equating the terms of degree n in (5.32) we have

x Gn,x +
[
gx2 + xy

]
Gn−1,x− y Gn,y +

[
(g−1)xy+ y2]Gn−1,y+

+[l(1−2g)x−2ly]Gn−1 = L0xlyl.

Set Gn−1 =
n−1

∑
i=0

cn−i−1xn−i−1yi. Replacing Gn−1 in the above equation and using that

n = 2l we obtain:

2l

∑
i=0

[(−g− i+ l)c2l−i−1− c2l−i]x2l−iyi = L0 xlyl +2L2 xl−1yl+1,

where ci = 0 for i< 0 and i> 2l−1. Equating the coefficients of xiy j in the above equation,
we have:

(−g− i+ l)c2l−i−1− c2l−i = 0, where i = 0,1, ..., l−1, l +2, ...,2l

(−g)cl−1− cl = L0,

(−g−1)cl−2− cl−1 = 2L2.

(5.34)

For i = 2l, ..., l +2 we have:

c0 = c1 = ...= cl−2 = 0.

Then, cl−1 =−2L2, cl = 2gL2−L0. Working recursively,

cl+1 = (−g+1)(2gL2−L0),

cl+2 = (−g+1)(−g+2)(2gL2−L0), ...

c2l−1 = (−g+1)(−g+2)...(−g+ l−1)(2gL2−L0).

Replacing c2l−1 in (5.34) where i = 0, we have:

(−g+ l)(−g+ l−1)...(−g+1)(2gL2−L0) = 0.

Then, if g /∈ {l, l−1, ...,1} we must have L0 = 2gL2 and

Gn−1 =−2L2xl−1yl.

Therefore, L = 2gL2 +L2y.

Equating the terms of degree n−1 in (5.32) we have:

2aGn,x + x Gn−1,x +
[
gx2 + xy

]
Gn−2,x +a(2g−1)Gn,y− y Gn−1,y+

+
[
(g−1)xy+ y2]Gn−2,y +[l(1−2g)x−2ly]Gn−2 = alL2xl−1yl.
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Set Gn−2 =
n−2

∑
i=0

cn−i−2xn−i−2yi. Replacing Gn−2 in the above equation and using that

n = 2l we obtain:

2l

∑
i=0

[(−2g− i+ l)c2l−i−2−2c2l−i−1]x2l−i−1yi = al(−2g+1)L2 xlyl−1+

+
(
L2(al−2)−2al +a(2g−1)(l +1)L2

)
xl−1yl +2a(l−1)L2 xl−2yl+1,

where ci = 0 for i< 0 and i> 2l−2. Equating the coefficients of xiy j in the above equation,
we have:

(−2g− i+ l)c2l−i−1−2c2l−i−1 = 0, where i = 0,1, ..., l−2, l +2, ...,2l−1

(−2g+1)cl−1−2cl = al(−2g+1)L2,

(−2g)cl−2−2cl−1 = L2(al−2)−2al +a(2g−1)(l +1)L2,

(−2g−1)cl−3−2cl−2 = 2a(l−1)L2.

(5.35)

For i = 2l−1, ..., l +2, we obtain:

c0 = c1 = ...= cl−3 = 0.

Then,

cl−2 =−a(l−1)L2, cl−1 = al +L2

(
1+

a
2
−2ag

)
,

cl =
al
2
(2g−1)L2 +

(−2g+1)
2

(
L2 +al +

aL2

2
−2agL2

)
.
= A

Working recursively, we have:

cl+1 =
(−2g+2)A

2
,

cl+2 =
(−2g+2)(−2g+3)A

22 , ...

c2l−2 =
(−2g+ l−1)(−2g+ l−2)...(−2g+2)A

2l−2 .

Replacing c2l−2 in (5.35) where i = 0 we obtain:

(−2g+ l)(−2g+ l−1)...(−2g+2)A
2l−2 = 0, or

(−2g+ l)(−2g+ l−1)...(−2g+2)(−2g+1)
2l−1

(
−alL2 +L2 +al +

aL2

2
−2agL2

)
= 0
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If g /∈
{1

2 ,
2
2 ,

3
2 , ...,

l
2

}
this is (a,g) /∈ L1 then we must have:

−alL2 +L2 +al +
aL2

2
−2agL2 = 0,

that happens if, and only if,

L2 =
−2al

−2al +2+a−4ag
, for −2al +2+a−4ag 6= 0 or

g =
2+a−2al

4a
.

Suppose that (a,g) /∈ L1∪C′, where C′ =
⋃

k∈N
Ck =

⋃
k∈N

{
(a,g) : g = 2+a−2ak

4a and a 6= 0
}
.

Therefore, we have:

Gn = xlyl +
2al

(−2al +2+a−4ag)
xl−1yl+1, Gn−1 =

4al
(−2al +2+a−4ag)

xl−1yl,

Gn−2 =
2a2l(l−1)

(−2al +2+a−4ag)
xl−2yl− 2a2l2

(−2al +2+a−4ag)
xl−1yl−1,

L =
−4agl

(−2al +2+a−4ag)
− 2al

(−2al +2+a−4ag)
y.

Equating the terms of degree n−2 in (5.32) we have:

2aGn−1,x + x Gn−2,x +
[
gx2 + xy

]
Gn−3,x +a(2g−1)Gn−1,y− y Gn−2,y+

+
[
(g−1)xy+ y2]Gn−3,y +[l(1−2g)x−2ly]Gn−3 =

−4a2gl2

(−2al +2+a−4ag)
xl−1yl−1.

Set Gn−3 =
n−3

∑
i=0

cn−i−3xn−i−3yi. Replacing Gn−3 in the above equation and using that

n = 2l we obtain:
2l−2

∑
i=0

[(−3g− i+ l)c2l−i−3−3c2l−i−2]x2l−i−2yi =
4a2l2(1−3g)

(−2al +2+a−4ag)
xl−1yl−1+

− 4a2l(l−1)
(−2al +2+a−4ag)

xl−2yl,

where ci = 0 for i< 0 and i> 2l−3. Equating the coefficients of xiy j in the above equation,
we have:

(−3g− i+ l)c2l−i−3−3c2l−i−2 = 0, where i = 0,1, ..., l−2, l +1, ...,2l−2

(−3g+1)cl−2−3cl−1 =
4a2l2(1−3g)

(−2al +2+a−4ag)
,

(−3g)cl−3−3cl−2 =−
4a2l(l−1)

(−2al +2+a−4ag)
.

(5.36)



132 Chapter 5. Integrability in QSH

For i = 2l−2, ..., l +1 :
c0 = c1 = ...= cl−3 = 0.

Then,

cl−2 =
4a2l(l−1)

3(−2al +2+a−4ag)
, cl−1 =

(4a2l(2l−1))(1−3g)
(−9)(−2al +2+a−4ag)

.
= B.

Working recursively, we obtain:

cl =
(−3g+2)B

3
,

cl+1 =
(−3g+2)(−3g+3)B

32 , ...

c2l−3 =
(−3g+2)(−3g+3)...(−3g+ l−1)B

3l−3 .

Replacing c2l−3 in (5.36) where i = 0 :

(−3g+ l)(−3g+ l−1)...(−3g+2)B
3l−2 = 0, or

(−3g+ l)(−3g+ l−1)...(−3g+2)(−3g+1)
3l

(
4a2l(2l−1)

2al−2−a+4ag

)
= 0.

Consider L2 =
⋃

k∈N
L2,k =

⋃
k∈N

{
(a,g) : g = k

3 and a 6= 0
}
. Then, if (a,g) /∈ (L1∪L2∪C′)

we must have
4a2l(2l−1) = 0.

What happens if, and only if

a = 0 or l = 0 or l = 1/2.

Therefore, systems (N) have no exponential factors for (a,g) ∈ R2− (L1∪L2∪C′).

Case 4: n > 2l.

Consider the notation for Gn introduced in the study of Case 2. Equating the terms of
degree n+1 in (5.32) we have:[

gx2 + xy
] n

∑
i=0

(n− i)cn−ixn−i−1yi +
[
(g−1)xy+ y2] n

∑
i=0

icn−ixn−iyi−1+

+[l(1−2g)x−2ly]
n

∑
i=0

cn−ixn−iyi = 0.

Working in a similar way to the previous cases, we obtain:

n+1

∑
i=0

[(gn− i+ l(1−2g))cn−i +(n−2l)cn−i+1]xn−i+1yi = 0,
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when ci = 0 for i < 0 and i > n. Therefore,

(gn− i+ l(1−2g))cn−i +(n−2l)cn−i+1 = 0,

for i = 0,1, ...,n+1. As n 6= 2l we have

c0 = c1 = ...= cn = 0.

Then, Gn = 0.

Summing up this four cases the proof follows.

(c) Suppose (a,g) ∈ R2− (L1∪L2∪C′). Then, by (a) and (b) we get that the systems (N)
have only the algebraic solution

J1(x,y) = a+ xy

with cofactor α1 = (−1+ 2g)x + 2y and they have no exponential factor. Under this
assumptions

λ1α1 = 0⇔ λ1 = 0 and

λ1α1 =−div(P,Q) =−(1+2gx+ y)− (−1+(g−1)x+2y) has no solution.

Hence, from the Darboux theory of integrability it follows that systems (N) are not
Liouvillian integrable.

�

5.2.2.2 The systems (O)

{
ẋ = 2a+gx2 + xy,

ẏ = a(2g−1)+(g−1)xy+ y2,

where a(g−1) 6= 0.

Theorem 80. (a) If (a,g) /∈ L1 then the only affine invariant algebraic curves of a system in
the family (O) are of the form Jm

1 = 0 where J1(x,y) = a+ xy and m is a positive integer.

(b) If (a,g) /∈ (L1∪L3) then any system in the family (O) has no exponential factors.

(c) If (a,g) /∈ (L1∪L3) then any system in the family (O) is not Liouvillian integrable.

Proof.
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(a) By a straightforward computation, we can verify that J1(x,y) = a+ xy is an invariant
hyperbola with cofactor α1(x,y) = (−1+2g)x+2y. Assume that

C =
n

∑
i=0

Ci(x,y) = 0

is an invariant algebraic curve of the systems (O) with cofactor K = K0+K1x+K2y, where
Ci are homogeneous polynomial of degree i where 0≤ i≤ n. From the definition of the
invariant algebraic curve (1.4), we have:

(
2a+gx2 + xy

) n

∑
i=0

Ci,x +
(
a(2g−1)+(g−1)xy+ y2) n

∑
i=0

Ci,y =

= (K0 +K1x+K2y)
n

∑
i=0

Ci.
(5.37)

The step where we take the terms of degree n+1 in (5.37) is exactly the same made for
system (N). Then we have:

Cn = xm yl where n = m+ l,

K1 = gm+(g−1)l; K2 = m+ l.

Now, taking from (5.37) the terms of degree n we have:(
gx2 + xy

)
Cn−1,x +

(
(g−1)xy+ y2) Cn−1,y = K0 Cn+

+[(gm+(g−1)l) x+(m+ l) y] Cn−1.

(5.38)

Set Cn−1 =
n−1

∑
i=0

cn−1−ixn−1−iyi. Replacing Cn,Cn−1 in (5.38) and doing some calculations,

we obtain:

m+l−1

∑
i=0

(l− i−g) cm+l−1−i xm+l−i yi−
m+l−1

∑
i=0

cm+l−1−i xm+l−1−i yi+1 = K0 xmyl.

This equation can be written as

m+l

∑
i=0

[(l− i−g) cm+l−1−i− cm+l−i] xm+l−i yi = K0 xmyl,

where ci = 0 for i < 0 and i > m+ l− 1. Equating the coefficients of xiy j in the above
equation, we get:

(l− i−g) cm+l−1−i− cm+l−i = 0, where i = 0,1, ..., l−1, l +1, ...,m+ l

(−g) cm−1− cm = K0.

(5.39)
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For i = m+ l,m+ l−1, ..., l +1 we have:

c0 = c1 = ...= cm−1 = 0.

Then cm =−K0. Working recursively we have

cm+1 = (−g+1)(−K0),

cm+2 = (−g+1)(−g+2)(−K0), ...

cm+l−1 = (−g+1)(−g+2)...(−g+ l−1)(−K0).

Replacing cm+l−1 in (5.39) where i = 0, we get

(−g+ l)(−g+ l−1)...(−g+2)(−g+1)(−K0) = 0.

Note that
(−g+ l)(−g+ l−1)...(−g+2)(−g+1)

is a polynomial of degree l in the variable g, which has at most l real roots. Denote by Sl
1

the set of roots. If g /∈ Sl
1 we have that K0 = 0. Therefore, we can conclude that

K = (gm+(g−1)l)x+(m+ l)y,

since g /∈ Sl
1. This is

Cn−1 ≡ 0.

The step where we take the terms of degree n−1 in (5.37) is exactly the same made for
system (N). Then we have m = l which leads us to

K = (2g−1)mx+2my,

Cn = xmym, Cn−1 ≡ 0, Cn−2 = amxm−1ym−1,

(5.40)

for g /∈ Sm
1 ∪Sm

2 numerable set, where Sm
2 is the set of roots of the polynomial

(−2g+1)(−2g+2)...(−2g+m−1)(−2g+m).

Following similar arguments for terms of degree n−2,n−3, ... in (5.37) we conjecture
that C = (a+ xy)m. Now we prove this statement by induction:

Suppose that for k = 1,2, ...,L we have

Cn−(2k−1) ≡ 0, Cn−2k =
ak(m− (k−1))!

k!
xm−kym−k. (5.41)

We shall prove that:

Cn−2L−1 ≡ 0, Cn−2L−2 =
aL+1(m−L)!

(L+1)!
xm−L−1ym−L−1.



136 Chapter 5. Integrability in QSH

Considering in (5.37) the terms of degree n−2L we have:

2a Cn−2L+1,x +
(
gx2 + xy

)
Cn−2L−1,x +a(2g−1) Cn−2L+1,y+

+
(
(g−1)xy+ y2) Cn−2L−1,y = ((2g−1)m x+2m y) Cn−2L−1.

By the induction hypothesis Cn−2L+1 ≡ 0 then:(
gx2 + xy

)
Cn−2L−1,x +

(
(g−1)xy+ y2) Cn−2L−1,y =

= ((2g−1)m x+2m y) Cn−2L−1.

(5.42)

Setting Cn−2L−1 =
2m−2L−1

∑
i=0

c2m−2L−1−ix2m−2L−1−iyi and replacing Cn−2L,Cn−2L−1 in (5.42)

we obtain:
2m−2L−1

∑
i=0

(m− i−g(2L+1)) c2m−2L−1−i x2m−2L−i yi +

+
2m−2L−1

∑
i=0

(−2L−1) c2m−2L−1−i x2m−2L−1−i yi+1 = 0.

This is exactly the same equation solved for system (N) in the induction proof. Therefore,
we have:

Cn−2L−1 ≡ 0.

Now, considering in (5.37) the terms of degree n−2L−1 we have:

2a Cn−2L,x +
(
gx2 + xy

)
Cn−2L−2,x +a(2g−1) Cn−2L,y+

+
(
(g−1)xy+ y2) Cn−2L−2,y = ((2g−1)m x+2m y) Cn−2L−2

(5.43)

Note that (5.43) is exactly the same as (5.31), solved in system (N). Therefore,

Cn−2L−2 =
aL+1(m−L)!

(L+1)!
xm−L−1ym−L−1.

This finishes the induction proof. It follows that

C = Jm
1 , m ∈ N

for all (a,g) /∈ L1, where L1 =
⋃

k∈N
L1,k =

⋃
k∈N

{
(a,g) ∈ R2 : g = k

2

}
.

(b) From (a) systems (O) have only the algebraic solution J1(x,y)= a+xy for (a,g)∈R2−L1.

Then, by Proposition 22, if systems (O) have an exponential factor, it must have the form

F = exp
(

G/Jl
1

)
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with a cofactor L = L0+L1x+L2y and where l is non-negative integers. Since the invariant
algebraic curve Jl

1 = 0 has the cofactor

K = lα1 = l(−1+2g)x+2ly,

it follows by (2.2) that G satisfies the following equation:

[
2a+gx2 + xy

]
Gx +

[
a(2g−1)+(g−1)xy+ y2]Gy +[l(1−2g)x−2ly]G

=
[
L0 +L1x+L2y

] l

∑
k=0

(
l

k

)
akxl−kyl−k

(5.44)

From now on we assume G(x,y) =
n

∑
i=0

Gi(x,y), where Gi is a homogeneous polynomial of

degree i and split the study in cases.

Case 1: n+1 < 2l.

This case is exactly the same proved for systems (N). We have that F is constant, what can
not happen.

Case 2: n+1 = 2l.

This case is also the same proved for systems (N). We have that if g /∈ {l, l−1, ...,1} then
L = 0. Consequently, systems (O) have no exponential factors for (a,g) ∈ R2−L1.

Case 3: n = 2l.

Set Gn =
n

∑
i=0

cn−ixn−iyi, where cn−i are constants. Equating the terms of (5.44) with degree

n+1 we have
2l+1

∑
i=0

(l− i)c2l−ix2l−i+1yi = L1xl+1yl +L2xlyl+1,

where ci = 0 for i < 0 and i > n. This is the same equation solved for systems (N) in case
3. Then we have:

Gn = xlyl−L2xl−1yl+1 and L1 = 0.

Equating the terms of degree n in (5.44) we have[
gx2 + xy

]
Gn−1,x +

[
(g−1)xy+ y2]Gn−1,y +[l(1−2g)x−2ly]Gn−1 = L0 xlyl.

Set Gn−1 =
n−1

∑
i=0

cn−i−1xn−i−1yi. Replacing Gn−1 in the above equation and using that

n = 2l we obtain:
2l

∑
i=0

[(−g− i+ l)c2l−i−1− c2l−i]x2l−iyi = L0 xlyl,
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where ci = 0 for i< 0 and i> 2l−1. Equating the coefficients of xiy j in the above equation,
we have:

(−g− i+ l)c2l−i−1− c2l−i = 0, where i = 0,1, ..., l−1, l +1, ...,2l

(−g)cl−1− cl = L0.

(5.45)

For i = 2l,2l−1, ..., l +1:
c0 = c1 = ...= cl−1 = 0.

Then, cl =−L0. Working recursively,

cl+1 = (−g+1)(−L0),

cl+2 = (−g+1)(−g+2)(−L0), ...

c2l−1 = (−g+1)(−g+2)...(−g+ l−1)(−L0).

Replacing c2l−1 in (5.45) where i = 0, we have:

(g+ l)(−g+ l−1)...(−g+1)(−L0) = 0.

Then, if g /∈ {l, l−1, ...,1} we must have L0 = 0. Therefore,

Gn−1 ≡ 0 and L = L2y.

Equating the terms of degree n−1 in (5.44) we have:

2aGn,x +
[
gx2 + xy

]
Gn−2,x +a(2g−1)Gn,y +

[
(g−1)xy+ y2]Gn−2,y+

+[l(1−2g)x−2ly]Gn−2 = alL2xl−1yl.

Set Gn−2 =
n−2

∑
i=0

cn−i−2xn−i−2yi. Replacing Gn−2 in the above equation and using that

n = 2l we obtain:
2l

∑
i=0

[(−2g− i+ l)c2l−i−2−2c2l−i−1]x2l−i−1yi = (al(1−2g))xlyl−1+

+(L2al−2al +a(2g−1)(l +1)L2)xl−1yl +2a(l−1)L2xl−2yl+1,

where ci = 0 for i< 0 and i> 2l−2. Equating the coefficients of xiy j in the above equation,
we have:

(−2g− i+ l)c2l−i−2 +(−2)c2l−i−1 = 0, where i = 0,...,l−2,l+2,...,2l−1

(−2g+1)cl−1 +(−2)cl = al(1−2g),

(−2g)cl−2 +(−2)cl−1 = L2al−2al +a(2g−1)(l +1)L2,

(−2g−1)cl−3 +(−2)cl−2 = 2a(l−1)L2.

(5.46)
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For i = 2l−1,2l−2, ..., l +1 we obtain

c0 = c1 = ...= cl−3 = 0.

Then,
cl−2 =−a(l−1)L2, cl−1 =

a
2
(2l +L2)−2agL2,

cl =
L2a
2

(
−2g+

1
2

)
(−2g+1) .

= A

Working recursively,

cl+1 =
(−2g+2)A

2
,

cl+2 =
(−2g+2)(−2g+3)A

4
, ...

c2l−2 =
(−2g+ l−1)(−2g+ l−2)...(−2g+2)

2l−2 A.

Replacing c2l−2 in (5.46) where i = 0 we have:

(−2g+ l)(−2g+ l−1)...(−2g+2)
2l−2 A = 0, or

(−2g+ l)(−2g+ l−1)...(−2g+2)(−2g+1)
2l−2

[
L2a
2

(
−2g+

1
2

)]
= 0.

Then, if g /∈ {1,2, ...,1}∪
{1

2 ,
2
2 , ...,

l
2

}
∪{1/4}, this is, (a,g) /∈ (L1∪L3) we must have

L2 = 0.

Therefore, L = 0 and systems (O) have no exponential factors for (a,g) ∈ R2− (L1∪L3).

Case 4: n > 2l.

This case is the same proved for systems (N). Then, Gn = 0 that can not happen.

Summing up this four cases the proof follows.

(c) Suppose (a,g) ∈ R2− (L1∪L3). Then, by (a) and (b) we get that the systems (O) have
only the algebraic solution

J1(x,y) = a+ xy

with cofactor α1 = (−1+ 2g)x + 2y and they have no exponential factor. Under this
assumptions

λ1α1 = 0⇔ λ1 = 0 and

λ1α1 =−div(P,Q) =−(2gx+ y)− ((g−1)x+2y) has no solution.
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Hence, from the Darboux theory of integrability it follows that systems (O) are not
Liouvillian integrable.

�



141

CHAPTER

6
GEOMETRIC ANALYSIS

In this chapter we present a detailed study of 22 of the normal forms for the family
QSH. Our goal is gathering data on the geometry of polynomial systems as expressed in the
configurations of invariant algebraic curves and their impact on integrability. This data is useful
in gaining more insight about the Darboux theory of integrability. We also present here the
bifurcation diagrams of the normal forms from two viewpoints: their topological bifurcations as
well as the bifurcations diagrams of their configurations.

We first present the results of our calculations of the geometric features of the configura-
tions as well as the information on the singularities. Afterwards we sum up these in a proposition
and in pictures of the two bifurcation diagrams. We also give a proof for Poincaré’s problem for
6 of the cases studied. It is important to mention that we restricted our study to the case where
the first integral is obtained using invariant algebraic curves of degree at most two.

Observation 81. In the following study we have some cases where the total multiplicity of the
invariant lines, including the line at infinity, is at least four or the line at infinity is filled up with
singularities. These cases were studied in the papers: (SCHLOMIUK; VULPE, 2008c) (for the
cases where the total multiplicity of invariant lines is four), (SCHLOMIUK; VULPE, 2008b)
(for the cases where the total multiplicity of invariant lines is at least five) and (SCHLOMIUK;
VULPE, 2008a) (for the cases where the line at infinity is filled up with singularities). For the sake
of completeness we include these cases in our study too but we also bring some new information
about them, such as, about the way the curves intersect, remarkable curves, bifurcation diagrams
of configurations of invariant curves and bifurcations of phase portraits of the normal forms.

Observation 82. The exponents λi appearing in the expressions of some first integrals and
integrating factor cannot be all zero since we want to get nonconstant expressions.

Observation 83. In the following study we present first integrals and integrating factors for
many families of systems in QSH. In each case they are obtained only using invariant algebraic



142 Chapter 6. Geometric Analysis

curves of degree at most two. This means that we could have others first integrals and integrating
factors expressed by invariant algebraic curves of higher degrees.

6.1 Geometric study for systems with η > 0

In this section we present a detailed study of 10 normal forms for the class QSH(η>0),
namely the families (C), (E), (F), (G), (H), (I), (J), (K), (L) and (M). Following the geometric
study of this families we give an anwser to Poincaré’s problem, but only for the cases when its
solution does not follows directly from the expressions of the first integral.

The normal forms (A) and (B) are 3-parameters families which makes this study more
complicated and these cases will be studied in further works. Here we present only a particular
case for one of these two normal forms, the case (B) with h = 1/4. We also did not present in
this thesis the geometric analysis of family (D) due to complicated expressions for its invariant
algebraic curves and singularities. The study for this case is long and in it arises more complicated
bifurcation diagrams than the cases studied here. The study of this case is in progress and it will
be published in further works.

6.1.1 Geometric Analysis of Family (B) with h = 1/4

Consider the family

(B) h = 1
4 :

{
ẋ =−a

2 + x2− 3xy
4

ẏ = a(−1+2g)+(g−1)xy+ y2

4 ,

where a(g−1)(2g−1) 6= 0.

This is a two parameters family depending on a and g such that a(g−1)(2g−1) 6= 0 but
for a complete understanding of the bifurcation diagram of the systems in the full family defined
by the equations (B) with h = 1/4 we study here also the limit cases a(g−1)(2g−1) = 0 where
the equations are still defined.

We display below the full geometric analysis of this family, which is endowed with at
least two invariant hyperbolas. In the generic case

ag(g−1)(2g−1)(3g−4)(4g−1)(4g+1) 6= 0

the systems have two invariant hyperbolas J1,J2 with cofactors α1,α2 given by

J1 = a+ xy, α1 = (−1+2g)x− y
2

J2 = a+ xy− x2, α2 = 2gx− y
2 .

We note that when g = −1/4 we have two additional invariant lines. When g = 1/4 we have
an additional invariant hyperbola and one additional invariant line. The multiplicities of each
invariant hyperbola appearing in the divisor ICD of invariant algebraic curves were calculated by
using the 2nd extactic polynomial.
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(i) The generic case: ag(g−1)(2g−1)(3g−4)(4g−1)(4g+1) 6= 0.

Table 10 – Invariant curves, cofactors, singularities and intersection points of family (B) h = 1/4 for the
generic case.

Inv. curves and cofactors Singularities Intersection points

J1 = a+ xy
J2 = a+ xy− x2

α1 = (−1+2g)x− y
2

α2 = 2gx− y
2

P1 =
(
−

√
a√

3−4g ,
2
√

a(1−2g)√
3−4g

)
P2 =

( √
a√

3−4g ,
2
√

a(2g−1)√
3−4g

)
P3 =

(
− i
√

a
2
√

g ,−2i
√

a
√

g
)

P4 =
(

i
√

a
2
√

g ,2i
√

a
√

g
)

P∞
1 = [0 : 1 : 0]

P∞
2 = [1 : 1 : 0]

P∞
3 = [1 : 0 : 0]

For a < 0 we have

©,©,©,©;N,N,S if g < 0
©,©,s,s;N,N,N if 0 < g < 3

4
n,n,s,s;N,S,N if g > 3

4

For a > 0 we have

s,s,n,n;N,N,S if g < 0
s,s,©,©;N,N,N if 0 < g < 3

4
©,©,©,©;N,S,N if g > 3

4

J1∩ J2 = P∞
1 quadruple

J1∩L∞ =

{
P∞

1 simple
P∞

3 simple

J2∩L∞ =

{
P∞

1 simple
P∞

2 simple

Source: Elaborated by the author.
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Table 11 – Divisor and zero-cycles of family (B) h = 1/4 for the generic case.

Divisor and zero-cycles Degree
ICD = J1 + J2 +L∞

M0CS =



PC
1 +PC

2 +PC
3 +PC

4 +P∞
1 +P∞

2 +P∞
3 if

{
a > 0 and g > 3/4 or
a < 0 and g < 0

PC
1 +PC

2 +P3 +P4 +P∞
1 +P∞

2 +P∞
3 if a < 0 and 0 < g < 3/4

P1 +P2 +PC
3 +PC

4 +P∞
1 +P∞

2 +P∞
3 if a > 0 and 0 < g < 3/4

P1 +P2 +P3 +P4 +P∞
1 +P∞

2 +P∞
3 if

{
a > 0 and g < 0 or
a < 0 and g > 3/4

T = ZJ1J2 = 0

M0CT =



PC
1 +PC

2 +PC
3 +PC

4 +3P∞
1 +2P∞

2 +2P∞
3 if

{
a > 0 and g > 3/4 or
a < 0 and g < 0

PC
1 +PC

2 +P3 +P4 +3P∞
1 +2P∞

2 +2P∞
3 if a < 0 and 0 < g < 3/4

P1 +P2 +PC
3 +PC

4 +3P∞
1 +2P∞

2 +2P∞
3 if a > 0 and 0 < g < 3/4

P1 +P2 +P3 +P4 +3P∞
1 +2P∞

2 +2P∞
3 if

{
a > 0 and g < 0 or
a < 0 and g > 3/4

3

7
7
7
7
7
7

5

11
11
11
11
11
11

Source: Elaborated by the author.

where the total curve T has only two distinct tangents at P∞
1 , but one of them is double.

Table 12 – First integral and integrating factor of family (B) h = 1/4 for the generic case.

First integral Integrating Factor

General I R = J−1+2g
1 J

1
2 (1−4g)
2

Simple
example I R = J−1+2g

1 J
1
2 (1−4g)
2

Source: Elaborated by the author.

I =I =
(a+ xy)2g(a+ x(y− x))

3
2−2g

(
3a(a+ xy)2F1

(
1, 5

2 ; 5
2 −2g;−−x2+yx+a

x2

)
+(4g−3)x2

(
a+4gx2

))
8g(4g−3)x5 ,

where 2F1(a,b;c;z) is the hypergeometric function which has a branch cut discontinuity
in the complex z plane running from 1 to ∞ and has series expansion 2F1(a,b;c;z) =

∞

∑
k=0

akbkzk

ckk!
.

(ii) The non-generic cases: ag(g−1)(2g−1)(3g−4)(4g−1)(4g+1) = 0.

(ii.1) g =−1
4 and a 6= 0.

Here we have, apart from the two invariant hyperbolas, two additional invariant lines.
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Table 13 – Invariant curves, cofactors, singularities and intersection points of family (B) when h = 1/4,
g =−1/4 and a 6= 0.

Inv. curves and cofactors Singularities Intersection points

J1 =−2
√

a+ x− y
J2 = 2

√
a+ x− y

J3 = a+ xy
J4 = a+ xy− x2

α1 =−
√

a
2 −

x
4 +

y
4

α2 =
√

a
2 −

x
4 +

y
4

α3 =−3x
2 −

y
2

α4 =− x
2 −

y
2

P1 =
(
−
√

a,
√

a
)

P2 =
(√

a,−
√

a
)

P3 =
(
−
√

a
2 , 3

√
a

2

)
P4 =

(√
a

2 ,−3
√

a
2

)
P∞

1 = [0 : 1 : 0]
P∞

2 = [1 : 1 : 0]
P∞

3 = [1 : 0 : 0]

For a < 0 we have

©,©,©,©;N,N,S

For a > 0 we have

n,n,s,s;N,N,S

J1∩ J2 = P∞
2 simple

J1∩ J3 = P2 double

J1∩ J4 =

{
P4 simple
P∞

2 simple
J1∩L∞ = P∞

2 simple
J2∩ J3 = P1 double

J2∩ J4 =

{
P3 simple
P∞

2 simple
J2∩L∞ = P∞

2 simple
J3∩ J4 = P∞

1 quadruple

J3∩L∞ =

{
P∞

1 simple
P∞

3 simple

J4∩L∞ =

{
P∞

1 simple
P∞

2 simple

Source: Elaborated by the author.

Table 14 – Divisor and zero-cycles of family (B) when h = 1/4, g =−1/4 and a 6= 0.

Divisor and zero-cycles Degree

ICD =

{
JC

1 + JC
2 + J3 + J4 +L∞ if a < 0

J1 + J2 + J3 + J4 +L∞ if a > 0

M0CS =

{
PC

1 +PC
2 +PC

3 +PC
4 +P∞

1 +P∞
2 +P∞

3 if a < 0
P1 +P2 +P3 +P4 +P∞

1 +P∞
2 +P∞

3 if a > 0

T = ZJ1J2J3J4 = 0

M0CT =

{
2PC

1 +2PC
2 +2PC

3 +2PC
4 +3P∞

1 +4P∞
2 +2P∞

3 if a < 0
2P1 +2P2 +2P3 +2P4 +3P∞

1 +4P∞
2 +2P∞

3 if a > 0

5
5

7
7

7

17
17

Source: Elaborated by the author.

where the total curve T has

1) only two distinct tangents at P∞
1 , but one of them is double,

2) four distinct tangents at P∞
2 .
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Table 15 – First integral and integrating factor of family (B) when h = 1/4, g =−1/4 and a 6= 0.

First integral Integrating Factor

General I = Jλ1
1 Jλ1

2 J−λ1
3 J2λ1

4 R = Jλ1
1 Jλ1

2 J
−λ1− 3

2
3 J1+2λ1

4
Simple

example I1 =
J1J2J2

4
J3

R =
1

J1J2J
1
2
3 J4

Source: Elaborated by the author.

Observation 84. Consider F 1
(c1,c2)

= c1J1J2J2
4 − c2J3 = 0, degF1 = 6. The remarkable

values of F 1
(c1,c2)

are [1 :−4a2] and [1 : 0] for which we have

F 1
(1,−4a2) =

(
a(y−3x)+ x(x− y)2)2

, F 1
(1,0) = J1J2J2

4 .

Therefore, J1,J2,J4 and J5 := a(y−3x)+ x(x− y)2 are remarkable curves, [1 :−4a2] and
[1 : 0] are all critical remarkable values and J4,J5 are critical remarkable curves of I1. The
singular points are P1, P2 for F 1

(1,−4a2) and P3,P4 for F 1
(1,0).

Observation 85. J5 := a(y−3x)+x(x−y)2 is an invariant algebraic curve of degree 3 of
family (B) when h = 1/4, g =−1/4 and a 6= 0, with cofactor given by α5 =−3x

4 −
y
4 .

Observation 86. Note that the rational first integral I1 in Table 15 has the rational
integrating factor R = J3J5

J2
4

expressed by an invariant curve of degree higher than two.

(ii.2) g = 0 and a 6= 0.

Table 16 – Invariant curves, cofactors, singularities and intersection points of family (B) when h = 1/4,
g = 0 and a 6= 0.

Inv. curves and cofactors Singularities Intersection points

J1 = a+ xy
J2 = a+ xy− x2

α1 =−x− y
2

α2 =− y
2

P1 =
(√

a√
3
,−2

√
a√

3

)
P2 =

(
−
√

a√
3
, 2
√

a√
3

)
P∞

1 = [0 : 1 : 0]
P∞

2 = [1 : 1 : 0]
P∞

3 = [1 : 0 : 0]

For a < 0 we have

©,©;N,N,(2
1)S

For a > 0 we have

s,s;N,N,(2
1)N

J1∩ J2 = P∞
1 quadruple

J1∩L∞ =

{
P∞

1 simple
P∞

3 simple

J2∩L∞ =

{
P∞

1 simple
P∞

2 simple

Source: Elaborated by the author.
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Table 17 – Divisor and zero-cycles of family (B) when h = 1/4, g = 0 and a 6= 0.

Divisor and zero-cycles Degree
ICD = J1 + J2 +L∞

M0CS =

{
PC

1 +PC
2 +P∞

1 +P∞
2 +3P∞

3 if a < 0
P1 +P2 +P∞

1 +P∞
2 +3P∞

3 if a > 0

T = ZJ1J2 = 0

M0CT =

{
PC

1 +PC
2 +3P∞

1 +2P∞
2 +2P∞

3 if a < 0
P1 +P2 +3P∞

1 +2P∞
2 +2P∞

3 if a > 0

3

7
7

5

9
9

Source: Elaborated by the author.

where the total curve T has only two distinct tangents at P∞
1 , but one of them is double.

Table 18 – First integral and integrating factor of family (B) when h = 1/4, g = 0 and a 6= 0.

First integral Integrating Factor

General I = 1
2

(
(y− x)

√
a+ x(y− x)+a tan−1

(√
a+x(y−x)

x

))
R = J−1

1 J
1
2
2

Simple
example I = 1

2

(
(y− x)

√
a+ x(y− x)+a tan−1

(√
a+x(y−x)

x

))
R = J−1

1 J
1
2
2

Source: Elaborated by the author.

(ii.3) g = 1
4 and a 6= 0.

Here we have, apart from the two invariant hyperbolas, a third invariant hyperbola and one
additional invariant line.
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Table 19 – Invariant curves, cofactors, singularities and intersection points of family (B) when h = 1/4,
g = 1/4 and a 6= 0.

Inv. curves and cofactors Singularities Intersection points

J1 = x− y
J2 = a+ xy
J3 = a+ xy− x2

J4 = a+ xy− y2

α1 =
x
4 +

y
4

α2 =− x
2 −

y
2

α3 =
x
2 −

y
2

α4 =− x
2 +

y
2

P1 =
(
−i
√

a,−i
√

a
)

P2 =
(
i
√

a, i
√

a
)

P3 =
(
−
√

a√
2
,
√

a√
2

)
P4 =

(√
a√
2
,−
√

a√
2

)
P∞

1 = [0 : 1 : 0]
P∞

2 = [1 : 1 : 0]
P∞

3 = [1 : 0 : 0]

For a < 0 we have

s,s,©,©;N,N,N

For a > 0 we have

©,©,s,s;N,N,N

J1∩ J2 =

{
P1 simple
P2 simple

J1∩ J3 = P∞
2 double

J1∩ J4 = P∞
2 double

J1∩L∞ = P∞
2 simple

J2∩ J3 = P∞
1 quadruple

J2∩ J4 = P∞
3 quadruple

J2∩L∞ =

{
P∞

1 simple
P∞

3 simple

J3∩ J4 =


P3 simple
P4 simple
P∞

2 double

J3∩L∞ =

{
P∞

1 simple
P∞

2 simple

J4∩L∞ =

{
P∞

2 simple
P∞

3 simple

Source: Elaborated by the author.

Observation 87. 1) We see here that taking J1 and J2, the conditions of the theorem of
C-K are satisfied and hence we can also have an inverse integrating factor as J1J2.

2) Note that there is a Darboux first integral for this case since we have 4 = n(n+1)
2 invariant

algebraic curves.

Table 20 – Divisor and zero-cycles of family (B) when h = 1/4, g = 1/4 and a 6= 0.

Divisor and zero-cycles Degree
ICD = J1 + J2 + J3 + J4 +L∞

M0CS =

{
P1 +P2 +PC

3 +PC
4 +P∞

1 +P∞
2 +P∞

3 if a < 0
PC

1 +PC
2 +P3 +P4 +P∞

1 +P∞
2 +P∞

3 if a > 0

T = ZJ1J2J3J4 = 0

M0CT =

{
2P1 +2P2 +2PC

3 +2PC
4 +3P∞

1 +3P∞
2 +4P∞

3 if a < 0
2PC

1 +2PC
2 +2P3 +2P4 +3P∞

1 +3P∞
2 +4P∞

3 if a > 0

5

7
7

8

18
18

Source: Elaborated by the author.

where the total curve T has

1) only two distinct tangents at P∞
1 (and at P∞

3 ), but one of them is double,
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2) only two distinct tangents at P∞
2 , but one of them is triple.

Table 21 – First integral and integrating factor of family (B) when h = 1/4, g = 1/4 and a 6= 0.

First integral Integrating Factor

General I = Jλ1
1 J

λ1
2

2 Jλ3
3 Jλ3

4 R = Jλ1
1 J

λ1
2 −

1
2

2 Jλ3
3 Jλ3

4
Simple

example I1 = J2
1 J2 I2 = J3J4 R =

1
J1J2

Source: Elaborated by the author.

(ii.4) g = 3
4 and a 6= 0.

Table 22 – Invariant curves, cofactors, singularities and intersection points of family (B) when h = 1/4,
g = 3/4 and a 6= 0.

Inv. curves and cofactors Singularities Intersection points

J1 = a+ xy
J2 = a+ xy− x2

α1 =
x
2 −

y
2

α2 =
3x
2 −

y
2

P1 =
(
− i
√

a√
3
,−i
√

3
√

a
)

P2 =
(

i
√

a√
3
, i
√

3
√

a
)

P∞
1 = [0 : 1 : 0]

P∞
2 = [1 : 1 : 0]

P∞
3 = [1 : 0 : 0]

For a < 0 we have

s,s;N,(2
1)N,N

For a > 0 we have

©,©;N,(2
1)S,N

J1∩ J2 = P∞
1 quadruple

J1∩L∞ =

{
P∞

1 simple
P∞

3 simple

J2∩L∞ =

{
P∞

1 simple
P∞

2 simple

Source: Elaborated by the author.

Table 23 – Divisor and zero-cycles of family (B) for h = 1/4, g = 3/4 and a 6= 0.

Divisor and zero-cycles Degree
ICD = J1 + J2 +L∞

M0CS =

{
P1 +P2 +P∞

1 +3P∞
2 +P∞

3 if a < 0
PC

1 +PC
2 +P∞

1 +3P∞
2 +P∞

3 if a > 0

T = ZJ1J2 = 0

M0CT =

{
P1 +P2 +3P∞

1 +2P∞
2 +2P∞

3 if a < 0
PC

1 +PC
2 +3P∞

1 +2P∞
2 +2P∞

3 if a > 0

3

7
7

5

9
9

Source: Elaborated by the author.



150 Chapter 6. Geometric Analysis

where the total curve T has only two distinct tangents at P∞
1 , but one of them is double.

Table 24 – First integral and integrating factor of family (B) for h = 1/4, g = 3/4 and a 6= 0.

First integral Integrating Factor

General I = 1
4

(
2y
√

a+ xy+2a tanh−1
(√

a+xy
x

))
R = J

1
2
1 J−1

2

Simple
example I = 1

4

(
2y
√

a+ xy+2a tanh−1
(√

a+xy
x

))
R = J

1
2
1 J−1

2

Source: Elaborated by the author.

(ii.5) g = 1
2 and a 6= 0.

Under this condition the systems do not belong to family (B) h = 1/4. Here we have, apart
from the two invariant hyperbolas, a third invariant hyperbola and one additional invariant
line.

Table 25 – Invariant curves, cofactors, singularities and intersection points of family (B) when h = 1/4,
g = 1/2 and a 6= 0.

Inv. curves and cofactors Singularities Intersection points

J1 = y
J2 = a+ xy
J3 = a+ xy− x2

J4 =−a+ xy− y2

α1 =− x
2 +

y
4

α2 =− y
2

α3 = x− y
2

α4 =
y
2

P1 =
(
−
√

a,0
)

P2 =
(√

a,0
)

P3 =
(
− i
√

a√
2
,−i
√

2
√

a
)

P4 =
(

i
√

a√
2
, i
√

2
√

a
)

P∞
1 = [0 : 1 : 0]

P∞
2 = [1 : 1 : 0]

P∞
3 = [1 : 0 : 0]

For a < 0 we have

©,©,s,s;N,N,N

For a > 0 we have

s,s,©,©;N,N,N

J1∩ J2 = P∞
3 double

J1∩ J3 =

{
P1 simple
P2 simple

J1∩ J4 = P∞
3 double

J1∩L∞ = P∞
3 simple

J2∩ J3 = P∞
1 quadruple

J2∩ J4 =


P3 simple
P4 simple
P∞

3 double

J2∩L∞ =

{
P∞

1 simple
P∞

3 simple
J3∩ J4 = P∞

2 quadruple

J3∩L∞ =

{
P∞

1 simple
P∞

2 simple

J4∩L∞ =

{
P∞

2 simple
P∞

3 simple

Source: Elaborated by the author.

Observation 88. We see here that taking J1 and J3, the conditions of the theorem of C-K
are satisfied and hence we can have an inverse integrating factor as J1J3.
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Table 26 – Divisor and zero-cycles of family (B) when h = 1/4, g = 1/2 and a 6= 0.

Divisor and zero-cycles Degree
ICD = J1 + J2 + J3 + J4 +L∞

M0CS =

{
PC

1 +PC
2 +P3 +P4 +P∞

1 +P∞
2 +P∞

3 if a < 0
P1 +P2 +PC

3 +PC
4 +P∞

1 +P∞
2 +P∞

3 if a > 0

T = ZJ1J2J3J4 = 0

M0CT =

{
2PC

1 +2PC
2 +2P3 +2P4 +3P∞

1 +3P∞
2 +4P∞

3 if a < 0
2P1 +2P2 +2PC

3 +2PC
4 +3P∞

1 +3P∞
2 +4P∞

3 if a > 0

5

7
7

8

18
18

Source: Elaborated by the author.

where the total curve T has

1) only two distinct tangents at P∞
1 (and at P∞

2 ), but one of them is double,

2) only two distinct tangents at P∞
3 , but one of them is triple.

Table 27 – First integral and integrating factor of family (B) when h = 1/4, g = 1/2 and a 6= 0.

First integral Integrating Factor

General I = Jλ1
1 Jλ2

2 J
λ1
2

3 Jλ2
4 R = Jλ1

1 Jλ2
2 J

λ1
2 −

1
2

3 Jλ2
4

Simple
example I1 = J2

1 J3 I2 = J2J4 R =
1

J1J3
Source: Elaborated by the author.

(ii.6) g = 1 and a 6= 0.

Under this condition the systems do not belong to family (B) h = 1/4. Here we have, apart
from the two invariant hyperbolas, two additional invariant lines.
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Table 28 – Invariant curves, exponential factors, cofactors, singularities and intersection points of family
(B) when h = 1/4, g = 1 and a 6= 0.

Inv. curves and cofactors Singularities Intersection points

J1 = 1− iy
2
√

a

J2 = 1+ iy
2
√

a
J3 = a+ xy
J4 = a+ xy− x2

α1 =
y
4 −

i
√

a
2

α2 =
y
4 +

i
√

a
2

α3 = x− y
2

α4 = 2x− y
2

P1 =
(
− i
√

a
2 ,−2i

√
a
)

P2 =
(

i
√

a
2 ,2i

√
a
)

P3 =
(
−i
√

a,−2i
√

a
)

P4 =
(
i
√

a,2i
√

a
)

P∞
1 = [0 : 1 : 0]

P∞
2 = [1 : 1 : 0]

P∞
3 = [1 : 0 : 0]

For a < 0 we have

s,s,n,n;N,S,N

For a > 0 we have

©,©,©,©;N,S,N

J1∩ J2 = P∞
3 simple

J1∩ J3 =

{
P1 simple
P∞

3 simple
J1∩ J4 = P3 double
J1∩L∞ = P∞

3 simple

J2∩ J3 =

{
P2 simple
P∞

3 simple
J2∩ J4 = P4 double
J2∩L∞ = P∞

3 simple
J3∩ J4 = P∞

1 quadruple

J3∩L∞ =

{
P∞

1 simple
P∞

3 simple

J4∩L∞ =

{
P∞

1 simple
P∞

2 simple

Source: Elaborated by the author.

Observation 89. Note that there is a Darboux first integral for this case since we have
4 = n(n+1)

2 invariant algebraic curves.

Table 29 – Divisor and zero-cycles of family (B) when h = 1/4, g = 1 and a 6= 0.

Divisor and zero-cycles Degree

ICD =

{
J1 + J2 + J3 + J4 +L∞ if a < 0
JC

1 + JC
2 + J3 + J4 +L∞ if a > 0

M0CS =

{
P1 +P2 +P3 +P4 +P∞

1 +P∞
2 +P∞

3 if a < 0
PC

1 +PC
2 +PC

3 +PC
4 +P∞

1 +P∞
2 +P∞

3 if a > 0

T = ZJ1J2J3J4 = 0

M0CT =

{
2P1 +2P2 +2P3 +2P4 +3P∞

1 +2P∞
2 +4P∞

3 if a < 0
2PC

1 +2PC
2 +2PC

3 +2PC
4 +3P∞

1 +2P∞
2 +4P∞

3 if a > 0

5
5

7
7

7

17
17

Source: Elaborated by the author.

where the total curve T has

1) only two distinct tangents at P∞
1 , but one of them is double,

2) four distinct tangents at P∞
3 .
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Table 30 – First integral and integrating factor of family (B) when h = 1/4, g = 1 and a 6= 0.

First integral Integrating Factor

General I = Jλ1
1 Jλ1

2 J2λ1
3 J−λ1

4 R = Jλ1
1 Jλ1

2 J1+2λ1
3 J

− 3
2−λ1

4
Simple

example I1 =
J1J2J2

3
J4

R =
1

J1J2J3J
1
2
4

Source: Elaborated by the author.

Observation 90. Consider F 1
(c1,c2)

= c1J1J2J2
3 − c2J4 = 0, degF 1

(c1,c2)
= 6. The remark-

able values of F 1
(c1,c2)

are [1 : a] and [1 : 0] for which we have

F 1
(1,a) =

(
2ax+ay+ xy2)2

4a
, F 1

(1,0) = J1J2J2
3 .

Therefore, J1,J2,J3 and J5 := 2ax+ay+ xy2 are remarkable curves, [1 : a] and [1 : 0] are
all critical remarkable values and J3,J5 are critical remarkable curves of I1. The singular
points are P1, P2 for F 1

(1,0) and P3,P4 for F 1
(1,a).

Observation 91. J5 := 2ax+ay+ xy2 is an invariant algebraic curve of family (B) when
h = 1/4, g = 1 and a 6= 0, with cofactor given by α5 = x− y

4 .

Observation 92. Note that the rational first integral I1 in Table 30 has the rational
integrating factor R = J4

J1J2J3J3
5

expressed by an invariant curve of degree higher than two.

(ii.7) a = 0 and g 6= 0, 3
4 .

Considering the line at infinity Z = 0 the total multiplicity of the invariant lines is four
so this case was studied in (SCHLOMIUK; VULPE, 2008c). We include this case as
indicated in Observation 81.

(ii.7.1) a = 0 and g 6=−1
4 ,0,

3
4 ,1.

Under this condition, systems (B) h = 1/4 do not belong to QSH. The affine invariant
lines are y = 0, −x+ y = 0 and x = 0 that are all simple. By perturbing the reducible
conics xy = 0 and x(x− y) = 0 we can produce the two distinct hyperbolas a+ xy = 0 and
a− x2 + xy = 0 respectively.
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Table 31 – Invariant curves, cofactors, singularities and intersection points of family (B) when h = 1/4,
a = 0 and g 6=−1/4,0,3/4,1.

Invariant curves and cofactors Singularities Intersection points

J1 = y
J2 =−x+ y
J3 = x

α1 = (−1+g)x+ y
4

α2 = gx+ y
4

α3 = gx− 3y
4

P1 = (0,0)

P∞
1 = [0 : 1 : 0]

P∞
2 = [1 : 1 : 0]

P∞
3 = [1 : 0 : 0]

hpphpp(4);N,N,S if g < 0
hhhhhh(4);N,N,N if 0 < g < 3/4
pphpph(4);N,S,N if g > 3/4

J1∩ J2 = P1 simple
J1∩ J3 = P1 simple
J1∩L∞ = P∞

3 simple
J2∩ J3 = P1 simple
J2∩L∞ = P∞

2 simple
J3∩L∞ = P∞

1 simple

Source: Elaborated by the author.

Observation 93. Here we have one of the C-K conditions not satisfied ((0,0) is point
of intersection of the 3 curves) but we still have the conclusion i.e. J1J2J3 is an inverse
integrating factor.

Table 32 – Divisor and zero-cycles of family (B) when h = 1/4, a = 0 and g 6=−1/4,0,3/4,1.

Divisor and zero-cycles Degree
ICD = J1 + J2 + J3 +L∞

M0CS = 4P1 +P∞
1 +P∞

2 +P∞
3

T = ZJ1J2J3 = 0

M0CT = 3P1 +2P∞
1 +2P∞

2 +2P∞
3

4

7

4

9
Source: Elaborated by the author.

Table 33 – First integral and integrating factor of family (B) when h = 1/4, a = 0 and g 6=−1/4,0,3/4,1.

First integral Integrating Factor

General I = Jλ1
1 J
− (4g−3)λ1

4g
2 J

λ1
4g

3 R = Jλ1
1 J

3(λ1+1)
4g −λ1−2

2 J
1−4g+λ1

4g
3

Simple
example I = J4g

1 J3−4g
2 J3 R =

1
J1J2J3

Source: Elaborated by the author.

(ii.7.2) a = 0 and g =−1/4.

Under this condition, systems (B) h = 1/4 do not belong to QSH. The affine invariant
lines are y = 0 and x = 0 that are both simple and x− y = 0 that is double. By perturbing
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the reducible conics xy = 0 and x(x− y) = 0 we can produce the two distinct hyperbolas
a+ xy = 0 and a− x2 + xy = 0 respectively.

Table 34 – Invariant curves, cofactors, singularities and intersection points of family (B) when h = 1/4,
a = 0 and g =−1/4.

Invariant curves and cofactors Singularities Intersection points
J1 = y
J2 = x− y
J3 = x

E4 = e
g0+g1(x−y)

x−y

α1 =−5x
4 + y

4
α2 =− x

4 +
y
4

α3 =− x
4 −

3y
4

α4 =
g0
4

P1 = (0,0)

P∞
1 = [0 : 1 : 0]

P∞
2 = [1 : 1 : 0]

P∞
3 = [1 : 0 : 0]

hpphpp(4);N,N,S

J1∩ J2 = P1 simple
J1∩ J3 = P1 simple
J1∩L∞ = P∞

3 simple
J2∩ J3 = P1 simple
J2∩L∞ = P∞

2 simple
J3∩L∞ = P∞

1 simple

Source: Elaborated by the author.

Table 35 – Divisor and zero-cycles of family (B) when h = 1/4, a = 0 and g =−1/4.

Divisor and zero-cycles Degree
ICD = J1 +2J2 + J3 +L∞

M0CS = 4P1 +P∞
1 +P∞

2 +P∞
3

T = ZJ1J2
2J3 = 0

M0CT = 4P1 +2P∞
1 +3P∞

2 +2P∞
3

5

7

5

9
Source: Elaborated by the author.

where the total curve T has

1) only three distinct tangents at P1, but one of them is double,

2) only two distinct tangents at P∞
2 , but one of them is double.

Table 36 – First integral and integrating factor of family (B) when h = 1/4, a = 0 and g =−1/4.

First integral Integrating Factor

General I = Jλ1
1 J−4λ1

2 J−λ1
3 E0

4 R = Jλ1
1 J−5−4λ1

2 J−2−λ1
3 E0

4
Simple

example I = J1J−4
2 J−1

3 R =
1

J1J2J3
Source: Elaborated by the author.

(ii.7.3) a = 0 and g = 1.
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Under this condition, systems (B) h = 1/4 do not belong to QSH. The affine invariant
lines are −x+y = 0 and x = 0 that are both simple and y = 0 that is double. By perturbing
the reducible conics xy = 0 and x(x− y) = 0 we can produce the two distinct hyperbolas
a+ xy = 0 and a− x2 + xy = 0 respectively.

Table 37 – Invariant curves, cofactors, singularities and intersection points of family (B) when h = 1/4,
a = 0 and g = 1.

Invariant curves and cofactors Singularities Intersection points
J1 = y
J2 =−x+ y
J3 = x

E4 = e
g0+g1y

y

α1 =
y
4

α2 = x+ y
4

α3 = x− 3y
4

α4 =−
g0

4

P1 = (0,0)

P∞
1 = [0 : 1 : 0]

P∞
2 = [1 : 1 : 0]

P∞
3 = [1 : 0 : 0]

pphpph(4);N,S,N

J1∩ J2 = P1 simple
J1∩ J3 = P1 simple
J1∩L∞ = P∞

3 simple
J2∩ J3 = P1 simple
J2∩L∞ = P∞

2 simple
J3∩L∞ = P∞

1 simple

Source: Elaborated by the author.

Table 38 – Divisor and zero-cycles of family (B) when h = 1/4, a = 0 and g = 1.

Divisor and zero-cycles Degree
ICD = 2J1 + J2 + J3 +L∞

M0CS = 4P1 +P∞
1 +P∞

2 +P∞
3

T = ZJ2
1J2J3 = 0

M0CT = 4P1 +2P∞
1 +2P∞

2 +3P∞
3

5

7

5

9
Source: Elaborated by the author.

where the total curve T has

1) only three distinct tangents at P1, but one of them is double,

2) only two distinct tangents at P∞
3 , but one of them is double.

Table 39 – First integral and integrating factor of family (B) when h = 1/4, a = 0 and g = 1.

First integral Integrating Factor

General I = Jλ1
1 J
− λ1

4
2 J

λ1
4

3 E0
4 R = Jλ1

1 J
− λ1

4 −
5
4

2 J
λ1
4 −

3
4

3 E0
4

Simple
example I = J4

1 J−1
2 J3 R =

1
J1J2J3

Source: Elaborated by the author.
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Observation 94. Here again we have one condition of C-K broken but we still have the
conclusion i.e. J1J2J3 is an inverse integrating factor.

(ii.8) a = g = 0.

Under this condition, systems (B) when h = 1/4 do not belong to QSH. The system here
is ẋ = −3xy

4 , ẏ = y(−4x+y)
4 . This is a degenerate system where the line y = 0 is filled up

with singularities. The affine invariant lines are x− y = 0 and x = 0 that are both simple.
We get a polynomial first integral.

Table 40 – Invariant curves, cofactors, singularities and intersection points for the reduced of family (B)
when h = 1/4 and a = g = 0.

Invariant curves and cofactors Singularities Intersection points

J1 = x− y
J2 = x

α1 =
1
4

α2 =−3
4

P1 = (0,0)

P∞
1 = [0 : 1 : 0]

P∞
2 = [1 : 1 : 0]

(	[|];s);N,N,(	[|]; /0)

J1∩ J2 = P1 simple
J1∩L∞ = P∞

2 simple
J2∩L∞ = P∞

1 simple

Source: Elaborated by the author.

Table 41 – Divisor and zero-cycles for the reduced of family (B) when h = 1/4 and a = g = 0.

Divisor and zero-cycles Degree
ICD = J1 + J2 +L∞

M0CS = P1 +P∞
1 +P∞

2

T = ZJ1J2 = 0

M0CT = 2P1 +2P∞
1 +2P∞

2

3

3

3

6
Source: Elaborated by the author.

Table 42 – First integral and integrating factor for the reduced system of family (B) when h = 1/4 and
a = g = 0.

First integral Integrating Factor

General I = Jλ1
1 J

λ1
3

2 R = Jλ1
1 J

λ1−2
3

2
Simple

example I = J3
1 J2 R =

1
J1J2

Source: Elaborated by the author.

Note that I and I are also first integrals for family (B) when h = 1/4 and a = g = 0.
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(ii.9) a = 0 and g =
3
4
.

Under this condition, systems (B) when h = 1/4 do not belong to QSH. The system here
is ẋ = 3x(x−y)

4 , ẏ =−y(x−y)
4 . This is a degenerate system where the line x− y = 0 is filled

up with singularities. The affine invariant lines are y = 0 and x = 0 that are both simple.
We get a polynomial first integral.

Table 43 – Invariant curves, cofactors, singularities and intersection points for the reduced system of
family (B) when h = 1/4, g = 3/4 and a = 0.

Invariant curves and cofactors Singularities Intersection points

J1 = y
J2 = x

α1 =−1
4

α2 =
3
4

P1 = (0,0)

P∞
1 = [0 : 1 : 0]

P∞
2 = [1 : 0 : 0]

(	[|];s);N,(	[|]; /0),N

J1∩ J2 = P1 simple
J1∩L∞ = P∞

2 simple
J2∩L∞ = P∞

1 simple

Source: Elaborated by the author.

Table 44 – Divisor and zero-cycles for the reduced system of family (B) when h = 1/4, g = 3/4 and
a = 0.

Divisor and zero-cycles Degree
ICD = J1 + J2 +L∞

M0C = P1 +P∞
1 +P∞

2

T = ZJ1J2 = 0

M0CT = 2P1 +2P∞
1 +2P∞

2

3

3

3

6
Source: Elaborated by the author.

Table 45 – First integral and integrating factor for the reduced system of family (B) when h= 1/4, g= 3/4
and a = 0.

First integral Integrating Factor

General I = Jλ1
1 J

λ1
3

2 R = Jλ1
1 J

λ1−2
3

1
Simple

example I = J3
1 J2 R =

1
J1J2

Source: Elaborated by the author.

Note that I and I are also first integrals for family (B) when h = 1/4, g = 3/4 and a = 0.
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We sum up the topological, dynamical and algebraic geometric features of family (B)
h = 1/4 in the following proposition. We also confront our results with previous results in
literature in the following proposition.

Proposition 95. (a) For the family (B) when h = 1/4 we obtained nine distinct configurations
C(B)

1 up to C(B)
9 of invariant hyperbolas and lines (see Figure 4 for the complete bifurcation

diagram of configurations of this family). The bifurcation set of configurations in the full
parameter space is ag(g−1)(g±1/4)(g−1/2)(g−3/4) = 0. Its complement is a union
of 12 disjoint sets. In this parameter set the bifurcation of configurations of the systems is
formed by the lines g =−1/4, g = 0, g = 1/4 and g = 3/4 with a 6= 0. On g = 0 or g = 3

4

and a 6= 0 we have just the two invariant hyperbolas. On g =−1/4 we have two additional
invariant lines. On g = 1/4 we have one additional invariant hyperbola and one invariant
line. For the limiting set of the parameter space of the considered family we have the
following: On g = 1/2 and a 6= 0 we have one additional invariant line and one additional
invariant hyperbola. On g = 1 and a 6= 0 we have two additional invariant lines. On a = 0
the invariant hyperbolas become reducible. On a = g = 0 the line y = 0 is filled up with
singularities. On a = 0 and g = 3/4 the line x− y = 0 is filled up with singularities.

(b) The family (B) when h = 1/4 is Liouvillian integrable if a(g−1)(2g−1)(4g−1)(4g+

1) 6= 0. When g =−1/4 the family (B) with h = 1/4 admits a rational first integral and
the plane is foliated into invariant algebraic curves of degree six. The remarkable curves
are J1,J2,J3 and J5 corresponding to this case. When h = g = 1/4 the family (B) admits a
polynomial first integral.

(c) For the family (B) when h = 1/4 we have four topologically distinct phase portraits
P(B)

1 −P(B)
4 . The topological bifurcation diagram of family (B) is done in Figure 5. The

bifurcation set are the lines g = 0, g = 3/4, a = 0 and the half lines g = 1/2 with a > 0 and
g = 1/4 with a < 0. The lines g = 0, g = 3/4 and a = 0 are bifurcation sets of singularities
and the half lines g = 1/2 with a > 0 and g = 1/4 with a < 0 are bifurcations of separatrix
from saddle to saddle connection. The phase portraits P(B)

1 and P(B)
3 are not topologically

equivalent with anyone of the phase portraits in (LLIBRE; YU, 2018).

Proof of Proposition 95.

(a) We have the following type of divisors and zero-cycles of the total invariant curve T for
the configurations of family (B) when h = 1/4:
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Table 46 – Configurations for family (B) when h = 1/4.

Configurations Divisors and zero-cycles of the total inv. curve T

C(B)
1

ICD = J1 + J2 +L∞

M0CT = P1 +P2 +P3 +P4 +3P∞
1 +2P∞

2 +2P∞
3

C(B)
2

ICD = J1 + J2 +L∞

M0CS =

{
P1 +P2 +PC

3 +PC
4 +P∞

1 +P∞
2 +P∞

3
PC

1 +PC
2 +P3 +P4 +P∞

1 +P∞
2 +P∞

3

M0CT =

{
P1 +P2 +PC

3 +PC
4 +3P∞

1 +2P∞
2 +2P∞

3
PC

1 +PC
2 +P3 +P4 +3P∞

1 +2P∞
2 +2P∞

3

C(B)
3

ICD = J1 + J2 +L∞

M0CS = PC
1 +PC

2 +PC
3 +PC

4 +P∞
1 +P∞

2 +P∞
3

M0CT = PC
1 +PC

2 +PC
3 +PC

4 +3P∞
1 +2P∞

2 +2P∞
3

C(B)
4

ICD = J1 + J2 +L∞

M0CS =

{
PC

1 +PC
2 +P∞

1 +3P∞
2 +P∞

3
PC

1 +PC
2 +P∞

1 +P∞
2 +3P∞

3
M0CT = PC

1 +PC
2 +3P∞

1 +2P∞
2 +2P∞

3

C(B)
5

ICD = J1 + J2 +L∞

M0CS =

{
P1 +P2 +P∞

1 +3P∞
2 +P∞

3
P1 +P2 +P∞

1 +P∞
2 +3P∞

3
M0CT = P1 +P2 +3P∞

1 +2P∞
2 +2P∞

3

C(B)
6

ICD = J1 + J2 + J3 + J4 +L∞

M0CT = 2P1 +2P2 +2PC
3 +2PC

4 +3P∞
1 +3P∞

2 +4P∞
3

C(B)
7

ICD = J1 + J2 + J3 + J4 +L∞

M0CT = 2PC
1 +2PC

2 +2P3 +2P4 +3P∞
1 +3P∞

2 +4P∞
3

C(B)
8

ICD = JC
1 + JC

2 + J3 + J4 +L∞

M0CT = 2PC
1 +2PC

2 +2PC
3 +2PC

4 +3P∞
1 +4P∞

2 +2P∞
3

C(B)
9

ICD = J1 + J2 + J3 + J4 +L∞

M0CT = 2P1 +2P2 +2P3 +2P4 +3P∞
1 +4P∞

2 +2P∞
3

Source: Elaborated by the author.

Therefore, the configurations C(B)
1 up to C(B)

9 are all distinct. For the limit case of family
(B) when h = 1/4 we have the following configuration:
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Table 47 – Configurations for the limit cases of family (B) when h = 1/4.

Configuration Divisors and zero-cycles of the total inv. curve T

C(B)
6

ICD = J1 + J2 + J3 + J4 +L∞

M0CT = 2P1 +2P2 +2PC
3 +2PC

4 +3P∞
1 +3P∞

2 +4P∞
3

C(B)
7

ICD = J1 + J2 + J3 + J4 +L∞

M0CT = 2PC
1 +2PC

2 +2P3 +2P4 +3P∞
1 +3P∞

2 +4P∞
3

C(B)
8

ICD = JC
1 + JC

2 + J3 + J4 +L∞

M0CT = 2PC
1 +2PC

2 +2PC
3 +2PC

4 +3P∞
1 +4P∞

2 +2P∞
3

C(B)
9

ICD = J1 + J2 + J3 + J4 +L∞

M0CT = 2P1 +2P2 +2P3 +2P4 +3P∞
1 +4P∞

2 +2P∞
3

c1
ICD = J1 + J2 + J3 +L∞

M0CT = 3P1 +2P∞
1 +2P∞

2 +2P∞
3

c2
ICD = J1 +2J2 + J3 +L∞

M0CT = 4P1 +2P∞
1 +3P∞

2 +2P∞
3

c3
ICD = J1 + J2 +L∞

M0CT = 2P1 +2P∞
1 +2P∞

2

c4
ICD = 2J1 + J2 + J3 +L∞

M0CT = 4P1 +2P∞
1 +2P∞

2 +3P∞
3

Source: Elaborated by the author.

