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ABSTRACT

FERNANDEZ, J. F. C. Variations in selection principles and selective topological games.
2023. 103 p. Tese (Doutorado em Ciências – Matemática) – Instituto de Ciências Matemáticas e
de Computação, Universidade de São Paulo, São Carlos – SP, 2023.

In this work, we study the relation of different variations of selection principles and selective
topological games. In particular, we study the case of selection principles and selective topo-
logical games when we consider the case of a class of dense subsets of a topological space,
and we obtain a result of equivalence in the case of the space of continuous functions with the
compact-open topology. Furthermore, we include a translation of some results with different
dense families, and we include a little of selection star principles and selectively c.c.c property.

Keywords: selection principles, selective topological games, function spaces, topology, open
covers.





RESUMO

FERNANDEZ, J. F. C. Variações em principios seletivos e jogos topologicos de seleção. 2023.
103 p. Tese (Doutorado em Ciências – Matemática) – Instituto de Ciências Matemáticas e de Com-
putação, Universidade de São Paulo, São Carlos – SP, 2023.

Neste trabalho, estudamos a relação entre diferentes variações de princípios de seleção e jogos
topológicos de seleção. Particularmente, estudamos o caso de princípios de seleção e jogos
topológicos quando consideramos o caso da classe de subconjuntos densos de um espaço
topológico, e obtemos um resultado de equivalência no caso do espaço de funções contínuas
com a topologia compacta-aberta. Além disso, incluímos uma tradução de alguns resultados
com diferentes famílias densas, e incluímos um pouco a repeito de princípios seletivos estrela e
da propriedade seletivamente c.c.c.

Palavras-chave: princípios seletivos, jogos topológicos de seleção, espaço de funções, topologia,
coberturas abertas.
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ω — set of natural numbers

<ωX — Set of all finite sequences of X.

C(X) — Set of all continuous real functions defined in X .

ℵ0 — cardinality of the ordinal number ω .

Cp(X) — C(X) equipped with the topology of pointwise convergence

Ck(X) — C(X) equipped with the compact-open topology

℘(X) — Power set of X .

AB — The set of all functions of B in A.

[X ]<ℵ0 — Set of finite subsets of X.

|A| — cardinality of the set A

R — set of all real numbers.

[X ]k — Set of all subsets of X with cardinality k

w(X) — the least cardinality of a basis of X .

d(X) — the least cardinality of a dense subset of X.
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CHAPTER

1
INTRODUCTION

In 1996, Marion Scheepers introduced the selection principles S1(A ,B) and S f in(A ,B),
with A and B classes of sets. In short, a selection principle is a property that allows us to describe
a particular property in terms of a specific class (B) by making a certain choice over a succession
of elements from another family (A ).

For example, the selection principle S1(DX ,DX) indicates the following property: for any
sequence ⟨Dn : n ∈ ω⟩ of dense subsets in a topological space X , there is, for any n ∈ ω , xn ∈ Dn

such that {xn : n ∈ ω} is a dense subset. Many topological properties are described with these
selection principles when we considere different classes of families of subsets in a topological
space. The most studied case in the literature, and that was the basis for its formalization, is
when we take the family of open covers of a topological space (namely, Rothberger and Menger
properties). We must emphasize that in the notation, the sub-index 1 and f in indicate the number
of elements selected from each element of the sequence ( f in indicates that it is selected finitely
many elements). Then, naturally, we can define variations of these selection principles, such as
S2(A ,B), S3(A ,B), etc.

On the other hand, the term "topological game" was introduced for the first time in 1957
by Claude Berge. Later, in 1974, Rastislav Telgársky introduced a different meaning for it using
the concept "topological properties defined by games". The first game studied was the Banach-
Mazur game. This game was introduced in the famous Scottish Book, a compilation of problems
and discussions by celebrated mathematicians of the time. The problem was proposed by Mazur
and was answered by Banach. A selective topological game is one formulated following the
same idea of a selection principle.

For example, the topological game G1(OX ,OX) (which is called the Rothberger game) is
played as follows: in each inning, Player I chooses an open cover of X and Player II chooses an
element in the open cover chosen by Player I. Player II wins if his choices form an open cover
of X . Note that we can analogously define a game by changing the number of elements chosen
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by Player II. For example, we can say that Player II chooses a finite subset rather than a single
element in the open cover played by Player I. This game is denoted by G f in(OX ,OX), and it is a
different game from G1(OX ,OX).

The main objective of this text is to study variations of selection principles and selective
topological games when considering a distinct number of elements chosen in each element of
a sequence and a distinct number of elements played in each inning for Player II, respectively.
Furthermore, we study these variations when considering different classes of families of subsets
of a topological space X , focusing mainly on dense families. This work is divided into sections
as follows:

In Chapter 2 we have compiled some basic facts with respect to selection principles and
selective topological games, with an emphasis on types of selection principles, about the number
of choices, winning strategies of games, duality, and equivalences about selective topological
games. We conclude with some results in spaces of continuous functions with bornologies.

In Chapter 3 we present some results about the equivalences between the different
variations in selection principles in certain types of classes of subsets of topological spaces, and
particular cases are revisited.

In Chapter 4 we present additional results on the equivalence of variations in topological
games on the class of k-covers (and some on the class of bornologies covers). Using a translation
between k-covers in a topological space and tightness in the space of continuous functions with
the compact-open topology, we obtain an equivalence in some variations of topological games
about the class of dense subsets when we work in the space of continuous functions with the
compact-open topology.

In Chapter 5 we have some generalizations of translations in some selection principles
with dense families. Additionally, we also present translations for a certain selective topological
game.

In Chapter 6 we considered some variations on the selectively ccc property, the star
selectively ccc property, and the game versions of the last properties.
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CHAPTER

2
PRELIMINARIES

In this chapter, we make a compilation of selection principles and selective topological
games (where we focus on winning strategies and duality).

For references in general topology, we cite (ENGELKING, 1989).

2.1 Selection principles and selective topological games

2.1.1 Families of sets

Definition 2.1. Let (X ,τ) be a topological space and let U be an open cover of X . We say that
U is:

∙ a ω-cover if X /∈ U and for all finite subset F ⊂ X , there is U ∈ U such that F ⊂U ;

∙ a k-cover if X /∈ U and for all compact subset K ⊆ X , there is U ∈ U such that K ⊆U ;

∙ a γ-cover if X /∈ U , U is infinite and for all x ∈ X , the set {U ∈ U : x /∈U} is finite;

∙ a large cover if for all x ∈ X the set {U ∈ U : x ∈U} is infinite.

