• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tesis Doctoral
DOI
https://doi.org/10.11606/T.55.2019.tde-23082019-170529
Documento
Autor
Nombre completo
Alex Paulo Francisco
Dirección Electrónica
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Carlos, 2019
Director
Tribunal
Tari, Farid (Presidente)
Hernandes, Maria Elenice Rodrigues
Manoel, Miriam Garcia
Martins, Luciana de Fátima
 
Título en portugués
Deformações geométricas de curvas no plano Minkowski
Palabras clave en portugués
Curvas planas
Inflexões
Plano Minkowski
Singularidades
Vértices
Resumen en portugués
Neste trabalho, estendemos o método desenvolvido em (SALARINOGHABI, 2016),(SALARINOGHABI; TARI, 2017) para curvas no plano Minkowski. Tal método propõe um modo de estudar deformações de curvas planas levando em consideração a geometria das mesmas juntamente com suas singularidades. Abordamos detalhadamente todos os fenômenos locais que ocorrem genericamente em famílias de curvas a 2-parâmetros. Em cada caso, obtemos a geometria da curva deformada, ou seja, informações a respeito de inflexões, vértices e pontos lightlike. Obtemos também o comportamento da evoluta/cáustica de uma curva em pontos especiais e as bifurcações que podem aparecer ao deformá-la. Além disso, a fim de obter as deformações genéricas em uma inflexão lightlike de ordem 2, também classificamos submersões de R3 em R por meio de difeomorfismos na fonte que preservam a swallowtail e, utilizando tal classificação, estudamos a geometria plana da swallowtail, a qual provém de seu contato com planos, o qual por sua vez é medido pelas singularidades da função altura sobre a swallowtail.
 
Título en inglés
Geometric deformations of curves in the Minkowski plane
Palabras clave en inglés
Inflections
Minkowski plane
Plane curves
Singularities
Vertices
Resumen en inglés
In this work, we extend the method developed in (SALARINOGHABI, 2016),(SALARINOGHABI; TARI, 2017) to curves in the Minkowski plane. The method proposes a way to study deformations of plane curves taking into consideration their geometry as well as their singularities. We deal in detail with all local phenomena that occur generically in 2-parameters families of curves. In each case, we obtain the geometry of the deformed curve, that is, information about inflections, vertices and lightlike points. We also obtain the behavior of the evolute/caustic of a curve at special points and the bifurcations that can occur when the curve is deformed. Moreover, in order to obtain the generic deformations at a lightlike inflection point of order 2, we also classify submersions from R3 to R by diffeomorphisms in the source that preserve the swallowtail and, using such classification, we study the flat geometry of the swallowtail, which comes from its contact with planes, which in turn is measured by the singularities of the height function on the swallowtail.
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
Fecha de Publicación
2019-08-26
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores.
CeTI-SC/STI
© 2001-2024. Biblioteca Digital de Tesis y Disertaciones de la USP.