The other statements in (a) follows from the study done previously.

(b) This is shown in the previously exhibited tables. The computations for the remarkable
curves of family (B) when h = 1/4 and g = −1/4 were done in Remark 84. When
h = g = 1/4 and a 6= 0 the family (B) has an inverse integrating factor which is polynomial
(see Table 21).

(c) We have:

Table 48 – Phase portraits for family (B) when h = 1/4.

Phase Portraits Sing. at ∞ Sing. at < ∞ Separatrix connections

P(B)
1 (N,N,S) (s,s,n,n) 2SC f

f 8SC∞
f 0SC∞

∞

P(B)
2

(N,N,N)
(N,(2

1)N,N)
(N,N,(2

1)N)

(s,s,©,©)
(s,s)
(s,s)

0SC f
f 8SC∞

f 0SC∞
∞

P(B)
3

(N,S,N)
(N,(2

1)S,N)
(N,N,(2

1)S)

(©,©,©,©)
(©,©)
(©,©)

0SC f
f 0SC∞

f 2SC∞
∞

P(B)
4 (N,N,N) (s,s,©,©) 1SC f

f 6SC∞
f 0SC∞

∞

Source: Elaborated by the author.

Therefore, we have four distinct phase portraits for systems (B) where h = 1/4. For the
limit cases of family (B) when h = 1/4 we have the following phase portraits:
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Table 49 – Phase portraits for the limit cases of family (B) when h = 1/4.

Phase Portraits Sing. at ∞ Sing. at < ∞ Separatrix connections

p1 (N,N,S)
hpphpp(4)
pphpph(4)

0SC f
f 6SC∞

f 0SC∞
∞

p2 (N,N,N) hhhhhh(4) 0SC f
f 6SC∞

f 0SC∞
∞

p3
(N,N,(	[|]; /0))
(N,(	[|]; /0),N)

(	[|];s) 0SC f
f 4SC∞

f 0SC∞
∞

Source: Elaborated by the author.

On the table below we list all the phase portraits in (LLIBRE; YU, 2018) that admit 3
singular points at infinity with the type (N,N,S) and with 0 or 4 real singular points in the
finite region.

Table 50 – Phase portraits in (LLIBRE; YU, 2018) that admit 3 singular points at infinity with the type
(N,N,S) and with 0 or 4 real singular points in the finite region.

Phase Portraits Sing. at ∞ Sing. at < ∞ Separatrix connections

R01,Ω6 (N,S,N) 0 0SC f
f 0SC∞

f 1SC∞
∞

R5 (N,S,N) (s,n,n,s) 4SC f
f 6SC∞

f 0SC∞
∞

R8,Ω1 (N,S,N) (s,n,n,s) 4SC f
f 6SC∞

f 0SC∞
∞

Source: Elaborated by the author.

Therefore, the phase portraits P(B)
1 and P(B)

3 are not topologically equivalent with anyone
of the phase portraits in (LLIBRE; YU, 2018).

�
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Figure 4 – Bifurcation diagram of configurations for family (B) when h = 1/4.
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Source: Elaborated by the author.
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Figure 5 – Topological bifurcation diagram for family (B) when h = 1/4.
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6.1.1.1 The solution of the Poincaré problem for the family (B) when h = 1/4.

The following theorem solves the problem of Poincaré for the family defined by the
equations (B) when h = 1/4 and (a,g) ∈ R2.

Theorem 96. A necessary and sufficient condition for a system (S) defined by the equations (B)
with h = 1/4 and (a,g) ∈ R2 to have a rational first integral given by invariant algebraic curves
of degree at most two is that: i) g = ±1

4 ,
1
2 ,1 and a 6= 0, or ii) a = 0 and there exist integers

m1, m2 such that g = m1
4m2

where m1,m2 6= 0 and m2 6= m1
3 .

Proof. The proof of this result is based on the formulas obtained for the first integrals for
the family (B). We remember that these first integrals are obtained using the invariant algebraic
curves of degree at most two.
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In the generic case ag(g− 1)(2g− 1)(3g− 4)(4g± 1) 6= 0 we have a Liouvillian first
integral I given by a hypergeometric function (see Table 12). In this case, the integrating factor
is given by

R = J−1+2g
1 J

1
2 (1−4g)
2 .

Then, R is rational if and only if{
−1+2g = m1, m1 ∈ Z
1
2(1−4g) = m2, m2 ∈ Z.

Solving the first equation we obtain g = m1
2 + 1

2 . Replacing this expression in the second equation
we get

1
2 −2

(m1
2 + 1

2

)
= m2⇒ 1

2 = m1 +1+m2 ∈ Z.

As this cannot happen, R is not rational and it follows from Theorem 34 that this system does
not have a generalized Darboux first integral, accordingly, a rational first integral.

In the non-generic case ag(g−1)(2g−1)(3g−4)(4g±1) = 0 we also have a Liouvillian
first integral in the cases g(3g− 4) = 0 and a 6= 0 (see Table 18 and 24). In both cases, the
expressions of the first integral is given by square roots and tan−1 or tanh−1. Therefore, the
systems do not have a rational first integral.

When g =±1
4 ,

1
2 ,1 and a 6= 0 we obtain rational first integrals (see Tables 21, 15, 27 and

30). When a = 0 and g 6=−1
4 ,0,

3
4 ,1 then the first integral of family (B) with h = 1

4 is given by

I = Jλ1
1 J
− (4g−3)λ1

4g
2 J

λ1
4g

3 (6.1)

where λ1 6= 0 and J1,J2,J3,J4 are given in table 31. This is a rational first integral if and only if
λ1 = m1, m1 ∈ Z\{0}
λ1
4g = m2, m2 ∈ Z\{0}

− (4g−3)
4g λ1 = m3, m3 ∈ Z\{0}.

(6.2)

Replacing λ1 = m1 in the second equation of (6.2) we obtain

m1
4g = m2⇒ g = m1

4m2
, m1,m2 ∈ Z\{0}, m2 6=−m1, m2 6= m1

3 and m2 6= m1
4 .

Note that as g = m1
4m2

with m1, m2 6= 0 then

m3 =− (4g−3)
4g m1 =

−4
( m1

4m2

)
+3

4
( m1

4m2

) m1 =−m1 +3m2 ∈ Z\{0}.

Therefore, if I is rational then g = m1
4m2

where m1,m2 ∈Z\{0}, m2 6=−m1, m2 6= m1
3 and m2 6= m1

4 .
Conversely, replacing g = m1

4m2
and λ1 = m1 in (6.1) where m1,m2 ∈ Z\{0}, m2 6=−m1, m2 6= m1

3

and m2 6= m1
4 we obtain that

I = Jm1
1 J−m1+3m2

2 Jm2
3
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which is rational. Therefore, when a = 0 and g 6= −1
4 ,0,

3
4 ,1, the systems are algebraically

integrable if and only if g = m1
4m2

where m1,m2 ∈ Z\{0}, m2 6=−m1, m2 6= m1
3 and m2 6= m1

4 .

When a = 0 and (g+1/4)(g−1) = 0 we obtain a rational first integrals (see Tables 36
and 39). Note that {

m1
4m2

=−1
4 ⇔ m2 =−m1

m1
4m2

= 1⇔ m2 =
m1
4

where m1,m2 ∈ Z\{0}. When a = g = 0 or a = 0 and g = 3
4 the systems (B) with h = 1

4 are
degenerate.

�

6.1.2 Geometric Analysis of family (C)

Consider the family

(C)

{
ẋ = a+

(1−2h
2

)
x2 +(h−1)xy

ẏ = a−
(2h+1

2

)
xy+hy2,

where ah(h−1)(2h±1) 6= 0.

This is a two parameter family depending on a and h such that ah(h−1)(2h±1) 6= 0
but for a complete understanding of the bifurcation diagram of the systems in the full family
defined by the equations (C) we study here also the limit cases ah(h−1)(2h±1) = 0 where the
equations are still defined.

We display below the full geometric analysis of the systems in this family, which is
endowed with at least three invariant algebraic curves. In the generic case

ah(h−1)(h−1/2)(h+1/2)(h−1/4) 6= 0

the systems have only one invariant line J1 and two invariant hyperbolas J2 and J3 with cofactors
αi, 1≤ i≤ 3 given by

J1 = x− y, α1 =
1
2(1−2h)x+hy,

J2 =
a

2h−1 − x2 + xy, α2 = (1−2h)x+(−1+2h)y,

J3 =− a
2h + xy− y2, α3 =−2hx+2hy.

We note that when h = 1/4 we have one additional invariant hyperbola. The multiplicities of
each invariant straight line and invariant hyperbola appearing in the divisor ICD of invariant
algebraic curves were calculated by using the 1st extactic polynomial for the lines and the 2nd
extactic polynomial for the hyperbola.

(i) The generic case: ah(h−1)(h−1/2)(h+1/2)(h−1/4) 6= 0.
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Table 51 – Invariant curves, cofactors, singularities and intersection points of family (C) for the generic
case.

Inv. curves and cofactors Singularities Intersection points

J1 = x− y
J2 =

a
2h−1 − x2 + xy

J3 =− a
2h + xy− y2

α1 =
1
2(1−2h)x+hy

α2 = (1−2h)(x− y)
α3 =−2hx+2hy

P1 =
(
−
√

2
√

a,−
√

2
√

a
)

P2 =
(√

2
√

a,
√

2
√

a
)

P3 =
(
−
√

2
√

a
√

h√
2h−1

,−
√

a
√

2h−1√
2
√

h

)
P4 =

(√
2
√

a
√

h√
2h−1

,
√

a
√

2h−1√
2
√

h

)
P∞

1 = [0 : 1 : 0]
P∞

2 = [1 : 1 : 0]
P∞

3 = [1 : 0 : 0]

For a < 0 we have

©,©,©,©;S,N,N if h < 0
©,©,s,s;N,N,N if 0 < h < 1/2
©,©,©,©;N,N,S if h > 1/2

For a > 0 we have

s,s,n,n;S,N,N if h < 0
s,s,©,©;N,N,N if 0 < h < 1/2
s,s,n,n;N,N,S if h > 1/2

J1∩ J2 = P∞
2 double

J1∩ J3 = P∞
2 double

J1∩L∞ = P∞
2 simple

J2∩ J3 =


P∞

2 double
P3 simple
P4 simple

J2∩L∞ =

{
P∞

1 simple
P∞

2 simple

J3∩L∞ =

{
P∞

2 simple
P∞

3 simple

Source: Elaborated by the author.
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Table 52 – Divisors and zero-cycles of family (C) for the generic case.

Divisor and zero-cycles Degree
ICD = J1 + J2 + J3 +L∞

M0CS =



PC
1 +PC

2 +PC
3 +PC

4 +P∞
1 +P∞

2 +P∞
3 if

{
a < 0 and h < 0 or
a < 0 and h > 1/2

PC
1 +PC

2 +P3 +P4 +P∞
1 +P∞

2 +P∞
3 if a < 0 and 0 < h < 1/2

P1 +P2 +PC
3 +PC

4 +P∞
1 +P∞

2 +P∞
3 if a > 0 and 0 < h < 1/2

P1 +P2 +P3 +P4 +P∞
1 +P∞

2 +P∞
3 if

{
a > 0 and h > 1/2 or
a > 0 and h < 0

T = ZJ1J2J3 = 0

M0CT =



PC
1 +PC

2 +2PC
3 +2PC

4 +2P∞
1 +4P∞

2 +2P∞
3 if

{
a < 0 and h < 0 or
a < 0 and h > 1/2

PC
1 +PC

2 +2P3 +2P4 +2P∞
1 +4P∞

2 +2P∞
3 if a < 0 and 0 < h < 1/2

P1 +P2 +2PC
3 +2PC

4 +2P∞
1 +4P∞

2 +2P∞
3 if a > 0 and 0 < h < 1/2

P1 +P2 +2P3 +2P4 +2P∞
1 +4P∞

2 +2P∞
3 if

{
a > 0 and h > 1/2 or
a > 0 and h < 0

4

7
7
7
7
7
7

6

14
14
14
14
14
14

Source: Elaborated by the author.

where the total curve T has only two distinct tangents at P∞
2 , but one of them is triple.

Table 53 – First integral and integrating factor of family (C) for the generic case.

First integral Integrating Factor

General I = J0
1 Jλ2

2 J
− (2h−1)λ2

2h
3 R = J1

1 Jλ2
2 J

−2hλ2−4h+λ2+1
2h

3
Simple

example I = J2h
2 J1−2h

3 R =
J1

J2J3
Source: Elaborated by the author.

(ii) The non-generic case: ah(h−1)(h−1/2)(h+1/2)(h−1/4) = 0.

(ii.1) h = 1/4 and a 6= 0.

Here we have, apart from one line and two hyperbolas, a third invariant hyperbola.
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Table 54 – Invariant curves, cofactors, singularities and intersection points of family (C) when h = 1/4
and a 6= 0.

Inv.curves/exp.fac. and cofactors Singularities Intersection points

J1 = x− y
J2 =−2a+ xy
J3 =−2a− x2 + xy
J4 =−2a+ xy− y2

α1 =
x
4 +

y
4

α2 =− x
2 −

y
2

α3 =
x
2 −

y
2

α4 =
y
2 −

x
2

P1 = (−i
√

a, i
√

a)
P2 = (i

√
a,−i
√

a)
P3 = (−

√
2
√

a,−
√

2
√

a)
P4 = (

√
2
√

a,
√

2
√

a)

P∞
1 = [0 : 1 : 0]

P∞
2 = [1 : 1 : 0]

P∞
3 = [1 : 0 : 0]

For a < 0 we have

s,s,©,©;N,N,N

For a > 0 we have

©,©,s,s;N,N,N

J1∩ J2 =

{
P3 simple
P4 simple

J1∩ J3 = P∞
2 double

J1∩ J4 = P∞
2 double

J1∩L∞ = P∞
2 simple

J2∩ J3 = P∞
1 quadruple

J2∩ J4 = P∞
3 quadruple

J2∩L∞ =

{
P∞

1 simple
P∞

3 simple

J3∩ J4 =


P∞

2 double
P1 simple
P2 simple

J3∩L∞ =

{
P∞

1 simple
P∞

2 simple

J4∩L∞ =

{
P∞

2 simple
P∞

3 simple
Source: Elaborated by the author.

Observation 97. We see here that taking J1 and J2, the conditions of the theorem of
C-K are satisfied and hence we can have an inverse integrating factor as J1J2. We can
also note that according to Darboux’ theorem we have a Darboux first integral.

Table 55 – Divisor and zero-cycles of family (C) when h = 1/4 and a 6= 0.

Divisor and zero-cycles Degree
ICD = J1 + J2 + J3 + J4 +L∞

M0CS =

{
P1 +P2 +PC

3 +PC
4 +P∞

1 +P∞
2 +P∞

3 if a < 0
PC

1 +PC
2 +P3 +P4 +P∞

1 +P∞
2 +P∞

3 if a > 0

T = ZJ1J2J3J4 = 0.

M0CT =

{
2P1 +2P2 +2PC

3 +2PC
4 +3P∞

1 +4P∞
2 +3P∞

3 if a < 0
2PC

1 +2PC
2 +2P3 +2P4 +3P∞

1 +4P∞
2 +3P∞

3 if a > 0

5

7
7

8

18
18

Source: Elaborated by the author.

where the total curve T has

1) only two distinct tangents at P∞
1 , but one of them is double;

2) only two distinct tangents at P∞
2 , but one of them is triple and

3) only two distinct tangents at P∞
3 , but one of them is double.
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Table 56 – First integral and integrating factor of family (C) when h = 1/4 and a 6= 0.

First integral Integrating Factor

General I = Jλ1
1 J

λ1
2

2 Jλ3
3 Jλ3

4 R = Jλ1
1 J
− 1

2+
λ1
2

2 Jλ3
3 Jλ3

4
Simple

example I = J2
1 J2 R =

1
J1J2

Source: Elaborated by the author.

(ii.2) h =−1/2 and a 6= 0.

Under this condition the systems do not belong to family (C). Here we have three
invariant lines and two invariant hyperbolas. Then, we have five invariant algebraic
curves and hence according to Jouanolou’s theorem the corresponding system has
a rational first integral. Considering the line at infinity Z = 0 the total multiplicity
of the invariant lines is four so this case was studied in (SCHLOMIUK; VULPE,
2008c). We include this case as indicated in Observation 81.

Table 57 – Invariant curves, cofactors, singularities and intersection points of family (C) when h =−1/2
and a 6= 0.

Invariant curves and cofactors Singularities Intersection points

J1 = x− y
J2 = 1− y√

2
√

a
J3 = 1+ y√

2
√

a
J4 = a+ xy− y2

J5 =−a−2x2 +2xy

α1 = x− y
2

α2 =−
√

a√
2
− y

2

α3 =
√

a√
2
− y

2
α4 = x− y
α5 = 2x−2y

P1 =

(
−
√

a√
2
,−
√

2
√

a
)

P2 =

(√
a√
2
,
√

2
√

a
)

P3 = (−
√

2
√

a,−
√

2
√

a)
P4 = (

√
2
√

a,
√

2
√

a)

P∞
1 = [0 : 1 : 0]

P∞
2 = [1 : 1 : 0]

P∞
3 = [1 : 0 : 0]

For a < 0 we have

©,©,©,©;S,N,N

For a > 0 we have

n,n,s,s;S,N,N

J1∩ J2 = P4 simple
J1∩ J3 = P3 simple
J1∩ J4 = P∞

2 double
J1∩ J5 = P∞

2 double
J1∩L∞ = P∞

2 simple
J2∩ J3 = P∞

3 simple

J2∩ J4 =

{
P∞

3 simple
P2 simple

J2∩ J5 = P2 double
J2∩L∞ = P∞

3 simple

J3∩ J4 =

{
P∞

3 simple
P1 simple

J3∩ J5 = P1 double
J3∩L∞ = P∞

3 simple

J4∩ J5 =


P1 simple
P2 simple
P∞

2 double

J4∩L∞ =

{
P∞

2 simple
P∞

3 simple

J5∩L∞ =

{
P∞

1 simple
P∞

2 simple
Source: Elaborated by the author.

Observation 98. According to Jouanolou’s theorem we must have a rational first
integral.
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Table 58 – Divisor and zero-cycles of family (C) when h =−1/2 and a 6= 0.

Divisor and zero-cycles Degree
ICD = J1 + J2 + J3 + J4 + J5 +L∞

M0CS =

{
PC

1 +PC
2 +PC

3 +PC
4 +P∞

1 +P∞
2 +P∞

3 if a < 0
P1 +P2 +P3 +P4 +P∞

1 +P∞
2 +P∞

3 if a > 0

T = ZJ1J2J3J4J5 = 0

M0CT =

{
3PC

1 +3PC
2 +2PC

3 +2PC
4 +2P∞

1 +4P∞
2 +4P∞

3 if a < 0
3P1 +3P2 +2P3 +2P4 +2P∞

1 +4P∞
2 +4P∞

3 if a > 0

6

7
7

8

20
20

Source: Elaborated by the author.

where the total curve T has

1) only two distinct tangents at P1 (and at P2), but one of them is double,

2) only two distinct tangents at P∞
2 , but one of them is triple and

3) four distinct tangents at P∞
3 .

Table 59 – First integral and integrating factor of family (C) when h =−1/2 and a 6= 0.

First integral Integrating Factor

General I = Jλ1
1 J

λ1
2

2 J
λ1
2

3 Jλ4
4 J
− λ1

2 −
λ4
2

5 R = Jλ1
1 J
− 1

2+
λ1
2

2 J
− 1

2+
λ1
2

3 Jλ4
4 J
−1− λ1

2 −
λ4
2

5
Simple

example I1 =
J2

1 J2J3

J5
I2 =

J2
4

J5
R =

1
J1J2J3J4

Source: Elaborated by the author.

Observation 99. Consider F 1
(c1,c2)

= c1J2
1 J2J3− c2J5 = 0, degF 1

(c1,c2)
= 4. The

remarkable values of F 1
(c1,c2)

are [1 :−1/2] and [1 : 0] for which we have

F 1
(1,−1/2) =−

J2
4

2a , F 1
(1,0) = J2

1 J2J3.

Therefore, J1,J2,J3,J4,J5 are remarkable curves of I1, [1 :−1/2] and [1 : 0] are the
only two critical remarkable values of I1 and J1,J4 are critical remarkable curves of
I1. The singular points are P1,P2 for F 1

(1,−1/2) and P3,P4 for F 1
(1,0).

Considering the first integral I2 with its associated curve F 2
(c1,c2)

= c1J2
4 − c2J5 we

have the remarkable values [1 : −a] and [1 : 0] and the same remarkable curves
J1,J2,J3,J4,J5. However, the singular points are P1,P2 for F 2

(1,0) and P3,P4 for
F 2

(1,−a).

(ii.3) h = 0 and a 6= 0.

Under this condition the systems do not belong to family (C). Here we have one
invariant line and one invariant hyperbola. We also could find an exponential factor.
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Table 60 – Invariant curves, exponential factors, cofactors, singularities and intersection points of family
(C) when h = 0 and a 6= 0.

Inv.curves/exp.fac. and cofactors Singularities Intersection points

J1 = x− y
J2 =−a− x2 + xy
E3 = eg0+g1y(x−y)

α1 =
x
2

α2 = x− y
α3 = ag1(x− y)

P1 = (−
√

2
√

a,−
√

2
√

a)
P2 = (

√
2
√

a,
√

2
√

a)

P∞
1 = [0 : 1 : 0]

P∞
2 = [1 : 1 : 0]

P∞
3 = [1 : 0 : 0]

For a < 0 we have
©,©;(2

1)S,N,N

For a > 0 we have
s,s;(2

1)N,N,N

J1∩ J2 = P∞
2 double

J1∩L∞ = P∞
2 simple

J2∩L∞ =

{
P∞

1 simple
P∞

2 simple

Source: Elaborated by the author.

Table 61 – Divisor and zero-cycles of family (C) when h = 0 and a 6= 0.

Divisor and zero-cycles Degree
ICD = J1 + J2 +L∞

M0CS =

{
PC

1 +PC
2 +3P∞

1 +P∞
2 +P∞

3 if a < 0
P1 +P2 +3P∞

1 +P∞
2 +P∞

3 if a > 0

T = ZJ1J2 = 0

M0CT =

{
PC

1 +PC
2 +2P∞

1 +3P∞
2 +P∞

3 if a < 0
P1 +P2 +2P∞

1 +3P∞
2 +P∞

3 if a > 0

3

7
7

4

8
8

Source: Elaborated by the author.

where the total curve T has only two distinct tangents at P∞
2 , but one of them is

double.

Table 62 – First integral and integrating factor of family (C) when h = 0 and a 6= 0.

First integral Integrating Factor

General I = J0
1 J−ag1λ3

2 Eλ3
3 R = J1

1 J−1−ag1λ3
2 Eλ3

3
Simple

example I = J−a
2 E3 R =

J1

J2
Source: Elaborated by the author.

(ii.4) h = 1/2 and a 6= 0.
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Under this condition the systems do not belong to family (C). Here we have one
invariant line and one invariant hyperbola. We also could find an exponential factor.

Table 63 – Invariant curves, exponential factors, cofactors, singularities and intersection points of family
(C) when h = 1/2 and a 6= 0.

Inv.curves/exp.fac. and cofactors Singularities Intersection points

J1 = x− y
J2 =−a+ xy− y2

E3 = eg0−g1x(x−y)

α1 =
y
2

α2 =−x+ y
α3 =−ag1(x− y)

P1 = (−
√

2
√

a,−
√

2
√

a)
P2 = (

√
2
√

a,
√

2
√

a)

P∞
1 = [0 : 1 : 0]

P∞
2 = [1 : 1 : 0]

P∞
3 = [1 : 0 : 0]

For a < 0 we have

©,©;N,N,(2
1)S

For a > 0 we have

s,s;N,N,(2
1)N

J1∩ J2 = P∞
2 double

J1∩L∞ = P∞
2 simple

J2∩L∞ =

{
P∞

1 simple
P∞

2 simple

Source: Elaborated by the author.

Table 64 – Divisor and zero-cycles of family (C) when h = 1/2 and a 6= 0.

Divisor and zero-cycles Degree
ICD = J1 + J2 +L∞

M0CS =

{
PC

1 +PC
2 +P∞

1 +P∞
2 +3P∞

3 if a < 0
P1 +P2 +P∞

1 +P∞
2 +3P∞

3 if a > 0

T = ZJ1J2 = 0

M0CT =

{
PC

1 +PC
2 +P∞

1 +3P∞
2 +2P∞

3 if a < 0
P1 +P2 +P∞

1 +3P∞
2 +2P∞

3 if a > 0

3

7
7

4

8
8

Source: Elaborated by the author.

where the total curve T has only two distinct tangents at P∞
2 , but one of them is

double.
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Table 65 – First integral and integrating factor of family (C) when h = 1/2 and a 6= 0.

First integral Integrating Factor

General I = J0
1 J−ag1λ3

2 Eλ3
3 R = J1

1 J−1−ag1λ3
2 Eλ3

3
Simple

example I = J−a
2 E3 R =

J1

J2
Source: Elaborated by the author.

(ii.5) h = 1 and a 6= 0.

Under this condition the systems do not belong to family (C). Here we have three
invariant lines and two invariant hyperbolas. Then, we have five invariant algebraic
curves and hence according to Jouanolou’s theorem the corresponding system has
a rational first integral. Considering the line at infinity Z = 0 the total multiplicity
of the invariant lines is four so this case was studied in (SCHLOMIUK; VULPE,
2008c). We include this case as indicated in Observation 81.

Table 66 – Invariant curves, cofactors, singularities and intersection points of family (C) when h = 1 and
a 6= 0.

Inv. curves and cofactors Singularities Intersection points

J1 = x− y
J2 = 1− x√

2
√

a
J3 = 1+ x√

2
√

a
J4 = a− x2 + xy
J5 =−a+2xy−2y2

α1 =− x
2 + y

α2 =−
√

a√
2
− x

2

α3 =
√

a√
2
− x

2
α4 =−x+ y
α5 =−2x+2y

P1 =
(
−
√

2
√

a,−
√

a√
2

)
P2 = (−

√
2
√

a,−
√

2
√

a)

P3 =
(√

2
√

a,
√

a√
2

)
P4 = (

√
2
√

a,
√

2
√

a)

P∞
1 = [0 : 1 : 0]

P∞
2 = [1 : 1 : 0]

P∞
3 = [1 : 0 : 0]

For a < 0 we have

©,©,©,©;N,N,S

For a > 0 we have

n,s,n,s;N,N,S

J1∩ J2 = P4 simple
J1∩ J3 = P2 simple
J1∩ J4 = P∞

2 double
J1∩ J5 = P∞

2 double
J1∩L∞ = P∞

2 simple
J2∩ J3 = P∞

1 simple

J2∩ J4 =

{
P∞

1 simple
P3 simple

J2∩ J5 = P3 double
J2∩L∞ = P∞

1 simple

J3∩ J4 =

{
P∞

1 simple
P1 simple

J3∩ J5 = P1 double
J3∩L∞ = P∞

1 simple

J4∩ J5 =


P1 simple
P3 simple
P∞

2 double

J4∩L∞ =

{
P∞

1 simple
P∞

2 simple

J5∩L∞ =

{
P∞

2 simple
P∞

3 simple
Source: Elaborated by the author.

Observation 100. According to Jouanolou’s theorem we must have a rational first
integral.
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Table 67 – Divisor and zero-cycles of family (C) when h = 1 and a 6= 0.

Divisor and zero-cycles Degree
ICD = J1 + J2 + J3 + J4 + J5 +L∞

M0CS =

{
PC

1 +PC
2 +PC

3 +PC
4 +P∞

1 +P∞
2 +P∞

3 if a < 0
P1 +P2 +P3 +P4 +P∞

1 +P∞
2 +P∞

3 if a > 0

T = ZJ1J2J3J4J5 = 0

M0CT =

{
3PC

1 +2PC
2 +3PC

3 +2PC
4 +4P∞

1 +4P∞
2 +2P∞

3 if a < 0
3P1 +2P2 +3P3 +2P4 +4P∞

1 +4P∞
2 +2P∞

3 if a > 0

6

7
7

8

20
20

Source: Elaborated by the author.

where the total curve T has

1) only two distinct tangents at P1 (and at P3), but one of them is double,

2) only two distinct tangents at P∞
2 , but one of them is triple and

3) four distinct tangents at P∞
1 .

Table 68 – First integral and integrating factor of family (C) when h = 1 and a 6= 0.

First integral Integrating Factor

General I = Jλ1
1 J

λ1
2

2 J
λ1
2

3 Jλ4
4 J
− λ1

2 −
λ4
2

5 R = Jλ1
1 J
− 1

2+
λ1
2

2 J
− 1

2+
λ1
2

3 Jλ4
4 J
−1− λ1

2 −
λ4
2

5
Simple

example I1 =
J2

1 J2J3

J5
I2 =

J2
4

J5
R =

1
J1J2J3J4

Source: Elaborated by the author.

Observation 101. Consider F 1
(c1,c2)

= c1J2
1 J2J3− c2J5 = 0, degF 1

(c1,c2)
= 4. The

remarkable values of F 1
(c1,c2)

are [1 :−1/2] and [1 : 0] for which we have

F 1
(1,−1/2) =−

J2
4

2a , F 1
(1,0) = J2

1 J2J3.

Therefore, J1,J2,J3,J4,J5 are remarkable curves of I1, [1 :−1/2] and [1 : 0] are the
only two critical remarkable values of I1 and J1,J4 are critical remarkable curves of
I1. The singular points are P1,P3 for F 1

(1,−1/2) and P2,P4 for F 1
(1,0).

Considering the first integral I2 with its associated curve F 2
(c1,c2)

= c1J2
4 − c2J5

we have the remarkable values [1 :−a] and [1 : 0] and the same remarkable curves
J1,J2,J3,J4,J5. However, the singular point are P1,P3 for F 2

(1,0) and P2,P4 for F 2
(1,−a).

(ii.6) a = 0 and h 6=−1/2,0,1/2,1.

Under this condition, systems (C) do not belong to QSH. The affine invariant lines
are x− y = 0, x = 0 and y = 0 that are all simple. Considering the line at infinity
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Z = 0 the total multiplicity of the invariant lines is four so this case was studied in
(SCHLOMIUK; VULPE, 2008c). We include this case as indicated in Observation
81.

Table 69 – Invariant curves, cofactors, singularities and intersection points of family (C) when a = 0 and
h 6=−1/2,0,1/2,1.

Inv. curves and cofactors Singularities Intersection points

J1 = x− y
J2 = x
J3 = y

α1 =
1
2(1−2h)x+hy

α2 =
1
2(1−2h)x+hy

α3 =
1
2(−1−2h)x+hy

P1 = (0,0)

P∞
1 = [0 : 1 : 0]

P∞
2 = [1 : 1 : 0]

P∞
3 = [1 : 0 : 0]

phpphp(4);S,N,N if h < 0
hhhhhh(4);N,N,N if 0 < h < 1/2
hpphpp(4);N,N,S if h > 1/2

J1∩ J2 = P1 simple
J1∩ J3 = P1 simple
J1∩L∞ = P∞

2 simple
J2∩ J3 = P1 simple
J2∩L∞ = P∞

1 simple
J3∩L∞ = P∞

3 simple

Source: Elaborated by the author.

Table 70 – Divisor and zero-cycles of family (C) when a = 0 and h 6=−1/2,0,1/2,1.

Divisor and zero-cycles Degree
ICD = J1 + J2 + J3 +L∞

M0CS = 4P1 +P∞
1 +P∞

2 +P∞
3

T = ZJ1J2J3 = 0.

M0CT = 3P1 +2P∞
1 +2P∞

2 +2P∞
3

4

7

4

9
Source: Elaborated by the author.

where the total curve T has three distinct tangents at P1.

Table 71 – First integral and integrating factor of family (C) when a = 0 and h 6=−1/2,0,1/2,1.

First integral Integrating Factor

General I = Jλ1
1 J2hλ1

2 J−(−1+2h)λ1
3 R = J

−2h+λ2+1
2h

1 Jλ2
2 J

−2hλ2−4h+λ2+1
2h

3
Simple

example I = J1J2h
2 J1−2h

3 R =
1

J1J2J3
Source: Elaborated by the author.

(ii.7) a = 0 and h =−1/2.

Under this condition, system (C) does not belong to QSH. The affine invariant lines
are x− y = 0, x = 0 that are simple and y = 0 that is double. Considering the line
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at infinity Z = 0 the total multiplicity of the invariant lines is five so this case was
studied in (SCHLOMIUK; VULPE, 2008b). We include this case as indicated in
Observation 81.

Table 72 – Invariant curves, exponential factors, cofactors, singularities and intersection points of family
(C) when a = 0 and h =−1/2.

Inv.curves/exp.fac. and cofactors Singularities Intersection points
J1 = x− y
J2 = x
J3 = y

E4 = e
g0
y +g1

α1 = x− y
2

α2 = x− 3y
2

α3 =− y
2

α4 =
g0
2

P1 = (0,0)

P∞
1 = [0 : 1 : 0]

P∞
2 = [1 : 1 : 0]

P∞
3 = [1 : 0 : 0]

phpphp(4);S,N,N

J1∩ J2 = P1 simple
J1∩ J3 = P1 simple
J1∩L∞ = P∞

2 simple
J2∩ J3 = P1 simple
J2∩L∞ = P∞

1 simple
J3∩L∞ = P∞

3 simple

Source: Elaborated by the author.

Table 73 – Divisor and zero-cycles of family (C) when a = 0 and h =−1/2.

Divisor and zero-cycles Degree
ICD = J1 + J2 +2J3 +L∞

M0CS = 4P1 +P∞
1 +P∞

2 +P∞
3

T = ZJ1J2J2
3 = 0.

M0CT = 4P1 +2P∞
1 +2P∞

2 +3P∞
3

5

7

5

11
Source: Elaborated by the author.

where the total curve T has

1) only three distinct tangents at P1, one of them double;

2) only two distinct tangents at P∞
3 , but one of them is double.

Table 74 – First integral and integrating factor of family (C) when a = 0 and h =−1/2.

First integral Integrating Factor

General I = Jλ1
1 J−λ1

2 J2λ1
3 E0

4 R = Jλ1
1 J−2−λ1

2 J1+2λ1
3 E0

4
Simple

example I = J1J−1
2 J2

3 R =
1

J1J2J3
Source: Elaborated by the author.
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Observation 102. Consider F 1
(c1,c2)

= c1J1J2
3 − c2J2 = 0, degF 1

(c1,c2)
= 3. The re-

markable value of F 1
(c1,c2)

is [1 : 0] for which we have

F 1
(1,0) = J1J2

3 .

Therefore, J1, J3 are remarkable curves of I1. The singular point is P1 for F 1
(1,0).

(ii.8) a = h = 0.

Under this condition, system (C) does not belong to QSH. The system here is
ẋ = x(x−2y)

2 , ẏ =−xy
2 . This is a degenerate system where the line x = 0 is filled up

with singularities. The affine invariant lines are x− y = 0 and y = 0 that are both
simple. We get a polynomial first integral.

Table 75 – Invariant curves, cofactors, singularities and intersection points for the reduced system of
family (C) when a = h = 0.

Inv. curves and cofactors Singularities Intersection points

J1 = x− y
J2 = y

α1 =
1
2

α2 =−1
2

P1 = (0,0)

P∞
1 = [1 : 1 : 0]

P∞
2 = [1 : 0 : 0]

(	[|];s);(	[|]; /0),N,N

J1∩ J2 = P1 simple
J1∩L∞ = P∞

2 simple
J2∩L∞ = P∞

3 simple

Source: Elaborated by the author.

Table 76 – Divisor and zero-cycles for the reduced system of family (C) when a = h = 0.

Divisor and zero-cycles Degree
ICD = J1 + J2 +L∞

M0CS = P1 +P∞
1 +P∞

2

T = ZJ1J2 = 0.

M0CT = 2P1 +2P∞
1 +2P∞

2

3

3

3

6
Source: Elaborated by the author.

Table 77 – First integral and integrating factor for the reduced system of family (C) when a = h = 0.

First integral Integrating Factor

General I = Jλ1
1 Jλ1

2 R = Jλ1
1 Jλ1

2
Simple

example I1 = J1J2 R =
1

J1J2
Source: Elaborated by the author.
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Note that I and I1 are also first integrals for family (C) when a = h = 0.

(ii.9) a = 0 and h = 1/2.

Under this condition, system (C) does not belong to QSH. The system here is
ẋ =−xy

2 , ẏ = y(−2x+y)
2 . This is a degenerate system where the line y = 0 is filled up

with singularities. The affine invariant lines are x− y = 0 and x = 0 that are both
simple. We get a polynomial first integral.

Table 78 – Invariant curves, cofactors, singularities and intersection points for the reduced system of
family (C) when a = 0 and h = 1/2.

Inv. curves and cofactors Singularities Intersection points

J1 = x− y
J2 = x

α1 =
1
2

α2 =−1
2

P1 = (0,0)

P∞
1 = [0 : 1 : 0]

P∞
2 = [1 : 1 : 0]

(	[|];s);N,N,(	[|]; /0)

J1∩ J2 = P1 simple
J1∩L∞ = P∞

2 simple
J2∩L∞ = P∞

3 simple

Source: Elaborated by the author.

Table 79 – Divisor and zero-cycles for the reduced system of family (C) when a = 0 and h = 1/2.

Divisor and zero-cycles Degree
ICD = J1 + J2 +L∞

M0CS = P1 +P∞
1 +P∞

2

T = ZJ1J2 = 0.

M0CT = 2P1 +2P∞
1 +2P∞

2

3

3

3

6
Source: Elaborated by the author.

Table 80 – First integral and integrating factor for the reduced system of family (C) when a = 0 and
h = 1/2.

First integral Integrating Factor

General I = Jλ1
1 Jλ1

2 R = Jλ1
1 Jλ1

2
Simple

example I = J1J2 R =
1

J1J2
Source: Elaborated by the author.

Note that I and I are also first integrals for family (C) when a = 0 and h = 1/2.

(ii.10) a = 0 and h = 1.
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Under this condition, system (C) does not belong to QSH. The affine invariant lines
are x− y = 0, y = 0 that are simple and x = 0 that is double. Considering the line
at infinity Z = 0 the total multiplicity of the invariant lines is five so this case was
studied in (SCHLOMIUK; VULPE, 2008b). We include this case as indicated in
Observation 81.

Table 81 – Invariant curves,exponential factors, cofactors, singularities and intersection points of family
(C) when a = 0 and h = 1.

Inv.curves/exp.fac. and cofactors Singularities Intersection points
J1 = x− y
J2 = x
J3 = y
E4 = e

g0
x +g1

α1 =− x
2 + y

α2 =− x
2

α3 =−3x
2 + y

α4 =
g0
2

P1 = (0,0)

P∞
1 = [0 : 1 : 0]

P∞
2 = [1 : 1 : 0]

P∞
3 = [1 : 0 : 0]

hpphpp(4);N,N,S

J1∩ J2 = P1 simple
J1∩ J3 = P1 simple
J1∩L∞ = P∞

2 simple
J2∩ J3 = P1 simple
J2∩L∞ = P∞

1 simple
J3∩L∞ = P∞

3 simple

Source: Elaborated by the author.

Table 82 – Divisor and zero-cycles of family (C) when a = 0 and h = 1.

Divisor and zero-cycles Degree
ICD = J1 +2J2 + J3 +L∞

M0CS = 4P1 +P∞
1 +P∞

2 +P∞
3

T = ZJ1J2
2J3 = 0.

M0CT = 4P1 +3P∞
1 +2P∞

2 +2P∞
3

5

7

5

11
Source: Elaborated by the author.

where the total curve T has

1) only three distinct tangents at P1, one of them double;

2) only two distinct tangents at P∞
1 , but one of them is double.

Table 83 – First integral and integrating factor of family (C) when a = 0 and h = 1.

First integral Integrating Factor

General I = Jλ1
1 J2λ1

2 J−λ1
3 E0

4 R = Jλ1
1 J1+2λ1

2 J−2−λ1
3 E0

4
Simple

example I = J1J2
2 J−1

3 R =
1

J1J2J3
Source: Elaborated by the author.
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Observation 103. Consider F 1
(c1,c2)

= c1J1J2
2 − c2J3 = 0, degF 1

(c1,c2)
= 3. The re-

markable value of F 1
(c1,c2)

is [1 : 0] for which we have

F 1
(1,0) = J1J2

2 .

Therefore, J1, J2 are remarkable curves of I1. The singular point is P1 for F 1
(1,0).

We sum up the topological, dynamical and algebraic geometric features of family (C) and
we also confront our results with previous results in the literature in the following proposition.

Proposition 104. (a) For the family (C) we have six distinct configurations C(C)
1 −C(C)

6 of
invariant hyperbolas and lines (see Figure 6 for the complete bifurcation diagram of
configurations of such family). The bifurcation set of configurations in the full parameter
space is ah(h− 1)(h− 1/2)(h+ 1/2)(h− 1/4) = 0. Its complement is a union of 12
disjoint sets. On h = 1/4 and a 6= 0 we have one additional invariant hyperbola. For the
limiting set of the parameter space of the considered family we have the following: On
h =−1/2 and a 6= 0 or h = 1 and a 6= 0 we have three invariant lines and two invariant
hyperbola. On h = 0 and a 6= 0 or h = 1/2 and a 6= 0 we have one invariant line and one
invariant hyperbola. On a = 0 the invariant hyperbolas become reducible. On a = h = 0
the line x = 0 is filled up with singularities. On a = 0 and h = 1/2 the line y = 0 is filled
up with singularities.

(b) The family (C) is Darboux integrable if ah(h−1)(h−1/2)(h+1/2)(h−1/4) 6= 0. When
h = 1/4 the family (C) admits a polynomial first integral.

(c) For the family (C) we have four topologically distinct phase portraits P(C)
1 −P(C)

4 . The
topological bifurcation diagram of family (C) is done in Figure 7. The bifurcation set
is ah(h−1/2) = 0 and it is a bifurcation of singularities. The phase portrait P(C)

4 is not
topologically equivalent with anyone of the phase portraits in (LLIBRE; YU, 2018).

Proof of Proposition 104:

(a) We have the following types of divisors and zero-cycles of the total invariant curve T for
the configurations of family (C) :
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Table 84 – Configurations for family (C).

Configurations Divisors and zero-cycles of the total inv. curve T

C(C)
1

ICD = J1 + J2 + J3 +L∞

M0CT = PC
1 +PC

2 +2PC
3 +2PC

4 +2P∞
1 +4P∞

2 +2P∞
3

C(C)
2

ICD = J1 + J2 + J3 +L∞

M0CT = PC
1 +PC

2 +2P3 +2P4 +2P∞
1 +4P∞

2 +2P∞
3

C(C)
3

ICD = J1 + J2 + J3 +L∞

M0CT = P1 +P2 +2PC
3 +2PC

4 +2P∞
1 +4P∞

2 +2P∞
3

C(C)
4

ICD = J1 + J2 + J3 +L∞

M0CT = P1 +P2 +2P3 +2P4 +2P∞
1 +4P∞

2 +2P∞
3

C(C)
5

ICD = J1 + J2 + J3 + J4 +L∞

M0CT = 2P1 +2P2 +2PC
3 +2PC

4 +3P∞
1 +4P∞

2 +3P∞
3

C(C)
6

ICD = J1 + J2 + J3 + J4 +L∞

M0CT = 2PC
1 +2PC

2 +2P3 +2P4 +3P∞
1 +4P∞

2 +3P∞
3

Source: Elaborated by the author.

Therefore, the configurations C(C)
1 up to C(C)

6 are all distinct. For the limit cases of family
(C) we have the following configurations:

Table 85 – Configurations for the limit cases of family (C).

Configurations Divisors and zero-cycles of the total inv. curve T

c1
ICD = J1 + J2 +L∞

M0CT = PC
1 +PC

2 +2P∞
1 +3P∞

2 +P∞
3

c2
ICD = J1 + J2 +L∞

M0CT = P1 +P2 +2P∞
1 +3P∞

2 +P∞
3

c3
ICD = J1 + J2 + J3 + J4 + J5 +L∞

M0CT = 3PC
1 +3PC

2 +2PC
3 +2PC

4 +4P∞
1 +4P∞

2 +2P∞
3

c4
ICD = J1 + J2 + J3 + J4 + J5 +L∞

M0CT = 3P1 +3P2 +2P3 +2P4 +4P∞
1 +4P∞

2 +2P∞
3

c5
ICD = J1 + J2 + J3 +L∞

M0CT = 3P1 +2P∞
1 +2P∞

2 +2P∞
3

c6
ICD = J1 + J2 +2J3 +L∞

M0CT = 4P1 +2P∞
1 +2P∞

2 +3P∞
3

c7
ICD = J1 + J2 +L∞

M0CT = 2P1 +2P∞
1 +2P∞

2

c8
ICD = J1 +2J2 + J3 +L∞

M0CT = 4P1 +3P∞
1 +2P∞

2 +2P∞
3

Source: Elaborated by the author.

The other statement in (a) follows from the study done previously.

(b) This is shown in the previously exhibited tables. When h = 1/4 and a 6= 0 the family (C)
has an inverse integrating factor which is polynomial (see Table 56).
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(c) We have:

Table 86 – Phase portraits for family (C).

Phase Portraits Sing. at ∞ Finite sing. Separatrix connections

P(C)
1 (S,N,N) (©,©,©,©) 0SC f

f 0SC∞
f 2SC∞

∞

P(C)
2 (N,N,N) (©,©,s,s) 0SC f

f 8SC∞
f 0SC∞

∞

P(C)
3 (N,N,N) (s,s,©,©) 1SC f

f 6SC∞
f 0SC∞

∞

P(C)
4 (S,N,N) (s,s,n,n) 3SC f

f 6SC∞
f 0SC∞

∞

Source: Elaborated by the author.

Therefore, we have four distinct phase portraits for systems (C). For the limit cases of
family (C) we have the following phase portraits:

Table 87 – Phase portraits for the limit cases of family (C).

Phase Portraits Sing. at ∞ Finite sing. Separatrix connections

P(C)
1 ((2

1)S,N,N) (©,©,©,©) 0SC f
f 0SC∞

f 2SC∞
∞

P(C)
3 ((2

1)N,N,N) (s,s,©,©) 1SC f
f 6SC∞

f 0SC∞
∞

p1
(S,N,N)
(N,N,S)

phpphp(4)
hpphpp(4)

0SC f
f 6SC∞

f 0SC∞
∞

p2 (N,N,N) hhhhhh(4) 0SC f
f 6SC∞

f 0SC∞
∞

p3
((	[|]; /0),N,N)
(N,N,(	[|]; /0)) (	[|],s) 0SC f

f 4SC∞
f 0SC∞

∞

Source: Elaborated by the author.

Table 88 – Phase portraits in (LLIBRE; YU, 2018) that admit 3 singular points at infinity with the type
(N,N,S), and it has either 0 or 4 real singular points in the finite region and phase portraits that
admit 3 singular points at infinity with the type (N,N,N), and it has two real singular points in
the finite region.

Phase Portraits Sing. at ∞ Real finite sing. Separatrix connections

R01,Ω6 (N,S,N) /0 0SC f
f 0SC∞

f 1SC∞
∞

R5 (N,S,N) (s,n,n,s) 4SC f
f 6SC∞

f 0SC∞
∞

L34 (N,N,N) (s,s) 0SC f
f 8SC∞

f 0SC∞
∞

R4,Ω4 (N,N,N) (s,s) 0SC f
f 8SC∞

f 0SC∞
∞

R03,Ω3 (N,N,N) (s,s) 1SC f
f 6SC∞

f 0SC∞
∞

Source: Elaborated by the author.

Therefore, the phase portraits P(C)
4 is not topologically equivalent with anyone of the phase

portraits in (LLIBRE; YU, 2018). Note that P(C)
1
∼=top P(B)

1 is also missing and it was listed
in the geometric study of family (B).
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�

Figure 6 – Bifurcation diagram of configurations for family (C).
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Figure 7 – Topological bifurcation diagram for family (C).
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6.1.2.1 The solution of the Poincaré problem for the family (C).

The following theorem solves the problem of Poincaré for the family defined by the
equations (C).

Theorem 105. A necessary and sufficient condition for a system (S) defined by the equations (C)
with (a,h) ∈ R2 to have a rational first integral given by invariant algebraic curves of degree at
most two is that: i) ah(2h−1) 6= 0 and there exist integers m1,m2 such that h = m1

2(m1+m2)
where
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m1,m2 ∈ Z\{0} and m1 6=−m2, or ii) a = 0 and there exist integers m1,m2 such that h = m2
2m1

where m1 6= 0.

Proof. The proof of this result is based on the formulas obtained for the first integrals for
the family (C).

Suppose we are in the generic case ah(h− 1)(2h± 1)(4h− 1) 6= 0. A first integral of
family (C) is of the form

I = Jλ2
2 J
− (2h−1)λ2

2h
3 , (6.3)

where λ2 6= 0 and J2,J3 are given in table 51. This is a rational first integral if and only if λ2 = m1 ∈ Z\{0}

− (2h−1)
2h λ2 = m2 ∈ Z\{0}.

(6.4)

Replacing λ2 = m1 in the second equation of (6.4) we obtain

− (2h−1)
2h m1 = m2⇒−(2h−1)m1 = 2hm2⇒ 2h(m1 +m2) = m1⇒

h = m1
2(m1+m2)

, m1,m2 ∈ Z\{0}, m2 6=−2m1, m2 6= m1, m2 6=−m1
2 and m1 6=−m2.

Therefore, if I is rational then h = m1
2(m1+m2)

, m1,m2 ∈ Z\{0}, m2 6=−2m1, m2 6= m1, m2 6=−m1
2

and m1 6=−m2. Conversely, replacing h = m1
2(m1+m2)

and λ2 = m1 in (6.3) where m1,m2 ∈ Z\{0},
m2 6=−2m1, m2 6= m1, m2 6=−m1

2 and m1 6=−m2 we obtain that

I = Jm1
2 Jm2

3

which is rational. Therefore, in the generic case, the systems are algebraically integrable if and
only if h = m1

2(m1+m2)
where m1,m2 ∈ Z\{0}, m2 6=−2m1, m2 6= m1, m2 6=−m1

2 and m1 6=−m2.

Now suppose we are in non-generic case ah(h− 1)(2h± 1)(4h− 1) = 0. When (h+

1/2)(h−1/4)(h−1) = 0 and a 6= 0 we obtain rational first integrals (see Tables 54, 68 and 59).
Note that 

m1
2(m1+m2)

=−1
2 ⇔ m2 =−2m1

m1
2(m1+m2)

= 1
4 ⇔ m2 = m1

m1
2(m1+m2)

= 1⇔ m2 =−m1
2

where m1,m2 ∈ Z\{0}.

When h = 0 and a 6= 0 then the first integral of family (C) is of the form

I = J0
1 J−ag1λ3

2 Eλ3
3

where J1,J2,E3 are given in table 60. Therefore, I cannot be rational. When h = 1/2 and a 6= 0
then the first integral of family (C) is of the form

I = J0
1 J−ag1λ3

2 Eλ3
3
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where J1,J2,E3 are given in table 63. Therefore, I cannot be rational. Note that
m1

2(m1+m2)
= 0⇔ m1 = 0

m1
2(m1+m2)

= 1
2 ⇔ m2 = 0.

When a = 0 and h 6=−1/2,0,1/2,1 a first integral of family (C) is of the form

I = Jλ1
1 J2hλ1

2 J−(−1+2h)λ1
3 (6.5)

where λ1 6= 0 and J1,J2,J3 are given in table 69. This is a rational first integral if and only if
λ1 = m1, m1 ∈ Z\{0}

2hλ1 = m2, m2 ∈ Z\{0}

−(−1+2h)λ1 = m3, m3 ∈ Z\{0}.

(6.6)

Replacing λ1 =m1 in the second equation of (6.6) we obtain h= m2
2m1

, m1, m2 ∈ \{0}, m2 6=−m1,
m2 6= m1 and m2 6= 2m1. Then,

m3 = (1−2h)m1 =
(

1−2
(

m2
2m1

))
m1 = m1−m2 ∈ Z\{0}

where m1, m2 6= 0 and m1 6= m2. Therefore, if I is rational then h = m2
2m1

where m1, m2 ∈ \{0},
m2 6=−m1, m2 6= m1 and m2 6= 2m1. Conversely, replacing h = m2

2m1
and λ1 = m1 in (6.5) where

m1, m2 ∈ \{0}, m2 6=−m1, m2 6= m1 and m2 6= 2m1 we obtain that

I = Jm1
1 Jm2

2 Jm1−m2
3

which is rational. Therefore, the systems are algebraically integrable if and only if h = m2
2m1

where
m1, m2 ∈ Z\{0}, m2 6=−m1, m2 6= m1 and m2 6= 2m1.

When a = 0 and (h+1/2)h(h−1/2)(h−1) = 0 we obtain rational first integrals (see
Tables 74, 77, 80 and 83). Note that

m2
2m1

=−1
2 ⇔ m2 =−m1

m2
2m1

= 0⇔ m2 = 0
m2

2m1
= 1

2 ⇔ m2 = m1
m2

2m1
= 1⇔ m2 = 2m1.

where m1,m2 ∈ Z and m1 6= 0. When a = h = 0 or a = 0 and h = 1
2 the system (C) is degenerate.

In conclusion, we get a rational first integral for a system (S) defined by the equations
(C) if and only if i) ah(2h−1) 6= 0 and there exist integers m1,m2 such that h = m1

2(m1+m2)
where

m1,m2 ∈ Z\{0} and m1 6=−m2, or ii) a = 0 and there exist integers m1,m2 such that h = m2
2m1

where m1 6= 0.

�
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6.1.3 Geometric Analysis of Family (E)

Consider the family

(E)

{
ẋ = x− x2

2 −
xy
2

ẏ = b+ y− 3xy
2 + y2

2 ,

where b 6=−4.

For a complete understanding of the bifurcation diagram of the systems in the full family
defined by the equations (E) we study here also the limit case b =−4 where the equations are
still defined. We display below the full geometric analysis of the systems in this family which is
endowed with at least four invariant algebraic curves: three lines and one hyperbola. Considering
the line at infinity Z = 0 the total multiplicity of invariant lines is four so this family was studied
in (SCHLOMIUK; VULPE, 2008c). We include this case as indicated in Observation 81. In the
generic case

b(b−8/25)(b−1/2)(b+4) 6= 0

the systems have three invariant lines J1,J2,J3 and with one invariant hyperbola J4 with cofactors
αi, 1≤ i≤ 4 given by

J1 = 1−
√

1−2b− x+ y, α1 =
1
2

(
1+
√

1−2b− x+ y
)
,

J2 = 1+
√

1−2b− x+ y, α2 =
1
2

(
1−
√

1−2b− x+ y
)
,

J3 = x, α3 =− x
2 −

y
2 +1,

J4 =−4−b+ x(4− x+ y), α4 =−x.

Then according to Darboux’ theorem we must have a Darboux first integral. We note that when
b = 1/2 the lines J1 and J2 coalesce yielding a double line. When b = 0 we have obtain an
additional invariant line. When b = 8/25 we obtain an additional invariant hyperbola. The
multiplicities of each invariant straight line and invariant hyperbola appearing in the divisor ICD
of invariant algebraic curves were calculated by using the 1st extactic polynomial for the lines
and the 2nd extactic polynomial for the hyperbola

(i) The generic case: b(b−8/25)(b−1/2)(b+4) 6= 0.
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Table 89 – Invariant curves, cofactors, singularities and intersection points of family (E) when b(b+
4)(b−8/25)(b−1/2) 6= 0.

Invariant curves and cofactors Singularities Intersection points

J1 = 1−
√

1−2b− x+ y
J2 = 1+

√
1−2b− x+ y

J3 = x
J4 =−4−b+ x(4− x+ y)

α1 =
1
2(1+

√
1−2b−x+y)

α2 =
1
2(1−

√
1−2b−x+y)

α3 = 1− x
2 −

y
2

α4 =−x

P1 =(0,−
√

1−2b−1)
P2 =

(1
2(
√

1−2b+3),12(1−
√

1−2b)
)

P3 =(0,
√

1−2b−1)
P4 =

(1
2(3−

√
1−2b),12(

√
1−2b+1)

)
P∞

1 = [0 : 1 : 0]
P∞

2 = [1 : 1 : 0]
P∞

3 = [1 : 0 : 0]

s,n,s,n;N,N,S if b <−4
s,n,n,s;N,N,S if −4 < b < 1/2
©,©,©,©;N,N,S if b > 1/2

J1∩ J2 = P∞
2 simple

J1∩ J3 = P3 simple

J1∩ J4 =

{
P4 simple
P∞

2 simple
J1∩L∞ = P∞

2 simple
J2∩ J3 = P1 simple

J2∩ J4 =

{
P2 simple
P∞

2 simple
J2∩L∞ = P∞

2 simple
J3∩ J4 = P∞

1 double
J3∩L∞ = P∞

1 simple

J4∩L∞ =

{
P∞

1 simple
P∞

2 simple
Source: Elaborated by the author.

Table 90 – Divisor and zero-cycles of family (E) when b(b+4)(b−8/25)(b−1/2) 6= 0.

Divisor and zero-cycles Degree

ICD =

{
J1 + J2 + J3 + J4 +L∞ if b < 1/2
JC

1 + JC
2 + J3 + J4 +L∞ if b > 1/2

M0CS =

{
P1 +P2 +P3 +P4 +P∞

1 +P∞
2 +P∞

3 if b < 1/2
PC

1 +PC
2 +PC

3 +PC
4 +P∞

1 +P∞
2 +P∞

3 if b > 1/2

T = ZJ1J2J3J4 = 0

M0CT =

{
2P1 +2P2 +2P3 +2P4 +3P∞

1 +4P∞
2 +P∞

3 if b < 1/2
2PC

1 +2PC
2 +2PC

3 +2PC
4 +3P∞

1 +4P∞
2 +P∞

3 if b > 1/2

5
5

7
7

6

16
16

Source: Elaborated by the author.

where the total curve T has

1) only two distinct tangents at P∞
1 , but one of them double and

2) four distinct tangents at P∞
2 .
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Table 91 – First integral and integrating factor of family (E) when b(b+4)(b−8/25)(b−1/2) 6= 0.

First integral Integrating Factor

General I = Jλ1
1 J
− (−

√
1−2b−3)λ1√
1−2b−3

2 J
2
√

1−2bλ1√
1−2b−3

3 J
− 2
√

1−2bλ1√
1−2b−3

4 R
Simple

example I = J
√

1−2b−3
1 J

√
1−2b+3

2 J2
√

1−2b
3 J−2

√
1−2b

4 R =
1

J1J2J3J4
Source: Elaborated by the author.

where R = Jλ1
1 J

6√
1−2b−3

− (−
√

1−2b−3)λ1√
1−2b−3

2 J
2
√

1−2bλ1√
1−2b−3

−−
√

1−2b−3√
1−2b−3

3 J
− 2
√

1−2bλ1√
1−2b−3

− 3(
√

1−2b−1)√
1−2b−3

4

(ii) b = 0.

Here we have, apart from the three lines and one hyperbola, an additional invariant line.
Considering the line at infinity Z = 0 the total multiplicity of invariant lines is five so this
system was studied in (SCHLOMIUK; VULPE, 2008b). We include this case as indicated
in Observation 81.

Table 92 – Invariant curves, cofactors, singularities and intersection points of family (E) when b = 0.

Inv.cur./Exp.Fac. and cofactors Singularities Intersection points

J1 = y
J2 = x
J3 = x− y
J4 =−2+ x− y
J5 =−4+4x− x2 + xy

α1 = 1− 3x
2 + y

2
α2 = 1− x

2 −
y
2

α3 = 1− x
2 +

y
2

α4 =− x
2 +

y
2

α5 =−x

P1 = (0,−2)
P2 = (1,1)
P3 = (2,0)
P4 = (0,0)

P∞
1 = [0 : 1 : 0]

P∞
2 = [1 : 1 : 0]

P∞
3 = [1 : 0 : 0]

s,s,n,n;N,N,S

J1∩ J2 = P4 simple
J1∩ J3 = P4 simple
J1∩ J4 = P3 simple
J1∩ J5 = P3 double
J1∩L∞ = P∞

3 simple
J2∩ J3 = P4 simple
J2∩ J4 = P1 simple
J2∩ J5 = P∞

1 double
J2∩L∞ = P∞

1 simple
J3∩ J4 = P∞

2 simple

J3∩ J5 =

{
P2 simple
P∞

2 simple
J3∩L∞ = P∞

2 simple

J4∩ J5 =

{
P3 simple
P∞

2 simple

J5∩L∞ =

{
P∞

1 simple
P∞

2 simple
Source: Elaborated by the author.

Observation 106. According to Jouanolou’s theorem the corresponding system has a
rational first integral.
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Table 93 – Divisor and zero-cycles of family (E) when b = 0.

Divisor and zero-cycles Degree
ICD = J1 + J2 + J3 + J4 + J5 +L∞

M0CS = P1 +P2 +P3 +P4 +P∞
1 +P∞

2 +P∞
3

T = ZJ1J2J3J4J5 = 0

M0CT = 2P1 +2P2 +3P3 +3P4 +3P∞
1 +4P∞

2 +2P∞
3

6

7

7

19
Source: Elaborated by the author.

where the total curve T has

1) only two distinct tangents at P3, but one of them is double;

2) only two distinct tangents at P∞
1 , but one of them is double and

3) four distinct tangents at P∞
2 .

Table 94 – First integral and integrating factor of family (E) when b = 0.

First integral Integrating Factor

General I = Jλ1
1 Jλ2

2 J−λ1−λ2
3 J2λ2

4 J−λ1−λ2
5 R = Jλ1

1 Jλ2
2 J−2−λ1−λ2

3 J1+2λ2
4 J−2−λ1−λ2

5
Simple

example I =
J1

J3J5
R =

1
J1J2J4

Source: Elaborated by the author.

Observation 107. Consider F 1
(c1,c2)

= c1J1− c2J3J5 = 0, degF 1
(c1,c2)

= 3. The remark-
able value of F 1

(c1,c2)
are [4 : 1] and [0 : 1] for which we have

F 1
(4,1) =−J2J4, F 1

(0,1) =−J3J5.

Therefore, J2,J3,J4,J5 are remarkable curves of I1 and [4 : 1] and [0 : 1] are remarkable
values of I1. The singular points are P1,P3,P4 for F 1

(4,1) and P2 for F 1
(0,1).

(iii) b = 8
25 .

Here we have, apart from the three lines and one hyperbola, an additional invariant
hyperbola. According to Jouanolou’s theorem the corresponding system has a rational first
integral.
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Table 95 – Invariant curves, cofactors, singularities and intersection points of family (E) when b = 8
25 .

Invariant curves and cofactors Singularities Intersection points

J1 = 2−5x+5y
J2 = 8−5x+5y
J3 = x
J4 =−108

25 +4x+ x(−x+ y)
J5 =− 4

25 −
4y
5 − y(−x+ y)

α1 =
1

10(−5x+5y+8)
α2 =

1
10(−5x+5y+2)

α3 = 1− x
2 −

y
2

α4 =−x
α5 =

8
5 −2x+ y

P1 =
(
0,−8

5

)
P2 =

(
0,−2

5

)
P3 =

(9
5 ,

1
5

)
P4 =

(6
5 ,

4
5

)
P∞

1 = [0 : 1 : 0]
P∞

2 = [1 : 1 : 0]
P∞

3 = [1 : 0 : 0]

s,n,n,s;N,N,S

J1∩ J2 = P∞
2 simple

J1∩ J3 = P2 simple

J1∩ J4 =

{
P4 simple
P∞

2 simple

J1∩ J5 =

{
P2 simple
P∞

2 simple
J1∩L∞ = P∞

2 simple
J2∩ J3 = P1 simple

J2∩ J4 =

{
P3 simple
P∞

2 simple

J2∩ J5 =

{
P3 simple
P∞

2 simple
J2∩L∞ = P∞

2 simple
J3∩ J4 = P∞

1 double
J3∩ J5 = P2 double
J3∩L∞ = P∞

1 simple

J4∩ J5 =

{
P3 triple
P∞

2 simple

J4∩L∞ =

{
P∞

1 simple
P∞

2 simple

J5∩L∞ =

{
P∞

2 simple
P∞

3 simple
Source: Elaborated by the author.

Observation 108. According to Jouanolou’s theorem the corresponding system has a
rational first integral.

Table 96 – Divisor and zero-cycles of family (E) when b = 8
25 .

Divisor and zero-cycles Degree
ICD = J1 + J2 + J3 + J4 + J5 +L∞

M0CS = P1 +P2 +P3 +P4 +P∞
1 +P∞

2 +P∞
3

T = ZJ1J2J3J4J5 = 0

M0CT = 2P1 +3P2 +3P3 +2P4 +3P∞
1 +5P∞

2 +2P∞
3

6

7

8

20
Source: Elaborated by the author.

where the total curve T has

1) only two distinct tangents at P2 (and P3), but one of them is double and

2) only two distinct tangents at P∞
1 , but one of them is double.
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Table 97 – First integral and integrating factor of family (E) when b = 8
25 .

First integral Integrating Factor

General I = Jλ1
1 Jλ2

2 J
λ2
3

3 J
λ1
2

4 J
− λ1

2 −
λ2
3

5 R = Jλ1
1 Jλ2

2 J
− 2

3+
λ2
3

3 J
− 1

2+
λ1
2

4 J
− 5

6−
λ1
2 −

λ2
3

5
Simple

example I =
J2

1 J4

J5
R =

1
J1J2J3J4

Source: Elaborated by the author.

Observation 109. Consider F 1
(c1,c2)

= c1J2
1 J4− c2J5 = 0, degF 1

(c1,c2)
= 4. The remark-

able value of F 1
(c1,c2)

are [1 : 108] and [1 : 0] for which we have

F 1
(1,108) =

1
5J3

2 J3, F 1
(1,0) = J2

1 J4.

Therefore, J1,J2,J3,J4 are remarkable curves of I1, [1 : 108] and [1 : 0] are the only two
critical remarkable values of I1 and J1,J2 are critical remarkable curves of I1. The
singular points are P1,P3 for F 1

(1,108) and P2,P4 for F 1
(1,0).

(iv) b = 1
2 .

Here two lines coalesce yielding a double line so we compute the exponential factor E4.

