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“ The world was not prepared for this.

It was too far ahead of time,

but the same laws will prevail, and one day
make it a triumphant success.”

(Nikola Tesla.)






ABSTRACT

FERNANDEZ, J. F. C. Variations in selection principles and selective topological games.
2023. 103 p. Tese (Doutorado em Ciéncias — Matemadtica) — Instituto de Ciéncias Matemadticas e
de Computagdo, Universidade de Sao Paulo, Sao Carlos — SP, 2023.

In this work, we study the relation of different variations of selection principles and selective
topological games. In particular, we study the case of selection principles and selective topo-
logical games when we consider the case of a class of dense subsets of a topological space,
and we obtain a result of equivalence in the case of the space of continuous functions with the
compact-open topology. Furthermore, we include a translation of some results with different

dense families, and we include a little of selection star principles and selectively c.c.c property.

Keywords: selection principles, selective topological games, function spaces, topology, open

COVeErs.






RESUMO

FERNANDEZ, J. F. C. Variac6es em principios seletivos e jogos topologicos de selecao. 2023.
103 p. Tese (Doutorado em Ciéncias — Matemadtica) — Instituto de Ci€éncias Matemadticas e de Com-
putacdo, Universidade de Sao Paulo, Sdo Carlos — SP, 2023.

Neste trabalho, estudamos a relacdo entre diferentes variacdes de principios de selecdo e jogos
topologicos de selecdo. Particularmente, estudamos o caso de principios de selecio e jogos
topolégicos quando consideramos o caso da classe de subconjuntos densos de um espaco
topoldgico, e obtemos um resultado de equivaléncia no caso do espaco de funcdes continuas
com a topologia compacta-aberta. Além disso, incluimos uma traducao de alguns resultados
com diferentes familias densas, e incluimos um pouco a repeito de principios seletivos estrela e

da propriedade seletivamente c.c.c.

Palavras-chave: principios seletivos, jogos topoldgicos de selegdo, espaco de fungdes, topologia,

coberturas abertas.






LIST OF SYMBOLS

@ — set of natural numbers

<®X _ Set of all finite sequences of X.

C(X) — Set of all continuous real functions defined in X.
X — cardinality of the ordinal number .

Cp(X) — C(X) equipped with the topology of pointwise convergence
Cr(X) — C(X) equipped with the compact-open topology
#(X) — Power set of X.

AB — The set of all functions of B in A.

[X]<¥0 — Set of finite subsets of X.

|A| — cardinality of the set A

R — set of all real numbers.

[X]¥ — Set of all subsets of X with cardinality k

w(X) — the least cardinality of a basis of X.

d(X) — the least cardinality of a dense subset of X.
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CHAPTER

INTRODUCTION

In 1996, Marion Scheepers introduced the selection principles Sy (.27, %) and S s, (7, B),
with 7 and 4 classes of sets. In short, a selection principle is a property that allows us to describe
a particular property in terms of a specific class () by making a certain choice over a succession

of elements from another family (7).

For example, the selection principle S;(%x, Zx ) indicates the following property: for any
sequence (D, : n € @) of dense subsets in a topological space X, there is, for any n € @, x,, € D,
such that {x, : n € @} is a dense subset. Many topological properties are described with these
selection principles when we considere different classes of families of subsets in a topological
space. The most studied case in the literature, and that was the basis for its formalization, is
when we take the family of open covers of a topological space (namely, Rothberger and Menger
properties). We must emphasize that in the notation, the sub-index 1 and fin indicate the number
of elements selected from each element of the sequence (fin indicates that it is selected finitely
many elements). Then, naturally, we can define variations of these selection principles, such as
So(et, B), S3( , B), etc.

On the other hand, the term "topological game" was introduced for the first time in 1957
by Claude Berge. Later, in 1974, Rastislav Telgarsky introduced a different meaning for it using
the concept "topological properties defined by games". The first game studied was the Banach-
Mazur game. This game was introduced in the famous Scottish Book, a compilation of problems
and discussions by celebrated mathematicians of the time. The problem was proposed by Mazur
and was answered by Banach. A selective topological game is one formulated following the

same idea of a selection principle.

For example, the topological game G (O, Ox) (which is called the Rothberger game) is
played as follows: in each inning, Player I chooses an open cover of X and Player /7 chooses an
element in the open cover chosen by Player /. Player /1 wins if his choices form an open cover

of X. Note that we can analogously define a game by changing the number of elements chosen



20 Chapter 1. Introduction

by Player /1. For example, we can say that Player /1 chooses a finite subset rather than a single
element in the open cover played by Player /. This game is denoted by Gi,(Ox,Ox), and it is a
different game from G (0x, Ox).

The main objective of this text is to study variations of selection principles and selective
topological games when considering a distinct number of elements chosen in each element of
a sequence and a distinct number of elements played in each inning for Player /1, respectively.
Furthermore, we study these variations when considering different classes of families of subsets
of a topological space X, focusing mainly on dense families. This work is divided into sections

as follows:

In Chapter 2 we have compiled some basic facts with respect to selection principles and
selective topological games, with an emphasis on types of selection principles, about the number
of choices, winning strategies of games, duality, and equivalences about selective topological

games. We conclude with some results in spaces of continuous functions with bornologies.

In Chapter 3 we present some results about the equivalences between the different
variations in selection principles in certain types of classes of subsets of topological spaces, and

particular cases are revisited.

In Chapter 4 we present additional results on the equivalence of variations in topological
games on the class of k-covers (and some on the class of bornologies covers). Using a translation
between k-covers in a topological space and tightness in the space of continuous functions with
the compact-open topology, we obtain an equivalence in some variations of topological games
about the class of dense subsets when we work in the space of continuous functions with the

compact-open topology.

In Chapter 5 we have some generalizations of translations in some selection principles
with dense families. Additionally, we also present translations for a certain selective topological

game.

In Chapter 6 we considered some variations on the selectively ccc property, the star

selectively ccc property, and the game versions of the last properties.
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CHAPTER

PRELIMINARIES

In this chapter, we make a compilation of selection principles and selective topological

games (where we focus on winning strategies and duality).

For references in general topology, we cite (ENGELKING, 1989).

2.1 Selection principles and selective topological games

2.1.1 Families of sets

Definition 2.1. Let (X, 7) be a topological space and let %7 be an open cover of X. We say that
U is:
e a w-cover if X ¢ 7 and for all finite subset F C X, there is U € % such that F C U;
e ak-cover if X ¢ % and for all compact subset K C X, there is U € % such that K C U
e ay-coverif X ¢ %, % is infinite and for all x € X, the set {U € % : x ¢ U} is finite;
e alarge cover if for all x € X the set {U € % : x € U} is infinite.

Definition 2.2. A topological space (X, 7) is called w-Lindeldf, if for all @ -cover % there is
%' C % such that 7/ is a countable ®-cover.

Definition 2.3. Let (X, 7) be a topological space. A family D is said to be a dense family if all

its elements are open sets and | JD is dense in X.

Definition 2.4. Let (X, 7) be a topological space. A family A is cellular if all its elements are
pairwise disjoint open sets. A family A is maximal cellular if it is cellular and maximal with

respect to C in the family of all cellular families.
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Definition 2.5. Let (X, 7) be a topological space, x € X and A C X. A set A converges to a point
x, and it is denoted by x :=limA, if A is infinite, x ¢ A and A\U is finite for any neighborhood

U of x. In this case, we say that x is a limit point of A.

Denote by [A]4 the set of all limit points of sequences of A C X.

Definition 2.6. Let (X, 7) be a topological space. A subset D C X is said to be sequentially
dense if X = [D]y¢q.

Definition 2.7. Let (X, 7) be a topological space. X is called strongly sequentially dense if any
dense subset is sequentially dense.

Definition 2.8. Let (X, 7) be a topological space. X is said to be Fréchet if, for all x € X and
A C X, with x € A, there is a sequence (x, : n € @) in A such that lim{x, : n € ®} = x.

Definition 2.9. Let .o and 4 be classes of families of subsets of a set X. The set X satisfies a

o
property ( 2 ) if, for all A € .7, there is a B C A such that B € #.

If (X, 7) is a topological space, we will use the following notation:

1. O is the class of all open covers of X;
2. Qx is the class of all w-covers of X;
3. J#x is the class of all k-covers of X
4. T'y is the class of all y-covers of X;
5. Y is the class of all dense subsets of X;
6. Ay is the class of all large covers;
7. X is the class of all sequentially dense subsets of X;
8. 9, is the class of all dense families;
9. . is the class of all maximal cellular families;
10. Q, ={ACX:xcA\A};

II. T, ={ACX :x=1limA}.
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2.1.2 Selection principles and selective topological games

In this section, we will mention the best known results about selection principles and
selective topological games. For reference we cite (AURICHI; DIAS, 2019).

The main motivation for continuing to study selective topological games and selection

principles is that they can characterize some topological properties and even define new ones.

Let <7 and % be classes of families of subsets of a set X. We will denote by @ the set of

natural numbers.

Definition 2.10. S| (<7, %) is the following selection principle: for any sequence (A, : n € @)
of elements of <7, there is a sequence (b, : n € ®) such that b, € A, for all n € @, and
{bp:necw}ecAB.

Definition 2.11. Sy, (7, %) is the following selection principle: for any sequence (A, : n € ®)
of elements of <7, there is a sequence (B, : n € ®) such that B, C A, is finite for all n € @, and
| B, %.

new

The following are the most well-known selection principles:

e S1(0Ox, Ux) is the Rothberger property;

o Srin(Ox, Ox) is the Menger property;

o 51(Qx,Qy) is the Q-Rothberger property;

o Srin(Qx,Qx) is the Q-Menger property;

o 51(Qy,Q,) is the strong countable tightness property;

® Srin(Qy,Q,) is the countable tightness property;

o 51(%x,Q;) is the strong countable tightness property with respect to dense subsets;
o Stin(Zx, ) is the countable tightness property with respect dense subsets;

o S1(%x,Px) is the R-separable property;

o Stin(Zx,Zx) is the M-separable property or SS property;

o S\(A.,2,) is the selectively ccc property.

We can obtain the following variation in the selection principles:

Definition 2.12. Let f: @ — @\ {0} be a function. S;(7, %) is the following selection principle:
for any sequence (A, : n € @) of elements of o7, there is a sequence (B, : n € ®) such that
B, € [An]gf(”), for all n € w, and U B, € A.

ncw
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By k € o\ {0}, we write Sy (<7, &) when f = f;. Clearly, for all k € 0\{0}, if Sy (7, #)
holds, then Sy (<7, %) holds, for any <7 and Z classes of families of subsets of a set X.

Observation 2.13. If o7 and % are classes of families of subsets of a set X, the following

implications are immediate:

1. If S1(<7, %) holds, then Sy(.o7/, %) holds for all f: @ — w\{0}.

2. For all fixed f: @ — w\{0}, if Sy(7, %) holds, then Sy;, (27, %) holds.

Another way to characterize properties in topological spaces is through selective topo-

logical games.

Definition 2.14. The game G(.27, %) is defined as follows: in each inning n € @, Player I
chooses A, € &7, then Player II chooses b, € A,,. The winner is Player I if {b, :n € 0} € A.

Otherwise, the winner is Player /.

Definition 2.15. The game Gy;, (<7, %) is defined as follows: in each inning n € ®, Player /
chooses A, € <7, then Player /I chooses B,, C A, finite. The winner is Player /1 if U B, € A.

ncw
Otherwise, the winner is Player 1.

The most popular selective topological games are the following:

e G|(0Ox,Ux) is the Rothberger game;

o Gyin(Ox, Ox) is Menger game;

o G(Qyx,Qy) is the Q-Rothberger game;

o Grin(Qx,Qx) is the Q-Menger game;

o G1(€y, Q) is the strong countable tightness game;

o Grin(Q,,Q,) is the countable tightness game;

e G(%x,Q) is the strong countable tightness with respect to dense subsets game;

o Grin(Px,Q,) is the countable tightness with respect to dense subsets game;

By changing the number of elements in the choice made by Player /1, we can obtain the following

version of the selective topological game:

Definition 2.16. Let f : @ — @\{0} be a function. The game G (%7, %) is defined as follows:
in each inning n € , Player I chooses A, € <7, then Player II chooses B, € [A,]5/ ("), The

winner is Player /1 if U B, € . Otherwise, the winner is Player /.
ncw
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For k € 0\{0}, we denote by G;(.7, %) the case where f = fi, where fj is the constant

function k.

2.1.3 Winning strategies

Informally, a strategy is a fixed way that allows a certain player to make his choices in
each inning n € ®. More formally, for <7 and Z classes of families of subsets of a set X, we

define the following:

Definition 2.17. A strategy (with complete information) for Player I in G| (<7, %) is a function
o: “?(J) — . A strategy o for Player [ is called a winning strategy if, for any choice
bp€o((by:m<n)),foralln € o, {b,:ncw} ¢ AB.11 G (F,A) denotes the existence of a

winning strategy for Player /.

Definition 2.18. A strategy (with complete information) for Player /1 in G| (<7, %) is a function
p: <P« — . A strategy p for Player II is called a winning strategy if, for any choice
(Ap)new, then {p((Ag,...,A,)) :n€ w} € B. 111 G| (<, %) denotes the existence of a winning
strategy for Player I/

In the same form as is defined strategies considering all of the previous selection of the

both of players, is defined strategies where only is considerate partially the history of game.

Definition 2.19. A predetermined strategy for Player I in G| (<7, %) is one that considers only
the number of the current inning. Formally, a predetermined strategy is a function ¢ : @ — 7.

I 1 G(«7,%) denotes the existence of a predetermined winning strategy for Player 1.
pre

Similarly, we can define strategies with complete information and predetermined strate-
gies for all variations Gy, for all f: @ — @\{0}, and G ;.

Observation 2.20. Let o/ and Z be classes of families of subsets of a set X. Then the following

implications are immediate:
11 Gi(o,B) =111 Gp(A,PB), forall f:w— o\{0} =11 Giy(,B)
Furthermore, it is immediate the following implication:
111G (o, B) = 111Gy (A, B),

for any <7 and A classes of families of subsets of a set X and for all k € @\ {0}.

On the other hand, a result that linking selection topological games and selective princi-
ples is the following:
1YG(A, B) = S1(,RB) holds.
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The same implications are valid for variations G, for all f: @ — @\{0}, and Gy;,. The

reciprocal of the previous result is not necessarily true. However, we have the following result:

Proposition 2.21 (Folkrore). I [ G(<7, %) if, and only if, S| (<, %) holds.
pre

Proof. 1f S1(«7, %) does not hold, there is a sequence (A, )ycw, With A, € &7 for all n € w, such
that, for any sequence (b, )nce, Where b, € A, for all n € @, we have {b,, : n € ®} ¢ . Define

0 : @ — o/ with 6(n) = A,, for n € ®. Then p is a winning predetermined strategy for Player /
in G] (,537, %)

Reciprocally, suppose that S; (.27, %) holds and let 6 : @ — <7 be a strategy of Player /
in G (7, A). As (6(n))nece is a sequence of elements in .7, it follows that, for all n € o, there
isab, € o(n) such that {b, : n € o} € A. That is, the play

G(O),bo,G(l),bl,...,G(n),bn,...

is winner by Player /1. Since ¢ was arbitrary, we conclude that I f G,(<7,%). U

pre

It is easy to see that the previous proposition is still valid for variations G, for all
f @0 — o\{0}, and Gy;y,. In the case of complete information strategy is not always true, buy it

is still true for some classes of families. For example, we have the following results:

Theorem 2.22. (HUREWICZ, 1925) Let (X, 7) be a topological space. The following statements

are equivalent:

1. Sfin(ﬁx,ﬁx) hOldS;
2. I?’Gﬂn(ﬁx,ﬁx).

Theorem 2.23. (PAWLIKOWSKI, 1994) Let (X,7) be a topological space. The following

statements are equivalent:

1. S] (ﬁx, ﬁx) hOldS;

2. 1YG(0Ox,0x).

A recent proof of these results was given in (SZEWCZAK; TSABAN, 2020). This result

1s valid in the Qy class as well:

Theorem 2.24. (SCHEEPERS, 1997) Let (X, 7) be a topological space. Then:

1. Sl(.Qx,.Qx) holds @I?Gl(gx,gx).

2. Sfm(Qx,Qx) holds @I?Gﬂn(ﬂx,ﬂx).
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2.2 Bornologies

Bornologies and bornological analysis has a principal motivation in the fact that bornolog-
ical spaces provide an important setting for homological algebra in functional analysis, because
the category contains bornological spaces is additive, complete and has a tensor product adjoint
to an internal hom. For reference we cite (HOGBE-NLEND, 1977).

Definition 2.25. Let (X, 7) be a topological space and ‘B be a family of subsets of X. B is called
a bornology in X if B is an ideal (that is, it is closed by finite union and if A C B and B € *B then
A € *B) that covers X.

Definition 2.26. Let (X, 7) be a topological space. A (compact) base B’ for a bornology B in
X, is a subset of B such that for all B € B, there is a B’ € B’ such that B C B’ (such that all its
elements are compact subsets).

Definition 2.27. Let B be a bornology with a compact base in a Tychonoff space (X, 7). We
call it a uniform convergence topology in ‘B, denoted by s, the topology in C(X) that has as a
base of neighborhoods, in each f € C(X), sets of the form:

[f,B,€] :={geC(X):|f(x)—g(x)| <&, forall x € B},
where B € 98B and € > 0. We denote by Cis (X) the topological space (C(X), T3).

In the presence of the topology above, we can find that Cy (X) has a good separation

property. First, we recall the following result:

Theorem 2.28. Let (X, 7) be a Tychonoff space. If A C X is compact and B C X is closed such
that AN B = 0, then there is a continuous function f : X — [0, 1] such that f(A) =0and f(B) = 1.

Now, we can prove that Cys (X ) is a Tychonoff space. Indeed, note that Theorem 1.1.5 and
Theorem 1.2.3 in (MCCOY; NTANTU, 1988) are still valid when we switch from the hypothesis
of a compact network to a bornology with a compact base. As the constructions made in that
work are valid by we considered a bornology with a compact base instead of a compact network

the result is obtained.

There is a form to generalized the notions of @w-covers and k-covers as follows:

Definition 2.29. Let (X, 7) be a topological space, 8 be a family of subsets of X, and % be a
family of open subsets of X. % is called a ®B—cover of X if X ¢ % and, for all B € B, there is
U e % suchthat BC U.

We denote by ﬁ% the set of all *B—covers of X.

Observation 2.30. Note that Oy, satisfies the following property: if % € 0% and . € [%]<¥0,
then Z\.7 € 0%
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Example 2.31. Let (X, 7) be a topological space. We have that the sets F = [X]<¥0 and
K={A CX:3K CX compact subsets and A C K}

(if X is Hausdorff, note that K = {A C X : A is compact}) are bornologies with compact
base. Furthermore, Cr(X) = C,(X) and O = Qx. If X is a Hausdorff space, we have that
Ck(X) = Ci(X) and O = #x. For a discuss of this kind of coincidence in a more general
setting we cite (NOKHRIN; OSIPOV, 2009).

Definition 2.32. Let (X, 7) be a topological space, ‘B be a family of subsets of X, and % be a

family of open subsets of X. 7% is called a B—cofinite cover of X, if it is infinite and for all
Be B, theset {U € % : B¢ U} is finite.

Denote by 1“% the set of all ‘B-cofinite covers of X.