Definition 2.2. A topological space (X ,τ) is called ω-Lindelöf, if for all ω -cover U there is
U ′ ⊆ U such that U ′ is a countable ω-cover.

Definition 2.3. Let (X ,τ) be a topological space. A family D is said to be a dense family if all
its elements are open sets and

⋃
D is dense in X .

Definition 2.4. Let (X ,τ) be a topological space. A family A is cellular if all its elements are
pairwise disjoint open sets. A family A is maximal cellular if it is cellular and maximal with
respect to ⊆ in the family of all cellular families.
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Definition 2.5. Let (X ,τ) be a topological space, x ∈ X and A ⊆ X . A set A converges to a point
x, and it is denoted by x := limA, if A is infinite, x /∈ A and A∖U is finite for any neighborhood
U of x. In this case, we say that x is a limit point of A.

Denote by [A]seq the set of all limit points of sequences of A ⊆ X .

Definition 2.6. Let (X ,τ) be a topological space. A subset D ⊆ X is said to be sequentially
dense if X = [D]seq.

Definition 2.7. Let (X ,τ) be a topological space. X is called strongly sequentially dense if any
dense subset is sequentially dense.

Definition 2.8. Let (X ,τ) be a topological space. X is said to be Fréchet if, for all x ∈ X and
A ⊆ X , with x ∈ A, there is a sequence ⟨xn : n ∈ ω⟩ in A such that lim{xn : n ∈ ω}= x.

Definition 2.9. Let A and B be classes of families of subsets of a set X . The set X satisfies a

property

(
A

B

)
if, for all A ∈ A , there is a B ⊆ A such that B ∈ B.

If (X ,τ) is a topological space, we will use the following notation:

1. OX is the class of all open covers of X ;

2. ΩX is the class of all ω-covers of X ;

3. KX is the class of all k-covers of X ;

4. ΓX is the class of all γ-covers of X ;

5. DX is the class of all dense subsets of X ;

6. ΛX is the class of all large covers;

7. SX is the class of all sequentially dense subsets of X ;

8. Do is the class of all dense families;

9. Mc is the class of all maximal cellular families;

10. Ωx = {A ⊆ X : x ∈ A∖A};

11. Γx = {A ⊆ X : x = limA}.
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2.1.2 Selection principles and selective topological games

In this section, we will mention the best known results about selection principles and
selective topological games. For reference we cite (AURICHI; DIAS, 2019).

The main motivation for continuing to study selective topological games and selection
principles is that they can characterize some topological properties and even define new ones.

Let A and B be classes of families of subsets of a set X . We will denote by ω the set of
natural numbers.

Definition 2.10. S1(A ,B) is the following selection principle: for any sequence ⟨An : n ∈ ω⟩
of elements of A , there is a sequence ⟨bn : n ∈ ω⟩ such that bn ∈ An, for all n ∈ ω , and
{bn : n ∈ ω} ∈ B.

Definition 2.11. S f in(A ,B) is the following selection principle: for any sequence ⟨An : n ∈ ω⟩
of elements of A , there is a sequence ⟨Bn : n ∈ ω⟩ such that Bn ⊆ An is finite for all n ∈ ω , and⋃
n∈ω

Bn ∈ B.

The following are the most well-known selection principles:

∙ S1(OX ,OX) is the Rothberger property;

∙ S f in(OX ,OX) is the Menger property;

∙ S1(ΩX ,ΩX) is the Ω-Rothberger property;

∙ S f in(ΩX ,ΩX) is the Ω-Menger property;

∙ S1(Ωx,Ωx) is the strong countable tightness property;

∙ S f in(Ωx,Ωx) is the countable tightness property;

∙ S1(DX ,Ωx) is the strong countable tightness property with respect to dense subsets;

∙ S f in(DX ,Ωx) is the countable tightness property with respect dense subsets;

∙ S1(DX ,DX) is the R-separable property;

∙ S f in(DX ,DX) is the M-separable property or SS property;

∙ S1(Mc,Do) is the selectively ccc property.

We can obtain the following variation in the selection principles:

Definition 2.12. Let f : ω →ω∖{0} be a function. S f (A ,B) is the following selection principle:
for any sequence ⟨An : n ∈ ω⟩ of elements of A , there is a sequence ⟨Bn : n ∈ ω⟩ such that
Bn ∈ [An]

≤ f (n), for all n ∈ ω , and
⋃

n∈ω

Bn ∈ B.
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By k ∈ ω∖{0}, we write Sk(A ,B) when f = fk. Clearly, for all k ∈ ω∖{0}, if Sk(A ,B)

holds, then Sk+1(A ,B) holds, for any A and B classes of families of subsets of a set X .

Observation 2.13. If A and B are classes of families of subsets of a set X , the following
implications are immediate:

1. If S1(A ,B) holds, then S f (A ,B) holds for all f : ω → ω∖{0}.

2. For all fixed f : ω → ω∖{0}, if S f (A ,B) holds, then S f in(A ,B) holds.

Another way to characterize properties in topological spaces is through selective topo-
logical games.

Definition 2.14. The game G1(A ,B) is defined as follows: in each inning n ∈ ω , Player I

chooses An ∈ A , then Player II chooses bn ∈ An. The winner is Player II if {bn : n ∈ ω} ∈ B.
Otherwise, the winner is Player I.

Definition 2.15. The game G f in(A ,B) is defined as follows: in each inning n ∈ ω , Player I

chooses An ∈ A , then Player II chooses Bn ⊆ An finite. The winner is Player II if
⋃

n∈ω

Bn ∈ B.

Otherwise, the winner is Player I.