Table 98 – Invariant curves, exponential factor, cofactors, singularities and intersection points of family
(E) when b = 1

2 .

Inv.curves/exp.fac. and cofactors Singularities Intersection points
J1 = 1− x+ y
J2 = x
J3 =−9

8 + x− x2

4 + xy
4

E4 = e
g0+g1x−g1y

1−x+y

α1 =
1
2 −

x
2 +

y
2

α2 = 1− x
2 −

y
2

α3 =−x
α4 =−g0

2 −
g1
2

P1 = (0,−1)
P2 =

(3
2 ,

1
2

)
P∞

1 = [0 : 1 : 0]
P∞

2 = [1 : 1 : 0]
P∞

3 = [1 : 0 : 0]

sn(2),sn(2);N,N,S

J1∩ J2 = P1 simple

J1∩ J3 =

{
P2 simple
P∞

2 simple
J1∩L∞ = P∞

2 simple
J2∩ J3 = P∞

1 double
J2∩L∞ = P∞

1 simple

J3∩L∞ =

{
P∞

1 simple
P∞

2 simple

Source: Elaborated by the author.
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Table 99 – Divisor and zero-cycles of family (E) when b = 1
2 .

Divisor and zero-cycles Degree
ICD = 2J1 + J2 + J3 +L∞

M0CS = 2P1 +2P2 +P∞
1 +P∞

2 +P∞
3

T = ZJ2
1J2J3 = 0

M0CT = 3P1 +3P2 +3P∞
1 +4P∞

2 +P∞
3

5

7

6

14
Source: Elaborated by the author.

where the total curve T has

1) only two distinct tangents at P1 (and P2), but one of them is double;

2) only two distinct tangents at P∞
1 , but one of them is double and

3) only three distinct tangents at P∞
2 , but one of them is double.

Table 100 – First integral and integrating factor of family (E) when b = 1
2 .

First integral Integrating Factor

General I = Jλ1
1 Jλ1

2 J−λ1
3 eg0λ4+

3λ1(x−y)
(−x+y+1) R = J−2

1 J−1
2 J−1

3 E0
4

Simple
example I =

J1J2eg0+
3(x−y)
−x+y+1

J3
R =

1
J2

1 J2J3
Source: Elaborated by the author.

(v) b =−4.

Under this condition, systems (E) do not belong to QSH. The affine invariant lines are
−2− x + y = 0, 4− x + y = 0 and x = 0 that are all simple. Considering the line at
infinity Z = 0 the total multiplicity of invariant lines is four so this family was studied
in (SCHLOMIUK; VULPE, 2008c). We include this case as indicated in Observation
81. Furthermore, the conic x(4− x+ y) = 0 has integrable multiplicity two so we get an
exponetial factor that allow us to find a generalized Darboux first integral. By perturbing the
reducible conic x(4− x+ y) = 0 we can produce the hyperbola −4−b+4x− x2 + xy = 0.
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Table 101 – Invariant curves, cofactors, singularities and intersection points of family (E) when b =−4.

Inv.cur./exp.fac. and cofactors Singularities Intersection points
J1 =−2− x+ y
J2 = 4− x+ y
J3 = x

E4 = e
x(g0−6g1)(−x+y+4)+8g0(x−3)

48x(−x+y+4)

α1 = 2− x
2 +

y
2

α2 =−1− x
2 +

y
2

α3 = 1− x
2 −

y
2

α4 =− g0
12

P1 = (0,−4)
P2 = (3,−1)
P3 = (0,2)

P∞
1 = [0 : 1 : 0]

P∞
2 = [1 : 1 : 0]

P∞
3 = [1 : 0 : 0]

s,n,sn(2);N,N,S

J1∩ J2 = P∞
2 simple

J1∩ J3 = P3 simple
J1∩L∞ = P∞

2 simple
J2∩ J3 = P1 simple
J2∩L∞ = P∞

2 simple
J3∩L∞ = P∞

1 simple

Source: Elaborated by the author.

Table 102 – Divisor and zero-cycles of family (E) when b =−4.

Divisor and zero-cycles Degree
ICD = J1 + J2 + J3 +L∞

M0CS = P1 +P2 +2P3 +P∞
1 +P∞

2 +P∞
3

T = ZJ1J2J3 = 0.

M0CT = 2P1 +P2 +2P3 +2P∞
1 +3P∞

2 +P∞
3

4

7

4

11
Source: Elaborated by the author.

where the total curve T has three distinct tangents at P∞
2 .

Table 103 – First integral and integrating factor of family (E) when b =−4.

First integral Integrating Factor

General I = Jλ1
1 J−λ1

2 J0
3 E

36λ1
g0

4 R = Jλ1
1 J−3−λ1

2 J−2
3 E

36(λ1+1)
g0

4
Simple

example I =
J1E4

J2
R =

1
J1J2

2 J2
3

Source: Elaborated by the author.

We sum up the topological, dynamical and algebraic geometric features of family (E) in
the following proposition and we also confront our results with previous results in the literature.

Proposition 110. (a) For the family (E) we have six distinct configurations C(E)
1 −C(E)

6 of
invariant hyperbolas and lines (see Figure 8 for the complete bifurcation diagram of
configurations of such family). The bifurcation set of configurations in the full parameter
space is b(b+4)(b−8/25)(b−1/2) = 0. Its complement is a union of 5 disjoint sets. On
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b = 0 we have one additional invariant line. On b = 8/25 we have one additional invariant
hyperbola. On b = 1/2 two lines of the generic case coalesce yielding to a double line
and two double finite singularities that are located in this line. For the limiting set of the
parameter space, i.e. on b =−4 the invariant hyperbola becomes reducible producing the
lines x = 0 and 4− x+ y = 0.

(b) The family (E) is Darboux integrable if b(b− 8/25)(b− 1/2)(b+ 4) 6= 0. When b = 0
the family (E) admits a rational first integral and the plane is foliated into cubic invariant
algebraic curves. The remarkable curves corresponding to this case are J2,J3,J4 and J5.
When b = 8/25 the family (E) admits a rational first integral and the plane is foliated
into quartic invariant algebraic curves. The remarkable curves corresponding to this case
are J1,J2,J3 and J4. When b = 1/2 the family (E) is generalized Darboux integrable. All
systems in family (E) have an integrating factor which is polynomial.

(c) For the family (E) we have four topologically distinct phase portraits P(E)
1 −P(E)

4 . The
topological bifurcation diagram in the full parameter space is done in Figure 9 . The
bifurcation is (b+4)(b−1/2) = 0 and it is a bifurcation set of singularities. The phase
portrait P(E)

4 is not topologically equivalent with anyone of the phase portraits in (LLIBRE;
YU, 2018).

Proof of proposition 110:

(a) We have the following type of divisors and zero-cycles of the total invariant curve T for
the configurations of family (E):

Table 104 – Configurations for family (E).

Configurations Divisors and zero-cycles of the total inv. curve T

C(E)
1

ICD = J1 + J2 + J3 + J4 +L∞

M0CT = 2P1 +2P2 +2P3 +2P4 +3P∞
1 +4P∞

2 +P∞
3

C(E)
2

ICD = J1 + J2 + J3 + J4 +L∞

M0CT = 2P1 +2P2 +2P3 +2P4 +3P∞
1 +4P∞

2 +P∞
3

C(E)
3

ICD = JC
1 + JC

2 + J3 + J4 +L∞

M0CT = 2PC
1 +2PC

2 +2PC
3 +2PC

4 +3P∞
1 +4P∞

2 +P∞
3

C(E)
4

ICD = J1 + J2 + J3 + J4 + J5 +L∞

M0CT = 2P1 +2P2 +3P3 +3P4 +3P∞
1 +4P∞

2 +2P∞
3

C(E)
5

ICD = J1 + J2 + J3 + J4 + J5 +L∞

M0CT = 2P1 +3P2 +3P3 +2P4 +3P∞
1 +5P∞

2 +2P∞
3

C(E)
6

ICD = 2J1 + J2 + J3 +L∞

M0CT = 3P1 +3P2 +3P∞
1 +4P∞

2 +P∞
3

Source: Elaborated by the author.

Although C(E)
1 and C(E)

2 admit the same type of divisors and zero-cycles we can see that the
configurations are different because in C(E)

1 each branch of the hyperbola intersects one of
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the parallel lines while C(E)
2 have one branch intersecting both parallel lines and the other

branch does not intersect any line. The configuration C(E)
4 and C(E)

5 are also clearly distinct
since C(E)

4 possess three affine lines and one hyperbola while C(E)
5 possess two affine lines

and two hyperbolas.

Therefore, the configurations C(E)
1 up to C(E)

6 are distinct. For the limit case of family (E)
we have the following configuration:

Table 105 – Configuration for the limit case of family (E).

Configuration Divisors and zero-cycles of the total inv. curve T

c1
ICD = J1 + J2 + J3 +L∞

M0CT = 2P1 +P2 +2P3 +2P∞
1 +3P∞

2 +P∞
3

Source: Elaborated by the author.

The other statements in (a) follows from the study done previously.

(b) This is shown in the previously exhibited tables. The computations for the remarkable
curves were done in Remarks 107 and 109.

(c) We have:

Table 106 – Phase portraits for family (E).

Phase Portraits Sing. at ∞ Sing. at < ∞ Separatrix connections

P(E)
1 (N,N,S) (s,n,s,n) 3SC f

f 6SC∞
f 0SC∞

∞

P(E)
2 (N,N,S) (s,n,n,s) 4SC f

f 6SC∞
f 0SC∞

∞

P(E)
3 (N,N,S) (©,©,©,©) 0SC f

f 0SC∞
f 2SC∞

∞

P(E)
4 (N,N,S) (sn(2),sn(2)) 1SC f

f 6SC∞
f 0SC∞

∞

Source: Elaborated by the author.

Therefore, we have four distinct phase portraits for systems (E). For the limit case of
family (E) we have the following phase portrait:

Table 107 – Phase portrait for the limit case of family (E).

Phase Portrait Sing. at ∞ Finite sing. Separatrix connections

p1 (N,N,S) (s,n,sn(2)) 2SC f
f 6SC∞

f 0SC∞
∞

Source: Elaborated by the author.
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Table 108 – Phase portraits in (LLIBRE; YU, 2018) that admit 3 singular points at infinity with the type
(N,N,S) that possess 0, 2 or 4 real singular points in the finite region.

Phase Portrait Sing. at ∞ Real finite sing. Separatrix connections

L31,L32 (N,S,N) (s,es) 2C f
f 6SC∞

f 0SC∞
∞

R1,R2 (N,S,N) (s,c) 1C f
f 2SC∞

f 2SC∞
∞

R01,Ω6 (N,S,N) /0 0SC f
f 0SC∞

f 1SC∞
∞

R5 (N,S,N) (s,n,n,s) 4SC f
f 6SC∞

f 0SC∞
∞

R8,Ω1 (N,S,N) (s,n,n,s) 4SC f
f 6SC∞

f 0SC∞
∞

Source: Elaborated by the author.

Therefore, the phase portrait P(E)
4 is not topologically equivalent with anyone of the phase

portraits in (LLIBRE; YU, 2018). Note that P(E)
1
∼=top P(C)

4 and P(E)
3
∼=top P(B)

3 are also
missing and they were listed in the geometric study of families (C) and (B), respectively.

�

Figure 8 – Bifurcation diagram of configurations for family (E).
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C(E)
1

C(E)
3

−4

(1)

(1)

(1)

(1)

c1

(2)

(1)

0 8/25

C(E)
2

C(E)
2

C(E)
4

1/2

C(E)
5 C(E)

6

C(E)
2

Source: Elaborated by the author.



6.1. Geometric study for systems with η > 0 199

Figure 9 – Topological bifurcation diagram for family (E).

b

P(E)
1

−4

p1

0 8/25

P(E)
2

1/2

P(E)
2 P(E)

2

P(E)
2

P(E)
3

P(E)
4P(E)

2

Source: Elaborated by the author.

6.1.3.1 The solution of the Poincaré problem for the family (E).

The following theorem solves the problem of Poincaré for the family defined by the
equations (E) when b ∈ R.

Theorem 111. A necessary and sufficient condition for a system (S) defined by the equations
(E) with b ∈ R to have a rational first integral given by invariant algebraic curves of degree at
most two is that there exist integers m1,m2 such that b = 1

2 −
9(m1+m2)

2

2(m1−m2)2 where m1 6= 0, m2 6= 0,
m1 6= m2 and m1 6=−m2.

Proof. The proof of this result is based on the formulas obtained for the first integrals for
the family (E).

In the generic case b(b− 8/25)(b− 1/2)(b+ 4) 6= 0 we have a Darboux first integral
given by

I = Jλ1
1 J
− (−

√
1−2b−3)λ1√
1−2b−3

2 J
2
√

1−2bλ1√
1−2b−3

3 J
− 2
√

1−2bλ1√
1−2b−3

4 , (6.7)

where λ1 6= 0,
√

1−2b− 3 6= 0 and J1,J2,J3,J4 are given in table 89. This is a rational first
integral if and only if 

λ1 = m1, m1 ∈ Z\{0}

−(−
√

1−2b−3)√
1−2b−3

λ1 = m2, m2 ∈ Z\{0}
2
√

1−2b√
1−2b−3

λ1 = m3, m3 ∈ Z\{0}.

(6.8)
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Replacing λ1 = m1 in the second equation of (6.8) we obtain

−(−
√

1−2b−3)√
1−2b−3

m1 = m2⇒
(
√

1−2b+3)√
1−2b−3

m1 = m2⇒
(√

1−2b+3
)

m1 =
(√

1−2b−3
)

m2⇒
√

1−2b(m1−m2)+3(m1 +m2) = 0
m1−m2 6=0⇒

√
1−2b =−3(m1+m2)

(m1−m2)
⇒ 1−2b = 9(m1+m2)

2

(m1−m2)2 ⇒

b = 1
2 −

9(m1+m2)
2

2(m1−m2)2 , m1,m2 ∈ Z\{0}, m1 6= m2 and m1 6=−m2.

Note that as
√

1−2b =−3(m1+m2)
(m1−m2)

is rational, then

m3 =
2
√

1−2b√
1−2b−3

m1 =
2
(
−3(m1+m2)

m1−m2

)
(
−3(m1+m2)

m1−m2

)
−3

m1 = m1 +m2 ∈ Z.

Therefore, if I is rational then b = 1
2−

9(m1+m2)
2

2(m1−m2)2 where m1,m2 ∈Z\{0}, m1 6=m2 and m1 6=−m2.

Conversely, replacing b = 1
2 −

9(m1+m2)
2

2(m1−m2)2 and λ1 = m1 in (6.7) where m1,m2 ∈ Z\{0}, m1 6= m2

and m1 6=−m2 we obtain that

I = Jm1
1 Jm2

2 Jm1+m2
3 J−m1−m2

4 ,

which is rational. Therefore, in the generic case, the systems are algebraically integrable if and
only if b = 1

2 −
9(m1+m2)

2

2(m1−m2)2 where m1,m2 ∈ Z\{0}, m1 6= m2 and m1 6=−m2.

In the non-generic case b(b−8/25)(b−1/2)(b+4) = 0 we have rational first integrals
when b(b−8/25) = 0 (see Table 94 and 97). Note that

1
2 −

9(m1+m2)
2

2(m1−m2)2 = 0⇔ m1 =−2m2 or m2 =−2m1

1
2 −

9(m1+m2)
2

2(m1−m2)2 =
8

25 ⇔ 2m1 =−3m2 or 2m2 =−3m1

where m1,m2 ∈ Z\{0}. When b = 1/2 the first integral is of the form

I = Jλ1
1 Jλ1

2 J−λ1
3 eg0λ4+

3λ1(x−y)
(−x+y+1)

where J1,J2,J3 are given in table 98. Therefore, I cannot be rational. When b = −4 the first
integral is of the form

I = Jλ1
1 Jλ1

2 J0
3 E

36λ1
g0

4

where J1,J2,J3 are given in table 101. Therefore, I cannot be rational. Note that
1
2 −

9(m1+m2)
2

2(m1−m2)2 =−4⇔ m1 = 0 or m2 = 0

1
2 −

9(m1+m2)
2

2(m1−m2)2 =
1
2 ⇔ m1 =−m2

where m1,m2 ∈ Z.

In conclusion, we get a rational first integral I for a system (S) defined by the equations
(E) if and only if b = 1

2 −
9(m1+m2)

2

2(m1−m2)2 where m1,m2 ∈ Z\{0}, m1 6= m2 and m1 6=−m2.
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�

We see that the Poincaré problem for families involves in the final instance questions of
a number theoretic nature which need to be treated with meticulous care.

6.1.4 Geometric Analysis of family (F)

Consider the family

(F)

{
ẋ = a(2h−1)−hx2 +(h−1)xy

ẏ = 2a(h−1)− (h+1)xy+hy2,

where a(h±1)(2h±1)(3h±1) 6= 0.

This is a two parameter family depending on a and h such that a(h±1)(2h±1)(3h±1) 6=
0 but for a complete understanding of the bifurcation diagram of the systems in the full family
defined by the equations (F) we study here also the limit cases a(h± 1)(2h± 1)(3h± 1) = 0
where the equations are still defined.

We display below the full geometric analysis of the systems in this family, which is
endowed with at least one invariant hyperbola. In the generic case

ah(h±1)(2h±1)(3h±1)(4h−1) 6= 0

the systems have two invariant lines J1 and J2 and one invariant hyperbola J3 with cofactors αi,

1≤ i≤ 3 given by

J1 =−
√

a√
h
+ x− y, α1 =−

√
a
√

h−hx+hy,

J2 =
√

a√
h
+ x− y, α2 =

√
a
√

h−hx+hyy,

J3 = a− x2 + xy, α3 = (2h−1)y−2hx.

We note that when h = 0 we do not have any affine invariant line. The four finite
singularities have gone to infinity and two of them coalesced with a node at infinity producing a
triple node and the other two coalesced with a saddle at infinity producing a triple saddle. Also
in this case, the line of infinity Z = 0 is triple. We inquire when we could have an additional
hyperbola and calculations yield that this happens when h = 1/4. The multiplicities of each
invariant straight line and invariant hyperbola appearing in the divisor ICD of invariant algebraic
curves were calculated by using for lines the 1st extactic polynomial for the lines and the 2nd
extactic polynomial for the hyperbolas.

(i) The generic case: ah(h±1)(2h±1)(3h±1)(4h−1) 6= 0.
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Table 109 – Invariant curves, cofactors, singularities and intersection points of family (F) for the generic
case.

Invariant curves and cofactors Singularities Intersection points

J1 =−
√

a√
h
+ x− y

J2 =
√

a√
h
+ x− y

J3 = a− x2 + xy

α1 =−
√

a
√

h−hx+hy
α2 =

√
a
√

h−hx+hy
α3 = (2h−1)y−2hx

P1 =
(
−
√

a
√

h,−
√

a(h−1)√
h

)
P2 =

(√
a
√

h,
√

a(h−1)√
h

)
P3 =

(√
a(1−2h)√

h
,−2
√

a
√

h
)

P4 =
(√

a(2h−1)√
h

,2
√

a
√

h
)

P∞
1 = [0 : 1 : 0]

P∞
2 = [1 : 1 : 0]

P∞
3 = [1 : 0 : 0]

For a < 0 we have

n,n,s,s;S,N,N if h < 0
©,©,©,©;N,N,S if h > 0

For a > 0 we have

©,©,©,©;S,N,N if h < 0
s,s,n,n;N,N,S if 0 < h < 1/3
n,n,s,s;N,N,S if h > 1/3

J1∩ J2 = P∞
2 simple

J1∩ J3 =

{
P∞

2 simple
P2 simple

J1∩L∞ = P∞
2 simple

J2∩ J3 =

{
P∞

2 simple
P1 simple

J2∩L∞ = P∞
2 simple

J3∩L∞ =

{
P∞

1 simple
P∞

2 simple

Source: Elaborated by the author.

Table 110 – Divisors and zero-cycles of family (F) for the generic case.

Divisor and zero-cycles Degree

ICD =

{
J1 + J2 + J3 +L∞ if ah > 0
JC

1 + JC
2 + J3 +L∞ if ah < 0

M0CS =

{
P1 +P2 +P3 +P4 +P∞

1 +P∞
2 +P∞

3 if ah > 0
PC

1 +PC
2 +PC

3 +PC
4 +P∞

1 +P∞
2 +P∞

3 if ah < 0

T = ZJ1J2J3 = 0

M0CT =

{
2P1 +2P2 +P3 +P4 +2P∞

1 +4P∞
2 +P∞

3 if ah > 0
2PC

1 +2PC
2 +PC

3 +PC
4 +2P∞

1 +4P∞
2 +P∞

3 if ah < 0

4
4

7
7

5

13
13

Source: Elaborated by the author.

where the total curve T has four distinct tangents at P∞
2 .

Observation 112. Mathematica could not give a response for the computation of the first
integral of family (F) in the generic case.
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Table 111 – Integrating factor of family (F) for the generic case.

Integrating Factor

General R = J
h−1
2h

1 J
h−1
2h

2 J−2
3

Simple
example R = J

h−1
2h

1 J
h−1
2h

2 J−2
3

Source: Elaborated by the author.

(ii) The non-generic case: ah(h±1)(2h±1)(3h±1)(4h−1) = 0.

(ii.1) h = 0 and a 6= 0.

Here we have just one invariant hyperbola. The line at infinity Z = 0 is triple and we
could find two exponential factors.

Table 112 – Invariant curves, exponential factors, cofactors, singularities and intersection points of family
(F) when h = 0 and a 6= 0.

Inv.curves/exp.fac. and cofactors Singularities Intersection points

J1 = a− x2 + xy
E2 = eg0+g1(x−y)

E3 = el0+ 1
2 (x−y)(2l1+l2(y−x))

α1 =−y
α2 = ag1
α3 = al1−al2x+al2y

P∞
1 = [0 : 1 : 0]

P∞
2 = [1 : 1 : 0]

P∞
3 = [1 : 0 : 0]

For a < 0 we have

(2
1)N,N,(2

1)S

For a > 0 we have

(2
1)S,N,(2

1)N

J1∩L∞ =

{
P∞

1 simple
P∞

2 simple

Source: Elaborated by the author.

Table 113 – Divisor and zero-cycles of family (F) when h = 0 and a 6= 0.

Divisor and zero-cycles Degree
ICD = J1 +3L∞

M0CS = 3P∞
1 +P∞

2 +3P∞
3

T = Z3J1 = 0.

M0CT = 2P∞
1 +2P∞

2 +P∞
3

4

7

5

5
Source: Elaborated by the author.
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Table 114 – First integral and integrating factor of family (F) when h = 0 and a 6= 0.

First integral Integrating Factor

General I R = J−2
1 E

− l1λ3
g1

2

(
e
(x−y)(2aλ3l1+x−y)

2aλ3
+l0
)λ3

Simple
example I R = J−2

1 e
(x−y)2

2a

Source: Elaborated by the author.

where

I =−

(√
2(a+x(y−x))F

(
x−y√
2
√

a

)
+
√

ax
)(

e
(x−y)(2aλ3l1+x−y)

2aλ3
+l0
)λ3

(eg0+g1x−g1y)
− λ3l1

g1

√
a(a+x(y−x)) (6.9)

I = e
(x−y)2

2a

−√2F
(

x−y√
2
√

a

)
√

a − x
a+x(y−x)


and F(z) is the Dawson integral defined by F(z) = e−z2

∫ z

0
ey2

dy.

(ii.2) h = 1/4 and a 6= 0.

Here we have, apart from the two lines and one hyperbola, an additional invariant
hyperbola so we know that we have a Darboux first integral.

Table 115 – Invariant curves, cofactors, singularities and intersection points of family (F) when h = 1/4
and a 6= 0.

Inv. curves and cofactors Singularities Intersection points

J1 =−2
√

a+ x− y
J2 = 2

√
a+ x− y

J3 = a− x2 + xy
J4 = a+ xy

α1 =−
√

a
2 −

x
4 +

y
4

α2 =
√

a
2 −

x
4 +

y
4

α3 =− x
2 −

y
2

α4 =−3x
2 −

y
2

P1 =
(
−
√

a,
√

a
)

P2 =
(
−
√

a
2 , 3

√
a

2

)
P3 =

(√
a

2 ,−3
√

a
2

)
P4 =

(√
a,−
√

a
)

P∞
1 = [0 : 1 : 0]

P∞
2 = [1 : 1 : 0]

P∞
3 = [1 : 0 : 0]

For a < 0 we have

©,©,©,©;N,N,S

For a > 0 we have

n,s,s,n;N,N,S

J1∩ J2 = P∞
2 simple

J1∩ J3 =

{
P∞

2 simple
P3 simple

J1∩ J4 = P4 double
J1∩L∞ = P∞

2 simple

J2∩ J3 =

{
P∞

2 simple
P2 simple

J2∩ J4 = P1 double
J2∩L∞ = P∞

2 simple
J3∩ J4 = P∞

1 quadruple

J3∩L∞ =

{
P∞

1 simple
P∞

2 simple

J4∩L∞ =

{
P∞

1 simple
P∞

3 simple

Source: Elaborated by the author.
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Table 116 – Divisor and zero-cycles of family (F) when h = 1/4 and a 6= 0.

Divisor and zero-cycles Degree

ICD =

{
JC

1 + JC
2 + J3 + J4 +L∞ if a < 0

J1 + J2 + J3 + J4 +L∞ if a > 0

M0CS =

{
PC

1 +PC
2 +PC

3 +PC
4 +P∞

1 +P∞
2 +P∞

3 if a < 0
P1 +P2 +P3 +P4 +P∞

1 +P∞
2 +P∞

3 if a > 0

T = ZJ1J2J3J4 = 0

M0CT =

{
2PC

1 +2PC
2 +2PC

3 +2PC
4 +3P∞

1 +4P∞
2 +2P∞

3 if a < 0
2P1 +2P2 +2P3 +2P4 +3P∞

1 +4P∞
2 +2P∞

3 if a > 0

5
5

7
7

7

17
17

Source: Elaborated by the author.

where the total curve T has

1) only one distinct tangents at P1 (and P4), but they are double;

2) only two distinct tangents at P∞
1 , but one of them is double and

3) four distinct tangents at P∞
2 .

Table 117 – First integral and integrating factor of family (F) when h = 1/4 and a 6= 0.

First integral Integrating Factor

General I = Jλ1
1 Jλ1

2 J2λ1
3 J−λ1

4 R = Jλ1
1 Jλ1

2 J1+2λ1
3 J

− 3
2−λ1

4
Simple

example I =
J1J2J2

3
J4

R =
1

J1J2J3J
1
2
4

Source: Elaborated by the author.

Observation 113. Consider F 1
(c1,c2)

= c1J1J2J2
3 − c2J4 = 0, degF 1

(c1,c2)
= 6. The

remarkable values of F 1
(c1,c2)

are [1 :−4a2] and [1 : 0] for which we have

F 1
(1,−4a2) =−

(
a(y−3x)+ x(x− y)2)2

, F 1
(1,0) = J1J2J2

3 .

Therefore, J1,J2,J3 and J5 := a(y− 3x)+ x(x− y)2 are remarkable curves of I1,
[1 :−4a2] and [1 : 0] are the only two critical remarkable values of I1 and J3,J5 are
critical remarkable curves of I1. The singular points are P1,P4 for F 1

(1,−4a2) and
P2,P3 for F 1

(1,0).

Observation 114. J5 := a(y−3x)+x(x−y)2 is an invariant algebraic curve of degree
3 of family (F) when h = 1/4 and a 6= 0, with cofactor given by α5 =−3x

4 −
y
4 .

Observation 115. Note that the rational first integral I in Table 117 has the rational
integrating factor R = J3J5

J2
4

expressed by an invariant curve of degree higher than two.
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(ii.3) h =−1 and a 6= 0.

Under this condition the systems do not belong to family (F). Here we have four
invariant lines and one invariant hyperbola. Then, we have five invariant algebraic
curves and according to Jouanolou’s theorem the corresponding system has a rational
first integral. Considering the line at infinity Z = 0 the total multiplicity of the
invariant lines is five so this case was studied in (SCHLOMIUK; VULPE, 2008b).
We include this case as indicated in Observation 81.

Table 118 – Invariant curves, cofactors, singularities and intersection points of family (F) when h =−1
and a 6= 0.

Invariant curves and cofactors Singularities Intersection points

J1 =−i
√

a+ x− y
J2 = i

√
a+ x− y

J3 = 1− iy
2
√

a

J4 = 1+ iy
2
√

a
J5 = a− x2 + xy

α1 = i
√

a+ x− y
α2 =−i

√
a+ x− y

α3 = 2i
√

a− y
α4 =−2i

√
a− y

α5 = 2x−3y

P1 = (−i
√

a,−2i
√

a)
P2 = (i

√
a,2i
√

a)
P3 = (−3i

√
a,−2i

√
a)

P4 = (3i
√

a,2i
√

a)

P∞
1 = [0 : 1 : 0]

P∞
2 = [1 : 1 : 0]

P∞
3 = [1 : 0 : 0]

For a < 0 we have

n,n,s,s;S,N,N

For a > 0 we have

©,©,©,©;S,N,N

J1∩ J2 = P∞
2 simple

J1∩ J3 = P1 simple
J1∩ J4 = P4 simple

J1∩ J5 =

{
P∞

2 simple
P1 simple

J1∩L∞ = P∞
2 simple

J2∩ J3 = P3 simple
J2∩ J4 = P2 simple

J2∩ J5 =

{
P∞

2 simple
P2 simple

J2∩L∞ = P∞
2 simple

J3∩ J4 = P∞
1 simple

J3∩ J5 = P1 double
J3∩L∞ = P∞

3 simple
J4∩ J5 = P2 double
J4∩L∞ = P∞

3 simple

J5∩L∞ =

{
P∞

1 simple
P∞

2 simple
Source: Elaborated by the author.
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Table 119 – Divisor and zero-cycles of family (F) when h =−1 and a 6= 0.

Divisor and zero-cycles Degree

ICD =

{
J1 + J2 + J3 + J4 + J5 +L∞ if a < 0
JC

1 + JC
2 + JC

3 + JC
4 + J5 +L∞ if a > 0

M0CS =

{
P1 +P2 +P3 +P4 +P∞

1 +P∞
2 +P∞

3 if a < 0
PC

1 +PC
2 +PC

3 +PC
4 +P∞

1 +P∞
2 +P∞

3 if a > 0

T = ZJ1J2J3J4J5 = 0

M0CT =

{
3P1 +3P2 +2P3 +2P4 +2P∞

1 +4P∞
2 +3P∞

3 if a < 0
3PC

1 +3PC
2 +2PC

3 +2PC
4 +2P∞

1 +4P∞
2 +3P∞

3 if a > 0

6
6

7
7

7

19
19

Source: Elaborated by the author.

where the total curve T has

1) only two distinct tangents at P1 (and P2);

2) four distinct tangents at P∞
2

3) three distinct tangents at P∞
3 .

Table 120 – First integral and integrating factor of family (F) when h =−1 and a 6= 0.

First integral Integrating Factor

General I = Jλ1
1 Jλ2

2 J
λ2
2

3 J
λ1
2

4 J
−λ1

2 −
λ2
2

5 R = Jλ1
1 Jλ2

2 J
−1

2+
λ2
2

3 J
−1

2+
λ1
2

4 J
−1−λ1

2 −
λ2
2

5
Simple

example I =
J2

1 J4

J2
2 J3

R =
1

J1J2J3J4
Source: Elaborated by the author.

Observation 116. Consider F 1
(c1,c2)

= c1J2
1 J4− c2J2

2 J3 = 0, degF 1
(c1,c2)

= 3. The
remarkable value of F 1

(c1,c2)
are [1 : 0] and [0 : 1] for which we have

F 1
(1,0) = J2

1 J4, F 1
(0,1) = J2

2 J3.

Therefore, J1,J2,J3,J4 are remarkable curves of I , [1 : 0] and [0 : 1] are the only
two critical remarkable values of I and J1,J2 are critical remarkable curves. The
singular points are P1,P4 for F 1

(1,0) and P2,P3 for F 1
(0,1).

(ii.4) h =−1/2 and a 6= 0.

Under this condition the systems do not belong to family (F).

Here we have exactly the same results appearing in the generic case replacing
h =−1/2 however we can calculated the expression of the first integral, it is given
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by

I =

√
−i
√

2
√

a+ x− y
√

i
√

2
√

a+ x− y
(
a(5y−9x)+ y(x− y)2)

2(a+ x(y− x))

−3a log
(√
−i
√

2
√

a+ x− y
√

i
√

2
√

a+ x− y+ x− y
)
.

(6.10)

(ii.5) h =−1/3 and a 6= 0.

Under this condition the systems do not belong to family (F). Here we have exactly
the same results from the generic case replacing h=−1/3 however we can calculated
the expression of the first integral, it is given by

I =
9a2(5y−8x)+2a(4x+5y)(x− y)2 + y(x− y)4

3(a+ x(y− x))
. (6.11)

(ii.6) h = 1/3 and a 6= 0.

Under this condition the systems do not belong to family (F). Here we have two
invariant lines and one double hyperbola, which allow us to find an exponential
factor.

Table 121 – Invariant curves, exponential factor, cofactors, singularities and intersection points of family
(F) when h = 1/3 and a 6= 0.

Inv.curves/exp.fac. and cofactors Singularities Intersection points

J1 =−
√

3
√

a+ x− y
J2 =

√
3
√

a+ x− y
J3 = a− x2 + xy

E4 = e
ag1+x(g0+g1(y−x))

a+x(y−x)

α1 =−
√

a√
3
− x

3 +
y
3

α2 =
√

a√
3
− x

3 +
y
3

α3 =−2x
3 −

y
3

α4 =−g0
3

P1 =
(
−
√

a√
3
, 2
√

a√
3

)
P2 =

(√
a√
3
,−2

√
a√
3

)
P∞

1 = [0 : 1 : 0]
P∞

2 = [1 : 1 : 0]
P∞

3 = [1 : 0 : 0]

For a < 0 we have

©(2),©(2);N,N,S

For a > 0 we have

sn(2),sn(2);N,N,S

J1∩ J2 = P∞
2 simple

J1∩ J3 =

{
P∞

2 simple
P2 simple

J1∩L∞ = P∞
2 simple

J2∩ J3 =

{
P∞

2 simple
P1 simple

J2∩L∞ = P∞
2 simple

J3∩L∞ =

{
P∞

1 simple
P∞

2 simple

Source: Elaborated by the author.
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Table 122 – Divisor and zero-cycles of family (F) when h = 1/3 and a 6= 0.

Divisor and zero-cycles Degree

ICD =

{
JC

1 + JC
2 +2J3 +L∞ if a < 0

J1 + J2 +2J3 +L∞ if a > 0

M0CS =

{
2PC

1 +2PC
2 +P∞

1 +P∞
2 +P∞

3 if a < 0
2P1 +2P2 +P∞

1 +P∞
2 +P∞

3 if a > 0

T = ZJ1J2J2
3 = 0

M0CT =

{
3PC

1 +3PC
2 +3P∞

1 +5P∞
2 +P∞

3 if a < 0
3P1 +3P2 +3P∞

1 +5P∞
2 +P∞

3 if a > 0

5
5

7
7

7

15
15

Source: Elaborated by the author.

where the total curve T has

1) only two distinct tangents at P1 (and at P2), but one of them is double,

2) only four distinct tangents at P∞
2 , but one of them is double and

3) only two distinct tangents at P∞
1 , but one of them is double.

Table 123 – First integral and integrating factor of family (F) when h = 1/3 and a 6= 0.

First integral Integrating Factor

General I = Jλ1
1 J−λ1

2 J0
3 E
−2
√

3
√

aλ1
g0

4 R = J−1
1 J−1

2 J−2
3

Simple
example I1 = J1J−1

2

(
e

x
a+x(y−x)+1

)−2
√

3
√

a
R =

1
J1J2J2

3
Source: Elaborated by the author.

(ii.7) h = 1/2 and a 6= 0.

Under this condition the systems do not belong to family (F). Here we have three
invariant lines and two invariant hyperbolas. Then, we have five invariant algebraic
curves and according to Jouanolou’s theorem the corresponding system has a rational
first integral. Considering the line at infinity Z = 0 the total multiplicity of the
invariant lines is four so this case was studied in (SCHLOMIUK; VULPE, 2008c).
We include this case as indicated in Observation 81.
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Table 124 – Invariant curves, cofactors, singularities and intersection points of family (F) when h = 1/2
and a 6= 0.

Invariant curves and cofactors Singularities Intersection points

J1 =−
√

2
√

a− x+ y
J2 =

√
2
√

a− x+ y
J3 = x
J4 = a− x2 + xy
J5 = a+2xy

α1 =
√

a√
2
− x

2 +
y
2

α2 =−
√

a√
2
− x

2 +
y
2

α3 =− x
2 −

y
2

α4 =−x
α5 =−2x

P1 =
(√

a√
2
,−
√

a√
2

)
P2 =

(
−
√

a√
2
,
√

a√
2

)
P3 = (0,−

√
2
√

a)
P4 = (0,

√
2
√

a)

P∞
1 = [0 : 1 : 0]

P∞
2 = [1 : 1 : 0]

P∞
3 = [1 : 0 : 0]

For a < 0 we have

©,©,©,©;N,N,S

For a > 0 we have

n,n,s,s;N,N,S

J1∩ J2 = P∞
2 simple

J1∩ J3 = P4 simple

J1∩ J4 =

{
P∞

2 simple
P2 simple

J1∩ J5 = P2 double
J1∩L∞ = P∞

2 simple
J2∩ J3 = P3 simple

J2∩ J4 =

{
P∞

2 simple
P1 simple

J2∩ J5 = P1 double
J2∩L∞ = P∞

2 simple
J3∩ J4 = P∞

1 double
J3∩ J5 = P∞

1 double
J3∩L∞ = P∞

1 simple

J4∩ J5 =


P∞

1 double
P1 simple
P2 simple

J4∩L∞ =

{
P∞

1 simple
P∞

2 simple

J5∩L∞ =

{
P∞

1 simple
P∞

3 simple
Source: Elaborated by the author.

Table 125 – Divisor and zero-cycles of family (F) when h = 1/2 and a 6= 0.

Divisor and zero-cycles Degree

ICD =

{
JC

1 + JC
2 + J3 + J4 + J5 +L∞ if a < 0

J1 + J2 + J3 + J4 + J5 +L∞ if a > 0

M0CS =

{
PC

1 +PC
2 +PC

3 +PC
4 +P∞

1 +P∞
2 +P∞

3 if a < 0
P1 +P2 +P3 +P4 +P∞

1 +P∞
2 +P∞

3 if a > 0

T = ZJ1J2J3J4J5 = 0

M0CT =

{
3PC

1 +3PC
2 +2PC

3 +2PC
4 +4P∞

1 +4P∞
2 +2P∞

3 if a < 0
3P1 +3P2 +2P3 +2P4 +4P∞

1 +4P∞
2 +2P∞

3 if a > 0

6
6

7
7

8

20
20

Source: Elaborated by the author.

where the total curve T has

1) only two distinct tangents at P1 (and at P2), but one of them is double,

2) only two distinct tangents at P∞
1 , but one of them is triple and
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3) four distinct tangents at P∞
2 .

Table 126 – First integral and integrating factor of family (F) when h = 1/2 and a 6= 0.

First integral Integrating Factor

General I = Jλ1
1 Jλ1

2 J2λ1
3 Jλ4

4 J
−λ1−

λ4
2

5 R = Jλ1
1 Jλ1

2 J1+2λ1
3 J

− 3
2−λ1−

λ4
2

4
Simple

example I1 =
J1J2J2

3
J5

I2 =
J2

4
J5

R =
1

J1J2J3J4
Source: Elaborated by the author.

Observation 117. Consider F 1
(c1,c2)

= c1J1J2J2
3 − c2J5 = 0, degF 1

(c1,c2)
= 4. The

remarkable values of F 1
(c1,c2)

are [1 :−a] and [1 : 0] for which we have

F 1
(1,−a) = J2

4 , F 1
(1,0) = J1J2J3

3 .

Therefore, J1,J2,J3,J4 are remarkable curves of I1, [1 :−a] and [1 : 0] are the only
two critical remarkable values of I1 and J3,J4 are critical remarkable curves of I1.
The singular points are P1,P2 for F 1

(1,−a) and P3,P4 for F 1
(1,0).

Considering the first integral I2 with its associated curve F 2
(c1,c2)

= c1J2
4 − c2J5

with degF 2
(c1,c2)

= 4. We have the remarkable values [1 : a] and [1 : 0] and the same
remarkable curves J1,J2,J3,J4. However, the singular point are P1,P2 for F 2

(1,0) and
P3,P4 for F 2

(1,a).

(ii.8) h = 1 and a 6= 0.

Under this condition the systems do not belong to family (F). Here we have five
invariant lines and a family of invariant hyperbolas a+ry−x2+xy, where r 6=−

√
a.

Therefore, these systems are algebraically integrable. Considering the line at infinity
Z = 0 the total multiplicity of the invariant lines is six so this case was studied in
(SCHLOMIUK; VULPE, 2008b). We include this case as indicated in Observation
81.
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Table 127 – Invariant curves, cofactors, singularities and intersection points of family (F) when h = 1 and
a 6= 0.

Invariant curves and cofactors Singularities Intersection points

J1 = y
J2 = 1− x√

a
J3 = 1+ x√

a
J4 = 1− x√

a +
y√
a

J5 = 1+ x√
a −

y√
a

J6,r = a+ ry− x2 + xy

α1 =−2x+ y
α2 =−

√
a− x

α3 =
√

a− x
α4 =−

√
a− x+ y

α5 =
√

a− x+ y
α6 =−2x+ y

P1 = (−
√

a,0)
P2 = (−

√
a,−2

√
a)

P3 = (
√

a,0)
P4 = (

√
a,2
√

a)

P∞
1 = [0 : 1 : 0]

P∞
2 = [1 : 1 : 0]

P∞
3 = [1 : 0 : 0]

For a < 0 we have

©,©,©,©;N,N,S

For a > 0 we have

n,s,n,s;N,N,S

J1∩ J2 = P3 simple
J1∩ J3 = P1 simple
J1∩ J4 = P3 simple
J1∩ J5 = P1 simple

J1∩ J6,r =

{
P1 simple
P2 simple

J1∩L∞ = P∞
3 simple

J2∩ J3 = P∞
1 simple

J2∩ J4 = P3 simple
J2∩ J5 = P4 simple

J2∩ J6,r =

{
P∞

1 simple
P3 simple

J2∩L∞ = P∞
1 simple

J3∩ J4 = P2 simple
J3∩ J5 = P1 simple

J3∩ J6,r =

{
P∞

1 simple
P1 simple

J3∩L∞ = P∞
1 simple

J4∩ J5 = P∞
2 simple

J4∩ J6,r =

{
P∞

2 simple
P3 simple

J4∩L∞ = P∞
2 simple

J5∩ J6,r =

{
P∞

2 simple
P1 simple

J5∩L∞ = P∞
2 simple

J6,r∩L∞ =

{
P∞

1 simple
P∞

2 simple
Source: Elaborated by the author.

Table 128 – Divisor and zero-cycles of family (F) when h = 1 and a 6= 0.

Divisor and zero-cycles Degree

ILD =

{
J1 + JC

2 + JC
3 + JC

4 + JC
5 +L∞ if a < 0

J1 + J2 + J3 + J4 + J5 +L∞ if a > 0

M0CS =

{
PC

1 +PC
2 +PC

3 +PC
4 +P∞

1 +P∞
2 +P∞

3 if a < 0
P1 +P2 +P3 +P4 +P∞

1 +P∞
2 +P∞

3 if a > 0

T = ZJ1J2J3J4J5 = 0

M0CT =

{
3PC

1 +2PC
2 +3PC

3 +2PC
4 +3P∞

1 +3P∞
2 +2P∞

3 if a < 0
3P1 +2P2 +3P3 +2P4 +3P∞

1 +3P∞
2 +2P∞

3 if a > 0

6
6

7
7

6

18
18

Source: Elaborated by the author.
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where the total curve T has three distinct tangents at P1, P3, P∞
1 and P∞

2 .

Table 129 – First integral and integrating factor of family (F) when h = 1 and a 6= 0.

First integral Integrating Factor

General I = Jλ1
1 Jλ2

2 Jλ3
3 Jλ3

4 Jλ2
5 J−λ1−λ2−λ3

6,r R = Jλ1
1 Jλ2

2 Jλ3
3 Jλ3

4 Jλ2
5 J−2−λ1−λ2−λ3

6,r
Simple

example I1 =
J1

J2J5
I2 =

J1

J3J4
R =

1
J2J3J4J5

Source: Elaborated by the author.

Observation 118. Consider F 1
(c1,c2)

= c1J1− c2J2J5 = 0, degF 1
(c1,c2)

= 2. The re-
markable values of F 1

(c1,c2)
are
[
−
√

a/2 : 1
]

and [0 : 1] for which we have

F 1
(−
√

a/2,1) =
√

a
2 J3J4, F 1

(0,1) = J2J5.

Therefore, J2,J3,J4,J5 are remarkable curves of I1. The singular points are P2 for
F 1

(−
√

a/2,1) and P4 for F 1
(0,1).

Considering the first integral I2 with its associated curve F 2
(c1,c2)

= c1J1−c2J3J4 we
have the remarkable values

[√
a/2 : 1

]
, [0 : 1] and the remarkable curves J2,J3,J4,J5.

The singular point are P2 for F 2
(0,1) and P4 for F 2

(
√

a/2,1).

(ii.9) a = 0 and h 6= 0,±1.

Under this condition, systems (F) do not belong to QSH. The affine invariant lines
are x = 0, y = 0 that are both simple and x− y = 0 which is double so we get an
exponential factor. Considering the line at infinity Z = 0 the total multiplicity of the
invariant lines is five so this case was studied in (SCHLOMIUK; VULPE, 2008b).
We include this case as indicated in Observation 81.

Table 130 – Invariant curves, exponential factor, cofactors, singularities and intersection points of family
(F) when a = 0 and h 6= 0,±1.

Inv.curves/exp.fac. and cofactors Singularities Intersection points
J1 = y
J2 = x
J3 = x− y

E4 = e
g0+g1x−g1y

x−y

α1 = (−1−h)x+hy
α2 =−hx+(−1+h)y
α3 =−hx+hy
α4 = g0h

P1 = (0,0)

P∞
1 = [0 : 1 : 0]

P∞
2 = [1 : 1 : 0]

P∞
3 = [1 : 0 : 0]

phpphp(4);S,N,N if h < 0
hpphpp(4);N,N,S if h > 0

J1∩ J2 = P1 simple
J1∩ J3 = P1 simple
J1∩L∞ = P∞

3 simple
J2∩ J3 = P1 simple
J2∩L∞ = P∞

1 simple
J3∩L∞ = P∞

2 simple

Source: Elaborated by the author.
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Table 131 – Divisor and zero-cycles of family (F) when a = 0 and h 6= 0,±1.

Divisor and zero-cycles Degree
ICD = J1 + J2 +2J3 +L∞

M0CS = 4P1 +P∞
1 +P∞

2 +P∞
3

T = ZJ1J2J2
3 = 0.

M0CT = 4P1 +2P∞
1 +3P∞

2 +2P∞
3

5

7

5

11
Source: Elaborated by the author.

where the total curve T has

1) only three distinct tangents at P1, but one of them is double and

2) only two distinct tangents at P∞
2 , but one of them is double.

Table 132 – First integral and integrating factor of family (F) when a = 0 and h 6= 0,±1.

First integral Integrating Factor

General I = Jλ1
1 J−λ1

2 J
−λ1

h
3 E0

4 R = Jλ1
1 J−2−λ1

2 J
−1−h−λ1

h
3 E0

4
Simple

example I = Jh
1 J−h

2 J−1
3 R =

1
J1J2J3

Source: Elaborated by the author.

(ii.10) a = 0 and h =−1.

Under this condition the system does not belong to family (F). The affine invariant
lines are x = 0 that is simple and y = 0, x− y = 0 that are both double so we get
two exponential factors associated to them. Here we also have a family of invariant
hyperbolas rx+xy−y2 = 0, where r ∈R\{0}. Therefore, this system is algebraically
integrable. Considering the line at infinity Z = 0 the total multiplicity of the invariant
lines is six so this case was studied in (SCHLOMIUK; VULPE, 2008b). We include
this case as indicated in Observation 81.
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Table 133 – Invariant curves, exponential factors, cofactors, singularities and intersection points of family
(F) when a = 0 and h =−1.

Inv.curves/exp.fac. and cofactors Singularities Intersection points
J1 = y
J2 = x
J3 = x− y
J4,m = rx+ xy− y2

E5 = e
g0+g1y

y

E6 = e
h0+h1(x−y)

x−y

α1 =−y
α2 = x−2y
α3 = x− y
α4 = x−2y
α5 = g0
α6 =−h0

P1 = (0,0)

P∞
1 = [0 : 1 : 0]

P∞
2 = [1 : 1 : 0]

P∞
3 = [1 : 0 : 0]

phpphp(4);S,N,N

J1∩ J2 = P1 simple
J1∩ J3 = P1 simple

J1∩ J4,m =

{
P∞

3 simple
P1 simple

J1∩L∞ = P∞
3 simple

J2∩ J3 = P1 simple
J2∩ J4,m = P1 double
J2∩L∞ = P∞

1 simple

J3∩ J4,m =

{
P∞

2 simple
P1 simple

J3∩L∞ = P∞
2 simple

J4,m∩L∞ =

{
P∞

2 simple
P∞

3 simple

Source: Elaborated by the author.

Table 134 – Divisor and zero-cycles of family (F) when a = 0 and h =−1.

Divisor and zero-cycles Degree
ILD = 2J1 + J2 +2J3 +L∞

M0CS = 4P1 +P∞
1 +P∞

2 +P∞
3

T = ZJ2
1J2J2

3 = 0.

M0CT = 5P1 +2P∞
1 +3P∞

2 +3P∞
3

6

7

6

13
Source: Elaborated by the author.

where the total curve T has

1) only three distinct tangents at P1, but two of them are double;

2) only two distinct tangents at P∞
2 , but one of them is double and

2) only two distinct tangents at P∞
3 , but one of them is double.

Table 135 – First integral and integrating factor of family (F) when a = 0 and h =−1.

First integral Integrating Factor

General I = Jλ3
1 Jλ2

2 Jλ3
3 J−λ2−λ3

4,m Eλ5
5 E

g0λ5
h0

6 R = Jλ3
1 Jλ2

2 Jλ3
3 J−2−λ2−λ3

4,m Eλ5
5 E

g0λ5
h0

6
Simple

example I1 =
J2

J1J3
R =

1
J1J2J3

Source: Elaborated by the author.
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Observation 119. Consider F 1
(c1,c2)

= c1J2− c2J1J3 = 0, degF 1
(c1,c2)

= 2. The re-
markable value of F 1

(c1,c2)
is [0 : 1] for which we have

F 1
(0,1) =−J1J3.

Therefore, J1, J3 are remarkable curves of I1. The singular point is P1 for F 1
(0,1).

(ii.11) a = h = 0.

Under this condition, systems (F) do not belong to QSH. The system here is ẋ =

−xy, ẏ =−xy. This is a degenerate system where the lines x = 0 and y = 0 are filled
up with singularities.

Table 136 – Singularities of reduced system when a = h = 0 for family (F).

Singularities
P∞

1 = [1 : 1 : 0]

(	[×]; /0);N,(	[×]; /0, /0)
Source: Elaborated by the author.

Table 137 – First integral and integrating factor for the reduced system of family (F) when a = h = 0.

First integral Integrating Factor
General I = x− y R = 1
Simple

example I = x− y R = 1

Source: Elaborated by the author.

Note that I and I are also first integrals for family (F) when a = h = 0.

(ii.12) a = 0 and h = 1.

Under this condition the system does not belong to family (F). The affine invariant
lines are y = 0 that is simple and x = 0, x− y = 0 that are both double so we get
two exponential factors associated to them. Here we also have a family of invariant
hyperbolas rx−x2+xy = 0, where r ∈R\{0}. Therefore, this system is algebraically
integrable. Considering the line at infinity Z = 0 the total multiplicity of the invariant
lines is six so this case was studied in (SCHLOMIUK; VULPE, 2008b). We include
this case as indicated in Observation 81.
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Table 138 – Invariant curves, exponential factors, cofactors, singularities and intersection points of family
(F) when a = 0 and h = 1.

Inv.curves/exp.fac. and cofactors Singularities Intersection points
J1 = y
J2 = x
J3 = x− y
J4,m = rx− x2 + xy

E5 = e
g0+g1x

x

E6 = e
h0+h1(x−y)

x−y

α1 =−2x+ y
α2 =−x
α3 =−x+ y
α4 =−2x+ y
α5 = g0
α6 = h0

P1 = (0,0)

P∞
1 = [0 : 1 : 0]

P∞
2 = [1 : 1 : 0]

P∞
3 = [1 : 0 : 0]

hpphpp(4);N,N,S

J1∩ J2 = P1 simple
J1∩ J3 = P1 simple
J1∩ J4,m = P1 double
J1∩L∞ = P∞

3 simple
J2∩ J3 = P1 simple

J2∩ J4,m =

{
P∞

1 simple
P1 simple

J2∩L∞ = P∞
1 simple

J3∩ J4,m =

{
P∞

2 simple
P1 simple

J3∩L∞ = P∞
2 simple

J4,m∩L∞ =

{
P∞

1 simple
P∞

2 simple

Source: Elaborated by the author.

Table 139 – Divisor and zero-cycles of family (F) when a = 0 and h = 1.

Divisor and zero-cycles Degree
ILD = J1 +2J2 +2J3 +L∞

M0CS = 4P1 +P∞
1 +P∞

2 +P∞
3

T = ZJ1J2
2J2

3 = 0.

M0CT = 5P1 +3P∞
1 +3P∞

2 +2P∞
3

6

7

6

13
Source: Elaborated by the author.

where the total curve T has

1) only three distinct tangents at P1, but two of them are double;

2) only two distinct tangents at P∞
1 , but one of them is double and

2) only two distinct tangents at P∞
2 , but one of them is double.

Table 140 – First integral and integrating factor of family (F) when a = 0 and h = 1.

First integral Integrating Factor

General I = Jλ1
1 Jλ3

2 Jλ3
3 J−λ1−λ3

4,m Eλ5
5 E

− g0λ5
h0

6 R = Jλ1
1 Jλ3

2 Jλ3
3 J−2−λ1−λ3

4,m Eλ5
5 E

− g0λ5
h0

6
Simple

example I1 =
J1

J2J3
R =

1
J1J2J3

Source: Elaborated by the author.
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Observation 120. Although the three lines J1,J2,J3 intersect at the origin we still
have J1J2J3 as an inverse integrating factor as in C-K Theorem.

Observation 121. Consider F 1
(c1,c2)

= c1J1− c2J2J3 = 0, degF 1
(c1,c2)

= 2. The re-
markable value of F 1

(c1,c2)
is [0 : 1] for which we have

F 1
(0,1) =−J2J3.

Therefore, J2, J3 are remarkable curves of I1. The singular point is P1 for F 1
(0,1).

We sum up the topological, dynamical and algebraic geometric features of family (F) and
we also confront our results with previous results in the literature in the following proposition.

Proposition 122. (a) For the family (F) we have nine distinct configurations C(F)
1 −C(F)

9 of
invariant hyperbolas and lines (see Figure 10 for the complete bifurcation diagram of
configurations of such family). The bifurcation set of configurations in the full parameter
space is ah(h±1)(2h−1)(3h−1)(4h−1) = 0. Its complement is a union of 14 disjoint
sets. Oh h = 0 and a 6= 0 we have just one invariant hyperbola. On h = 1/4 we have an
additional invariant hyperbola. For the limiting set of the parameter space of the considered
family we have the following: On h =−1 and a 6= 0 we have four invariant lines and one
invariant hyperbola. On h = −1/2 or h = −1/3 and a 6= 0 we have two invariant lines
and one invariant hyperbola. On h = 1/3 and a 6= 0 we have two invariant lines and one
double hyperbola. On h = 1/2 and a 6= 0 we have three invariant lines and two invariant
hyperbolas. On h = 1 and a 6= 0 we have five invariant lines and a family of invariant
hyperbolas. On a = 0 and h 6=±1,0 the invariant hyperbola becomes reducible producing
the lines x = 0 and x− y = 0. On a = 0 and h = ±1 we have three invariant lines and a
family of invariant hyperbolas. On a = h = 0 the lines x = 0 and y = 0 are filled up with
singularities.

(b) The family (F) is Liouvillian integrable if a(h±1)(2h±1)(3h±1)(4h−1) 6= 0. When
h = 1/4 the family (F) admits a rational first integral and the plane is foliated into 6th
algebraic curves. The remarkable curves are J1,J2,J3 and J5 corresponding to this case.
The systems in family (F) have a polynomial inverse integrating factor when h = 1

1+2m

where m ∈ N.

(c) For the family (F) we have three topologically distinct phase portraits P(F)
1 −P(F)

3 . The
topological bifurcation diagram of family (F) is done in Figure 11. The bifurcation set is
ah = 0 and the half lines h = 1 with a < 0, h = 1/2 with a > 0 and h = 1/3 for a > 0. The
bifurcation set of singularities are the lines a = 0, h = 0 and the half line h = 1/3 with
a > 0. The half lines h = 1 with a < 0 and h = 1/2 with a > 0 are bifurcations of saddle
to saddle connection. The phase portraits P(F)

3 is not topologically equivalent with anyone
of the phase portraits in (CAIRÓ; FEIX; LLIBRE, 1999). We also have one phase portraits
in a limit case of family (F) that does not appear in (LLIBRE; YU, 2018).
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Proof of Proposition 122:

(a) We have the following types of divisors and zero-cycles of the total invariant curve T for
the configurations of family (F) :

Table 141 – Configurations for family (F).

Configurations Divisors and zero-cycles of the total inv. curve T

C(F)
1

ICD = J1 + J2 + J3 +L∞

M0CT = 2P1 +2P2 +P3 +P4 +2P∞
1 +4P∞

2 +P∞
3

C(F)
2

ICD = JC
1 + JC

2 + J3 +L∞

M0CT = 2PC
1 +2PC

2 +PC
3 +PC

4 +2P∞
1 +4P∞

2 +P∞
3

C(F)
3

ICD = JC
1 + JC

2 + J3 +L∞

M0CT = 2PC
1 +2PC

2 +PC
3 +PC

4 +2P∞
1 +4P∞

2 +P∞
3

C(F)
4

ICD = J1 + J2 + J3 +L∞

M0CT = 2P1 +2P2 +P3 +P4 +2P∞
1 +4P∞

2 +P∞
3

C(F)
5

ICD = J1 + J2 + J3 + J4 +L∞

M0CT = 2P1 +2P2 +P3 +P4 +2P∞
1 +4P∞

2 +P∞
3

C(F)
6

ICD = J1 +3L∞

M0CT = 2P∞
1 +2P∞

2 +P∞
3

C(F)
7

ICD = J1 +3L∞

M0CT = 2P∞
1 +2P∞

2 +P∞
3

C(F)
8

ICD = JC
1 + JC

2 + J3 + J4 +L∞

M0CT = 2PC
1 +2PC

2 +2PC
3 +2PC

4 +3P∞
1 +4P∞

2 +2P∞
3

C(F)
9

ICD = J1 + J2 + J3 + J4 +L∞

M0CT = 2P1 +2P2 +2P3 +2P4 +3P∞
1 +4P∞

2 +2P∞
3

Source: Elaborated by the author.

Although C(F)
1 , C(F)

4 and C(F)
5 admit the same type of divisors and zero-cycles we can see

they are different because of the position of the branches of the hyperbola and also because
of the location of the singular points on the invariant lines. We also have that C(F)

2 , C(F)
3

and C(F)
6 , C(F)

7 are distinct because of the position of the branches of the hyperbola.

Therefore, the configurations C(F)
1 up to C(F)

9 are all distinct. For the limit cases of family
(F) we have the following configurations:
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Table 142 – Configurations for the limit cases of family (F).

Configurations Divisors and zero-cycles of the total inv. curve T

c1
ICD = JC

1 + JC
2 + J3 + J4 + J5 +L∞

M0CT = 3PC
1 +3PC

2 +2PC
3 +2PC

4 +4P∞
1 +4P∞

2 +2P∞
3

c2
ICD = J1 + J2 + J3 + J4 + J5 +L∞

M0CT = 3P1 +3P2 +2P3 +2P4 +4P∞
1 +4P∞

2 +2P∞
3

c3
ICD = JC

1 + JC
2 +2J3 ++L∞

M0CT = 3PC
1 +3PC

2 +3P∞
1 +5P∞

2 +P∞
3

c4
ICD = J1 + J2 +2J3 +L∞

M0CT = 3P1 +3P2 +3P∞
1 +5P∞

2 +P∞
3

c5
ILD = J1 + JC

2 + JC
3 + JC

4 + JC
5 +L∞

M0CT = 3PC
1 +2PC

2 +3PC
3 +2PC

4 +3P∞
1 +3P∞

2 +2P∞
3

c6
ILD = J1 + J2 + J3 + J4 + J5 +L∞

M0CT = 3P1 +2P2 +3P3 +2P4 +3P∞
1 +3P∞

2 +2P∞
3

c7
ICD = J1 + J2 + J3 + J4 + J5 +L∞

M0CT = 3P1 +3P2 +2P3 +2P4 +2P∞
1 +4P∞

2 +3P∞
3

c8
ICD = JC

1 + JC
2 + JC

3 + JC
4 + J5 +L∞

M0CT = 3PC
1 +3PC

2 +2PC
3 +2PC

4 +2P∞
1 +4P∞

2 +3P∞
3

c9
ICD = J1 + J2 +2J3 +L∞

M0CT = 4P1 +2P∞
1 +3P∞

2 +2P∞
3

c10
ICD = J1 +2J2 +2J3 +L∞

M0CT = 5P1 +3P∞
1 +3P∞

2 +2P∞
3

c11
ICD = 2J1 + J2 +2J3 +L∞

M0CT = 5P1 +2P∞
1 +3P∞

2 +3P∞
3

c12
ICD = L∞

M0CT = P∞
1

Source: Elaborated by the author.

The other statements in (a) follows from the study done previously.

(b) The part about the integrability of statement (b), the expression for the integrating factor
and the invariant curves used below follows from the tables previously presented. The
computations for the remarkable curves when h = 1/4 were done in Remark 113. Let us
show when the family (F) admit a polynomial inverse integrating factor using invariant
algebraic curves of degree at most two.

For the generic case ah(h− 1/4)(h± 1)(2h± 1)(3h± 1) 6= 0 we have the integrating
factor

R = J
h−1
2h

1 J
h−1
2h

2 J−2
3 .

In order to R−1 be polynomial we must have that h−1
2h = −m, m ∈ N. Then, h = 1

1+2m

where m ∈ N. Therefore, R−1 is polynomial when h = 1
1+2m for m ∈ N.

(c) We have:
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Table 143 – Phase portraits for family (F).

Phase Portraits Sing. at ∞ Finite sing. Separatrix connections

P(F)
1 (S,N,N) (n,n,s,s) 4SC f

f 6SC∞
f 0SC∞

∞

P(F)
2

(N,N,S)
((2

1)N,N,(2
1)S)

((2
1)S,N,(2

1)N)

(©,©,©,©)
/0

/0

0SC f
f 0SC∞

f 2SC∞
∞

P(F)
3 (N,N,S) (s,s,n,n) 2SC f

f 8SC∞
f 0SC∞

∞

Source: Elaborated by the author.

Therefore, we have three distinct phase portraits for systems (F). For the limit cases of
family (F) we have the following phase portraits:

Table 144 – Phase portraits for the limit cases of family (F).

Phase Portraits Sing. at ∞ Finite sing. Separatrix connections

P(F)
1 (S,N,N) (n,n,s,s) 4SC f

f 6SC∞
f 0SC∞

∞

P(F)
2 (N,N,S) (©,©,©,©) 0SC f

f 0SC∞
f 2SC∞

∞

p1 (N,N,S) (n,n,s,s) 3SC f
f 6SC∞

f 0SC∞
∞

p2 (N,N,S) (sn(2),sn(2)) 0SC f
f 8SC∞

f 0SC∞
∞

p3 (N,N,S) (©,©,©,©) 0SC f
f 0SC∞

f 1SC∞
∞

p4
(S,N,N)
(N,N,S)

phpphp(4)
hpphpp(4)

0SC f
f 6SC∞

f 0SC∞
∞

p5 (N,(	[×]; /0, /0)) (	[×]; /0) 0SC f
f 0SC∞

f 0SC∞
∞

Source: Elaborated by the author.
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Table 145 – Phase portraits in in (CAIRÓ; FEIX; LLIBRE, 1999) that admit 3 singular points at infinity
with the type (N,N,S), and it has either 0, 1, 2 or 4 real singular points in the finite region.

Phase Portrait Sing. at ∞ Real finite sing. Separatrix connections

(20) (N,N,S) /0 0SC f
f 0SC∞

f 2SC∞
∞

(42) (N,N,S) /0 0SC f
f 0SC∞

f 1SC∞
∞

(59) (N,N,S) /0 0SC f
f 0SC∞

f 2SC∞
∞

(21) (N,N,S) cp 0SC f
f 2SC∞

f 2SC∞
∞

(43) (N,S,N) cp 0SC f
f 2SC∞

f 1SC∞
∞

(57) (N,N,S) pphpph 0SC f
f 6SC∞

f 0SC∞
∞

(22) (N,N,S) (s,c) 1SC f
f 2SC∞

f 2SC∞
∞

(23) (N,N,S) (s,c) 0SC f
f 4SC∞

f 1SC∞
∞

(28) (N,N,S) (s,c) 0SC f
f 4SC∞

f 0SC∞
∞

(44) (N,N,S) (s,c) 1SC f
f 2SC∞

f 1SC∞
∞

(45) (N,N,S) (es,s) 2SC f
f 4SC∞

f 0SC∞
∞

(58) (N,N,S) (sn,sn) 1SC f
f 6SC∞

f 0SC∞
∞

(77) (N,N,S) (sn,sn) 0SC f
f 8SC∞

f 0SC∞
∞

(102) (N,N,S) (s,es) 2SC f
f 6SC∞

f 0SC∞
∞

(35) (N,N,S) (n,s,s,n) 4SC f
f 6SC∞

f 0SC∞
∞

(115) (N,N,S) (n,s,s,n) 3SC f
f 6SC∞

f 0SC∞
∞

Source: Elaborated by the author.