Definition 2.33. Let (X, 7) be a topological space and 5 be a family of subsets of X. The space
X is called B-Lindeldf if for all % € O ithas %' C %, with %' € 0} countable.

We have that the result in Theorem 2.24 was generalized to the following result:

Theorem 2.34. (MEZABARBA; AURICHI, 2019) Let (X, 7) be a topological space and B be a
family of subsets of X. Then:

1. $1(0%,0%) holds if, and only if, I ¥ G1(0%, O%,).

2. Spin(OF, 0F%) holds if, and only if, I ¥ G in(OF, OF).-

2.3 Function spaces and selection principles

The following results show some translations of a topological space (X, T) into the space

of continuous functions Cy(X).

Theorem 2.35. (SAKALI, 1988) Let (X, 7) be a Tychonoff space. The following statements are

equivalent:

1. S1(Qx,Qx) holds;
2. §1(€4,9Q,) is true for all g € C,(X);
3. S1(Zcp(x),€2e) holds, for all g € Cp(X).

Theorem 2.36. (ARKHANGEL'SKII, 1986)(CLONTZ, 2019) Let (X, t) be a Tychonoff space.

The following statements are equivalent:

1. Sfm(Qx,Qx) hOldS;
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2. S5in(Qq, L) holds for all g € C,(X);

3. Sfin(Zc,(x), Q) holds, for all g € Cp(X).

Additionally, we have the following results:

Theorem 2.37. (KOCINAC, 2003) Let (X, t) be a Tychonoff space. The following statements

are equivalent:

1. Sy(A#x,%#x) holds;
2. §1(€g,,) holds, for all g € Ci(X);
3. 8$1(Zc,(x),€2) holds, for all g € Ci(X).

Theorem 2.38. (LIN; LIU; TENG, 1994)(OSIPOV, 2018c) Let (X, 7) be a Tychonoff space.

The following statements are equivalent:

1. Sgin(Hx, #x) hold;
2. S§in(Qq,€,) holds, for all g € Cr(X);

3. Sfin(Ze,(x), ) holds, for all g € Cr(X).

The previous results were generalized to the following ones:

Theorem 2.39. (MEZABARBA; AURICHI, 2019) Let (X, 7) be a Tychonoff space and let 8 be
a bornology with a compact base. Let f : @ — ®\{0} be a function. The following statements

are equivalent:

1. Sp(OF,0%) holds;
2. S7(€4,Q,) holds for all g € C3(X);
3. S#(Dey (x),€2e) holds, for all g € C(X).

Theorem 2.40. (MEZABARBA; AURICHI, 2019) Let (X, 7) be a Tychonoff space and let ‘B

be a bornology with compact base. The following statements are equivalent:

1. Sfin(ﬁ%,ﬁ%) holds;
2. S5in(Q4,9Q,) holds, for all g € C(X);
3. Sfin(Dey (x)» Q) holds, for all g € Cys(X).

Observation 2.41. Let (X, 7) be a topological space and % € I'y. If ¥ C 7 is infinite and
X ¢ ¥, then ¥ € I'x because, forany x € X, wehave {V € ¥ :x ¢V} C{U e % :x¢U}. In
particular, any %/ € I'y has a countable subset ¥ such that 7" € I'y.
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From the previous observation, we have the following translation:

Theorem 2.42. (GERLITS; NAGY, 1982) Let (X, ) be a Tychonoff space. The following

statements are equivalent:

Q
1. ( X ) holds;
Iy

2. Sl (.Qx,rx) hOldS;
3. 51(Q,I'g) holds, for all g € C,(X);

4. Cy(X) is Fréchet.

And its more general version:

Theorem 2.43. (MCCOY; NTANTU, 1988) Let (X, 7) be a Tychonoff space and let 5 be a

bornology with compact base. The following statements are equivalent:

ﬁX
1. ( f ) holds;
F%

2. 51(0%.T%) holds;
3. §1(€4,T) holds, for all g € Cs(X);

4. Cy(X) is Fréchet.

Proof. The implications (2) = (1) and (3) = (4) are immediate. Let (%, : n € @) be a sequence
of elements in ﬁ’%. Note that Observation 2.41 is also valid for I'g. So, for any n € m, there is
a ¥, C %, countable such that ¥, € I's. Choosing, for all n € @, any V,, € 7}, it follows that
{V,:n€ o} €T'y. Then (1) and (2) are equivalent. As Cy(X) is homogeneous, it suffices to
show the rest of the implications considering g = o.

(2) = (3). Let (A, : n € ®) be a sequence of elements in Q,. Define, for all n € ® the

set:
1 1

U(4) = {57 (=57 5:)) 18 €A},

We claim that %,(A) € 0% for all n € ®. Indeed, let B € 8. As o € A, it follows that
there is 1 € AN[0,B,5]. S0, BC h™ 1 ((— %, %)) € %(A).

So, since (%, (A,) : n € @) is a sequence of elements in 0%, by (2), it follows that, for
all n € o, there is U, = g, ' ((— 57, 37)) € Zu(An), with g, € Ay, such that {U, : n € 0} € I's.

We claim that {g, : n € o} € T',. Indeed let [0, B, €] be a neighborhood of o, with B € B

and € > 0. Then, there is ng € ® such that B C U, = g, '({(— 5, 37)), for all n > ngy. Choose
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m > ng such that %m <e.ThenBC U, C g;l((—e,e)), for all n > m. Therefore, g, € [0,B, €],

for all n > m.

(4) = (2). Let (%, : n € o) be a sequence of elements of &%,. Define, for all n € w, the

set:
A(U) ={8 € Cp(X) : U, € % (g(X\Ug) ={1})}.

We claim that A(%},) € Q,, for all n € ®. Indeed, consider a basic neighborhood |0, B, €] of o,
with B € B and € > 0. As B € B, there is U € % such that BC U. As X\U is a closed subset
that is disjoint of the compact set B (this set is compact by the hypotheses that B has a compact
base), by Theorem 2.28, there is & € Cos(X) such that h(x) =0, for all x € B, e h(X\U) = {1}.

So h € [0,B,e]NA(%,). Thatis, 0 € A(%,).

Now, since (A(%;,) : n € @) is a sequence of elements in €,, by (4), it follows that for
all n € w, there is f, € A(%,), such that {f,, : n € w} € T,.

We claim that {U, : n € @} € 'y, where, for any n € 0, U, € %, is such that f,,(X\U,) =
1. Indeed, let B € 4. Consider an open neighborhood of o, [0, B, %] Then, there is np € ® such
that B C f, 1((—3,3)), for all n > ng. So BN (X\U,) = 0, for all n > ng. Therefore, B C U, for
all n > ny. O

With a few modifications to the previous theorem, we can obtain the following results:

Theorem 2.44. Let (X, 7) be a Tychonoff space, B be a bornology with compact base and

f o — ®\{0} is a function. The following statements are equivalent:

ﬁX
1. < ? ) holds:
F%

2. Sp(0%.T%) holds;
3. §¢(Qq,T,) holds, for all g € Cz(X);
4. Cs(X) is Fréchet.

Theorem 2.45. Let (X, 7) be a Tychonoff space and 4 is a bornology with compact base. The

following statements are equivalent:

ﬁX
1. < ;(B > holds ;
F%

2. 87(O%.T) holds
3. Sfin(@4,T) holds, for all ¢ € Cxs(X);

4. Cy(X) is Fréchet.
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On the other hand, when dealing with spaces of functions, we have the following

equivalence between selection principles and games:

Theorem 2.46. (SCHEEPERS, 1997)(SCHEEPERS, 1999) Let (X, T) be a separable metric

space and g € Cj,(X). The following statements are equivalent:

1. S1(Qg,€,) holds;

2. 19G1(Qq,Q,):

3. 1Y G1( e, x)s Deyx);
4. S1(%Zc,x), Zc,(x)) holds.

Theorem 2.47. (SCHEEPERS, 1997)(SCHEEPERS, 1999) Let (X, T) be a separable metric

space and g € Cj,(X). The following statements are equivalent:

1. Sfin(Qg7Qg>;
2. 1Y Gin(Qg,Qp);
3. IVGf,-n(.@cp(x),-@cp(x))§

4. Sfin(@Cp(X%@Cp(X))'

2.4 Duality

We will start by defining the equivalence and duality of selective topological games:

Definition 2.48. Let G| and G, be two selective topological games. The games are called

equivalent if:

e [ 1 Gy if, and only if, I T Gy;
e /I 1 Gy if, and only if, I1 1 G».

Definition 2.49. Let G| and G, be two selective topological games. The games are said to be
dual if:

e [ 1 G if, and only if, I1 1T Gy;

o /1 Gy if, and only if, IT T G.
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We will define
Gi(t,~B) = Gi( .o (/) \B).

that is, in this game Player /I wins if {B, : n € o} ¢ A.

For a set X, we will denote by €' (X) := {f € (UX)X : x € X = f(x) € x} the set of all
the choice functions of X.

Definition 2.50. Let X and Y be two sets. X is called coinitial in ¥ with respect to C, and we
denote by X <Y,if X CY and for all y € Y, there is a x € X such that x C y.

Definition 2.51. A set Z is called a reflection of a class <7 if {range(f): f € € (%)} = .

The following result describes, in general, the dual game for certain classes of sets.

Theorem 2.52. (CLONTZ, 2020) Let Z# be a reflection of a class «/. Then G(</, %) and
G (#,—~9A) are dual games.

2.4.1 Examples

Below, we will present some examples of duality. Let (X, ) be a topological space. For
x € X, denote by 7, = {U € 7: U is neighborhood of x} and Py = {7, : x € X }.

Proposition 2.53. (CLONTZ, 2020) Py is a reflection of 0.

Proof. Let % € Ox and 1, € Px. So, there is U, € % such that x € Uy. Define fy (1) = Uy. So
fo € €(Px).Itis easy to see that range(fy ) € Ox and range(fy ) C U . O

Definition 2.54. Let (X, 1) be a topological space. The point-open game G% (X) is played as
follows: In each inning n € @, Player I chooses x;,, € X. Then, Player /1 chooses U,, € T such that
Xn € Uy. Player I is the winner if {U, : n € o} € Ox. Otherwise, Player II wins.

Corollary 2.55. (GALVIN, 1978) Let (X, T) be a topological space. The games G| (O, Ox)
and G (X) are dual.

Proof. Note that the point-open game is equivalent to G (Px,—O¥). The result is derived from
Proposition 2.53 and Theorem 2.52. [

We can consider the following variation of the point-open game.

Definition 2.56. Let (X, 7) be a topological space. The finite open game is G?X (X) and is played
as: In each inning n € ®, Player I chooses F;, € [X]<X0. Then, Player II chooses U, € T such
that F,, C U,,. Player [ is the winner if {U, : n € o} € Ox. Otherwise, Player II wins.
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Interestingly, this change in the number of elements that Player I chooses does not make

a difference in the existence of winning strategies.

Proposition 2.57. (TELGARSKY, 1975) Let (X, 7) be a topological space. The games G% (X)
and Gfx (X) are equivalent.

For F € [X]<%0, we denote by 7 = {U € 7: F CU} and Fy = {1r : F € [X]<F0}.

Proposition 2.58. (CLONTZ, 2020) .#x is a reflection of Qy.

Proof. Let % € Qx and Tr € Fx, with F € [X]<0. Then, there is Ur € % such that F C Uf.
Define fy, (tr) = Ur. So fy9, € € (Fx). It is immediate that range(fy, ) € Qx and range(fs,) C
TF. ]

Definition 2.59. Let (X, 7) be a topological space. The Q-finite-open game QGr(X) is played
as follows: In the inning n € @, Player I chooses F,, € [X]<%0. Next, Player /I responds with
U, € 7 such that F,, C U,. Player I is a winner if {U, : n € @} € Qx. Otherwise, the winner is
Player /1.

Corollary 2.60. (CLONTZ, 2020) Let (X, 7) be a topological space. The games G (Qx,Qyx)
and QGr(X) are dual.

Proof. Note that the game Q-finite-open is equivalent to the game G (-#x,—~Qyx ). The conclusion
is derived from Proposition 2.58 and Theorem 2.52. ]

Proposition 2.61. (CLONTZ, 2020) For any x € X, 7, is a reflection of Q,.

Proof. LetY € Qand U € 1,. So, there is yy € UNY. Define fy(U) := yy. Then fy € €(1y).
It is immediate that range(fy) € Q, and range(fy) C Y. O

Definition 2.62. Let (X, 7) be a topological space and x € X. The neighborhood-point game
G(X,x) is played as follows: In the inning n € @, Player I chooses V, € t,. Next, Player 11

chooses x, € V,,. Player [ is the winner if {x, : n € o} € Q,. Otherwise, Player // is the winner.

Corollary 2.63. (GALVIN, 1978) Let (X, 7) be a topological space and x € X. The games
G1(Qy,Q,) and G(X,x) are dual.

Proof. Note that the neighborhood-point game is equivalent to G ( Ty, 7€2,). The result is derived
from Proposition2.61 and Theorem 2.52. U

The following game is a small variation of the neighborhood-point game.
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Definition 2.64. Let (X, 7) be a topological space and x € X. The convergent neighborhood-
point G (X,x) is played as follows: In the inning n € ®, Player I chooses U, € t,. Next, Player
II chooses x,, € U,. Player I is the winner if x, — x, when n — oo, Otherwise, Player /I is the

winner.

This change in the winning criteria does not make a difference for Player /.
Theorem 2.65 (GRUENHAGE, 1976)). Letx € X. Then I 1 G(X,x) < I 1 G~ (X, x).

Proposition 2.66 ((CLONTZ, 2020)). 7 is a reflection of Zx.

Proof. Let D € 9x and U € 1. So, there is xy € UND. Define fp(U) = xy. Then fp € € (Z).
It is clear that range(fp) € Yx and range(fp) C U. N

Definition 2.67. Let (X, 7) be a topological space. The point picking game G7% (X) is played as
follows: In the inning n € w, Player I chooses U,, € 7. Next, Player /I chooses x, € U,. Player /

is the winner if {x, : n € ®} € Zx. Otherwise, Player /I is the winner.

Corollary 2.68 ((SCHEEPERS, 1999)). Let (X, 7) be a topological space. The games G1(%x, Zx)
and G7% (X) are dual.

Proof. Note that the point picking game is equivalent to the game G| (7, %y ). The result follows
from Proposition 2.66 and Theorem 2.52. [
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CHAPTER

EQUIVALENCES IN VARIATIONS OF
SELECTION PRINCIPLES

The work of (GARCIA-FERREIRA; TAMARIZ-MASCARUA, 1995) shows an equiva-

lence of the selection principle Sy(€2y, £) in the following result:

Corollary 3.1. (GARCIA-FERREIRA; TAMARIZ-MASCARUA, 1995) If X is a Tj space,
x€X and f: w — ®\{0} is unbounded, then S;(Qy, ) is equivalent to Sg(Ly, 2y), where
S: o — ®\{0} is the function given by S(n) =n+ 1, forall n € .

Lemma 3.2. (GARCIA-FERREIRA; TAMARIZ-MASCARUA, 1995) If X is a T space, x € X
and f: @ — @\{0} is bounded, then S;(Q,, Q) is equivalent to S; (Qy, Q).

The above function S is called the successor function. We will use this notation throughout
this chapter. In (AURICHI; BELLA; DIAS, 2018) it is proved a similar equivalence to the

tightness selective topological game in the following result:

Proposition 3.3. (AURICHI; BELLA; DIAS, 2018) If X is a T} space x € X then:

1. If f: @ — »\{0} is bounded, then the games G (€, ) and G (Qy, Q) are equivalent,
where k = limsup f(n) € ®\{0};
ncw

2. If f: @ — »\{0} is unbounded, then the games G¢(Q,,Q,) and Gs(Q., Q) are equiva-
lent.

The properties of Q. used in the above proofs can be summarized as follows.

(P1) If B€ ZeF < [B]<¥0 then B\F € %;

(P2) If BE Zand A D B, then A € A,
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where 4 is a class of families of subsets of X.

In this chapter, we use the properties (P1) and (P2) to obtain generalizations of the

results presented previously and some other similar results.

3.1 Equivalences of selection principles with arbitrary classes

of families

We begin by generalizing one of the equivalences mentioned above.

Proposition 3.4. Let <7 and 2 be classes of families of subsets of a set X and f : 0 — @\{0} be
a limited function. Suppose that # satisfies properties (P1) and (P2). The following statements

are equivalent:

1. S¢(/, %) holds;

2. Si(</, %) holds, where k = limsup f(n) € w\{0}.
ncw
Proof. (1) = (2). Let (A, : n € w) be a sequence of elements in .27 Let ng € ® be such that
f(n) <k, for all n > ng. Consider the finite set H = {n € ®: f(n) > k}. By (1), forall n € o,
there is F,, € [A,]=/" such that U F, € A.

new
So,by (P1), | J Fy€ %.Define G, =F,,if n € ®\H, and take G,, € [A,]=F arbitrarily,
new\H
forne H. Then ] F, C (] Gy So,by (P2), | | G, € . Therefore, (2) is true.
new\H new new

(2) = (1). Let (A, : n € @) be a sequence of elements in 7. Note that the set N := {n €
o : f(n) =k} is infinite. Consider the sequence (A, : m € N). By (2), for all m € N, there is an
Fy, € [A]=F such that U F, € A.

meN
Define G, = F,, if n € N and take G, € [A,]~/ (n) arbitrarily, for n € @\N. Then U E, C
neN
U Gy So, by (P2), Upce Gn € . Therefore, (1) is true. O

new

Now, the case where f is unbounded:

Proposition 3.5. Let </ and 4 be classes of families of subsets of a set X and an unlimited
function f : @ — ®\{0}. Suppose that Z satisfies property (P2). The following statements are

equivalent:

1. S¢(/,98) holds;

2. Ss(o/, %) holds.
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Proof. (1) = (2). Let (A, : n € ®) be a sequence of elements of 7. There is an increasing
sequence (ky, : m € ) such that for all m € w, f(m) <k, + 1. Consider the sequence (A :m €
®). By (1), for all m € @, there is an F; € [A;, ]=/™ such that U F,, €%.

mew
Define G, = F,, if n € M := {k,, : m € ®} and take G, € [A,]="*! arbitrarily, for n €
®\M. Then U F, C U Gyp. So, by (P2), U,eq Gn € #. Therefore, (2) is true.

new\M new
(2) = (1). Let (A, : n € @) be a sequence of elements in 7. As f is unlimited, we can
obtain an increasing sequence (k,, : m € @) such that, for all m € @, m+ 1 < f(k,,). Consider the
sequence (Ay, : m € @). By (2), for all m € o, there is F,, € [Ag,|<™"" such that | ] F, € 2.

mew
Define G, = F,, if n € M := {k,, : m € ®} and take G, € [A,]5/ () arbitrarily, for
n€o\M.Then [ J F, C ] Gy So,by (P2),U,ceGn € B. Therefore, (1) is true. O

new\M new

Let f: 0 — (w\{0,1}) U{X(} be a function. It is natural to consider the following
selection principle S ? (o7, ), defined as follows: for all sequences (A, : n € ®) in <7, there is

an F, € [A,]</®), for all n € @, such that U F, € A. In the presence of properties (P1) and
ncw
(P2), this selection principle collapses to the classical selection principles.