The most popular selective topological games are the following:

∙ G1(OX ,OX) is the Rothberger game;

∙ G f in(OX ,OX) is Menger game;

∙ G1(ΩX ,ΩX) is the Ω-Rothberger game;

∙ G f in(ΩX ,ΩX) is the Ω-Menger game;

∙ G1(Ωx,Ωx) is the strong countable tightness game;

∙ G f in(Ωx,Ωx) is the countable tightness game;

∙ G1(DX ,Ωx) is the strong countable tightness with respect to dense subsets game;

∙ G f in(DX ,Ωx) is the countable tightness with respect to dense subsets game;

By changing the number of elements in the choice made by Player II, we can obtain the following
version of the selective topological game:

Definition 2.16. Let f : ω → ω∖{0} be a function. The game G f (A ,B) is defined as follows:
in each inning n ∈ ω , Player I chooses An ∈ A , then Player II chooses Bn ∈ [An]

≤ f (n). The
winner is Player II if

⋃
n∈ω

Bn ∈ B. Otherwise, the winner is Player I.
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For k ∈ ω∖{0}, we denote by Gk(A ,B) the case where f = fk, where fk is the constant
function k.

2.1.3 Winning strategies

Informally, a strategy is a fixed way that allows a certain player to make his choices in
each inning n ∈ ω . More formally, for A and B classes of families of subsets of a set X , we
define the following:

Definition 2.17. A strategy (with complete information) for Player I in G1(A ,B) is a function
σ : <ω (

⋃
A )→ A . A strategy σ for Player I is called a winning strategy if, for any choice

bn ∈ σ(⟨bm : m < n⟩), for all n ∈ ω , {bn : n ∈ ω} /∈ B. I ↑ G1(A ,B) denotes the existence of a
winning strategy for Player I.

Definition 2.18. A strategy (with complete information) for Player II in G1(A ,B) is a function
ρ : <ωA →

⋃
A . A strategy ρ for Player II is called a winning strategy if, for any choice

(An)n∈ω , then {ρ(⟨A0, ...,An⟩) : n ∈ ω} ∈ B. II ↑ G1(A ,B) denotes the existence of a winning
strategy for Player II

In the same form as is defined strategies considering all of the previous selection of the
both of players, is defined strategies where only is considerate partially the history of game.

Definition 2.19. A predetermined strategy for Player I in G1(A ,B) is one that considers only
the number of the current inning. Formally, a predetermined strategy is a function σ : ω → A .
I ↑

pre
G1(A ,B) denotes the existence of a predetermined winning strategy for Player I.

Similarly, we can define strategies with complete information and predetermined strate-
gies for all variations G f , for all f : ω → ω∖{0}, and G f in.

Observation 2.20. Let A and B be classes of families of subsets of a set X . Then the following
implications are immediate:

II ↑ G1(A ,B)⇒ II ↑ G f (A ,B), for all f : ω → ω∖{0}⇒ II ↑ G f in(A ,B)

Furthermore, it is immediate the following implication:

II ↑ Gk(A ,B)⇒ II ↑ Gk+1(A ,B),

for any A and B classes of families of subsets of a set X and for all k ∈ ω∖{0}.

On the other hand, a result that linking selection topological games and selective princi-
ples is the following:

I ̸↑ G1(A ,B)⇒ S1(A ,B) holds.
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The same implications are valid for variations G f , for all f : ω → ω∖{0}, and G f in. The
reciprocal of the previous result is not necessarily true. However, we have the following result:

Proposition 2.21 (Folkrore). I ̸ ↑
pre

G1(A ,B) if, and only if, S1(A ,B) holds.

Proof. If S1(A ,B) does not hold, there is a sequence (An)n∈ω , with An ∈ A for all n ∈ ω , such
that, for any sequence (bn)n∈ω , where bn ∈ An for all n ∈ ω , we have {bn : n ∈ ω} /∈ B. Define
σ : ω → A with σ(n) = An, for n ∈ ω . Then ρ is a winning predetermined strategy for Player I

in G1(A ,B).

Reciprocally, suppose that S1(A ,B) holds and let σ : ω → A be a strategy of Player I

in G1(A ,B). As (σ(n))n∈ω is a sequence of elements in A , it follows that, for all n ∈ ω , there
is a bn ∈ σ(n) such that {bn : n ∈ ω} ∈ B. That is, the play

σ(0),b0,σ(1),b1, ...,σ(n),bn, ...

is winner by Player II. Since σ was arbitrary, we conclude that I ̸ ↑
pre

G1(A ,B).

It is easy to see that the previous proposition is still valid for variations G f , for all
f : ω → ω∖{0}, and G f in. In the case of complete information strategy is not always true, buy it
is still true for some classes of families. For example, we have the following results:

Theorem 2.22. (HUREWICZ, 1925) Let (X ,τ) be a topological space. The following statements
are equivalent:

1. S f in(OX ,OX) holds;

2. I ̸↑ G f in(OX ,OX).

Theorem 2.23. (PAWLIKOWSKI, 1994) Let (X ,τ) be a topological space. The following
statements are equivalent:

1. S1(OX ,OX) holds;

2. I ̸↑ G1(OX ,OX).

A recent proof of these results was given in (SZEWCZAK; TSABAN, 2020). This result
is valid in the ΩX class as well:

Theorem 2.24. (SCHEEPERS, 1997) Let (X ,τ) be a topological space. Then:

1. S1(ΩX ,ΩX) holds ⇔ I ̸↑ G1(ΩX ,ΩX).

2. S f in(ΩX ,ΩX) holds ⇔ I ̸↑ G f in(ΩX ,ΩX).
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2.2 Bornologies
Bornologies and bornological analysis has a principal motivation in the fact that bornolog-

ical spaces provide an important setting for homological algebra in functional analysis, because
the category contains bornological spaces is additive, complete and has a tensor product adjoint
to an internal hom. For reference we cite (HOGBE-NLEND, 1977).

Definition 2.25. Let (X ,τ) be a topological space and B be a family of subsets of X . B is called
a bornology in X if B is an ideal (that is, it is closed by finite union and if A ⊂ B and B ∈B then
A ∈B) that covers X .

Definition 2.26. Let (X ,τ) be a topological space. A (compact) base B′ for a bornology B in
X , is a subset of B such that for all B ∈B, there is a B′ ∈B′ such that B ⊂ B′ (such that all its
elements are compact subsets).

Definition 2.27. Let B be a bornology with a compact base in a Tychonoff space (X ,τ). We
call it a uniform convergence topology in B, denoted by τB, the topology in C(X) that has as a
base of neighborhoods, in each f ∈C(X), sets of the form:

[ f ,B,ε] := {g ∈C(X) : | f (x)−g(x)|< ε, for all x ∈ B},

where B ∈B and ε > 0. We denote by CB(X) the topological space (C(X),τB).