We recall that in the generic case ah(4h− 1)(h± 1)(2h± 1)(3h± 1) 6= 0 the inverse
integrating factor R−1 is polynomial if h = 1

1+2m where m ∈ N, according to the proof
done in (b). Therefore, the phase portraits for these cases should appear in (CAIRÓ; FEIX;
LLIBRE, 1999). However, we could not find any phase portrait topologically equivalent
with P(F)

3 .
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Table 146 – Phase portraits in (LLIBRE; YU, 2018) that admit 3 singular points at infinity with the type
(N,N,S), and it has either 0,1, 2 or 4 real singular points in the finite region.

Phase Portraits Sing. at ∞ Real finite sing. Separatrix connections

R01,Ω6 (N,S,N) /0 0SC f
f 0SC∞

f 1SC∞
∞

L11,L12 (N,S,N) cp 0SC f
f 2SC∞

f 1SC∞
∞

P2 (N,S,N) pphpph 0SC f
f 6SC∞

f 0SC∞
∞

L31,L32 (N,S,N) (s,es) 2SC f
f 6SC∞

f 2SC∞
∞

L33 (N,S,N) (c,es) 1SC f
f 4SC∞

f 1SC∞
∞

R1,R2 (N,S,N) (s,c) 1SC f
f 2SC∞

f 1SC∞
∞

R3,Ω5 (N,S,N) (c,c) 2SC f
f 0SC∞

f 3SC∞
∞

R5 (N,S,N) (s,n,n,s) 4SC f
f 6SC∞

f 0SC∞
∞

R8,Ω1 (N,S,N) (s,n,n,s) 4SC f
f 6SC∞

f 0SC∞
∞

Source: Elaborated by the author.

Consider the phase portrait p2 appearing in the limit case h = 1/3 of family (F). When
h = 1/3 we have two invariant lines and one invariant hyperbola so the phase portraits
of this case should appear in (LLIBRE; YU, 2018). However we did not find any phase
portrait topologically equivalent with p2. Note that P(F)

2
∼=top P(B)

3 , P(F)
3
∼=top P(B)

1 and
p1 ∼=top P(C)

4 are also missing and they were listed in the geometric study of families (B)
and (C).

�
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Figure 10 – Bifurcation diagram of configurations for family (F).
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Figure 11 – Topological bifurcation diagram for family (F).
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6.1.5 Geometric Analysis of Family (G)

Consider the family

(G)

{
ẋ = a− x2

3 −
2xy
3

ẏ = 4a+3v2− 4xy
3 + y2

3 ,

where av 6= 0.

This is a two parameter family depending a and v such that av 6= 0 but for a complete
understanding of the bifurcation diagram of the systems in the full family defined by the equations
(G) we study here also the limit cases av = 0 where the equations are still defined.

We display below the full geometric analysis of the systems in this family, which is
endowed with at least three invariant algebraic curves. In the generic case

av(a+ v2)(a+3v2/4)(a−3v2)(a+8v2/9) 6= 0

the systems have two invariant lines J1 and J2 and two invariant hyperbolas J3 and J4 with
cofactors αi, 1≤ i≤ 4 given by

J1 =−3i
√

a+ v2− x+ y, α1 = i
√

a+ v2− x
3 +

y
3 ,

J2 = 3i
√

a+ v2− x+ y, α2 =−i
√

a+ v2− x
3 +

y
3 ,

J3 =−3a+3ivx− x2 + xy, α3 =−iv− 2x
3 −

y
3 ,

J4 =−3a−3ivx− x2 + xy, α4 = iv− 2x
3 −

y
3 .

Then according to Darboux’ theorem we must have a Darboux first integral. We note that
when a = −v2 the two lines coincide and we get a double line. We inquire when we could
have an additional line. Calculations yield that this happens when (a+ 3v2/4) = 0. We also
inquire when we could have an additional hyperbola. Calculations yield that this happens when
(a− 3v2)(a+ 8v2/9) = 0. The multiplicities of each invariant line and invariant hyperbola
appearing in the divisor ICD of invariant algebraic curves were calculated by using the 1st
extactic polynomial for the lines and the 2nd extactic polynomial for the hyperbola.

(i) The generic case: av(a+ v2)(a+3v2/4)(a−3v2)(a+8v2/9) 6= 0.
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Table 147 – Invariant curves, cofactors, singularities and intersection points of family (G) for the generic
case.

Invariant curves and cofactors Singularities Intersection points

J1 =−3i
√

a+ v2− x+ y
J2 = 3i

√
a+ v2− x+ y

J3 =−3a+3ivx− x2 + xy
J4 =−3a−3ivx− x2 + xy

α1 = i
√

a+ v2− x
3 +

y
3

α2 = i
√

a+ v2− x
3 +

y
3

α3 =−iv− 2x
3 −

y
3

α4 = iv− 2x
3 −

y
3

P1 =(−i(
√

a+v2−v),i(2
√

a+v2+v))
P2 =(−i(

√
a+v2+v),−i(v−2

√
a+v2))

P3 =(i(
√

a+v2+v),i(v−2
√

a+v2))
P4 =(i(

√
a+v2−v),−i(2

√
a+v2+v))

P∞
1 = [0 : 1 : 0]

P∞
2 = [1 : 1 : 0]

P∞
3 = [1 : 0 : 0]

©,©,©,©;N,N,S

J1∩ J2 = P∞
2 simple

J1∩ J3 =

{
P∞

2 simple
P1 simple

J1∩ J4 =

{
P∞

2 simple
P2 simple

J1∩L∞ = P∞
2 simple

J2∩ J3 =

{
P∞

2 simple
P3 simple

J2∩ J4 =

{
P∞

2 simple
P4 simple

J2∩L∞ = P∞
2 simple

J3∩ J4 =

{
P∞

1 triple
P∞

2 simple

J3∩L∞ =

{
P∞

1 simple
P∞

2 simple

J4∩L∞ =

{
P∞

1 simple
P∞

2 simple
Source: Elaborated by the author.

Table 148 – Divisor and zero-cycles of family (G) for the generic case.

Divisor and zero-cycles Degree

ICD =

{
J1 + J2 + JC

3 + JC
4 +L∞ if a+ v2 < 0

JC
1 + JC

2 + JC
3 + JC

4 +L∞ if a+ v2 > 0

M0CS = PC
1 +PC

2 +PC
3 +PC

4 +P∞
1 +P∞

2 +P∞
3

T = ZJ1J2J3J4 = 0

M0CT = 2PC
1 +2PC

2 +2PC
3 +2PC

4 +3P∞
1 +5P∞

2 +P∞
3

5
5

7

7

17
Source: Elaborated by the author.

where the total curve T has

1) only two distinct tangents at P∞
1 , but one of them is double and

2) five distinct tangents at P∞
2 .
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Table 149 – First integral and integrating factor of family (G) for the generic case.

First integral Integrating Factor

General I = Jλ1
1 J−λ1

2 J
λ1
√

v2+a
v

3 J
− λ1
√

v2+a
v

4 R = Jλ1
1 J−λ1−2

2 J
(λ1+1)

√
v2+a

v −1
3 J

− (λ1+1)
√

v2+a
v −1

4

Simple
example I =

J1

J2

(
J3

J4

)√v2+a
v

R =
1

J1J2J3J4
Source: Elaborated by the author.

(ii) The non-generic case: av(a+ v2)(a+3v2/4)(a−3v2)(a+8v2/9) = 0.

(ii.1) a =−v2 and a 6= 0.

Here the two lines coalesce yielding a double line so we compute the exponential
factor E4.

Table 150 – Invariant curves, exponential factors, cofactors, singularities and intersection points of family
(G) when a =−v2 and a 6= 0.

Inv.curves/exp.fac. and cofactors Singularities Intersection points

J1 = x− y
J2 = 3v2 +3ivx− x2 + xy
J3 = 3v2−3ivx− x2 + xy

E4 = e
g0+g1(x−y)

x−y

α1 =− x
3 +

y
3

α2 =−iv− 2x
3 −

y
3

α3 = iv− 2x
3 −

y
3

α4 =
g0
3

P1 = (−iv,−iv)
P2 = (iv, iv)

P∞
1 = [0 : 1 : 0]

P∞
2 = [1 : 1 : 0]

P∞
3 = [1 : 0 : 0]

©(2),©(2);N,N,S

J1∩ J2 =

{
P2 simple
P∞

2 simple

J1∩ J3 =

{
P1 simple
P∞

2 simple
J1∩L∞ = P∞

2 simple

J2∩ J3 =

{
P∞

1 triple
P∞

2 simple

J2∩L∞ =

{
P∞

1 simple
P∞

2 simple

J3∩L∞ =

{
P∞

1 simple
P∞

2 simple
Source: Elaborated by the author.

Table 151 – Divisor and zero-cycles of family (G) when a =−v2 and a 6= 0.

Divisor and zero-cycles Degree

ICD = 2J1 + JC
2 + JC

3 +L∞

M0CS = 2PC
1 +2PC

2 +P∞
1 +P∞

2 +P∞
3

T = ZJ2
1J2J3 = 0

M0CT = 3PC
1 +3PC

2 +3P∞
1 +5P∞

2 +P∞
3

5

7

7

15
Source: Elaborated by the author.
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where the total curve T has

1) only two distinct tangents at P∞
1 , but one of them is double and

2) only four distinct tangents at P∞
2 , but one of them is double.

Table 152 – First integral and integrating factor of family (G) when a =−v2 and a 6= 0.

First integral Integrating Factor

General I = J0
1 Jλ2

2 J−λ2
3 E

6ivλ2
g0

4 R = J−2
1 Jλ2

2 J−2−λ2
3 E

6iv(1+λ2)
g0

4
Simple

example I =
J2E4

6iv

J3
R =

1
J2

1 J2J3
Source: Elaborated by the author.

(ii.2) a =−3v2/4 and a 6= 0.

Here we have, apart from two lines and two hyperbolas, an additional invariant line.
Then, we have five invariant algebraic curves and according to Jouanolou’s theorem
the corresponding system has a rational first integral.

Table 153 – Invariant curves, cofactors, singularities and intersection points of family (G) when a =
−3v2/4 and a 6= 0.

Invariant curves and cofactors Singularities Intersection points

J1 =−3iv
2 + x− y

J2 =
3iv
2 + x− y

J3 = y
J4 =

ix2

3v −
ixy
3v −

3iv
4 + x

J5 =− ix2

3v +
ixy
3v +

3iv
4 + x

α1 =
1
6(−3iv−2x+2y)

α2 =
1
6(3iv−2x+2y)

α3 =
y
3 −

4x
3

α4 =−iv− 2x
3 −

y
3

α5 = iv− 2x
3 −

y
3

P1 =
(
− iv

2 ,−2iv
)

P2 =
( iv

2 ,2iv
)

P3 =
(
−3iv

2 ,0
)

P4 =
(3iv

2 ,0
)

P∞
1 = [0 : 1 : 0]

P∞
2 = [1 : 1 : 0]

P∞
3 = [1 : 0 : 0]

©,©,©,©;N,N,S

J1∩ J2 = P∞
2 simple

J1∩ J3 = P4 simple

J1∩ J4 =

{
P∞

2 simple
P4 simple

J1∩ J5 =

{
P∞

2 simple
P1 simple

J1∩L∞ = P∞
2 simple

J2∩ J3 = P3 simple

J2∩ J4 =

{
P∞

2 simple
P2 simple

J2∩ J5 =

{
P∞

2 simple
P3 simple

J2∩L∞ = P∞
2 simple

J3∩ J4 = P4 double
J3∩ J5 = P3 double
J3∩L∞ = P∞

3 simple

J4∩ J5 =

{
P∞

1 triple
P∞

2 simple

J4∩L∞ =

{
P∞

1 simple
P∞

2 simple

J5∩L∞ =

{
P∞

1 simple
P∞

2 simple
Source: Elaborated by the author.
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Table 154 – Divisor and zero-cycles of family (G) when a =−3v2/4 and a 6= 0.

Divisor and zero-cycles Degree

ICD = JC
1 + JC

2 + J3 + JC
4 + JC

5 +L∞

M0CS = PC
1 +PC

2 +PC
3 +Pc

4 +P∞
1 +P∞

2 +P∞
3

T = ZJ1J2J3J4J5 = 0

M0CT = 2PC
1 +2PC

2 +3PC
3 +3PC

4 +3P∞
1 +5P∞

2 +2P∞
3

6

7

8

20
Source: Elaborated by the author.

where the total curve T has

1) only two distinct tangents at P∞
1 , but one of them is double and

2) five distinct tangents at P∞
2 .

Table 155 – First integral and integrating factor of family (G) when a =−3v2/4 and a 6= 0.

First integral Integrating Factor

General I = Jλ1
1 Jλ2

2 J
−λ1

2 −
λ2
2

3 J
λ2
2

4 J
λ1
2

5 R = Jλ1
1 Jλ2

2 J
−1−λ1

2 −
λ2
2

3 J
−1

2+
λ2
2

4 J
−1

2+
λ1
2

5
Simple

example I1 =
J2

1 J5

J3
I2 =

J2
2 J4

J3
R =

1
J1J2J4J5

Source: Elaborated by the author.

Observation 123. Consider F 1
(c1,c2)

= c1J2
1 J5− c2J3 = 0, degF 1

(c1,c2)
= 4. The re-

markable values of F 1
(c1,c2)

are [1 :−9v2/2] and [1 : 0] for which we have

F 1
(1,−9v2/2) =−J2

2 J4, F 1
(1,0) = J2

1 J5.

Therefore, J1,J2,J4,J5 are remarkable curves of I1, [1 :−9v2/2] and [1 : 0] are the
only two critical remarkable values of I1 and J1,J2 are critical remarkable curves of
I1. The singular points are P2,P3 for F 1

(1,−9v2/2) and P1,P4 for F 1
(1,0).

Considering the first integral I2 with its associated curve F 2
(c1,c2)

= c1J2
2 J4− c2J3

we have the same remarkable values [1 :−9v2/2] and [1 : 0] and the same remarkable
curves J1,J2,J4,J5. However, the singular point are P1,P4 for F 2

(1,−9v2/2) and P2,P3

for F 2
(1,0).

(ii.3) a = 3v2 and a 6= 0.

Here we have, apart from two lines and two hyperbolas, an additional invariant
hyperbola. Then, we have five invariant algebraic curves and hence according to
Jouanolou’s theorem the corresponding system has a rational first integral.
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Table 156 – Invariant curves, cofactors, singularities and intersection points of family (G) when a = 3v2

and a 6= 0.

Invariant curves and cofactors Singularities Intersection points

J1 =−6iv+ x− y
J2 = 6iv+ x− y
J3 =−9v2 + xy
J4 =−9v2 +3ivx− x2 + xy
J5 =−9v2−3ivx− x2 + xy

α1 =−2iv− x
3 +

y
3

α2 = 2iv− x
3 +

y
3

α3 =−5x
3 −

y
3

α4 =−iv− 2x
3 −

y
3

α5 = iv− 2x
3 −

y
3

P1 = (−iv,5v)
P2 = (iv,−5iv)
P3 = (−3iv,3iv)
P4 = (3iv,−3iv)

P∞
1 = [0 : 1 : 0]

P∞
2 = [1 : 1 : 0]

P∞
3 = [1 : 0 : 0]

©,©,©,©;N,N,S

J1∩ J2 = P∞
2 simple

J1∩ J3 = P4 double

J1∩ J4 =

{
P∞

2 simple
P4 simple

J1∩ J5 =

{
P∞

2 simple
P2 simple

J1∩L∞ = P∞
2 simple

J2∩ J3 = P3 double

J2∩ J4 =

{
P∞

2 simple
P1 simple

J2∩ J5 =

{
P∞

2 simple
P3 simple

J2∩L∞ = P∞
2 simple

J3∩ J4 =

{
P∞

1 triple
P4 simple

J3∩ J5 =

{
P∞

1 triple
P3 simple

J3∩L∞ =

{
P∞

1 simple
P∞

3 simple

J4∩ J5 =

{
P∞

1 triple
P∞

2 simple

J4∩L∞ =

{
P∞

1 simple
P∞

2 simple

J5∩L∞ =

{
P∞

1 simple
P∞

2 simple
Source: Elaborated by the author.

Table 157 – Divisor and zero-cycles of family (G) when a = 3v2 and a 6= 0.

Divisor and zero-cycles Degree

ICD = JC
1 + JC

2 + J3 + JC
4 + JC

5 +L∞

M0CS = PC
1 +PC

2 +PC
3 +PC

4 +P∞
1 +P∞

2 +P∞
3

T = ZJ1J2J3J4J5 = 0

M0CT = 2PC
1 +2PC

2 +3PC
3 +3PC

4 +4P∞
1 +5P∞

2 +2P∞
3

6

7

9

21
Source: Elaborated by the author.

where the total curve T has

1) only two distinct tangents at P∞
1 , but one of them is triple,

2) five distinct tangents at P∞
2 .
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Table 158 – First integral and integrating factor of family (G) when a = 3v2 and a 6= 0.

First integral Integrating Factor

General I = Jλ1
1 Jλ2

2 J−λ1−λ2
3 J2λ2

4 J2λ1
5 R = Jλ1

1 Jλ2
2 J−2−λ1−λ2

3 J1+2λ2
4 J1+2λ1

5
Simple

example I1 =
J1J2

5
J3

I2 =
J2J2

4
J3

R =
1

J1J2J4J5
Source: Elaborated by the author.

Observation 124. Consider F 1
(c1,c2)

= c1J1J2
5 − c2J3 = 0, degF 1

(c1,c2)
= 5. The re-

markable values of F 1
(c1,c2)

are [1 : 108iv3] and [1 : 0] for which we have

F 1
(1,108iv3) = J2J2

4 , F 1
(1,0) = J1J2

5 .

Therefore, J1,J2,J4,J5 are remarkable curves of I1, [1 : 108iv3] and [1 : 0] are the
only two critical remarkable values of I1 and J4,J5 are critical remarkable curves of
I1. The singular points are P1,P4 for F 1

(1,108iv3) and P2,P3 for F 1
(1,0).

Considering the first integral I2 with its associated curve F 2
(c1,c2)

= c1J2J2
4 − c2J3

we have the remarkable values [1 : −108iv3] and [1 : 0] and the same remarkable
curves J1,J2,J4,J5. The singular point are P2,P3 for F 2

(1,−108iv3) and P1,P4 for F 2
(1,0).

(ii.4) a =−8v2/9 and a 6= 0.

Here we have, apart from two lines and two hyperbolas, an additional invariant
hyperbola. Then, we have five invariant algebraic curves and according to Jouanolou’s
theorem the corresponding system has a rational first integral.



6.1. Geometric study for systems with η > 0 233

Table 159 – Invariant curves, cofactors, singularities and intersection points of family (G) when a =
−8v2/9 and a 6= 0.

Invariant curves and cofactors Singularities Intersection points

J1 =−iv+ x− y
J2 = iv+ x− y
J3 = y(x− y)+ v2

3
J4 =−8v2

3 +3ivx+ x(y− x)
J5 =−8v2

3 −3ivx+ x(y− x)

α1 =
1
3(−iv− x+ y)

α2 =
1
3(iv− x+ y)

α3 =
2y
3 −

5x
3

α4 =−iv− 2x
3 −

y
3

α5 = iv− 2x
3 −

y
3

P1 =
(
−2iv

3 ,−5iv
3

)
P2 =

(2iv
3 , 5iv

3

)
P3 =

(
−4iv

3 ,− iv
3

)
P4 =

(4iv
3 , iv

3

)
P∞

1 = [0 : 1 : 0]
P∞

2 = [1 : 1 : 0]
P∞

3 = [1 : 0 : 0]

©,©,©,©;N,N,S

J1∩ J2 = P∞
2 simple

J1∩ J3 =

{
P∞

2 simple
P4 simple

J1∩ J4 =

{
P∞

2 simple
P4 simple

J1∩ J5 =

{
P∞

2 simple
P1 simple

J1∩L∞ = P∞
2 simple

J2∩ J3 =

{
P∞

2 simple
P3 simple

J2∩ J4 =

{
P∞

2 simple
P2 simple

J2∩ J5 =

{
P∞

2 simple
P3 simple

J2∩L∞ = P∞
2 simple

J3∩ J4 =

{
P∞

2 simple
P4 triple

J3∩ J5 =

{
P∞

2 simple
P3 triple

J3∩L∞ =

{
P∞

2 simple
P∞

3 simple

J4∩ J5 =

{
P∞

1 triple
P∞

2 simple

J4∩L∞ =

{
P∞

1 simple
P∞

2 simple

J5∩L∞ =

{
P∞

1 simple
P∞

2 simple
Source: Elaborated by the author.

Table 160 – Divisor and zero-cycles of family (G) when a =−8v2/9 and a 6= 0.

Divisor and zero-cycles Degree

ICD = JC
1 + JC

2 + J3 + JC
4 + JC

5 +L∞

M0CS = PC
1 +PC

2 +PC
3 +PC

4 +P∞
1 +P∞

2 +P∞
3

T = ZJ1J2J3J4J5 = 0

M0CT = 2PC
1 +2PC

2 +3PC
3 +3PC

4 +3P∞
1 +6P∞

2 +2P∞
3

6

7

9

21
Source: Elaborated by the author.

where the total curve T has
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1) only two distinct tangents at P∞
1 , but one of them is double and

2) six distinct tangents at P∞
2 .

Table 161 – First integral and integrating factor of family (G) when a =−8v2/9 and a 6= 0.

First integral Integrating Factor

General I = Jλ1
1 Jλ2

2 J
− λ1

3 −
λ2
3

3 J
λ2
3

4 J
λ1
3

5 R = Jλ1
1 Jλ2

2 J
− λ1

3 −
λ2
3 −

2
3

3 J
λ2
3 −

2
3

4 J
λ1
3 −

2
3

5
Simple

example I1 =
J3

1 J5

J3
I2 =

J3
2 J4

J3
R =

1
J1J2J4J5

Source: Elaborated by the author.

Observation 125. Consider F 1
(c1,c2)

= c1J3
1 J5− c2J3 = 0, degF 1

(c1,c2)
= 5. The re-

markable values of F 1
(c1,c2)

are [1 : 16iv3] and [1 : 0] for which we have

F 1
(1,16iv3) = J3

2 J4, F 1
(1,0) = J3

1 J5.

Therefore, J1,J2,J4,J5 are remarkable curves of I1, [1 : 16iv3] and [1 : 0] are the only
two critical remarkable values of I1 and J1,J2 are critical remarkable curves of I1.
The singular points are P2,P3 for F 1

(1,16iv3) and P1,P4 for F 1
(1,0).

Considering the first integral I2 with its associated curves F 2
(c1,c2)

= c1J3
2 J4− c2J3

we have the remarkable values [1 : −16iv3] and [1 : 0] and the same remarkable
curves J1,J2,J4,J5. The singular point are P2,P3 for F 2

(1,0) and P1,P4 for F 2
(1,−16iv3).

(ii.5) v = 0 and a 6= 0.

Under this condition the systems do not belong to family (G). Here we have two
invariant lines and one double hyperbola so we compute the exponential factor E4.

Table 162 – Invariant curves, exponential factors, cofactors, singularities and intersection points of family
(G) when v = 0 and a 6= 0.

Inv.curves/exp.fac. and cofactors Singularities Intersection points

J1 =−3i
√

a+ x− y
J2 = 3i

√
a+ x− y

J3 =−3a+ x(y− x)

E4 = e
g1x

−3a+x(y−x)

α1 =−i
√

a− x
3 +

y
3

α2 = i
√

a− x
3 +

y
3

α3 =−2x
3 −

y
3

α4 =−g1
3

P1 = (−i
√

a,2i
√

a)
P2 = (i

√
a,−2i

√
a)

P∞
1 = [0 : 1 : 0]

P∞
2 = [1 : 1 : 0]

P∞
3 = [1 : 0 : 0]

For a < 0 we have

sn(2),sn(2);N,N,S

For a > 0 we have

©(2),©(2);N,N,S

J1∩ J2 = P∞
2 simple

J1∩ J3 =

{
P∞

2 simple
P2 simple

J1∩L∞ = P∞
2 simple

J2∩ J3 =

{
P∞

2 simple
P1 simple

J2∩L∞ = P∞
2 simple

J3∩L∞ =

{
P∞

1 simple
P∞

2 simple

Source: Elaborated by the author.
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Table 163 – Divisor and zero-cycles of family (G) when v = 0 and a 6= 0.

Divisor and zero-cycles Degree

ICD =

{
J1 + J2 +2J3 +L∞ if a < 0
JC

1 + JC
2 +2J3 +L∞ if a > 0

M0CS =

{
2P1 +2P2 +P∞

1 +P∞
2 +P∞

3 if a < 0
2PC

1 +2PC
2 +P∞

1 +P∞
2 +P∞

3 if a > 0

T = ZJ1J2J2
3 = 0.

M0CT =

{
3P1 +3P2 +3P∞

1 +5P∞
2 +P∞

3 if a < 0
3PC

1 +3PC
2 +3P∞

1 +5P∞
2 +P∞

3 if a > 0

5
5

7
7

7

15
15

Source: Elaborated by the author.

where the total curve T has

1) only two distinct tangents at P1 (and at P2), but one of them is double;

2) only two distinct tangents at P∞
1 , but one of them is double and

3) only four distinct tangents at P∞
2 , but one of them is double.

Table 164 – First integral and integrating factor of family (G) when v = 0 and a 6= 0.

First integral Integrating Factor

General I = Jλ1
1 J−λ1

2 J0
3 E
− 6i
√

aλ1
g1

4 R = Jλ1
1 J−2−λ1

2 J−2
3 E

− 6i
√

a(1+λ1)
g1

4
Simple

example I =
J1

J2E4
6i
√

a
R =

1
J1J2J2

3
Source: Elaborated by the author.

(ii.6) a = 0 and v 6= 0.

Under this condition, systems (G) do not belong to QSH. The affine invariant lines
are x = 0 and ±3iv− x+ y = 0 that are all simple. Considering the line at infinity
Z = 0 the total multiplicity of the invariant lines is four so this case was studied in
(SCHLOMIUK; VULPE, 2008c). We include this case as indicated in Observation
81. Perturbing this system in the family (G) we can obtain two distinct configurations
of lines and hyperbolas. By perturbing the reducible conics x(3iv− x+ y) = 0 and
x(−3iv− x+ y) = 0 we can produce two distinct hyperbolas −3a+3ivx− x2 + xy =

0 and −3a− 3ivx− x2 + xy = 0, respectively. Furthermore, the cubic x(3iv− x+

y)(−3iv− x+ y) = 0 has integrable multiplicity two.
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Table 165 – Invariant curves, exponential factors, cofactors, singularities and intersection points of family
(G) when a = 0 and v 6= 0.

Inv.curves/exp.fac. and cofactors Singularities Intersection points
J1 =−3iv− x+ y
J2 = 3iv− x+ y
J3 = x

E4 = e
3g0(6v2+x(x−y))

x(9v2+(x−y)2)
− g1

2

α1 = iv− x
3 +

y
3

α2 =−iv− x
3 +

y
3

α3 =− x
3 −

2y
3

α4 = g0

P1 = (2iv,−iv)
P2 = (−2iv, iv)
P3 = (0,−3iv)
P4 = (0,3iv)

P∞
1 = [0 : 1 : 0]

P∞
2 = [1 : 1 : 0]

P∞
3 = [1 : 0 : 0]

©,©,©,©;N,N,S

J1∩ J2 = P∞
2 simple

J1∩ J3 = P4 simple
J1∩L∞ = P∞

2 simple
J2∩ J3 = P3 simple
J2∩L∞ = P∞

2 simple
J3∩L∞ = P∞

1 simple

Source: Elaborated by the author.

Table 166 – Divisor and zero-cycles of family (G) when a = 0 and v 6= 0.

Divisor and zero-cycles Degree

ICD = JC
1 + JC

2 + J3 +L∞

M0CS = PC
1 +PC

2 +PC
3 +PC

4 +P∞
1 +P∞

2 +P∞
3

T = ZJ1J2J3 = 0.

M0CT = PC
1 +PC

2 +2PC
3 +2PC

4 +2P∞
1 +3P∞

2 +P∞
3

4

7

4

12
Source: Elaborated by the author.

where the total curve T has three distinct tangents at P∞
2 .

Table 167 – First integral and integrating factor of family (G) when a = 0 and v 6= 0.

First integral Integrating Factor

General I = Jλ1
1 J−λ1

2 J0
3 E
− 2ivλ1

g0
4 R = Jλ1

1 J−4−λ1
2 J−2

3 E
− 2iv(λ1+2)

g0
4

Simple
example I =

J1

J2E2iv
4

R =
1

J2
1 J2

2 J2
3

Source: Elaborated by the author.

(ii.7) a = v = 0.

Under this condition, systems (G) do not belong to QSH. The affine invariant lines are
x= 0, y= 0 that are simple and x−y= 0 that is double. Considering the line at infinity
Z = 0 the total multiplicity of the invariant lines is four so this case was studied in
(SCHLOMIUK; VULPE, 2008c). We include this case as indicated in Observation
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81. This system has a rational first integral that foliates the plane into quartic invariant
algebraic curves. The lines x = 0 and x−y = 0 are remarkable curves. Perturbing this
system in the full family (H) we can obtain up to ten distinct configurations of lines
and hyperbolas. By perturbing the reducible conic x(x− y) = 0 we can produce 2
distinct hyperbolas−3a+3vx−x2+xy = 0 and−3a−3vx−x2+xy = 0. Perturbing
the reducible conic y(x− y) = 0 we can produce a third hyperbola y(x− y)− v2

3 = 0
and by perturbing xy = 0 we can produce the hyperbola 9v2 + xy = 0. We get a
double hyperbola −3a + x(y− x) = 0 by perturbing the double reducible conic
x2(x− y)2 = 0.

Table 168 – Invariant curves, exponential factor, cofactors, singularities and intersection points of family
(G) when a = v = 0.

Inv.curves/exp.fac. and cofactors Singularities Intersection points
J1 = y
J2 = x
J3 = x− y

E4 = e
g0+g1(x−y)

x−y

α1 =
y
3 −

4x
3

α2 =− x
3 −

2y
3

α3 =
y
3 −

x
3

α4 =
g0
3

P1 = (0,0)

P∞
1 = [0 : 1 : 0]

P∞
2 = [1 : 1 : 0]

P∞
3 = [1 : 0 : 0]

hpphpp(4);N,N,S

J1∩ J2 = P1 simple
J1∩ J3 = P1 simple
J1∩L∞ = P∞

3 simple
J2∩ J3 = P1 simple
J2∩L∞ = P∞

1 simple
J3∩L∞ = P∞

2 simple

Source: Elaborated by the author.

Table 169 – Divisor and zero-cycles of family (G) when a = v = 0.

Divisor and zero-cycles Degree
ICD = J1 + J2 +2J3 +L∞

M0CS = 4P1 +P∞
1 +P∞

2 +P∞
3

T = ZJ1J2J2
3 = 0.

M0CT = 4P1 +2P∞
1 +3P∞

2 +2P∞
3

5

7

5

10
Source: Elaborated by the author.

where the total curve T has

1) only three distinct tangents at P1, but one of them is double;

2) only two distinct tangents at P∞
2 , but one of them is double.
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Table 170 – First integral and integrating factor of family (G) when a = v = 0.

First integral Integrating Factor

General I = Jλ1
1 J−λ1

2 J−3λ1
3 E0

4 R = Jλ1
1 J−2−λ1

2 J−4−3λ1
3 E0

4
Simple

example I1 =
J1

J2J3
3

R =
1

J1J2J3

Source: Elaborated by the author.

Observation 126. Consider F 1
(c1,c2)

= c1J1− c2J2J3
3 = 0, degF 1

(c1,c2)
= 4. The re-

markable value of F 1
(c1,c2)

is [0 : 1] for which we have

F 1
(0,1) =−J2J3

3 .

Therefore, J2, J3 are remarkable curves of I1, [0 : 1] is the only critical remarkable
values of I1 and J3 is critical remarkable curve of I1. The singular point is P1 for
F 1

(0,1).

We sum up the topological, dynamical and algebraic geometric features of family (G) and
we also confront our results with previous results in the literature in the following proposition.

Proposition 127. (a) For the family (G) we have seven distinct configurations C(G)
1 −C(G)

7

of invariant hyperbolas and lines (see Figure 12 for the complete bifurcation diagram of
configurations of such family). The bifurcation set of configurations in the full parameter
space is av(a+ v2)(a− 3v2)(a+ 3v2/4)(a+ 8v2/9) = 0. Its complement is a union of
12 disjoint sets. On a = −v2 the invariant line is double. On (a+ 3v2/4)(a− 3v2)(a+

8v2/8) = 0 we have an additional invariant curve. For the limiting set of the parameter
space of the considered family we have the following: On v = 0 and a 6= 0 the invariant
hyperbola is double. On a = 0 the invariant hyperbolas become reducible producing the
lines x = 0, −3iv− x+ y = 0 and x = 0, 3iv− x+ y = 0. The configurations C(G)

2 and C(G)
6

are not equivalent with anyone of the configurations in (OLIVEIRA et al., 2017).

(b) The family (G) is Darboux integrable if av(a+ v2)(a+3v2/4)(a−3v2)(a+8v2/9) 6= 0.
When a =−v2 the family (G) is generalized Darboux first integrable. In all the following
three cases, we have a rational first integral. If a = −3v2/4 then the systems have an
additional invariant line and the plane is foliated into quartic invariant algebraic curves. If
a = 3v2 then the systems have an additional invariant hyperbola and the plane is foliated
by quintic invariant algebraic curves. If a =−8v2/9 then the systems have an additional
invariant hyperbola and the plane is foliated in quintic invariant algebraic curves. The
remarkable curves are J1,J2,J4,J5 for these three algebraically integrable cases of family
(G) for each case correspondingly. All systems in family (G) have an inverse integrating
factor which is polynomial.
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(c) For the family (G) we have two topologically distinct phase portraits P(G)
1 and P(G)

2 . The
topological bifurcation diagram of family (G) is done in Figure 13. The bifurcation set is
the half line v = 0 with a < 0 and the parabola a =−3v2/4. The half line v = 0 with a < 0
is a bifurcation of singularities and the parabola a =−3v2/4 is a bifurcation of separatrix
from saddle to saddle connection.

Proof of Proposition 127:

(a) We have the following types of divisors and zero-cycles of the total invariant curve T for
the configurations of family (G) :

Table 171 – Configurations for family (G).

Configurations Divisors and zero-cycles of the total inv. curve T

C(G)
1

ICD = JC
1 + JC

2 + JC
3 + JC

4 +L∞

M0CT = 2PC
1 +2PC

2 +2PC
3 +2PC

4 +3P∞
1 +5P∞

2 +P∞
3

C(G)
2

ICD = JC
1 + JC

2 + JC
3 + JC

4 +L∞

M0CT = 2PC
1 +2PC

2 +2PC
3 +2PC

4 +3P∞
1 +5P∞

2 +P∞
3

C(G)
3

ICD = J1 + J2 + JC
3 + JC

4 +L∞

M0CT = 2PC
1 +2PC

2 +2PC
3 +2PC

4 +3P∞
1 +5P∞

2 +P∞
3

C(G)
4

ICD = 2J1 + JC
2 + JC

3 +L∞

M0CT = 3PC
1 +3PC

2 +3P∞
1 +5P∞

2 +P∞
3

C(G)
5

ICD = JC
1 + JC

2 + J3 + JC
4 + JC

5 +L∞

M0CT = 2PC
1 +2PC

2 +3PC
3 +3PC

4 +3P∞
1 +5P∞

2 +2P∞
3

C(G)
6

ICD = JC
1 + JC

2 + J3 + JC
4 + JC

5 +L∞

M0CT = 2PC
1 +2PC

2 +3PC
3 +3PC

4 +4P∞
1 +5P∞

2 +2P∞
3

C(G)
7

ICD = JC
1 + JC

2 + J3 + JC
4 + JC

5 +L∞

M0CT = 2PC
1 +2PC

2 +3PC
3 +3PC

4 +3P∞
1 +6P∞

2 +2P∞
3

Source: Elaborated by the author.

Although C(G)
1 and C(G)

2 admit the same type of divisors and zero-cycles we can see they
are different because in C(G)

1 each branch of the hyperbolas intersects one line while C(G)
2

have two branches intersecting both lines and two branches intersecting no line. Therefore,
the configurations C(G)

1 up to C(G)
7 are all distinct. For the limit cases of family (G) we have

the following configurations:
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Table 172 – Configurations for the limit cases of family (G).

Configurations Divisors and zero-cycles of the total inv. curve T

c1
ICD = J1 + J2 +2J3 +L∞

M0CT = 3P1 +3P2 +3P∞
1 +5P∞

2 +P∞
3

c2
ICD = JC

1 + JC
2 +2J3 +L∞

M0CT = 3PC
1 +3PC

2 +3P∞
1 +5P∞

2 +P∞
3

c3
ICD = JC

1 + JC
2 + J3 +L∞

M0CT = PC
1 +PC

2 +2PC
3 +2PC

4 +2P∞
1 +3P∞

2 +P∞
3

c4
ICD = J1 + J2 +2J3 +L∞

M0CT = 4P1 +2P∞
1 +3P∞

2 +2P∞
3

Source: Elaborated by the author.

In (OLIVEIRA et al., 2017) the authors presented all the normal forms for QSH and
they also give all the configurations for each normal form. However we notice two
configurations missing in the study of (3.95) (here family (G)). The configurations they
gave in this study was H.144 (which is C(G)

2 ), H.145 (which is C(G)
3 ), H.151 (which is C(G)

5 ),
H.153 (which is C(G)

4 ) and H.159 (which is C(G)
6 ). Therefore, they missed the configurations

C(G)
1 and C(G)

7 .

The other statements in (a) follows from the study done previously.

(b) This is shown in the previously exhibited tables. The computations for the remarkable
curves were done in Remarks 123, 124 and 125 .

(c) We have that:

Table 173 – Phase portraits for family (G).

Phase Portraits Sing. at ∞ Finite sing. Separatrix connections

P(G)
1 (N,N,S)

(©,©,©,©)
(©(2),©(2))

0SC f
f 0SC∞

f 2SC∞
∞

P(G)
2 (N,N,S) (©,©,©,©) 0SC f

f 0SC∞
f 1SC∞

∞

Source: Elaborated by the author.

Therefore, we have two distinct phase portraits for systems (G). For the limit cases of
family (G) we have the following phase portraits:

Table 174 – Phase portraits for the limit cases of family (G).

Phase Portraits Sing. at ∞ Finite sing. Separatrix connections

p1 (N,N,S) (sn(2),sn(2)) 0SC f
f 8SC∞

f 0SC∞
∞

p2 (N,N,S) hpphpp(4) 0SC f
f 6SC∞

f 0SC∞
∞

Source: Elaborated by the author.
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We note that the phase portraits P(G)
1
∼=top P(B)

3 and p1 ∼=top p2 (F) (where p2 is a phase
portrait in the limit cases of family (F)) are missing in (LLIBRE; YU, 2018) and they were listed
in the geometric studies of families (B) and (F).

�

Figure 12 – Bifurcation diagram of configurations for family (G).
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1
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1
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Source: Elaborated by the author.
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Figure 13 – Topological bifurcation diagram for family (G).

v = 0

p2

P(G)
1

P(G)
1

P(G)
2

P(G)
1

a =−3v2/4

p1

Source: Elaborated by the author.

6.1.5.1 The solution of the Poincaré problem for the family (G)

We can recognize when a system in this family has a rational first integral. The following
is the answer to Poincaré’s problem for the family (G):

Theorem 128. i) A necessary and sufficient condition for a system in family (G) to have a
rational first integral given by invariant algebraic curves of degree at most two, is that v2 +a > 0
and that (a,v) be situated on a parabola of the form a = (r2−1)v2 with r ∈Q. ii) The set of all
points (a,v)’s satisfying these two conditions is dense in the set v2 +a > 0 with v 6= 0.

Proof. i) We first prove that the condition is necessary. So assume that we have a system
of parameters (a,v) that has a rational first integral. Assume now that (a,v) is in the generic
situations (a+ v2)(a+3v2/4)(a−3v2)(a+8v2/9) 6= 0. Any first integral of the system is then
of the following general form:

I = Jλ1
1 J−λ1

2 J
λ1
√

v2+a
v

3 J
− λ1
√

v2+a
v

4 .
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This is a rational first integral if and only if λ1 ∈ Z and λ1
√

v2+a
v ∈ Z in which case we

must have that r =
√

v2 +a/v must be a rational number. In view of our generic hypothesis r 6= 0.
Since r =

√
v2 +a/v is rational we have v2 + a ≥ 0 and by hypothesis v2 + a 6= 0. Therefore

v2 + a > 0. We also have a = (r2− 1)v2 and therefore the condition is necessary in this case.
Consider now the case when (a+ v2)(a+3v2/4)(a−3v2)(a+8v2/9) = 0. Since on a = −v2

we cannot have a rational first integral because as we see in the tables for this case, we have
exponential factors in the first integrals and hence we must have a 6=−v2. Therefore our previous
assumption is reduced to (a+ 3v2/4)(a− 3v2)(a+ 8v2/9) = 0. Suppose first that the point
(a,v) is located on the parabola a = 3v2. Then this parabola can be written as a = (r2− 1)v2

where r = 2. We then have v2 + a = r2v2 = 4v2 > 0. If the point (a,v) is on the parabola
a+8y2/9 = 0 then this parabola can be written as a = (r2−1)v2 for r = 1/3. Here again we
have that v2+a = r2v2 = v2/9 > 0. So the system situated on the parabola a+8y2/9 = 0 satisfies
v2 +a > 0 and for r = 1/3 the point is located on the parabola a = (r2−1)v2. So also in this
case these conditions are necessary. There remains only the case when (a,v) is on the parabola
a+3v2/4 = 0. In this case we can write this parabola as a = (r2−1)v2 by taking r = 1/2. Also
here v2 +a = r2v2 = v2/4 > 0, i.e. v2 +a > 0. So the necessity of the conditions is proved in
this case too.

We now prove the sufficiency of the conditions. Let us assume that v2 + a > 0, v 6= 0
and (a,v) is located on a parabola a = (r2− 1)v2 with r ∈ Q. Then clearly r 6= 0, otherwise
v2 + a = r2v2 = 0 contrary to our assumption. In case r = 2,1/3,1/2 we are on one of the
three parabolas obtained from the condition (a−3v2)(a+8v2/9)(a+3v2/4) = 0 and for these
parabolas the tables give us rational first integrals. If the generic condition is satisfied, i.e.
(a+ v2)(a− 3v2)(a+ 8v2/9)(a+ 3v2/4) 6= 0, then we know that we have the corresponding
first integral indicated in the Tables for this case where the exponents for the curves Ji are
λ1 and λ1

√
v2 +a/v. But we know by our assumption that (a,v) is located on a parabola

a = (r2−1)v2 for some rational number r. From this equation we have that r2 = (a+ v2)/v2.
Hence r =

√
v2 +a/v is rational. We may suppose r = m/n with m,n ∈ Z and m,n coprime.

Then by taking in the general expression of the first integral λ1 = n and r =
√

v2 +a/v we
obtained a rational first integral in this case.

ii) Let us denote by Pr the parabola corresponding to a rational number r, i.e.

Pr := {(a,v) ∈ R2 : (r2−1)v2 = a}.

Thus a system in the family (H) has a rational first integral if and only if it corresponds to a point
(a,v) such that v2+a > 0 with v 6= 0 and the point is situated on a parabola Pr for some rational
number r. In the parameter plane R2 let the a−axis be the horizontal line and the v−axis be the
vertical one. The parabolas a = (r2−1)v2 are symmetric with respect to the a−axis. Because of
this it would suffice to prove the density of points (a,v) on parabolas Pr and inside v2 +a > 0
and v > 0.
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Claim: The set of all points in A =: ∪r∈QPr with v > 0 is dense in the set S+ = {(a,v) :
v2 +a > 0, v > 0}.

Take an arbitrary point point p0 = (a0,v0) ∈ S+. So we have v2
0 +a0 > 0 and v0 > 0. We

only need to consider p0 inside the first or second quadrant. Indeed the line a = 0 is outside the
parameter space of our family. So a0 6= 0. In view of our assumption we have that (v2

0+a0)/v2
0 > 0.

So let r0 =
√
(v2

0 +a0)/v2
0 > 0. Hence we have a0 = (r2

0− 1)v2
0. Here r0 is not necessarily a

rational number. But it can be approximated with rational numbers. So take a sequence of
rational numbers rn such that rn → r0. At this point let us assume that the point (a0,v0) is
in the first quadrant, i.e. a0 > 0. In this case r0 > 1 and since rn → r0 there exists a number

N such that for n > N rn > 1 and hence r2
n > 1 for all n > N. So

√
a0/(r2

n−1) > 0. Denote

by vn =
√

a0/(r2
n−1). Then vn→ v0 and hence (a0,vn)→ (a0,v0). But each point (a0,vn) is

located on the corresponding parabola a0 = (r2
n−1)v2

n and hence p0 is an accumulation point
of points situated on such parabolas with rn rational. Assume now that the point p0 is in the

second quadrant. Then a0 < 0 and since (v2
0+a0)/v2

0 > 0 we have that 0 < r0 =
√

1+a0/v2
0 < 1

which means that there exists a natural number N such that for n > N we have 0 < rn < 1 and
hence r2

n < 1 and hence we can take again vn =
√

a0/(r2
n−1). Then clearly vn→ v0 and we

obtain a sequence of points (a0,vn) sitting on parabolas a0 = (r2
n−1)v2

n with rn rational. And
v2

0 +a0 = r2
n > 0. Since v0 > 0 then there is a natural number M such that for all n > M vn > 0.

�

Considering r = m1/m2 where m1,m2 ∈ N we can say that

I =
(

J1

J2

)m2
(

J3

J4

)m1

is a rational first integral of (G) when a = (1+(m1/m2)
2)v2. Consider

F(c1,c2) = c1Jm2
1 Jm1

3 − c2Jm2
2 Jm1

4 = 0.

We have that [1 : 0] and [0 : 1] are remarkable values for I , since

F(1,0) = Jm2
1 Jm1

3 , F(0,1) =−Jm2
2 Jm1

4 .

The case m1 = m2 = 1 is when a = 0 and this case was done previously. Suppose m1 6= 1
or m2 6= 1. If m1 > 1 then [1 : 0] and [0 : 1] are two critical remarkable values for I and J3,J4 are
critical remarkable curves. If follows from the Main Theorem in (CHAVARRIGA et al., 2003)
that these are the unique critical remarkable values of I . If we also have m2 > 1 then J1,J2 also
are critical remarkable curves.

Observation 129. Note that if r < 0 then we can suppose that r =−m1/m2 where m1,m2 ∈ N
and

I =
(

J1

J2

)m2
(

J3

J4

)−m1

=

(
J1

J2

)m2
(

J4

J3

)m1

.
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Considering F 1
(c1,c2)

= c1Jm2
1 Jm1

4 − c2Jm2
2 Jm1

3 = 0 we still have the same conclusions as before.

6.1.6 Geometric Analysis of family (H)

Consider the family

(H)

{
ẋ = a− x2

3 −
2xy
3

ẏ = 4a−3v2− 4xy
3 + y2

3 ,

where a 6= 0.

This is a two parameter family depending on a and v such that a 6= 0 but for a complete
understanding of the bifurcation diagram of the systems in the full family defined by the equations
(H) we study here also the limit case a = 0 where the equations are still defined.

We display below the full geometric analysis of the systems in this family, which is
endowed with at least three invariant algebraic curves. In the generic case

av(a− v2)(a−3v2/4)(a+3v2)(a−8v2/9) 6= 0

the systems have only two invariant lines J1 and J2 and only two invariant hyperbolas J3 and J4

with cofactors αi, 1≤ i≤ 4 given by

J1 =−3
√
−a+ v2− x+ y, α1 =

√
−a+ v2− x

3 +
y
3 ,

J2 = 3
√
−a+ v2− x+ y, α2 =−

√
−a+ v2− x

3 +
y
3 ,

J3 =−3a+3vx− x2 + xy, α3 =−v− 2x
3 −

y
3 ,

J4 =−3a−3vx− x2 + xy, α4 = v− 2x
3 −

y
3 .

Then according to Darboux’ theorem we must have a Darboux first integral. We note that if v = 0
then the two hyperbolas coincide and we get a double hyperbola. Also if a = v2 the two lines
coincide and we get a double line. So to have four distinct curves we need to put v(a− v2) 6= 0.
We inquire when we could have an additional line. Calculations yield that this happens when
(a−3v2/4) = 0. We also inquire when we could have an additional hyperbola. Calculations yield
that this happens when (a+3v2)(a−8v2/9) = 0. The multiplicities of each invariant line and
invariant hyperbola appearing in the divisor ICD of invariant algebraic curves were calculated by
using the 1st extactic polynomial for the lines and the 2nd extactic polynomial for the hyperbola.

(i) The generic case: av(a− v2)(a−3v2/4)(a+3v2)(a−8v2/9) 6= 0.



246 Chapter 6. Geometric Analysis

Table 175 – Invariant curves, cofactors, singularities and intersection points of family (H) for the generic
case.

Invariant curves and cofactors Singularities Intersection points

J1 =−3
√
−a+ v2− x+ y

J2 = 3
√
−a+ v2− x+ y

J3 =−3a+3vx− x2 + xy
J4 =−3a−3vx− x2 + xy

α1 =
√
−a+ v2− x

3 +
y
3

α2 =
√
−a+ v2− x

3 +
y
3

α3 =−v− 2x
3 −

y
3

α4 = v− 2x
3 −

y
3

P1=(−v−
√

v2−a,−v+2
√

v2−a)

P2=(v−
√

v2−a,v+2
√

v2−a)

P3=(−v+
√

v2−a,−v−2
√

v2−a)

P4=(v+
√

v2−a,v−2
√

v2−a)

P∞
1 = [0 : 1 : 0]

P∞
2 = [1 : 1 : 0]

P∞
3 = [1 : 0 : 0]

For v2 > a we have

n,s,s,n;N,N,S if v > 0
s,n,n,s;N,N,S if v < 0

For v2 < a we have

©,©,©,©;N,N,S

J1∩ J2 = P∞
2 simple

J1∩ J3 =

{
P∞

2 simple
P2 simple

J1∩ J4 =

{
P∞

2 simple
P1 simple

J1∩L∞ = P∞
2 simple

J2∩ J3 =

{
P∞

2 simple
P4 simple

J2∩ J4 =

{
P∞

2 simple
P3 simple

J2∩L∞ = P∞
2 simple

J3∩ J4 =

{
P∞

1 triple
P∞

2 simple

J3∩L∞ =

{
P∞

1 simple
P∞

2 simple

J4∩L∞ =

{
P∞

1 simple
P∞

2 simple
Source: Elaborated by the author.

Table 176 – Divisors and zero-cycles of family (H) for the generic case.

Divisor and zero-cycles Degree

ICD =

{
J1 + J2 + J3 + J4 +L∞ if v2 > a
JC

1 + JC
2 + J3 + J4 +L∞ if v2 < a

M0CS =

{
P1 +P2 +P3 +P4 +P∞

1 +P∞
2 +P∞

3 if v2 > a
PC

1 +PC
2 +PC

3 +PC
4 +P∞

1 +P∞
2 +P∞

3 if v2 < a

T = ZJ1J2J3J4 = 0

M0CT =

{
2P1 +2P2 +2P3 +2P4 +3P∞

1 +5P∞
2 +P∞

3 if v2 > a
2PC

1 +2PC
2 +2PC

3 +2PC
4 +3P∞

1 +5P∞
2 +P∞

3 if v2 < a

5
5

7
7

7

17
17

Source: Elaborated by the author.

where the total curve T has

1) only two distinct tangents at P∞
1 , but one of them is double and

2) five distinct tangents at P∞
2 .
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Table 177 – First integral and integrating factor of family (H) for the generic case.

First integral Integrating Factor

General I = Jλ1
1 J−λ1

2 J
λ1
√

v2−a
v

3 J
− λ1
√

v2−a
v

4 R = Jλ1
1 J−λ1−2

2 J
(λ1+1)

√
v2−a

v −1
3 J

− (λ1+1)
√

v2−a
v −1

4

Simple
example I =

J1

J2

(
J3

J4

)√v2−a
v

R =
1

J1J2J3J4
Source: Elaborated by the author.

(ii) The non-generic case: av(a− v2)(a−3v2/4)(a+3v2)(a−8v2/9) = 0.

(ii.1) v = 0 and a 6= 0.

Here the two hyperbolas coalesce yielding a double hyperbola so we compute the
exponential factor E4.

Table 178 – Invariant curves, exponential factors, cofactors, singularities and intersection points of family
(H) when v = 0 and a 6= 0.

Inv.curves/exp.fac. and cofactors Singularities Intersection points

J1 =−3i
√

a+ x− y
J2 = 3i

√
a+ x− y

J3 =−3a+ x(y− x)

E4 = e
g1x

−3a+x(y−x)

α1 =−i
√

a− x
3 +

y
3

α2 = i
√

a− x
3 +

y
3

α3 =−2x
3 −

y
3

α4 =−g1
3

P1 = (−i
√

a,2i
√

a)
P2 = (i

√
a,−2i

√
a)

P∞
1 = [0 : 1 : 0]

P∞
2 = [1 : 1 : 0]

P∞
3 = [1 : 0 : 0]

For a < 0 we have

sn(2),sn(2);N,N,S

For a > 0 we have

©(2),©(2);N,N,S

J1∩ J2 = P∞
2 simple

J1∩ J3 =

{
P∞

2 simple
P2 simple

J1∩L∞ = P∞
2 simple

J2∩ J3 =

{
P∞

2 simple
P1 simple

J2∩L∞ = P∞
2 simple

J3∩L∞ =

{
P∞

1 simple
P∞

2 simple

Source: Elaborated by the author.
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Table 179 – Divisor and zero-cycles of family (H) when v = 0 and a 6= 0.

Divisor and zero-cycles Degree

ICD =

{
J1 + J2 +2J3 +L∞ if a < 0
JC

1 + JC
2 +2J3 +L∞ if a > 0

M0CS =

{
2P1 +2P2 +P∞

1 +P∞
2 +P∞

3 if a < 0
2PC

1 +2PC
2 +P∞

1 +P∞
2 +P∞

3 if a > 0

T = ZJ1J2J2
3 = 0.

M0CT =

{
3P1 +3P2 +3P∞

1 +5P∞
2 +P∞

3 if a < 0
3PC

1 +3PC
2 +3P∞

1 +5P∞
2 +P∞

3 if a > 0

5
5

7
7

7

15
15

Source: Elaborated by the author.

where the total curve T has

1) only two distinct tangents at P1 (and at P2), but one of them is double;

2) only two distinct tangents at P∞
1 , but one of them is double and

3) only four distinct tangents at P∞
2 , but one of them is double.

Table 180 – First integral and integrating factor of family (H) when v = 0 and a 6= 0.

First integral Integrating Factor

General I = Jλ1
1 J−λ1

2 J0
3 E
− 6i
√

aλ1
g1

4 R = Jλ1
1 J−2−λ1

2 J−2
3 E

− 6i
√

a(1+λ1)
g1

4
Simple

example I =
J1

J2E4
6i
√

a
R =

1
J1J2J2

3
Source: Elaborated by the author.

(ii.2) a = v2 and a 6= 0.

Here the two lines coalesce yielding a double line so we compute the exponential
factor E4.
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Table 181 – Invariant curves, exponential factors, cofactors, singularities and intersection points of family
(H) when a = v2 and a 6= 0.

Inv.curves/exp.fac. and cofactors Singularities Intersection points

J1 = x− y
J2 =−3v2 +3vx− x2 + xy
J3 =−3v2−3vx− x2 + xy

E4 = e
g0+g1(x−y)

x−y

α1 =− x
3 +

y
3

α2 =−v− 2x
3 −

y
3

α3 = v− 2x
3 −

y
3

α4 =
g0
3

P1 = (−v,−v)
P2 = (v,v)

P∞
1 = [0 : 1 : 0]

P∞
2 = [1 : 1 : 0]

P∞
3 = [1 : 0 : 0]

sn(2),sn(2);N,N,S

J1∩ J2 =

{
P∞

2 simple
P2 simple

J1∩ J3 =

{
P∞

2 simple
P1 simple

J1∩L∞ = P∞
2 simple

J2∩ J3 =

{
P∞

2 triple
P1 simple

J2∩L∞ =

{
P∞

1 simple
P∞

2 simple

J3∩L∞ =

{
P∞

1 simple
P∞

2 simple
Source: Elaborated by the author.

Table 182 – Divisor and zero-cycles of family (H) when a = v2 and a 6= 0.

Divisor and zero-cycles Degree
ICD = 2J1 + J2 + J3 +L∞

M0CS = 2P1 +2P2 +P∞
1 +P∞

2 +P∞
3

T = ZJ2
1J2J3 = 0

M0CT = 3P1 +3P2 +3P∞
1 +5P∞

2 +P∞
3

5

7

7

15
Source: Elaborated by the author.

where the total curve T has

1) only two distinct tangents at P1 and at P2, but one of them is double;

2) only two distinct tangents at P∞
1 , but one of them is double and

3) only four distinct tangents at P∞
2 , but one of them is double.

Table 183 – First integral and integrating factor of family (H) when a = v2 and a 6= 0.

First integral Integrating Factor

General I = J0
1 Jλ2

2 J−λ2
3 E

6vλ2
g0

4 R = J−2
1 Jλ2

2 J−2−λ2
3 E

6v(1+λ2)
g0

4
Simple

example I =
J2E4

6v

J3
R =

1
J2

1 J2J3
Source: Elaborated by the author.

(ii.3) a = 3v2/4 and a 6= 0.
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Here we have, apart from two lines and two hyperbolas, an additional invariant line.
Then, we have five invariant algebraic curves and according to Jouanolou’s theorem
the corresponding system has a rational first integral.

Table 184 – Invariant curves, cofactors, singularities and intersection points of family (H) when a = 3v2/4
and a 6= 0.

Invariant curves and cofactors Singularities Intersection points

J1 =−3v
2 + x− y

J2 =
3v
2 + x− y

J3 = y
J4 =− x2

3v +
xy
3v −

3v
4 + x

J5 =
x2

3v −
xy
3v +

3v
4
+ x

α1 =
1
6(−3v−2x+2y)

α2 =
1
6(3v−2x+2y)

α3 =
y
3 −

4x
3

α4 =
1
3(−3v−2x− y)

α5 = v− 2x
3 −

y
3

P1 =
(
−3v

2 ,0
)

P2 = (− v
2 ,−2v)

P3 = ( v
2 ,2v)

P4 =
(3v

2 ,0
)

P∞
1 = [0 : 1 : 0]

P∞
2 = [1 : 1 : 0]

P∞
3 = [1 : 0 : 0]

n,s,s,n;N,N,S

J1∩ J2 = P∞
2 simple

J1∩ J3 = P4 simple

J1∩ J4 =

{
P∞

2 simple
P4 simple

J1∩ J5 =

{
P∞

2 simple
P2 simple

J1∩L∞ = P∞
2 simple

J2∩ J3 = P1 simple

J2∩ J4 =

{
P∞

2 simple
P3 simple

J2∩ J5 =

{
P∞

2 simple
P1 simple

J2∩L∞ = P∞
2 simple

J3∩ J4 = P4 double
J3∩ J5 = P1 double
J3∩L∞ = P∞

3 simple

J4∩ J5 =

{
P∞

1 triple
P∞

2 simple

J4∩L∞ =

{
P∞

1 simple
P∞

2 simple

J5∩L∞ =

{
P∞

1 simple
P∞

2 simple
Source: Elaborated by the author.

Table 185 – Divisor and zero-cycles of family (H) when a = 3v2/4 and a 6= 0.

Divisor and zero-cycles Degree
ICD = J1 + J2 + J3 + J4 + J5 +L∞

M0CS = P1 +P2 +P3 +P4 +P∞
1 +P∞

2 +P∞
3

T = ZJ1J2J3J4J5 = 0

M0CT = 3P1 +2P2 +2P3 +3P4 +3P∞
1 +5P∞

2 +2P∞
3

6

7

8

20
Source: Elaborated by the author.

where the total curve T has

1) only two distinct tangents at P1 (and at P4), but one of them is double,
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2) only two distinct tangents at P∞
1 , but one of them is double and

3) five distinct tangents at P∞
2 .

Table 186 – First integral and integrating factor of family (H) when a = 3v2/4 and a 6= 0.

First integral Integrating Factor

General I = Jλ1
1 Jλ2

2 J
−λ1

2 −
λ2
2

3 J
λ2
2

4 J
λ1
2

5 R = Jλ1
1 Jλ2

2 J
−1−λ1

2 −
λ2
2

3 J
−1

2+
λ2
2

4 J
−1

2+
λ1
2

5
Simple

example I1 =
J2

1 J5

J3
I2 =

J2
2 J4

J3
R =

1
J1J2J4J5

Source: Elaborated by the author.

Observation 130. Consider F 1
(c1,c2)

= c1J2
1 J5− c2J3 = 0, degF 1

(c1,c2)
= 4. The re-

markable values of F 1
(c1,c2)

are [1 : 9v2/2] and [1 : 0] for which we have

F 1
(1,9v2/2) =−J2

2 J4, F 1
(1,0) = J2

1 J5.

Therefore, J1,J2,J4,J5 are remarkable curves of I1, [1 : 9v2/2] and [1 : 0] are the
only two critical remarkable values of I1 and J1,J2 are critical remarkable curves of
I1. The singular points are P1,P3 for F 1

(1,9v2/2) and P2,P4 for F 1
(1,0).

Considering the first integral I2 with its associated curve F 2
(c1,c2)

= c1J2
2 J4− c2J3

we have the same remarkable values [1 : 9v2/2] and [1 : 0] and the same remarkable
curves J1,J2,J4,J5. However, the singular point are P1,P3 for F 2

(1,0) and P2,P4 for
F 2

(1,9v2/2).

(ii.4) a =−3v2 and a 6= 0.

Here we have, apart from two lines and two hyperbolas, an additional invariant
hyperbola. Then, we have five invariant algebraic curves and according to Jouanolou’s
theorem the corresponding system has a rational first integral.
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Table 187 – Invariant curves, cofactors, singularities and intersection points of family (H) when a =−3v2

and a 6= 0.

Invariant curves and cofactors Singularities Intersection points

J1 =−6v+ x− y
J2 = 6v+ x− y
J3 = 9v2 + xy
J4 = 9v2 +3vx− x2 + xy
J5 = 9v2−3vx− x2 + xy

α1 =−2v− x
3 +

y
3

α2 = 2v− x
3 +

y
3

α3 =−5x
3 −

y
3

α4 =−v− 2x
3 −

y
3

α5 = v− 2x
3 −

y
3

P1 = (−3v,3v)
P2 = (−v,5v)
P3 = (v,−5v)
P4 = (3v,−3v)

P∞
1 = [0 : 1 : 0]

P∞
2 = [1 : 1 : 0]

P∞
3 = [1 : 0 : 0]

n,s,s,n;N,N,S

J1∩ J2 = P∞
2 simple

J1∩ J3 = P4 double

J1∩ J4 =

{
P∞

2 simple
P4 simple

J1∩ J5 =

{
P∞

2 simple
P3 simple

J1∩L∞ = P∞
2 simple

J2∩ J3 = P1 double

J2∩ J4 =

{
P∞

2 simple
P2 simple

J2∩ J5 =

{
P∞

2 simple
P1 simple

J2∩L∞ = P∞
2 simple

J3∩ J4 =

{
P∞

1 triple
P4 simple

J3∩ J5 =

{
P∞

1 triple
P1 simple

J3∩L∞ =

{
P∞

1 simple
P∞

3 simple

J4∩ J5 =

{
P∞

1 triple
P∞

2 simple

J4∩L∞ =

{
P∞

1 simple
P∞

2 simple

J5∩L∞ =

{
P∞

1 simple
P∞

2 simple
Source: Elaborated by the author.

Table 188 – Divisor and zero-cycles of family (H) when a =−3v2 and a 6= 0.

Divisor and zero-cycles Degree
ICD = J1 + J2 + J3 + J4 + J5 +L∞

M0CS = P1 +P2 +P3 +P4 +P∞
1 +P∞

2 +P∞
3

T = ZJ1J2J3J4J5 = 0

M0CT = 3P1 +2P2 +2P3 +3P4 +4P∞
1 +5P∞

2 +2P∞
3

6

7

9

21
Source: Elaborated by the author.

where the total curve T has

1) only two distinct tangents at P1 (and at P4), but one of them is double,

2) only two distinct tangents at P∞
1 , but one of them is triple,
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3) only four tangents at P∞
2 , but one of them is double.

Table 189 – First integral and integrating factor of family (H) when a =−3v2 and a 6= 0.

First integral Integrating Factor

General I = Jλ1
1 Jλ2

2 J−λ1−λ2
3 J2λ2

4 J2λ1
5 R = Jλ1

1 Jλ2
2 J−2−λ1−λ2

3 J1+2λ2
4 J1+2λ1

5
Simple

example I1 =
J1J2

5
J3

I2 =
J2J2

4
J3

R =
1

J1J2J4J5
Source: Elaborated by the author.

Observation 131. Consider F 1
(c1,c2)

= c1J1J2
5 − c2J3 = 0, degF 1

(c1,c2)
= 5. The re-

markable values of F 1
(c1,c2)

are [1 :−108v3] and [1 : 0] for which we have

F 1
(1,−108v3) = J2J2

4 , F 1
(1,0) = J1J2

5 .

Therefore, J1,J2,J4,J5 are remarkable curves of I1, [1 :−108v3] and [1 : 0] are the
only two critical remarkable values of I1 and J4,J5 are critical remarkable curves of
I1. The singular points are P2,P4 for F 1

(1,−108v3) and P1,P3 for F 1
(1,0).

Considering the first integral I2 with its associated curve F 2
(c1,c2)

= c1J2J2
4 − c2J3

we have the remarkable values [1 : 108v3] and [1 : 0] and the same remarkable curves
J1,J2,J4,J5. The singular point are P1,P3 for F 2

(1,108v3) and P2,P4 for F 2
(1,0).

(ii.5) a = 8v2/9 and a 6= 0.

Here we have, apart from two lines and two hyperbolas, an additional invariant
hyperbola. Then, we have five invariant algebraic curves and according to Jouanolou’s
theorem the corresponding system has a rational first integral.
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Table 190 – Invariant curves, cofactors, singularities and intersection points of family (H) when a = 8v2/9
and a 6= 0.