Proposition 3.6. Let o7 and A be classes of families of subsets of a set X and let f: @ —
(w\{0})U{Xp} be a function such that the set W = {n € ® : f(n) = Ry} is finite. Suppose that
2 satisfies properties (P1) and (P2). The following statements are equivalent:

1. $5 (7, %) holds;

2. Sp(e7, %) holds, where a function h : @ — ®\{0} satisfies h(m) = f(m) — 1, for all
me o\W

Proof. (1) = (2). Let (A, : n € ®) be a sequence of elements in .<7. By (1), for all n € o, there
is Fy, € [A,]</" such that U Fi € #.S0,by (P1), | F.e®.
new new\W
Now, define G, = F,,, if n € ®\W and take G, € [A,]="(") arbitrarily for n € W. Then
U F, C U Gp. So, by (P2), U,ece Gn € #. Therefore, (2) is true.

new\H new

(2) = (1). Let (A, : n € w) be a sequence of elements in /. Consider the sequence

(Am:m € ®\W). By (2), for all m € ®\W, there is F,, € [A,]=""™ such that | ] F, € 2.
mew\W

Define G, = F,,if n € ®\W and take G,, € [A,,] <0 arbitrarily, for n € W. Then U E, C
new\W
|J Gn- S0, by (P2), Uy Gn € B. Therefore, (1) is true. O

ncw
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We also have the case where W is infinite:

Proposition 3.7. Let o7 and # be classes of families of subsets of a set X, and let f: @ —
(w\{0})U{Xq} be a function such that the set W = {n € @ : f(n) = Xy} is infinite. Suppose
that 4 satisfies property (P2). The following statements are equivalent:

1. $5(o, %) holds;

2. Syin(ef ,A) holds.

Proof. (1) = (2).Itis clear.

(2) = (1). Let (A, : n € w) be a sequence of elements in /. Consider the sequence

(Am:m € W).By (2), for all m € W, there is an F,, € [A,,]~%° such that | | F, € 2.
meW

Define G, = F,,, if n € W and take G,, € [4,,]</ () arbitrarily, for n € @\W. Then U F, C
new
U G,. So, by (P2), U G, € A. Therefore, (1) is true. O

new new

From the results obtained previously, it follows that, in the study of the selection principles
for classes .7 and A, with Z satisfying (P1) and (P2), we can restrict ourselves, for now on, to
the study of the selection principles Sy, Sk, with k € @\ {0}, Sg and S;,.

On the other hand, in (AURICHI; DUZI, 2021) the following selection principle has
been defined:

Definition 3.8. Let 7 and Z be classes of families of subsets of a set X. Sp,q(., #) is the
following selection principle: for all sequences (A, : n € ®) of elements in .27, there is a sequence
(Bp:n € ®) and k € ®\{0} such that for all n € @, B, € [A,]<%, |B,| <kand | | B, € .

ncw

For classes Z with properties (P1) and (P2), we can also obtain the following implica-

tion:

Proposition 3.9. Let o/ e Z be classes of families of subsets of a set X. Suppose that % has
properties (P1) and (P2). If Sp,q(<7, %) holds, then Ss(.<7, %) holds.

Proof. Let (A, : n € ) be a sequence of elements in .2/ By hypothesis, there is k € @\ {0} and,
for all n € w, there is B, € [A,]< such that |B,| < k and U B, € #. By (P1), it follows that

ncw
U B, € A. Define G,, = B,,, for n > k—1 and take G,, € [A,,]S”+1 arbitrarily for 0 <n < k—1.
n>k—1
So U B, C U G,. By (P2), it follows that U G, € A. Therefore, Ss(/,A) is true. [

n>k—1 new new

In summary, we have:
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Proposition 3.10. Let (X, 7) be a topological space, <7 and 2 be classes of families of subsets of
X, with 2 satisfying the properties (P1) and (P2). Then, if f : @ — @\ {0} is a bounded function,

k =limsup f(n) and h : @ — ®\{0} is an unbounded function, the following implications are
new
true:

Sl(%ﬁ@) :>Sf(%7’@) <:>Sk(52{7’@) :>Sbnd(£{7’@) :>SS(%7’@) <:>Sh('52{7'@) :>Sfln<d7@)
We can see that the properties (P1) and (P2) are sufficient conditions for us to obtain

equivalences as the ones we got before. Later, we will see that these conditions are not a necessary

condition for obtaining equivalences.

Problem 3.11. What conditions, including conditions (P1) and (P2), are necessary and sufficient

in .o/ and £ to obtain the equivalences mentioned here?

3.2 Some specific cases

3.2.1 Tightness

Note that in the case of €, the principle S collapses to Sy, but this is possible using a
particular topological property:

Proposition 3.12. (GARCIA-FERREIRA; TAMARIZ-MASCARUA, 1995) Let (X,7) be a
Ty space, x € X, and let f : @ — @\{0} be a limited function. The following statements are

equivalent:

1. S¢(Qy, Q) holds;

2. S] (Qx, Qx) hOldS.

n n
Proof. Use Proposition 3.10 and | | F, = | F. O
i=1 i=1
In (AURICHI; DUZI, 2021) it was shown that, practically with the same proof as above,
Spna (i, Q) is equivalent to S1(Qy, Q).

On the other hand, Examples 3.7 and 3.8 in (GARCIA-FERREIRA; TAMARIZ-MASCARUA,
1995), show that, if (X, ) be a T space, x € X and &7 = & = Q,, there are three different types
of selection principles: S1(Qy, Qy), Ss(x, Q) and S fin (Lx, Q).

3.2.2 Open covers

Note that the family Oy, for a topological space (X, 7), does not satisfy the property
(P1). But we see that most variations collapse to S1(0x, Ox). We include the following proof
for the interest of the reader:
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Proposition 3.13. (GARCIA-FERREIRA; TAMARIZ-MASCARUA, 1995) Let (X, ) be a
topological space and let f : @ — ®\{0} be a function. The following statements are equivalent:

1. S¢(Ox, Ox) holds;

2. S] (ﬁx, ﬁx) holds.

Proof. (2) = (1). It is clear from the Observation 2.13.

(1) = (2). Let (%, : n € ®) be a sequence of elements in Oy . Define

f(0)-1
Yo=94 () Ui: Uie%%, 0<i<f(0)—1
i=0
and, forn > 1,
Zr;:of(j)*l n—1 n
Vo= N UilUiE%,Zf(j)_iSZf(j)—l :
=Y £(j) =0 =0

So (¥, : n € ®) is a sequence of elements in Ox. By (1), for all n € w, there is an
Fn €[]S (") guch that U F, € Ox. We can suppose that

necw

ﬁoZ{Hl’Z Ofiﬁf(())—l}

and, forn > 1,

n—1
%:{Hﬁ 2 f)<is< Zf(j)—l}-

From the definition of the families ¥, it follows that for all n € w, there is U,, € %,, such
that H, C U,,. Then U (U ﬁn) C U U,. Therefore, {U, : n € o} € Ox. O

new new
Observation 3.14. Note that for a topological space (X, 7), Proposition 3.6 is still valid. Indeed,

just ignore all the n € W innings, do as in the previous proof, and finally add open sets in the

n € W innings.

Observation 3.15. Any topological space (X,7) that is o-compact is such that Sy;,(Ox, Ox)

holds. Indeed, let (%, : n € @) be a sequence of elements in Ox and X = U C,, with all C,’s
ncw
compact. So, for all n € ®, there is .%, € [%,]<° such that C, C |J.%,. Then U Fn € Ox.
ncw

Note that I7 T G7%(R) (just note that, in all inning » € ®, Player II chooses an open

1
2ns

11 G1(OR, Or). Then, according to the previous observation and Theorem 2.23, Si,(ORr, OR)
holds, but S| (Og, OR) fails.

interval with length 5;, the union of all intervals cannot cover R.). So, by Corollary 2.55, player



3.2. Some specific cases 43

Furthermore, in (AURICHI; DUZI, 2021) it is observed that in any compact space
(X,7), Spna(Ox, Ox) is true, but in the space 2¢ (that is, the countable product of discrete space
2:={0,1}) $1(0r0, 0s0) fails, and in R, Sfi,(ORr, OR) is true but Sy, (Or, OR) fails.

So, for a topological space (X, 1) and &7 = % = O, there are three different selection
principles: S1(Ox, Ox), Spna(Ox, Ox) and Syin(Ox, Ox).

3.2.3 Q-covers

It is clear that the family Qy satisfies the property (P2). Using Lemma 1 in (SCHEEPERS,
1994) we have that Qy satisfies property (P1). Then, Propositions 3.6, 3.7, and 3.10 are valid.

The following results provide us with a translation of the selection principle in Oy to Qy.

We begin with the following lemmas:

Lemma 3.16. (SCHEEPERS, 1996) Let (X, T) be a topological space. If S;(Qx,Qx) holds,
then S (Qx», Qx») holds, for all n € w\{0}.

Lemma 3.17. (SCHEEPERS, 1996) Let (X, ) be a topological space. If S ;,(Qx,x) holds,
then S fin (Qxn, Qxn) is true for all n € w\{0}.

With a few modifications to the proof above, the following result can be obtained:

Lemma 3.18. Let (X, 1) be a topological space. If Sj,,;(Qx,Qyx) holds, then Sp,,;(Qxn, Qxn)
holds for all n € @\{0}.

Proof. Fix n € \{0} and let (%, : m € w) be a sequence of elements in Qy~. Define, for all
mea,¥V,={Ver:V"CU for some U € %p,}. We claim that ¥;, € Qy, for all m € .

Indeed, let F € [X]<%0. As F"" € [X"]<¥0, it follows that there is an open U € %, such
that F" C U. Let z = (x1,...,x,) € F". Then, for all i € {1,...,n}, there are U;(z) € T such that
n

(X1yeeeyXn) € HUi(z) C U. So, forall x € F, consider U, = ( ){U;(z) : z having x as an element in
i=1

the coordinate i € {1,...,n}} € 7. Consider Vi = | J U € 7. Note that F C V. So F" C VA CU
xeF

and Vi € ¥,.
It follows that for all m € w, there are V,, € ¥}, and k € @\ {0}, such that |V,,| < k and

U Viu € Qx. Choose, for all m € w, a set #;, € [%y]=F such that there is, for each Z € V,,,

mew
an element W € %, such that Z" C W. Therefore, we conclude that | J,,c, #m € Qx». That is,

S}md(.Q.Xn,QXn) holds. [

With practically the same proof as above, we obtain:

Lemma 3.19. Let (X,7) be a topological space and let f : @ — ®\{0} be a function. If
S7(Qx,Qx) holds, then S¢(Qxn», Qx») holds for all n € 0\ {0}.
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From the previous Lemmas 3.16 and 3.17, we have the following results:

Theorem 3.20. (SAKALI, 1988) Let (X, 7) be a topological space. The following statements are

equivalent:

1. §1(Qx,Qx) holds;
2. Sl(ﬁxn7 ﬁxn) holds for all n € (O\{O}

Theorem 3.21. (JUST er al., 1996) Let (X, T) be a topological space. The following statements

are equivalent:

1. Sf,'n (.Qx 5 .Qx) hOldS;

2. Sfin(Oxn,Oxn) holds for all n € w.

Using Lemma 3.19, and with few modifications in the proof of the previous theorems,

we can obtain the following result:

Theorem 3.22. Let (X, 7) be a topological space and let f : @ — @\ {0} be a function. The

following statements are equivalent:

1. If S¢(Qx,Qx) holds, then S¢(Oxn, Oxn) holds, for alln € @

2. If S4(Oxn, Oxn) holds for all n € w and all infinite subsequences g of f, then S¢(Qx,Qx)
holds.

Proof. (1). By the Lemma 3.19, is enough to show the case n = 1.

Indeed, let (%, : m € w) be a sequence of elements in Oy. Re-indexing the sequence
(YU :m € ®) = (Unk:m e 0,k e 0\{0}) and considering g : @ x ®\{0} — @\ {0} such that
g(m,k) is f(n), where n € @ corresponds to the number, in an order fixed by @ x @\{0}, of the
pair (m, k). Define, for all m € @ and k € \{0},

2%—1
Vin2k—1 = { U Ui:U; e %m,(k—l)(Zk—l)—i-i}

i=1

and

2%
Vin2k = { Jui:Ui e %m,(k(2k)—(k—1))+(i—l)} :
i=1

Define, for allm € o, ¥, = U Yk Let F € [X]<X0 adm suppose that |F| = r. As

kew\ {0}
every element of 7}, , is the union of r elements selected from r open covers of X, it follows that
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there is U € ¥}, , C ¥}, such that F C U. That is, for all m € w, ¥, € Qx. By hypothesis, for all
m € , there is a #}, € [¥;,]=/ (m) such that U W € Qx. We suppose that

mem

Wo={Vi : 0<i<f(0)—1}

and, form > 1,

Then there is a ki), with V; € Youi- for 0<i< f(0)—1,and a ki, with Vi € ¥, i , for
m—1 m
m>1and Y f(j)<i<) f(j)—1
j=0 j=0

By the definition of the families %, we find that there is .7, i € [% =8 (0.4i(ko))

. m—1
for 0 <i < f(0) — 1, and there is .7, i € [@/mJi(kin)]Sg(m,li(kin)) for m > 1 and Z fH<i<
j=0
m £(0)—1 Yo f(i)-1
Z f(j)—1, such that J %) = U 9’07,(6 and Y%, = U Fo 4 » for m > 1. Therefore,
=0 i=1 =X £0))
£(0)—1 Yo f()-1
U ZwvU U Foy o
i=1 mea)l-zzjm:—ol 1)

Choosing arbitrary f(m) elements, with m that were not considered in the construction above

and joining them to the previous family, we conclude that (1) is true.

(2). Let (% : m € ®) be a sequence of elements in Qx. Re-index the sequence (%,
me @) = (%nn+1:m,n € ®) and consider g : @ x w\{0} — w\{0} so that g(m,n+1) is f(k),
where k € @ corresponds to the number, in an order fixed by @ x @\{0}, of the pair (m,n+1).

Define, for all m,n € @, ¥ p+1 = {U”Jrl :U € Upp+1}. We claim that, for all m,n € o,
Pmnt1 € Oxnir. Indeed, let (xq,...,X,11) e X" AsF = {x1,...,x,51} € [X]<%0, it follows that
there is U € %y n+1 such that F C U. So, (x1,...,X,1+1) € UM

Since, for all n € @, (¥}, »+1 : m € ) is a sequence of elements in Oy.+1, by hypothesis it

follows that, for all m € w, there is an .%, 1 € [”f/mmﬂ]ég(m’”“) such that U Fmnt1 € Oxnir.
mew

Let F € [X]<X0. Suppose that F = {x1,...,x; }, for some k € @\ {0}.
Since (x1,..,x;) € X, there is m € @ such that (x1,..,x;) € Uﬁm,k- Then (xi,..,x;) € U,

for some U € %, 1. Then F C U. So

U U{U:U € A} € Qx,

memoncw

where 4, p1 = {U : U € Z, .11} Therefore, (2) is true. O
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With the previous theorem, Proposition 3.13 and Theorem 3.20, we can obtain the

following result:

Proposition 3.23. Let (X, 7) be a topological space and let f : ® — @\{0} be a function. The

following statements are equivalent:

1. S¢(Qx,Qx) holds;

2. Sl (.Qx, .Qx) holds.

On the other hand, note that by Theorem 3.21, S fin(QR,QR) holds (because, for all
n € w\{0}, R" is 6 —compact, and 50 S fj; (Orn, Orn) holds). But, by Theorem 3.20, S| (Qg, Qr)
fails (because S| (Og, Og) fails).

Then, by Proposition 3.9 for a topological space (X, ) and & = A = Qy, there are two
selection principles: S1(Qx,Qx) and S, (Qx, Qx).

3.2.4 Bornologies families

The Proposition 3.23 is also true in a more general way:

Proposition 3.24. (MEZABARBA; AURICHI, 2019) Let (X, ) be a topological space, B be
a family of subsets of X, and let f : ® — ®\{0} be a function. The following statements are

equivalent:

1. S;(0%,0%) holds;

2. $1(0%, 0%) holds.

From this result and Theorem 2.39, we can obtain the following results for continuous

function spaces:

Proposition 3.25. Let (X, 7) be a Tychonoff space, % be a bornology with a compact base, and

let f: @ — o be a function. The following statements are equivalent:

1. §¢(Qg,Q,) holds, in Cy3(X), for all g € C(X);
2. 51(Q4,€,) holds in Cys(X), for all g € Cys(X).

Proposition 3.26. Let (X, ) be a Tychonoff space, B be a bornology with compact base, and

let f: @ — o be a function. The following statements are equivalent:

L. S( Dy (x),Rg) is true in Cs (X), for all g € Co(X);

2. S1(Zcy (x), ) 1s true in C(X), for all g € Cos(X).
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3.2.5 Dense subsets
To consider the case &7 = Z = Px, with (X, T) being a topological space, we can assume

the following restrictions:

(1) If X has a dense non-countable subset D, with the property that no countable subset of it
is dense, then S, (Zx, Zx) fails (consider the constant sequence D). Therefore, we can

always assume that all dense subsets of X have a countable dense subset.

(2) Let I be the set of all isolated points of X. Note that I C D, for all D € Y. When
considering (1), it follows that / is countable. If I is dense, then Sy;,(Zx, Zx) is always
true because for any sequence in Yy just take, in any inning n € @, an element of /
different from the previous one. Then we can assume that / is not dense. Therefore, X\ is

an open, non-empty subset of X.

(3) Finally, note that S¢;,(Zx, Zx) holds if and only if S fin(@X\ia @x\f) holds (Indeed, this
result is true for any open non-empty subset of X). Therefore, we can assume that X has

no isolated points.

We will start with the following equivalence:

Theorem 3.27. (BARMAN; DOW, 2011) Let (X, 7) be a separable space. The following state-

ments are equivalent:

1. Sfin(@Xa .@)() hOldS;

2. Sfin(Zx,Qx) holds, for all x € X.

Again, without much complication and without changing the proof of the previous

theorem, we obtain the following result.

Theorem 3.28. Let (X, 7) be a separable space and let f : @ — ®\{0} be an increasing function.

The following statements are equivalent:

1. Sf(.@}(, -@X) hOldS;

2. S¢(Px, ) holds for all x € X.

We can prove an analogous result of Theorem 3.12, for the family of dense subsets:

Theorem 3.29. Let (X, T) be a separable space and k € @\ {0, 1} The following statements are

equivalent:

1. S (Zx, Zx) holds;
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2. Sl (gx, .@)() holds.

Observation 3.30. Note that if X is not separable, none of the selection principle is satisfied.

Proof. Tt is sufficient to prove (1) = (2).

Let (D, : n € ®) be a sequence of elements in Zx. Consider the subsequence (Dy,, :
m € ). By (1), there is a sequence (F,, : m € @) such that, for all m € @, F,, € [D2,,]= and
U F, € Dx.

me
Denote for {a,, : m € o}, with a,, € F»,,, the set of elements arbitrarily chosen to satisfy
(2), and let {b,, : m € @} be an enumeration of the remaining elements of the sets F,,,, for all

me .

