• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Master's Dissertation
DOI
10.11606/D.55.2018.tde-23042018-143121
Document
Author
Full name
Simone Maria de Moraes
Institute/School/College
Knowledge Area
Date of Defense
Published
São Carlos, 1995
Supervisor
Committee
Manzoli Neto, Oziride (President)
Conde, Antonio
Sampaio, Joao Carlos Vieira
Title in Portuguese
ENLAÇAMENTOS SEPARÁVEIS EM S4
Keywords in Portuguese
Não disponível
Abstract in Portuguese
Este trabalho apresenta de forma detalhada dois exemplos de enlaçamentos de esferas em S4, abordando a questão da separabilidade tanto do ponto de vista geométrico como homotópico. O primeiro exemplo, dado por van Kampen (em Zur Isotopie zweidimensionaler Flächen in R4 - Hamburg Abh. 6 (216) - 1928), é um enlaçamento A* ∪ B* (A* ≅ S2 ≅ B*) em S4 separável homotopicamente, porém não é separável geometricamente. O segundo exemplo, dado por Andrews & Curtis (em Knotted 2-spheres in 4- space - Amais of Mathematics Studies 70 (565-571) - 1959), é um enlaçamento C* ∪ D* (C* ≅ S2 ≅ D*) em S4 tal que D* não é homotopicamente separável com C*, mas C* é homotopicamente enlaçada com D*, e portanto este enlaçamento não é separável homotopicamente (e nem geometricamente). Usando a generalização de rotação (spin) de um nó generalizamos a segunda afirmação do exemplo acima. Além disso estendemos os conceitos de separabilidade para mergulhos de superficies em S4 e utilizando os exemplos citados acima, construimos enlaçamentos de superficies orientáveis de quaisquer genus com as mesmas propriedades de separabilidade.
Title in English
Separable links in S
Keywords in English
Not available
Abstract in English
We present with details two examples of linking of spheres in S4 with specific separability conditions. The first example, given by van Kampen (1928), is a linking A* ∪ B* (A* ≅ S2 ≅ B*) in S4 with is homotopicaly split but not geometrically split. The second example given by Andrews&Curtis (1959) is a linking C* ∪ D* (C* ≅ S2 ≅ D*) in S4 such that D* is not homotopically linked with C*, but C* is homotopically linked with D* and so this link is not homotopically split. Using generalized spinning it was possible to generalize this last example to any dimension. We also construct, using the above examples, linking of orientable surfaces of any genus in S4 with the separability condition above mentioned.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2018-04-23
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2023. All rights reserved.