Invariant curves and cofactors Singularities Intersection points

J1 =−v+ x− y
J2 = v+ x− y
J3 = y(x− y)− v2

3
J4 =−8v2

3 +3vx+ x(y− x)
J5 =−8v2

3 −3vx+ x(y− x)

α1 =
1
3(−v− x+ y)

α2 =
1
3(v− x+ y)

α3 =
2y
3 −

5x
3

α4 =−v− 2x
3 −

y
3

α5 = v− 2x
3 −

y
3

P1 =
(
−4v

3 ,−
v
3

)
P2 =

(
−2v

3 ,−
5v
3

)
P3 =

(2v
3 ,

5v
3

)
P4 =

(4v
3 ,

v
3

)
P∞

1 = [0 : 1 : 0]
P∞

2 = [1 : 1 : 0]
P∞

3 = [1 : 0 : 0]

n,s,s,n;N,N,S

J1∩ J2 = P∞
2 simple

J1∩ J3 =

{
P∞

2 simple
P4 simple

J1∩ J4 =

{
P∞

2 simple
P4 simple

J1∩ J5 =

{
P∞

2 simple
P2 simple

J1∩L∞ = P∞
2 simple

J2∩ J3 =

{
P∞

2 simple
P1 simple

J2∩ J4 =

{
P∞

2 simple
P3 simple

J2∩ J5 =

{
P∞

2 simple
P1 simple

J2∩L∞ = P∞
2 simple

J3∩ J4 =

{
P∞

2 simple
P4 triple

J3∩ J5 =

{
P∞

2 simple
P1 triple

J3∩L∞ =

{
P∞

2 simple
P∞

3 simple

J4∩ J5 =

{
P∞

1 triple
P∞

2 simple

J4∩L∞ =

{
P∞

1 simple
P∞

2 simple

J5∩L∞ =

{
P∞

1 simple
P∞

2 simple
Source: Elaborated by the author.

Table 191 – Divisor and zero-cycles of family (H) when a = 8v2/9 and a 6= 0.

Divisor and zero-cycles Degree
ICD = J1 + J2 + J3 + J4 + J5 +L∞

M0CS = P1 +P2 +P3 +P4 +P∞
1 +P∞

2 +P∞
3

T = ZJ1J2J3J4J5 = 0

M0CT = 3P1 +2P2 +2P3 +3P4 +3P∞
1 +6P∞

2 +2P∞
3

6

7

9

21
Source: Elaborated by the author.

where the total curve T has
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1) only two distinct tangents at P1 (and at P4), but one of them is double,

2) only two distinct tangents at P∞
1 , but one of them is double and

3) six distinct tangents at P∞
2 .

Table 192 – First integral and integrating factor of family (H) when a = 8v2/9 and a 6= 0.

First integral Integrating Factor

General I = Jλ1
1 Jλ2

2 J
− λ1

3 −
λ2
3

3 J
λ2
3

4 J
λ1
3

5 R = Jλ1
1 Jλ2

2 J
− λ1

3 −
λ2
3 −

2
3

3 J
λ2
3 −

2
3

4 J
λ1
3 −

2
3

5
Simple

example I1 =
J3

1 J5

J3
I2 =

J3
2 J4

J3
R =

1
J1J2J4J5

Source: Elaborated by the author.

Observation 132. Consider F 1
(c1,c2)

= c1J3
1 J5− c2J3 = 0, degF 1

(c1,c2)
= 5. The re-

markable values of F 1
(c1,c2)

are [1 :−16v3] and [1 : 0] for which we have

F 1
(1,−16v3) = J3

2 J4, F 1
(1,0) = J3

1 J5.

Therefore, J1,J2,J4,J5 are remarkable curves of I1, [1 : −16v3] and [1 : 0] are the
only two critical remarkable values of I1 and J1,J2 are critical remarkable curves of
I1. The singular points are P1,P3 for F 1

(1,−16v3) and P2,P4 for F 1
(1,0).

Considering the first integral I2 with its associated curves F 2
(c1,c2)

= c1J3
2 J4− c2J3

we have the remarkable values [1 : 16v3] and [1 : 0] and the same remarkable curves
J1,J2,J4,J5. The singular point are P1,P3 for F 2

(1,0) and P2,P4 for F 2
(1,16v3).

(ii.6) a = 0 and v 6= 0.

Under this condition, systems (H) do not belong to QSH. The affine invariant lines
are x = 0 and ±3v− x+ y = 0 that are all simple. Considering the line at infinity
Z = 0 the total multiplicity of the invariant lines is four so this case was studied in
(SCHLOMIUK; VULPE, 2008c). We include this case as indicated in Observation
81. Perturbing this system in the family (H) we can obtain two distinct configurations
of lines and hyperbolas. By perturbing the reducible conics x(−3v− x+ y) = 0 and
x(3v−x+y)= 0 we can produce two distinct hyperbolas−3a−3vx−x2+xy= 0 and
−3a+3vx− x2 + xy = 0, respectively. Furthermore, the cubic x(3v− x+ y)(−3v−
x+ y) = 0 has integrable multiplicity two.
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Table 193 – Invariant curves, exponential factors, cofactors, singularities and intersection points of family
(H) when a = 0 and v 6= 0.

Inv.curves/exp.fac. and cofactors Singularities Intersection points

J1 =−3v− x+ y
J2 = 3v− x+ y
J3 = x

E4 = e−
6g0(6v2+x(y−x))+g1x((x−y)2−9v2)

2x(−3v+x−y)(3v+x−y)

α1 = v− x
3 +

y
3

α2 =−v− x
3 +

y
3

α3 =− x
3 −

2y
3

α4 = g0

P1 = (0,−3v)
P2 = (2v,−v)
P3 = (−2v,v)
P4 = (0,3v)

P∞
1 = [0 : 1 : 0]

P∞
2 = [1 : 1 : 0]

P∞
3 = [1 : 0 : 0]

For v 6= 0 we have

s,n,n,s;N,N,S

J1∩ J2 = P∞
2 simple

J1∩ J3 = P4 simple
J1∩L∞ = P∞

2 simple
J2∩ J3 = P1 simple
J2∩L∞ = P∞

2 simple
J3∩L∞ = P∞

1 simple

Source: Elaborated by the author.

Table 194 – Divisor and zero-cycles of family (H) when a = 0 and v 6= 0.

Divisor and zero-cycles Degree
ICD = J1 + J2 + J3 +L∞ if v 6= 0

M0CS = P1 +P2 +P3 +P4 +P∞
1 +P∞

2 +P∞
3 if v 6= 0

T = ZJ1J2J3 = 0.

M0CT = 2P1 +P2 +P3 +2P4 +2P∞
1 +3P∞

2 +P∞
3 if v 6= 0

4

7

4

12
Source: Elaborated by the author.

where the total curve T has three distinct tangents at P∞
2 .

Table 195 – First integral and integrating factor of family (H) when a = 0 and v 6= 0.

First integral Integrating Factor

General I = Jλ1
1 J−λ1

2 J0
3 E
− 2λ1v

g0
4 R = Jλ1

1 J−4−λ1
2 J−2

3 E
− 2v(λ1+2)

g0
4

Simple
example I =

J1

J2E2v
4

R =
1

J2
1 J2

2 J2
3

Source: Elaborated by the author.

(ii.7) a = v = 0.

Under this condition, systems (H) do not belong to QSH. The affine invariant lines are
x = 0, y = 0 that are both simple and x− y = 0 that is double. Considering the line at
infinity Z = 0 the total multiplicity of the invariant lines is four so this case was studied
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in (SCHLOMIUK; VULPE, 2008c). We include this case as indicated in Observation
81. This system has a rational first integral that foliates the plane into quartic invariant
algebraic curves. The lines x = 0 and x−y = 0 are remarkable curves. Perturbing this
system in the full family (H) we can obtain up to ten distinct configurations of lines
and hyperbolas. By perturbing the reducible conic x(x− y) = 0 we can produce 2
distinct hyperbolas−3a+3vx−x2+xy = 0 and−3a−3vx−x2+xy = 0. Perturbing
the reducible conic y(x− y) = 0 we can produce a third hyperbola y(x− y)− v2

3 = 0
and by perturbing xy = 0 we can produce the hyperbola 9v2 + xy = 0. We get a
double hyperbola −3a + x(y− x) = 0 by perturbing the double reducible conic
x2(x− y)2 = 0.

Table 196 – Invariant curves, exponential factors, cofactors, singularities and intersection points of family
(H) when a = v = 0.

Inv.curves/exp.fac. and cofactors Singularities Intersection points
J1 = y
J2 = x
J3 = x− y

E4 = e
g0+g1(x−y)

x−y

α1 =
y
3 −

4x
3

α2 =− x
3 −

2y
3

α3 =
y
3 −

x
3

α4 =
g0
3

P1 = (0,0)

P∞
1 = [0 : 1 : 0]

P∞
2 = [1 : 1 : 0]

P∞
3 = [1 : 0 : 0]

hpphpp(4);N,N,S

J1∩ J2 = P1 simple
J1∩ J3 = P1 simple
J1∩L∞ = P∞

3 simple
J2∩ J3 = P1 simple
J2∩L∞ = P∞

1 simple
J3∩L∞ = P∞

2 simple

Source: Elaborated by the author.

Table 197 – Divisor and zero-cycles of family (H) when a = v = 0.

Divisor and zero-cycles Degree
ICD = J1 + J2 +2J3 +L∞

M0CS = 4P1 +P∞
1 +P∞

2 +P∞
3

T = ZJ1J2J2
3 = 0.

M0CT = 4P1 +2P∞
1 +3P∞

2 +2P∞
3

5

7

5

10
Source: Elaborated by the author.

where the total curve T has

1) only three distinct tangents at P1, but one of them is double;

2) only two distinct tangentes at P∞
2 , but one of them is double.
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Table 198 – First integral and integrating factor of family (H) when a = v = 0.

First integral Integrating Factor

General I = Jλ1
1 J−λ1

2 J−3λ1
3 E0

4 R = Jλ1
1 J−2−λ1

2 J−4−3λ1
3 E0

4
Simple

example I1 =
J1

J2J3
3

R =
1

J1J2J3

Source: Elaborated by the author.

Observation 133. Consider F 1
(c1,c2)

= c1J1− c2J2J3
3 = 0, degF 1

(c1,c2)
= 4. The re-

markable value of F 1
(c1,c2)

is [0 : 1] for which we have

F 1
(0,1) =−J2J3

3 .

Therefore, J2, J3 are remarkable curves of I1, [0 : 1] is the only critical remarkable
values of I1 and J3 is critical remarkable curve of I1. The singular point is P1 for
F 1

(0,1).

We sum up the topological, dynamical and algebraic geometric features of family (H) and
we also confront our results with previous results in the literature in the following proposition.

Proposition 134. (a) For the family (H) we have nine distinct configurations C(H)
1 −C(H)

9 of
invariant hyperbolas and lines (see Figure 14 for the complete bifurcation diagram of
configurations of such family). The bifurcation set of configurations in the full parameter
space is av(a− v2)(a+ 3v2)(a− 3v2/4)(a− 8v2/9) = 0. Its complement is a union of
12 disjoint sets. On v(a− v2) = 0 one of the algebraic solutions is double. On (a−
3v2/4)(a+ 3v2)(a− 8v2/8) = 0 we have an additional line or an additional hyperbola.
For the limiting set of the parameter space, i.e. on a = 0 the invariant hyperbolas become
reducible producing the lines x = 0, −3v− x+ y = 0 and x = 0, 3v− x+ y = 0. The
configuration C(H)

9 is not equivalent with anyone of the configurations in (OLIVEIRA et

al., 2017).

(b) The family (H) is Darboux integrable if av(a− v2)(a−3v2/4)(a+3v2)(a−8v2/9) 6= 0.
When v(a− v2) = 0 the family (H) is generalized Darboux integrable. In all the following
three cases, we have a rational first integral. If a = 3v2/4 then the systems have an
additional invariant line and the plane is foliated into quartic invariant algebraic curves. If
a =−3v2 the plane is foliated by quintic invariant algebraic curves. If a = 8v2/9 then the
systems have an additional invariant hyperbola and the plane is foliated in quintic invariant
algebraic curves. The remarkable curves are J1,J2,J4,J5 for these three algebraically
integrable cases of family (H) for each case correspondingly. All systems in family (H)
have an inverse integrating factor which is polynomial.

(c) For the family (H) we have five topologically distinct phase portraits P(H)
1 −P(H)

5 . The
topological bifurcation diagram of family (H) is done in Figure 15. The bifurcation set is
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the line a = 0, the parabola a = v2 and the half line v = 0 with a < 0. The line a = 0 is a
bifurcation of separatrix from saddle to saddle connection. The parabola a = v2 and the
half line v = 0 with a < 0 is are bifurcation sets of singularities.

Proof of Proposition 134:

(a) We have the following types of divisors and zero-cycles of the total invariant curve T for
the configurations of family (H) :

Table 199 – Configurations for family (H).

Configurations Divisors and zero-cycles of the total inv. curve T

C(H)
1

ICD = J1 + J2 + J3 + J4 +L∞

M0CT = 2P1 +2P2 +2P3 +2P4 +3P∞
1 +5P∞

2 +P∞
3

C(H)
2

ICD = J1 + J2 + J3 + J4 +L∞

M0CT = 2P1 +2P2 +2P3 +2P4 +3P∞
1 +5P∞

2 +P∞
3

C(H)
3

ICD = JC
1 + JC

2 + J3 + J4 +L∞

M0CT = 2PC
1 +2PC

2 +2PC
3 +2PC

4 +3P∞
1 +5P∞

2 +P∞
3

C(H)
4

ICD = J1 + J2 +2J3 +L∞

M0CT = 3P1 +3P2 +3P∞
1 +5P∞

2 +P∞
3

C(H)
5

ICD = JC
1 + JC

2 +2J3 +L∞

M0CT = 3PC
1 +3PC

2 +3P∞
1 +5P∞

2 +P∞
3

C(H)
6

ICD = 2J1 + J2 + J3 +L∞

M0CT = 3P1 +3P2 +3P∞
1 +5P∞

2 +P∞
3

C(H)
7

ICD = J1 + J2 + J3 + J4 + J5 +L∞

M0CT = 3P1 +2P2 +2P3 +3P4 +3P∞
1 +5P∞

2 +2P∞
3

C(H)
8

ICD = J1 + J2 + J3 + J4 + J5 +L∞

M0CT = 3P1 +2P2 +2P3 +3P4 +4P∞
1 +5P∞

2 +2P∞
3

C(H)
9

ICD = J1 + J2 + J3 + J4 + J5 +L∞

M0CT = 3P1 +2P2 +2P3 +3P4 +3P∞
1 +6P∞

2 +2P∞
3

Source: Elaborated by the author.

Although C(H)
1 and C(H)

2 admit the same type of divisors and zero-cycles we can see they
are different because in C(H)

1 each branch of the hyperbolas intersects one line while C(H)
2

have two branches intersecting both lines and two branches intersecting no line. Therefore,
the configurations C(H)

1 up to C(H)
9 are all distinct. For the limit cases of family (H) we have

the following configurations:
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Table 200 – Configurations for the limit cases of family (H).

Configurations Divisors and zero-cycles of the total inv. curve T

c1
ICD = J1 + J2 + J3 +L∞

M0CT = 2P1 +P2 +P3 +2P4 +2P∞
1 +3P∞

2 +P∞
3

c2
ICD = J1 + J2 +2J3 +L∞

M0CT = 4P1 +2P∞
1 +3P∞

2 +2P∞
3

Source: Elaborated by the author.

In (OLIVEIRA et al., 2017) the authors presented all the normal forms for QSH and they
also give all the configurations for each normal form. However we notice one configuration
missing in the study of (3.97) (here family (H)). The configurations they gave in this study
was H.142 (which is C(H)

3 ), H.137 (which is C(H)
1 ), H.138 (which is C(H)

2 ), H.152 (which
is C(H)

6 ), H.149 (which is C(H)
7 ), H.155 (which is C(H)

5 ), H.154 (which is C(H)
4 ) and H.158

(which is C(H)
8 ). Therefore, they missed in the listing of configurations for systems (3.97)

the configuration C(H)
9 .

The other statements in (a) follows from the study done previously.

(b) This is shown in the previously exhibited tables. The computations for the remarkable
curves were done in Remarks 130, 131 and 132 .

(c) We have that:

Table 201 – Phase portraits for family (H).

Phase Portraits Sing. at ∞ Finite sing. Separatrix connections

P(H)
1 (N,N,S) (n,s,s,n) 2SC f

f 8SC∞
f 0SC∞

∞

P(H)
2 (N,N,S) (n,s,s,n) 4SC f

f 6SC∞
f 0SC∞

∞

P(H)
3 (N,N,S)

(©,©,©,©)
(©(2),©(2))

0SC f
f 0SC∞

f 2SC∞
∞

P(H)
4 (N,N,S) (sn(2),sn(2)) 1SC f

f 6SC∞
f 0SC∞

∞

P(H)
5 (N,N,S) (sn(2),sn(2)) 0SC f

f 8SC∞
f 0SC∞

∞

Source: Elaborated by the author.

Therefore, we have five distinct phase portraits for systems (H). For the limit cases of
family (H) we have the following phase portraits:

Table 202 – Phase portraits for the limit cases of family (H).

Phase Portraits Sing. at ∞ Finite sing. Separatrix connections

p1 (N,N,S) (n,s,s,n) 3SC f
f 6SC∞

f 0SC∞
∞

p2 (N,N,S) hpphpp(4) 0SC f
f 6SC∞

f 0SC∞
∞

Source: Elaborated by the author.
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We note that the phase portraits P(H)
1
∼=top P(B)

1 , P(H)
3
∼=top P(B)

3 , P(H)
4
∼=top P(E)

4 , P(H)
5
∼=top

p2 (E) (where p2 is a phase portrait in the limit cases of family (E)) and p1 ∼=top P(C)
4 are

missing in (LLIBRE; YU, 2018) and they were listed in the geometric studies of families
(B), (C) and (E). We also have that P(H)

1 is missing in (CAIRÓ; FEIX; LLIBRE, 1999) and
it was listed in the geometric study of family (B).

�

Figure 14 – Bifurcation diagram of configurations for family (H)
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Figure 15 – Topological bifurcation diagram for family (H).
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6.1.6.1 The solution of the Poincaré problem for the family (H)

We can recognize when a system in this family has a rational first integral. The following
is the answer to Poincaré’s problem for the family (H):

Theorem 135. i) A necessary and sufficient condition for a system in family (H) to have a
rational first integral given by invariant algebraic curves of degree at most two, is that v2−a > 0
and that (a,v) be situated on a parabola of the form a = (1− r2)v2 with r ∈Q. ii) The set of all
points (a,v)’s satisfying these two conditions is dense in the set v2−a > 0 with v 6= 0.

Proof. i) We first prove that the condition is necessary. So assume that we have a system
of parameters (a,v) that has a rational first integral. Assume now that (a,v) is in the generic
situations v(a− v2)(a+3v2)(a−8v2/9)(a−3v2/4) 6= 0. Any first integral of the system is then
of the following general form:

I = Jλ1
1 J−λ1

2 J
λ1
√

v2−a
v

3 J
− λ1
√

v2−a
v

4 .
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This is a rational first integral if and only if λ1 ∈ Z and λ1
√

v2−a
v ∈ Z in which case we

must have that r =
√

v2−a/v must be a rational number. In view of our generic hypothesis
r 6= 0. Since r =

√
v2−a/v is rational we have v2 − a ≥ 0 and by hypothesis v2 − a 6= 0.

Therefore v2−a > 0. We also have a = (1− r2)v2 and therefore the condition is necessary in
this case. Consider now the case when v(a− v2)(a+3v2)(a−8v2/9)(a−3v2/4) = 0. Since on
v(a−v2) = 0 we cannot have a rational first integral because as we see in the tables for these two
cases, we have exponential factors in the first integrals and hence we must have v(a− v2) 6= 0.
Therefore our previous assumption is reduced to (a+3v2)(a−8v2/9)(a−3v2/4) = 0. Suppose
first that the point (a,v) is located on the parabola a =−3v2. Then this parabola can be written
as a = (1− r2)v2 where r = 2. We then have v2−a = r2v2 = 4v2 > 0. If the point (a,v) is on the
parabola a−8y2/9= 0 then this parabola can be written as a= (1−r2)v2 for r = 1/3. Here again
we have that v2−a = r2v2 = v2/9 > 0. So the system situated on the parabola a−8y2/9 = 0
satisfies v2−a > 0 and for r = 1/3 the point is located on the parabola a = (1− r2)v2. So also
in this case these conditions are necessary. There remains only the case when (a,v) is on the
parabola a− 3v2/4 = 0. In this case we can write this parabola as a = (1− r2)v2 by taking
r = 1/2. Also here v2−a = r2v2 = v2/4 > 0, i.e. v2−a > 0. So the necessity of the conditions
is proved in this case too.

We now prove the sufficiency of the conditions. Let us assume that v2− a > 0, v 6= 0
and (a,v) is located on a parabola a = (1− r2)v2 with r ∈ Q. Then clearly r 6= 0, otherwise
v2− a = r2v2 = 0 contrary to our assumption. In case r = 2,1/3,1/2 we are on one of the
three parabolas obtained from the condition (a+3v2)(a−8v2/9)(a−3v2/4) = 0 and for these
parabolas the tables give us rational first integrals. If the generic condition is satisfied, i.e.
v(a− v2)(a+3v2)(a−8v2/9)(a−3v2/4) 6= 0, then we know that we have the corresponding
first integral indicated in the Tables for this case where the exponents for the curves Ji are
λ1 and λ1

√
v2−a/v. But we know by our assumption that (a,v) is located on a parabola

a = (1− r2)v2 for some rational number r. From this equation we have that r2 = (a− v2)/v2.
Hence r =

√
v2−a/v is rational. We may suppose r = m/n with m,n ∈ Z and m,n coprime.

Then by taking in the general expression of the first integral λ1 = n and r =
√

v2−a/v we
obtained a rational first integral in this case.

ii) Let us denote by Pr the parabola corresponding to a rational number r, i.e.

Pr := {(a,v) ∈ R2 : (1− r2)v2 = a}.

Thus a system in the family (H) has a rational first integral if and only if it corresponds to a point
(a,v) such that v2−a > 0 with v 6= 0 and the point is situated on a parabola Pr for some rational
number r. In the parameter plane R2 let the a−axis be the horizontal line and the v−axis be the
vertical one. The parabolas a = (1− r2)v2 are symmetric with respect to the a−axis. Because of
this it would suffice to prove the density of points (a,v) on parabolas Pr and inside v2−a > 0
and v > 0.
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Claim: The set of all points in A =: ∪r∈QPr with v > 0 is dense in the set S+ = {(a,v) :
v2−a > 0, v > 0}.

Take an arbitrary point point p0 = (a0,v0) ∈ S+. So we have v2
0−a0 > 0 and v0 > 0. We

only need to consider p0 inside the first or second quadrant. Indeed the line a = 0 is outside the
parameter space of our family. So a0 6= 0. In view of our assumption we have that (v2

0−a0)/v2
0 > 0.

So let r0 =
√
(v2

0−a0)/v2
0 > 0. Hence we have a0 = (1− r2

0)v
2
0. Here r0 is not necessarily a

rational number. But it can be approximated with rational numbers. So take a sequence of
rational numbers rn such that rn→ r0. At this point let us assume that the point (a0,v0) is in
the second quadrant, i.e. a0 < 0. In this case r0 > 1 and since rn→ r0 there exists a number N

such that for n > N rn > 1 and hence r2
n > 1 for all n > N. So

√
a0/(1− r2

n) > 0. Denote by

vn =
√

a0/(1− r2
n). Denote by vn =

√
a0/(1− r2

n). Then vn→ v0 and hence (a0,vn)→ (a0,v0).
But each point (a0,vn) is located on the corresponding parabola a0 = (1− r2

n)v
2
n and hence p0

is an accumulation point of points situated on such parabolas with rn rational. Assume now
that the point p0 is in the first quadrant. Then a0 > 0 and since (v2

0−a0)/v2
0 > 0 we have that

0 < r0 =
√

1−a0/v2
0 < 1 which means that there exists a natural number N such that for n > N

we have 0 < rn < 1 and hence r2
n < 1 and hence we can take again vn =

√
a0/(1− r2

n). Then
clearly vn→ v0 and we obtain a sequence of points (a0,vn) sitting on parabolas a0 = (1− r2

n)v
2
n

with rn rational. And v2
0−a0 = r2

n > 0. Since v0 > 0 then there is a natural number M such that
for all n > M vn > 0.

�

Considering r = m1/m2 where m1,m2 ∈ N we can say that

I =
(

J1

J2

)m2
(

J3

J4

)m1

is a rational first integral of (H) when a = (1− (m1/m2)
2)v2. Consider

F(c1,c2) = c1Jm2
1 Jm1

3 − c2Jm2
2 Jm1

4 = 0.

We have that [1 : 0] and [0 : 1] are remarkable values for I , since

F(1,0) =−Jm2
1 Jm1

3 , F(0,1) =−Jm2
2 Jm1

4 .

The case m1 = m2 = 1 is when a = 0 and this case was done previously. Suppose m1 6= 1
or m2 6= 1. If m1 > 1 then [1 : 0] and [0 : 1] are two critical remarkable values for I and J3,J4 are
critical remarkable curves. If follows from the Main Theorem in (CHAVARRIGA et al., 2003)
that these are the unique critical remarkable values of I . If we also have m2 > 1 then J1,J2 also
are critical remarkable curves.



6.1. Geometric study for systems with η > 0 265

Observation 136. Note that if r < 0 then we can suppose that r =−m1/m2 where m1,m2 ∈ N
and

I =
(

J1

J2

)m2
(

J3

J4

)−m1

=

(
J1

J2

)m2
(

J4

J3

)m1

.

Considering F 1
(c1,c2)

= c1Jm2
1 Jm1

4 − c2Jm2
2 Jm1

3 = 0 we still have the same conclusions as before.

There are some additional remarkable curves when a = (1− (m1/m2)
2)v2 for especial

values of m1 and m2, see examples in Appendix A. We could find among these examples curves
of degree 5,6,7,8,10,12 etc.

6.1.7 Geometric Analysis of Family (I)

Consider the family

(I)

{
ẋ = a− x2

3 −
2xy
3

ẏ = 5a− 4xy
3 + y2

3 ,

where a 6= 0.

For a complete understanding of the bifurcation diagram of the systems in the full family
defined by the equations (I) we study here also the limit case a = 0 where the equations are still
defined.

Every system in the family (I) is endowed with five invariant algebraic curves: two lines
J1,J2 and three hyperbolas J3,J4,J5 with cofactors αi, 1≤ i≤ 5 given by

J1 =−2i
√

3
√

a+ x− y, α1 =−2i
√

a√
3
− x

3 +
y
3 ,

J2 = 2i
√

3
√

a+ x− y, α2 =
2i
√

a√
3
− x

3 +
y
3 ,

J3 =−3a+ xy, α3 =−5x
3 −

y
3 ,

J4 = i
√

3
√

ax−3a+ x(y− x), α4 =− i
√

a√
3
− 2x

3 −
y
3 ,

J5 =−i
√

3
√

ax−3a+ x(y− x), α5 =
i
√

a√
3
− 2x

3 −
y
3 .

Since the number of invariant curve is five, these systems are algebraically integrable. The
multiplicities of each invariant straight line and invariant hyperbola appearing in the divisor ICD
of invariant algebraic curves were calculated by using the 1st extactic polynomial for the lines
and the 2nd extactic polynomial for the hyperbola.

(i) a 6= 0.
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Table 203 – Invariant curves, cofactors, singularities and intersection points of family (I) when a 6= 0.

Invariant curves and cofactors Singularities Intersection points

J1 =−2i
√

3
√

a+ x− y
J2 = 2i

√
3
√

a+ x− y
J3 =−3a+ xy
J4 = i

√
3
√

ax−3a+ x(y− x)
J5 =−i

√
3
√

ax−3a+ x(y− x)

α1 =−2i
√

a√
3
− x

3 +
y
3

α2 =
2i
√

a√
3
− x

3 +
y
3

α3 =−5x
3 −

y
3

α4 =− i
√

a√
3
− 2x

3 −
y
3

α5 =
i
√

a√
3
− 2x

3 −
y
3

P1 =
(
− i
√

a√
3
, 5i
√

a√
3

)
P2 =

(
i
√

a√
3
,−5i

√
a√

3

)
P3 =

(
−i
√

3
√

a, i
√

3
√

a
)

P4 =
(

i
√

3
√

a,−i
√

3
√

a
)

P∞
1 = [0 : 1 : 0]

P∞
2 = [1 : 1 : 0]

P∞
3 = [1 : 0 : 0]

For a < 0 we have

s,s,n,n;N,N,S

For a < 0 we have

©,©,©,©;N,N,S

J1∩ J2 = P∞
2 simple

J1∩ J3 = P4 double

J1∩ J4 =

{
P∞

2 simple
P4 simple

J1∩ J5 =

{
P∞

2 simple
P2 simple

J1∩L∞ = P∞
2 simple

J2∩ J3 = P3 double

J2∩ J4 =

{
P∞

2 simple
P1 simple

J2∩ J5 =

{
P∞

2 simple
P3 simple

J2∩L∞ = P∞
2 simple

J3∩ J4 =

{
P∞

1 triple
P4 simple

J3∩ J5 =

{
P∞

1 triple
P3 simple

J3∩L∞ =

{
P∞

1 simple
P∞

3 simple

J4∩ J5 =

{
P∞

1 triple
P∞

2 simple

J4∩L∞ =

{
P∞

1 simple
P∞

2 simple

J5∩L∞ =

{
P∞

1 simple
P∞

2 simple
Source: Elaborated by the author.

Table 204 – Divisor and zero-cycles of family (I) when a 6= 0.

Divisor and zero-cycles Degree

ICD =

{
J1 + J2 + J3 + J4 + J5 +L∞ if a < 0
JC

1 + JC
2 + J3 + JC

4 + JC
5 +L∞ if a > 0

M0CS =

{
P1 +P2 +P3 +P4 +P∞

1 +P∞
2 +P∞

3 if a < 0
PC

1 +PC
2 +PC

3 +PC
4 +P∞

1 +P∞
2 +P∞

3 if a > 0

T = ZJ1J2J3J4J5 = 0

M0CT =

{
2P1 +2P2 +3P3 +3P4 +4P∞

1 +5P∞
2 +2P∞

3 if a < 0
2PC

1 +2PC
2 +3PC

3 +3PC
4 +4P∞

1 +5P∞
2 +2P∞

3 if a > 0

6
6

7
7

9

21
21

Source: Elaborated by the author.

where the total curve T has
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1) only two distinct tangents at P3 (and at P4), but one of them is double,

2) only two distinct tangents at P∞
1 , but one of them is triple,

2) only four distinct tangents at P∞
2 , but one of them is double.

Table 205 – First integral and integrating factor of family (I) when a 6= 0.

First integral Integrating Factor

General I = Jλ1
1 Jλ2

2 J−λ1−λ2
3 J2λ2

4 J2λ1
5 R = Jλ1

1 Jλ2
2 J−2−λ1−λ2

3 J1+2λ2
4 J1+2λ1

5
Simple

example I1 =
J1J2

5
J3

I2 =
J2J2

4
J3

R =
1

J1J2J4J5
Source: Elaborated by the author.

Observation 137. Consider F 1
(c1,c2)

= c1J1J2
5 − c2J3 = 0, degF 1

(c1,c2)
= 5. The remark-

able value of F 1
(c1,c2)

are [1 : 12i
√

3a3/2] and [1 : 0] for which we have

F 1
(1:12i

√
3a3/2)

= J2J2
4 , F 1

(1,0) = J1J2
5 .

Therefore, J1,J2,J4,J5 are remarkable curves of I1, [1 : 12i
√

3a3/2] and [1 : 0] are the only
two critical remarkable values and J4,J5 are critical remarkable curves of I1. The singular
points are P1,P4 for F 1

(1:12i
√

3a3/2)
and P2,P3 for F 1

(1,0).

Considering the first integral I2 with its associated curve F 2
(c1,c2)

= c1J2J2
4 − c2J3 we

have the remarkable values [1 :−12i
√

3a3/2] and [1 : 0] and the same remarkable curves
J1,J2,J4,J5. The singular point are P2,P3 for F 2

(1:−12i
√

3a3/2)
and P1,P4 for F 2

(1,0).

(ii) a = 0.

Under this condition, systems (I) do not belong to QSH. The affine invariant lines are
x = 0, y = 0 that are both simple and x− y = 0 that is double. Considering the line at
infinity Z = 0 the total multiplicity of the invariant lines is four so this case was studied
in (SCHLOMIUK; VULPE, 2008c). We include this case as indicated in Observation
81. This system has a rational first integral that foliates the plane into quartic invariant
algebraic curves. The lines x = 0 and x− y = 0 are remarkable curves.
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Table 206 – Invariant curves, exponential factors, cofactors, singularities and intersection points of family
(I) when a = 0.

Inv.curves/exp.fac. and cofactors Singularities Intersection points
J1 = y
J2 = x
J3 = x− y

E4 = e
g0+g1(x−y)

x−y

α1 =−4x
3 + y

3
α2 =− x

3 −
2y
3

α3 =− x
3 +

y
3

α4 =
g0
3

P1 = (0,0)

P∞
1 = [0 : 1 : 0]

P∞
2 = [1 : 1 : 0]

P∞
3 = [1 : 0 : 0]

hpphpp(4);N,N,S

J1∩ J2 = P1 simple
J1∩ J3 = P1 simple
J1∩L∞ = P∞

3 simple
J2∩ J3 = P1 simple
J2∩L∞ = P∞

1 simple
J3∩L∞ = P∞

2 simple

Source: Elaborated by the author.

Table 207 – Divisor and zero-cycles of family (I) when a = 0.

Divisor and zero-cycles Degree
ICD = J1 + J2 +2J3 +L∞

M0CS = 4P1 +P∞
1 +P∞

2 +P∞
3

T = ZJ1J2J2
3 = 0.

M0CT = 4P1 +2P∞
1 +3P∞

2 +2P∞
3

5

7

5

11
Source: Elaborated by the author.

where the total curve T has

1) only three distinct tangents at P1, but one of them is double;

2) only two distinct tangents at P∞
2

Table 208 – First integral and integrating factor of family (I) when a = 0.

First integral Integrating Factor

General I = Jλ1
1 J−λ1

2 J−3λ1
3 E0

4 R = Jλ1
1 J−2−λ1

2 J−4−3λ1
3 E0

4
Simple

example I1 =
J1

J2J3
3

R =
1

J1J2J3

Source: Elaborated by the author.

Observation 138. Consider F 1
(c1,c2)

= c1J1− c2J2J3
3 = 0, degF1 = 4. The remarkable

value of F 1
(c1,c2)

is [0 : 1] for which we have

F 1
(0,1) =−J2J2

3 .
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Therefore, J2,J3 are remarkable curves of I1, [0 : 1] is the only critical remarkable values
of I1 and J3 is critical remarkable curve of I1. The singular point is P1 for F 1

(0,1).

We sum up the topological, dynamical and algebraic geometric features of family (I) in
the following proposition.

Proposition 139. (a) For the family (I) we have two distinct configurations C(I)
1 and C(I)

2 of
invariant hyperbolas and lines (see Figure 16 for the complete bifurcation diagram of
configurations of such family). The bifurcation set of configurations in the full parameter
space contains only the point a = 0. Its complement is a union of 2 disjoint sets. For
the limiting set of the parameter space, i.e. on a = 0 the invariant hyperbolas become
reducible.

(b) The family (I) have a rational first integral and the plane is foliated into quintic invariant
algebraic curves. The remarkable curves are J1,J2,J4,J5 for family (I). All systems in
family (I) have an inverse integrating factor which is polynomial.

(c) For the family (I) we have two topologically distinct phase portraits P(I)
1 and P(I)

2 . The
topological bifurcation diagram of family (I) is done in Figure 17. The bifurcation set is
the point a = 0 and it is a bifurcation of singularities.

Proof of Proposition 139.

(a) We have the following type of divisors and zero-cycles of the total invariant curve T for
the configurations of family (I):

Table 209 – Configurations for family (I).

Configurations Divisors and zero-cycles of the total inv. curve T

C(I)
1

ICD = J1 + J2 + J3 + J4 + J5 +L∞

M0CT = 2P1 +2P2 +3P3 +3P4 +4P∞
1 +5P∞

2 +2P∞
3

C(I)
2

ICD = JC
1 + JC

2 + J3 + JC
4 + JC

5 +L∞

M0CT = 2PC
1 +2PC

2 +3PC
3 +3PC

4 +4P∞
1 +5P∞

2 +2P∞
3

Source: Elaborated by the author.

Therefore, the configurations C(I)
1 and C(I)

2 are distinct. For the limit case of family (I) we
have the following configuration:

Table 210 – Configuration for the limit case of family (I).

Configuration Divisors and zero-cycles of the total inv. curve T

c1
ICD = J1 + J2 +2J3 +L∞

M0CT = 4P1 +2P∞
1 +3P∞

2 +2P∞
3

Source: Elaborated by the author.
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(b) It follows directly from Jouanolou’s theorem that we always have a rational first integral
for family (I) since we have five invariant algebraic curves. The computations for the
remarkable curves were done in Remark 137. The other statement follows from the study
done previously.

(c) We have that:

Table 211 – Phase portraits for family (I).

Phase Portraits Sing. at ∞ Finite sing. Separatrix connections

P(I)
1 (N,N,S) (n,s,s,n) 2SC f

f 8SC∞
f 0SC∞

∞

P(I)
2 (N,N,S) (©,©,©,©) 0SC f

f 0SC∞
f 2SC∞

∞

Source: Elaborated by the author.

Therefore, we have two distinct phase portraits for systems (I). For the limit case of family
(I) we have the following phase portrait:

Table 212 – Phase portrait for the limit case of family (I).

Phase Portrait Sing. at ∞ Finite sing. Separatrix connections

p1 (N,N,S) hpphpp(4) 0SC f
f 6SC∞

f 0SC∞
∞

Source: Elaborated by the author.

We note that the phase portraits P(I)
1
∼=top P(B)

1 and P(I)
2
∼=top P(B)

3 are missing in (LLIBRE;
YU, 2018) and they were listed in the geometric study of family (B). We also have that
P(I)

1 is missing in (CAIRÓ; FEIX; LLIBRE, 1999) and it was listed in the geometric study
of family (G).

�

Figure 16 – Bifurcation diagram of configurations for family (I).

a

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

C(I)
1 C(I)

2

0

2

(1)

(1)

(1)

c1

(4)
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Figure 17 – Topological bifurcation diagram for family (I).

P(I)
2P(I)

1

a
0

p1

6.1.8 Geometric Analysis of Family (J)

Consider the family

(J)

{
ẋ =−x2

2 −
xy
2

ẏ = b− 3xy
2 + y2

2 ,

where b 6= 0.

For a complete understanding of the bifurcation diagram of the systems in the full family
defined by the equations (J) we study here also the limit case b = 0 where the equations are still
defined.

Every system in the family (J) is endowed with five invariant algebraic curves: three lines
J1,J2,J3 and two hyperbolas J4,J5 with cofactors αi, 1≤ i≤ 5 given by

J1 =−i
√

2
√

b− x+ y, α1 =
i
√

b√
2
− x

2 +
y
2 ,

J2 = i
√

2
√

b− x+ y, α2 =− i
√

b√
2
− x

2 +
y
2 ,

J3 = x, α3 =− x
2 −

y
2 ,

J4 = x(y− x)−b, α4 =−x,

J5 = xy− b
2 , α5 =−2x.

Considering the line at infinity Z = 0 the total multiplicity of invariant lines is four so this family
was studied in (SCHLOMIUK; VULPE, 2008c). We include this case as indicated in Observation
81. The multiplicities of each invariant straight line and invariant hyperbola appearing in the
divisor ICD of invariant algebraic curves were calculated by using the 1st extactic polynomial
for the line and the 2nd extactic polynomial for the hyperbola.

(i) b 6= 0.
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Table 213 – Invariant curves, cofactors, singularities and intersection points of family (J) when b 6= 0.

Invariant curves and cofactors Singularities Intersection points

J1 =−i
√

2
√

b− x+ y
J2 = i

√
2
√

b− x+ y
J3 = x
J4 = x(y− x)−b
J5 = xy− b

2

α1 =
i
√

b√
2
− x

2 +
y
2

α2 =− i
√

b√
2
− x

2 +
y
2

α3 =− x
2 −

y
2

α4 =−x
α5 =−2x

P1 =
(

i
√

b√
2
,− i
√

b√
2

)
P2 =

(
− i
√

b√
2
, i
√

b√
2

)
P3 =

(
0,−i
√

2
√

b
)

P4 =
(

0, i
√

2
√

b
)

P∞
1 = [0 : 1 : 0]

P∞
2 = [1 : 1 : 0]

P∞
3 = [1 : 0 : 0]

For b < 0 we have

n,n,s,s;N,N,S

For b > 0 we have

©,©,©,©;N,N,S

J1∩ J2 = P∞
2 simple

J1∩ J3 = P4 simple

J1∩ J4 =

{
P∞

2 simple
P2 simple

J1∩ J5 = P2 double
J1∩L∞ = P∞

2 simple
J2∩ J3 = P3 simple

J2∩ J4 =

{
P∞

2 simple
P2 simple

J2∩ J5 = P1 double
J2∩L∞ = P∞

2 simple
J3∩ J4 = P∞

1 double
J3∩ J5 = P∞

1 double
J3∩L∞ = P∞

1 simple

J4∩ J5 =

{
P1,P2 simple
P∞

1 double

J4∩L∞ =

{
P∞

1 simple
P∞

2 simple

J5∩L∞ =

{
P∞

1 simple
P∞

3 simple
Source: Elaborated by the author.

Table 214 – Divisor and zero-cycles of family (J) when b 6= 0.

Divisor and zero-cycles Degree

ICD =

{
J1 + J2 + J3 + J4 + J5 +L∞ if b < 0
JC

1 + JC
2 + J3 + J4 + J5 +L∞ if b > 0

M0CS =

{
P1 +P2 +P3 +P4 +P∞

1 +P∞
2 +P∞

3 if b < 0
PC

1 +PC
2 +PC

3 +PC
4 +P∞

1 +P∞
2 +P∞

3 if b > 0

T = ZJ1J2J3J4J5 = 0

M0CT =

{
3P1 +3P2 +2P3 +2P4 +4P∞

1 +4P∞
2 +2P∞

3 if b < 0
3PC

1 +3PC
2 +2PC

3 +2PC
4 +4P∞

1 +4P∞
2 +2P∞

3 if b < 0

6
6

7
7

8

20
20

Source: Elaborated by the author.

where the total curve T has

1) only two distinct tangents at P1 (and at P2), but one of them is double,

2) only three distinct tangents at P∞
1 , but one of them is double and

3) four distinct tangents at P∞
2 .
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Table 215 – First integral and integrating factor of family (J) when b 6= 0.

First integral Integrating Factor

General I = Jλ1
1 Jλ1

2 J2λ1
3 Jλ4

4 J
−λ1−

λ4
2

5 R = Jλ1
1 Jλ1

2 J1+2λ1
3 Jλ4

4 J
−λ1−

λ4
2 −

3
2

5
Simple

example I1 =
J2

4
J5

I2 =
J1J2J2

3
J5

R =
1

J1J2J3J4
Source: Elaborated by the author.

Observation 140. Consider F 1
(c1,c2)

= c1J2
4 −c2J5 = 0, degF 1

(c1,c2)
= 4. The remarkable

values of F 1
(c1,c2)

are [1 :−2b] and [1 : 0] for which we have

F 1
(1,−2b) = J1J2J2

3 , F 1
(1,0) = J2

4 .

Therefore, J1,J2,J3,J4 are remarkable curves of I1, [1 : −2b] and [1 : 0] are the only
two critical remarkable values of I1 and J3,J4 are critical remarkable curves of I1. The
singular points are P3,P4 for F 1

(1,−2b) and P1,P2 for F 1
(1,0).

Considering the first integral I2 with its associated curves F 2
(c1,c2)

= c1J1J2J2
3 − c2J5 =

0 we have the remarkable values [1 : 2b] and [1 : 0] and the same remarkable curves
J1,J2,J3,J4. The singular points are P1,P2 for F 2

(1,2b) and P3,P4 for F 2
(1,0).

(ii) b = 0.

Under this condition, the system (J) does not belong to QSH. The affine invariant lines
are x = 0, y = 0 that are both simple and x− y = 0 that is double so we compute the
exponential factor E4. This system has a rational first integral that foliates the plane into
cubic invariant algebraic curves. The lines x = 0 and x− y = 0 are remarkable curves.

Table 216 – Invariant curves, exponential factor, cofactors, singularities and intersection points of family
(J) when b = 0.

Inv.curves/exp.fac. and cofactors Singularities Intersection points
J1 = y
J2 = x
J3 = x− y

E4 = e
g0+g1(x−y)

x−y

α1 =
y
2 −

3x
2

α2 =− x
2 −

y
2

α3 =
y
2 −

x
2

α4 =
g0
2

P1 = (0,0)

P∞
1 = [0 : 1 : 0]

P∞
2 = [1 : 1 : 0]

P∞
3 = [1 : 0 : 0]

hpphpp(4);N,N,S

J1∩ J2 = P1 simple
J1∩ J3 = P1 simple
J1∩L∞ = P∞

3 simple
J2∩ J3 = P1 simple
J2∩L∞ = P∞

1 simple
J3∩L∞ = P∞

2 simple

Source: Elaborated by the author.
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Table 217 – Divisor and zero-cycles of family (J) when b = 0.

Divisor and zero-cycles Degree
ICD = J1 + J2 +2J3 +L∞

M0CS = 4P1 +P∞
1 +P∞

2 +P∞
3

T = ZJ1J2J2
3 = 0.

M0CT = 4P1 +2P∞
1 +3P∞

2 +2P∞
3

5

7

5

11
Source: Elaborated by the author.

where the total curve T has

i) only three distinct tangents at P1, but one of them is double;

ii) only two distinct tangents at P∞
2 , but one of them is double.

Table 218 – First integral and integrating factor of family (J) when b = 0.

First integral Integrating Factor

General I = Jλ1
1 J−λ1

2 J−2λ1
3 E0

4 R = Jλ1
1 J−2−λ1

2 J−3−2λ1
3 E0

4
Simple

example I1 =
J1

J2J2
3

I2 =
J2J2

3
J1

R =
1

J1J2J3

Source: Elaborated by the author.

Observation 141. Consider F 1
(c1,c2)

= c1J1− c2J2J2
3 = 0, degF 1

(c1,c2)
= 3. The remark-

able value of F 1
(c1,c2)

is [0 : 1] for which we have

F 1
(0,1) =−J2J2

3 .

Therefore, J2,J3 are remarkable curves of I1, [1 : 0] is the only critical remarkable values
of I1 and J3 is critical remarkable curve of I1. The singular point is P1 for F 1

(0,1).
Considering the first integral I2 with its associated curves F 2

(c1,c2)
= c1J2J2

3 − c2J1 we
have the remarkable value [1 : 0] and the same remarkable curves J2,J3. The singular point
is P1 for F 2

(1,0).

We sum up the topological, dynamical and algebraic geometric features of family (J).

Proposition 142. (a) For the family (J) we have two distinct configurations C(J)
1 and C(J)

2 of
invariant hyperbolas and lines (see Figure 18 for the complete bifurcation diagram of
configurations of such family). The bifurcation set of configurations in the full parameter
space contains only the point b = 0. Its complement is a union of 2 disjoint sets. For
the limiting set of the parameter space, i.e. on b = 0 the invariant hyperbolas become
reducible.



6.1. Geometric study for systems with η > 0 275

(b) The family (J) have a rational first integral and the plane is foliated into quartic invariant
algebraic curves. The remarkable curves are J1,J2,J3,J4 for family (J). All systems in
family (J) have an inverse integrating factor which is polynomial.

(c) For the family (J) we have two topologically distinct phase portraits P(J)
1 and P(J)

2 . The
topological bifurcation diagram in the full parameter space is done in Figure 19. The
bifurcation set of singularities is the point b = 0 and it is a bifurcation of singularities.

Proof of Proposition 142.

(a) We have the following type of divisors and zero-cycles of the total invariant curve T for
the configurations of family (J):

Table 219 – Configurations for family (J).

Configurations Divisors and zero-cycles of the total inv. curve T

C(J)
1

ICD = J1 + J2 + J3 + J4 + J5 +L∞

M0CT = 3P1 +3P2 +2P3 +2P4 +4P∞
1 +4P∞

2 +2P∞
3

C(J)
2

ICD = JC
1 + JC

2 + J3 + J4 + J5 +L∞

M0CT = 3PC
1 +3PC

2 +2PC
3 +2PC

4 +4P∞
1 +4P∞

2 +2P∞
3

Source: Elaborated by the author.

Therefore, the configurations C(J)
1 and C(J)

2 are distinct. For the limit case of family (J) we
have the following configuration:

Table 220 – Configuration for the limit case of family (J).

Configuration Divisors and zero-cycles of the total inv. curve T

c1
ICD = J1 + J2 +2J3 +L∞

M0CT = 4P1 +2P∞
1 +3P∞

2 +2P∞
3

Source: Elaborated by the author.

(b) It follows directly from Jouanolou’s theorem that we always have a rational first integral
for family (J) since we have five invariant algebraic curves. The computations for the
remarkable curves were done in Remark 140. The other statement follows from the study
done previously.

(c) We have:
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Table 221 – Phase portraits for family (J).

Phase Portraits Sing. at ∞ Finite sing. Separatrix connections

P(J)
1 (N,N,S) (n,s,s,n) 3SC f

f 6SC∞
f 0SC∞

∞

P(J)
2 (N,N,S) (©,©,©,©) 0SC f

f 0SC∞
f 2SC∞

∞

Source: Elaborated by the author.

Therefore, we have two distinct phase portraits for systems (J). For the limit case of family
(J) we have the following phase portrait:

Table 222 – Phase portrait for the limit case of family (J).

Phase Portrait Sing. at ∞ Finite sing. Separatrix connections

p1 (N,N,S) hpphpp(4) 0SC f
f 6SC∞

f 0SC∞
∞

Source: Elaborated by the author.

We note that the phase portraits P(J)
1
∼=top P(C)

4 and P(J)
2
∼=top P(B)

3 are missing in (LLIBRE;
YU, 2018) and they were listed in the geometric study of families (B) and (C).

Figure 18 – Bifurcation diagram of configurations for family (J).

b

(1)

(1)

(1)

(1)
(1)

(1)

(1) (1)

(1)

(1)

0

(4)

2

(1)

(1)

(1)

c1
C(J)

1 C(J)
2

Source: Elaborated by the author.

Figure 19 – Topological bifurcation diagram for family (J).

p1

b
0

P(J)
1 P(J)

2

Source: Elaborated by the author.
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6.1.9 Geometric Analysis of Family (K)

Consider the family

(K)

{
ẋ = 4b−1+4y+ x2

ẏ = b+ y2,

where b 6=−1.

For a complete understanding of the bifurcation diagram of the systems in the full family
defined by the equations (K) we study here also the limit case b =−1 where the equations are
still defined. We display below the full geometric analysis of the systems in this family, which is
endowed with at least two invariant algebraic curves. When b(b+1) 6= 0 the systems have two
invariant lines J1,J2 and one invariant hyperbola J3 with cofactors αi, 1≤ i≤ 3 given by

J1 = 1− iy√
b
, α1 = y− i

√
b,

J2 = 1+ iy√
b
, α2 = y+ i

√
b,

J3 = (−1+b)− x+3y+ xy− y2, α3 =−1+ x−2y.

We note that when b = 0 the two lines coalesce yielding a multiple line. The multiplicities of
each invariant straight line and invariant hyperbola appearing in the divisor ICD of invariant
algebraic curves were calculated by using the 1st extactic polynomial for the lines and the 2nd
extactic polynomial for the hyperbola.

(i) The generic case: b(b+1/4)(b+1) 6= 0.

Table 223 – Invariant curves, cofactors, singularities and intersection points of family (K) for the generic
case.

Invariant curves and cofactors Singularities Intersection points

J1 = 1− iy√
b

J2 = 1+ iy√
b

J3 = (−1+b)− x+3y+ xy− y2

α1 = y− i
√

b
α2 = y+ i

√
b

α3 =−1+ x+2y

P1 =
(
−
√
−4b+4i

√
b+1,−i

√
b
)

P2 =
(√
−4b+4i

√
b+1,−i

√
b
)

P3 =
(
−
√
−(2
√

b+i)
2
,i
√

b
)

P4 =
(√
−(2
√

b+i)
2
,i
√

b
)

P∞
1 = [0 : 1 : 0]

P∞
2 = [1 : 1 : 0]

P∞
3 = [1 : 0 : 0]

For b < 0 we have

s,n,n,s;N,S,N

For b > 0 we have

©,©,©,©;N,S,N

J1∩ J2 = P∞
3 simple

J1∩ J3 =

{
P2 simple
P∞

3 simple

J1∩L∞ = P∞
3 simple

J2∩ J3 =

{
P3 simple
P∞

3 simple

J2∩L∞ = P∞
3 simple

J3∩L∞ =

{
P∞

2 simple
P∞

3 simple

Source: Elaborated by the author.
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Table 224 – Divisor and zero-cycles of family (K) for the generic case.

Divisor and zero-cycles Degree

ICD =

{
J1 + J2 + J3 +L∞ if b < 0
JC

1 + JC
2 + J3 +L∞ if b > 0

M0CS =

{
P1 +P2 +P3 +P4 +P∞

1 +P∞
2 +P∞

3 if b < 0
PC

1 +PC
2 +PC

3 +PC
4 +P∞

1 +P∞
2 +P∞

3 if b > 0

T = ZJ1J2J3 = 0

M0CT =

{
P1 +2P2 +2P3 +P4 +P∞

1 +2P∞
2 +4P∞

3 if b < 0
PC

1 +2PC
2 +2PC

3 +PC
4 +P∞

1 +2P∞
2 +4P∞

3 if a > 0

4
4

7
7

5

13
13

Source: Elaborated by the author.

where the total curve T has four distinct tangents at P∞
3 .

Observation 143. Mathematica could not give a response for the computation of the first
integral of family (K) in the generic case.

Table 225 – Integrating factor of family (K) for the generic case.

Integrating Factor

General R = J
−−
√

b+i√
b

1 J
−−
√

b−i√
b

2 J−2
3

Simple
example R = J

−−
√

b+i√
b

1 J
−−
√

b−i√
b

2 J−2
3

Source: Elaborated by the author.

(ii) The non-generic cases: b(b+1/4)(b+1) = 0

(ii.1) b =−1
4 .

As in the generic case, we have two invariant lines and one invariant hyperbola,
but here we have the coalescence of two finite singular points yielding to a semi-
hyperbolic singularity.
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Table 226 – Invariant curves, cofactors, singularities and intersection points of family (K) when b =−1
4 .

Invariant curves and cofactors Singularities Intersection points
J1 = 1−2y
J2 = 1+2y
J3 =−5

4 − x+3y+ xy− y2

E4 = e
G(x,y)

4x(y−1)−4(y−3)y−5

α1 = y+ 1
2

α2 = y− 1
2

α3 =−1+ x+2y
α4 = 8(2y+1)(4g0−5g1)

P1 =
(
0, 1

2

)
P2 =

(
−2,−1

2

)
P3 =

(
2,−1

2

)
P∞

1 = [0 : 1 : 0]
P∞

2 = [1 : 1 : 0]
P∞

3 = [1 : 0 : 0]

sn(2),n,s;N,S,N

J1∩ J2 = P∞
3 simple

J1∩ J3 =

{
P1 simple
P∞

3 simple
J1∩L∞ = P∞

3 simple

J2∩ J3 =

{
P2 simple
P∞

3 simple
J2∩L∞ = P∞

3 simple

J3∩L∞ =

{
P∞

2 simple
P∞

3 simple

Source: Elaborated by the author.

where G(x,y) =4(−4g0(4x+51)y2+4g0(31x+41)y+g0+4g1y(x(5y−39)+64y−52)+g1x) with

g0,g1 ∈ C.

Table 227 – Divisor and zero-cycles of family (K) when b =−1
4 .

Divisor and zero-cycles Degree
ICD = J1 + J2 + J3 +L∞

M0CS = 2P1 +P2 +P3 +P∞
1 +P∞

2 +P∞
3

T = ZJ1J2J3 = 0

M0CT = 2P1 +2P2 +P3 +P∞
1 +2P∞

2 +4P∞
3

4

7

5

12
Source: Elaborated by the author.

where the total curve T has four distinct tangents at P∞
3 .

Table 228 – First integral and integrating factor of family (K) when b =−1
4 .

First integral Integrating Factor

General I = J−16(4g0λ4−5g1λ4)
1 J0

2 J0
3 Eλ4

4 R = J−1−64g0λ4+80g1λ4
1 J3

2 J−2
3 Eλ4

4

Simple
example I = J16

1 e
4(4x(y−8)y+x+52y2−44y+1)

4x(y−1)−4(y−3)y−5 R = J−1
1 J3

2 J−2
3

Source: Elaborated by the author.

(ii.2) b = 0.

Here the two lines J1 and J2 of the generic case coalesce yielding a double line so we
compute the exponential factor E3.
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Table 229 – Invariant curves, exponential factor, cofactors, singularities and intersection points of family
(K) when b = 0.

Inv.cur./Exp.Fac. and cofactors Singularities Intersection points

J1 = y
J2 =−1+−x+3y+ xy− y2

E3 = e
g0+g1y

y

α1 = y
α2 =−1+ x+2y
α3 =−g0

P1 = (−1,0)
P2 = (1,0)

P∞
1 = [0 : 1 : 0]

P∞
2 = [1 : 1 : 0]

P∞
3 = [1 : 0 : 0]

sn(2),sn(2);N,S,N

J1∩ J2 =

{
P1 simple
P∞

3 simple

J1∩L∞ = P∞
3 simple

J2∩L∞ =

{
P∞

2 simple
P∞

3 simple

Source: Elaborated by the author.

Table 230 – Divisor and zero-cycles of family (K) when b = 0.

Divisor and zero-cycles Degree
ICD = 2J1 + J2 +L∞

M0CS = 2P1 +2P2 +P∞
1 +P∞

2 +P∞
3

T = ZJ2
1J2 = 0

M0CT = 3P1 +2P2 +P∞
1 +2P∞

2 +4P∞
3

4

7

5

12
Source: Elaborated by the author.

where the total curve T has

1) only two distinct tangents at P1, but one of them is double;

2) only one double tangent at P2 and

3) only three distinct tangents at P∞
3 , but one of them is double.

Table 231 – First integral and integrating factor of family (K) when b = 0.

First integral Integrating Factor

General I R = J2
1 J−2

2 E
2

g0
3

Simple
example I R = J2

1 J−2
2 E2

3

Source: Elaborated by the author.

I = I =

(
−4e−2/yEi

(
2
y

)
− y(x(y−2)+5y−2)
−xy+ x+ y2−3y+1

)(
−
(

e
g0
y +g1

)2/g0
)



6.1. Geometric study for systems with η > 0 281

where Ei(z) =−
∫

∞

−z

e−t

t
dt is the exponential integral function that has a branch cut

discontinuity in the complex z plane running from −∞ to 0.

(ii.3) b =−1.

Under this condition, systems (K) do not belong to QSH. The affine invariant lines
are 1+ y = 0, 1− y = 0 and 2+ x− y = 0 that are simple. We also could find an
exponential factor.

Table 232 – Invariant curves, exponential factor, cofactors, singularities and intersection points of family
(K) when b =−1.

Inv.curves/exp.fac. and cofactors Singularities Intersection points

J1 = 1+ y
J2 = 1− y
J3 = 2+ x− y

E4 = e
g0(x+10)y2−g0(5x+7)y+g0+g1y(x(9−2y)−19y+11)+g1x

(y−1)(−x+y−2)

α1 =−1+ y
α2 = 1+ y
α3 =−2+ x+ y
α4 = 4(y+1)(g0−2g1)

P1 = (−3,−1)
P2 = (−1,1)
P3 = (1,1)
P4 = (3,−1)

P∞
1 = [0 : 1 : 0]

P∞
2 = [1 : 1 : 0]

P∞
3 = [1 : 0 : 0]

n,s,n,s;N,S,N

J1∩ J2 = P∞
3 simple

J1∩ J3 = P1 simple

J1∩L∞ = P∞
3 simple

J2∩ J3 = P2 simple

J2∩L∞ = P∞
3 simple

J3∩L∞ = P∞
2 simple

Source: Elaborated by the author.

Table 233 – Divisor and zero-cycles of family (K) when b =−1.

Divisor and zero-cycles Degree
ICD = J1 + J2 + J3 +L∞

M0CS = P1 +P2 +P3 +P4 +P∞
1 +P∞

2 +P∞
3

T = ZJ1J2J3 = 0.

M0CT = 2P1 +2P2 +P3 +P4 +P∞
1 +2P∞

2 +3P∞
3

4

7

4

12
Source: Elaborated by the author.

where the total curve T has three distinct tangents at P∞
3 .
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Table 234 – First integral and integrating factor of family (K) when b =−1.

First integral Integrating Factor

General I = J0
1 J−4(g0λ4−2g1λ4)

2 J0
3 Eλ4

4 R = R = J2
1 J−2(1+2g0λ4−4g1λ4)

2 J−2
3 Eλ4

4
Simple

example I = (y−1)4e−
−(x+9)y2+4(x+1)y+x+1

(y−1)(x−y+2) R = J2
1 J−2

2 J−2
3

Source: Elaborated by the author.

We sum up the topological, dynamical and algebraic geometric features of family (K) and
we also confront our results with previous results in the literature in the following proposition.

Proposition 144. (a) For the family (K) we obtained five distinct configurations C(K)
1 −C(K)

5

of invariant hyperbolas and lines (see Figure 20 for the complete bifurcation diagram of
configurations of such family). The bifurcation set of configurations in the full parameter
space is b(b+1)(b+1/4) = 0. Its complement is the union of 4 disjoint sets. On b=−1/4
we have the coalescence of two of the four finite singular points producing a saddle-node
which has multiplicity two. On b = 0 we have the coalescence of two lines yielding a
double line. For the limiting set of the parameter space, i.e. on b = −1 the invariant
hyperbola becomes reducible producing the lines 2+ x− y = 0 and 1− y = 0. In this
case, we also have the invariant affine line 1+ y = 0 and the invariant line at infinity. The
configuration c1 appearing on the limite case b =−1 of systems (K) is not equivalent with
anyone of the configurations in (SCHLOMIUK; VULPE, 2008c).

(b) The family (K) is Liouvillian integrable when (b+1/4)(b+1) 6= 0. When b =−1/4 the
family (K) is generalized Darboux integrable.

(c) For the family (K) we have five topologically distinct phase portraits P(K)
1 −P(K)

5 . The
topological bifurcation diagram in the full parameter space is done in Figure 21 . The
bifurcation set of singularities is b(b+1)(b+1/4) = 0. The points b =−1/4 and b = 0
are bifurcation of singularities and the point b =−1 is a bifurcation of separatrices from
saddle to saddle connection. The phase portraits P(K)

2 , P(K)
4 and P(K)

5 are not topologically
equivalent with anyone of the phase portraits in (LLIBRE; YU, 2018).

Proof of proposition 144:

(a) We have the following type of divisors and zero-cycles of the total invariant curve T for
the configurations of family (K):
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Table 235 – Configurations for family (K).

Configurations Divisors and zero-cycles of the total inv. curve T

C(K)
1

ICD = J1 + J2 + J3 +L∞

M0CT = P1 +2P2 +2P3 +P4 +P∞
1 +2P∞

2 +4P∞
3

C(K)
2

ICD = J1 + J2 + J3 +L∞

M0CT = P1 +2P2 +2P3 +P4 +P∞
1 +2P∞

2 +4P∞
3

C(K)
3

ICD = JC
1 + JC

2 + J3 +L∞

M0CT = PC
1 +2PC

2 +2PC
3 +PC

4 +P∞
1 +2P∞

2 +4P∞
3

C(K)
4

ICD = 2J1 + J2 +L∞

M0CT = 3P1 +2P2 +P∞
1 +2P∞

2 +4P∞
3

C(K)
5

ICD = J1 + J2 + J3 +L∞

M0CT = 2P1 +2P2 +P3 +P∞
1 +2P∞

2 +4P∞
3

Source: Elaborated by the author.

Although C(K)
1 and C(K)

2 admit the same type of divisors and zero-cycles we can see they
are different because in C(K)

1 each branch of the hyperbola intersects one line while C(K)
2

have one branch of the hyperbola intersecting both lines and the other branch does not
intersect any line. Therefore, the configurations C(K)

1 up to C(K)
5 are distinct. For the limit

case of family (K) we have the following configuration:

Table 236 – Configuration for the limit case of family (K).

Configuration Divisors and zero-cycles of the total inv. curve T

c1
ICD = J1 + J2 + J3 +L∞

M0CT = 2P1 +2P2 +P3 +P4 +P∞
1 +2P∞

2 +3P∞
3

Source: Elaborated by the author.

In (SCHLOMIUK; VULPE, 2008c) the authors presented all the configurations and phase
portraits for real quadratic differential system having invariant lines of total multiplicity
four and a finite set of singulatirities at infinity. However, considering the system defined
by the equations (K) when b = −1 we have three affine invariant lines that are simple
and we also have the line at infinity as an invariant line, which is also simple. So the total
multiplicity of the invariant lines is four but we could not find the configuration c1 in their
work.

The other statements in (a) follows from the study done previously.

(b) This is shown in the previously exhibited tables.

(c) We have:
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Table 237 – Phase portraits for family (K).

Phase Portraits Sing. at ∞ Finite sing. Separatrix connections

P(K)
1 (N,S,N) (s,n,n,s) 4SC f

f 6SC∞
f 0SC∞

∞

P(K)
2 (N,S,N) (s,n,n,s) 4SC f

f 5SC∞
f 1SC∞

∞

P(K)
3 (N,S,N) (©,©,©,©) 0SC f

f 0SC∞
f 2SC∞

∞

P(K)
4 (N,S,N) (sn(2),sn(2)) 1SC f

f 5SC∞
f 1SC∞

∞

P(K)
5 (N,S,N) (sn(2),n,s) 3SC f

f 5SC∞
f 1SC∞

∞

Source: Elaborated by the author.

Therefore, we have five distinct phase portraits for systems (K). For the limit case of family
(K) we have the following phase portrait:

Table 238 – Phase portrait for the limit case of family (K).

Phase Portrait Sing. at ∞ Finite sing. Separatrix connections

p1 (N,S,N) (n,s,n,s) 4SC f
f 5SC∞

f 0SC∞
∞

Source: Elaborated by the author.