Consider {p,, : m € @} an increasing enumeration of prime numbers minus 2. Consider
the sequence <DP6 :i € ). Using (1) and Theorem 3.28, it follows that there is a sequence
S ; . 1<k .
<FP6 :1 € @) such that, for all i € o, Fy € [Dpé] and U Fyi € Q.
€W
ch: can spppose that, for all i € w, FP6 = {Cé,i :1 < j <k}. Consider, for any 1 < j <k,
the sets C) = {c{; : i € ®}. So,

k .
UFpﬁ): UC(])
=1

i€

k k —
As by € U FP6 = U C! = U C(J), we see that there is a jo € {1,...,k} such that by € Céo.
icw j=1 j=1

Analogously, for m > 1, consider the sequence (D,; :i > 1). Using (1) and Theorem

3.28 again, it follows that there is a sequence (F,; :m > 1) such that forall i > 1, F,; € [D,; |k
and Uprn € Qp, . We can assume that for all i > 1, F,; = {c] .:1<j<k}.
i>1

Consider the sets, for all 1 < j <k, Cl = {c{mi :i>1}. So,

k
Uprn - U Ch
j=1

i>1

k k —
As by e | JF,; = |JGn = Ch it follows that there is a j,, € {1,...,k} such that b,, € Gj;".
i>1 j=1 j=1

We claim that D = {a,, : m € o} < U C,{;") € Px. Indeed, let U be a nonempty
mew
element in 7. Since U B, € 9, it follows that there is m € @ such that a,, € U, or there is
meo

m' € o such that b,, € U.
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If the first case happens, we are done. If it is the second case, it follows that U N Ci ' L

because b,y € Ci"}'. In any case, we conclude that U N D # 0. So D € 9x. We conclude that (2)
is satisfied. [

Since we assume that the topological spaces (X, ) considered have no isolated points, it
follows that Zx satisfies the properties (P1) and (P2), if (X, 7) is at least 7j. (For Ty spaces this
is not true: for example, if R is equipped with the topology {(—n,n) : n € N} U{R}. This space
has no isolated points, but D = {0} is dense).

Therefore Proposition 3.10 is valid in this case. Additionally, with a few modifications in
Theorem 3.29, we can obtain that S1(%Zx, Zx) is equivalent to Sy (27, %), with f: ® — @\ {0}

be a limited function.

By Proposition 3.26 and Theorem 3.28, we can obtain the following result:

Proposition 3.31. Let (X, 7) be a separable metric space, B be a bornology with a compact

basis, and let f : @ — @\{0} be an increasing function. The following statements are equivalent:

1. Sf(.@cB (X)s -@C% (X)) hols in CgB (X),
2. 81Dy (x)s Do (x)) 18 true in Cs (X).

Example 3.32. (BONANZINGA et al., 2014) We have already seen that S, (Qr, Qr) holds,
but S (QR,QR) fails.

Since R is a separable metric space, from Theorems 2.35, 2.36, 2.46 and 2.47 it follows
that Sfin('@Cp(R) 5 @CP(R)> holds; but S] (.@CP (R)> gcp (R)) fails.

Another example is given in (BELLA; BONANZINGA; MATVEEV, 2009), and a direct
proof that the selection principle S;(Zx, Zx) fails is given in (CAMARGO; UZCATEGUI, 2018).
The specific space is X = CL(2%), the set of all clopen subsets of 2®, when this is considered as

a subset of 22°.
Note that by Proposition 3.31, Ss(Zc,(r), Zc,(r)) also fails.

Example 3.33. Consider the set X = o x @. We provide X with a topology T whose basic open
sets are of the form:

Vi =X\ [ {(n,h(n)) : n € ®}, where H € [ @] <%,
heH

Note that (X, 7) is a T} space, but it is not a Hausdorff space.

We have that S| (Zx, Zx) fails. Indeed, note that, for alln € ®, D, = {(n,m) : m € @} €
Px. Then consider the sequence (D, : n € ®) of elements in Zx. So, for all n € w, for any
choice d, = (n,k,) € D,, we have {d, € o} ¢ Px (taking H = {g}, where g is a function given
by g(n) = ky, it follows that Vg N {d, : n € @} = 0).
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On the other hand, Ss(Zx, Zx) holds. This follows directly from the following observa-

tion:

Observation 3.34. For D C X, we have D € Py if and only if, for all n € @\ {0}, there is k, € @
such that [DNCy, | > n, where C, = {(n,m) : m € ®}. Indeed, for sufficiency, suppose otherwise.
Then, there is an n € @\ {0} such that for all k € w, |[DNCy| < n. Note that we can assume that
DNC, = {c}< : 1 <i<n}. Define, for all 1 <i < n, the function f; : ® — @ given by f;(k) = c};.
Consider the finite set H = {f;: ® — ® : 1 <i <n}. Then DNVy =0, thatis, D ¢ x.

Reciprocally, let Vi be a basic open with H € [?@]<¥0. Suppose that |H| = m € @\{0}.
Then, there is a k,,, € @ such that [DNCy, | > m. So DNVy # 0. Since this is true for an arbitrary

open basic, we conclude D € Y.

Then, let (D, : n € ®) be a sequence of elements in Zx. Based on the previous obser-

vation, for all n € @, we can chooses F, € [D, NCy, H]”Jrl . We claim that U F, € 9. Indeed,
new
let V7 be an element of 7, with H € [?®]<*0. Suppose that |H| = m € ®\{0}. It is clear that

\Fom N {(kam, fi(kom)) : 1 < j <m}| < m. Since |Fpy| = 2m, it follows that F>,, N Vy # 0. We
conclude that Sg(Zx, Zx ) holds. Note that, by a similarly argument in the case of S;(Zx, Zx ),
we obtain that S,,;(Zx, Px) fails.

Therefore, for a T; space (X,7) and o = B = Py, there are three different selection
principles: S1(Zx, Zx), Ss(Zx, ZPx ), and Sin(PDx, Px ). Is still a open question if Sp,q(Zx, Ix)
is different or not of S| (Zx, Zx).
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CHAPTER

EQUIVALENCES IN GAME VARIATIONS FOR
DENSE CLASSES IN SPACES OF THE FORM
Cv(X)

In (AURICHI; BELLA; DIAS, 2018) it is investigated the difference between certain
selective topological games that involve tightness. In that work, the following problem was

proposed:

Problem 4.1 (((AURICHI; BELLA; DIAS, 2018), Problem 4.4.)). What can be said about the
relation between the various games Gy (7, %), G¢(«/ , %) and G in( 7 , #)-and their associated
selective properties- for other pairs (.o, %)?

In Chapter 3, we have already seen some relationship between the variation of some
selection principles towards Problem 4.1. In this chapter, we focus on the relations of some
selective topological games with other classes .o/, #, and we obtain an equivalence result in the
case of = B = Yx.

We begin by presenting the version of Theorem 3.27 for games.

Theorem 4.2 ((CLONTZ, 2019)). Let (X, 7) be a separable space. The following statements are

equivalent:

1. 111 Gfin(-@X, @x);

2. 111 Gfin(Dx,Qy), forall x € X.

With a few modifications to the proof of the previous theorem, we can also obtain a weak

version of Theorem 3.28 for games:

Theorem 4.3. Let (X, 7) be a separable space and let f : @ — @\{0} be an increasing function.
The following statements are equivalent:
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1. 111 G¢(Zx,%x);

2. 1T Gp(Dx,Q), forall x € X.

Proof. 1t is sufficient to prove (2) = (1).

To show that, consider a dense subset {d; :i € ®} of X. Foralli € w, let 6;: <~®Zx —
(U Zx]~ " be a winning strategy for Player I7 in Gr(Dx,Q4,).

Let {A; : i € ®} be a partition of ® in infinite subsets. Given a finite sequence t =
(Do, ..,Dy) € =®Px, we define

p(t) = ai(t'),

where i € o is such that n € A; and ¢’ is a subsequence of ¢ obtained by removing all elements
with index not belonging to A;. As the latest elements of # and ¢’ are the same and f is increasing,
p: <®Px — [JPx])~X0 define a strategy for Player II in G ¢(Zx, Zx).

We claim that p is a winning strategy. Indeed, consider the following play in Gs(Zx, Zx):
<D07p(D0);D1;p(D()aD])?"';Dnap(DO; "'7Dn); >
For all i € w, consider an increasing enumeration A; = {m}{ k € o}. So,
<Dm6, Gi(Dm6)7 "'7Dm;<’ G[(Dmé), ...,Dm;{), >,

is a play in G¢(%x,Qy;). As 0; is a winning strategy, it follows that

di € U G,'(Dmé,...,Dmi) - U p(Do,...,Dy)

kew new

Then,

X=DcC |Jp(Do,...,Dn).
new

Therefore, I1 T G ¢(Zx, Px). O

4.1 Hurewicz’'s and Pawlikowski’'s Theorems versions for
X
ﬁ%
In (SZEWCZAK; TSABAN, 2020) conceptual proofs of the Hurewicz and Pawlikowski
theorems are obtained. These results can be generalized to a more general form.
First, we will need the following definition:

Definition 4.4. A countable B-cover % is called a *B-tail cover if the family of intersections of

cofinite subsets of Z is a $B-cover of X.
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Equivalently, % = {U; : i € ®} € 0% is a B-tail cover if and only if the family

{mUiZkE(D}Gﬁ%.

i=k
Theorem 4.5. Let (X, ) be a topological space and 25 be a family of subsets of X. The following

statements are equivalent:

1. Ssin(OF, 0%) holds;

2. 1YGin(OF, OF).

Proof. 1t is sufficient to prove the implication (1) = (2).

Leto: <®[JO%]<%0 — OF be astrategy for Player I in G, (0%, 0%). We can assume
that, for any k € @ and using the strategy o, Player /] fails to cover X with the choices made

until round & (otherwise, Player I/ wins, so ¢ is not a winning strategy).

Furthermore, we can assume that the strategy ¢ chooses countable and increasing families
in ﬁ% (the first statement is based on the fact that § f,-n(ﬁ;g,, ﬁgg) is valid, the second statement
is satisfies by the property (P2) on the page (37)).

Also, we can suppose that Player /7 chooses a single element in each inning (because if
Player 11 chooses finitely many elements, we can instead consider that he chooses the union of

those elements).

Note that for any reply {U; :i € ®} € ﬁ% made with the strategy o to the choice U of
Player /1, we can suppose U = Uy. Indeed, note that {U,U UUy,UUUj,...} € ﬁ’%. Then, if U
is the element chosen by Player /1 of the family {U,U UUy,U UUj, ...}, we suppose that Uy is
the element chosen by Player /7 of the initial family {U; : i € }. On the other hand if for some
n € @, UUU, is the element chosen by Player /1, then we suppose that U, is the element chosen
by Player /] in the initial family. As the union, in both cases of the definition of the strategy for

Player 11, does not vary, we obtain the result.

Denote by
G(@) =Y = {U<n> ne (D} S ﬁ%.

If Uy,,) is the element chosen by Player /7, denote by

O'(<U<nl>>) = @/(nw = U(nl,n) ne CO} € ﬁ%.

In general, if U, is a choice made by Player 11, with p € k@ and k > 1, denote by
G<<UPF17UP[27"'7UPU€>> = %p = {Upf\n ne (D} S ﬁ%.
We define 7y = %y and, forn > 1, ¥, = U %p. We claim that 7, is a 2B-tail cover for any

pe o
n € . Indeed, note that
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{ﬂU,-:nea)}:“//oeﬁg

i=n
So 7 is a B-tail cover.

Suppose that for any n > 0, 7}, is a B-tail cover. Now, we claim that 7, is a *B-tail
cover. Indeed, consider the enumerations %, = {V,, : m € o} and

Vo= U % =J{Viup ke o},
m=0

pc n+1 g

with V,, = V<m70> - V(m,l} c..

Let 7 be a co-final subset of ¥, 1. For all m € w, let k,,, be the minimum in @ such that
Vi) € V. So, foreach m € @, (¥ N{Viyp) : k € ©}) = Vi 1,y Furthermore, because 7 is
co-finite, we have k,, = 0, for all but finitely many natural numbers m. Consider I = {m € @ :
ky, = 0}, which will be co-final. So
ﬂ’V = m(“f/ﬂ {V(m,k> ke (D}) = U V(m,k,,,) = ﬂ VN ﬂ V(m,km>~

mew mel mew\l

Since 7}, is a B-tail cover, it follows that ﬂ Vi is open, and then (7 is open.
kel

Now, let B € B. Since ¥, is a B-tail cover, the set J = {m € @ : B C V,,} is co-finite.
For all m € w\J, let k,, € @ be the minimum number such that B C Vim k)~ Then
BC (VN [ View)-

meJ mew\J

This implies that %, is a B-tail cover, because we see that any co-finite intersection

has the form of the last statement.

For any n € @, we denote by ¥, the family of intersections of co-finite segments of ¥,
Applying Sy, (0%, O%) to the sequence (¥, : n € @), there is, for any n € , a #;, € [¥;]]~%0
and k, € 0\{0} such that | #,| = k,, and U W, € ﬁ’%. Then, there are, forn € @ and 1 < j <k,

ncw
co-final families 7/]-’ of ¥, such that N V/j’ is an element in %,

Finally, foranyn € w and 1 < j <k,, let W; € V/J.’ M%) be an arbitrary element, with
p € "o. In each round n € w, Player II chooses %, = {W;: 1 < j <k,}.If B€ B, thereis a
Ve U #, suchthat BCV =¥/, forany 1 < j <k, and m € ®. So, we see that Player 11

new

wins the game Gy, (0%, O%,). Therefore, I 1 G iy (0%, O%). O

We can use the previous result to obtain the following:

Proposition 4.6. Let (X, ) be a topological space such that Sz, (0, Oa ) holds, where B is a
family of subsets of X. Then, for any strategy o for Player / in Gf,-n(ﬁ%, ﬁ%), there is a play

(U, F0,7%, F1, ...)
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following the strategy o such that for all B € 8, B C U,,, with U,, € .%,,, for infinitely many
me @.

Proof. Fix a strategy 0 : <% ([ Op]~X0) — Oy for Player I in G, (0%, 0%). Forall n € ,
denote X, as the topological space X x {n} equipped with the topology 1, = {U x {n} : U € 1}.
Then, for any n € o, Sfin(ﬁ’%"n, ﬁ%’;) is true, where B, = {B x {n} : B ‘B}.

Consider Y = U X, = X X w, equipped with the topology generated by U T,. Then,
necw ncw
Sf,-n(ﬁg, ﬁé’) holds, where € = U B, (We can divide a sequence (%, : n € ®) in ﬁg into
ncw
infinitely many disjoint subsequences. Therefore, use each subsequence to obtain a B,-cover,

for all n € ).

Let us define a strategy ¢ for Player I in the game Gy, (0, Oy ). Let 6(0) € 0. Define:

(0)={Ux{n}:Uco®),nco}c i

Suppose that Player I chooses %, € [@(0)]<X0. Then, there is a ko € @ such that

7 0. 0. .
Fo={U} x{nj}:0< j<ko}.
Define % = {UJQ 0< < ko} € [o(0)]<¥0. Consider 6((F)) € 0%. So, define:
9((F0)) ={U x {n} : U € 6((F0)),ni € 0} € O

Suppose that Player /1 chooses % = {UJ1 X {n}} 0< <k } for some k| € @. Define
T = {U jl 0< <k }, and so on in all the next innings. By the previous theorem, it follows
that there is a play

(9(0), o, 0((F0)), 1, 9((F0, F1)); ...)
in Gin(OY, OY), such that U T € oy,

necw

Consider the respective play
(0(0),-%0,0({(F0)),F1,6((F0, 71)), )

in Gfin(ﬁé, ﬁ%). Let B € B. There is mg € o, such that B x {0} C A, with A, € %) Then
Amy = U]’?go x {0}, with 0 < jjo < ko. Put Uy = U]’.’;0 € Fm,- Then B C Uj.

Now, consider:

) N
= {kE o : thereis U suchthat U x {k} € Uﬂ,}
i=0

Choose the first natural number 71 such that n; > max F. Consider B x {n }. Then, there
is m; € o such that B C Uy, with U, = U;'fl € P, and 0 < j; < ky,. Note that my < mj.
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Consider

mp N
F = {k € o : thereis U suchthat U x {k} € Ua@,}
i=0
and choose the first natural number n, such that np > max F>. Then, there is m, € @ such that

B C Uy,, with U,,, € .#,,,. Continuing in this same way, we obtain the result. [

Additionally, we state the following result.

Lemma 4.7. Let (X, 7) be a topological space such that S; (04, %) holds. Let {%, },co be a
finite non-empty open families satisfying that, for all B € 8, we have that B C U,,,, with U,, € %,
for infinitely many m € . Then, for all n € w there is U, € .%, such that {U, : n € 0} € ﬁ%.

Proof. For any n € o, define 7}, as the family of all intersections of n elements taken from distinct
elements of the families .%,. By hypothesis, for all n € o, ¥, € 6"%. Then, by S (ﬁ%, ﬁ%), it
follows that for all n € @, there is a V,, € ¥, such that {V,, : n € o} € O%.

Since each V,, is the intersection of n elements taken from distinct elements of the families
Fn, We obtain a unique element of infinitely many .%#,. Taking arbitrary elements from .%, that

were not considered in the previous choice, we conclude the result. ]

For all kK € @ and families 24, ..., %, we define
UN..NU:={UN..0U: Uy € 2,....U € U}

Theorem 4.8. Let (X, 7) be a topological space and B be a family of subsets of X. The following

statements are equivalent:
1. Si1(0%, 0%) holds;
2. 1YG\(0F,0%).

Proof. Itis sufficient to prove the implication (1) = (2). Let 6 : <@ (U O%) — O be astrategy

for Player I in Gy (ﬁ%, 6’%). By hypothesis, we can assume that the choices by ¢ are countable.
Define
0'(@) = U= {U<n> ne (0} S ﬁ%

If U(m) is the choice of Player /1, define

c((Upny)) = Uy = {Un, y : 1 € 0} € O,

In general, if U, is the choice of Player /1, with p € k@ and k > 1, let

S({Up11,Up 125 Upaom(p))) = U = {Up~n:n € 0} € O.
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Now, we define a strategy for Player / in G fin(ﬁ%, ﬁ’%) as follows. We begin by defining
¢(0) = o(0) € Os. Suppose that Player II chooses % € [@(0)] <. Let mq be the minimum
element in @ such that .%; C {U<0>, ey U<mo>}. Then, define

P((F0)) = Uoy oo Ny € O.

Suppose that Player I chooses .| € [@({.%))]< 0. Let m; be the minimum element in
@ such that for all k <myg, Z is a refinement of {Uy o), -, Uggem,) }- For p,A € " we write
p <X Aif p(i) < A(i), for all 0 < i < n. Define

o((Fo, 7)) = N U ey

Pf<m07ml>

Suppose that Player /1 chooses .7, € [@((:F,F1))]<¥0. Let m be the minimum element
in @ such that, for any p < (mg,m1), %5 is a refinement of {Up~o,...,Up~m, }. Define

(p(<ﬁ07y15322>): /\ %peﬁx,

Pj<m0:m1 7m2>
and so on in all the next innings.

By Proposition 4.6, it follows that there is a play

(9(0),70,0((F0)), 71, 0((F0,71)), )

such that, for all B € ‘B, there are infinitely many m € @ with B C U,,, where U,, € F;,. Applying
Lemma 4.7 to the family {.%, : n € @}, it follows that, for all n € o, there is U, € .%, such that
{Uy:new}e ﬁ%. Choose ko < myg so that U, contains Uy. So, consider k; < m; satisfying
that Uy, «,) contains Uy, and so on. Then, the play

<G(®)7Uk07 G(<Uko>) = %koaU(kg,lq)?G(<Uko7U<k0,k1)>) = %ko,kl)v >

is a winning strategy for Player /1. Therefore, [ ¥ Gy (ﬁ%, ﬁ%). ]

4.2 Equivalences of Games in 7y

With the same ideas used in the Proposition 3.13, we can obtain the following version of

the Proposition 3.24, but now in the game version.

