• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tese de Doutorado
DOI
https://doi.org/10.11606/T.55.2021.tde-20122021-161145
Documento
Autor
Nome completo
Márcia Richtielle da Silva
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Carlos, 2021
Orientador
Banca examinadora
Bonotto, Everaldo de Mello (Presidente)
Arita, Andréa Cristina Prokopczyk
Federson, Marcia Cristina Anderson Braz
Planas, Gabriela Del Valle
 
Título em inglês
Periodic solutions of measure and neutral functional differential equations
Palavras-chave em inglês
Fixed-point theorems
Impulsive differential equations
Measure functional differential equations
Neutral functional differential equations
Periodic solutions
Resumo em inglês
In this work, we investigate the existence and uniqueness of periodic solutions for two classes of functional differential equations. At first, we consider measure functional differential equations of type: x(t) = x(0) + ∫t0 f(s, xs)ds + ∫t0 g(s, xs)du(s), defined for every t ∈ R, under suitable assumptions on f,g and u. The integrals on the righthand side of the equation exist in the senses of Perron and PerronStieltjes, respectively. Using a topological transversality theorem, we exhibit sufficient conditions to guarantee the existence of periodic solutions for this type of equation. As a consequence of the obtained results, we study the existence and uniqueness of periodic solutions for a class of functional differential equations with impulses. In addition, we present a periodicity study for the solutions of the following class of neutral functional differential equations: d/dt (x(t) – A(t, xt)) = f(t, xt), defined almost everywhere in R, under suitable assumptions on A and f . In this case, in order to guarantee the existence of periodic solutions, we apply a fixed-point theorem variation for condensing maps. As a consequence, we obtain the existence of periodic solutions for a class of impulsive neutral functional differential equations. Some applications are presented to illustrate the theory. The new results presented in this work gave rise to the following articles: (1) Periodic solutions of measure functional differential equations. See (AFONSO; BONOTTO; SILVA, a). (2) Periodic solutions of neutral functional differential equations. See (AFONSO; BONOTTO; SILVA, b).
 
Título em português
Soluções periódicas de equações diferenciais funcionais neutras e em medida
Palavras-chave em português
Equações diferenciais funcionais em medida
Equações diferenciais funcionais neutras
Equações diferenciais impulsivas
Soluções periódicas
Teoremas de ponto fixo
Resumo em português
Neste trabalho, investigamos a existência e a unicidade de soluções periódicas para duas classes de equações diferenciais funcionais. Primeiramente, consideramos as equações diferenciais funcionais em medida da forma: x(t) = x(0) +∫t0 f(s, xs)ds + ∫t0 g(s, xs)du(s), definida para todo t ∈ R e com condições adequadas para as funções f,g e u. As integrais do lado direito da equação existem nos sentidos de Perron e PerronStieltjes, respectivamente. Utilizando o teorema de transversalidade topológica, exibimos condições suficientes para garantir a existência de soluções periódicas para esse tipo de equação. Como consequência dos resultados obtidos, estudamos a existência de soluções periódicas para uma classe de equações diferenciais funcionais com impulsos. Além disso, apresentamos o estudo de periodicidade para as soluções da seguinte classe de equações diferenciais funcionais neutras: d/dt (x(t) – A(t, xt)) = f(t, xt), definidas quase sempre em R e com condições adequadas para as funções A e f . Neste caso, para garantirmos a existência de soluções periódicas, aplicamos uma variação do teorema de ponto fixo para aplicações condensadas. Como consequência, obtemos a existência e a unicidade de soluções periódicas para uma classe de equações diferenciais funcionais neutras com impulsos. Algumas aplicações são apresentadas com a finalidade de assegurar a aplicabilidade da teoria apresentada. Os resultados apresentados neste trabalho deram origem aos seguintes artigos: (1) Periodic solutions of measure functional differential equations. Veja (AFONSO; BONOTTO; SILVA, a). (2) Periodic solutions of neutral functional differential equations. Veja (AFONSO; BONOTTO; SILVA, b).
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2021-12-20
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores.
CeTI-SC/STI
© 2001-2024. Biblioteca Digital de Teses e Dissertações da USP.