In the presence of the topology above, we can find that CB(X) has a good separation
property. First, we recall the following result:

Theorem 2.28. Let (X ,τ) be a Tychonoff space. If A ⊆ X is compact and B ⊆ X is closed such
that A∩B = /0, then there is a continuous function f : X → [0,1] such that f (A) = 0 and f (B) = 1.

Now, we can prove that CB(X) is a Tychonoff space. Indeed, note that Theorem 1.1.5 and
Theorem 1.2.3 in (MCCOY; NTANTU, 1988) are still valid when we switch from the hypothesis
of a compact network to a bornology with a compact base. As the constructions made in that
work are valid by we considered a bornology with a compact base instead of a compact network
the result is obtained.

There is a form to generalized the notions of ω-covers and k-covers as follows:

Definition 2.29. Let (X ,τ) be a topological space, B be a family of subsets of X , and U be a
family of open subsets of X . U is called a B−cover of X if X /∈ U and, for all B ∈B, there is
U ∈ U such that B ⊂U .

We denote by OX
B the set of all B−covers of X .

Observation 2.30. Note that OX
B satisfies the following property: if U ∈ OX

B and F ∈ [U ]<ℵ0 ,
then U ∖F ∈ OX

B.
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Example 2.31. Let (X ,τ) be a topological space. We have that the sets F = [X ]<ℵ0 and

K = {A ⊂ X : ∃ K ⊂ X compact subsets and A ⊂ K}

(if X is Hausdorff, note that K = {A ⊂ X : A is compact}) are bornologies with compact
base. Furthermore, CF(X) = Cp(X) and OX

F = ΩX . If X is a Hausdorff space, we have that
CK(X) = Ck(X) and OX

K = KX . For a discuss of this kind of coincidence in a more general
setting we cite (NOKHRIN; OSIPOV, 2009).

Definition 2.32. Let (X ,τ) be a topological space, B be a family of subsets of X , and U be a
family of open subsets of X . U is called a B−cofinite cover of X , if it is infinite and for all
B ∈B, the set {U ∈ U : B ̸⊂U} is finite.

Denote by ΓX
B the set of all B-cofinite covers of X .

Definition 2.33. Let (X ,τ) be a topological space and B be a family of subsets of X . The space
X is called B-Lindelöf if for all U ∈ OX

B it has U ′ ⊆ U , with U ′ ∈ OX
B countable.

We have that the result in Theorem 2.24 was generalized to the following result:

Theorem 2.34. (MEZABARBA; AURICHI, 2019) Let (X ,τ) be a topological space and B be a
family of subsets of X . Then:

1. S1(O
X
B,O

X
B) holds if, and only if, I ̸↑ G1(O

X
B,O

X
B).

2. S f in(O
X
B,O

X
B) holds if, and only if, I ̸↑ G f in(O

X
B,O

X
B).

2.3 Function spaces and selection principles
The following results show some translations of a topological space (X ,τ) into the space

of continuous functions CB(X).

Theorem 2.35. (SAKAI, 1988) Let (X ,τ) be a Tychonoff space. The following statements are
equivalent:

1. S1(ΩX ,ΩX) holds;

2. S1(Ωg,Ωg) is true for all g ∈Cp(X);

3. S1(DCp(X),Ωg) holds, for all g ∈Cp(X).

Theorem 2.36. (ARKHANGEL’SKII, 1986)(CLONTZ, 2019) Let (X ,τ) be a Tychonoff space.
The following statements are equivalent:

1. S f in(ΩX ,ΩX) holds;
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2. S f in(Ωg,Ωg) holds for all g ∈Cp(X);

3. S f in(DCp(X),Ωg) holds, for all g ∈Cp(X).

Additionally, we have the following results:

Theorem 2.37. (KOCINAC, 2003) Let (X ,τ) be a Tychonoff space. The following statements
are equivalent:

1. S1(KX ,KX) holds;

2. S1(Ωg,Ωg) holds, for all g ∈Ck(X);

3. S1(DCk(X),Ωg) holds, for all g ∈Ck(X).

Theorem 2.38. (LIN; LIU; TENG, 1994)(OSIPOV, 2018c) Let (X ,τ) be a Tychonoff space.
The following statements are equivalent:

1. S f in(KX ,KX) hold;

2. S f in(Ωg,Ωg) holds, for all g ∈Ck(X);

3. S f in(DCk(X),Ωg) holds, for all g ∈Ck(X).

The previous results were generalized to the following ones:

Theorem 2.39. (MEZABARBA; AURICHI, 2019) Let (X ,τ) be a Tychonoff space and let B be
a bornology with a compact base. Let f : ω → ω∖{0} be a function. The following statements
are equivalent:

1. S f (O
X
B,O

X
B) holds;

2. S f (Ωg,Ωg) holds for all g ∈CB(X);

3. S f (DCB(X),Ωg) holds, for all g ∈CB(X).

Theorem 2.40. (MEZABARBA; AURICHI, 2019) Let (X ,τ) be a Tychonoff space and let B
be a bornology with compact base. The following statements are equivalent:

1. S f in(OB,OB) holds;

2. S f in(Ωg,Ωg) holds, for all g ∈CB(X);

3. S f in(DCB(X),Ωg) holds, for all g ∈CB(X).

Observation 2.41. Let (X ,τ) be a topological space and U ∈ ΓX . If V ⊆ U is infinite and
X /∈ V , then V ∈ ΓX because, for any x ∈ X , we have {V ∈ V : x /∈V} ⊆ {U ∈ U : x /∈U}. In
particular, any U ∈ ΓX has a countable subset V such that V ∈ ΓX .
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From the previous observation, we have the following translation:

Theorem 2.42. (GERLITS; NAGY, 1982) Let (X ,τ) be a Tychonoff space. The following
statements are equivalent:

1.

(
ΩX

ΓX

)
holds;

2. S1(ΩX ,ΓX) holds;

3. S1(Ωg,Γg) holds, for all g ∈Cp(X);

4. Cp(X) is Fréchet.

And its more general version:

Theorem 2.43. (MCCOY; NTANTU, 1988) Let (X ,τ) be a Tychonoff space and let B be a
bornology with compact base. The following statements are equivalent:

1.