Theorem 4.9. Let (X, 7) be a topological space, B be a family of subsets of X and let f : ® —

®\{0} be a function. The following statements are equivalent:

1. 11 Gi(0%,0%):;

2. 11 Gy(0F,0%).
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Proof. 1t is clear that I 1 G»(0%, 0%) implies I T G1(0%, 0%). Reciprocally, suppose that
11 G(0%,0%). By Theorem 4.8, there is a sequence (¥, : n € ®) of elements in &%, such that
{(Vi,:n€ o} ¢ OX, where V,, € ¥, forall n € .

In the inning O in Gz(ﬁ%, ﬁ%), suppose that Player I chooses % = {Vo NV : V €
%, Vi € 71}. Note that % € 0%, because %) and #; belong to 0%. Let {UJ,U}} be the set
chosen by Player /1. Then Ué) C Vp and UOl C Vi, for some Vy € ¥y and V| € 7.

In the inning k € o, Player I chooses % = {Varx N Vaki1: Var € Yok, Vaxr1 € Vapi1} €
0% Let {U, U1} be the choice of Player I1. Then U C Vy e UFT C Vyyyy, for some
Vo € Vo and Vg1 € Vo1

S0 Ueo (UK, U1} ¢ 0% Indeed, otherwise, for all B € B, there is a k € ® such that
BC U orBC U Then B C Vs or B C Vayy 1. But this would imply that {V,, : m € o} € 0%,
which contradicts our initial hypothesis. Then I 1 Go(0%, O%). O

Observation 4.10. The previous result is also valid for G¢(Oy, O), where f: ©® — @\{0} is
a function, instead of G»(0%, O%).

In particular, I T G1(#x, #x) is equivalent to I T G (H#x, Hx).

Let 8 be a bornology. For B € B, we define 7 ={U € T:BC U} and By = {13: B €
B}

Definition 4.11. The game ‘B-open is played as follows: in each inning n € w, Player I chooses
B € B and Player II responds with U, € tp. Player I wins if {B, : n € @} € Ogy. Otherwise,

Player /1 is the winner.

Proposition 4.12. By is a reflection of 0%,

Proof. Let % € ﬁ’% and tp € B, with B € B. So, there is Ug € % such that B C U. Define
f(tg) = Up € 1p. It is clear that range(f) € O and range(f) C % . O

Theorem 4.13. The games B-open and G| (0, Og) are dual.

Proof. Note that the game B-open is equivalent to G| (B, ﬁﬁ’%). The result follows from the

previous proposition and Theorem 2.52. ]

In particular, if 8 = {A C X : A is compact }, we call the game B—open of .#x —open.

Before proving the next result, we recall the following characterization of regular spaces:

Proposition 4.14. A topological space (X, ) is regular if, and only if, for all x € X and any
neighborhood V' of x there is a neighborhood U of x such that U C V.

We have
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Lemma 4.15. Let (X, 7) be a regular space. The following statements are equivalent:

1. X is compact;

2. Forall % € J#x, there is %' C % finite such that X C |J%/’.

Proof. (1) implies (2) follows from the fact that % € ¥y is an open cover of X.

Reciprocally, let Z € Ox and K C X compact. Using Proposition 4.14, for all x € K,
with x € U, € %, there is V, € 7, such thatx € V, C V,, C U,.

Consider ¥k = {V, : x € K}. We see that ¥k is an open cover of K. By the compactness
of K, there is

Vo ={Ve: 1<i<nr{x:1<i<r}elK]~N}C %,
for some r € o, such that K C |J ¥%.

Consider # = {J¥¥ : K C X is compact}. Note that #* € .#x. By (2), it follows that

there is
W = {U“Vléj :Kj C X compact, 1 < j<m}C W,

for some m € ®, such that

m m rj m Tj L m Tj
xcJU% =UUvy=UUv, cUUu,,
j=1 j=li=1 j=li=1 j=li=1
where
”//Iéj:{Vx{ 1 <i<rp{x:1<i<r;}e[K]~ 0},
withrje wel < j<m.SoX is compact. O

Observation 4.16. Note that the previous result is true if we change, in the statement (2), #x
by 0%, where B is a bornology with a compact base.

Lemma 4.17. Let (X, 7) be a regular space. Let ¢ be a strategy of Player II in G, (#x, #x).
For all s € <%_¥x, define:

C= () Jols™ (%))

U e Hyx

Then C; is a compact subset of X.

Proof. Let 7% € J¢,. According to the Lemma 4.15, it suffices to prove that there is a finite
%' C U such that Cs; C |J%'. First, note that Cy is a closed subset of X. Let K C X be a compact.
Then K NC; is compact in Cy. So, there is Ug € % such that K NC, C Uk.
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On the other hand, for all x € KN (X\Cy), from the fact that X is regular and from
Proposition 4.14, it follows that there is A, € 7 such that x € A, and the closure of A, is disjoint
from Cj. Therefore, {A, : x € KN (X\C;)} is an open cover of KN (X\Cy). Then,

K =(KNC)UIKN(X\Cy)] C Ux U U A
xeKN(X\Cy)

By the compactness of K, there is rg € @\{0} such that

'K
K CUxU (UAXI.) :

i=1
with {x; : 1 <i <rg} € [KN(X\Cy)]<X0. Then,

'K
V= {UKU (UAxl) : K C X compact,{x;: 1 <i<rg} € [KN(X\Cs)]~N0,rg € w\{O}}
i=1

is an element of #x.
rKl r](z
So, C; C Uo(s™7). As U14_xl and UA_x2 are disjoint of Cj, these elements can be
i=1 i=1
excluded from the set |Jo(s™7%). So, Cs C Uk, UUk,. Therefore, Cs is a compact subset of
X. ]

Lemma 4.18. Suppose that a topological space (X,7) satisfies the requirement that for all
U € ¥y there is a countable %’ € #x such that 7' C % . If A C X is closed, then A satisfies
that for all ¥ € %, there is a ¥’ € J#, countable such that 7/ C ¥

Proof. Let V' € J,. So, every K C A that is compact is contained in some Ug € 7.

On the other hand, let C C X be a compact. As CNA is a compact subset in A, then C
is contained in some set of the form Ucnyg U (X\A) (which is open in X, because A is closed),
where Ucng € 7. So

U ={UcraU(X\A) : C C X is compact, Ucpp € V'} € Hx.

Then, there is %’ € #x countable such that it is contained in %/, we can say

U = {UC,,OAU (X\A) :Uc,na € YV, ne CO}.

We claim that ¥ = {U¢,na : n € @} € 4. Indeed, let K C A be a compact. So, there is
n € o such that K C Ug,na U(X\A). Then K C Uc,na. This concludes the proof. O

Observation 4.19. The previous lemma is also valid in the following form: If, in a topological
space (X,7), for all Z € O there is a countable %' € 0% (respectively, Ox) with %' C %,
then any closed subset A of X has the following property: for any ¥ € ¢4, there is a countable
V' e ﬁé (respectively, 04) with ¥’/ C ¥ (here B is a bornology with compact base and
¢ ={BNA:B¢c*B}).
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The following proof is inspired in Theorem 2.2 of (CRONE et al., 2019)].

Theorem 4.20. Let (X, 7) be a regular space. Then G| (#%,.#x) and G, (. #x,.#x) are equiva-

lent.

roof. eorem 4.9, 1t 18 suificient to prove WAL, LX) = 1 ALx, LX).
Proof. By Th 4.9, 1t1i ffici p IITG(%’ ,%/) IITG(Ji/ Ji/)

Let o be a winning strategy for Player /I in the game G, (%%, #x) We define a winning
strategy p for Player / in the game .#x —open as follows. Consider Cj := Cp, where Cy is, as in
Lemma 4.17, the first move of the strategy p in the game #x —open.

Suppose that Player /1 responds with V € 7 such that Cy C Vj. Then X\Vp C X\Cp. Let
K C X\V, be a compact set. For all x € K, there is %, € #x such that x € X\|Jo ((%)). So

k< Ux\Us((z))

xeK
By compactness, there is Fx € [@]<X0 such that
k< JxX\Uo((%5))
icFk
Then,
{ U X\UG(<%1K>) : K C X\Vy compact, Fx € [a)]dzo} € Hx\vp-
icFg

By the previous Lemma, we can fix an countable subset, namely

U X\UG M€ ®, Fy € [0]%0 b €y,
lEF()

Fix any bijection ¢ : <®® — ® such that if s C 7 then @(s) < @(¢). Suppose that up

to the inning n € ® in the game .#x-open, the sequence Cy, Vp,...,C,—1, V,,—1 has been played,

—1/\—~
where V; is an open set that contains Cj, forall 0 < j <n—1, and %iw (7)"m were also defined,

forallme wandi e U Fot(jy~m- Ifs= (p_l(j), we assume that:

mew
idom(s)""vinll . s[dom(s) .
L Cj m UG lz 11’ Q/id(,m(s),...,iz,ilv%»’ for 0 < j<n-—1. Note
U e Hyx
that this set is a compact subset of X by Lemma 4.17. So,
o Ldom(s) 12511
Cj= U C;

ik €Fk,1<k<dom(s)

is a compact subset of X.

2. By Lemma 4.18, there is

s|dom(s) ~
U ﬂ X\U o lz l1 )" %do,n(s),...,iz,il ) %i;gt'do::(s),...,iz,il >) = %(\Vj‘

I€F~m  iy€F,1<k<dom(s) mew
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Now, we define the choice of Player I using p in this inning. Let t = ¢~ !(n), and define:

ldom iz, ll _ t[dom(t)
Cn m UG lz ll’ %idom(t)a'~~7i27il7%>)'
U Xy

Note that this set is compact by Lemma 4.17. So,

Ldom(t) 12501
G- U e

l'kEFt“ﬁlSdeom(S)
is a compact subset.

If V,, is a choice of Player /1, by Lemma 4.18, it follows that there is:

t[2 tdom(t) ~
U ﬂ X\U c 12 i 7%d0m(1)7--~7i2:i1 ’ %ifidonn:(t)v"vi%il >) € =%/X\V,,-

i€Fi~m ix€F,1<k<dom(t) meo

This completes the definition of the strategy p : <®(Bg) — K for Player / in the game
Jx-open. We now prove that p is a winning strategy. Indeed, suppose that Cy, Vp, C1, Vi,... is a

play in the compact open game, where Player I uses strategy p.

Suppose that {V,, : n € w} ¢ #x. Then, there is a K C X compact such that K ¢ V,,, for
all n € w. In particular, there are xo € K and x ¢ Vj. So, there is mg € @ such that

we | x\UJo(z"™

iEF(,nO)

Then, there is a iy € F{,,,) such that
x e X\Jo (7))
In addition, there is x; € K such that x; ¢ V). So, there is m; € ® such that

ae U N x\Uouz ™,z om)y).

iGF(mO’ml ) Jo GF( 0)

So, there is i} € F{, ;) such that

xe () xX\Jo((# ,f”jg""”)).

JoEF(my)

In particular:

nex\Uo (@™ ")),

L]

In general, suppose that we have defined mgy,my,...,m,_; € @ and iy, iy, ...,i,_1, With

i1 € Fyngmy ....mp)> such that

X € X\U G(<Q/i(§m0) : gy (mo:m )7 - %.(m07.7ﬂ1...,m1)>),

11,00 15511510
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for all 0 <1 < n— 1. Since there is x,, € K such that x,, ¢ V,,, it follows that there is m,, € ® such
that

(m()) (m07m17"'amn—l) (m07m17'-~amn)
Xn € U ﬂ X\ UG(<%jo ""’OZ/jnq,.--,jl,jo ’%7jn717~-~>j17j0 >)
ieF(mO,ml....,mn) jkEF(mO,ml7...,mk)70§k§n_1
Then there is iy € F,....m,_, m,) such that
(mO) (m07m17'“7mn71) (m07m17'“7mn)
Xn € ﬂ X\ UG(<%0 ’”"%jnflv-“:]-l:]b ’%ina].izfl:~--7jlvj0>>.

jkeF(moﬁml,...,mk)70§k§”_1

In particular:

30 € X\ Jo (@™, .., 20 a1) gy oy

In—15e++11500 P Pl 15511500

%(m():ml"'amn
Iny-51510

compact, with the property that

So, we obtain { )}new, a sequence of #x-covers such that thereisa K C X

K¢ U G(<?/i(gm0), ey @/i}ET(?:l:(.).,mn)»?

for all n € @. That is, this sequence defines a strategy of Player / to defeat ¢ in the game
G, (A%, Xy ). But this contradicts the fact that ¢ is a winning strategy for Player /7 in the game
Go(Hx, Hx).

Therefore, p is a winning strategy for Player I in the compact-open game. By duality,

there is a winning strategy for Player /1 in G (#x, %% ). This concludes the proof. [l

By Observation 4.16 we can obtain the following results

Lemma 4.21. Let (X, 7) be a regular space and 8 be a bornology with a compact base. Let ¢
be a strategy for Player I1 in G, (0%, 0%). For s € <® 0%, define:

Cs = ﬂ UG(s”(gZ/)).

A%
Then C; is a compact subset of X.

Lemma 4.22. Let (X, 7) be a regular space, ‘B be a bornology with a compact base, and let
f:®— ®\{0} be a function. Let o be a strategy for Player /1 in G (0%, 0% ). Foralls € <®0%,
define:

= (N Usls(@)).

U0}

Then Cj is a compact subset of X.



66 Chapter 4. Equivalences in game variations for dense classes in spaces of the form Ci(X)

From these results, and with a few modifications to the proof of Theorem 4.20, we obtain

the following results:

Corollary 4.23. Let (X, 7) be a regular space. Then the games G, (#x,-#x) and G (Hx, H#x)

are equivalent for Player /1.

Corollary 4.24. Let (X, 7) be a regular space and let f : @ — ®\{0} be a function. Then, the
games Gr(H#x, #x) and G (Hx, #x) are equivalent.

In addition, we obtain the following result.

Theorem 4.25. Let (X, T) be a separable metrizable space and B be a bornology with compact
base. If 11 T G, (0%, 0%) then X is 6-compact.

Proof. Let € be a countable basis of X and ¢ be a winning strategy of Player /] in Gfin(ﬁé, ﬁ%).
We denote by O the family of all families in ﬁ% whose elements belong to %". Note that
{c({(%)) : % € O} is countable. In the same way as in the proof of Lemma 4.22, we can prove
that

Co= (N Uo (%))
is a compact subset of X.

For all m € o fixed, we see that {6 ((%|,,), %)) : % € O} is countable. Then

Clmy = (YU s Y )

new

is a compact subset of X.

In general, given s = (s, ...,5;) €< ®, with k € ®\ {0}, we have that the following set

U U)): U € Og}

is countable. Then

Cs = (VYU sy, Usyr51)s -+ s Uin))))

ncw
is a compact subset of X.
We claim that X = | ] C. Indeed, suppose that there is x € X\ (Use<o¢, Cs). In particu-

sE<O
lar, x ¢ Cy. So, there is ng € @ such that

x ¢ | Jo (% )))-

Also, x ¢ Ciny)- Then, there is n; € ® such that
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X ¢ UG(<%no>v%no,n1>>)~

Suppose that, for all k € @\{0}, we have defined ny,...,ny € ®. As x ¢ Cpy . it

1)
follows that there is ny| € ® such that

X ¢ UG(<%<n0>v "'7%no,...7nk>a%no,..,,nk,nkH)»'

Then

Yingys W)+,

O TR

is a play by Player I in G ﬂn(ﬁg, ﬁ%) that defeats ¢, a contradiction. Therefore, X is
o-compact. [

4.3 A weak result for Player IlI.

As a break in the study of equivalences, we present a little result of equivalence about
open covers, but restricted to Player /1. In first place, the following selection principles and
games were defined in (AURICHI; DUZI, 2021).

Definition 4.26. Let (X, 7) be a topological space, 7 and Z be classes of families of subsets
of X. Sy(«/,%)modfin is the following selection principle: for any sequence (A, : n € ®)
of elements of .27, there is a sequence (B, : n € ®) such that, for all n € @, B, € [A,]<%0,
{n€ ®: By > f(n)} is finite and | J B, € Z.
ncw
When f =k, with k € @\ {0}, we simply write S;(«7, %)modfin. Sy(</,%#)modl is
defined similarly to S¢(.%7, %)mod fin, with the difference that |B,| < f(n), foralln > 1.

Definition 4.27. Let (X, T) be a topological space, <7 and % be classes of families of subsets
of X. The game G (%7, %)modfin is defined as follows: In any inning n € w, Player I chooses
A, € o/ Player II responds with B, € [A,]<X0. Player IT wins if {n € @ : |B,| > f(n)} is finite
and U B, € A. Otherwise, Player I wins.

new

When f =k, with k € w\ {0}, we simply write Gy (.7, Z)mod fin. The game G (%7, %8)mod1
is defined similar to G (7, %)mod fin, with the difference that, Player /I wins if |B,| < f(n),
forall n > 1.

In that same work, the following result is proved:

Theorem 4.28 (((AURICHI; DUZI, 2021))). Let (X,7) be a regular space. The following

statements are equivalent:
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1. 111 Gl(ﬁx, ﬁ’x)modl;

2. there is a compact set K C X such that, for every open set V with K C V, we have
111 G1(Ox\v, Ox\v)-

We can obtain a different version of that result:

Theorem 4.29. Let (X, T) be a regular space and B be a bornology with a compact base. The

following statements are equivalent:

1. 111 G (0%,Ox)modl;

2. there is a compact set K C X such that, for every open set V with K C V, we have
111G (63", 6x\y), where € = {BN (X\V) : B € B}.

Proof. (2) = (1). Let K be the compact set such that K satisfies (2). We define a strategy o for
Player I/ in the game G| (0%, Ox)mod1 as follows:

e Suppose that, in the first inning, Player / chose %) € 0. Define 6((%)) as a finite
sub-cover of % for K. Let V = |J6((%)) and let 6" be a winning strategy for Player I1
in the game G (ﬁg\v, Ox\v)-

e In the innings n > 1, suppose that Player / chooses %, € ﬁ%. Consider

! ={UNX\V):U € %,)}.

Note that %, € ﬁg V' Then define:

G(<%0,02/1...,%n>) = GV<<%1,...,5Z/,1>)

It is clear that o is a winning strategy for Player /1 in G (6’%, Ox)modl.

(1) = (2). Let o be a winning strategy for Player /I in the game G (0%, Ox )modl. By
Lemma 4.22 (which is valid if we consider the game G (ﬁ%, Ox)modl), we have that

K:= ﬂ UG((%))
A%
is a compact set.

Now, let V be an open set containing K. Since ‘B has a compact base then € has too. Let
¢’ a compact base of €, D €  and x € D . Then, there is % € 0% such that x € X\U o ((%)).