Table 239 – Phase portraits in (LLIBRE; YU, 2018) that admit 3 singular points at infinity with the type
(N,S,N) that possess 0, 2, 3 or 4 real singular points in the finite plane.

Phase Portrait Sing. at ∞ Real finite sing. Separatrix connections

L31,L32 (N,S,N) (s,es) 2C f
f 6SC∞

f 0SC∞
∞

R1,R2 (N,S,N) (s,c) 1C f
f 2SC∞

f 2SC∞
∞

R01,ω6 (N,S,N) /0 0SC f
f 0SC∞

f 1SC∞
∞

R5 (N,S,N) (s,n,n,s) 4SC f
f 6SC∞

f 0SC∞
∞

R8,ω1 (N,S,N) (s,n,n,s) 4SC f
f 6SC∞

f 0SC∞
∞

Source: Elaborated by the author.

Therefore, the phase portraits P(K)
2 , P(K)

4 and P(K)
5 are not topologically equivalent with

anyone of the phase portraits in (LLIBRE; YU, 2018). We also note that the phase portrait
P(K)

3
∼=top P(B)

3 is missing in (LLIBRE; YU, 2018) and it was listed in the geometric study
of family (B).

�
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Figure 20 – Bifurcation diagram of configurations for family (K).

b

(1)

(1)

(1)(1)

(1)

(1)

(1)

(1)(1)

(1)(1)

(1)

(1)

(1)

(1)(2)

(1)(1)

(1)

(1)

(1)
(2)

(1)

(1)

(2)2

(1)

(1)

(1)

C(K)
1 C(K)

3

−1

(1)

(1)

(1)

(1)

c1

(1)

(1)

(1)

−1/4 0

C(K)
2

C(K)
2

C(K)
5 C(K)

4

Source: Elaborated by the author.

Figure 21 – Topological bifurcation diagram for family (K).

b

P(K)
1 P(K)

3

−1

p1

−1/4 0

P(K)
2

P(K)
2

P(K)
5 P(K)

4

Source: Elaborated by the author.

6.1.10 Geometric Analysis of Family (L)

Consider the family

(L)

{
ẋ = a+ x2

ẏ = 4a+ y2,

where a 6= 0.
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For a complete understanding of the bifurcation diagram of the systems in the full family
defined by the equations (L) we study here also the limit case a = 0 where the equations are still
defined. Every system in family (L) is endowed with five invariant algebraic curves: four lines
J1,J2,J3,J4 and one hyperbola J5 with cofactors αi, 1≤ i≤ 5 given by

J1 = 1− iy
2
√

a , α1 = y−2i
√

a,

J2 = 1+ iy
2
√

a , α2 = y+2i
√

a,

J3 = 1− ix√
a , α3 = x− i

√
a,

J4 = 1+ ix√
a , α4 = x+ i

√
a,

J5 = a− x2 + xy, α5 = 2x+ y.

Considering the line at infinity Z = 0 the total multiplicity of the invariant lines is five so this
case was studied in (SCHLOMIUK; VULPE, 2008b). We include this case as indicated in
Observation 81. Since the number of invariant curve is five, it follows by Jouanolou’s theorem
that these systems are algebraically integrable. The multiplicities of each invariant straight
line and invariant hyperbola appearing in the divisor ICD of invariant algebraic curves were
calculated by using the 1st extactic polynomial for the line and the 2nd extactic polynomial for
the hyperbola.

(i) a 6= 0.

Table 240 – Invariant curves, cofactors, singularities and intersection points of family (L) when a 6= 0.

Invariant curves and cofactors Singularities Intersection points

J1 = 1− iy
2
√

a

J2 = 1+ iy
2
√

a
J3 = 1− ix√

a
J4 = 1+ ix√

a
J5 = a− x2 + xy

α1 = y−2i
√

a
α2 = y+2i

√
a

α3 = x− i
√

a
α4 = x+ i

√
a

α5 = 2x+ y

P1 =
(
−i
√

a,−2i
√

a
)

P2 =
(
−i
√

a,2i
√

a
)

P3 =
(
i
√

a,−2i
√

a
)

P4 =
(
i
√

a,2i
√

a
)

P∞
1 = [0 : 1 : 0]

P∞
2 = [1 : 1 : 0]

P∞
3 = [1 : 0 : 0]

For a < 0 we have

n,s,s,n;N,S,N

For a > 0 we have

©,©,©,©;N,S,N

J1∩ J2 = P∞
3 simple

J1∩ J3 = P1 simple
J1∩ J4 = P3 simple
J1∩ J5 = P1 double
J1∩L∞ = P∞

3 simple
J2∩ J3 = P2 simple
J2∩ J4 = P4 simple
J2∩ J5 = P4 double
J2∩L∞ = P∞

3 simple
J3∩ J4 = P∞

1 simple

J3∩ J5 =

{
P1 simple
P∞

1 simple
J3∩L∞ = P∞

1 simple

J4∩ J5 =

{
P4 simple
P∞

1 simple
J4∩L∞ = P∞

1 simple

J5∩L∞ =

{
P∞

1 simple
P∞

2 simple
Source: Elaborated by the author.
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Table 241 – Divisor and zero-cycles of family (L) when a 6= 0.

Divisor and zero-cycles Degree

ICD =

{
J1 + J2 + J3 + J4 + J5 +L∞ if a < 0
JC

1 + JC
2 + JC

3 + JC
4 + J5 +L∞ if a > 0

M0CS =

{
P1 +P2 +P3 +P4 +P∞

1 +P∞
2 +P∞

3 if a < 0
PC

1 +PC
2 +PC

3 +PC
4 +P∞

1 +P∞
2 +P∞

3 if a > 0

T = ZJ1J2J3J4J5 = 0

M0CT =

{
3P1 +2P2 +2P3 +3P4 +4P∞

1 +2P∞
2 +3P∞

3 if a < 0
3PC

1 +2PC
2 +2PC

3 +3PC
4 +4P∞

1 +2P∞
2 +3P∞

3 if a > 0

6
6

7
7

7

19
19

Source: Elaborated by the author.

where the total curve T has

1) only two distinct tangents at P1 (and at P4), but one of them is double;

2) four distinct tangents at P∞
1 ;

3) three distinct tangents at P∞
3 .

Table 242 – First integral and integrating factor of family (L) when a 6= 0.

First integral Integrating Factor

General I = Jλ1
1 Jλ2

2 J2λ2
3 J2λ1

4 J−λ1−λ2
5 R = Jλ1

1 Jλ2
2 J1+2λ2

3 J1+2λ1
4 J−2−λ1−λ2

5
Simple

example I1 =
J1J2

4
J5

I2 =
J2J2

3
J5

R =
1

J1J2J3J4
Source: Elaborated by the author.

Observation 145. Consider F 1
(c1,c2)

= c1J1J2
4 − c2J5, degF 1

(c1,c2)
= 3. The remarkable

values of F 1
(c1,c2)

are
[
1 : 2

a

]
and [1 : 0] for which we have

F 1(
1,2a

) =−J2J2
3 , F 1

(1,0) = J1J2
4 .

Therefore, J1,J2,J3,J4 are remarkable curves of I1,
[
1 : 2

a

]
and [1 : 0] are critical remark-

able values of I1 and J3,J4 are critical remarkable curves of I1. The singular points are
P1,P2 for F 1(

1,2a

) and P3,P4 for F 1
(1,0).

Considering the first integral I2 with its associated curve F 2
(c1,c2)

= c1J2J2
3 − c2J5 we

have the same remarkable values and remarkable curves as before. The singular points are
P1,P2 for F 2

(1,0) and P3,P4 for F 2(
1,2a

).
(ii) a = 0.
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Under this condition the system does not belong to family (L). The affine invariant lines
are x = 0, y = 0 that are double (so we compute two exponential factors) and x− y = 0
that is simple. We also have a family of invariant hyperbolas. Considering the line at
infinity Z = 0 the total multiplicity of the invariant lines is six so this case was studied in
(SCHLOMIUK; VULPE, 2008b). We include this case as indicated in Observation 81.
This system has a rational first integral that foliates the plane into conic invariant algebraic
curves. The lines x = 0 and y = 0 are remarkable curves.

Table 243 – Invariant curves, exponential factors, cofactors, singularities and intersection points of family
(L) when a = 0.

Inv.cur./exp.fac. and cofactors Singularities Intersection points
J1 = x
J2 = y
J3 = x− y
J4,r = r(x− y)+2xy

E5 = e
g0+g1x

x

E6 = e
h0+h1y

y

α1 = x
α2 = y
α3 = x+ y
α4 = x+ y
α4 =−g0
α5 =−h0

P1 = (0,0)

P∞
1 = [0 : 1 : 0]

P∞
2 = [1 : 1 : 0]

P∞
3 = [1 : 0 : 0]

pphpph(4);N,S,N

J1∩ J2 = P1 simple
J1∩ J3 = P1 simple

J1∩ J4,r =

{
P1 simple
P∞

3 simple
J1∩L∞ = P∞

1 simple
J2∩ J3 = P1 simple

J2∩ J4,r =

{
P1 simple
P∞

3 simple
J2∩L∞ = P∞

3 simple
J3∩ J4,r = P1 double
J3∩L∞ = P∞

2 simple

J4,r∩L∞ =

{
P∞

1 simple
P∞

3 simple

Source: Elaborated by the author.

Table 244 – Divisor and zero-cycles of family (L) when a = 0.

Divisor and zero-cycles Degree
ILD = 2J1 +2J2 + J3 +L∞

M0CS = 4P1 +P∞
1 +P∞

2 +P∞
3

T = ZJ2
1J2

2J3 = 0.

M0CT = 4P1 +3P∞
1 +2P∞

2 +3P∞
3

6

7

6

13
Source: Elaborated by the author.

where the total curve T has

1) only three distinct tangents at P1, but two of them are double;

2) only two distinct tangents at P∞
1 (and P∞

2 ), but one of them double.
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Table 245 – First integral and integrating factor of family (L) when a = 0.

First integral Integrating Factor

General I = J−λ3−λ4
1 J−λ3−λ4

2 Jλ3
3 Jλ4

4,rE
λ5
5 E

−g0λ5
h0

6 R = J−2−λ3−λ4
1 J−2−λ3−λ4

2 Jλ3
3 Jλ4

4,rE
λ5
5 E

−g0λ5
h0

6
Simple

example I1 =
J3

J1J2
R =

1
J1J2J3

Source: Elaborated by the author.

Observation 146. Consider F 1
(c1,c2)

= c1J3− c2J1J2 = 0, degF 1
(c1,c2)

= 2. The remark-
able value of F 1

(c1,c2)
is [0 : 1] for which we have

F 1
(0,1) =−J1J2.

Therefore, J1,J2 are remarkable curves of I1. The singular points is P1 for F 1
(0,1).

We sum up the topological, dynamical and algebraic geometric features of family (L) in
the following proposition.

Proposition 147. (a) For the family (L) we have two distinct configurations C(L)
1 and C(L)

2

of invariant hyperbolas and lines (see Figure 22 for the complete bifurcation diagram of
configurations of such family). The bifurcation set of configurations in the full parameter
space contains only the point a = 0. Its complement is the union of 2 disjoint sets. When
a < 0 we have four real lines and when a > 0 we have four complex lines. For the limiting
set of the parameter space, i.e. on a = 0 we have a family of invariant hyperbola and three
invariant lines.

(b) The family (L) admits a rational first integral and the plane is foliated into cubic invariant
algebraic curves. The remarkable curves are J1,J2,J3,J4 for family (L). All systems in
family (L) have an inverse integrating factor which is polynomial.

(c) For the family (L) we have two topologically distinct phase portraits P(L)
1 and P(L)

2 . The
topological bifurcation diagram in the full parameter space is done in Figure 23 . The
bifurcation set is the point a = 0 and it is a bifurcation of singularities.

Proof of proposition 147:

(a) We have the following type of divisors and zero-cycles of the total invariant curve T for
the configurations of family (L):
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Table 246 – Configurations for family (L).

Configurations Divisors and zero-cycles of the total inv. curve T

C(L)
1

ICD = J1 + J2 + J3 + J4 + J5 +L∞

M0CT = 3P1 +2P2 +2P3 +3P4 +4P∞
1 +2P∞

2 +3P∞
3

C(L)
2

ICD = JC
1 + JC

2 + JC
3 + JC

4 + J5 +L∞

M0CT = 3PC
1 +2PC

2 +2PC
3 +3PC

4 +4P∞
1 +2P∞

2 +3P∞
3

Source: Elaborated by the author.

Therefore, the configurations C(L)
1 and C(L)

2 are distinct. For the limit case of family (L) we
have the following configuration:

Table 247 – Configuration for the limit case of family (L).

Configuration Divisors and zero-cycles of the total inv. curve T

c1
ILD = 2J1 +2J2 + J3 +L∞

M0CT = 5P1 +3P∞
1 +2P∞

2 +3P∞
3

Source: Elaborated by the author.

The other statements in (a) follows from the study done previously.

(b) It follows directly from Jouanolou’s theorem that we always have a rational first integral
for family (L). The computations for the remarkable curves were done in Remark 145.

(c) We have:

Table 248 – Phase portraits for family (L).

Phase Portraits Sing. at ∞ Finite sing. Separatrix connections

P(L)
1 (N,S,N) (n,s,s,n) 4SC f

f 6SC∞
f 0SC∞

∞

P(L)
2 (N,S,N) (©,©,©,©) 0SC f

f 0SC∞
f 2SC∞

∞

Source: Elaborated by the author.

Therefore, we have two distinct phase portraits for systems (L). For the limit case of family
(L) we have the following phase portrait:

Table 249 – Phase portrait for the limit case of family (L).

Phase Portrait Sing. at ∞ Finite sing. Separatrix connections

p1 (N,S,N) pphpph(4) 0SC f
f 6SC∞

f 0SC∞
∞

Source: Elaborated by the author.

We note that P(L)
2
∼=top P(B)

3 is missing in (LLIBRE; YU, 2018) and it was listed in the
geometric study of family (B).
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�

Figure 22 – Bifurcation diagram of configurations for family (L).

a

(1)

(1)

(1)

(1) (1)

(1)

(1)

(1)

(1)

(1)

C(L)
1

C(L)
2

0

(4)

2

(1)

(1)

(1)
2

c1

Source: Elaborated by the author.

Figure 23 – Topological bifurcation diagram for family (L).

P(L)
2 a

P(L)
1

0

p1

Source: Elaborated by the author.

6.1.11 Geometric Analysis of Family (M)

Consider the family

(M)

{
ẋ = a+ x2

ẏ = a+ y2.

This is a one parameter family depending on a ∈ R. We display below the full geometric
analysis of this family. When a 6= 0 every system in family (M) is endowed with five invariant
algebraic lines J1,J2,J3,J4,J5 and with a family of invariant hyperbolas J6,r with cofactors αi,
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1≤ i≤ 6 given by

J1 = 1− iy√
a , α1 = y− i

√
a,

J2 = 1+ iy√
a , α2 = y+ i

√
a,

J3 = 1− ix√
a , α3 = x− i

√
a,

J4 = 1+ ix√
a , α4 = x+ i

√
a,

J5 = x− y, α5 = x+ y,

J6,r(x,y) = 2a− r(x− y)+2xy, α6 = x+ y.

When a = 0 the lines J1 coalesce with J2 and J3 coalesce with J4 yielding to two double lines.
Considering the line at infinity Z = 0 the total multiplicity of the invariant lines is six so this case
was studied in (SCHLOMIUK; VULPE, 2008b). We include this case as indicated in Observation
81. This family is clearly algebraically integrable. The multiplicities of each invariant invariant
line appearing in the divisor ILD of invariant algebraic lines were calculated by using the 1st
extactic polynomial.

(i) a 6= 0.
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Table 250 – Invariant curves, cofactors, singularities and intersection points of family (M) when a 6= 0.

Invariant curves and cofactors Singularities Intersection points

J1 = 1− iy√
a

J2 = 1+ iy√
a

J3 = 1− ix√
a

J4 = 1+ ix√
a

J5 = x− y
J6,r = 2a− r(x− y)+2xy

α1 = y− i
√

a
α2 = y+ i

√
a

α3 = x− i
√

a
α4 = x+ i

√
a

α5 = x+ y
α6 = x+ y

P1 =
(
−i
√

a,−i
√

a
)

P2 =
(
−i
√

a, i
√

a
)

P3 =
(
i
√

a,−i
√

a
)

P4 =
(
i
√

a, i
√

a
)

P∞
1 = [0 : 1 : 0]

P∞
2 = [1 : 1 : 0]

P∞
3 = [1 : 0 : 0]

For a < 0 we have

n,s,s,n;N,S,N

For a > 0 we have

©,©,©,©;N,S,N

J1∩ J2 = P∞
3 simple

J1∩ J3 = P1 simple
J1∩ J4 = P3 simple
J1∩ J5 = P1 simple

J1∩ J6,r =

{
P1 simple
P∞

3 simple
J1∩L∞ = P∞

3 simple
J2∩ J3 = P2 simple
J2∩ J4 = P4 simple
J2∩ J5 = P4 simple

J2∩ J6,r =

{
P4 simple
P∞

3 simple
J2∩L∞ = P∞

3 simple
J3∩ J4 = P∞

1 simple
J3∩ J5 = P1 simple

J3∩ J6,r =

{
P1 simple
P∞

1 simple
J3∩L∞ = P∞

1 simple
J4∩ J5 = P4 simple

J4∩ J6,r =

{
P4 simple
P∞

1 simple
J4∩L∞ = P∞

1 simple

J5∩ J6,r =

{
P1 simple
P4 simple

J5∩L∞ = P∞
2 simple

J6,r∩L∞ =

{
P∞

1 simple
P∞

3 simple
Source: Elaborated by the author.

Table 251 – Divisor and zero-cycles of family (M) when a 6= 0.

Divisor and zero-cycles Degree

ILD =

{
J1 + J2 + J3 + J4 + J5 +L∞ if a < 0
JC

1 + JC
2 + JC

3 + JC
4 + J5 +L∞ if a > 0

M0CS =

{
P1 +P2 +P3 +P4 +P∞

1 +P∞
2 +P∞

3 if a < 0
PC

1 +PC
2 +PC

3 +PC
4 +P∞

1 +P∞
2 +P∞

3 if a > 0

T = ZJ1J2J3J4J5 = 0

M0CT =

{
3P1 +2P2 +2P3 +3P4 +3P∞

1 +2P∞
2 +3P∞

3 if a < 0
3PC

1 +2PC
2 +2PC

3 +3PC
4 +3P∞

1 +2P∞
2 +3P∞

3 if a > 0

6
6

7
7

6

18
18

Source: Elaborated by the author.



294 Chapter 6. Geometric Analysis

where the total curve T has three distinct tangents at P1, P4, P∞
1 and P∞

3 .

Table 252 – First integral and integrating factor of family (M) when a 6= 0.

First integral Integrating Factor

General I = Jλ1
1 Jλ2

2 Jλ2
3 Jλ1

4 Jλ5
5 J−λ1−λ2−λ5

6,m R = Jλ1
1 Jλ2

2 Jλ2
3 Jλ1

4 Jλ5
5 J−2−λ1−λ2−λ5

6,m
Simple

example I1 =
J1J4

J5
I2 =

J2J3

J5
R =

1
J1J2J3J4

Source: Elaborated by the author.

Observation 148. Consider F 1
(c1,c2)

= c1J1J4− c2J5, degF 1
(c1,c2)

= 2. The remarkable

values of F 1
(c1,c2)

are
[
1 : 2i√

a

]
and [1 : 0] for which we have

F 1(
1, 2i√

a

) = J2J3, F 1
(1,0) = J1J4.

Therefore, J1,J2,J3,J4 are remarkable curves of I1,
[
1 : 2i√

a

]
and [1 : 0] are remarkable

values of I1. The singular points are P1,P2,P4 for F 1(
1, 2i√

a

) and P3 for F 1
(1,0).

Considering the first integral I2 with its associated curve F 2
(c1,c2)

= c1J2J3−c2J5 we have

the remarkable values
[
1 :− 2i√

a

]
and [1 : 0] and the same remarkable curves as before.

The singular points are P1,P3,P4 for F 2(
1,− 2i√

a

) and P2 for F 2
(1,0).

(ii) a = 0.

Here the line J1 coalesce with J2 and the line J3 coalesce J4 yielding to two double lines
so we compute the exponential factors factors E5 and E6. This system has a rational first
integral that foliates the plane into conic invariant algebraic curves. The remarkable curves
are the double lines.
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Table 253 – Invariant curves, exponential factors, cofactors, singularities and intersection points of family
(M) when a = 0.

Inv.cur./exp.fac. and cofactors Singularities Intersection points
J1 = x
J2 = y
J3 = x− y
J4,r = r(x− y)+2xy

E5 = e
g0+g1x

x

E6 = e
h0+h1y

y

α1 = x
α2 = y
α3 = x+ y
α4 = x+ y
α4 =−g0
α5 =−h0

P1 = (0,0)

P∞
1 = [0 : 1 : 0]

P∞
2 = [1 : 1 : 0]

P∞
3 = [1 : 0 : 0]

pphpph(4);N,S,N

J1∩ J2 = P1 simple
J1∩ J3 = P1 simple

J1∩ J4,r =

{
P1 simple
P∞

3 simple
J1∩L∞ = P∞

1 simple
J2∩ J3 = P1 simple

J2∩ J4,r =

{
P1 simple
P∞

3 simple
J2∩L∞ = P∞

3 simple
J3∩ J4,r = P1 double
J3∩L∞ = P∞

2 simple

J4,r∩L∞ =

{
P∞

1 simple
P∞

3 simple

Source: Elaborated by the author.

Table 254 – Divisor and zero-cycles of family (M) when a = 0.

Divisor and zero-cycles Degree
ILD = 2J1 +2J2 + J3 +L∞

M0CS = 4P1 +P∞
1 +P∞

2 +P∞
3

T = ZJ2
1J2

2J3 = 0.

M0CT = 4P1 +3P∞
1 +2P∞

2 +3P∞
3

6

7

6

13
Source: Elaborated by the author.

where the total curve T has

1) only three distinct tangents at P1, but two of them are double;

2) only two distinct tangents at P∞
1 (and P∞

2 ), but one of them double.

Table 255 – First integral and integrating factor of family (M) when a = 0.

First integral Integrating Factor

General I = J−λ3−λ4
1 J−λ3−λ4

2 Jλ3
3 Jλ4

4,rE
λ5
5 E

−g0λ5
h0

6 R = J−2−λ3−λ4
1 J−2−λ3−λ4

2 Jλ3
3 Jλ4

4,rE
λ5
5 E

−g0λ5
h0

6
Simple

example I1 =
J3

J1J2
R =

1
J1J2J3

Source: Elaborated by the author.
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Observation 149. Consider F 1
(c1,c2)

= c1J3− c2J1J2 = 0, degF 1
(c1,c2)

= 2. The remark-
able value of F 1

(c1,c2)
is [0 : 1] for which we have

F 1
(0,1) =−J1J2.

Therefore, J1,J2 are remarkable curves of I1. The singular points is P1 for F 1
(0,1).

We sum up the topological, dynamical and algebraic geometric features of family (M) in
the following proposition.

Proposition 150. (a) For the family (M) we have three distinct configurations C(M)
1 ,C(M)

2 and
C(M)

3 of invariant hyperbolas and lines (see Figure 24 for the complete bifurcation diagram
of configurations of such family). The bifurcation set of configurations contain only the
point a = 0. On a < 0 we have five real lines and on a > 0 we have four complex lines and
one real line. On a = 0 we have the coalescence of two lines with other two lines yielding
to two double lines.

(b) The family (M) admits a rational first integral and the plane is foliated into cubic invariant
algebraic curves. The remarkable curves for family (M) are J1,J2,J3,J4 when a 6= 0 and
J1,J2 when a = 0. All systems in family (M) have an inverse integrating factor which is
polynomial.

(c) For the family (M) we have three topologically distinct phase portraits P(M)
1 ,P(M)

2 and P(M)
3 .

The topological bifurcation diagram is done in Figure 25. The bifurcation set is the point
a = 0 and it is a bifurcation of singularities.

Proof of proposition 150:

(a) We have the following type of divisors and zero-cycles of the total invariant curve T for
the configurations of family (M):

Table 256 – Configurations for family (M).

Configurations Divisors and zero-cycles of the total inv. curve T

C(M)
1

ILD = J1 + J2 + J3 + J4 + J5 +L∞

M0CT = 3P1 +2P2 +2P3 +3P4 +3P∞
1 +2P∞

2 +3P∞
3

C(M)
2

ILD = JC
1 + JC

2 + JC
3 + JC

4 + J5 +L∞

M0CT = 3PC
1 +2PC

2 +2PC
3 +3PC

4 +3P∞
1 +2P∞

2 +3P∞
3

C(M)
3

ILD = 2J1 +2J2 + J3 +L∞

M0CT = 5P1 +3P∞
1 +2P∞

2 +3P∞
3

Source: Elaborated by the author.

Therefore, the configurations C(M)
1 ,C(M)

2 and C(M)
3 are all distinct.

The other statements in (a) follows from the study done previously.
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(b) It follows directly from Jouanolou’s theorem that we always have a rational first integral
for family (M). The computations for the remarkable curves were done in Remarks 148
and 149.

(c) We have:

Table 257 – Phase portraits for family (M).

Phase Portraits Sing. at ∞ Finite sing. Separatrix connections

P(M)
1 (N,S,N) (n,s,s,n) 4SC f

f 6SC∞
f 0SC∞

∞

P(M)
2 (N,S,N) (©,©,©,©) 0SC f

f 0SC∞
f 1SC∞

∞

P(M)
3 (N,S,N) pphpph(4) 0SC f

f 6SC∞
f 0SC∞

∞

Source: Elaborated by the author.

Therefore, we have three distinct phase portraits for systems (M).

�

Figure 24 – Bifurcation diagram of configurations for family (M).

a

(1)

(1)

(1)
(1)

(1)

(1)

(1)

(1)

(1)

(1)

C(M)
1 C(M)

2

0

(4)

2

(1)

(1)

(1)
2

C(M)
3

Source: Elaborated by the author.

Figure 25 – Topological bifurcation diagram for family (M).

P(M)
2 a

P(M)
1

0

P(M)
3

Source: Elaborated by the author.
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6.2 Systems with η = 0

In this section we present a detailed study of 12 normal forms for the class QSH(η=0),
namely the families (O), (P), (Q), (R), (S), (T), (U), (V), (W), (X), (Y) and (Z). Following the
geometric study of these families we give an anwser to Poincaré’s problem, but only for the
cases when its solution does not follows directly from the expressions of the first integral.

We did not present in this thesis the geometric analysis of the normal form (N) due to its
complicated expressions for the finite singularities, the study for this case is more difficult and it
arises to more complicated bifurcation diagrams. This study will be done in further works using
different methods.

6.2.1 Geometric Analysis of Family (O)

Consider the family

(O)

{
ẋ = 2a+gx2 + xy

ẏ = a(2g−1)+(g−1)xy+ y2,

where a(g−1) 6= 0.

This is a two parameter family depending on a and g such that a(g−1) 6= 0 but for a
complete understanding of the bifurcation diagram of the systems in the full family defined by
the equations (O) we study here also the limit cases a(g−1) = 0 where the equations are still
defined. We display below the full geometric analysis of the systems in this family, which is
endowed with at least one invariant hyperbola J1 with cofactor α1 given by

J1 = a+ xy, α1 = (−1+2g)x+2y.

Except for a denumerable set of lines in the parameter space, i.e. except for

Lk : 2g− k = 0, k ∈ N= {0,1,2, ...} and L : 4g−1 = 0,

systems in (O) are not Liouvillian integrable (see (OLIVEIRA et al., 2021)). It thus remains to be
shown what happens on these lines and we consider here the cases L1 and L. The multiplicities
of each invariant hyperbola appearing in the divisor ICD of invariant algebraic curves were
calculated by using the 2nd extactic polynomial.

(i) The generic case: ag(g−1)(2g−1)(4g−1) 6= 0.

In (OLIVEIRA et al., 2021) it is proved that except for the denumerable set of lines
∪k∈NLk∪L,

Lk = {(a,g) ∈ R2\{(0,1)} : 2g− k = 0}, k ∈ N,
L = {(a,g) ∈ R2\{(0,1)} : 4g−1 = 0}
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systems (O) are neither Darboux nor Liouvillian integrable. We prove below that when
(a,g) ∈ L1 systems (O) are generalized Darboux integrable and when (a,g) ∈ L systems
(O) are Liouvillian integrable. The cases where (a,g) ∈ ∪k∈NLk−L1 are still open. For
these cases we were not able to prove the non-integrability and we also could not find other
invariant algebraic curves, which we managed to search up to degree four. Although we
are unable to guarantee the existence of a first integral in ∪k∈NLk−L1, it is still possible
to obtain the complete topological bifurcation diagram of this family.

Table 258 – Invariant curve, cofactor, singularities and intersection points of family (O) for the generic
case.

Invariant curves and cofactors Singularities Intersection points

J1 = a+ xy

α1 = (−1+2g)x+2y

P1 =
(
−2i
√

a, i
(
2
√

ag−
√

a
))

P2 =
(
2i
√

a,−i
(
2
√

ag−
√

a
))

P3 =
(
− i
√

a√
g ,−i

√
a
√

g
)

P4 =
(

i
√

a√
g , i
√

a
√

g
)

P∞
1 = [0 : 1 : 0]

P∞
2 = [1 : 0 : 0]

For a < 0 we have

f , f ,©,©;(0
2)SN,S if g < 0

f , f ,s,s;(0
2)SN,N if 0 < g < 7

32
n,n,s,s;(0

2)SN,N if 7
32 ≤ g < 1

4
s,s,n,n;(0

2)SN,N if g > 1
4

For a > 0 we have

©,©,n,n;(0
2)SN,S if g < 0

©,©,©,©;(0
2)SN,N if g > 0

J1∩L∞ =

{
P∞

1 simple
P∞

2 simple

Source: Elaborated by the author.
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Table 259 – Divisor and zero-cycles of family (O) for the generic case.

Divisor and zero-cycles Degree
ICD = J1 +L∞

M0CS =


P1 +P2 +PC

3 +PC
4 +2P∞

1 +P∞
2 if a < 0 and g < 0

P1 +P2 +P3 +P4 +2P∞
1 +P∞

2 if a < 0 and g > 0
PC

1 +PC
2 +P3 +P4 +2P∞

1 +P∞
2 if a > 0 and g < 0

PC
1 +PC

2 +PC
3 +PC

4 +2P∞
1 +P∞

2 if a > 0 and g > 0

T = ZJ1 = 0

M0CT =

{
PC

3 +PC
4 +2P∞

1 +2P∞
2 if ag > 0

P3 +P4 +2P∞
1 +2P∞

2 if ag < 0

2

7
7
7
7

3

6
6

Source: Elaborated by the author.

(ii) The non-generic case: ag(g−1)(2g−1)(4g−1) = 0.

(ii.1) g = 0 and a 6= 0.

Under this condition, (a,g) ∈ L0 which corresponds to an open case regarding the integra-
bility.

Table 260 – Invariant curves, cofactors, singularities and intersection points of family (O) when g = 0 and
a 6= 0.

Invariant curves and cofactors Singularities Intersection points

J1 = a+ xy

α1 =−x+2y

P1 =
(
2i
√

a,−i
√

a
)

P2 =
(
2i
√

a, i
√

a
)

P∞
1 = [0 : 1 : 0]

P∞
2 = [1 : 0 : 0]

f , f ;(0
2)SN,(1

2)S if a < 0
©,©;(0

2)SN,(1
2)N if a > 0

J1∩L∞ =

{
P∞

1 simple
P∞

2 simple

Source: Elaborated by the author.
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Table 261 – Divisor and zero-cycles of family (O) when g = 0 and a 6= 0.

Divisor and zero-cycles Degree
ICD = J1 +L∞

M0CS =

{
P1 +P2 +2P∞

1 +3P∞
2 if a < 0

PC
1 +PC

2 +2P∞
1 +3P∞

2 if a > 0

T = ZJ1 = 0

M0CT = 2P∞
1 +2P∞

2

2

7
7

3

4
Source: Elaborated by the author.

(ii.2) g = 1
4 and a 6= 0.

Here the hyperbola becomes double so we compute the exponential factor E2.

Table 262 – Invariant curve, exponential factor, cofactors, singularities and intersection points of family
(O) when g = 1/4 and a 6= 0.

Inv.cur./exp.fac. and cofactors Singularities Intersection points

J1 = a+ xy

E2 = e
ag0+g0xy+g1y2

(a+xy)

α1 =− x
2 +2y

α2 =−g1y

P1 =
(

2i
√

a,− i
√

a
2

)
P2 =

(
2i
√

a, i
√

a
2

)
P∞

1 = [0 : 1 : 0]
P∞

2 = [1 : 0 : 0]

sn(2),sn(2);(0
2)SN,N if a < 0

©(2),©(2);(0
2)SN,N if a > 0

J1∩L∞ =

{
P∞

1 simple
P∞

2 simple

Source: Elaborated by the author.

Table 263 – Divisor and zero-cycles of family (O) when g = 1/4 and a 6= 0.

Divisor and zero-cycles Degree
ICD = 2J1 +L∞

M0CS =

{
2P1 +2P2 +2P∞

1 +P∞
2 if a < 0

2PC
1 +2PC

2 +2P∞
1 +P∞

2 if a > 0

T = ZJ2
1 = 0

M0CT =

{
2P1 +2P2 +3P∞

1 +3P∞
2 if a < 0

2PC
1 +2PC

2 +3P∞
1 +3P∞

2 if a > 0

3

7
7

5

10
10

Source: Elaborated by the author.
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where the total curve T has only two distinct tangents at P∞
1 (and P∞

2 ), but one of them is
double.

Table 264 – First integral and integrating factor of family (O) when g = 1/4 and a 6= 0.

First integral Integrating Factor

General I = 1
2

(
2
√

2aDawsonF
( √

2y√
a+xy

)
+x
√

a+xy
)(

e
ag0+g0xy+g1y2

a+xy

) 2
g1

R = J
−1

2
1 E

2
g1
2

Simple
example I = 1

2

(
2
√

2aDawsonF
( √

2y√
a+xy

)
+x
√

a+xy
)(

e
y2

a+xy

)2

R = J
−1

2
1 E2

2

Source: Elaborated by the author.

where DawsonF [z] gives the Dawson integral defined by F(z) = e−z2
∫ z

0
ey2

dy.

(ii.3) g = 1
2 and a 6= 0.

Here we have an additional invariant line which is simple and the invariant hyperbola
becomes double so we compute the exponential factor E3.

Table 265 – Invariant curves, exponential factors, cofactors, singularities and intersection points of family
(O) when g = 1/2 and a 6= 0.

Inv.cur./exp.fac. and cofactors Singularities Intersection points

J1 = y
J2 = a+ xy

E3 = e−
a(2g1−g0)+g1xy−g0y2

2(a+xy)

α1 =
x
2 + y

α2 = 2y
α3 = g0y

P1 =
(
−2i
√

a,0
)

P2 =
(
2i
√

a,0
)

P3 =
(
−i
√

2
√

a,− i
√

a√
2

)
P4 =

(
i
√

2
√

a, i
√

a√
2

)
P∞

1 = [0 : 1 : 0]
P∞

2 = [1 : 0 : 0]

s,s,n,n;(0
2)SN,N if a < 0

©,©,©,©;(0
2)SN,N if a > 0

J1∩ J2 = P∞
2 double

J1∩L∞ = simple

J2∩L∞ =

{
P∞

1 simple
P∞

2 simple

Source: Elaborated by the author.
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Table 266 – Divisor and zero-cycles of family (O) when g = 1/2 and a 6= 0.

Divisor and zero-cycles Degree
ICD = J1 +2J2 +L∞

M0CS =

{
P1 +P2 +P3 +P4 +2P∞

1 +P∞
2 if a < 0

PC
1 +PC

2 +PC
3 +PC

4 +2P∞
1 +P∞

2 if a > 0

T = ZJ1J2
2 = 0

M0CT =

{
P1 +P2 +2P3 +2P4 +3P∞

1 +4P∞
2 if a < 0

PC
1 +PC

2 +2PC
3 +2PC

4 +3P∞
1 +4P∞

2 if a > 0

4

7
7

6

13
13

Source: Elaborated by the author.

where the total curve T has

1) only two distinct tangents at P∞
1 , but one of them is double,

2) only two distinct tangents at P∞
2 , but one of them is triple.

Table 267 – First integral and integrating factor of family (O) when g = 1/2 and a 6= 0.

First integral Integrating Factor

General I = J0
1 Jλ2

2 E
−2λ2

g0
3 R = J1

1 Jλ2
2 E

−2(2+λ2)
g0

3
Simple

example I =
J2

E2
3

R =
J1

J2
2

Source: Elaborated by the author.

(ii.4) g = 1 and a 6= 0.

Under this condition the systems do not belong to family (O). Here we have, apart from a
simple hyperbola, two additional invariant lines (real or complex, depending on the sign of
the parameter a).
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Table 268 – Invariant curves, cofactors, singularities and intersection points of family (O) when g = 1 and
a 6= 0.

Invariant curves and cofactors Singularities Intersection points

J1 = 1− iy√
a

J2 = 1+
iy√

a
J3 = a+ xy

α1 = y− i
√

a
α2 = y+ i

√
a

α3 = x+2y

P1 =
(
−i
√

a,−i
√

a
)

P2 =
(
i
√

a, i
√

a
)

P3 =
(
−2i
√

a, i
√

a
)

P4 =
(
2i
√

a,−i
√

a
)

P∞
1 = [0 : 1 : 0]

P∞
2 = [1 : 0 : 0]

n,n,s,s;(0
2)SN,N if a < 0

©,©,©,©;(0
2)SN,N if a > 0

J1∩ J2 = P∞
2 simple

J1∩ J3 =

{
P1 simple
P∞

2 simple
J1∩L∞ = P∞

2 simple

J2∩ J3 =

{
P2 simple
P∞

2 simple
J2∩L∞ = P∞

2 simple

J3∩L∞ =

{
P∞

1 simple
P∞

2 simple

Source: Elaborated by the author.

Table 269 – Divisor and zero-cycles of family (O) when g = 1 and a 6= 0.

Divisor and zero-cycles Degree

ICD =

{
J1 + J2 + J3 +L∞ if a < 0
JC

1 + JC
2 + J3 +L∞ if a > 0

M0CS =

{
P1 +P2 +P3 +P4 +2P∞

1 +P∞
2 if a < 0

PC
1 +PC

2 +PC
3 +PC

4 +2P∞
1 +P∞

2 if a > 0

T = ZJ1J2J3 = 0

M0CT =

{
2P1 +2P2 +P3 +P4 +2P∞

1 +4P∞
2 if a < 0

2PC
1 +2PC

2 +PC
3 +PC

4 +2P∞
1 +4P∞

2 if a > 0

4
4

7
7

5

12
12

Source: Elaborated by the author.

where the total curve T has four distinct tangents at P∞
2 .

Table 270 – First integral and integrating factor of family (O) when g = 1 and a 6= 0.

First integral Integrating Factor

General I =
(√

a+ y2 + y
)−√ a+y2

a√
a+y2 e

√
a+y2

a (x−y)
a+xy R = J

1
2
1 J

1
2
2 J−2

3

Simple
example I =

(√
a+ y2 + y

)−√ a+y2
a√

a+y2 e

√
a+y2

a (x−y)
a+xy R = J

1
2
1 J

1
2
2 J−2

3

Source: Elaborated by the author.

(ii.5) a = 0 and g 6= 0,1.



6.2. Systems with η = 0 305

Under this condition, systems (O) do not belong to QSH. The affine invariant lines are
y = 0 that is simple and x = 0 that is double so we compute the exponential factor E3.
Considering the line at infinity Z = 0 the total multiplicity of the invariant lines is four
so this case was studied in (SCHLOMIUK; VULPE, 2008c). We include this case as
indicated in Observation 81. By perturbing the reducible conic xy = 0 we produce the
hyperbola a+ xy = 0.

Table 271 – Invariant curves, exponential factors, cofactors, singularities and intersection points of family
(O) when a = 0 and g 6= 0,1.

Inv.cur./exp.fac. and cofactors Singularities Intersection points
J1 = y
J2 = x

E3 = e
g0x+g1y

x

α1 = (−1+g)x+ y
α2 = gx+ y
α3 =−g1y

P1 = (0,0)

P∞
1 = [0 : 1 : 0]

P∞
2 = [1 : 0 : 0]

epep(4);(0
2)SN,S if g < 0

phph(4);(0
2)SN,N if g > 0

J1∩ J2 = P1 simple
J1∩L∞ = P∞

2 simple
J2∩L∞ = P∞

1 simple

Source: Elaborated by the author.

Table 272 – Divisor and zero-cycles of family (O) when a = 0 and g 6= 0,1.

Divisor and zero-cycles Degree
ICD = J1 +2J2 +L∞ if g 6= 1

M0CS = 4P1 +2P∞
1 +P∞

2 if g 6= 0

T = ZJ1J2
2 = 0 if g 6= 1

M0CT = 3P1 +3P∞
1 +2P∞

2 if g 6= 0

4

7

3

8
Source: Elaborated by the author.

where the total curve T has only two distinct tangents at P∞
1 , but one of them is double.

Table 273 – First integral and integrating factor of family (O) when a = 0 and g 6= 0,1.

First integral Integrating Factor

General I = Jλ1
1 J
− (g−1)λ1

g
2 E

λ1
g1g
3 R = Jλ1

1 J
− (g−1)λ1

g − 3g−1
g

2 E
1+λ1
g1g

3
Simple

example I = Jg
1 J(1−g)

2 E3 R =
1

J1J2
2

Source: Elaborated by the author.

(ii.6) a = g = 0.
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Under this condition, systems (O) do not belong to QSH. The system here is ẋ = xy, ẏ =

y(−x+ y). This is a degenerate system where the line y = 0 is filled up with singularities.
The affine line x = 0 is double so we compute the exponential factor E2.

Table 274 – Invariant curves, exponential factors, cofactors, singularities and intersection points for the
reduced system of family (O) when a = g = 0.

Inv.cur./exp.fac. and cofactors Singularities Intersection points
J1 = x

E2 = e
g0x+g1y

x

α1 = 1
α2 =−g1

P1 = (0,0)

P∞
1 = [0 : 1 : 0]

(	[|];nd);(0
2)SN,(	[|]; /0)

J1∩L∞ = P∞
1 simple

Source: Elaborated by the author.

Table 275 – Divisor and zero-cycles for the reduced system of family (O) when a = g = 0.

Divisor and zero-cycles Degree
ICD = 2J1 +L∞

M0CS = P1 +2P∞
1

T = ZJ2
1 = 0

M0CT = 2P1 +3P∞
1

3

3

3

5
Source: Elaborated by the author.

where the total curve T has only two distinct tangents at P∞
1 , but one of them is double.

Table 276 – First integral and integrating factor for the reduced system of family (O) when a = g = 0.

First integral Integrating Factor

General I = Jg1λ2
1 Eλ2

2 R = J−2+g1λ2
1 Eλ2

2
Simple

example I = J1E2 R =
1
J2

1
Source: Elaborated by the author.

Note that I and I are also first integrals for family (O) when a = g = 0.

(ii.7) a = 0 and g = 1.

Under this condition, systems (O) do not belong to QSH. The affine invariant lines are
y = 0 and x = 0 that are both double so we compute the exponential factor E3 and E4.
Considering the line at infinity Z = 0 the total multiplicity of the invariant lines is five
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so this case was studied in (SCHLOMIUK; VULPE, 2008b). We include this case as
indicated in Observation 81. By perturbing the reducible conic xy = 0 we produce the
hyperbola a+ xy = 0.

Table 277 – Invariant curves, exponential factors, cofactors, singularities and intersection points of family
(O) when a = 0 and g = 1.

Inv.cur./exp.fac. and cofactors Singularities Intersection points
J1 = y
J2 = x

E3 = e
g0x+g1y

x

E4 = e
h0+h1y

y

α1 = y
α2 = x+ y
α3 =−g1y
α4 =−h0

P1 = (0,0)

P∞
1 = [0 : 1 : 0]

P∞
2 = [1 : 0 : 0]

phph(4);(0
2)SN,N

J1∩ J2 = P1 simple
J1∩L∞ = P∞

2 simple
J2∩L∞ = P∞

1 simple

Source: Elaborated by the author.

Table 278 – Divisor and zero-cycles of family (O) when a = 0 and g = 1.

Divisor and zero-cycles Degree
ICD = 2J1 +2J2 +L∞

M0CS = 4P1 +2P∞
1 +P∞

2

T = ZJ2
1J2

2 = 0

M0CT = 4P1 +3P∞
1 +3P∞

2

4

7

5

10
Source: Elaborated by the author.

where the total curve T has only two distinct tangents at P∞
1 (and P∞

2 ), but one of them is
double.

Table 279 – First integral and integrating factor of family (O) when a = 0 and g = 1.

First integral Integrating Factor

General I = Jλ1
1 J0

2 E
λ1
g1
3 E0

4 R = Jλ1
1 J−2

2 E
1+λ1

g1
3 E0

4
Simple

example I = J1E3 R =
1

J1J2
2

Source: Elaborated by the author.

We sum up the topological, dynamical and algebraic geometric features of family (O) and
also confront our results with previous results in literature in the following proposition.
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Proposition 151. (a) For the family (O) we obtained seven distinct configurations
C(O)

1 −C(O)
7 of invariant hyperbolas and lines (see Figure 26 for the complete bifurca-

tion diagram of configurations of this family). The bifurcation set of configurations
in the full parameter space is ag(g−1)(g−1/2)(g−1/4) = 0. Its complement is a
union of 10 disjoint sets. On (g−1/2)(g−1/4) = 0 the invariant hyperbola is double.
On g = 1/2 we have an additional invariant line. On g = 0 we just have a simple
invariant hyperbola. For the limiting set of the parameter space of the considered
family we have the following: On g = 1 we have two additional invariant lines. On
a = 0 the hyperbola becomes reducible producing two lines and when a = g = 0 one
of the lines is filled up with singularities.

(b) The family (O) is generalized Darboux integrable when g = 1/2 and it is Liouvillian
integrable when g = 1/4.

(c) For the family (O) we have seven topologically distinct phase portraits P(O)
1 −P(O)

7 .
The topological bifurcation diagram of family (O) is done in Figure 27. The bifur-
cation set are the half lines g = 1/4 and g = 1/2 with a < 0 and the lines g = 0 and
a = 0. The half line g = 1/4 with a < 0 and the lines g = 0, a = 0 are bifurcation
sets of singularities and the half line g = 1/2 with a < 0 is a bifurcation of saddle
to saddle connection. The phase portraits P(O)

2 , P(O)
4 and P(O)

6 are not topologically
equivalent with anyone of the phase portraits in (LLIBRE; YU, 2018).

Proof of Proposition 151.

(a) We have the following type of divisors and zero-cycles of the total invariant curve T for
the configurations of family (O):

Table 280 – Configurations for family (O).

Configurations Divisors and zero-cycles of the total inv. curve T

C(O)
1

ICD = J1 +L∞

M0CT = P3 +P4 +2P∞
1 +2P∞

2

C(O)
2

ICD = J1 +L∞

M0CT = 2P∞
1 +2P∞

2

C(O)
3

ICD = J1 +L∞

M0CT = PC
3 +PC

4 +2P∞
1 +2P∞

2

C(O)
4

ICD = J1 +2J2 +L∞

M0CT = P1 +P2 +2P3 +2P4 +3P∞
1 +4P∞

2

C(O)
5

ICD = J1 +2J2 +L∞

M0CT = PC
1 +PC

2 +3P∞
1 +4P∞

2

C(O)
6

ICD = 2J1 +L∞

M0CT = 2P1 +2P2 +3P∞
1 +3P∞

2

C(O)
7

ICD = 2J1 +L∞

M0CT = 2PC
1 +2PC

2 +3P∞
1 +3P∞

2
Source: Elaborated by the author.
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Therefore, the configurations C(O)
1 up to C(O)

7 are all distinct. For the limit cases of family
(O) we have the following configurations:

Table 281 – Configurations for the limit cases of family (O).

Configurations Divisors and zero-cycles of the total inv. curve T

c1
ICD = J1 +2J2 +L∞

M0CT = 3P1 +3P∞
1 +2P∞

2

c2
ICD = 2J1 +2J2 +L∞

M0CT = 4P1 +3P∞
1 +3P∞

2

c3
ICD = 2J1 +L∞

M0CT = 2P1 +3P∞
1

c4
ICD = J1 + J2 + J3 +L∞

M0CT = 2P1 +2P2 +P3 +P4 +2P∞
1 +4P∞

2

c5
ICD = JC

1 + JC
2 + J3 +L∞

M0CT = 2PC
1 +2PC

2 +PC
3 +PC

4 +2P∞
1 +4P∞

2
Source: Elaborated by the author.

The other statements in (a) follows from the study done previously.

(b) This is shown in the previously exhibited tables.

(c) We have that:

Table 282 – Phase portraits for family (O).

Phase Portraits Sing. at ∞ Finite sing. Separatrix connections

P(O)
1

(
(0

2)SN,N
)

(n,n,s,s) 2SC f
f 6SC∞

f 0SC∞
∞

P(O)
2

(
(0

2)SN,N
)

(s,s,n,n) 4SC f
f 6SC∞

f 0SC∞
∞

P(O)
3

(
(0

2)SN,S
)(

(0
2)SN,(1

2)S
) ( f , f ,©,©)

( f , f ) 0SC f
f 2SC∞

f 2SC∞
∞

P(O)
4

(
(0

2)SN,N
)(

(0
2)SN,N

)(
(0

2)SN,(1
2)N
) (©,©,©,©)

(©(2),©(2))

(©,©)
0SC f

f 0SC∞
f 2SC∞

∞

P(O)
5

(
(0

2)SN,S
)

(©,©,n,n) 0SC f
f 2SC∞

f 0SC∞
∞

P(O)
6

(
(0

2)SN,N
)

(s,s,n,n) 3SC f
f 6SC∞

f 0SC∞
∞

P(O)
7

(
(0

2)SN,N
)

(sn(2),sn(2)) 0SC f
f 6SC∞

f 0SC∞
∞

Source: Elaborated by the author.

Therefore, we have seven distinct phase portraits for systems (O). For the limit cases of
family (O) we have the following phase portraits:
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Table 283 – Phase portraits for the limit cases of family (O).

Phase Portraits Sing. at ∞ Finite sing. Separatrix connections

P(O)
2

(
(0

2)SN,N
)

(s,s,n,n) 4SC f
f 6SC∞

f 0SC∞
∞

P(O)
4

(
(0

2)SN,N
)

(©,©,©,©) 0SC f
f 0SC∞

f 2SC∞
∞

p1
(
(0

2)SN,N
)

phph(4) 0SC f
f 4SC∞

f 0SC∞
∞

p2 (0
2)SN,(	[|]; /0) (	[|];nd) 0SC f

f 2SC∞
f 0SC∞

∞

p3
(
(0

2)SN,S
)

epep(4) 0SC f
f 4SC∞

f 0SC∞
∞

Source: Elaborated by the author.

Table 284 – Phase portraits in (LLIBRE; YU, 2018) that admit 2 singular points at infinity and with at
most 4 real finite singular points. We describe the infinity singularities given the type of
each sector in the neighbourhood of the singular point. The sectors can be of three types: P
(parabolic sector), H (hyperbolic sector) and E (elliptic sector).

Phase Portrait Sing. at ∞ Real finite sing. Separatrix connections

L01 (HP,N) /0 0SC f
f 0SC∞

f 1SC∞
∞

L02 (PPE,S) /0 0SC f
f 0SC∞

f 2SC∞
∞

L03 (PHP,N) /0 0SC f
f 0SC∞

f 3SC∞
∞

ω1 (PPH,N) (s,n) 1SC f
f 5SC∞

f 0SC∞
∞

ω2 (PEPP,S) (s,n) 1SC f
f 4SC∞

f 1SC∞
∞

ω3 (PEPP,S) (s,s) 1SC f
f 4SC∞

f 1SC∞
∞

Source: Elaborated by the author.

The phase portraits P(O)
2 , P(O)

4 and P(O)
6 are not topologically equivalent with anyone of

the phase portraits in (LLIBRE; YU, 2018). They are however phase portraits of systems
possessing an invariant line and an invariant hyperbola (when g = 1/2 and g = 1).

�
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Figure 26 – Bifurcation diagram of configurations for family (O).

a = 0

g = 1/4

g = 1/2

g = 1

(2)

(1)
(1)

(1)

(2)

(1)
(4)

(2)

(2)

(1)
(4)

c1

c2

c3

c4 c5

c1

c1

c1

c1

c1

(2)

(2,1)

(2)

(1)

(1)

(2)

(1)

(1)
(1)

(1)
2

2

2

2

2

(2)

2
(2)

(2)
(1)

(2)

(1)
(1)

(1)

(1)

(2)

(1)

(2)
2

(1)

2
(2)

g = 0

c1

(1)

(2)

(1)

(2)

(1)(1)

(1)(1)

C(O)
1

C(O)
1

C(O)
1

C(O)
1

C(O)
3

C(O)
2 C(O)

2

C(O)
3

C(O)
3

C(O)
3

C(O)
3

C(O)
1

C(O)
4 C(O)

5

C(O)
6 C(O)

7

(2,1)

(2)

Source: Elaborated by the author.
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Figure 27 – Topological bifurcation diagram for family (O).

a = 0

g = 1/4

g = 1/2

p1

p1

p1

p2
p4p3

p4p1

p4p1
P(O)

2

P(O)
2

g = 0
P(O)

1

P(O)
3

P(O)
3

P(O)
4

P(O)
4

P(O)
5

P(O)
6

P(O)
7

Source: Elaborated by the author.

Note that the phase portraits p4, p5 and P(O)
3 possess graphics in their first and third

quadrant.

6.2.2 Geometric Analysis of Family (P)

Consider the family

(P)

{
ẋ = 2a+3cx+ x2 + xy

ẏ = a− c2 + y2,

where a 6= 0.

This is a two parameter family depending on a and c such that a 6= 0 but for a complete
understanding of the bifurcation diagram of the systems in the full family defined by the equations
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(P) we study here also the limit case a = 0 where the equations are still defined. We display
below the full geometric analysis of the systems in this family, which is endowed with at least
two invariant algebraic curves. In the generic case

a(a− c2)(a−8c2/9) 6= 0

the systems have two invariant lines J1 and J2 and only one invariant hyperbolas J3 with cofactors
αi, 1≤ i≤ 3 given by

J1 = y−
√

c2−a, α1 = y+
√

c2−a,

J2 = y+
√

c2−a, α2 = y−
√

c2−a,

J3 = a+ cx+ xy, α3 = 2c+ x+2y.

We note that if a = c2 the two lines coalesce and we get a double line. Also if a = 8v2/9 we get
a double hyperbola. The multiplicities of each invariant straight line and invariant hyperbola
appearing in the divisor ICD of invariant algebraic curves were calculated by using the 1st
extactic polynomial for the lines and the 2nd extactic polynomial for the hyperbola.

(i) The generic case: a(a− c2)(a−8c2/9) 6= 0.

Table 285 – Invariant curves, cofactors, singularities and intersection points of family (P) for the generic
case.

Invariant curves and cofactors Singularities Intersection points

J1 = y−
√

c2−a
J2 = y+

√
c2−a

J3 = a+ cx+ xy

α1 = y+
√

c2−a
α2 = y−

√
c2−a

α3 = 2c+ x+2y

P1 =(−
√

c2−a−c,−
√

c2−a)
P2 =(−2(

√
c2−a+c),

√
c2−a)

P3 =(
√

c2−a−c,
√

c2−a)
P4 =(2(

√
c2−a−c),−

√
c2−a)

P∞
1 = [0 : 1 : 0]

P∞
2 = [1 : 0 : 0]

For a < 8c2/9 we have

n,s,n,s;(0
2)SN,N

For 8c2/9 < a < c2 we have

s,s,n,n;(0
2)SN,N if c < 0

n,n,s,s;(0
2)SN,N if c > 0

For c2 < a we have

©,©,©,©;(0
2)SN,N

J1∩ J2 = P∞
2 simple

J1∩ J3 =

{
P∞

2 simple
P3 simple

J1∩L∞ = P∞
2 simple

J2∩ J3 =

{
P∞

2 simple
P1 simple

J2∩L∞ = P∞
2 simple

J3∩L∞ =

{
P∞

1 simple
P∞

2 simple

Source: Elaborated by the author.
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Table 286 – Divisor and zero-cycles of family (P) for the generic.

Divisor and zero-cycles Degree

ICD =

{
J1 + J2 + J3 +L∞ if a < c2

JC
1 + JC

2 + J3 +L∞ if a > c2

M0CS =

{
P1 +P2 +P3 +P4 +2P∞

1 +P∞
2 if a < c2

PC
1 +PC

2 +PC
3 +PC

4 +2P∞
1 +P∞

2 if a > c2

T = ZJ1J2J3 = 0

M0CT =

{
2P1 +P2 +2P3 +P4 +2P∞

1 +4P∞
2 if a < c2

2PC
1 +PC

2 +2PC
3 +PC

4 +2P∞
1 +4P∞

2 if a < c2

4
4

7
7

5

12
12

Source: Elaborated by the author.

where the total curve T has four distinct tangents at P∞
2 .

Observation 152. Mathematica could not give a response for the computation of the first
integral of family (P) in the generic case.

Table 287 – Integrating factor of family (P) for the generic case.

Integrating Factor

General R = J
−−
√

c2−a−c
2
√

c2−a
1 J

− c−
√

c2−a
2
√

c2−a
2 J−2

3

Simple
example R = J

−−
√

c2−a−c
2
√

c2−a
1 J

− c−
√

c2−a
2
√

c2−a
2 J−2

3

Source: Elaborated by the author.

(ii) The non-generic case: a(a− c2)(a−8c2/9) = 0.

(ii.1) a = c2 and c 6= 0.

Table 288 – Invariant curves, exponential factor, cofactors, singularities and intersection points of family
(P) when a = c2 and c 6= 0.

Invariant curves and cofactors Singularities Intersection points
J1 = y
J2 =

xy
c
+ c+ x

E3 = e
g0+g1y

y

α1 = y
α2 = 2c+ x+2y
α3 =−g0

P1 = (−2c,0)
P2 = (−c,0)

P∞
1 = [0 : 1 : 0]

P∞
2 = [1 : 0 : 0]

sn(2),sn(2);(0
2)SN,N

J1∩ J2 =

{
P∞

2 simple
P2 simple

J1∩L∞ = P∞
2 simple

J2∩L∞ =

{
P∞

1 simple
P∞

2 simple

Source: Elaborated by the author.
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Table 289 – Divisor and zero-cycles of family (P) when a = c2 and c 6= 0.

Divisor and zero-cycles Degree
ICD = 2J1 + J2 +L∞

M0CS = 2P1 +2P2 +2P∞
1 +P∞

2

T = ZJ2
1J2 = 0

M0CT = 2P1 +3P2 +2P∞
1 +4P∞

2

4

7

5

11
Source: Elaborated by the author.

where the total curve T has

1) only one double tangent at P1;

2) only two distinct tangents at P2, but one of them double and

3) only three distinct tangents at P∞
2 , but one of them is double.

Table 290 – First integral and integrating factor of family (P) when a = c2 and c 6= 0.

First integral Integrating Factor

General I R = J1J−2
2 J

− c
g0

3
Simple

example I R = J1J−2
2 J−c

3

Source: Elaborated by the author.

I = I =
c2
(

ec/yEi

(
−c

y

)(
c2 + cx+ xy

)
+ y(c+ x− y)

)(
e

g0
y +g1

)− c
g0

c2 + cx+ xy
where Ei(z)

is the exponential integral function given by Ei(z) =−
∫

∞

−z

e−t

t
dt which has a branch

cut discontinuity in the complex z plane running from −∞ to 0.

(ii.2) a = 8c2/9 and c 6= 0.
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Table 291 – Invariant curves, exponential factor, cofactors, singularities and intersection points of family
(P) when a = 8c2/9 and c 6= 0.

Invariant curves and cofactors Singularities Intersection points
J1 =−c+3y
J2 = c+3y
J3 = 8c2 +9cx+9xy

E4 = e
c2(48g0−g1x+48g1y)+54cg0x+3cg1y(21x−8y)+54g0xy

48c2(8c2+9cx+9xy)

α1 = y+ c
3

α2 = y− c
3

α3 = 2c+ x+2y
α4 =−g1(c−3y)

54c

P1 =
(
−8c

3 ,
c
3

)
P2 =

(
−4c

3 ,−
c
3

)
P3 =

(
−2c

3 ,
c
3

)
P∞

1 = [0 : 1 : 0]
P∞

2 = [1 : 0 : 0]

s,sn(2),n;(0
2)SN,N

J1∩ J2 = P∞
2 simple

J1∩ J3 =

{
P∞

2 simple
P3 simple

J1∩L∞ = P∞
2 simple

J2∩ J3 =

{
P∞

2 simple
P2 simple

J2∩L∞ = P∞
2 simple

J3∩L∞ =

{
P∞

1 simple
P∞

2 simple

Source: Elaborated by the author.

Table 292 – Divisor and zero-cycles of family (P) when a = 8c2/9 and c 6= 0.

Divisor and zero-cycles Degree
ICD = J1 + J2 +2J3 +L∞

M0CS = P1 +2P2 +P3 +2P∞
1 +P∞

2

T = ZJ1J2J2
3 = 0

M0CT = P1 +3P2 +3P3 +3P∞
1 +5P∞

2

5

7

7

15
Source: Elaborated by the author.

where the total curve T has

1) only two distinct tangents at P2, but one of them double;

2) only two distinct tangents at P3, but one of them double;

3) only two distinct tangents at P∞
1 , but one of them double and

4) only four distinct tangents at P∞
2 , but one of them is double.

Table 293 – First integral and integrating factor of family (P) when a = 8c2/9 and c 6= 0.

First integral Integrating Factor

General I = J0
1 Jλ2

2 J0
3 E
− 18cλ2

g1
4 R = J2

1 Jλ2
2 J−2

3 E
− 18(cλ2+c)

g1
4

Simple
example I = J2E−18c

4 R =
J2

1
J2J2

3
Source: Elaborated by the author.

(ii.3) a = 0 and c 6= 0.
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Under this condition, systems (P) do not belong to QSH. The affine invariant lines are
x= 0 and±c+y= 0 that are all simple. Considering the line at infinity Z = 0 the total
multiplicity of the invariant lines is four so this case was studied in (SCHLOMIUK;
VULPE, 2008c). We include this case as indicated in Observation 81. By perturbing
the reducible conic x(c+ y) = 0 we can produce the hyperbola a+ cx+ xy = 0.
Furthermore, the conic x(c+ y) = 0 has integrable multiplicity two.

Table 294 – Invariant curves, exponential factor, cofactors, singularities and intersection points of family
(P) when a = 0 and c 6= 0.

Invariant curves and cofactors Singularities Intersection points
J1 =−c+ y
J2 = c+ y
J3 = x

E4 = e

(
− c2(g0−3g1x)+2cg0(x−y)−3cg1xy+g0y2

3cx(c+y)

)

α1 = c+ y
α2 =−c+ y
α3 = 3c+ x+ y
α4 =

g0(y−c)
3c

P1 = (−4c,c)
P2 = (−2c,−c)
P3 = (0,−c)
P4 = (0,c)

P∞
1 = [0 : 1 : 0]

P∞
2 = [1 : 0 : 0]

s,n,s,n;(0
2)SN,N

J1∩ J2 = P∞
2 simple

J1∩ J3 = P4 simple
J1∩L∞ = P∞

2 simple
J2∩ J3 = P3 simple
J2∩L∞ = P∞

2 simple
J3∩L∞ = P∞

1 simple

Source: Elaborated by the author.

Table 295 – Divisor and zero-cycles of family (P) when a = 0 and c 6= 0.

Divisor and zero-cycles Degree
ICD = J1 + J2 + J3 +L∞

M0CS = P1 +P2 +P3 +P4 +2P∞
1 +P∞

2

T = ZJ1J2J3 = 0

M0CT = P1 +P2 +2P3 +2P4 +2P∞
1 +3P∞

2

4

7

4

11
Source: Elaborated by the author.

where the total curve T has three distinct tangents at P∞
2 .

Table 296 – First integral and integrating factor of family (P) when a = 0 and c 6= 0.

First integral Integrating Factor

General I = J0
1 Jλ2

2 J0
3 E
− 3cλ2

g0
4 R = J1Jλ2

2 J−2
3 E

− 3(2c+cλ2)
g0

4
Simple

example I = J2E−3c
4 R =

J1

J2
2 J2

3
Source: Elaborated by the author.
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(ii.4) a = c = 0.

Under this condition, systems (P) do not belong to QSH. The affine invariant lines are
x = 0 and y = 0 that are both double. Considering the line at infinity Z = 0 the total
multiplicity of the invariant lines is five so this case was studied in (SCHLOMIUK;
VULPE, 2008b). We include this case as indicated in Observation 81. This system
has a generalized Darboux first integral. By perturbing the reducible conic xy = 0 we
can produce the hyperbola a+ cx+ xy = 0.

Table 297 – Invariant curves, exponential factor, cofactors, singularities and intersection points of family
(P) when a = c = 0.

Invariant curves and cofactors Singularities Intersection points
J1 = x
J2 = y
E3 = eg0+

g1y
x

E4 = eh0+
h1
y

α1 = c+ y
α2 =−c+ y
α3 =−g1y
α4 =−h1

P1 = (0,0)

P∞
1 = [0 : 1 : 0]

P∞
2 = [1 : 0 : 0]

phph(4);(0
2)SN,N

J1∩ J2 = P1 simple
J1∩L∞ = P∞

1 simple
J2∩L∞ = P∞

2 simple

Source: Elaborated by the author.

Table 298 – Divisor and zero-cycles of family (P) when a = c = 0.

Divisor and zero-cycles Degree
ICD = 2J1 +2J2 +L∞

M0CS = 4P1 +2P∞
1 +P∞

2

T = ZJ2
1J2

2 = 0

M0CT = 4P1 +3P∞
1 +3P∞

2

5

7

5

10
Source: Elaborated by the author.

where the total curve T has

1) only two distinct tangents at P1, but two of them double;

2) only two distinct tangents at P∞
1 (and P∞

2 ), but one of them double.
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Table 299 – First integral and integrating factor of family (P) when a = c = 0.

First integral Integrating Factor

General I = J0
1 Jg1λ3

2 Eλ3
3 E0

4 R = J−2
1 J−1+g1λ3

2 Eλ3
3 E0

4
Simple

example I = J2E3 R =
1

J2
1 J2

Source: Elaborated by the author.