(
OX
B

ΓX
B

)
holds;

2. S1(O
X
B,Γ

X
B) holds;

3. S1(Ωg,Γg) holds, for all g ∈CB(X);

4. CB(X) is Fréchet.

Proof. The implications (2)⇒ (1) and (3)⇒ (4) are immediate. Let ⟨Un : n ∈ ω⟩ be a sequence
of elements in OX

B. Note that Observation 2.41 is also valid for ΓB. So, for any n ∈ ω , there is
a Vn ⊆ Un countable such that Vn ∈ ΓB. Choosing, for all n ∈ ω , any Vn ∈ Vn, it follows that
{Vn : n ∈ ω} ∈ ΓB. Then (1) and (2) are equivalent. As CB(X) is homogeneous, it suffices to
show the rest of the implications considering g = o.

(2)⇒ (3). Let ⟨An : n ∈ ω⟩ be a sequence of elements in Ωo. Define, for all n ∈ ω the
set:

Un(A) = {g−1(⟨− 1
2n ,

1
2n ⟩) : g ∈ A}.

We claim that Un(A) ∈ OX
B, for all n ∈ ω . Indeed, let B ∈B. As o ∈ A, it follows that

there is h ∈ A∩ [o,B, 1
2n ]. So, B ⊆ h−1(⟨− 1

2n ,
1
2n ⟩) ∈ Un(A).

So, since ⟨Un(An) : n ∈ ω⟩ is a sequence of elements in OX
B, by (2), it follows that, for

all n ∈ ω , there is Un = g−1
n (⟨− 1

2n ,
1
2n ⟩) ∈ Un(An), with gn ∈ An, such that {Un : n ∈ ω} ∈ ΓB.

We claim that {gn : n ∈ ω} ∈ Γo. Indeed let [o,B,ε] be a neighborhood of o, with B ∈B

and ε > 0. Then, there is n0 ∈ ω such that B ⊂ Un = g−1
n (⟨− 1

2n ,
1
2n ⟩), for all n ≥ n0. Choose
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m ≥ n0 such that 1
2m < ε . Then B ⊂Un ⊆ g−1

n (⟨−ε,ε⟩), for all n ≥ m. Therefore, gn ∈ [o,B,ε],
for all n ≥ m.

(4)⇒ (2). Let ⟨Un : n ∈ ω⟩ be a sequence of elements of OX
B. Define, for all n ∈ ω , the

set:

A(Un) = {g ∈CB(X) : ∃Ug ∈ U (g(X∖Ug) = {1})}.

We claim that A(Un) ∈ Ωo, for all n ∈ ω . Indeed, consider a basic neighborhood [o,B,ε] of o,
with B ∈B and ε > 0. As B ∈B, there is U ∈ U such that B ⊂U . As X∖U is a closed subset
that is disjoint of the compact set B (this set is compact by the hypotheses that B has a compact
base), by Theorem 2.28, there is h ∈CB(X) such that h(x) = 0, for all x ∈ B, e h(X∖U) = {1}.
So h ∈ [o,B,ε]∩A(Un). That is, o ∈ A(Un).

Now, since ⟨A(Un) : n ∈ ω⟩ is a sequence of elements in Ωo, by (4), it follows that for
all n ∈ ω , there is fn ∈ A(Un), such that { fn : n ∈ ω} ∈ Γo.

We claim that {Un : n∈ω} ∈ΓB, where, for any n∈ω , Un ∈Un is such that fn(X∖Un)≡
1. Indeed, let B ∈ B. Consider an open neighborhood of o, [o,B, 1

2 ]. Then, there is n0 ∈ ω such
that B ⊂ f−1

n (⟨−1
2 ,

1
2⟩), for all n ≥ n0. So B∩ (X∖Un) = /0, for all n ≥ n0. Therefore, B ⊂Un, for

all n ≥ n0.

With a few modifications to the previous theorem, we can obtain the following results:

Theorem 2.44. Let (X ,τ) be a Tychonoff space, B be a bornology with compact base and
f : ω → ω∖{0} is a function. The following statements are equivalent:

1.

(
OX
B

ΓX
B

)
holds;

2. S f (O
X
B,Γ

X
B) holds;

3. S f (Ωg,Γg) holds, for all g ∈CB(X);

4. CB(X) is Fréchet.

Theorem 2.45. Let (X ,τ) be a Tychonoff space and B is a bornology with compact base. The
following statements are equivalent:

1.

(
OX
B

ΓX
B

)
holds ;

2. S f in(O
X
B,Γ

X
B) holds ;

3. S f in(Ωg,Γg) holds, for all g ∈CB(X);

4. CB(X) is Fréchet.
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On the other hand, when dealing with spaces of functions, we have the following
equivalence between selection principles and games:

Theorem 2.46. (SCHEEPERS, 1997)(SCHEEPERS, 1999) Let (X ,τ) be a separable metric
space and g ∈Cp(X). The following statements are equivalent:

1. S1(Ωg,Ωg) holds;

2. I ̸↑ G1(Ωg,Ωg);

3. I ̸↑ G1(DCp(X),DCp(X));

4. S1(DCp(X),DCp(X)) holds.

Theorem 2.47. (SCHEEPERS, 1997)(SCHEEPERS, 1999) Let (X ,τ) be a separable metric
space and g ∈Cp(X). The following statements are equivalent:

1. S f in(Ωg,Ωg);

2. I ̸↑ G f in(Ωg,Ωg);

3. I ̸↑ G f in(DCp(X),DCp(X));

4. S f in(DCp(X),DCp(X)).

2.4 Duality

We will start by defining the equivalence and duality of selective topological games:

Definition 2.48. Let G1 and G2 be two selective topological games. The games are called
equivalent if:

∙ I ↑ G1 if, and only if, I ↑ G2;

∙ II ↑ G1 if, and only if, II ↑ G2.

Definition 2.49. Let G1 and G2 be two selective topological games. The games are said to be
dual if:

∙ I ↑ G1 if, and only if, II ↑ G2;

∙ I ↑ G2 if, and only if, II ↑ G1.
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We will define

G1(A ,¬B) = G1(A ,℘
(⋃

A
)
∖B),

that is, in this game Player II wins if {Bn : n ∈ ω} /∈ B.