So, D C X\ ﬂ U o ((?%,)). As D is compact, there is Fp € [@] <0 such that

xeD

pcx\ () Us((#)).

i€efp
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Then

{X\ NUs(@):pee Fpe [wf‘“} cop".

i€eFp
As X\V is closed, by Observation 4.19, we have that

X\ " Uo(#)):ne€ w,D, €€ Fp, € o)X} € Oyy.

i€kp,

On the other hand, if ¥ € ﬁg\v then the family ¥/ = {UUV :U € ¥} € OF. Let {p, :
n € @\{0}} be an enumeration of prime numbers, and let {m; : k € ®\{0}} be an enumeration

of U Fp,. Now, we define a strategy 6" for Player I1 in the game G ( ﬁg \V, ﬁx\v) as follows:

new

e Ininnings n < 1, suppose that Player / chooses 7, € ﬁgf s Player /1 chooses any element
U, €.

e In the next inning, suppose that Player / chose 75 € ﬁg V' Then define

" (%0, %1,%2)) = 0 ((Zn,, 7).

e In the next inning, if Player / chose 73 € ﬁ’é{ \ then define

" (Yo, 15)) = 6 (%, 75).

e In the next inning, if Player / chose %, € ﬁé \ then define

GV(<%v 77/4>) = G(<02/m177/2/’ 74,»

e In general, in the innings n = p,l{, with [ > 1 and k > 1, if Player I chose %;, € ﬁg WV then
define
GV(<"//0,...,7/,1>) = G((%mk,”f/l;l,...,”//',>).
k D

In the innings remaining (that is, if n ¢ {p, : n € @\ {0} }), if Player I chose ¥, then Player
I1 chooses any element U,, € 7},.

Finally, we prove that 6" is a winning strategy. Indeed, let y € X\V and let (¥, : n € )
be a play by Player I in the game G (ﬁé\v, ﬁx\v)- Then, there are k € @ and j € Fp, such
that y ¢ Uo((%;)). But, since ¢ is a winning strategy in G, (€%, Ox)mod1, y must be in some
response of o when consider the following play for to Player /

@)~ (%) 1€ 0\{0})

So, y is contained in some response made by ¢V This concludes the proof. [
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4.4 Equivalent games in Ci(X)
The game version of Theorem 2.39 is given in the following result:

Theorem 4.30. (MEZABARBA; AURICHI, 2019) Let (X, t) be a Tychonoff space, B be a
bornology with compact base and let f : @ — @\ {0} be a function. Then, the game G (O, O),
and the games G (g, Q) and G(Zc,, (x), ;) in Cos(X) are equivalent for all g € Co(X).

In particular, it follows that the game G s(#x, %) is equivalent to G¢(€,,9Q,) in Cx(X),
for any function f : ® — @\{0}.

Therefore, we can obtain the following result:

Theorem 4.31. Let (X, 7) be a Tychonoff space, B be a bornology with compact base, f : © —
®\{0} be a function and g € Cy(X). The following statements are equivalent:

1. S¢(Qg,Q,) holds in Cs(X);

2. I?/Gf(Qg,Qg) in C%(X).
Proof. The result follows from Theorems 2.39, 4.5 and 4.30. O]

In addition, from Corollary 4.24 and Theorem 4.30, the following result follows:

Corollary 4.32. Let (X, 7) be a Tychonoff space and let f : ® — ®\{0} be a function. Then,
the games G (Qg,Q,) and G7(L,,Q,) are equivalent in C(X), for all g € C(X).

From this last result, it also follows:

Corollary 4.33. Let (X, 7) be a Tychonoff space and let f : @ — ®\{0} be a function. Then,
the games G1(Z¢,(x), ) and G¢(Zc,(x),€2;) are equivalent in Cx(X), for all g € Ci(X).

On the other hand, we can obtain the versions of Theorems 2.47 and 2.46 for Cs(X),

with B a bornology with a compact base.

First, we recall the following definitions:

Definition 4.34. Let (X, 7), (Y, 0) be topological spaces. We say that Y is a continuous one-to-

one image of X, if there is a function f : X — Y bijective and continuous.

Definition 4.35. Let (X, 7) be a topological space. The i-weight of X is the smallest cardinality

w(Y) , where Y is a continuous one-to-one image of X. Denote the i-weight of X as iw(X).

Definition 4.36. Let (X, 7) be a topological space. A subset D C C(X) separates points if any
x,y € X with x # y, there is f € D such that f(x) # f(y).
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We need to Remember the following result

Theorem 4.37. (NOBLE, 1974) Let (X, 7) be a Tychonoff space. Then d(C,(X)) = d(Ci(X)) =
i0(X).

With a few modifications to the proof, we can obtain the following result.

Theorem 4.38. Let (X, 7) be a Tychonoff space and let ‘B be a bornology with a compact base.
Then d(Cs (X)) = iw(X).

For the proof we need the following

Theorem 4.39. Let (X, 7) be a Tychonoff space and let B be a bornology with a compact base.
Let D C Cy(X) be a family that separates points and contains the constant function 1. Then the
subalgebra generated by D is dense in Cyz(X).

This is obtained from:

Theorem 4.40. (Stone-Weierstrass) Let (X, 7) be a compact Hausdorff space. If D C C(X)
separates points and contains the constant function 1, then the algebra generated by D is dense in
C(X) (if C(X) with the uniform topology).

Observation 4.41. Note that by this theorem, if i®w(X) = X, then Cys(X) is a separable space.
Also, note that if (X, 7) is a separable metrizable space, then i®(X) = Xo.

Lemma 4.42. Let (X, 7) be a Tychonoff space such that S;(L,,€,) holds in Cys(X). Then, for
all sequences (A, : n € ) of elements in Q,, there is a pairwise disjoint sequence (B, : n € )
of elements in 2, such that B,, C A,,.

Proof. Let (A, : n € o) be a sequence of elements in Q,. By hypothesis, we can assume that
each A, is countable. Note that f € Q, if, and only if,

f| € ©,. Then we can assume that the

elements of any A, are positive. Suppose that, for alln € , A, = {f} : m € w}.

We define a strategy o for I in G1(Q,,€Q,). In the first inning, define 6(0) = Ay € Qo.
Suppose that Player /1 chooses the element f,?10~
0

Define
0 \y_ 140 1. 0 0 ,ly|_
G<<fm8>) - {fko +fk1 : k07k1 S a)’ |{fm87fk07fk1}’ - 3}
To see that it belongs to Q,, let [0, B, €] be a basic neighborhood, with B € B e € > 0. So, there

are fp € (Ao\{/fn,})Nlo.B,5] and fi € (A\{fp,. /i, }) N[0, B,5]. Then f) + fi, € [o.B,¢].
Suppose that Player /1 chose the element f,gl + fn111-
0 1

Now, define

(s T Fa)) = Uiy + i, + 12 horkr k€ @, [{fyio fons Fon s i fi S} = 6}

Let [0, B, €] be a basic neighborhood , with B € B and € > 0. Then, there are
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fl?() € (AO\{figofglé?fri%})m[Ova%L fkl] € (Al\{frgovfno,l(l)vflg)vfnll{})m [07ng] and
fk22 € (AZ\{fr(r)anfr?1(1)7f]?07fnl,l{7f]<1]})m [07Ba§]'
So, f;g) +ka1 +fk22 € [o,B,€]. Then, G((fgo,fgl +fn111>) € Q,. This way we define all innings
0 0 1
necao.

By Theorem 4.31, we have that o is not a winning strategy. So, there is a set C in €,,

with elements of the form

0 1 0 1 2
Fog It Lo b+ Fop + fras

Then we can consider, for all n € ®, the sets B,, = {f,:;,» :i>n}. As C € Q,, it follows that, for
all n € w, B, € Q,, and by the construction done, all sets B,, are pairwise disjoint. ]

Theorem 4.43. Let (X, 7) be a Tychonoff space with i (X) = Xy. Let g € Cos(X). The following

statements are equivalent:

1. §1(Qg,€,) holds in Cs(X);
2. IVGI (Q.g,.Q.g) in CsB(X);

3. IYG\(Zeyx) e (x)):

4. 81(%cy, x)s Do (X)) holds.

Proof. (1) < (2). Follows from Theorem 4.31. As Cis(X) is homogeneous, it follows that it is
sufficient to prove (2) = (3) and (4) = (1), for the case g = o.

(2) = (3). Let o be a strategy for Player / in game G| (%, (x), Zcy (x)) in C(X). By
Observation 4.41, we can assume that o chooses countable subsets, and we fix {g, :n € 0} €

Dy (x)- We define a strategy p for Player / in the game Gy (€,,€,) in C(X).

Suppose that 6(0) = {f, : n € ©} € Y, (x)- Define p(0) = {|f, — go| : n € ©}. We
claim that p(0) € Q,. Indeed, let [0, B, €] be a basic neighborhood with B € B and € > 0. As
[g0, B, €] is an open subset of Co3(X) and 6(0) € Zc,,(x)s it follows that there is a k € @ such
that f; € [g0,B,€]. So, | fi — go| € [0, B, €].

Suppose that Player /1 chooses, in the game G| (£2,,9,) in Cz(X ), the element | fng —gol,
and that G((fn8>) = {fngﬂ :n € O} € Dy (x)- We define

P19 —g0) = i~ s0l +1fp — 1] 110 € 0},

Similarly to the previous case (in this case, consider the basic open [g;,B, 5], with B€ B e
i =0,1), it follows that p(<|fn8 —80l)) € Qo.

Suppose that Player /7 chooses, in the game G1(Q,,Q,) in C(X), the element | fng "~
go| + ’fng,n} — g1|. Also, suppose that
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(<f Oafn
((f

>) {fnoﬂ n nG(O}E@C%( )and
1) = {fy0u 011 € O} € Dy x)-

07”0

07”1

So, we can define

P ({[fng = 80l: [F0 01 — 801+ |f0 ut = &11)) = {Ifg 1 iy — &0l + 10 i iy — 811+

Slmllarly to the previous case (in this case, consider the open [gi7 B, %] withBeBandi=0,1,2),
it follows that p((|.f,0 — gol, /0w — 80l + [ f0 a1 —811)) €

Following the construction above in all innings n € @, it follows that p : < (JQ,) — Q,
is a strategy of Player / in the game G(€Q,,Q,) in C3(X). By (2), we can choose a sequence of

Player 11 choices that form a set C € €, with elements of the form:

[fag = 80l: [£0 5 = 80l + 10 1 — &1l 1F0 1 2 — 01+ [0 1 2 — &0l +
|fn0n0n2 g2|+|fn0 _g0|+|fn87n17n4 g1|+|fn87n17n5 g2|7"'

Then, by Lemma 4.42, we can obtain a partition of C in countable many pairwise disjoint of sets
B, € Q,. For all n € @, we define J,, as the set of all m € @ such that Player I/ chose an element
of B, in the inning m. Note that these sets are pairwise disjoint and we can assume, for all n € o,
that min(J,) > n.

So, we define mg = n8 Now, since the only possibilities are 1 € Iy or 1 € Ji, define

my = n , where j € {0,1} is the term |, a8 j| of the choice of Player /I in the inning 1. In

k
.],
— gj| of the choice of Player /I in the inning k. So, for all

general, for all kK > 2, since the unique p0551b111tles are k € J;, with i < k, we define my =n
where j < k is the term | Joor iy, at

k€ o, {|fmg,...m; — 8|1 j €Ik} € Qo Indeed, let [0, B, €] be a neighborhood, with B € B and
€ > 0. As By € Q,, it follows that there is a r € @ such that | f,, . m, — gk| € [0, B, €].

Finally, we claim that {fmo,m,m 1 jEw} e Dy (x)- Indeed, let [h,B, €] be a basic
neighborhood, with 1 € Cs(X), BE B e € > 0. As {gr : k € ®} € D (x), it follows that
there is / € @ such that g; € [h,B,5]. So, there is r € m, such that |fy,, ..m — & € [0,B,5].
Therefore, f, .m, € [h,B,€]. So, we obtain a sequence of choices for Player /I in the game

G1(Zcy (x)s Peg (x)) in Cs(X) that defeats a strategy ©.
(4) = (1). It follows from the implication (3) = (1) in Theorem 2.39, changing Q, by
Dy (X). O
With a few modifications to the previous theorem, we can obtain the following results:
Theorem 4.44. Let (X, T) be a Tychonoff space such that io(X) = K. Let f: @ — ®\{0} be

a function and g € Cos(X). The following statements are equivalent:

1. S¢(Qg,Q,) holds in Cz(X);
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2. ]/P/Gf(Qg,Qg) in CgB(X);
3. 1Y G D (x) D (%))
4. Sf(@C%(X)7 QC%(X)) holds.

Theorem 4.45. Let (X, 7) be a Tychonoff space such that i®(X) = Xg. Let g € Cys(X). The

following statements are equivalent:

L. S¢in(€4,Qg) holds in Cz(X);
2. IVGf,-,,(Qg,Qg) in CsB(X);
3. I?/Gfin(gc%(x)r@C‘B(X)) in Cs(X);

4. Stin(Dey, x)s Do (X)) holds in Cs(X).

Finally, from Corollary 4.32, Corollary 4.33, Theorem 4.3 and Theorem 4.44, the follow-
ing result follows:

Corollary 4.46. Let (X, 7) be a Tychonoff space such that i (X) = Xg. Let f: @ — ®\{0} be an
increasing function. Then the games G¢(Zc, (x> Zc,(x)) and G1(Zc, (x)» Zc,(x)) are equivalent.
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CHAPTER

ADDITIONAL TRANSLATIONS IN GAMES
AND SELECTION PRINCIPLES

5.1 Translations on the pair (%x, %)

In (OSIPOV, 2018a) it is shown a list of similarities between the different properties

involving dense families.

Theorem 5.1. ((OSIPOV, 2018a)) Let X be a Tychonoff space and i@ (X) = X. The following

statements are equivalent:

L. 81(Dc,(x),7c,(x)) holds;

2. Cp(X) is strongly sequentially dense;
3. 81(Qx,Iy);

4. §1(Q0,Ip) holds in Cp,(X);

5. S1(Zc,(x),To) holds;

6. Sfin(Zc,(x):-c,(x)) holds;

7. Sin(Qx,Tx) holds;

8. Sfin(Q0,Ip) holds in Cp(X);

9. Sfin(@C,,(X) s F()) holds.

In this section, we make a generalization of the equivalences of this theorem.

Theorem 5.2. Let (X, 7) be a Tychonoff space and B be a bornology with compact base. The

following statements are equivalent:
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1. Cyx(X) is strongly sequentially dense

2. S1(0%,T%) holds.

ﬁX

Proof. (1) = (2). By Theorem 2.43, is sufficient to prove that ( F? ) holds. Let % € 0%
B

and D € P, (x)- We define D(% ) = {f € C(X) : f(X\U) =1, for some U € 0% }. We claim

that D(% ) is dense. Indeed, let g € C»(X) and W = (g, B, €), where BE B and € > 0. AsB€ B
is compact and X is Tychonoff, it follows from Theorem 2.28 that there is h € W ND(% ).

By (1), D(% ) is sequentially dense. Thus, there is a sequence (f, : n € @) of elements
in D(% ) that converges to o. Then, for all n € o, f,(X\U,) = 1, for some U, € % .

We claim that {U, : n € ®} € 'Y Indeed, let B € B, and consider W = (0, B, 1). Then
there is nyp €  such that f,, € W, for all n > ng. Thus |f,(x)| < 1, for all x € B and n > ng. So,
we have BN (X\U,) = 0. Then B C Uy, for all n > ny.

(2) = (1): By Theorem 2.43, Cos(X) is Fréchet. Let D C X be dense. Let g € C3(X).
As D € Q,, there is a sequence (f;, : n € @) in D that converges to g. Thus X = [D],,. Therefore,
C,(X) is strongly sequentially dense. O

oX
Observation 5.3. It is clear that Sy, (0%, ') implies that ( F? ) holds. Therefore, by
B

Theorem 2.43, we have that S, (0%, T'xy) = S1(0%, Tx)-

By the previous observation, the following result follows:

Theorem 5.4. Let (X,7) be a Tychonoff space with im(X) = Ko, B be a bornology with

compact base and g € Cy3(X). The following statements are equivalent:

L. S1(Zeg (x),cp (x)) holds;

2. Cyu(X) is strongly sequentially dense;
3. $1(0F.T%) holds;

4. 81(Qg,I'g) holds in Cz(X);

5. 81(Zcy (x), ) holds;

6. Sfin(Deg (x)s o (x)) holds;

7. Stin(0%, ) holds;
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8. Sfin(Qg,I'¢) holds in Cz(X);

9. Sfin(‘@CsB (X)> Fg) holds.

Proof. (1) = (2). Let D be a dense subset of Cy5(X). Let (D, : n € ®) be the sequence such that
D, = D, for all n € . It follows from (1) that there is a sequence (f, : n € @) of elements in D
such that {f, : n € 0} € S, (x)- This implies that D is sequentially dense in X.

(2) = (1). Let (D : n € @) be a sequence of elements in Y, (x)- By Theorem 5.2,
S1 (0%, T'%) holds. It is clear that Iy, C 0%, Therefore, S| (0%, 0% ) holds. By Theorem 4.43,
it follows that S1(Zcy (x)> Zeg (x)) holds. Then, there is a sequence (f, : n € @) of elements
such that, for all n € @, f, € Dy and {f, : n € ®} € D¢, (x)- Finally, by (2), {fu : n € 0} is
sequentially dense, thatis, {f, : n € @} € S Cm(X)

(2) < (3). It is Theorem 5.2.
(3) < (4). It is part of Theorem 2.43.
(4) = (5) and (8) = (9). It follows directly from the fact that Z, (x) € Q.

(5) = (2)- Let D € Py x) and g € Cs(X). Using (5) for the constant sequence whose
only element is D, there is a sequence (f, : n € @) of elements in Z,, (x) that converges to g.

Therefore, D is sequentially dense.
(7) < (8). This is part of Theorem 2.45.
The implications (1) = (6) and (3) = (7) are immediate.
(9) = (2). Similar to (5) = (2).
(6) = (2). Similar to (1) = (2). O

5.2 Other equivalences of Games and selection principle

We denote, foralln € , I, = (—#, ﬁ> We can obtain the game version of Theorem
2.43:
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Theorem 5.5. Let (X, 7) be a Tychonoff space and 8 be a bornology with a compact base. Then
111 G(0%.T%) if, and only if, 11 1 G1(Qg,T,) in C(X), for all g € C5(X).

Proof. As Cy3(X) is a homogeneous space, it suffices to prove the case g = o.

Let 0 be a winning strategy for Player /I in G,(0%,I'y). For any A € Q,, define
Uy(A) = {f1(I,) : f € A}. We have %,(A) € 0. We define the strategy p, for Player /I
in the game G1(Q,,T,), in the following way: p({(Ao,..,A,)) = fu € A,, where f.1(I,) =
o ((2%(Ag), .., Un(An))).

We claim that p is a winning strategy. Indeed, consider

<A0,p(<A0>), ...,An,p(<A0, ...,An>), )

a play in G1(Q,,I,). Then

(%(Ao),0((70(A0))), s Un(An)), 0 ((Z(A0), ..., Un(An))), -..)

is a play in G1 (0}, T’ ). As 0 is a winning strategy, it follows that {C,, : n € ®} € I'y,, where
Co = 06 ({(%(Ao), ..., %:(A,))) = £\ (I,), for some f,, € A, and for all n € ®.

We claim that { f,, : n € o} € I',.. Indeed, we prove that o = lim{ f, : n € w}. This set is
infinite, because {C, : n € ®} is infinite. Also, 0 ¢ {f, : n € @}, because o ¢ A, for all n € .

Let (0,B,€), where B € 95 and € > 0. Choose an n; € ® such that ﬁ <E.
So, there is ny € @ such that B C Cy, for all k > ny. Taking ngp = max{n,n,}, we have
BC Cy=f; '(I,) C £, '({(—¢,€)), for all k > ng. This is, f; € (0, B, €). for all k > ng. Therefore,

{fn:n€ w}\{o,B,¢) is finite.