We sum up the topological, dynamical and algebraic geometric features of family (P)
and also confront our results with previous results in literature in the following proposition.

Proposition 153. (a) For the family (P) we obtained six distinct configurations C(P)
1 −C(P)

6

of invariant hyperbolas and lines (see Figure 28 for the complete bifurcation diagram of
configurations of this family). The bifurcation set of configurations in the full parameter
space is a(a− c2)(a−8c2/9) = 0 and it is made of points of bifurcation due to change
in the multiplicities of the invariant algebraic invariant curves: On a = c2 and c 6= 0 the
invariant lines coalesce into a double line. On a = 8c2/9 and c 6= 0 the hyperbola becomes
double. For the limiting set of the parameter space, i.e. on a = 0 the invariant hyperbola
becomes reducible producing the lines x = 0 and c+y = 0 and when also c = 0 then x = 0
and y = 0 become double lines.

(b) The family (P) is Liouvillian integrable for a(a− 8c2/9) 6= 0 and generalized Darboux
integrable for a = 8c2/9. All systems in family (P) do not have a polynomial inverse
integrating factor. Outside the parameter space, i.e. on a = 0 we have a polynomial inverse
integrating factor only when c = 0.

(c) For the family (P) we have five topologically distinct phase portraits P(P)
1 −P(P)

5 . The
topological bifurcation diagram of family (P) is done in Figure 29. The parabolas a = c2

and a = 8c2/9 are bifurcation sets of singularities and the line a = 0 is a bifurcation
of separatrices connection. The phase portraits P(P)

2 , P(P)
4 and P(P)

5 are not topologically
equivalent with anyone of the phase portraits in (LLIBRE; YU, 2018).

Proof of Proposition 153.

(a) We have the following type of divisors and zero-cycles of the total invariant curve T for
the configurations of family (P):
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Table 300 – Configurations for family (P).

Configurations Divisors and zero-cycles of the total inv. curve T

C(P)
1

ICD = J1 + J2 + J3 +L∞

M0CT = 2P1 +P2 +2P3 +P4 +2P∞
1 +4P∞

2

C(P)
2

ICD = J1 + J2 + J3 +L∞

M0CT = 2P1 +P2 +2P3 +P4 +2P∞
1 +4P∞

2

C(P)
3

ICD = J1 + J2 + J3 +L∞

M0CT = 2P1 +P2 +2P3 +P4 +2P∞
1 +4P∞

2

C(P)
4

ICD = JC
1 + JC

2 + J3L∞

M0CT = 2PC
1 +PC

2 +2PC
3 +PC

4 +2P∞
1 +4P∞

2

C(P)
5

ICD = 2J1 + J2 +L∞

M0CT = 2P1 +3P2 +2P∞
1 +4P∞

2

C(P)
6

ICD = J1 + J2 +2J3 +L∞

M0CT = P1 +3P2 +3P3 +3P∞
1 +5P∞

2
Source: Elaborated by the author.

Note that C(P)
1 , C(P)

2 and C(P)
3 admit the same type of divisor and zero-cycles but the

configurations are non equivalent. In fact, consider the convex quadrilateral in Figure 28
formed by the four finite singularities in these configurations. In C(P)

1 any two consecutive
or opposite points of this quadrilateral are not joined by anyone of the two branches of the
hyperbola, in C(P)

2 , two opposite points are joined by a branch of the hyperbola and in C(P)
3

two consecutive points of this quadrilateral is joined by a branch of the hyperbola.

Therefore, the configurations C(P)
1 up to C(P)

6 are all distinct. For the limit cases of family
(P) we have the following configurations:

Table 301 – Configurations for the limit cases of family (P).

Configurations Divisors and zero-cycles of the total inv. curve T

c1
ICD = J1 + J2 + J3 +L∞

M0CT = P1 +P2 +2P3 +2P4 +2P∞
1 +3P∞

2

c2
ICD = 2J1 +2J2 +L∞

M0CT = 4P1 +3P∞
1 +3P∞

2
Source: Elaborated by the author.

The other statements in (a) follows from the study done previously.

(b) In the generic case a(a−c2)(a−8c2/9) 6= 0 the three cofactors α1, α2, α3 of J1, J2, J3 are
linearly independent. Hence we cannot get a Darboux first integral by using these curves.
Furthermore the curves are each of multiplicity 1 and hence we cannot have exponential
factors attached to them. However we obtained an integrating factor for (P) in the generic
case. Using Mathematica we could not obtain an expression for the first integral of these
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systems but we know that it exists and it is Liouvillian. For the non-generic cases we
obtained first integrals and they were given in previously exhibited tables.

Let us show that the family does not admit a polynomial inverse integrating factor.

(i) The generic case: a(a− c2)(a−8c2/9) 6= 0.

We have the following integrating factor

R = J
c+
√

c2−a
2
√

c2−a
1 J

−c+
√

c2−a
2
√

c2−a
2 J−2

3 .

In order to R−1 to be polynomial we must have that


c+
√

c2−a
2
√

c2−a
=

c

2
√

c2−a
+

1
2

=−m1, m1 ∈ N

−c+
√

c2−a
2
√

c2−a
=

−c

2
√

c2−a
+

1
2

=−m2, m2 ∈ N.

Adding up these two expressions we have

1 =−(m1 +m2), m1,m2 ∈ N

and this equation does not have a solution. Therefore, R−1 cannot be polynomial.

(ii) The non-generic case: a(a− c2)(a−8c2/9) = 0.

(ii.1) a = c2 : We have the integrating factor

R = J1J−2
2 E−c/g0

3

and it is clear that R−1 cannot be polynomial.

(ii.2) a = 8c2/9 : We have the integrating factor

R = J2
1 Jλ2

2 J−2
3 E−18(cλ2+c)/g1

4

again it is clear that R−1 cannot be polynomial.

(ii.3) a = 0 and c 6= 0. We have the integrating factor

R = J1Jλ2
2 J−2

3 E−3(2c+cλ2)/g0
4 .

again it is clear that R−1 cannot be polynomial.

(ii.4) a = 0 and c = 0 : We have the integrating factor

R = J−2
1 J−1+g1λ3

2 Eλ3
3 E0

4 .

Taking λ3 = 0 we have that R−1 = J2
1 J2 which is polynomial.
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(c) We have:

Table 302 – Phase portraits for family (P).

Phase Portraits Sing. at ∞ Finite sing. Separatrix connections

P(P)
1

(
(0

2)SN,N
)

(n,s,n,s) 4SC f
f 6SC∞

f 0SC∞
∞

P(P)
2

(
(0

2)SN,N
)

(n,s,n,s) 4SC f
f 5SC∞

f 1SC∞
∞

P(P)
3

(
(0

2)SN,N
)

(©,©,©,©) 0SC f
f 0SC∞

f 2SC∞
∞

P(P)
4

(
(0

2)SN,N
)

(sn(2),sn(2)) 1SC f
f 5SC∞

f 1SC∞
∞

P(P)
5

(
(0

2)SN,N
)

(s,sn(2),n) 3SC f
f 5SC∞

f 1SC∞
∞

Source: Elaborated by the author.

Therefore, we have five distinct phase portraits for systems (P). For the limit case of family
(P) we have the following phase portraits:

Table 303 – Phase portraits for the limit case of family (P).

Phase Portraits Sing. at ∞ Finite sing. Separatrix connections

p1
(
(0

2)SN,N
)

(s,n,s,n) 4SC f
f 5SC∞

f 0SC∞
∞

p2
(
(0

2)SN,N
)

phph(4) 0SC f
f 4SC∞

f 0SC∞
∞

Source: Elaborated by the author.

The phase portraits P(P)
2 ,P(P)

4 and P(P)
5 are not topologically equivalent with anyone of

the phase portraits in (LLIBRE; YU, 2018) (see the table 284). Note that P(P)
1
∼=top P(O)

2

and P(P)
3
∼=top P(O)

4 are also missing in (LLIBRE; YU, 2018) and they were listed in the
geometric study of family (O).
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Figure 28 – Bifurcation diagram of configurations for family (P).

a = 0

a− c2 = 0

a−8c2/9 = 0

(2)

(1)

(2)

(1)

(1)

(1)

(1)

(1)

(2)

(1)

(1)

(1)

(1)

(1)

C(P)
3

C(P)
3

C(P)
2

(2)

(1) (1)

(1)
(1)

C(P)
2

2

(2)

(1)

(1)(1)

(1)(1)

(2)

(1)

(2)

(1)

2

2 (4)

(2)

(1)

(1) (1)

(1)(1)

c1

c2

C(P)
1

C(P)
5

C(P)
4

(2)

(1)(1)

(1)

(1)

(1)

(2)

(1)

(2)

(1)

2

2

(2)

(1)

(1) (1)

(1) (1)

c1

C(P)
6

C(P)
6

2

C(P)
5

(2)(2)

(2)

(2)

(2)

(1)

(1)

(2)

(1)

(1)

Source: Elaborated by the author.

Observation 154. Note that c1 (for example, for c > 0) has three distinct lines, each line is
an irreducible curve and for these lines the algebraic, integrable and geometric multiplicities
coincide and this multiplicity is one. Hence in perturbations the line y+ c = 0 can produce at
most one line and in this case, it produces the line y+

√
c2−a = 0.

Observation 155. Note that the necessary and sufficient condition for systems defined by the
equations (P) to have a double hyperbola or a double line is that it has two singularities of the
system of multiplicity two or just one singularity of multiplicity four.
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Figure 29 – Topological bifurcation diagram for family (P).

a = 0

a− c2 = 0

a−8c2/9 = 0

p1

p2

P(P)
3

p1

P(P)
1

P(P)
2

P(P)
2

P(P)
2

P(P)
2

P(P)
4

P(P)
4

P(P)
5

P(P)
5

Source: Elaborated by the author.

6.2.3 Geometric Analysis of Family (Q)

Consider the family

(Q)

{
ẋ = (c+ x)(c(2g−1)+gx)

ẏ = 1+(g−1)xy,

where (g±1)(3g−1)(2g−1) 6= 0 and c2 +g2 6= 0.

This is a two parameter family depending on c and g such that (g± 1)(3g− 1)(2g−
1) 6= 0 and c2 + g2 6= 0 but for a complete understanding of the bifurcation diagram of the
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systems in the full family defined by the equations (Q) we study here also the limit cases
(g± 1)(3g− 1)(2g− 1) = 0 and g = c = 0 where the equations are still defined. We display
below the full geometric analysis of the systems in this family, which is endowed with at least
two invariant algebraic curves. In the generic case

cg(g±1)(3g−1)(2g−1) 6= 0

the systems have two invariant lines J1 and J2 and only one invariant hyperbola J3 with cofactors
αi, 1≤ i≤ 3 given by

J1 = c+ x, α1 = c(−1+2g)+gx,

J2 = c(−1+2g)+gx, α2 =−cg+gx,

J3 =
1

2g−1 + y(c+ x), α3 = c(−1+2g)+(−1+2g)x.

We note that when c = 0 and g 6= 0 then the two lines coincide and we get a multiple line. The
multiplicities of each invariant line and invariant hyperbola appearing in the divisor ICD of
invariant algebraic curves were calculated by using the 1st extactic polynomial for the line and
the 2nd extactic polynomial for the hyperbola.

(i) The generic case: cg(g±1)(3g−1)(2g−1) 6= 0.

Table 304 – Invariant curves, cofactors, singularities and intersection points of family (Q) for the generic
case.

Invariant curves and cofactors Singularities Intersection points

J1 = c+ x
J2 = c(−1+2g)+gx
J3 =

1
2g−1 + y(c+ x)

α1 = c(−1+2g)+gx
α2 =−cg+gx
α3 = c(−1+2g)+(−1+2g)x

P1 =
(
−c,

1
c(g−1)

)
P2 =

(
c
(1

g−2
)
,

g
2cg2−3cg+c

)

P∞
1 = [0 : 1 : 0]

P∞
2 = [1 : 0 : 0]

For c < 0 we have

s,n;(2
2)PEP−EPP,S if g < 0

s,s;(2
2)PPEP−PEPP,N if 0<g<1/2

s,n;(2
2)HPP−HPP,N if g > 1/2

For c > 0 we have

s,n;(2
2)PPE−PEP,S if g < 0

s,s;(2
2)PPEP−PEPP,N if 0<g<1/2

s,n;(2
2)PPH−PPH,N if g > 1/2

J1∩ J2 = P∞
1 simple

J1∩ J3 = P∞
1 double

J1∩L∞ = P∞
1 simple

J2∩ J3 =

{
P∞

1 simple
P2 simple

J2∩L∞ = P∞
1 simple

J3∩L∞ =

{
P∞

1 simple
P∞

2 simple

Source: Elaborated by the author.
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Table 305 – Divisor and zero-cycles of family (Q) for the generic case.

Divisor and zero-cycles Degree
ICD = J1 + J2 + J3 +L∞

M0CS = P1 +P2 +4P∞
1 +P∞

2

T = ZJ1J2J3 = 0

M0CT = P1 +2P2 +4P∞
1 +2P∞

2

4

7

5

9
Source: Elaborated by the author.

where the total curve T has only three distinct tangents at P∞
1 , but one of them is double.

Table 306 – First integral and integrating factor of family (Q) for the generic case.

First integral Integrating Factor

General I = J0
1 Jλ2

2 J
− gλ2

2g−1
3 R = J0

1 Jλ2
2 J

1−g(λ2+3)
2g−1

3
Simple

example I = J2J
− g

2g−1
3 R =

1
J1J2

Source: Elaborated by the author.

(ii) The non-generic case: cg(g±1)(3g−1)(2g−1) = 0.

(ii.1) c = 0 and g(g±1)(3g−1)(2g−1) 6= 0.

Here the two lines coalesce yielding a triple line so we compute the exponential
factor E3 and E4.

Table 307 – Invariant curves, exponential factors, cofactors, singularities and intersection points of family
(Q) when c = 0 and g 6= 0,1/2.

Inv.curves/exp.fac. and cofactors Singularities Intersection points

J1 = x
J2 =

1
2g−1 + xy

E3 = e
g0+g1x

x

E4 = e
2gh0xy+h0+x(h1+h2x)

x2

α1 = gx
α2 = (2g−1)x
α3 =−gg0
α4 =−g(h1 +2h0y)

P∞
1 = [0 : 1 : 0]

P∞
2 = [1 : 0 : 0]

For g < 0 we have

/0;(4
2)PPE−EPP,S

For g > 0 we have

/0;(4
2)PHP−PHP,N if g < 1/2

/0;(4
2)PPH−HPP,N if g > 1/2

J1∩ J2 = P∞
1 double

J1∩L∞ = P∞
1 simple

J2∩L∞ =

{
P∞

1 simple
P∞

2 simple

Source: Elaborated by the author.
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Table 308 – Divisor and zero-cycles of family (Q) when c = 0 and g 6= 0,1/2.

Divisor and zero-cycles Degree
ICD = 3J1 + J2 +L∞

M0CS = 6P∞
1 +P∞

2

T = ZJ3
1J2 = 0.

M0CT = 5P∞
1 +2P∞

2

5

7

6

7
Source: Elaborated by the author.

where the total curve T has only two distinct tangents at P∞
1 , but one of them is

quadruple.

Table 309 – First integral and integrating factor of family (Q) when c = 0 and g 6= 0,1/2.

First integral Integrating Factor

General I = Jλ1
1 J
− gλ1

2g−1
2 E0

3 E0
4 R = Jλ1

1 J
1−g(λ1+3)

2g−1
2 E0

3 E0
4

Simple
example I = J1J

− g
2g−1

2 R =
1

J1J2
Source: Elaborated by the author.

(ii.2) g = 0 and c 6= 0.

Here we have only one affine invariant line and one invariant hyperbola both of them
are simple. The line at infinity Z = 0 is double so we compute the exponential factor
E3.

Table 310 – Invariant curves, exponential factors, cofactors, singularities and intersection points of family
(Q) when g = 0 and c 6= 0.

Inv.curves/exp.fac. and cofactors Singularities Intersection points

J1 = c+ x
J2 =−1+ cy+ xy
E3 = eg0+g1x

α1 =−c
α2 =−c− x
α3 =−c2g1− cg1x

P1 =
(
−c,−1

c

)
P∞

1 = [0 : 1 : 0]
P∞

2 = [1 : 0 : 0]

For c < 0 we have

s;(2
2)PEP−EPP,(1

1)SN

For c > 0 we have

s;(2
2)PPE−PEP,(1

1)SN

J1∩ J2 = P∞
1 double

J1∩L∞ = P∞
1 simple

J2∩L∞ =

{
P∞

1 simple
P∞

2 simple

Source: Elaborated by the author.
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Table 311 – Divisor and zero-cycles of family (Q) when g = 0 and c 6= 0.

Divisor and zero-cycles Degree
ICD = J1 + J2 +2L∞

M0CS = P1 +4P∞
1 +2P∞

2

T = Z2J1J2 = 0.

M0CT = P1 +4P∞
1 +3P∞

2

4

7

5

8
Source: Elaborated by the author.

where the total curve T has

1) only three distinct tangents at P∞
1 , but one of them is double and

1) only two distinct tangents at P∞
2 , but one of them is double.

Table 312 – First integral and integrating factor of family (Q) when g = 0 and c 6= 0.

First integral Integrating Factor

General I = J0
1 Jλ2

2 E
− λ2

cg1
3 R = J0

1 Jλ2
2 E

− 1+λ2
cg1

3
Simple

example I = Jc
2E−1

3 R =
1
J2

Source: Elaborated by the author.

(ii.3) g =−1 and c 6= 0.

Under this condition the systems do not belong to family (Q). Here we have two
invariant lines, one invariant hyperbola and one invariant parabola. We note that in
the case c = g =−1 this system is exactly family (S).
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Table 313 – Invariant curves, cofactors, singularities and intersection points of system (Q) when g =−1
and c 6= 0.

Inv.curves and cofactors Singularities Intersection points

J1 = c+ x
J2 = 3c+ x
J3 =−1+3cy+3xy
J4 = 3c2y+ x2

8c +
19c
8 + x

α1 =−3c− x
α2 =−c− x
α3 =−3c−3x
α4 =−2x

P1 =
(
−c,− 1

2c

)
P2 =

(
−3c,− 1

6c

)
P∞

1 = [0 : 1 : 0]
P∞

2 = [1 : 0 : 0]

s,n;(2
2)PPPE−PPEP,S

J1∩ J2 = P∞
1 simple

J1∩ J3 = P∞
1 double

J1∩ J4 =

{
P∞

1 simple
P1 simple

J1∩L∞ = P∞
1 simple

J2∩ J3 =

{
P∞

1 simple
P2 simple

J2∩ J4 =

{
P∞

1 simple
P2 simple

J2∩L∞ = P∞
1 simple

J3∩ J4 =

{
P∞

1 simple
P2 triple

J3∩L∞ =

{
P∞

1 simple
P∞

2 simple
J4∩L∞ = P∞

1 double

Table 314 – Divisor and zero-cycles of system (Q) when g =−1 and c 6= 0.

Divisor and zero-cycles Degree
ICD = J1 + J2 + J3 + J4 +L∞

M0CS = P1 +P2 +4P∞
1 +P∞

2

T = ZJ1J2J3J4 = 0.

M0CT = 2P1 +3P2 +5P∞
1 +2P∞

2

5

7

7

12

where the total curve T has

1) only three distinct tangents at P∞
1 , two of them double and one simple,

2) two distinct tangents at P2, but one of them is double.

Table 315 – First integral and integrating factor of system (Q) when g =−1 and c 6= 0.

First integral Integrating Factor

General I = Jλ1
1 Jλ2

2 J
−λ1−

λ2
3

3 Jλ1
4 R = Jλ1

1 Jλ2
2 J
− 4

3−λ1−
λ2
3

3 Jλ1
4

Simple
example I1 =

J3
2

J3
R =

1
J1J2J4

Observation 156. Consider F 1
(c1,c2)

= c1J3
2 − c2J3 = 0, degF 1

(c1,c2)
= 3. The re-

markable value of F 1
(c1,c2)

are [1 :−8c3] and [1 : 0] for which we have

F 1
(1,−8c3) = 8cJ1J4, F 1

(1,0) = J3
2 .
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Therefore, J1,J2,J4 are remarkable curves and [1 :−8c3], [1 : 0] are remarkable values
of I1. Moreover, [1 : 0] is a critical remarkable values and J2 is critical remarkable
curve of I1. The singular points are P1 for F 1

(1,−8c3) and P2 for F 1
(1,0).

(ii.4) g = 1/3 and c 6= 0.

Under this condition the systems do not belong to family (Q). Here we have two
invariant lines and two hyperbolas. These systems are Hamiltonian so they admit a
polynomial first integral.

Table 316 – Invariant curves, cofactors, singularities and intersection points of family (Q) when g = 1/3
and c 6= 0.

Inv.curves and cofactors Singularities Intersection points

J1 =−c+ x
J2 = c+ x
J3 =−3− cy+ xy
J4 =−3+ cy+ xy

α1 =
c
3 +

x
3

α2 =
x
3 −

c
3

α3 =
c
3 −

x
3

α4 =− c
3 −

x
3

P1 =
(
−c,− 3

2c

)
P2 =

(
c, 3

2c

)
P∞

1 = [0 : 1 : 0]
P∞

2 = [1 : 0 : 0]

s,s;(2
2)PPEP−PEPP,N

J1∩ J2 = P∞
1 simple

J1∩ J3 = P∞
1 double

J1∩ J4 =

{
P∞

1 simple
P1 simple

J1∩L∞ = P∞
1 simple

J2∩ J3 =

{
P∞

1 simple
P2 simple

J2∩ J4 = P∞
1 double

J2∩L∞ = P∞
1 simple

J3∩ J4 =

{
P∞

1 simple
P∞

2 triple

J3∩L∞ =

{
P∞

1 simple
P∞

2 simple

J4∩L∞ =

{
P∞

1 simple
P∞

2 simple

Table 317 – Divisor and zero-cycles of family (Q) when g = 1/3 and c 6= 0.

Divisor and zero-cycles Degree
ICD = J1 + J2 + J3 + J4 +L∞

M0CS = P1 +P2 +4P∞
1 +P∞

2

T = ZJ1J2J3J4 = 0.

M0CT = 2P1 +2P2 +5P∞
1 +3P∞

2

5

7

7

12

where the total curve T has

1) only three distinct tangents at P∞
1 , but two of them are double;

2) three distinct tangents at P∞
2 .
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Table 318 – First integral and integrating factor of family (Q) when g = 1/3 and c 6= 0.

First integral Integrating Factor

General I = Jλ1
1 Jλ2

2 Jλ2
3 Jλ1

4 R = Jλ1
1 Jλ2

2 Jλ2
3 Jλ1

4
Simple

example I1 = J1J4 R1 =
1

J1J4

(ii.5) g = 1/2 and c 6= 0.

Under this condition, systems (Q) do not belong to QSH. Here we have two invariant
lines. We also could find an exponential factor but it did not arise from multiple curves
since by calculating the 1st extactic polynomial we checked that the multiplicity of
the affine invariant lines is one. We also checked the multiplicity of the line at infinity
and it is also simple.

Table 319 – Invariant curves, exponential factors, cofactors, singularities and intersection points of family
(Q) when g = 1/2 and c 6= 0.

Inv.curves/exp.fac. and cofactors Singularities Intersection points

J1 = x
J2 =

x
c +1

E3 = ecg1y+g0+g1xy

α1 =
c
2 +

x
2

α2 =
x
2

α3 = cg1 +g1x

P1 =
(
−c,−2

c

)
P∞

1 = [0 : 1 : 0]
P∞

2 = [1 : 0 : 0]

For c < 0 we have

s;(3
2)PPEP−HPP,N

For c > 0 we have

s;(3
2)PPH−PEPP,N

J1∩ J2 = P∞
1 simple

J1∩L∞ = P∞
1 simple

J2∩L∞ = P∞
1 simple

Source: Elaborated by the author.

Table 320 – Divisor and zero-cycles of family (Q) when g = 1/2 and c 6= 0.

Divisor and zero-cycles Degree
ICD = J1 + J2 +L∞

M0CS = P1 +5P∞
1 +P∞

2

T = ZJ1J2 = 0.

M0CT = P1 +3P∞
1 +P∞

2

3

7

3

5
Source: Elaborated by the author.

where the total curve T has three distinct tangents at P∞
1 .
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Table 321 – First integral and integrating factor of family (Q) when g = 1/2 and c 6= 0.

First integral Integrating Factor

General I = Jλ1
1 J0

2 E
− λ1

2g1
3 R = Jλ1

1 J0
2 E
− λ1

2g1
− 1

2g1
3

Simple
example I = J2

1 E−1
3 R =

1
J1

Source: Elaborated by the author.

(ii.6) g = 1 and c 6= 0.

Under this condition, systems defined by the equations (Q) do not belong to family
(Q). Here the systems possess an invariant line with multiplicity three and a family
of invariant hyperbolas

1+ rc+ rx+ cy+ xy,

where r ∈ R. The line at infinity L∞ : Z = 0 has multiplicity 3.

Table 322 – Invariant curves, exponential factors, cofactors, singularities and intersection points of system
(Q) when g = 1 and c 6= 0.

Inv.cur./exp.fac and cofactors Singularities Intersection points
J1 = c+ x
J2,r = 1+ rc+ rx+ cy+ xy
E3 = eg0+g1y+g2y2

E4 = e
h0+h1x

c+x

E5 = e
− l2−2(c+x)(l1(c+x)−l0−l2y)

2(c+x)2

α1 = c+ x
α2 = c+ x
α3 = g1 +2g2x
α4 =−h0 + ch1
α5 = l0 + l2y

P∞
1 = [0 : 1 : 0]

P∞
2 = [1 : 0 : 0]

/0;(4
2)PH−HP,N

J1∩ J2,r = P∞
1 double

J1∩L∞ = P∞
1 simple

J2,r∩L∞ =

{
P∞

1 simple
P∞

2 simple

Table 323 – Divisor and zero-cycles of system (Q) when g = 1 and c 6= 0.

Divisor and zero-cycles Degree
ILD = 3J1 +3L∞

M0CS = 6P∞
1 +P∞

2

T = Z3J3
1 = 0

M0CT = 6P∞
1 +3P∞

2

6

7

6

9

where the total curve T has
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1) only two distinct tangents at P∞
1 , both of them triple and

2) only one triple tangent at P∞
2 .

Table 324 – First integral and integrating factor of system (Q) when g = 1 and c 6= 0.

First integral Integrating Factor

General I = Jλ1
1 J−λ1

2,r Eλ3
3 E

− λ3(2g2l0−g1l2)
l2(h0−ch1)

4 E
− 2g2λ3

l2
5 R = Jλ1

1 J−2−λ1
2,r Eλ3

3 E
− λ3(2g2l0−g1l2)

l2(h0−ch1)
4 E

− 2g2λ3
l2

5
Simple

example I1 =
J1

J2,1
R1 =

1
J2

1

Observation 157. Consider F 1
(c1,c2)

= c1J1− c2J2,1 = 0, degF 1
(c1,c2)

= 2. We do
not have any remarkable values and remarkable curves for I1.

(ii.7) g =−1 and c = 0.

Under this condition the systems do not belong to family (Q). Here we have one
invariant line which has multiplicity four (so we compute the exponential factors E1,
E2 and E3) and one simple invariant hyperbola. We note that this system is exactly
family (T).

Table 325 – Invariant curves, cofactors, singularities and intersection points of system (Q) when g =−1
and c = 0.

Inv.curves and cofactors Singularities Intersection points
J1 = x
J2 =−1+3xy

E3 = e
g0+g1x

x

E4 = e
−2h0xy+h0+h1x+h2x2

x2

E5 = e
(
−3l0xy+l0+x(−2l1xy+l1+x(l2+l3x))

x3

)

α1 =−x
α2 =−3x
α3 = g0
α4 = h1 +2h0y
α5 = l2 +2l1y

P∞
1 = [0 : 1 : 0]

P∞
2 = [1 : 0 : 0]

/0;(4
2)PE−EP,S

J1∩ J2 = P∞
1 double

J1∩L∞ = P∞
1 simple

J2∩L∞ =

{
P∞

1 simple
P∞

2 simple

Table 326 – Divisor and zero-cycles of system (Q) when g =−1 and c = 0.

Divisor and zero-cycles Degree
ICD = 4J1 + J2 +L∞

M0CS = 6P∞
1 +P∞

2

T = ZJ4
1J2 = 0.

M0CT = 6P∞
1 +2P∞

2

6

7

7

8
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where the total curve T has only two distinct tangents at P∞
1 , but one of them is

quintuple.

Table 327 – First integral and integrating factor of system(Q) when g =−1 and c = 0.

First integral Integrating Factor

General I = Jλ1
1 J
− λ1

3
2 E

− (h1l1−h0l2)λ4
g0l1

3 Eλ4
4 E

− h0λ4
l1

5 R = Jλ1
1 J
− 4

3−
λ1
3

2 E
− (h1l1−h0l2)λ4

g0l1
3 Eλ4

4 E
− h0λ4

l1
5

Simple
example I =

J3
1

J2
R =

1
J1J2

Observation 158. Consider F 1
(c1,c2)

= c1J3
1 − c2J2 = 0, degF 1

(c1,c2)
= 3. The re-

markable value of F 1
(c1,c2)

is [1 : 0] for which we have

F 1
(1,0) = J3

1 .

Therefore, J1 is a critical remarkable curves and [1 : 0] is a critical remarkable value
of I1.

(ii.8) g = 1/3 and c = 0.

Under this condition the systems do not belong to family (Q). Here we have one affine
invariant line and one invariant hyperbola, both of them are triple so we compute
the exponential factors E3, E4, E5 and E6. This system is Hamiltonian so it admits a
polynomial first integral.

Table 328 – Invariant curves, exponential factors, cofactors, singularities and intersection points of family
(Q) when g = 1/3 and c = 0.

Inv.curves/exp.fac. and cofactors Singularities Intersection points
J1 = x
J2 =−3+ xy

E3 = e
g0+g1x

x

E4 = e
h0+h1x+h2x2+

2h0xy
3

x2

E5 = e
l0y
−3+xy

E6 = e
m0
9 +

y(m1(6−2xy)+3m2y(2xy−9))
6(xy−3)2

α1 =
x
3

α2 =− x
3

α3 =−g0
3

α4 =−h1
3 −

2h0y
3

α5 =− l0
3

α6 =
m1
9 −m2y

P∞
1 = [0 : 1 : 0]

P∞
2 = [1 : 0 : 0]

/0;(4
2)PEP−PEP,N

J1∩ J2 = P∞
2 double

J1∩L∞ = P∞
1 simple

J2∩L∞ =

{
P∞

1 simple
P∞

2 simple
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Table 329 – Divisor and zero-cycles of family (Q) when g = 1/3 and c = 0.

Divisor and zero-cycles Degree
ICD = 3J1 +3J2 +L∞

M0CS = 6P∞
1 +P∞

2

T = ZJ3
1J3

2 = 0

M0CT = 7P∞
1 +4P∞

2

7

7

10

11

where the total curve T has

1) only three distinct tangents at P∞
1 , but two of them are triple;

2) only two distinct tangents at P∞
2 , but one of them is triple.

Table 330 – First integral and integrating factor of family (Q) when g = 1/3 and c = 0.

First integral Integrating Factor

General I = Jλ1
1 Jλ1

2 Eλ3
3 Eλ4

4 E
− g0λ3

l0
− λ4(2h0m1+9h1m1)

9l0m2
5 E

− 2h0λ4
3m2

6 R = I
Simple

example I1 = J1J2 R1 =
1

J1J2

(ii.9) g = 1/2 and c = 0.

Under this condition, systems (Q) do not belong to QSH. Here we have only one
triple invariant line so we compute the exponential factors E2 and E3. We have that
the line at infinity Z = 0 also is triple. Therefore, the total multiplicity of the invariant
lines is six so this case was studied in (SCHLOMIUK; VULPE, 2008b). We include
this case as indicated in Observation 81.

Table 331 – Invariant curves, exponential factors, cofactors, singularities and intersection points of family
(Q) when g = 1/2 and c = 0.

Inv.curves/exp.fac. and cofactors Singularities Intersection points
J1 = x

E2 = e
g0+g1x

x

E3 = e
h0xy+h0+x(h1+h2x)

x2

E4 = el0+l1xy

α1 =
x
2

α2 =−g0
2

α3 =−h0y− h1
2

α4 = l1x

P∞
1 = [0 : 1 : 0]

P∞
2 = [1 : 0 : 0]

/0;(4
2)PH−HP,N

J1∩L∞ = P∞
1 simple

Source: Elaborated by the author.
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Table 332 – Divisor and zero-cycles of family (Q) when g = 1/2 and c = 0.

Divisor and zero-cycles Degree
ICD = 3J1 +L∞

M0CS = 6P∞
1 +P∞

2

T = ZJ3
1 = 0.

M0CT = 4P∞
1 +P∞

2

4

7

4

5
Source: Elaborated by the author.

where the total curve T has only two distinct tangents at P∞
1 , one of them triple.

Table 333 – First integral and integrating factor of family (Q) when g = 1/2 and c = 0.

First integral Integrating Factor

General I = Jλ1
1 E0

2 E0
3 E
− λ1

2l1
4 R = Jλ1

1 E0
2 E0

3 E
− (1+λ1)

2l1
4

Simple
example I = J2

1 E−1
4 R =

1
J1

Source: Elaborated by the author.

(ii.10) g = c = 0.

Under this condition, systems (Q) do not belong to QSH. The system here is ẋ =

0, ẏ =−1+ xy. This is a degenerate system where the hyperbola −1+ xy = 0 filled
up with singularities.

Table 334 – Singularities for the reduced system of system of family (Q) when g = c = 0.

Singularities
P∞

1 = [0 : 1 : 0]

(	[)(]; /0);(	[)(];N, /0)

Table 335 – First integral and integrating factor for the reduced system of family (Q) when g = c = 0.

First integral Integrating Factor
General I =−x R =−1
Simple

example I =−x R =−1

Note that I and I are also first integrals for family (Q) when g = c = 0.
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(ii.11) g = 1 and c = 0.

Under this condition, systems defined by the equations (Q) do not belong to family
(Q). The system defined by the equation (Q) when c = 0 and g = 1 is exactly the
family (V). Here the systems possess an invariant line with multiplicity three and a
family of invariant hyperbolas

1+ rx+ xy,

where r ∈ R. The line at infinity L∞ : Z = 0 has multiplicity 3.

Table 336 – Invariant curves, exponential factors, cofactors, singularities and intersection points of system
(Q) when c = 0 and g = 1.

Inv.cur./exp.fac and cofactors Singularities Intersection points
J1 = x
J2,r = 1+ rx+ xy
E3 = eg0+g1y+g2y2

E4 = e
h0+h1x

c+x

E5 = e
l0+l1x+l2x2+2h0xy

x2

α1 = x
α2 = x
α3 = g1 +2g2x
α4 =−h0
α5 =−l1−2l0y

P∞
1 = [0 : 1 : 0]

P∞
2 = [1 : 0 : 0]

/0;(4
2)PH−HP,N

J1∩ J2,r = P∞
1 double

J1∩L∞ = P∞
1 simple

J2,r∩L∞ =

{
P∞

1 simple
P∞

2 simple

Table 337 – Divisor and zero-cycles of system (Q) when c = 0 and g = 1.

Divisor and zero-cycles Degree
ILD = 3J1 +3L∞

M0CS = 6P∞
1 +P∞

2

T = Z3J3
1 = 0

M0CT = 6P∞
1 +3P∞

2

6

7

6

9

where the total curve T has

1) only two distinct tangents at P∞
1 , both of them triple and

2) only one triple tangent at P∞
2 .
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Table 338 – First integral and integrating factor of system (Q) when c = 0 and g = 1.

First integral Integrating Factor

General I = Jλ1
1 J−λ1

2,r Eλ3
3 E

− λ3(g2l1−g1l0)
h0l0

4 E
g2λ3

l0
5 R = Jλ1

1 J−2−λ1
2,r Eλ3

3 E
− λ3(g2l1−g1l0)

h0l0
4 E

g2λ3
l0

5
Simple

example I1 =
J1

J2,1
R1 =

1
J2

1

Observation 159. Consider F 1
(c1,c2)

= c1J1− c2J2,1 = 0, degF 1
(c1,c2)

= 2. We do
not have any remarkable values and remarkable curves for I1.

We sum up the topological, dynamical and algebraic geometric features of family (Q)
and also confront our results with previous results in literature in the following proposition.

Proposition 160. (a) For the family (Q) we obtained three distinct configurations C(Q)
1 −C(Q)

3

of invariant hyperbolas and lines (see Figure 30 for the complete bifurcation diagram of
configurations of this family). The bifurcation set of configurations in the full parameter
space is cg(g±1)(2g−1)(3g−1) = 0. On c = 0 and g 6= 0 the invariant lines coalesce
and two finite singularities coalesced with an infinite singularity. On g = 0 and c 6= 0 the
line at infinity has multiplicity two and we have just one invariant line. For the limiting
set of the parameter space of the considered family we have the following: On g = −1
and c 6= 0 we have an invariant parabola. On g = 1/3 and c 6= 0 we have an additional
invariant hyperbola. On g = 1 we have a family of invariant hyperbolas and the invariant
lines coalesce. On g = 1/2 the invariant hyperbola becomes reducible and we have two
invariant lines c+ x = 0 and x = 0 when c 6= 0 and only one triple line x = 0 when c = 0.
On g = c = 0 the hyperbola is filled up with singularities.

(b) The family (Q) is Darboux integrable in the generic case cg(g±1)(3g−1)(2g−1) 6= 0
and also when c = 0 and g 6= 0,±1,1/3,1/2. When g = 0 and c 6= 0 the family (Q) is
generalized Darboux integrable. All systems in family (Q) have an inverse integrating
factor which is polynomial.

(c) For the family (Q) we have seven topologically distinct phase portraits P(Q)
1 −P(Q)

7 . The
topological bifurcation diagram of family (Q) is done in Figure 31. The bifurcation set is
cg(2g−1)(g−1) = 0 ans it is a bifurcation of singularities. The phase portraits P(Q)

7 is
not topologically equivalent with anyone of the phase portraits in (LLIBRE; YU, 2018).

Proof of Proposition 160.

(a) We have the following type of divisors and zero-cycles of the total invariant curve T for
the configurations of family (Q):
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Table 339 – Configurations for family (Q).

Configurations Divisors and zero-cycles of the total inv. curve T

C(Q)
1

ICD = J1 + J2 + J3 +L∞

M0CT = P1 +2P2 +4P∞
1 +2P∞

2

C(Q)
2

ICD = 3J1 + J2 +L∞

M0CT = 5P∞
1 +2P∞

2

C(Q)
3

ICD = J1 + J2 +2L∞

M0CT = P1 +4P∞
1 +3P∞

2
Source: Elaborated by the author.

Therefore, the configurations C(Q)
1 up to C(Q)

3 are all distinct. For the limit cases of family
(Q) we have the following configurations:

Table 340 – Configurations for the limit cases of family (Q).

Configurations Divisors and zero-cycles of the total inv. curve T

c1
ICD = J1 + J2 + J3 + J4 +L∞

M0CT = 2P1 +2P2 +5P∞
1 +3P∞

2

c2
ICD = 3J1 +3J2 +L∞

M0CT = 7P∞
1 +4P∞

2

c3
ICD = J1 + J2 + J3 + J4 +L∞

M0CT = 2P1 +3P2 +6P∞
1 +2P∞

2

c4
ICD = 4J1 + J2 +L∞

M0CT = 6P∞
1 +2P∞

2

c5
ILD = 3J1 +3L∞

M0CT = 6P∞
1 +3P∞

2

c6
ICD = J1 + J2 +L∞

M0CT = P1 +3P∞
1 +P∞

2

c7
ICD = 3J1 +3L∞

M0CT = 6P∞
1 +3P∞

2

c8
ICD = L∞

M0CT = P∞
1

Source: Elaborated by the author.

The other statements is (a) follows from the study done previously.

(b) This is shown in the previously exhibited tables.

(c) We have:
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Table 341 – Phase portraits for family (Q).

Phase Portraits Sing. at ∞ Finite sing. Separatrix connections

P(Q)
1

(
(2

2)PEP−EPP,S
)(

(2
2)PPE−PEP,S

) (s,n) 1SC f
f 4SC∞

f 1SC∞
∞

P(Q)
2

(
(2

2)PPEP−PEPP,N
)

(s,s) 0SC f
f 8SC∞

f 0SC∞
∞

P(Q)
3

(
(2

2)HPP−HPP,N
)(

(2
2)PPH−PPH,N

) (s,n) 1SC f
f 5SC∞

f 0SC∞
∞

P(Q)
4

(
(4

2)PPE−EPP,S
)

/0 0SC f
f 0SC∞

f 2SC∞
∞

P(Q)
5

(
(4

2)PHP−PHP,N
)

/0 0SC f
f 0SC∞

f 3SC∞
∞

P(Q)
6

(
(4

2)PH−HP,N
)

/0 0SC f
f 0SC∞

f 1SC∞
∞

P(Q)
7

(
(2

2)PEP−EPP,(1
1)SN

)(
(2

2)PPE−PEP,(1
1)SN

) s 0SC f
f 4SC∞

f 1SC∞
∞

Source: Elaborated by the author.

Therefore, we have seven distinct phase portraits for systems (Q). For the limit case of
family (Q) we have the following phase portrait:

Table 342 – Phase portraits for the limit case of family (Q).

Phase Portraits Sing. at ∞ Finite sing. Separatrix connections

P(Q)
1

(
(2

2)PEP−EPP,S
)(

(2
2)PPE−PEP,S

) (s,n) 1SC f
f 4SC∞

f 1SC∞
∞

P(Q)
2

(
(2

2)PPEP−PEPP,N
)

(s,s) 0SC f
f 8SC∞

f 0SC∞
∞

P(Q)
4

(
(4

2)PPE−EPP,S
)

/0 0SC f
f 0SC∞

f 2SC∞
∞

P(Q)
5

(
(4

2)PHP−PHP,N
)

/0 0SC f
f 0SC∞

f 3SC∞
∞

P(Q)
6

(
(4

2)PH−HP,N
)

/0 0SC f
f 0SC∞

f 1SC∞
∞

p1

(
(3

2)PPEP−HPP,N
)(

(3
2)PPH−PEPP,N

) s 0SC f
f 4SC∞

f 1SC∞
∞

p2 (	[)(];N, /0) (	[)(]; /0) 0SC f
f 0SC∞

f 0SC∞
∞

Source: Elaborated by the author.

The phase portrait P(Q)
7 is not topologically equivalent with anyone of the phase portraits

in (LLIBRE; YU, 2018) since they do not have any phase portrait with 2 singular points at
infinity and with only 1 finite singular point.

�
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Figure 30 – Bifurcation diagram of configurations for family (Q).
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Source: Elaborated by the author.
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Figure 31 – Topological bifurcation diagram for family (Q).
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3
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3

P(Q)
4
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5
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5
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5
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6
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6
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Source: Elaborated by the author.

Note that the phase portraits P(Q)
1 , P(Q)

2 , P(Q)
4 , P(Q)

7 , p1 and p2 possess graphics.
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6.2.3.1 The solution of the Poincaré problem for the family (Q).

The following theorem solves the problem of Poincaré for the family defined by the
equations (Q) when (c,g) ∈ R2.

Theorem 161. A necessary and sufficient condition for a system (S) defined by the equations
(Q) with (c,g) ∈ R2 to have a rational first integral given by invariant algebraic curves of degree
at most two, is that there exist integers m1,m2 such that g = m2

2m2+m1
where m1,m2 ∈ Z\{0} and

2m2 +m1 6= 0.

Proof. The proof of this result is based on the formulas obtained for the first integrals of
family (Q).

In the generic case cg(g±1)(2g−1)(3g−1) 6= 0 a first integral of family (Q) is of the
form

I = Jλ2
2 J
− gλ2

2g−1
3 (6.12)

where λ2 6= 0 and J2, J3 are given in table 304. This is a rational first integral if and only if λ2 = m1, m1 ∈ Z\{0}

− gλ2
2g−1 = m2, m2 ∈ Z\{0}.

(6.13)

Replacing λ2 = m1 in the second equation of (6.13) we obtain

− gm1
2g−1 = m2⇒−gm1 = 2gm2−m2⇒ g(2m2 +m1) = m2

2m2 6=−m1⇒

g = m2
2m2+m1

, m1,m2 ∈ Z\{0}, m2 6=−m1
3 , m2 6=±m1 and 2m2 6=−m1.

Therefore, if I is rational then g = m2
2m2+m1

with m1,m2 ∈ Z\{0}, m2 6= −m1
3 , m2 6= ±m1 and

2m2 6= −m1. Conversely, replacing g = m2
2m2+m1

and λ2 = m1 in (6.12) where m1,m2 ∈ Z\{0},
m2 6=−m1

3 , m2 6=±m1 and 2m2 6=−m1 we obtain

I = Jm1
2 Jm2

3

which is rational. Therefore, in the generic case, the systems are algebraically integral if and
only if g = m2

2m2+m1
where m1,m2 ∈ Z\{0}, m2 6=−m1

3 , m2 6=±m1 and 2m2 6=−m1.

Now let us study the non-generic case cg(g±1)(2g−1)(3g−1) = 0. When c = 0 and
g(g±1)(2g−1)(3g−1) 6= 0 then a first integral of family (Q) is of the form

I = Jλ1
1 J
− gλ1

2g−1
2

where λ1 6= 0 and J1, J2 are given in table 307. The proof here is exactly the same of the
generic case. Therefore, the systems are algebraically integral if and only if g = m2

2m2+m1
where
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m1,m2 ∈ Z\{0}, m2 6= −m1
3 , m2 6= ±m1 and 2m2 6= −m1. When (3g− 1)(g± 1) = 0 we have

rational first integrals (see Tables 315, 318, 324, 327, 330 and 338). Note that
m2

2m2+m1
=−1⇔ m2 =−m1

3

m2
2m2+m1

= 1
3 ⇔ m2 = m1

m2
2m2+m1

= 1⇔ m2 =−m1

where m1,m2 ∈ Z\{0}. When g = 0 and c 6= 0 then the first integral of family (Q) is of the form

I = Jλ2
2 E

− λ2
cg1

3

where λ2 6= 0 and J2, E3 are given in table 310. As E3 is an exponential factor this first integral
is always generalized Darboux. So we can not have a rational first integral for this case. When
(2g−1) = 0 and c 6= 0 then the first integral of family (Q) is of the form

I = Jλ1
1 J0

2 E
− λ1

2g1
3

where J1, J2 and E3 are given in table 319. As E3 is an exponential factor this first integral is
always generalized Darboux. So we can not have a rational first integral for this case. When
(2g−1) = 0 and c = 0 then the first integral of family (Q) is of the form

I = Jλ1
1 E0

2 E0
3 E
− λ1

2l1
4

where J1, E2, E3 and E3 are given in table 331. As E4 is an exponential factor this first integral
is always generalized Darboux. So we can not have a rational first integral for this case. When
c = g = 0 the system (Q) is degenerate.

�

We note that the set of systems defined by the equations (Q) for (c,g) ∈ R2 that are
algebraically integrable is dense in R2.

6.2.4 Geometric Analysis of Family (R)

Consider the family

(R)

{
ẋ = x2 + ε

ẏ = 1−2xy.

This is a Hamiltonian family in one parameter ε ∈R. We display below the full geometric
analysis of this family, which is endowed with at least two invariant curves. When ε 6= 0 every
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system in family (R) have two invariant lines J1, J2 and two invariant hyperbolas J3 and J4 with
cofactor αi, 1≤ i≤ 4 given by

J1 =
√

ε− ix, α1 = x− i
√

ε,

J2 =
√

ε + ix, α2 = x+ i
√

ε,

J3 =−1+ iy
√

ε + xy, α3 =−x− i
√

ε,

J4 =−1− iy
√

ε + xy, α3 =−x+ i
√

ε.

When ε = 0 the lines J1 and J2 coalesce as well as the hyperbolas J3 and J4 yielding
to multiple curves. The multiplicities of each invariant straight line and invariant hyperbola
appearing in the divisor ICD of invariant algebraic curves were calculated by using the 1st
extactic polynomial for the line and the 2nd extactic polynomial for the hyperbola.

(i) ε 6= 0.

Table 343 – Invariant curves, cofactors, singularities and intersection points of family (R) when ε 6= 0.

Invariant curves and cofactors Singularities Intersection points

J1 =
√

ε− ix
J2 =

√
ε + ix

J3 =−1+ iy
√

ε + xy
J4 =−1− iy

√
ε + xy

α1 = x− i
√

ε

α2 = x+ i
√

ε

α3 =−x− i
√

ε

α4 =−x+ i
√

ε

P1 =
(
−i
√

ε, i
2
√

ε

)
P2 =

(
i
√

ε,− i
2
√

ε

)
P∞

1 = [0 : 1 : 0]
P∞

2 = [1 : 0 : 0]

For ε < 0 we have

s,s;(2
2)PPEP−PEPP,N

For ε > 0 we have

©,©;(2
2)H−H,N

J1∩ J2 = P∞
1 simple

J1∩ J3 = P∞
1 double

J1∩ J4 =

{
P∞

1 simple
P1 simple

J1∩L∞ = P∞
1 simple

J2∩ J3 =

{
P∞

1 simple
P2 simple

J2∩ J4 = P∞
1 double

J2∩L∞ = P∞
1 simple

J3∩ J4 =

{
P∞

1 simple
P∞

2 triple

J3∩L∞ =

{
P∞

1 simple
P∞

2 simple

J4∩L∞ =

{
P∞

1 simple
P∞

2 simple
Source: Elaborated by the author.
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Table 344 – Divisor and zero-cycles of family (R) when ε 6= 0.

Divisor and zero-cycles Degree

ICD =

{
J1 + J2 + J3 + J4 +L∞ if ε < 0
JC

1 + JC
2 + JC

3 + JC
4 +L∞ if ε > 0

M0CS =

{
P1 +P2 +4P∞

1 +P∞
2 if ε < 0

PC
1 +PC

2 +4P∞
1 +P∞

2 if ε > 0

T = ZJ1J2J3J4 = 0

M0CT =

{
2P1 +2P2 +5P∞

1 +3P∞
2 if ε < 0

2PC
1 +2PC

2 +5P∞
1 +3P∞

2 if ε > 0

5
5

7
7

7

12
12

Source: Elaborated by the author.

where the total curve T has

1) only three distinct tangents at P∞
1 , but two of them are double;

2) three distinct tangents at P∞
2 .

Table 345 – First integral and integrating factor of family (R) when ε 6= 0.

First integral Integrating Factor

General I = Jλ1
1 Jλ2

2 Jλ2
3 Jλ1

4 R = Jλ1
1 Jλ2

2 Jλ2
3 Jλ1

4
Simple

example I1 = J1J4 R1 =
1

J1J4
Source: Elaborated by the author.

(ii) ε = 0.

Here the invariant line x = 0 and the invariant hyperbola −1+ xy = 0 are triple so we
compute the exponential factors E3, E4, E5 and E6. Considering the line at infinity Z = 0 the
total multiplicity of the invariant lines is four so this case was studied in (SCHLOMIUK;
VULPE, 2008c). We include this case as indicated in Observation 81.
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Table 346 – Invariant curves, exponential factors, cofactors, singularities and intersection points of family
(R) when ε = 0.

Inv.curves/exp.fac. and cofactors Singularities Intersection points
J1 = x
J2 =−1+ xy

E3 = e
g0+g1x

x

E4 = e
2h0xy+h0+h1x+h2x2

x2

E5 = e
l0y
−1+xy

E6 = e

(
m0+

y(m1(2−2xy)+m2y(2xy−3))
2(−1+xy)2

)

α1 = x
α2 =−x
α3 =−g0
α4 =−h1−6h0y
α5 =−l0
α6 = m1−3m2y

P∞
1 = [0 : 1 : 0]

P∞
2 = [1 : 0 : 0]

/0;(4
2)PEP−PEP,N

J1∩ J2 = P∞
1 double

J1∩L∞ = P∞
1 simple

J2∩L∞ =

{
P∞

1 simple
P∞

2 simple

Source: Elaborated by the author.

Table 347 – Divisor and zero-cycles of family (R) when ε = 0.

Divisor and zero-cycles Degree
ICD = 3J1 +3J2 +L∞

M0CS = 6P∞
1 +P∞

2

T = ZJ3
1J3

2 = 0

M0CT = 7P∞
1 +4P∞

2

7

7

10

11
Source: Elaborated by the author.

where the total curve T has

1) only three distinct tangents at P∞
1 , but two of them are triple;

2) only two distinct tangents at P∞
2 , but one of them is triple.

Table 348 – First integral and integrating factor of family (R) when ε = 0.

First integral Integrating Factor

General I = Jλ1
1 Jλ1

2 Eλ3
3 E

− λ6m2
2h0

4 E
λ6(2h0m1+h1m2)

2h0l0
− g0λ3

l0
5 Eλ6

6 R = I
Simple

example I1 = J1J2 R1 =
1

J1J2
Source: Elaborated by the author.
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We sum up the topological, dynamical and algebraic geometric features of family (R)
and we confront our results with previous results in the literature in the following proposition.

Proposition 162. (a) For the family (R) we have three distinct configurations C(R)
1 , C(R)

2 and
C(R)

3 of invariant hyperbolas and lines (see Figure 32 for the complete bifurcation diagram
of configurations of such family). The bifurcation set of configurations contains only the
point ε = 0. Its complement is a union of 2 disjoint sets. On ε = 0 we have a triple line
and a triple hyperbola arising from the coalescence of two lines and two hyperbolas.

(b) The family (R) admits a polynomial first integral that foliates the plane into cubic invariant
algebraic curves. All systems in family (R) have an inverse integrating factor which is
polynomial.

(c) For the family (R) we have three topologically distinct phase portraits P(R)
1 , P(R)

2 and P(R)
3 .

The topological bifurcation diagram is done in Figure 33. The bifurcation set is the point
ε = 0 and it is a bifurcation of singularities. The phase portrait P(R)

2 is not topologically
equivalent with anyone of the phase portraits in (LLIBRE; YU, 2018).

Proof of Proposition 162.

(a) We have the following type of divisors and zero-cycles of the total invariant curve T for
the configurations of family (R):

Table 349 – Configurations for family (R).

Configurations Divisors and zero-cycles of the total inv. curve T

C(R)
1

ICD = J1 + J2 + J3 + J4 +L∞

M0CT = 2P1 +2P2 +5P∞
1 +3P∞

2

C(R)
2

ICD = JC
1 + JC

2 + JC
3 + JC

4 +L∞

M0CT = 2PC
1 +2PC

2 +5P∞
1 +3P∞

2

C(R)
3

ICD = 3J1 +3J3 +L∞

M0CT = 7P∞
1 +4P∞

2
Source: Elaborated by the author.

Therefore, the configurations C(R)
1 , C(R)

2 and C(R)
3 are distinct.

The other statements in (a) follows from the study done previously.

(b) This is shown in the previously exhibited tables.

(c) We have:
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Table 350 – Phase portraits for family (R).

Phase Portraits Sing. at ∞ Finite sing. Separatrix connections

P(R)
1 (2

2)PPEP−PPEP, N (s,s) 0SC f
f 8SC∞

f 0SC∞
∞

P(R)
2 (2

2)H−H,N (©,©) 0SC f
f 0SC∞

f 0SC∞
∞

P(R)
3 (4

2)PHP−PHP,N /0 0SC f
f 0SC∞

f 3SC∞
∞

Source: Elaborated by the author.

Therefore, we have three distinct phase portraits for systems (R).

The phase portraits P(R)
2 is not topologically equivalent with anyone of the phase portraits

in (LLIBRE; YU, 2018) (see table 284).

�

Figure 32 – Bifurcation diagram of configurations for family (R).

ε

(1)

(2,2)

(1)
(1)

(1)

(2,2)

0

3

(4,2)

(1)

3

C(R)
1 C(R)

2
C(R)

3

Source: Elaborated by the author.

Figure 33 – Topological bifurcation diagram for family (R).

0
ε

P(R)
1 P(R)

2
P(R)

3

Source: Elaborated by the author.
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6.2.5 Geometric Analysis of Normal Form (S)

Consider the system

(S)

{
ẋ = (x−1)(3− x)

ẏ = 1−2xy.

System (S) is endowed with two invariant lines, one invariant hyperbola and one invariant
parabola. The multiplicities of each invariant curve appearing in the divisor ICD of invariant
algebraic curves were calculated by using the 1st extactic polynomial for the lines and the 2nd
extactic polynomial for the hyperbola and the parabola.

Table 351 – Invariant curves, cofactors, singularities and intersection points of system (S).

Inv.curves and cofactors Singularities Intersection points

J1 = 1− x
J2 = 3− x
J3 =−1

3 − y+ xy
J4 =−19

8 + x+3y− x2

8

α1 = 3− x
α2 = 1− x
α3 = 3−3x
α4 =−2x

P1 =
(
1, 1

2

)
P2 =

(
3, 1

6

)
P∞

1 = [0 : 1 : 0]
P∞

2 = [1 : 0 : 0]

s,n;(2
2)PPPE−PPEP,S

J1∩ J2 = P∞
1 simple

J1∩ J3 = P∞
1 double

J1∩ J4 =

{
P∞

1 simple
P1 simple

J1∩L∞ = P∞
1 simple

J2∩ J3 =

{
P∞

1 simple
P2 simple

J2∩ J4 =

{
P∞

1 simple
P2 simple

J2∩L∞ = P∞
1 simple

J3∩ J4 =

{
P∞

1 simple
P2 triple

J3∩L∞ =

{
P∞

1 simple
P∞

2 simple
J4∩L∞ = P∞

1 double
Source: Elaborated by the author.

Table 352 – Divisor and zero-cycles of system (S).

Divisor and zero-cycles Degree
ICD = J1 + J2 + J3 + J4 +L∞

M0CS = P1 +P2 +4P∞
1 +P∞

2

T = ZJ1J2J3J4 = 0.

M0CT = 2P1 +3P2 +5P∞
1 +2P∞

2

4

7

7

12
Source: Elaborated by the author.

where the total curve T has

1) only three distinct tangents at P∞
1 , two of them double and one simple,
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2) two distinct tangents at P2, but one of them is double.

Table 353 – First integral and integrating factor of system (S).

First integral Integrating Factor

General I = Jλ1
1 Jλ2

2 J
−λ1−

λ2
3

3 Jλ1
4 R = Jλ1

1 Jλ2
2 J
− 4

3−λ1−
λ2
3

3 Jλ1
4

Simple
example I1 =

J3
2

J3
R =

1
J1J2J4

Source: Elaborated by the author.

Observation 163. Consider F 1
(c1,c2)

= c1J3
2 − c2J3 = 0, degF 1

(c1,c2)
= 3. The remarkable value

of F 1
(c1,c2)

are [1 :−24] and [1 : 0] for which we have

F 1
(1,−24) =−8J1J4, F 1

(1,0) = J2
2 .

Therefore, J1,J2,J4 are remarkable curves and [1 : −24], [1 : 0] are remarkable values of I1.
Moreover, [1 : 0] is a critical remarkable values and J2 is critical remarkable curve of I1. The
singular point are P1 for F 1

(1,−24) and P2 for F 1
(1,0).

We sum up the topological, dynamical and algebraic geometric features of family (R) in
the following proposition.

Proposition 164. (a) For system (S) we have one configuration C(S)
1 of invariant hyperbola,

parabola and lines (see Figure 34).

(b) The system (S) has a rational first integral and the plane is foliated into cubic invariant
algebraic curves. The remarkable curves for system (S) are J1,J2 and J4. The system (S)
has an inverse integrating factor which is polynomial.

(c) The phase portrait of system (S) is P(S)
1 in Figure 34.

Proof of Proposition 164.

(a) We have the following type of divisor and zero-cycle of the total invariant curve T for the
configuration of system (S):

Table 354 – Configuration of system (S).

Configuration Divisor and zero-cycle of the total inv. curve T

C(S)
1

ICD = J1 + J2 + J3 + J4 +L∞

M0CT = 2P1 +3P2 +5P∞
1 +2P∞

2
Source: Elaborated by the author.
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(b) This is shown in the previously exhibited tables. The computations for the remarkable
curves of system (S) were done in Remark 163.

(c) We have:

Table 355 – Phase portrait for system (S).

Phase Portrait Sing. at ∞ Finite sing. Separatrix connections

P(S)
1 (2

2)PEP−EPP, S (s,n) 1SC f
f 4SC∞

f 1SC∞
∞

Source: Elaborated by the author.

�

Figure 34 – Configuration and phase portrait for system(S).

C(S)
1 P(S)

1

(2,2)

(1)(1)

(1)

Source: Elaborated by the author.

Note that the phase portrait P(S)
1 possess a graphic in the third quadrant.

6.2.6 Geometric Analysis of Normal Form (T)

Consider the system

(T)

{
ẋ =−x2

ẏ = 1−2xy.

System (T) is endowed with one invariant line of multiplicity four and also with one
invariant hyperbola. Considering the line at infinity Z = 0 the total multiplicity of the invariant
lines is five so this case was studied in (SCHLOMIUK; VULPE, 2008b). We include this case as
indicated in Observation 81. The multiplicities of the invariant curves appearing in the divisor
ICD were calculated by using the 1st extactic polynomial for the line and the 2nd extactic
polynomial for the hyperbola.
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Table 356 – Invariant curves, exponential factors, cofactors, singularities and intersection points of system
(T).

Inv.curves and cofactors Singularities Intersection points
J1 = x
J2 =−1+3xy

E3 = e
g0+g1x

x

E4 = e
−2h0xy+h0+h1x+h2x2

x2

E5 = e
(
−3l0xy+l0+x(−2l1xy+l1+x(l2+l3x))

x3

)

α1 =−x
α2 =−3x
α3 = g0
α4 = h1 +2h0y
α5 = l2 +2l1y

P∞
1 = [0 : 1 : 0]

P∞
2 = [1 : 0 : 0]

/0;(4
2)PE−EP,S

J1∩ J2 = P∞
1 double

J1∩L∞ = P∞
1 simple

J2∩L∞ =

{
P∞

1 simple
P∞

2 simple

Source: Elaborated by the author.

Table 357 – Divisor and zero-cycles of system (T).

Divisor and zero-cycles Degree
ICD = 4J1 + J2 +L∞

M0CS = 6P∞
1 +P∞

2

T = ZJ4
1J2 = 0.

M0CT = 6P∞
1 +2P∞

2

6

7

7

8
Source: Elaborated by the author.

where the total curve T has only two distinct tangents at P∞
1 , but one of them is quintuple.

Table 358 – First integral and integrating factor of system(T).

First integral Integrating Factor

General I = Jλ1
1 J
− λ1

3
2 E

− (h1l1−h0l2)λ4
g0l1

3 Eλ4
4 E

− h0λ4
l1

5 R = Jλ1
1 J
− 4

3−
λ1
3

2 E
− (h1l1−h0l2)λ4

g0l1
3 Eλ4

4 E
− h0λ4

l1
5

Simple
example I =

J3
1

J2
R =

1
J1J2

Source: Elaborated by the author.

Observation 165. Consider F 1
(c1,c2)

= c1J3
1 − c2J2 = 0, degF 1

(c1,c2)
= 3. The remarkable value

of F 1
(c1,c2)

is [1 : 0] for which we have

F 1
(1,0) = J3

1 .
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Therefore, J1 is a critical remarkable curves and [1 : 0] is a critical remarkable value of I1.

We sum up the topological, dynamical and algebraic geometric features of family (T) in
the following proposition.

Proposition 166. (a) For system (T) we have one configuration C(T)
1 of invariant hyperbolas

and lines (see Figure 35).

(b) The system (T) has a rational first integral and the plane is foliated into cubic invariant
algebraic curves. The remarkable curve for system (T) is J1 . The system (T) have an
inverse integrating factor which is polynomial.

(c) The phase portrait of system (T) is P(T)
1 in Figure 35.

Proof of Proposition 166.

(a) We have the following type of divisor and zero-cycle of the total invariant curve T for the
configuration of system (T):

Table 359 – Configuration of system (T).

Configuration Divisor and zero-cycle of the total inv. curve T

C(T)
1

ICD = 4J1 + J2 +L∞

M0CT = 6P∞
1 +2P∞

2
Source: Elaborated by the author.

(b) This is shown in the previously exhibited tables. The computations for the remarkable
curves were done in Remark 165.

(c) We have:

Table 360 – Phase portrait for system (T).

Phase Portraits Sing. at ∞ Finite sing. Separatrix connections

P(T)
1 (4

2)PE−EP, S /0 0SC f
f 0SC∞

f 2SC∞
∞

Source: Elaborated by the author.

�
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Figure 35 – Configuration and phase portrait for system (T).

(4,2)

(1)4

C(T)
1 P(T)

1

Source: Elaborated by the author.

Note that the phase portrait P(T)
1 possess graphics in the first and in the third quadrant.

6.2.7 Geometric Analysis of Normal Form (U)

Consider the system

(U)

{
ẋ = (2x−1)(2x+1)/4
ẏ = y.

System (U) is endowed with a family of invariant hyperbolas m
(
x− 1

2

)
+2xy+ y, where

m 6= 0, and with three affine invariant lines, one of them double. The line at infinity L∞ : Z = 0
is also double. Therefore, as the total multiplicity of the invariant lines is six this system was
studied in (SCHLOMIUK; VULPE, 2008b). We include this case as indicated in Observation 81.
The multiplicities of each invariant line appearing in the divisor ILD of invariant algebraic lines
were calculated by using the 1st extactic polynomial.
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Table 361 – Invariant curves, exponential factors, cofactors, singularities and intersection points of system
(U).

Inv.cur./exp.fac and cofactors Singularities Intersection points
J1 = 1+2x
J2 = 1−2x
J3 = y
J4,m = m

(
x− 1

2

)
+2xy+ y

E5 = e
−2g0x+g0+g1y

1−2x

E6 = eh0+h1y

α1 = x− 1
2

α2 = x+ 1
2

α3 = 1
α4 = x+ 1

2
α5 =

g1y
2

α6 = h1y

P1 =
(
−1

2 ,0
)

P2 =
(1

2 ,0
)

P∞
1 = [0 : 1 : 0]

P∞
2 = [1 : 0 : 0]

s,n;(2
2)PPH−PPH,N

J1∩ J2 = P∞
1 simple

J1∩ J3 = P1 simple
J1∩ J4,m = P∞

1 double
J1∩L∞ = P∞

1 simple
J2∩ J3 = P2 simple

J2∩ J4,m =

{
P∞

1 simple
P2 simple

J2∩L∞ = P∞
1 simple

J3∩ J4,m =

{
P∞

2 simple
P2 simple

J3∩L∞ = P∞
2 simple

J4,m∩L∞ =

{
P∞

1 simple
P∞

2 simple

Source: Elaborated by the author.