For a set X , we will denote by C (X) := { f ∈ (
⋃

X)X : x ∈ X ⇒ f (x) ∈ x} the set of all
the choice functions of X .

Definition 2.50. Let X and Y be two sets. X is called coinitial in Y with respect to ⊆, and we
denote by X ⪯ Y , if X ⊆ Y and for all y ∈ Y , there is a x ∈ X such that x ⊆ y.

Definition 2.51. A set R is called a reflection of a class A if {range( f ) : f ∈ C (R)} ⪯ A .

The following result describes, in general, the dual game for certain classes of sets.

Theorem 2.52. (CLONTZ, 2020) Let R be a reflection of a class A . Then G1(A ,B) and
G1(R,¬B) are dual games.

2.4.1 Examples

Below, we will present some examples of duality. Let (X ,τ) be a topological space. For
x ∈ X , denote by τx = {U ∈ τ : U is neighborhood of x} and PX = {τx : x ∈ X}.

Proposition 2.53. (CLONTZ, 2020) PX is a reflection of OX .

Proof. Let U ∈ OX and τx ∈ PX . So, there is Ux ∈ U such that x ∈Ux. Define fU (τx) =Ux. So
fU ∈ C (PX). It is easy to see that range( fU ) ∈ OX and range( fU )⊆ U .

Definition 2.54. Let (X ,τ) be a topological space. The point-open game GOX (X) is played as
follows: In each inning n ∈ ω , Player I chooses xn ∈ X . Then, Player II chooses Un ∈ τ such that
xn ∈Un. Player I is the winner if {Un : n ∈ ω} ∈ OX . Otherwise, Player II wins.

Corollary 2.55. (GALVIN, 1978) Let (X ,τ) be a topological space. The games G1(OX ,OX)

and GOX (X) are dual.

Proof. Note that the point-open game is equivalent to G1(PX ,¬OX). The result is derived from
Proposition 2.53 and Theorem 2.52.

We can consider the following variation of the point-open game.

Definition 2.56. Let (X ,τ) be a topological space. The finite open game is GOX
F (X) and is played

as: In each inning n ∈ ω , Player I chooses Fn ∈ [X ]<ℵ0 . Then, Player II chooses Un ∈ τ such
that Fn ⊂Un. Player I is the winner if {Un : n ∈ ω} ∈ OX . Otherwise, Player II wins.
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Interestingly, this change in the number of elements that Player I chooses does not make
a difference in the existence of winning strategies.

Proposition 2.57. (TELGÁRSKY, 1975) Let (X ,τ) be a topological space. The games GOX (X)

and GOX
F (X) are equivalent.

For F ∈ [X ]<ℵ0 , we denote by τF = {U ∈ τ : F ⊆U} and FX = {τF : F ∈ [X ]<ℵ0}.

Proposition 2.58. (CLONTZ, 2020) FX is a reflection of ΩX .

Proof. Let U ∈ ΩX and τF ∈ FX , with F ∈ [X ]<ℵ0 . Then, there is UF ∈ U such that F ⊆UF .
Define fU (τF) =UF . So fU ∈ C (FX). It is immediate that range( fU ) ∈ ΩX and range( fU )⊆
τF .

Definition 2.59. Let (X ,τ) be a topological space. The Ω-finite-open game ΩGF(X) is played
as follows: In the inning n ∈ ω , Player I chooses Fn ∈ [X ]<ℵ0 . Next, Player II responds with
Un ∈ τ such that Fn ⊂Un. Player I is a winner if {Un : n ∈ ω} ∈ ΩX . Otherwise, the winner is
Player II.

Corollary 2.60. (CLONTZ, 2020) Let (X ,τ) be a topological space. The games G1(ΩX ,ΩX)

and ΩGF(X) are dual.

Proof. Note that the game Ω-finite-open is equivalent to the game G1(FX ,¬ΩX). The conclusion
is derived from Proposition 2.58 and Theorem 2.52.

Proposition 2.61. (CLONTZ, 2020) For any x ∈ X , τx is a reflection of Ωx.

Proof. Let Y ∈ Ωx and U ∈ τx. So, there is yU ∈U ∩Y . Define fY (U) := yU . Then fY ∈ C (τx).
It is immediate that range( fY ) ∈ Ωx and range( fY )⊆ Y .

Definition 2.62. Let (X ,τ) be a topological space and x ∈ X . The neighborhood-point game
G(X ,x) is played as follows: In the inning n ∈ ω , Player I chooses Vn ∈ τx. Next, Player II

chooses xn ∈Vn. Player I is the winner if {xn : n ∈ ω} ∈ Ωx. Otherwise, Player II is the winner.

Corollary 2.63. (GALVIN, 1978) Let (X ,τ) be a topological space and x ∈ X . The games
G1(Ωx,Ωx) and G(X ,x) are dual.

Proof. Note that the neighborhood-point game is equivalent to G1(τx,¬Ωx). The result is derived
from Proposition2.61 and Theorem 2.52.

The following game is a small variation of the neighborhood-point game.
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Definition 2.64. Let (X ,τ) be a topological space and x ∈ X . The convergent neighborhood-
point G→(X ,x) is played as follows: In the inning n ∈ ω , Player I chooses Un ∈ τx. Next, Player
II chooses xn ∈Un. Player I is the winner if xn → x, when n → ∞. Otherwise, Player II is the
winner.

This change in the winning criteria does not make a difference for Player I.

Theorem 2.65 ((GRUENHAGE, 1976)). Let x ∈ X . Then I ↑ G(X ,x)⇔ I ↑ G→(X ,x).

Proposition 2.66 ((CLONTZ, 2020)). τ is a reflection of DX .

Proof. Let D ∈ DX and U ∈ τ . So, there is xU ∈U ∩D. Define fD(U) = xU . Then fD ∈ C (R).
It is clear that range( fD) ∈ DX and range( fD)⊆U .

Definition 2.67. Let (X ,τ) be a topological space. The point picking game GDX (X) is played as
follows: In the inning n ∈ ω , Player I chooses Un ∈ τ . Next, Player II chooses xn ∈Un. Player I

is the winner if {xn : n ∈ ω} ∈ DX . Otherwise, Player II is the winner.