Reciprocally, let ¢ be a winning strategy for player I1 in game G (Q,,T,). Let Z € 0%,
define A(%) = {f € C(X) : f(X\U) =1, for some U € O%}.

Using that X is Tychonoff and that B € B is compact, by Theorem 2.28, it follows that
A(% ) € Q,. We define a strategy p for Player II in G, (0%, I's,) as follows: p((%, ..., %)) =
U, € %,, where f,(X\U,) =1 and f,, = 6 ((Ao(%), .-, An(%))).

Let
(U, p (L)), -eor Uns (Pl vy W) ).
be a play in G| (0%,I'%). Then
(A0(%), 0 ((A0(%0)));s -y An(Un) & ((A0(U);s -y An(Zn))) ---)

is a play in the game G| (Q,,I’,). As 0 is a winning strategy, we have {f,, : n € @} € I, where
fon=0({A(%),...,An(%))) € Ap(%,), for all n € .



5.2. Other equivalences of Games and selection principle 79

We claim that {T((%), ..., %)) = U, : n € @} € I',. Indeed, the set is infinite, because
{fa :n € o} is infinite. Let B € B. As {f, : n € @}\(0,B, 1) is finite, it follows that there is
no € @ such that f; € (0,B, 1), for all k > ng. Then |f;(x)| < 1, for all k > ngy and x € B. Thus,
BN (X\Uy) =0, for all k > ng. Therefore, B C Uy, for all k > ng. Then {U € {U,:n€ @} :BZ U}
is finite. This concludes the proof. 0

With few modifications, we can obtain the following results:

Theorem 5.6. Let (X, 7) be a Tychonoff space, 8 be a bornology with compact base, and let
f:®— ©\{0} be a function. Then /I + G;(0%, 'y ) if, and only if, I 1 G(,T) in Cs(X),
for all g € Cs (X).

Theorem 5.7. Let (X, 7) be a Tychonoff space and ‘B be a bornology with a compact base. Then
111 Gin( 0%, T%) if, and only if, I 1 Gin(Qg,T,) in C(X), for all g € Cos(X).

Let us remember the following result of the equivalence between selection principle and

game:

Theorem 5.8. (SCHEEPERS, 1994) Let (X, 7) be a ®-Lindelof space. The following statements

are equivalent:
1. 81(Qx,I'x) holds;
2. 1Y Gyin(Qx,I'x).
Using that S; (Q,I") = S, (Q,T°), we obtain the following results,
Corollary 5.9. Let (X, 7) be a @-Lindelof space. The following statements are equivalent:
1. Syin(Qx,Ix) holds;
2. 1Y Grin(Qx,Tx).
Corollary 5.10. Let (X, 7) be a ®-Lindel6f space. The following statements are equivalent:
1. 177G (Qx,I'x);
2. 1Y Gyin(Qx,Tx).
The previous results can be extended for the context of more general covering families

Theorem 5.11. Let (X, 7) be a B-Lindelof space, with B a family of subsets of X. The following

statements are equivalent:

1. 81 (0%, T%) holds;
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2. 11Gi(0%,Ty).

Proof. The implication (2) = (1) is clear. Therefore, it is sufficient to prove (1) = (2). Let o
be a strategy for Player / in G (ﬁ%, Fé). We define specific elements of ﬁ% as follows:

e Let % = {U, : n € @} be an enumeration of ¢(0) € .

e For all m > 1, we assume that Uy, is defined for all @ € <“® such that || = k. We can
write & = (my,..,my). We define

U = G(<U<m]>,U<ml7m2>...,Ua>)\{U<ml>,U<ml’m2>, ...,Ua} = {Ua/\n neg (D} S ﬁ%

e Consider (Zy : @ € <“m). By (2), it follows that for all a, there is ny such that # =
{Ug—ng : T€ P} € T¥. Define a sequence of positive integers ny,ny, ... such that

ny =ng and ngy =ny,, .., forall k > 1. Then, the sequence:

U(n1>aU<n17n2)7"'

is a strategy of Player /] that defeats o, because ¥ = {U<n17,_,7nk> k> 1} €T, since it is

an infinite subset of #. Thus, ¢ is not a winning strategy.

With few modifications to the previous theorem, we can obtain the following result:

Theorem 5.12. Let (X, 7) be a *B-Lindeldf space, where B is a family of subsets of X. The

following statements are equivalent:

1. Ssin(OF,T%) holds;

2. 1Y Gpin(O%,TX).

By the Observation 5.3, we can obatin the following result.

Corollary 5.13. Let (X, 7) be a ®B-Lindelof space, where 983 is a family of subsets of X. The

following statements are equivalent:

2. 1Y Gpin(O%,TX).
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5.3 Games about n-denses sets

Definition 5.14. A subset A C C,,(X) is called n—dense in C,(X), if for all n—finite set
{x1,...,2,} C X such that x; # x;, for i # j, and opens sets Wj,...,W, in R there is a g € A
such that g(x;) € W, foralli = 1,...,n.

Note that if A is n-dense, for all n € @, then A is dense.
Denote by o7, the family of n dense subsets of C,,(X) and .27 instead of .o7}.

Definition 5.15. Let f € C(X). A subset B C C,,(X) is called n-dense at a point g, if for all
n-finite sets {xy,...,x,} C X and € > 0 there is & € B such that h(x;) € (g(x;) — €,8(x;) + €), for
ie{l,..,n}.

Note that if, for all » € @, B is n-dense in a point g, then f € B.
Denote by %, , the family of all n-dense sets at a point g, and write %, instead of % .

Let % be an open cover of X and n € @. We say that 7% is a n-cover of X if, for any
F C X with |F| <n, thereis U € % such that F C U.

Denote by ¢, the family of all n-cover of X.

In (OSIPOV, 2018b), the following results were obtained from the equivalences of the

selection principles with respect to the families defined above,

Theorem 5.16. Let (X, 7) be a Tychonoff space. The following statements are equivalent:

1. Si1(«, ) holds;

2. $1(Ox, Ox) holds;

3. S1(%,,%,) holds for all g € Cp(X);
4. (o, %B,) holds, for all g € C)(X).

Theorem 5.17. Let (X, 7) be a Tychonoff space. The following statements are equivalent:

1. S¢in(/,o7) holds;
2. Sfin(ﬁX, ﬁx) hOldS;
3. Stin(ABy,B,) holds for all g € Cp(X);

4. Sin(of, PBg) holds, for all g € Cp(X).

We can obtain the version of the previous theorems in its game version:

Theorem 5.18. Let (X, 7) be a Tychonoff space. The following statements are equivalent:
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1. 11 G(,d);
2. It G1(Ox, Ox);
3. 1T G((HB,,PBy), forall g € Cp(X);

4. 111 G (o, B,), for all g € Cp(X).

Proof. (1) = (2). Let o be a winning strategy for Player /I in G| (<7, <7 ). We define a strategy
for Player I1 in G (Ox, Oy).

First, note that for any % € Ox we have A(% ) = {f € Cp,(X) : fX\U)=1and f |
K =g, for some U € % ,K C U finite, and g € Q} € /. Indeed, let x € X and W C R be an
open. Let g € QNW. As % € Ox, there is U € % such that x € U. Because X\U is closed and
X is Tychonoff, it follows that there is & € C(X) such that A(X\U) = 1 and h(x) = g € W. That
is,he A(%).

In the inning 0 € ® suppose that Player I in G;(Ox,Ox) chooses %y € Ux. Then,
suppose that Player 1, in G| (<7, /), chooses A(%y) € <. Consider 6((A(%))) := fo € A(%).
So, we define p((%)) = Uy, where Uy is open such that fo(X\Up) = 1.

In the inning n > 1 suppose that Player I in G|(Ox, Ox), choose %, € . Then, suppose
that Player I in G (<7, <), choose A(%,) € </ . Consider 6 ({(A(%), ...,A(%,))) := fu € A(%,).
So, we define p (%, ..., %)) = U,, where U, is open such that f,(X\U,) = 1.

As o is a winning strategy, we have {f,, :n € 0} € «7. We claim that {U,, : n € } € 0.
Indeed, let x € X. Consider W = (—1, ). Then, there is m € @ such that f,(x) € W. So,
x ¢ X\Up, that is, x € Uy,. Thus, p is a winning strategy for Player /I in G|(Ox, Ox).

(2) = (3). Due to the homogeneity of C,(X), we can assume that ¢ = 0. Let ¢ be a
winning strategy for Player I1 in G| (Ox, Ox ). We define a strategy p for Player /1 in G (A, %).

First, note that if B € %, we have that, for any n € o, %,(B) = {g" (-1, 1)) : g €

B} € Ox. Indeed, let x € X. Taking into account € = %, we see that there is a g € B such that
g(x) € (=1 1) Thisis, x € g7 ((—1,1)) € %,(B).

n’n n'n
Let {M) : k € @} be a partition of @ in infinite sets and {py : kK € @} an increasing
sequence of prime numbers. Suppose that, for all k € @, My = {m;; : i € ®}.

For any sequence o = (By, ..., By) € <~®%, with k € o, consider the sequence o’ whose
elements are %pkm (B;), where B; are elements of & with sub-indices in M,,, and ny; € @ is such
that k € M,,,. We define:

p(OC) = 8k
where g is a function such that o (o) = g,;l((—#, LyYew,, (By.
Pmy ” Pmy, s

Then p : <®%By — |J A, is a strategy for Player I1 in G1(%y, Ay)-



5.3. Games about n-denses sets 83

We claim that p is a winning strategy. Indeed, consider the following play

(Bo,p((Bo)),B1,p({(B0;B1));--sBn, P({Bo,---sBn)), ---),

in 61 (930,@0).

Consider a re-indexing of the sequence (B, :n € ) = (B : i,k € ®), where B, = B; ;
if n=mjx, with i,k € . For all k € m, consider the subsequences o = (B : i € ®). As O is
a winning strategy, it follows that for all k € @, %, = {o(0y [ i) = gl._’kl((pik, pik)) (i€ 0} € Ox.
We claim that {g, : n € 0} € %.

Indeed, let x € X and W = (—¢,¢€), with € > 0. Choose k € ® such that ka < €. So,

as ¥; € Oy, there is i € ® such that x € gi_kl((—ﬁ, #)) That is g; x(x) € (—ﬁ, ﬁ) C (—¢,¢).

Therefore, p is a winning strategy for Player /I in the game G (%, %) on C,(X).
(3) = (4). Itis evident from that .o/ C A, for all g € C,(X).

(4) = (1). Let o, be a winning strategy for Player I in G (<7, %,). Consider {M :
k € o} be a partition of natural numbers in infinite sets and {g; : k € ®} is an enumeration of

rational numbers Q. Suppose that for all k € @, My = {m;; : i € w}.

For any sequence o = (A, ...,A;) € <®.o/, with k € @, consider the sequence o’ whose
elements are elements of o with sub-indices in M,,, e m; € @ such that k € M, . With the final

elements of o and o’ being the same, we can define:
p(a) = oy, (o) € Ar.

where f; is a constant function equal to gy.
Then p : <®o/ — |J o is a strategy for Player I1 in G (%, %).

We claim that p is a winning strategy. Indeed, consider the following play

(A0,p((A0)),A1,p({A0,A1)), -, An, P({A0, -, An)); ),

in G] (527, JZ/)

Consider a re-indexing of sequence (A, : n € @) = (A; : i,k € @), where A, = A; ;. if
n =m;y, with i,k € o. For all k € o, consider the subsequences o = (A : i € W).

Since, for all k € @, 65, is a winning strategy, it follows that {o (o [ i) = fix:i € @} €
Af,. We claim that {f; ;1 i € 0,k € o} € o/. Indeed, let x € X and W C R be an open. Choose

gr € QNW. Since W is open, there is € > 0 such that (g — €,qx +€) C W. So, there is i € ®
such that fi;(x) € (qx — €,qx +€) CW.

Therefore, p is a winning strategy for Player I in G| (<7, <7). O
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With a few modifications, we can obtain the following additional results:

Theorem 5.19. Let (X, 7) be a Tychonoff space and let f: @ — @\{0} be a function. The

following statements are equivalent:

1. 111Gy, );

2. 114 Gy(Ox, O):;

3. 11 Gy(ABg, By), forall g € Cp(X);
4. 11 Gyt ,By), for all g € Cp(X).

Theorem 5.20. Let (X, 7) be a Tychonoff space. The following statements are equivalent:

L 11 Gpin(H, A );
2. IITGfin(ﬁx,ﬁx);
3. 11 Gyin(#y,B,), forall g € Cp(X);

4. 117 Gfin(ﬂ,%f), forall g € CP(X).
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CHAPTER

VARIATIONS IN SELECTIVELY CCC
PROPERTY AND GAMES

6.1 Selectively ccc

In (AURICHI, 2013) it is introduced a selectively-ccc property.

This property is equivalent to the selection principle S;(.#;, %). In this section, we
study different connections between the selection principle and our game version, in order to
obtain, in the following section, the same equivalences in the star version. We start with the

following:

Observation 6.1. For a topological space (X, 7), note that .#Z. C %. Indeed, let & € ., and
suppose that | J.o7 is not dense. Then there is B € 7 such that BN (|J.7) = 0. In particular, B ¢ <7
So, & C &/ U{B} and &/ U{B} is a cellular family. This contradicts the maximality of .<7.
Therefore &7 € 9.

Therefore, in addition to the fact that every element in & admits a refinement that is a

maximal cellular family, the following result follows.

Lemma 6.2. (AURICHI, 2013) Let (X, 7) be a topological space. The following statements are

equivalent:

1. Sl (%C, .@0) hOldS;

2. S] (.@0, .@0) holds.

More generally, we have the following.

Theorem 6.3. Let (X, 7) be a topological space and let f : @ — ®\{0} be a function. The

following statements are equivalent:
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1. Sf(//c,.@()) holds;
2. Sf(.@o,.@()) holds.

Theorem 6.4. Let (X, 7) be a topological space. The following statements are equivalent:

1. Sgin( A, Zp) holds;

2. Sf,'n(@(), _@0) holds.

Taking into account the game G|(.#., %), by the same observations made, we can

obtain the following results:

Theorem 6.5. Let(X,T) be a topological space and let f : @ — ®\{0} be a function. The

following statements are equivalent:

1. IIT Gf(’%w@()) (I/P/Gf(%mg()))’
2. 11 Gy(%0, %0) 1Y Gy(AMe, D))

Theorem 6.6. Let (X, 7) be a topological space and let f: @ — ®\{0} be a function. The

following statements are equivalent:

1. 111 Gin(Me, Do) (1Y G fin(Me, Do));

2. 111 Gfin(Z0,%0) (1Y Gfin(Me, D))

In addition, we have the following characterizations of the game version of the selection

principle. First, we show the fin case.

Theorem 6.7. (SCHEEPERS, 2000) Let (X, 7) be a topological space. The following statements

are equivalent:

1. Sfin(@(), @o) hOldS;

2.1 ?’Gﬁn(@o, D).

Proof. Is sufficient to prove that (1) = (2). Let o be a strategy for Player I in Gi,(%y, Z0). By

hypothesis, we can assume that o chooses only countable many elements of %.

Also, we can assume that 6 chooses families containing the family of the previous inning.
Indeed, if o is a normal strategy in Gfin(%20, %), we define a new increasing strategy ¢ as
follows. Put ¢(0) = 6(0) € Zy. Suppose that Player II chooses 7 € [¢(0)]<*. Suppose that
Player I chooses ¥ = ¥ in the game where Player / uses strategy ©.
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Define ¢((%5)) = o(0) Uc((¥)) € Zo. Player I chooses 71 € [@(7)]<X0. Suppose
that Player /I chooses ¥{ = 1 N ((¥{)) in the game where Player I uses the strategy o. Define

¢((%0,71)) = 0 (0) Ua ((¥5)) Vo ({75, ).

Player II chooses 7% € [@({*0, 71))]=*°. Suppose that Player II chooses ¥, = ¥ N
o((¥y,7{)) in the game where Player I uses the strategy ¢. Define

¢((%,71,72)) =0 (0) Ua ((¥5)) Ua ({75, 1)) Uo (¥, 1, 75)),

and so on, for all inning n € . Then, if Player / has no winning strategy using increasing

sequences, we would have U Y & D.

necw

Note that U v C U Y. Then U,c, % & P, that is, I has no winning strategy using

. ncw new
normal strategies.

Finally, we can assume that ¢ has the following property: for all sequences (¥%p, ..., %),

n
where 7; is a finite family, we have | J | J7; C A, for all A € 6((%, ..., %»)). Indeed, let &
j=0
be a normal strategy for Player /. Define ¢(0) = 6(0) € %. Suppose that Player II chooses

¥ € [@(0)]<X0. Now, suppose that Player I chooses ¥ = ¥ in the game where Player I uses
a strategy o. Define @((%)) ={AU (UY)) :A € a((¥))} € Do.

Suppose that Player IT chooses 71 € [@(75)]<¥0. So, suppose that Player II chooses
Y = {A tAU (U b4 ) € ”Vl} in the game where Player I uses the strategy ¢. Define

1

o({%0, 7)) ={AU (U 7//) tAeo((%, )}
j=0

and so on, for all innings n € @. Then, if Player I does not have a winning strategy with the

above property, we would have (,c, ¥n ¢ Z0- But U,co ¥ = Unew ¥, - Therefore, Player I will

not have a winning strategy using normal strategies.

Thus, we can consider o, the strategy of Player /, who chose increasing sequences of
countable elements in % such that the union of the elements played by Player /7, until the inning
n € , is contained in each of the elements of the move made by Player / in the inning n+ 1. We
denote by 6(0) = {U, :n € w}. Forall n; € @, 6((Uy,)) = {Un,)~y : 1 € @}. For any ny € o,
O ((UnysUgny)~ny)) = LUy np)—n : 1 € @}, and so on. Thus, for all y €=¢ @, we have:

1. Ifm<n, Uy C Uyp;

2. Foralln € @, Uy C Uy—p;
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For any n,k € @, we define:

Us, if n =0

up =
k
(N{Uy—~n:7€" T 0}) NUM!,  otherwise.

By the properties above, it follows that, for each n € @, %, = {U}' : k € w} is an increasing
family of open sets. Also, for each n € w, %, € %. Indeed, let U be a non-empty element in 7.
By property 3 above, we have that there are finite Y € "@ such that U NUy = 0. So, there is a
k € @ such that U NU # 0.

Applying Sfin(%o, %) to the sequence (%, : n € @), there are ¥;, € [%,]~*° such that

U Yy € Yo. As %, is an increasing family, it follows that there is k, € @ such that |J7;, = Ul:;
necw

and {U}! :n€ 0} € %.

By the construction of the open sets U/, we have Uy} C Uy, . i), forall n € o. Thus,
{U<k1,...,k,,> :n € 0} € %. So if, in each inning n € @ of the game where Player I uses the
strategy o, Player II chooses the open set Uy, . ) then Player I/ is the winner. Therefore,
1Y G1( Dy, D). O

Using the previous result, we can now show the result for selectively-ccc spaces:

Theorem 6.8. (SCHEEPERS, 2000) Let (X, 7) be a topological space. The following statements

are equivalent:

1. 51(90,90) hOldS;

2. 1YG\(%o, D).