Table 362 – Divisor and zero-cycles of system (U).

Divisor and zero-cycles Degree
ILD = J1 +2J2 + J3 +2L∞

M0CS = P1 +P2 +4P∞
1 +1P∞

2

T = Z2J1J2
2J3 = 0

M0CT = 2P1 +3P2 +5P∞
1 +3P∞

2

6

7

6

13
Source: Elaborated by the author.

where the total curve T has

1) only two distinct tangents at P2, but one of them is double;

2) only three distinct tangents at P∞
1 , but two of them are double and

3) only two distinct tangents at P∞
2 , but one of them is double.



6.2. Systems with η = 0 357

Table 363 – First integral and integrating factor of system (U).

First integral Integrating Factor

General I = Jλ1
1 Jλ2

2 Jλ1
3 J−λ1−λ2

4,m Eλ5
5 E

− g1λ5
h1

6 R = Jλ1
1 Jλ2

2 Jλ1
3 J−2−λ1−λ2

4,m Eλ5
5 E

− g1λ5
h1

6
Simple

example I1 =
J1J3

J2
R1 =

1
J1J2J3

Source: Elaborated by the author.

Observation 167. Consider F 1
(c1,c2)

= c1J1J3−c2J2 = 0, degF 1
(c1,c2)

= 2. The remarkable value
of F 1

(c1,c2)
is [1 : 0] for which we have

F 1
(1,0) = J1J3.

Therefore, J1 and J3 are remarkable curves and [1 : 0] is remarkable value of I1. The singular
point is P1 for F 1

(1,0).

We sum up the topological, dynamical and algebraic geometric features of family (U) in
the following proposition.

Proposition 168. (a) For system (U) we have one configuration C(U)
1 of invariant hyperbolas

and lines (see Figure 36).

(b) The system (U) has a rational first integral and the plane is foliated into quadratic invariant
algebraic curves. The remarkable curves for system (U) are J1 and J3. The system (U)
have an inverse integrating factor which is polynomial.

(c) The phase portrait of system (U) is P(U)
1 in Figure 36.

Proof of Proposition 168.

(a) We have the following type of divisor and zero-cycle of the total invariant curve T for the
configuration of system (U):

Table 364 – Configuration for system (U).

Configuration Divisor and zero-cycle of the total inv. curve T

C(U)
1

ILD = J1 +2J2 + J3 +2L∞

M0CT = 2P1 +3P2 +5P∞
1 +3P∞

2
Source: Elaborated by the author.

(b) This is shown in the previously exhibited tables. The computations for the remarkable
curves were done in Remark 167.
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(c) We have:

Table 365 – Phase portraits for system (U).

Phase Portraits Sing. at ∞ Finite sing. Separatrix connections

P(U)
1 (2

2)PPH−PPH, N s,n 1SC f
f 5SC∞

f 0SC∞
∞

Source: Elaborated by the author.

�

Figure 36 – Configuration and phase portrait for system (U).

2
2

(2,2)

(1)

(1)

(1)

C(U)
1 P(U)

1

Source: Elaborated by the author.

6.2.8 Geometric Analysis of Normal Form (V)

Consider the system

(V)

{
ẋ = x2

ẏ = 1.

System (V) is endowed with a family of invariant hyperbolas 1+mx+ xy, where m ∈ R,
and with one affine invariant line which is triple. The line at infinity L∞ : Z = 0 is also triple.
Therefore, as the total multiplicity of the invariant lines is six this system was studied in
(SCHLOMIUK; VULPE, 2008b). We include this case as indicated in Observation 81. The
multiplicities of the invariant lines appearing in the divisor ILD of invariant algebraic lines were
calculated by using the 1st extactic polynomial.
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Table 366 – Invariant curves, exponential factors, cofactors, singularities and intersection points of system
(V).

Inv.cur./exp.fac and cofactors Singularities Intersection points
J1 = x
J2,m = 1+mx+ xy

E3 = e
g0+g1x

x

E4 = e
2h0xy+h0+h1x+h2x2

x2

E5 = el0+l1y

E6 = em0+m1y+m2y2

α1 = x
α2 = 2x
α3 =−g0
α4 =−2h0y−h1
α5 = l1
α6 = m1 +2m2y

P∞
1 = [0 : 1 : 0]

P∞
2 = [1 : 0 : 0]

/0;(4
2)PH−HP,N

J1∩ J2,m = P∞
1 double

J1∩L∞ = P∞
1 simple

J2,m∩L∞ =

{
P∞

1 simple
P∞

2 simple

Source: Elaborated by the author.

Table 367 – Divisor and zero-cycles of system (V).

Divisor and zero-cycles Degree
ILD = 3J1 +3L∞

M0CS = 6P∞
1 +P∞

2

T = Z3J3
1 = 0

M0CT = 6P∞
1 +3P∞

2

6

7

6

9
Source: Elaborated by the author.

where the total curve T has

1) only two distinct tangents at P∞
1 , both of them double and

2) only one distinct tangent at P∞
2 .

Table 368 – First integral and integrating factor of system (V).

First integral Integrating Factor

General I = Jλ1
1 J−λ1

2,m Eλ3
3 Eλ4

4 E
g0λ3

l1
− λ4(h0m1−h1m2)

l1m2
5 E

h0λ4
m2

6 R = Jλ1
1 J−2−λ1

2,m Eλ4
4 E

g0λ3
l1
− λ4(h0m1−h1m2)

l1m2
5 E

h0λ4
m2

6
Simple

example I1 =
J1

J2,1
R1 =

1
J2

1
Source: Elaborated by the author.
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Observation 169. Consider F 1
(c1,c2)

= c1J1− c2J2,1 = 0, degF 1
(c1,c2)

= 2. We do not have any
remarkable values and remarkable curves for I1.

We sum up the topological, dynamical and algebraic geometric features of family (V) in
the following proposition.

Proposition 170. (a) For system (V) we have one configuration C(V)
1 of invariant hyperbolas

and lines (see Figure 37).

(b) The system (V) has a rational first integral and the plane is foliated into quadratic invariant
algebraic curves. The system (V) have an inverse integrating factor which is polynomial.

(c) The phase portrait of system (V) is P(V)
1 in Figure 37.

Proof of Proposition 170.

(a) We have the following type of divisor and zero-cycle of the total invariant curve T for the
configuration of system (V):

Table 369 – Configuration for system (V).

Configuration Divisor and zero-cycle of the total inv. curve T

C(V)
1

ILD = 3J1 +3L∞

M0CT = 6P∞
1 +3P∞

2
Source: Elaborated by the author.

(b) This is shown in the previously exhibited tables.

(c) We have:

Table 370 – Phase portrait for system (V).

Phase Portraits Sing. at ∞ Finite sing. Separatrix connections

P(V)
1 (4

2)PH−HP, N /0 0SC f
f 0SC∞

f 1SC∞
∞

Source: Elaborated by the author.

�
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Figure 37 – Configuration and phase portrait for system (V).

3

3

(4,2)

(1)

C(V)
1 P(V)

1

Source: Elaborated by the author.

6.2.9 Geometric Analysis of Family (W)

Consider the family

(W)

{
ẋ = a+ y+ x2

ẏ = xy.

This is an algebraically integrable family in one parameter a ∈ R. Every system in the
family (W) is endowed with at lest one invariant line and with a family of invariant hyperbolas.
When a 6= 0 we have three invariant lines J1, J2, J3 and a family of invariant hyperbolas J4,m with
cofactors α1,α4 given by

J1 = y, α1 = x

J2 = x− i(a+y)√
a , α2 = x+ i

√
a

J3 = x+ i(a+y)√
a , α3 = x− i

√
a

J4,m = a+2y+ x2−m2y2, α4 = 2x

where m ∈ R\{0} and a 6= −1/m2. When a = 0 the lines J2 and J3 coalesce with J1 yielding
a triple invariant line. The line at infinity L∞ : Z = 0 is filled up with singularities. Therefore,
this family was studied in (SCHLOMIUK; VULPE, 2008a) but we include this case here as
indicated in Observation 81. The multiplicities of the invariant lines appearing in the divisor ILD
of invariant algebraic line were calculated by using the 1st extactic polynomial.

(i) a 6= 0.
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Table 371 – Invariant curves, cofactors, singularities and intersection points of family (W) for a 6= 0.

Invariant curves and cofactors Singularities Intersection points

J1 = y
J2 = x− i(a+y)√

a

J3 = x+ i(a+y)√
a

J4,m = a+2y+ x2−m2y2

α1 = x
α2 = x+ i

√
a

α3 = x− i
√

a
α4 = 2x

P1 = (0,−a)
P2 =

(
−i
√

a,0
)

P3 =
(
i
√

a,0
)

For a < 0 we have

s,n,n; [∞; /0]

For a > 0 we have

c,©,©; [∞; /0]

J1∩ J2 = P3 simple
J1∩ J3 = P2 simple

J1∩ J4,m =

{
P2 simple
P3 simple

J1∩L∞ = [1 : 0 : 0] simple
J2∩ J3 = P1 simple
J2∩ J4,m = P3 double
J2∩L∞ = [1:−i

√
a:0] simple if a < 0

J3∩ J4,m = P2 double
J3∩L∞ = [1:i

√
a:0] simple if a < 0

J4,m∩L∞ =

{
[m : 1 : 0] simple
[−m : 1 : 0] simple

Source: Elaborated by the author.

Observation 171. We see here that taking J1 and J4,m for some m, the conditions of the
theorem of C-K are satisfied and hence we can also have an inverse integrating factor as
J1J4,m.

Table 372 – Divisor and zero-cycles of family (W) for a 6= 0.

Divisor and zero-cycles Degree

ILD =

{
J1 + J2 + J3 if a < 0
J1 + JC

2 + JC
3 if a > 0

M0CS =

{
P1 +P2 +P3 if a < 0
P1 +PC

2 +PC
3 if a > 0

T = J1J2J3 = 0

M0CT =

{
2P1 +2P2 +2P3 if a < 0
2P1 +2PC

2 +2PC
3 if a > 0

3
3

3
3

3

6
6

Source: Elaborated by the author.

Table 373 – First integral and integrating factor of family (W) for a 6= 0.

First integral Integrating Factor

General I = Jλ1
1 Jλ2

2 Jλ2
3 J
− λ1

2 −λ2
4,m R = Jλ1

1 Jλ2
2 Jλ2

3 J
− 3

2−
λ1
2 −λ2

4,m
Simple

example I1 =
J2

1
J2J3

I2 =
J2J3

J4,m
R1 =

1
J1J2J3

R2 =
1

J1J4,m
Source: Elaborated by the author.
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Observation 172. Consider F 1
(c1,c2)

= c1J2
1 − c2J2J3 = 0, degF 1

(c1,c2)
= 2. The remark-

able value of F 1
(c1,c2)

are [1 : 0] and [0 : 1] for which we have

F 1
(1,0) = J2

1 , F 1
(0,1) =−J2J3.

Therefore, J1,J2,J3 are remarkable curves and [1 : 0], [0 : 1] are remarkable values of I1.
Moreover, [1 : 0] is a critical remarkable values and J1 is critical remarkable curve of I1.
The singular point are P1 for F 1

(0,1) and P2,P3 for F 1
(1,0).

Considering the first integral I2 with its associated curve F 2
(c1,c2)

= c1J2J3− c2J4,m we
have the remarkable values [1 : 1] and [1 : 0] and the same remarkable curves J1,J2,J3. The
singular point are P2,P3 for F 2

(1,1) and P1 for F 2
(1,0).

(ii) a = 0.

Here the invariant line y = 0 is triple so we compute the exponential factor E3 and E4. This
system has a rational first integral that foliates the plane into quadratic invariant algebraic
curves.

Table 374 – Invariant curves, exponential factors, cofactors, singularities and intersection points of family
(W) for a = 0.

Inv.curves/exp.fac. and cofactors Singularities Intersection points
J1 = y
J2,m = 2y+ x2−m2y2

E3 = e
g0x+g1y

y

E4 = e
2h0y2+2y(h1+h2x)+h1x2

2y2

α1 = x
α2 = 2x
α3 = g0
α4 = h2

P1 = (0,0)

es(3); [∞; /0]

J1∩ J2,m = P1 double

J1∩L∞ = [1 : 0 : 0] simple

J2,m∩L∞ =

{
[m : 1 : 0] simple
[−m : 1 : 0] simple

Source: Elaborated by the author.

Table 375 – Divisor and zero-cycles of family (W) for a = 0.

Divisor and zero-cycles Degree
ILD = 3J1

M0CS = 3P1

T = J3
1 = 0

M0CT = 3P1

3

3

3

3
Source: Elaborated by the author.
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where the total curve T has one triple tangent at P1.

Table 376 – First integral and integrating factor of family (W) for a = 0.

First integral Integrating Factor

General I = Jλ1
1 J
− λ1

2
2,m Eλ3

3 E
− g0λ3

h2
4 R = Jλ1

1 J
− 3

2−
λ1
2

2,m Eλ3
3 E

− g0λ3
h2

4
Simple

example I1 =
J2

1
J2,1

R1 =
1
J3

1
Source: Elaborated by the author.

Observation 173. Consider F 1
(c1,c2)

= c1J2
1−c2J2,1 = 0, degF 1

(c1,c2)
= 2. The remarkable

value of F 1
(c1,c2)

is [1 : 0] for which we have

F 1
(1,0) = J2

1 .

Therefore, [1 : 0] is a critical remarkable values and J1 is critical remarkable curve of I1.
The singular point is P1 for F 1

(1,0).

We sum up the topological, dynamical and algebraic geometric features of family (W) in
the following proposition.

Proposition 174. (a) For the family (W) we have three distinct configurations C(W)
1 , C(W)

2 and
C(W)

3 of invariant hyperbolas and lines (see Figure 38 for the complete bifurcation diagram
of configurations of such family). The bifurcation set of configurations contains only the
point a = 0. On a = 0 we have one triple invariant line arising from the coalescence of the
three invariant lines.

(b) The family (W) is algebraically integrable. When a 6= 0 the plane is foliated into quadratic
invariant algebraic curves and the remarkable curves are J1,J2,J3. When a = 0 the plane
is foliated into quadratic invariant algebraic curves and the remarkable curve is J1. All
systems in family (W) have an inverse integrating factor which is polynomial.

(c) For the family (W) we have three topologically distinct phase portraits P(W)
1 , P(W)

2 and
P(W)

3 . The topological bifurcation diagram is done in Figure 39. The bifurcation set is the
singleton a = 0 and it is a bifurcation point of singularities.

Proof of Proposition 174.

(a) We have the following type of divisors and zero-cycles of the total invariant curve T for
the configurations of family (W):
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Table 377 – Configurations for family (W).

Configurations Divisors and zero-cycles of the total inv. curve T

C(W)
1

ILD = J1 + J2 + J3
M0CT = 2P1 +2P2 +2P3

C(W)
2

ILD = J1 + JC
2 + JC

3
M0CT = 2P1 +2PC

2 +2PC
3

C(W)
3

ILD = 3J1
M0CT = 3P1

Source: Elaborated by the author.

Therefore, the configurations C(W)
1 , C(W)

2 and C(W)
3 are distinct.

The other statements in (a) follows from the study done previously.

(b) This is shown in the previously exhibited tables. The computations for the remarkable
curves were done in Remarks 172 and 173.

(c) We have:

Table 378 – Phase portraits for family (W).

Phase Portraits Sing. at ∞ Sing. at < ∞ Separatrix connections

P(W)
1 [∞, /0] (s,n,n) 2SC f

f 2SC∞
f 0SC∞

∞

P(W)
2 [∞, /0] c 0SC f

f 0SC∞
f 0SC∞

∞

P(W)
3 [∞, /0] es(3) 0SC f

f 4SC∞
f 0SC∞

∞

Source: Elaborated by the author.

Therefore, we have three distinct phase portraits for systems (W).

�

Figure 38 – Bifurcation diagram of configurations for family (W).

a

(1)

(1)

(1)

C(W)
1 C(W)

2

0

C(W)
3

(3) 3

(1)

Source: Elaborated by the author.
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Figure 39 – Topological bifurcation diagram for family (W).

P(W)
2P(W)

1
a

0

P(W)
3

Source: Elaborated by the author.

6.2.10 Geometric Analysis of Normal Form (X)

Consider the system

(X)

{
ẋ = (1+3x)(2+3x)/9
ẏ = xy.

System (X) is endowed with three invariant lines and with a family of invariant hyperbolas
(2+3x)2+m(3x+1)y, where m 6= 0. The line at infinity L∞ : Z = 0 is filled up with singularities.
Therefore, this system was studied in (SCHLOMIUK; VULPE, 2008a) but we include this case
here as indicated in Observation 81. The multiplicities of each invariant line appearing in the
divisor ILD of invariant algebraic lines were calculated by using the 1st extactic polynomial.

Table 379 – Invariant curves, cofactors, singularities and intersection points of system (X).

Invariant curves and cofactors Singularities Intersection points

J1 = y
J2 = 2+3x
J3 = 1+3x
J4,m = (2+3x)2 +m(3x+1)y

α1 = x
α2 =

1
3 + x

α3 =
2
3 + x

α4 =
2
3 +2x

P1 = (−2/3,0)
P2 = (−1/3,0)

P∞
1 = [0 : 1 : 0]

n,s; [∞;N]

J1∩ J2 = P1 simple
J1∩ J3 = P2 simple
J1∩ J4,m = P1 double
J1∩L∞ = [1 : 0 : 0] simple
J2∩ J3 = [0 : 1 : 0] simple

J2∩ J4,m =

{
[0 : 1 : 0] simple
P1 simple

J2∩L∞ = [0 : 1 : 0] simple
J3∩ J4,m = [0 : 1 : 0] double
J3∩L∞ = [0 : 1 : 0] simple

J4,m∩L∞ =

{
[0 : 1 : 0] simple[
1 :− 3

m : 0
]

simple
Source: Elaborated by the author.
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Table 380 – Divisor and zero-cycles of system (X).

Divisor and zero-cycles Degree
ILD = J1 + J2 + J3

M0CS = P1 +P2 +P∞
1

T = J1J2J3 = 0

M0CT = 2P1 +2P2

3

3

3

4
Source: Elaborated by the author.

where the total curve T has only two distinct tangents at P1, but one of them is double.

Table 381 – First integral and integrating factor of system (X).

First integral Integrating Factor

General I = Jλ1
1 Jλ2

2 Jλ1
3 J
−λ1−

λ2
2

4,m R = Jλ1
1 Jλ2

2 Jλ1
3 J
− 3

2−λ1−
λ2
2

4,m
Simple

example I1 =
J1J3

J2
2

R1 =
1

J1J2J3
Source: Elaborated by the author.

Observation 175. Consider F 1
(c1,c2)

= c1J1J3− c2J2
2 = 0, degF 1

(c1,c2)
= 2. The remarkable

value of F 1
(c1,c2)

are [1 : 0] and [0 : 1] for which we have

F 1
(1,0) = J1J3, F 1

(0,1) =−J2
2 .

Therefore, J1,J2,J3 are remarkable curves and [1 : 0], [0 : 1] are remarkable values of I1. More-
over, [0 : 1] is a critical remarkable values and J2 is critical remarkable curve of I1. The singular
point are P2 for F 1

(1:0) and P1 for F 1
(0,1).

We sum up the topological, dynamical and algebraic geometric features of family (X) in
the following proposition.

Proposition 176. (a) For system (X) we have one configuration C(X)
1 of invariant hyperbolas

and lines (see Figure 40).

(b) The system (X) has a rational first integral and the plane is foliated into quadratic invariant
algebraic curves. The remarkable curves are J1,J2,J3. The system (X) have an inverse
integrating factor which is polynomial.

(c) The phase portrait of system (X) is P(X)
1 in Figure 40.

Proof of Proposition 176.
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(a) We have the following type of divisor and zero-cycle of the total invariant curve T for the
configuration of system (X):

Table 382 – Configurations for system (X).

Configuration Divisor and zero-cycle of the total inv. curve T

C(X)
1

ILD = J1 + J2 + J3
M0CT = 2P1 +2P2

Source: Elaborated by the author.

(b) It follows directly from the tables. The computations for the remarkable curves were done
in Remark 175.

(c) We have:

Table 383 – Phase portrait for system (X).

Phase Portrait Sing. at ∞ Finite sing. Separatrix connections

P(X)
1 [∞,N] (n,s) 1SC f

f 5SC∞
f 0SC∞

∞

Source: Elaborated by the author.

�

Figure 40 – Configuration and phase portrait for system (X).

(1)

(1)

C(X)
1 P(X)

1

Source: Elaborated by the author.

6.2.11 Geometric Analysis of Family (Y)

Consider the family

(Y)

{
ẋ = a+ x2

ẏ = xy,
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where a 6= 0.

For a complete understanding of the bifurcation diagram of the systems in the full family
defined by the equations (Y) we study here also the limit case a = 0 where the equations are still
defined. Every system in the family (Y) is endowed with three invariant lines and with a family
of invariant hyperbolas a+ x2−m2y2, where m 6= 0. The line at infinity L∞ : Z = 0 is filled up
with singularities. Therefore, this family was studied in (SCHLOMIUK; VULPE, 2008a) but we
include this case here as indicated in Observation 81. The multiplicities of each invariant line
appearing in the divisor ILD of invariant algebraic lines were calculated by using the 1st extactic
polynomial.

(i) a 6= 0.

Table 384 – Invariant curves, cofactors, singularities and intersection points of family (Y) for a 6= 0.

Invariant curves and cofactors Singularities Intersection points

J1 = y
J2 = 1− ix√

a
J3 = 1+ ix√

a
J4,m = a+ x2−m2y2

α1 = x
α2 = x− i

√
a

α3 = x+ i
√

a
α4 = 2x

P1 =
(
−i
√

a,0
)

P2 =
(
i
√

a,0
)

P∞
1 = [0 : 1 : 0]

For a < 0 we have

n,n; [∞;S]

For a > 0 we have

©,©; [∞;C]

J1∩ J2 = P1 simple
J1∩ J3 = P2 simple

J1∩ J4,m =

{
P1 simple
P2 simple

J1∩L∞ = [1 : 0 : 0] simple
J2∩ J3 = P∞

1 simple
J2∩ J4,m = P1 double
J2∩L∞ = P∞

1 simple
J3∩ J4,m = P2 double
J3∩L∞ = P∞

1 simple

J4,m∩L∞ =

{
[m : 1 : 0] simple
[−m : 1 : 0] simple

Source: Elaborated by the author.

Observation 177. We see here that taking J1 and J4,m for some m, the conditions of the
theorem of C-K are satisfied and hence we can also have an inverse integrating factor as
J1J4,m.



370 Chapter 6. Geometric Analysis

Table 385 – Divisor and zero-cycles of family (Y) for a 6= 0.

Divisor and zero-cycles Degree

ILD =

{
J1 + J2 + J3 if a < 0
J1 + JC

2 + JC
3 if a > 0

M0CS =

{
P1 +P2 +P∞

1 if a < 0
PC

1 +PC
2 +P∞

1 if a > 0

T = J1J2J3 = 0

M0CT =

{
2P1 +2P2 if a < 0
2PC

1 +2PC
2 if a > 0

3
3

3
3

3

4
4

Source: Elaborated by the author.

Table 386 – First integral and integrating factor of family (Y) for a 6= 0.

First integral Integrating Factor

General I = Jλ1
1 Jλ2

2 Jλ2
3 J
− λ1

2 −λ2
4,m R = Jλ1

1 Jλ2
2 Jλ2

3 J
− 3

2−
λ1
2 −λ2

4,m
Simple

example I1 =
J2

1
J2J3

I2 =
J2J3

J4,m
R1 =

1
J1J2J3

R2 =
1

J1J4,m
Source: Elaborated by the author.

Observation 178. Consider F 1
(c1,c2)

= c1J2
1 − c2J2J3 = 0, degF 1

(c1,c2)
= 2. The remark-

able value of F 1
(c1,c2)

are [1 : 0] and [0 : 1] for which we have

F 1
(1,0) = J2

1 , F 1
(0,1) =−J2J3.

Therefore, J1,J2,J3 are remarkable curves and [1 : 0], [0 : 1] are remarkable values of I1.
Moreover, [1 : 0] is a critical remarkable values and J1 is critical remarkable curve of I1.
The singular point are P1 and P2 for F 1

(1,0).

Considering the first integral I2 with its associated curve F 2
(c1,c2)

= c1J2J3− c2J4,m we
have the remarkable values [a : 1] and [1 : 0] and have the same remarkable curves J1,J2,J3.
The singular point are P1,P2 for F 2

(a,1).

(ii) a = 0.

Under this condition the system does not belong to family (Y). The system here is ẋ =

x2, ẏ = xy. This is a degenerate system where the line x = 0 is filled up with singularities.
The affine invariant lines are y = 0 and x+ y = 0 that are both simple. This system has a
rational first integral that foliates the plane into quadratic invariant curves.
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Table 387 – Invariant curves, cofactors, singularities and intersection points for the reduced system of
family (Y) when a = 0.

Inv.curves/exp.fac. and cofactors Singularities Intersection points
J1 = y
J2 = x+ y

α1 = 1
α2 = 1

P1 = (0,0)

(	[|];n∗); [∞;(	[|]; /02)]

J1∩ J2 = P1 simple

J1∩L∞ = [1 : 0 : 0] simple

J2∩L∞ = [1 : 1 : 0] simple
Source: Elaborated by the author.

Table 388 – Divisor and zero-cycles for the reduced system of family (Y) when a = 0.

Divisor and zero-cycles Degree
ICD = J1 + J2

M0CS = P1

T = J1J2

M0CT = 2P1

2

1

2

2
Source: Elaborated by the author.

Table 389 – First integral and integrating factor for the reduced system of family (Y) when a = 0.

First integral Integrating Factor

General I = Jλ1
1 J−λ1

2 R = Jλ1
1 J−2−λ1

2
Simple

example I1 =
J1

J2
R1 =

1
J1J2

Source: Elaborated by the author.

Note that I and I1 are also first integrals for family (Y) when a = 0.

Observation 179. Consider F 1
(c1,c2)

= c1J1− c2J2 = 0, degF 1
(c1,c2)

= 1. We do not have
any remarkable values and remarkable curves for I1.

We sum up the topological, dynamical and algebraic geometric features of family (Y) in
the following proposition.

Proposition 180. (a) For the family (Y) we have two distinct configurations C(Y)
1 and C(Y)

2

of invariant hyperbolas and lines (see Figure 41 for the complete bifurcation diagram of
configurations of such family). The bifurcation set of configurations in the full parameter
space is the point a = 0. For the limiting set of the parameter space, i.e. on a = 0 the line
x = 0 is filled up with singularities.
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(b) The family (Y) has a rational first integral and and the plane is foliated into quadratic
invariant algebraic curves. The remarkable are J1,J2,J3. All systems in family (Y) have an
inverse integrating factor which is polynomial.

(c) For the family (Y) we have two topologically distinct phase portraits P(Y)
1 , P(Y)

2 . The
topological bifurcation diagram in the full parameter space is done in Figure 42. The
bifurcation set is the point a = 0 and it is a bifurcation of singularities.

Proof of Proposition 180.

(a) We have the following type of divisors and zero-cycles of the total invariant curve T for
the configurations of family (Y):

Table 390 – Configurations for family (Y).

Configurations Divisors and zero-cycles of the total inv. curve T

C(Y)
1

ILD = J1 + J2 + J3
M0CT = 2P1 +2P2

C(Y)
2

ILD = J1 + JC
2 + JC

3
M0CT = 2PC

1 +2PC
2

Source: Elaborated by the author.

Therefore, the configurations C(Y)
1 and C(Y)

2 are distinct. We have the following configura-
tion for the limit case:

Table 391 – Configuration for the limit case of family (Y).

Configuration Divisor and zero-cycles of the total inv. curve T

c1
ICD = J1 + J2
M0CT = 2P1

Source: Elaborated by the author.

(b) This is shown in the previously exhibited tables. The computations for the remarkable
curves were done in Remark 178.

(c) We have:

Table 392 – Phase portraits for family (Y).

Phase Portraits Sing. at ∞ Finite sing. Separatrix connections

P(Y)
1 [∞,S] (n,n) 0SC f

f 4SC∞
f 0SC∞

∞

P(Y)
2 [∞,C] (©,©) 0SC f

f 0SC∞
f 0SC∞

∞

Source: Elaborated by the author.
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Therefore, we have two distinct phase portraits for systems (Y). We have the following
phase portrait for the limit case:

Table 393 – Phase portrait for the limit cases of family (Y).

Phase Portrait Sing. at ∞ Finite sing. Separatrix connections

p1 [∞;(	[|]; /02)] (	[|];n∗) 0SC f
f 0SC∞

f 0SC∞
∞

Source: Elaborated by the author.

�

Figure 41 – Bifurcation diagram of configurations for family (Y).

a

(1) (1)

C(Y)
1

C(Y)
2

0

c1

Source: Elaborated by the author.

Figure 42 – Topological bifurcation diagram for family (Y).

P(Y)
2P(Y)

1
a

0

p1

Source: Elaborated by the author.

6.2.12 Geometric Analysis of Normal Form (Z)

Consider the system

(Z)

{
ẋ = x2

ẏ = 1+ xy.
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System (Z) is endowed with one invariant line which is triple and with a family of
invariant hyperbolas 1+mx2 + 2xy, where m ∈ R. The line at infinity L∞ : Z = 0 is filled up
with singularities. Therefore, this system was studied in (SCHLOMIUK; VULPE, 2008a) but we
include this case here as indicated in Observation 81. The multiplicities of each invariant line
appearing in the divisor ILD of invariant algebraic lines were calculated by using the 1st extactic
polynomial.

Table 394 – Invariant curves, exponential factors, cofactors, singularities and intersection points for system
(Z).

Inv.cur./exp.fac and cofactors Singularities Intersection points
J1 = x
J2,m = 1+mx2 +2xy

E3 = e
g0+g1x

x

E4 = e
2h0xy+h0+h1x+h2x2

x2

α1 = x
α2 = 2x
α3 =−g0
α4 =−h1

P∞
1 = [0 : 1 : 0]

/0; [∞;(3
0)ES]

J1∩ J2,m = P∞
1 double

J1∩L∞ = P∞
1 simple

J2,m∩L∞ =

{
P∞

1 simple[
1 :−m

2 : 0
]

simple

Source: Elaborated by the author.

Table 395 – Divisor and zero-cycles for system (Z).

Divisor and zero-cycles Degree
ILD = 3J1

M0CS = 3P∞
1

T = J3
1 = 0

3

3

3
Source: Elaborated by the author.

Table 396 – First integral and integrating factor for system (Z).

First integral Integrating Factor

General I = Jλ1
1 J
− λ1

2
2,m Eλ3

3 E
− g0λ3

h1
4 R = Jλ1

1 J
−3−λ1

2
2,m Eλ3

3 E
− g0λ3

h1
4

Simple
example I1 =

J2
1

J2,1
R1 =

1
J3

1
Source: Elaborated by the author.
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Observation 181. Consider F 1
(c1,c2)

= c1J2
1−c2J2,1 = 0, degF 1

(c1,c2)
= 2. The remarkable value

of F 1
(c1,c2)

is [1 : 0] for which we have

F 1
(1,0) = J2

1 .

Therefore, J1 is remarkable curve and [1 : 0] is remarkable value of I1. Moreover, [1 : 0] is a
critical remarkable value and J1 is critical remarkable curve of I1.

We sum up the topological, dynamical and algebraic geometric features of family (Z) in
the following proposition.

Proposition 182. (a) For system (Z) we have one configuration C(Z)
1 of invariant hyperbolas

and lines (see Figure 43).

(b) The system (Z) has a rational first integral and the plane is foliated into quadratic invariant
algebraic curves. The remarkable curve is J1. The system (Z) has an inverse integrating
factor which is polynomial.

(c) The phase portrait of system (Z) is P(Z)
1 in Figure 43.

Proof of Proposition 182.

(a) We have the following type of divisor and zero-cycle of the total invariant curve T for the
configuration of system (Z):

Table 397 – Configuration for system (Z).

Configuration Divisor and zero-cycle of the total inv. curve T

C(Z)
1 ILD = 3J1

Source: Elaborated by the author.

(b) This is shown in the previously exhibited tables. The computations for the remarkable
curves were done in Remark 181.

(c) We have the following phase portrait for system (Z):

Table 398 – Phase portrait for system (Z).

Phase Portrait Sing. at ∞ Finite sing. Separatrix connections

P(Z)
1 [∞;(3

0)ES] /0 0SC f
f 0SC∞

f 1SC∞
∞

Source: Elaborated by the author.

�
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Figure 43 – Configuration and phase portrait for system (Z).

3

C(Z)
1 P(Z)

1

Source: Elaborated by the author.
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CHAPTER

7
QUESTIONS AND CONCLUDING

COMMENTS

As we have seen in the geometric analysis of the families we discussed in Chapter 6, the
class QSH forms a rich testing ground for exploring integrability in terms of the global algebraic
geometric features of the systems occurring in these normal forms. The geometric analysis of
the systems we studied brings out a number of questions. We expect to find answers to some of
these questions once the full study of all the normal forms of QSH will be completed.

7.1 The problem of generalizing the Christopher-Kooij
Theorem 61

We saw that under the “generic” conditions of Christopher and Kooij (C-K), formulated
algebraically on the algebraic invariant curves f1(x,y), . . . , fk(x,y) of a polynomial differential
system, we are assured to have a polynomial inverse integrating factor of the special form

f1(x,y) . . . fk(x,y).

In this article we see cases where these “generic conditions” of (C-K) are not satisfied and yet we
still have an integrating factor which is polynomial. Furthermore, in some cases, this polynomial
inverse integrating factor is of the same form as the one in the (C-K) theorem. Here are some
examples occurring in the families we considered.

(I) For the family (H).

(1) All the systems in family (H) have an inverse integrating factor which is polynomial, they
are Darboux integrable and have in the generic case only two invariant lines J1,J2 and two
invariant hyperbolas J3,J4. An inverse polynomial factor is J1J2J3J4 just like in C-K theorem.
The condition (a) of the C-K theorem 61 is satisfied since our curves are lines and hyperbolas
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and they are, of course, non-singular and irreducible. The condition (b) is also satisfied since
the coefficients in M0ST are all equal to 2. The condition (c) is not satisfied because both of the
hyperbolas J3 and J4 intersect the line at infinity at P∞

1 and they are tangent at this point. The
condition (d) is not satisfied because the sum of the degrees of the curves is 6 and not 3. However,
the conclusion is the same as in theorem 61.

(2) In the non-generic cases (a− 3v2/4)(a+ 3v2)(a− 8v2/9) = 0 we have a similar situation
and an inverse polynomial integrating factor. We have, as in the generic case, the two invariant
lines J1,J2 and we have, apart from the two invariant hyperbolas J4,J5 and additional invariant
curve J3. We again have (a) and (b) satisfied but not (c) and (d) of (C-K) theorem 61. However, if
we restrict our attention only to the remarkable curves J1,J2,J4,J5 then we still have an inverse
integrating factor of the form J1J2J4J5 as in the (C-K) theorem.

(II) Consider now the family (J).

(1) The systems in the family (J) have in the generic case three invariant lines J1,J2,J3 and two
invariant hyperbolas J4,J5. Let us now consider for our discussion only the remarkable curves,
the three lines J1,J2,J3 and the hyperbola J4. These of course satisfy the conditions (a) and
(b). However they do not satisfy (c) because for example J1,J2,J4 intersect at P2. They also
do not satisfy (d). If we limit our attention to the four curves J1,J2,J3,J4 we see that we have
as an inverse integrating factor the polynomial J1J2J3J4 which we get by taking in the general
expression of the integrating factor λ1 = λ2 = λ4 =−1.

So we can ask the following questions:

Question 1: How should the geometry of the configuration of algebraic solutions

J1, . . . ,Jk of a polynomial system be so as to have an inverse integrating factor which is polyno-

mial? In particular, how should this geometry be in order to have an inverse integrating factor

J1 . . .Jk? How could we relax, generalize, the hypotheses in the (C-K) theorem such that the same

conclusion holds?

Question 2: If a systems has a rational first integral do we always have an inverse

integrating factor involving only remarkable curves?

Consider now the non-generic case v(a− v2) = 0 of the family (H). We have that one
of the invariant curves becomes double. In the case v = 0 we have two simple invariant lines
J1,J2 and one double invariant hyperbola J3. A polynomial inverse integrating factor in this
case is J1J2J2

3 . In the case a− v2 = 0 we have a double line J1 and two simple hyperbolas J2,J3.
We have a polynomial integrating factor J2

1 J2J3. In this case we still have a polynomial inverse
integrating factor.

Question 3: Can we generalize the (C-K) Theorem 61 so as to include multiplicity?
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In what cases there is a relation between the multiplicity s of an algebraic solution Ji and the

exponent of Ji appearing in the polynomial inverse integrating factor?

7.2 The problem of Poincaré
For 19 of the 23 families studied here we give an answer to Poincaré’s problem. For 6 of

them this answer is entirely geometric (see, for instance, Theorem 96 in Subsection 6.1.1.1) and
for 13 of them the solution is straightforward from the expressions of the first integral, i. e., the
families are algebraically integrable (see for instance, the geometric analysis of family (S)).

For the 4 remaining normal forms for which we did not give an answer to Poincaré’s
problem there eighter occurs: i) not Liouvillian integrability, or ii) a general kind of Liouvillian
integrability, or iii) generalized Darboux integrability but not Darboux integrability, or iv) open
case regarding the integrability.

7.3 The existence of Exponential Factors
We saw in Theorems 42 and 44 that the existence of an exponential factor is associated

with the existence of a multiple invariant algebraic curve (affine or the line at infinity). Let
us recall some examples that appear in our work where we could find an ‘special’ kind of
exponential factor.

• For the family (K) when b =−1/4.

This is a single system that admits two invariant lines J1 and J2 and one invariant hyper-
bola J3. By computing the 1st extactic polynomial we see that J1 and J2 are simple. By
computing the 2nd extactic polynomial we see that J3 is simple. By computing the 1st
extactic polynomial for the compactified field we see that the line at infinity L∞ : Z = 0 is
also simple. However we could find the exponential factor:

E4 = e
G(x,y)

4J3

where G(x,y) = 4(−4g0(4x+51)y2+4g0(31x+41)y+g0+4g1y(x(5y−39)+64y−52)+g1x), g0 ∈R. We em-
phasize that the existence of such first integral does not contradicts Theorem 42 since
degG(x,y) = 3.

Considering family (K) when b =−1/4 we have three finite singular points: P1, P2 and P3

where P1 is a double point which is located in the intersection of J1 and J3. Motivated by
this fact we raise the following question:

Question 4: Could the existence of this exponential factor be related to the existence of

this multiple singularity? Or this exponential factor comes from a multiple curve which is

product of the invariant algebraic curves J1,J2,J3?
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• For the family (Q) when g = 1/2 and c 6= 0.

This is a family in one parameter a ∈ R\{0} that admits two invariant lines J1 and J2. By
computing the 1st extactic polynomial we see that J1 and J2 are simple. By computing the
1st extactic polynomial for the compactified field we see that the line at infinity L∞ : Z = 0
is also simple. However we could find the exponential factor:

E3 = eg0+cg1y+g1xy.

Considering the compactified field we obtained the exponential factor:

E3 = e
g1Y+cg1Y Z+g0Z2

Z2 .

Considering family (Q) when g = 1/2 and c 6= 0 we have two infinite singular points:
P∞

1 and P∞
2 . The singularity P∞

1 is of multiplicity 5 (of type (3
2)) and it is located in the

intersection of J1 and Z = 0. Motivated by this fact we raise the following question:

Question 5: Could the existence of this exponential factor be related to the existence of

this multiple singularity at infinity?

7.4 On the bifurcation diagrams
We have two kinds of bifurcation diagrams: topological and geometrical, i.e., of geometric

configurations of algebraic solutions (lines and hyperbolas). In this Section we are interested
in the relationship between these two bifurcation diagrams, more precisely we show how the
dynamics of the systems expressed in their topological bifurcations impacts the bifurcations of
the geometry of the configurations and the resulting bifurcations in integrability.

7.4.1 Family (H)

In all the families here the topological bifurcation set of the phase portraits is a subset
of the bifurcation set of configurations of algebraic solutions. This inclusion is strict for some
families.

The bifurcation set Bi f(H) for topological phase portraits in the family (H) is formed by
the half-line of v = 0, a < 0 ((Bi f(H))

(1)); the non-zero points on the parabola a = v2 ((Bi f(H))
(2)).

On (Bi f(H))
(1) and on (Bi f(H))

(2) 4 real finite singular points coalesce into 2 real finite
double points. In the first case, after crossing the half-line they split again into 4 real singular
points, while in the second case they split into 4 complex finite singular points which are finite
points of intersection of the complexifications of each one of two real hyperbolas with the two
complex invariant lines, respectively.

It is interesting to observe that these topological bifurcation points have an impact on the
bifurcation set of geometrical configurations. Indeed, first we mention that above and below the
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half-line v = 0 and a < 0 we have two couples of real singularities, the points in each couple are
located on distinct branches of one hyperbola. When two singular points on different hyperbolas
coalesce this yields the coalescence of the respective branches and also of the two hyperbolas,
producing a double hyperbola.

On the non-zero points of the parabola a = v2 the coalescence of the 4 real finite singular
points into two couples of double real singular points yields the coalescence of the two lines into
a double (even real) line which afterwards splits into two complex lines.

We note that we have a saddle to saddle connection on the parabola a = v2 for (a,v) 6=
(0,0).

On the bifurcation points situated on the remaining three parabolas we either have the
occurrence of an additional hyperbola (on a−8v2/9 = 0 or on a+3v2 = 0) or the appearance of
an additional invariant line (on a−3v2/4 = 0). The presence of these additional invariant curves
does not affect in any way the bifurcation diagram of the systems.

In conclusion we have:

(i) Impact of the topological bifurcations on the bifurcations of configurations: The bifurcation
points of singularities located on the algebraic solutions, when singular points become mul-
tiple, become also bifurcation points for the multiplicity of the algebraic solutions, inducing
coalescence of the respective curves and hence of their geometric configuration.

(ii) The bifurcation points of configurations due to the appearance of additional invariant curves
(three hyperbolas instead of two or three lines instead of two lines) have no consequence for the
topological bifurcation diagram of this family.

(iii) Inside the parabola a= v2 where we have complex singularities we have no bifurcation points
of phase portraits but we have, on the half-line v = 0, a > 0 bifurcation points of configurations,
the two hyperbolas coalescing into a double hyperbola. Here we need to stress the fact that on
this half-line we have two double complex singularities and while this fact has no impact on the
topological bifurcation it is important for the bifurcations of the configurations. Indeed, when
the four complex singularities become two double complex singularities on this half-line, the
two hyperbolas on which they are lying coalesce becoming a double hyperbola.

Limit points of the bifurcation diagram for (H) Let us discuss the bifurcation phe-
nomena which occur at the limiting points of our parameter space for systems in the family (H),
i.e. the points on a = 0. The topological bifurcation on this line is easy to understand. Indeed,
except for the the point (0,0) where all four singularities collide, all the other points on a = 0 are
bifurcation points of saddle to saddle connections. All the points on the line a = 0 are also points
of bifurcation of configurations of algebraic solutions. However this bifurcation is a bit harder
to understand. Indeed, at these points say on v > 0 we have a configuration with three simple

affine invariant lines, the vertical line intersecting the two parallel line at two points and forming
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a saddle-to saddle connection. It is clear that this configuration splits into the configuration C(H)
1

on the left which has two hyperbolas and two invariant lines. So in some sense the configuration
on a = 0 should be considered as a multiple configuration since it yields new algebraic solutions.
Analyzing the bifurcation phenomenon we see that each one of the two hyperbolas splits into two
lines on a = 0 and v > 0. Indeed, the hyperbola J4 splits into the line x = 0 and the line J1 and the
hyperbola J3 splits into J2 and x = 0. So that although for a = 0 each one of the lines is simple,
each line contributes to the multiplicity of the configuration. Considering the composite cubic
curve xJ1J2 = 0 we may say that this configuration has (geometric) multiplicity two in this family
as it splits into two cubic curves J1J4 and J2J3. On the other hand we see that we have on a = 0
an exponential factor involving in its exponent at the denominator of the rational function, the
polynomial xJ1J2 which turns out to be of integrable multiplicity two. The notions of integrable
multiplicity and geometric multiplicity in (CHRISTOPHER; LLIBRE; PEREIRA, 2007) are not
restricted to algebraic solutions. But the authors say there clearly that the equivalence between
integrable and geometric multiplicities occurs only for integrable solutions. In the example above
these two multiplicities coincide. So we have the following

Question 6: Under what condition on (finite) configurations of algebraic solutions do

the two multiplicities, integrable and geometric coincide?

7.4.2 Family (P)

The parameter space for this family is {(a,c) ∈ R2 : a 6= 0}, its topological bifurcation
set is (a−8c2/9)(a− c2) = 0 and it is formed of bifurcation points of finite singularities. On
a−8c2/9 = 0 we see coalescence of two finite singularities, both situated on the same one of

the two invariant lines, yielding a double singular point on this line. On a− c2 = 0 we have
two coalesces, but each one of them being a coalescence of two points situated on distinct lines

yielding a double singular point situated on a double line.

The bifurcation set for configurations of invariant lines and hyperbolas is also (a−
8c2/9)(a− c2) = 0. On a−8c2/9 = 0 the coalescence of the two singularities on the same line
yielding a double singular point generates a distinct configuration than the one in the generic
case surrounding points on this parabola where none of the singularities is double. As already
mentioned above, on the parabola a− c2 = 0 we get a double line due to the coalescence
of the four singularities located on the two lines into two double singularities on the double
line. Can we explain in a similar way the appearance of a double hyperbola on the parabola
a−8c2/9 = 0? Within this family this is however not possible. Indeed moving in all directions
from a point on this parabola, we always get just one hyperbola, no two hyperbolas coalesce
when on a−8c2/9 = 0 in the parameter space of this family.

We claim however that the same kind of phenomenon occurs as on a− c2 = 0, namely
that a bifurcation of singularities does occur on a−8c2/9 = 0 but when we unfold these systems
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in a larger family that includes systems with three distinct singular points at infinity and hence
for these systems we have η > 0. Looking at the families of systems in the set of systems with
η > 0 in (OLIVEIRA et al., 2017) we find the configuration denoted by Config.H.139 (see
Figure 44) with three singular points at infinity in the real projective plane and with 4 singular
points in the affine plane. This configuration has two hyperbolas that coalesce when two of the
three singular points at infinity collide and we also have collision of two finite singular points
located on distinct hyperbolas. To prove this, consider the systems:


ẋ = 72c2(1−ε)(2+ε)

(−9+ε2)2 +3cx+ x2 +(1+ ε)xy

ẏ =−9c2(1+ε2)
(−9+ε2)2 + y2,

(7.1)

where ε is sufficiently small. These systems possess the configuration Config.H.139 (see Figure
44) of (OLIVEIRA et al., 2017) for any value of ε > 0 as we can show that it satisfies the
required conditions on the polynomial invariants. On the other hand, the systems (7.1) form a
perturbation of the system obtained by setting ε = 0 which has the configuration Config.H̃.33
(see Figure 44) of (OLIVEIRA et al., 2017) (here family (P) when a = 8v2/9 with configuration
C(P)

6 ).

We conclude that on both parabolas a−c2 = 0 and a−8c2/9 = 0 bifurcation of multiple
singular points produce bifurcation points of configurations corresponding to multiple invariant
curves but this time we have apart from coalescence of finite singularities, also coalescence of
two infinite singularities.

In the article (OLIVEIRA et al., 2017) the classification of QSH according to the
configurations of invariant hyperbolas and lines was done separately for the two subfamilies
corresponding to η > 0 and η = 0 leading to two non-integrated bifurcation diagrams in terms
of invariant polynomials.

As the above example clearly illustrates there is the need of obtaining an integrated

bifurcation diagram of QSH. We thus propose the following problem:

Problem: Obtain an integrated bifurcation diagram for the family QSH of the configu-

rations of invariant hyperbolas and lines that systems in QSH have, by finding a common set of

invariant polynomials to be applied jointly to both subfamilies η > 0 and η = 0.

Finally, in the full (extended) parameter space we observe that on a = 0 the hyperbola
becomes reducible. For c 6= 0 the hyperbola splits into the lines x = 0 and c+y = 0. On a = 0 = c,
the two lines coincide yielding a double line x = 0 and in addition the hyperbola splits into the
lines x = 0 and y = 0.
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Figure 44 – Config.H.139 and Config.H̃.33 (respectively) from (OLIVEIRA et al., 2017). The left
configuration becomes the right one when the hyperbola with infinite points [1 : 1 : 0] and
[1 : 0 : 0] is identified with the other hyperbola by moving the point here at [1 : 0 : 0] to
coincide with [0 : 1 : 0] in P2(C).

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(2)

(2)

(1) (1)

(1)

2

Source: Elaborated by the author.

7.4.3 Family (Q)

The parameter space for this family is {(c,g)∈R2 : (g±1)(3g−1)(2g−1) 6= 0 and c2+

g2 6= 0}. The topological bifurcation set for this family is the set cg = 0, with c2 +g2 6= 0. On
c = 0 and g 6= 0 we have that all the singularities of the systems are at infinity and this occurs
nowhere else. Moreover, on c = 0 and g 6= 0 we have that [0 : 1 : 0] is of multiplicity (2,4) while
[1 : 0 : 1] is of multiplicity one. On g = 0 and c 6= 0 the singular point [1 : 0 : 1] is of multiplicity

(1
1) while for neighbouring parameters this point is of multiplicity 1.

The bifurcation set of the configurations is again cg = 0, with c2 +g2 6= 0. On c = 0 the
line x = 0 is a triple line, except for the value (c,g) = (0,−1) where x = 0 is a quadruple line.
This phenomenon is forced by the topological bifurcation of singularities. Indeed, on this line
two of the finite singularities, one on a line and one at the intersection of the hyperbola with the
line coalesced with [0 : 1 : 0] producing the a line of multiplicity at least two. In fact calculation
indicates that the multiplicity of x = 0 is actually 3 for g 6= 0. Everywhere else in the parameter
space of (Q) we either have just one simple invariant line (this occurs on g = 0) or two simple
invariant lines. This proves that g = 0 is a bifurcation line of configurations.

Thus for both families of systems (P) and (Q) the bifurcation of configurations is produced
by coalescence of singularities either finite or infinite or coalescence of a finite with an infinite
singularities.

Observation 183. Finally we observe that if we take in the family of systems with equations
(Q) when c = 0 and g =−1 we obtain exactly the system denoted by (T) in the list of normal
forms. The normal form (S) is also for just one system. This system coincides with the system in
the family (Q) when g = c =−1. If we take c = 0 and g = 1 in the systems defined by equations
(Q) we obtain exactly (V). Hence in the study of family (Q) we covered four of the normal forms
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listed in Proposition 54: (Q), (S) and (T), (V).

Apart from the fact that we are interested in producing the phase portraits of family QSH
as well as fully understanding the integrability of this family, the questions and problems raised
above are additional motivation for completing the study of this class of systems.

7.5 Phase Portraits
It is important to emphasize that the study for QSH is not yet complete. However, it is

worth mentioning how many distinct phase portraits we found in our investigation so far. In the
table below we present the phase portrait in QSH and also the phase portraits appearing in the
limit cases. In the geometric analysis we simply used the notation "pi" where i = 1,2, ... for
the phase portraits on the limit cases of the normal forms but here we need to clarify in which
normal form the phase portrait appeared, so we use the notation "pi(∗)" where ∗ is the normal
form associated with the phase portrait.

Phase
Portrait

Singularities
at Infinity

Real Finite
Singularities

Separatrix
Connections

Top. equivalent
Phase Portraits

P(B)
1 (N,N,S) (s,s,n,n) 2SC f

f 8SC∞
f 0SC∞

∞ P(F)
3 , P(H)

1 , P(I)
1

P(B)
2 (N,N,N) (s,s) 0SC f

f 8SC∞
f 0SC∞

∞ P(C)
2

P(B)
3 (N,S,N) /0 0SC f

f 0SC∞
f 2SC∞

∞

P(C)
1 ,P(E)

3 ,P(F)
2

P(G)
1 ,P(H)

3 ,P(I)
2

P(J)
2 ,P(K)

3 ,P(L)
2

P(B)
4 (N,N,N) (s,s) 1SC f

f 6SC∞
f 0SC∞

∞ P(C)
3

p1(B) (N,N,S) hpphpp 0SC f
f 6SC∞

f 0SC∞
∞

p1(C), p2(G), p2(H)

p1(I), p1(J)

p1(L),P(M)
3

p2(B) (N,N,N) hhhhhh 0SC f
f 6SC∞

f 0SC∞
∞ p2(C), p4(F)

p3(B) (N,N,(	[|]; /0)) (	[|];s) 0SC f
f 4SC∞

f 0SC∞
∞ p3(C)

P(C)
4 (S,N,N) (s,s,n,n) 3SC f

f 6SC∞
f 0SC∞

∞

P(E)
1 , p1(F)

p1(H),P(J)
1

P(E)
2 (N,N,S) (s,n,n,s) 4SC f

f 6SC∞
f 0SC∞

∞

P(F)
1 ,P(H)

2 ,P(K)
1

P(L)
1 ,P(M)

1

P(E)
4 (N,N,S) (sn,sn) 1SC f

f 6SC∞
f 0SC∞

∞ P(H)
4

p1(E) (N,N,S) (s,n,sn) 2SC f
f 6SC∞

f 0SC∞
∞ −

p2(F) (N,N,S) (sn,sn) 0SC f
f 8SC∞

f 0SC∞
∞ p1(G),P(H)

5

p3(F) (N,N,S) /0 0SC f
f 0SC∞

f 1SC∞
∞ P(G)

2 ,P(M)
2

p5(F) (N,(	[×]; /0, /0)) (	[×]; /0) 0SC f
f 0SC∞

f 0SC∞
∞ −

P(K)
2 (N,S,N) (s,n,n,s) 4SC f

f 5SC∞
f 1SC∞

∞ −
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P(K)
4 (N,S,N) (sn(2),sn(2)) 1SC f

f 5SC∞
f 1SC∞

∞ −
P(K)

5 (N,S,N) (sn(2),n,s) 3SC f
f 5SC∞

f 1SC∞
∞ −

p1(K) (N,S,N) (n,s,n,s) 4SC f
f 5SC∞

f 0SC∞
∞ −

P(O)
1 (SN,N) (n,n,s,s) 2SC f

f 6SC∞
f 0SC∞

∞ −
P(O)

2 (SN,N) (s,s,n,n) 4SC f
f 6SC∞

f 0SC∞
∞ P(P)

1

P(O)
3 (SN,S) ( f , f ) 0SC f

f 2SC∞
f 2SC∞

∞ −
P(O)

4 (SN,N) /0 0SC f
f 0SC∞

f 2SC∞
∞ P(P)

3

P(O)
5 (SN,S) (n,n) 0SC f

f 2SC∞
f 0SC∞

∞ −
P(O)

6 (SN,N) (s,s,n,n) 3SC f
f 6SC∞

f 0SC∞
∞ −

P(O)
7 (SN,N) (sn,sn) 0SC f

f 6SC∞
f 0SC∞

∞ −
p1(O) (SN,N) phph 0SC f

f 4SC∞
f 0SC∞

∞ −
p2(O) SN,(	[|]; /0) (	[|];nd) 0SC f

f 2SC∞
f 0SC∞

∞ −
p3(O) (SN,S) epep 0SC f

f 4SC∞
f 0SC∞

∞ p2(P)

P(P)
2 (SN,N) (n,s,n,s) 4SC f

f 5SC∞
f 1SC∞

∞ −
P(P)

4 (SN,N) (sn,sn) 1SC f
f 5SC∞

f 1SC∞
∞ −

P(P)
5 (SN,N) (s,sn(2),n) 3SC f

f 5SC∞
f 1SC∞

∞ −
p1(P) (SN,N) (s,n,s,n) 4SC f

f 5SC∞
f 0SC∞

∞ −
P(Q)

1 (PEP−EPP,S) (s,n) 1SC f
f 4SC∞

f 1SC∞
∞ P(S)

1

P(Q)
2 (PPEP−PEPP,N) (s,s) 0SC f

f 8SC∞
f 0SC∞

∞ P(R)
1

P(Q)
3 (HPP−HPP,N) (s,n) 1SC f

f 5SC∞
f 0SC∞

∞ P(U)
1

P(Q)
4 (PPE−EPP,S) /0 0SC f

f 0SC∞
f 2SC∞

∞ P(T)
1

P(Q)
5 (PHP−PHP,N) /0 0SC f

f 0SC∞
f 3SC∞

∞ P(R)
3

P(Q)
6 (PH−HP,N) /0 0SC f

f 0SC∞
f 1SC∞

∞ P(V)
1

P(Q)
7 (PEP−EPP,SN) s 0SC f

f 4SC∞
f 1SC∞

∞ −
p1(Q) (PPEP−HPP,N) s 0SC f

f 4SC∞
f 1SC∞

∞ −
p2(Q) (	[)(];N, /0) (	[)(]; /0) 0SC f

f 0SC∞
f 0SC∞

∞ −
P(R)

2 (H−H,N) /0 0SC f
f 0SC∞

f 0SC∞
∞ −

P(W)
1 [∞, /0] (s,n,n) 2SC f

f 2SC∞
f 0SC∞

∞ −
P(W)

2 [∞, /0] c 0SC f
f 0SC∞

f 0SC∞
∞ −

P(W)
3 [∞, /0] es 0SC f

f 4SC∞
f 0SC∞

∞ −
P(X)

1 [∞,N] (n,s) 1SC f
f 5SC∞

f 0SC∞
∞ −

P(Y)
1 [∞,S] (n,n) 0SC f

f 4SC∞
f 0SC∞

∞ −
P(Y)

2 [∞,C] /0 0SC f
f 0SC∞

f 0SC∞
∞ −

p1(Y) [∞;(	[|]; /02)] (	[|];n∗) 0SC f
f 0SC∞

f 0SC∞
∞ −

P(Z)
1 [∞;ES] /0 0SC f

f 0SC∞
f 1SC∞

∞ −

In conclusion, considering separately QSH(η>0) and QSH(η=0) we have:
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Phase portraits in QSH Phase portraits in QSH + limit cases

η > 0 13 18

η = 0 25 32

Total 38 50

We found in our investigation:

(i) 16 phase portraits missing in (LLIBRE; YU, 2018): P(B)
1 , P(B)

3 , P(C)
4 , P(E)

4 , p2(F), P(K)
2 , P(K)

4 ,
P(K)

5 , P(O)
2 , P(O)

4 , P(O)
6 , P(P)

2 , P(P)
4 , P(P)

5 , P(Q)
7 and P(R)

2 .

(ii) 1 phase portrait missing in (CAIRÓ; FEIX; LLIBRE, 1999): P(F)
3 .

(iii) 3 configurations missing in (OLIVEIRA et al., 2017): C(G)
1 , C(G)

7 and C(H)
9 .

(iv) 1 configuration missing in (SCHLOMIUK; VULPE, 2008c): c1(K).

7.6 Further works
In further works we intend to give results concerning the questions stated in Chapter 7

and to investigate the geometric analysis of the 3-parameters normal forms of QSH not studied
in this thesis.
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APPENDIX

A
ON THE REMARKABLE CURVES OF

FAMILY (H)

Considering r = m1/m2 where m1,m2 ∈ N we can say that

I =
(

J1

J2

)m2
(

J3

J4

)m1

is a rational first integral of (H) when a = (1− (m1/m2)
2)v2. Consider

F(c1,c2) = c1Jm2
1 Jm1

3 − c2Jm2
2 Jm1

4 = 0.

We have the following:

• Taking m1 = 2 and m2 = 4 (i.e. a = 3v2/4) we have that

F(1,1) =−27
16v3y

(
81v4 +36v2 (−2x2 + xy+ y2)+16x(x− y)3) .

Therefore, we have a line and a quartic as remarkable curves.

• Taking m1 = 2 and m2 = 6 (i.e. a = 8v2/9) we have that

F(1,1) =
32
9 v3 (v2 +3y(y− x)

)(
3v4(5x−8y)−2v2(x− y)2(5x+4y)+3x(x− y)4) .

Therefore, we have a hyperbola and a quintic as remarkable curves.

• Taking m1 = 2 and m2 = 8 (i.e. a = 15v2/16) we have that

F(1,1) = 27
262144v3(36v2x−45v2y−80x2y+160xy2−80y3)

(3645v6 +19440v4x2−58320v4xy+38880v4y2−11520v2x4 +23040v2x3y+

−23040v2xy3 +11520v2y4 +4096x6−20480x5y+40960x4y2−40960x3y3+

+20480x2y4−4096xy5).

Therefore, we have a cubic and a polynomial of degree 6 as remarkable curves.
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• Taking m1 = 3 and m2 = 6 (i.e. a = 3v2/4) we have that

F(1,1) = 81
512v3y(6561v8−1944v6 (6x2−3xy−5y2)+
+1296v4(x− y)2 (6x2 +2xy+ y2)−1152v2x(x− y)4(2x+ y)+256x2(x− y)6).

Therefore, we have a line and a polynomial of degree 8 as remarkable curves.

• Taking m1 = 3 and m2 = 9 (i.e. a = 8v2/9) we have that

F(1,1) = 16
27v3 (v2−3xy+3y2)(64v10 +675v8x2−2544v8xy+2112v8y2+

−900v6x4 +2520v6x3y−612v6x2y2−2736v6xy3 +1728v6y4+

+570v4x6−2232v4x5y+3420v4x4y2−2760v4x3y3 +1530v4x2y4+

−720v4xy5 +192v4y6−180v2x8 +936v2x7y−1836v2x6y2 +1440v2x5y3+

+180v2x4y4−1080v2x3y5 +684v2x2y6−144v2xy7 +27x10−216x9y+

+756x8y2−1512x7y3 +1890x6y4−1512x5y5 +756x4y6−216x3y7 +27x2y8).

Therefore, we have a hyperbola and a polynomial of degree 10 as remarkable curves.

• Taking m1 = 4 and m2 = 2 (i.e. a =−3v2) we have that

F(1,1) = 216v3(9v2 + xy)(405v4x−81v4y−45v2x3 +63v2x2y−18v2xy2+

+x5−3x4y+3x3y2− x2y3).

Therefore, we have a hyperbola and a quintic as remarkable curves.

• Taking m1 = 4 and m2 = 6 (i.e. a = 5v2/9) we have that

F(1,1) = − 8
81v3(100v4−21v2x2 +270v2xy+75v2y2−45x3y+90x2y2−45xy3)

(420v6x+300v6y−385v4x3 +255v4x2y+105v4xy2 +25v4y3 +105v2x5+

−285v2x4y+225v2x3y2−15v2x2y3−30v2xy4−9x7 +45x6y−90x5y2+

+90x4y3−45x3y4 +9x2y5).

Therefore, we have a quartic and a polynomial of degree 7 as remarkable curves.

• Taking m1 = 4 and m2 = 8 (i.e. a = 3v2/4) we have that

F(1,1) = − 27
2048v3y(81v4−72v2x2 +36v2xy+36v2y2 +16x4−48x3y+

+48x2y2−16xy3)(6561v8−11664v6x2 +5832v6xy+17496v6y2+

+7776v4x4−12960v4x3y+3888v4x2y2 +1296v4y4−2304v2x6+

+8064v2x5y−9216v2x4y2 +2304v2x3y3 +2304v2x2y4−1152v2xy5+

+256x8−1536x7y+3840x6y2−5120x5y3 +3840x4y4−1536x3y5 +256x2y6).

Therefore, we have a line, a quartic and a polynomial of degree 8 as remarkable curves.
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• Taking m1 = 4 and m2 = 12 (i.e. a = 8v2/9) we have that

F(1,1) = 64
81v3(v2−3xy+3y2)(15v4x−24v4y−10v2x3 +12v2x2y+6v2xy2+

−8v2y3 +3x5−12x4y+18x3y2−12x2y3 +3xy4)(64v10 +225v8x2+

−1104v8xy+960v8y2−300v6x4 +840v6x3y+180v6x2y2−1680v6xy3+

+960v6y4 +190v4x6−744v4x5y+1140v4x4y2−920v4x3y3 +510v4x2y4+

−240v4xy5 +64v4y6−60v2x8 +312v2x7y−612v2x6y2 +480v2x5y3+

+60v2x4y4−360v2x3y5 +228v2x2y6−48v2xy7 +9x10−72x9y+252x8y2+

−504x7y3 +630x6y4−504x5y5 +252x4y6−72x3y7 +9x2y8).

Therefore, we have a hyperbola, a quintic and a polynomial of degree 10 as remarkable
curves.

• Taking m1 = 4 and m2 = 16 (i.e. a = 15v2/16) we have that

F(1,1) = 27
2199023255552v3(36v2x−45v2y−80x2y+160xy2−80y3)

(3645v6 +19440v4x2−58320v4xy+38880v4y2−11520v2x4 +23040v2x3y+

−23040v2xy3 +11520v2y4 +4096x6−20480x5y+40960x4y2−40960x3y3+

+20480x2y4−4096xy5)(13286025v12 +383582304v10x2−1029814560v10xy+

+661348800v10y2 +293932800v8x4−3174474240v8x3y+8406478080v8x2y2+

−8465264640v8xy3 +2939328000v8y4−418037760v6x6 +2090188800v6x5y+

−2090188800v6x4y2−4180377600v6x3y3 +10450944000v6x2y4+

−7942717440v6xy5 +2090188800v6y6 +291962880v4x8−1804861440v4x7y+

+4830658560v4x6y2−7431782400v4x5y3 +7431782400v4x4y4+

−5202247680v4x3y5 +2601123840v4x2y6−849346560v4xy7 +132710400v4y8+

−94371840v2x10 +660602880v2x9y−1887436800v2x8y2 +2642411520v2x7y3+

−1321205760v2x6y4−1321205760v2x5y5 +2642411520v2x4y6+

−1887436800v2x3y7 +660602880v2x2y8−94371840v2xy9 +16777216x12+

−167772160x11y+754974720x10y2−2013265920x9y3 +3523215360x8y4+

−4227858432x7y5 +3523215360x6y6−2013265920x5y7 +754974720x4y8+

−167772160x3y9 +16777216x2y10).

Therefore, we have a cubic, a polynomial of degree 6 and a polynomial of degree 12 as
remarkable curves.

These computations suggest that the remarkable curves of algebraically integrable systems
in the family (H) have an unbounded degree.
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