Corollary 2.68 ((SCHEEPERS, 1999)). Let (X ,τ) be a topological space. The games G1(DX ,DX)

and GDX (X) are dual.

Proof. Note that the point picking game is equivalent to the game G1(τ,¬DX). The result follows
from Proposition 2.66 and Theorem 2.52.
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CHAPTER

3
EQUIVALENCES IN VARIATIONS OF

SELECTION PRINCIPLES

The work of (GARCÍA-FERREIRA; TAMARIZ-MASCARÚA, 1995) shows an equiva-
lence of the selection principle S f (Ωx,Ωx) in the following result:

Corollary 3.1. (GARCÍA-FERREIRA; TAMARIZ-MASCARÚA, 1995) If X is a T1 space,
x ∈ X and f : ω → ω∖{0} is unbounded, then S f (Ωx,Ωx) is equivalent to SS(Ωx,Ωx), where
S : ω → ω∖{0} is the function given by S(n) = n+1, for all n ∈ ω .

Lemma 3.2. (GARCÍA-FERREIRA; TAMARIZ-MASCARÚA, 1995) If X is a T1 space, x ∈ X

and f : ω → ω∖{0} is bounded, then S f (Ωx,Ωx) is equivalent to S1(Ωx,Ωx).

The above function S is called the successor function. We will use this notation throughout
this chapter. In (AURICHI; BELLA; DIAS, 2018) it is proved a similar equivalence to the
tightness selective topological game in the following result:

Proposition 3.3. (AURICHI; BELLA; DIAS, 2018) If X is a T1 space x ∈ X then:

1. If f : ω → ω∖{0} is bounded, then the games G f (Ωx,Ωx) and Gk(Ωx,Ωx) are equivalent,
where k = limsup

n∈ω

f (n) ∈ ω∖{0};

2. If f : ω → ω∖{0} is unbounded, then the games G f (Ωx,Ωx) and GS(Ωx,Ωx) are equiva-
lent.

The properties of Ωx used in the above proofs can be summarized as follows.

(P1) If B ∈ B e F ∈ [B]<ℵ0 then B∖F ∈ B;

(P2) If B ∈ B and A ⊇ B, then A ∈ B,
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where B is a class of families of subsets of X .

In this chapter, we use the properties (P1) and (P2) to obtain generalizations of the
results presented previously and some other similar results.

3.1 Equivalences of selection principles with arbitrary classes
of families

We begin by generalizing one of the equivalences mentioned above.

Proposition 3.4. Let A and B be classes of families of subsets of a set X and f : ω → ω∖{0} be
a limited function. Suppose that B satisfies properties (P1) and (P2). The following statements
are equivalent:

1. S f (A ,B) holds;

2. Sk(A ,B) holds, where k = limsup
n∈ω

f (n) ∈ ω∖{0}.

Proof. (1)⇒ (2). Let ⟨An : n ∈ ω⟩ be a sequence of elements in A . Let n0 ∈ ω be such that
f (n)≤ k, for all n ≥ n0. Consider the finite set H = {n ∈ ω : f (n)> k}. By (1), for all n ∈ ω ,
there is Fn ∈ [An]

≤ f (n) such that
⋃

n∈ω

Fn ∈ B.

So, by (P1),
⋃

n∈ω∖H

Fn ∈B. Define Gn = Fn, if n ∈ ω∖H, and take Gn ∈ [An]
≤k arbitrarily,

for n ∈ H. Then
⋃

n∈ω∖H

Fn ⊆
⋃

n∈ω

Gn. So, by (P2),
⋃

n∈ω

Gn ∈ B. Therefore, (2) is true.

(2)⇒ (1). Let ⟨An : n ∈ ω⟩ be a sequence of elements in A . Note that the set N := {n ∈
ω : f (n) = k} is infinite. Consider the sequence ⟨Am : m ∈ N⟩. By (2), for all m ∈ N, there is an
Fm ∈ [Am]

≤k such that
⋃

m∈N

Fm ∈ B.

Define Gn = Fn, if n ∈ N and take Gn ∈ [An]
≤ f (n) arbitrarily, for n ∈ ω∖N. Then

⋃
n∈N

Fn ⊆⋃
n∈ω

Gn. So, by (P2),
⋃

n∈ω Gn ∈ B. Therefore, (1) is true.

Now, the case where f is unbounded:

Proposition 3.5. Let A and B be classes of families of subsets of a set X and an unlimited
function f : ω → ω∖{0}. Suppose that B satisfies property (P2). The following statements are
equivalent:

1. S f (A ,B) holds;

2. SS(A ,B) holds.
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Proof. (1) ⇒ (2). Let ⟨An : n ∈ ω⟩ be a sequence of elements of A . There is an increasing
sequence ⟨km : m ∈ ω⟩ such that for all m ∈ ω , f (m)≤ km+1. Consider the sequence ⟨Akm : m ∈
ω⟩. By (1), for all m ∈ ω , there is an Fkm ∈ [Akm ]

≤ f (m) such that
⋃

m∈ω

Fkm ∈ B.

Define Gn = Fn, if n ∈ M := {km : m ∈ ω} and take Gn ∈ [An]
≤n+1 arbitrarily, for n ∈

ω∖M. Then
⋃

n∈ω∖M

Fn ⊆
⋃

n∈ω

Gn. So, by (P2),
⋃

n∈ω Gn ∈ B. Therefore, (2) is true.

(2)⇒ (1). Let ⟨An : n ∈ ω⟩ be a sequence of elements in A . As f is unlimited, we can
obtain an increasing sequence ⟨km : m ∈ ω⟩ such that, for all m ∈ ω , m+1 ≤ f (km). Consider the
sequence ⟨Akm : m ∈ ω⟩. By (2), for all m ∈ ω , there is Fkm ∈ [Akm]

≤m+1 such that
⋃

m∈ω

Fkm ∈ B.

Define Gn = Fn, if n ∈ M := {km : m ∈ ω} and take Gn ∈ [An]
≤ f (n) arbitrarily, for

n ∈ ω∖M. Then
⋃

n∈ω∖M

Fn ⊆
⋃

n∈ω

Gn. So, by (P2),
⋃

n∈ω Gn ∈ B. Therefore, (1) is true.