Proof. Again, it is sufficient to prove that (1) = (2). Let o be a strategy for Player / in the
game G1(%y, Zp). By hypothesis, we can consider that o chooses countable families in %.
Let 6(0) = {U,:n € o}.Forn; € ®, 6((Uy,)) = {Uyy,)~n : n € @}, and so on. Thus, for each
ye <®m, we have {Uy~,:nc o} € 9.

Fixm € @, and let j € wand p : {1,.., "} — . Define:

Upm )= (N (UUrpuzi<im}).
ye ™{1,....j}

Note that the above sets are open. Furthermore, for each m, j € @, % (m, j) :== {Up(m, ) : p :
{1,..,/™} — o} € Z. Indeed, let U be a non-empty element in 7. Let {y;: 1 <i < j”} be a
numeration of "{1,..., j}. As {Uy, ~n : n € ©} € Y, there is a ky such that U NUy~, # 0. As
{Uip k) ~n i 1 € @} € Dy, there is a ky such that U N Uy, 4,)~, # 0. So, for each 1 <i < j™,
there is a k; such that UN Uy, &, .k )~k 7 0. Define p : {1,..., j"} — @ such that p(i) = k;.
Then U NU,(m, j) # 0.
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Using the same construction as in Lemma 2 in (PAWLIKOWSKI, 1994), there are
increasing sequences (j, : n € @) and (m, : n € ®) such that, for all U € 7 not empty, there
are infinitely many n € @ and functions p : {1,...,m, 1 —m,} — j,4+1 in such a way that
UNUp(my, jn) # 0. Fixed sequences (j, :n € o) e (m,:n € w),forallk; <k, <...<k,in @
and py, ..., pp, Where each p; : {1,...,my, 1 —my, } — ji,+1, we define the open sets:

W(klv 7kn’p17api’l) = ﬂ UPi(mki7jk,')'

i<n

Consider the family #;, = {W (k1 ....kn;P1,-.-,Pn) 1 k1 < kp < ... <k, in ® and py, ..., p,, where
pi: {L,...,mg 1 —my,} — jr.41}. By the property of the sequences j,’s and m,,’s, we see that
(#, :n € w) is a sequence in Z. Applying S1(Zy, %), it follows that there is, for all n € ®,
Sp=W(K}, ...,k p],...,p}) such that {S,, : n € @} € %.

For all n € w, choose I, € {k{,....k;}\{li : i <n} and p, = p]', where iy, is such that
L, = kZ . From the definition of the sets S, and the choice of indexes, it follows that, for all n € @,
Sn C Uy, (my,, ji,). Consider the function f: @ — @ given by f(i) < jj,, for all i < qul; and
f(my, +1i) = p,(i), for i <my, 1 —my,, with n > 1. Then, the game:

0 (0),Ur1),0WUr1),Uir1y, 20 S Wr1): Uir (1), 1 2))s -+

is defeated by Player /1, because

U $» € U Up,(my,, i) € U Uirny...opn)-

new new new

Therefore, I Y G1(%o, Yb)- H

With few modifications, we obtain:

Theorem 6.9. Let (X, 7) be a topological space and let f : @ — ®\{0} be a function. The

following statements are equivalent:

1. S¢(%0, %) holds;
2. IyGf(.@(),.@()).

Theorem 6.10. Let (X, 7) be a topological space. The following statements are equivalent:
1. S¢in(Z0, o) holds;

2.1 ?/Gf,'n(.@o, D).
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6.2 Star selectively-ccc

Let (X, T) be a topological space. For A C X and & C @(X), we define the following
set:

St(A, 2) =\ J{Pe 2 :PNA#0}.
In (BAL; KOCINAC, 2020) a selection star-ccc property is introduced as follows:

Definition 6.11. We say that a topological space (X, 7) is star selectively-ccc if for all U € O,
and any sequence (%7, : n € @), with <7, € ., there is a sequence (A, : n € @) such that A, € o7,
forall n € @, and St(B,% ) = X, where B= | ] A,,. This property is denoted by 88y (A, Ox).

necw

Theorem 6.12. (BAL; KOCINAC, 2020) Any selectively-ccc space is star selectively-ccc. There

is a star selectively-ccc space that is not selectively-ccc space.

Problem 6.13. (BAL; KOCINAC, 2020) There exists a game-theoretic characterization of

selectively star-ccc?

In direction of this problem, we introduced the following game:

Definition 6.14. For each % € Oy, define the following game G (.., Ox): in each inning
n € @, Player I chooses <7, € ... Then Player II chooses A, € <7,. Player 11 wins the game if
St(B,% ) =X, where B = U A,,. Otherwise, Player I wins.

ncw
From the same observations made for selectively-ccc spaces, we have:

Lemma 6.15. Let (X, 7) be a topological space. The following statements are equivalent:

1. 885, (A, Ox) holds;

2. SS*ﬁXJ(.@o,.@O) holds.

Proof. We just need to include the following observation: if B C A, then St(B, % ) C St(A, % ).
L

In general, we obtain the following:

Theorem 6.16. Let (X, 7) be a topological space and let f: @ — ®\{0} be a function. The

following statements are equivalent:

1. 88, (A, Ox) holds;
2. SS}XJ(QO,.@O) holds.

Theorem 6.17. Let (X, 7) be a topological space. The following statements are equivalent:
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1. SS}X.ﬁn(///C’ 0') holds;

2. SS%X fin(@O’ @0) holds.

Additionally, we have the following:

Theorem 6.18. Let (X, 7) be a topological space and let f : @ — @\{0} be a function. For all
U € Oy, the following statements are equivalent:

L 11 GY (Me; Do) (1Y GY (Mo, D))
2. 111 G (D0, %) (1Y G (M D).

Theorem 6.19. Let (X, T) be a topological space. For all Z € O, the following statements are

equivalent:

L 11t Gl (Me, Do) (1Y G (M, D))

2. 111 G%,(%0, D) UV GY, (M, D).

Finally, with practically the same proof of Theorem 6.7 and Theorem 6.8, only by making
a change in the winning criterion and using the observation in the proof of Lemma 6.15, we

obtain the following results:

Theorem 6.20. Let (X, 7) be a topological space. The following statements are equivalent:

1. 885, sin(Z0, Ox) holds;
2. 197G} (D, Do), for all % € Ox.

Theorem 6.21. Let (X, T) be a topological space. The following statements are equivalent:

1. 885, 1(Z0, Ox) holds;
2. IYGY (Do, Do), for all % € Ox.

Theorem 6.22. Let (X, 7) be a topological space and let f : @ — @\ {0} be a function. The

following statements are equivalent:

1. 88y, #(Z, Ox) holds;

2. [?/Gj{/(.@o,.@()), for all Z € Ox.
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6.3 Equivalences in selectively-ccc spaces

In the direction of the Problem 4.1 we study the case of the class .#,.. We introduce the

following.

Definition 6.23. We say that a topological space (X, 7) is open-separable if there is a Z € %

countable.
Definition 6.24. Let A C X, we define, Q4 ={&/ Ct:V U openinA,3 B € o/, UNB # 0}.

Lemma 6.25. Let (X, 7) be a topological space. The following statements are equivalent:

1. $1(%, %) holds;
2. X is open-separable and S} (%, Q4) holds, for all A € T;

3. X have a countable family <7 € % such that S;(Zp, Q4) holds, for all A € 7.

Proof. 1) = 2) = 3) are clear, because %y C Q4, for all A € 7. It is sufficient to prove the
implication 3) = 1). Let & = {A, : n € @} € % such that S;(Zp,Q4,) holds for all n € w. Let
(o7, :n € w) be a sequence with elements in % and {F;, : n € ®} be a partition of ® in infinitely

disjoint sets.

Applying S1 (%2, Q4,), for all n € o, in the sequence (.7, : m € F,), we find that there are,
for all m € Fy, B}, € 4, such that {B}, : m € F,} € Q,,. We claim that | J{B}, : m € F,} € 9.

necw

Indeed, let U € 7. As &7 € 9, there is a k € @ such that U NA; # 0. As {BX :mc F} € Qu,,
there is [ € Fy such that Bf N (U NA) # 0. Thus B NU # 0, which concludes the proof. O

With few modifications, we obtain:

Lemma 6.26. Let (X, 7) be a topological space. The following statements are equivalent:
1. Sf(.@o,.@o) hOldS;
2. X is open-separable and Sy( %), Q4) holds, for all A € T;
3. X have a countable family &7 € % such that Sy(Z,Q4) holds, for all A € 7.
Lemma 6.27. Let (X, 7) be a topological space. The following statements are equivalent:
1. Sfin(%0, P0);
2. X is open-separable and S f;, (%, Q24) holds, for all A € t;

3. X have a countable family <7 € % such that S;,(Zp,Q4) holds, forall A € o7
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Observation 6.28. Let 4,2 C tand A C X. If € U% € Q4 then € € Q4 or #B € Qy4. Indeed,
suppose that ¢’ ¢ Q4 and Z ¢ Q4. So, there are open sets U,V in A such that CNU = 0, for all
C €% and BNV =0, for all B € 9. Then UNYV is an open subset in A, and DN (UNV) =0
forall D € € U4%, thatis, € UZB ¢ Q4.

From this observation, we obtain the following result:

Theorem 6.29. Let (X, T) be an open-separable space. If S>(Zp, %) holds, then S1(Zy, )
holds.

Proof. Let (47, :n € ®) be a sequence in %. Applying S»(Zy, %) to the sequence (A, : n € @),
we have that there are {A,,B,} C %, for all n € @, such that U {An,B,} € Zy. Choose

new
A, € gy, for all n € @. Let {p; : i € o} be an increasing enumeration of the odd number

primes. Then, for all i € @, consider (7, : n € ). By S2(%,<s,), it follows that there are

{Ci,Di} C oy such that | J {C},D}} € Qp,. By the above observation, we have for all i € o,
ncw

{Cl:new}eQp or{D, :ncw}cQp.Foreachn,i € ®, define:

Ci, {Ci:nco}ecQp

D, {D:ncw}cQp

Fi=

n

Note that F! € Ay, for all n,i € @. Then {A,:n € ®}U UicotiFl:n € ®} € . Indeed, let
Uert. As U {An, By} € Y, there is m €  such that U NA,, # 0 or U N B,, # 0. If the first case

ncw
is true, we are done. In the other case, U N B, is an open subset of B,,. As {F) :n € o} € Qp, ,

there is / € @ such that F" N (U NB,,) # 0. Then U N F/" # (. This concludes the proof. O

Using the same argument, we obtain the following result:

Theorem 6.30. Let (X,7) be an open-separable space and k > 1. All selection principles
Sk(Z0, Pp) are equivalent.

Observation 6.31. In Theorem 2.17. in (BONANZINGA et al., 2014), we see that the Pixley-
Roy space PR(R) is such that S;,( %y, Zp) holds, but S{ (%, %) fails.
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CHAPTER

FINAL CONSIDERATIONS

In Chapter 3 we obtain, with certain conditions in the classes .« and %, equivalences in
some variation of selection principles. We must mention that the implications and equivalences
of Proposition 3.10 are valid in the game version (see (AURICHI; BELLA; DIAS, 2018)).

Our main objective in Chapter 4 was to obtain possible equivalences between selective

topological games considering the class of dense subsets of a topological space X.

We see that, in general, selective topological games in the class of dense subsets in
topological spaces are different. Indeed, consider the space X = <® ® with the topology generated
by the basis

B = {X\ U{f 'n:n€w}:FC “wois finite}.
fer

Firstly, let ko, kyq,...,kn—1 € ©, with m € o (here k_; = 0), we have that the set D =
{(ko,k1...,km—1,k) : k € @} is dense in X, because for any F C ®@ finite the set {f [m: f € F}
is finite, and then there is (ko, .., kpn—1,kn) € D such that (ky,..,k,—1,kn) # f | m, forall f € F.

So DU (X\Usep{f In:ne o})#0.

Now, in the game G1(%x, Zx), in the inning 0, Player I chooses Dy = {(k) : k € w}.
If Player /1 chooses xo = (ko) € Do, then Player I chooses D = {(ko,k) : k € @}. If Player I1
chooses x| = (ko, k) € Dy, then Player I chooses D> = {(ko,k1,k) : kK € @}, and so on. Taking
f=(koy....kn,...) wehave {x,:n € o} NX\{f [n:n € o} =0,thatis, {x,:n€ 0} ¢ Px. So,
11 G(Zx,Px), and then I1 Y G| (Dx, Dx).

On the other hand, suppose that Player I chooses Ag € Zx in the inning O in the game
G2(9x,x). As Ag is dense, we can choose a(l), ag € Aj such that they do not belong to a same
branch (branch is a set of the form {f [ n:n € o}, with f € “®). Then, Player /I chooses
{a?,a9}. 1t is clear that {a?} or {3} is a set such that no branch contains two elements of it. Let
{to} be the set {a’}.

In the next inning, suppose that Player / chooses A| € Y. If there is an element a{ inAj
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such that it is not in any branch that does not intersect {to}, then Player I chooses {a},al}, with
a% an arbitrary element in A;. Note that the set {z, a%} is a set such that no branch contains two
elements of it. If all the elements in A} are in a branch that intersects {70}, since A is dense, we
can choose incompatible elements a] and a) (that is, a} ¢ a) and a} ¢ al) in A, such that 1y C af
and 1y C aé. So, Player 11 chooses {a% , aé}. Note that the set is such that no branch contains two
elements of it. So, in any of the cases, we have a set with 2 elements, namely {#o,; }, such that

no branch contains two elements of it.

In the next inning, suppose that Player / chooses A, € Zx. If there is an element a%
in A, such that it is not in any branch that does not intersect {f,7, }, then Player /I chooses
{a3,a3}, with a3 an arbitrary element in A;. Note that the set {f,t,a}} is a set such that no
branch contains two elements of it. If all elements in A| are in a branch that intersects {#o,; },
since A is dense, there is #; such that we can choose a% and a% incompatible elements in A with
t; C at and t; C a3. So, Player II chooses {a3,a3}. Note that for j # i, the set {t;,a3,a3} is such
that no branch contains two elements of it. So, in any of the cases, we have a set with 3 elements,

namely {79,71,1, }, such that no branch contains two elements of it.

In general, in the inning n > 1, suppose that Player / chooses A, € Zx. If there is an
element o in A, such that it is not in any branch that does not intersect {f9,?{,..,t,—1 }, then
Player I1 chooses {a/[,a} }, with a an arbitrary element in A,,. Note that the set {9, 1, ...,t,—1,a] }
is a set such that no branch contains two elements of it. If all the elements in A,, are in a branch
that intersects {7,171, ...,,—1}, since A, is dense, there is ; such that we can choose al and a
incompatible elements in A, with #; C af and t; C a}. So, Player II chooses {a/l,a}}. Note that
the set {t; : j # i} U{a’,a}} is such that no branch contains two elements of it. So, in any of the
cases, we have a set with n+ 1 elements, namely {7,171, ...,2, }, such that no branch contains two

elements of it.

In summary, we obtain a strategy ¢ for Player /I such that, for each n € w, the set of
answers played includes a set {t, ..., #,} with the property that no branch contains two elements
of it.

We have that ¢ is a winning strategy. Indeed, let D be the set of all the answers of Player
Il in a play using o. If D ¢ Py, then there is a basic open U = X\ Upc oo{f [n:n € 0}, with
F finite, such that DNU = 0. So, D C Upc 0u{f | n:n € o}. Suppose that |F| = m. Then,
since the set {fo, ..., } C D is such that no branch contains two elements of it, there is a #; such
thatt; ¢ Upc op{f [n:n€ ®}. So,D ¢ Upc 0p{f [ n:n € w}, acontradiction. Then D € Zx.
Therefore, I1 T G2(Zx, Zx).

We can see that X is a 77 space that is not a Hausdorff space. The following question is

still open:

Problem 7.1. Restricted to Hausdorff spaces, the selective topological games G (%x, Zx) and
G2(9x, Px) are equivalent?
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Furthermore, if X is a P-space and 1st-countable, then Problem 7.1 has a positive answer.
Indeed, if X is a Hausdorff space, then X is a discrete space and therefore all games G (%x, Zx),
Gr(Dx,Px) and Gin(Px, Px) are equivalents, where k € @ and f : @ — @\ {0} is a function.

On the other hand, if X is not a Hausdorff space, then we have I1 1 Go(%x, Px) = 11 T
G1(Zx,%Px). Indeed, let o be a winning strategy for Player I1 in G(%x, Px). Suppose that
Player I chooses Dy € Px in the first inning of the game G (%x, Zx). Suppose that 6((Dy)) =
{x0,y0}. So, define @((Do)) = xo. Next, Player I chooses D; € Zx.

Recall that
111 Gy (Dx,Dx) = S2(Dx, Dx) = S1(Dx, Dx) = Si1(Dx,Qk),

for all x € X.

Then, using that S1(Zx, Qy,) holds, there is {z} : n € @} C D; such that {z} : n € 0} €
Q,,. Let {U? : n € @} be alocal base for yo. Then ¢, Uy is an open (because X is P-space) and
contains yg. Therefore, there is m; such that z,lnl € Mneo UY. Define ¢((Do,D1)) = z,lnl. Thus,
in each inning 2n, n € w, we define ¢((Dy,D;,...,D2,)) = x,, where 6((Do,D»,...,D7,)) =

{Xn,yn}. On the other hand, in each inning 2n+ 1, with n € @, we define ¢((Dg,D1,...,D2,+1)) =

2n+1

Zimgr 1> where

2n+1 n
ZmZn-‘rl = ﬂ Um

mew

and {U};, : m € w} is alocal base of y, (here we use S| (%x,Q,,)).

Then, we claim that {x, :n € 0} U {zfn';jjl ‘n€ o} € Px. Indeed, let U € 1. As ©
is a winning strategy, we see that there is kK €  such that x; € U or y;, € U. If the first case

is true, we are done. Suppose that y; € U. Then, there is [ € @ such that y; € Ulk e U. So

2k+1

Znyrs € Nmew Uk c U. Therefore, ¢ is a winning strategy for Player II in the game G{(%x, Zx).

Due to the impossibility, for now, of answering positively Question 7.1 we focus on
function spaces C(X). However, we had to restrict ourselves due to the following problems,

which are still open:

Problem 7.2. If (X, 7) is aregular space and f : @ — @\ {0} is a function. The games G s (Qx, Qx )
and G| (Qx,Qy) are equivalent?

Problem 7.3. Let (X, 7) be a regular space. If s € <“Qy and o is a strategy in G(Qx,Qx),
then

C= ) Uols~2)

%GQX

is finite?

And, more generally:
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Problem 7.4. Let (X, 7) be a regular or Tychonoff space and .Z a bornology with a compact
basis. If s € <~® % and o is a strategy in G (0%, 0%), then

Cs = ﬂ Ueo(s—~%)

A%

is an element of %?

If the statements in either of the first two problems are true, we can obtain a version of
Corollary 4.46 for the function space C,(X). If the statement of Problem 7.4 is true, we can

probably obtain a version of Corollary 4.46 by C(X).

In particular, when X is a P-space, Problems 7.2 and 7.3 have positive answers, and
therefore we have an equivalence of the topological games G{(%x, Zx) and G¢(Zx, Zx ), with
f:®— ®\{0} an increasing function.

In Chapter 5 we obtain generalizations of equivalences and translations, about selection

principles and selective topological games, in other classes of dense subsets.

In Chapter 6 we obtain equivalences in variations of selection principles associated
with the selectively-ccc property. An interesting question is about the variations in the selective

topological games associated with that property.
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