Let f : ω → (ω∖{0,1})∪{ℵ0} be a function. It is natural to consider the following
selection principle S<f (A ,B), defined as follows: for all sequences ⟨An : n ∈ ω⟩ in A , there is
an Fn ∈ [An]

< f (n), for all n ∈ ω , such that
⋃

n∈ω

Fn ∈ B. In the presence of properties (P1) and

(P2), this selection principle collapses to the classical selection principles.

Proposition 3.6. Let A and B be classes of families of subsets of a set X and let f : ω →
(ω∖{0})∪{ℵ0} be a function such that the set W = {n ∈ ω : f (n) = ℵ0} is finite. Suppose that
B satisfies properties (P1) and (P2). The following statements are equivalent:

1. S<f (A ,B) holds;

2. Sh(A ,B) holds, where a function h : ω → ω∖{0} satisfies h(m) = f (m)− 1, for all
m ∈ ω∖W

Proof. (1)⇒ (2). Let ⟨An : n ∈ ω⟩ be a sequence of elements in A . By (1), for all n ∈ ω , there
is Fn ∈ [An]

< f (n) such that
⋃

n∈ω

Fn ∈ B. So, by (P1),
⋃

n∈ω∖W

Fn ∈ B.

Now, define Gn = Fn, if n ∈ ω∖W and take Gn ∈ [An]
≤h(n) arbitrarily for n ∈W . Then⋃

n∈ω∖H

Fn ⊆
⋃

n∈ω

Gn. So, by (P2),
⋃

n∈ω Gn ∈ B. Therefore, (2) is true.

(2) ⇒ (1). Let ⟨An : n ∈ ω⟩ be a sequence of elements in A . Consider the sequence
⟨Am : m ∈ ω∖W ⟩. By (2), for all m ∈ ω∖W , there is Fm ∈ [Am]

≤h(m) such that
⋃

m∈ω∖W

Fm ∈ B.

Define Gn =Fn, if n∈ω∖W and take Gn ∈ [An]
<ℵ0 arbitrarily, for n∈W . Then

⋃
n∈ω∖W

Fn ⊆⋃
n∈ω

Gn. So, by (P2),
⋃

n∈ω Gn ∈ B. Therefore, (1) is true.
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We also have the case where W is infinite:

Proposition 3.7. Let A and B be classes of families of subsets of a set X , and let f : ω →
(ω∖{0})∪{ℵ0} be a function such that the set W = {n ∈ ω : f (n) = ℵ0} is infinite. Suppose
that B satisfies property (P2). The following statements are equivalent:

1. S<f (A ,B) holds;

2. S f in(A ,B) holds.

Proof. (1)⇒ (2). It is clear.

(2) ⇒ (1). Let ⟨An : n ∈ ω⟩ be a sequence of elements in A . Consider the sequence
⟨Am : m ∈W ⟩. By (2), for all m ∈W , there is an Fm ∈ [Am]

<ℵ0 such that
⋃

m∈W

Fm ∈ B.

Define Gn =Fn, if n∈W and take Gn ∈ [An]
< f (n) arbitrarily, for n∈ω∖W . Then

⋃
n∈W

Fn ⊆⋃
n∈ω

Gn. So, by (P2),
⋃

n∈ω

Gn ∈ B. Therefore, (1) is true.

From the results obtained previously, it follows that, in the study of the selection principles
for classes A and B, with B satisfying (P1) and (P2), we can restrict ourselves, for now on, to
the study of the selection principles S1, Sk, with k ∈ ω∖{0}, SS and S f in.

On the other hand, in (AURICHI; DUZI, 2021) the following selection principle has
been defined:

Definition 3.8. Let A and B be classes of families of subsets of a set X . Sbnd(A ,B) is the
following selection principle: for all sequences ⟨An : n ∈ ω⟩ of elements in A , there is a sequence
⟨Bn : n ∈ ω⟩ and k ∈ ω∖{0} such that for all n ∈ ω , Bn ∈ [An]

<ℵ0 , |Bn| ≤ k and
⋃

n∈ω

Bn ∈ B.

For classes B with properties (P1) and (P2), we can also obtain the following implica-
tion:

Proposition 3.9. Let A e B be classes of families of subsets of a set X . Suppose that B has
properties (P1) and (P2). If Sbnd(A ,B) holds, then SS(A ,B) holds.

Proof. Let ⟨An : n ∈ ω⟩ be a sequence of elements in A . By hypothesis, there is k ∈ ω∖{0} and,
for all n ∈ ω , there is Bn ∈ [An]

<ℵ0 such that |Bn| ≤ k and
⋃

n∈ω

Bn ∈ B. By (P1), it follows that⋃
n≥k−1

Bn ∈B. Define Gn = Bn, for n ≥ k−1 and take Gn ∈ [An]
≤n+1 arbitrarily for 0 ≤ n < k−1.

So
⋃

n≥k−1

Bn ⊆
⋃

n∈ω

Gn. By (P2), it follows that
⋃

n∈ω

Gn ∈ B. Therefore, SS(A ,B) is true.

In summary, we have:
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Proposition 3.10. Let (X ,τ) be a topological space, A and B be classes of families of subsets of
X , with B satisfying the properties (P1) and (P2). Then, if f : ω →ω∖{0} is a bounded function,
k = limsup

n∈ω

f (n) and h : ω → ω∖{0} is an unbounded function, the following implications are

true:

S1(A ,B)⇒ S f (A ,B)⇔ Sk(A ,B)⇒ Sbnd(A ,B)⇒ SS(A ,B)⇔ Sh(A ,B)⇒ S f in(A ,B).

We can see that the properties (P1) and (P2) are sufficient conditions for us to obtain
equivalences as the ones we got before. Later, we will see that these conditions are not a necessary
condition for obtaining equivalences.

Problem 3.11. What conditions, including conditions (P1) and (P2), are necessary and sufficient
in A and B to obtain the equivalences mentioned here?

3.2 Some specific cases

3.2.1 Tightness

Note that in the case of Ωx, the principle S f collapses to S1, but this is possible using a
particular topological property:

Proposition 3.12. (GARCÍA-FERREIRA; TAMARIZ-MASCARÚA, 1995) Let (X ,τ) be a
T1 space, x ∈ X , and let f : ω → ω∖{0} be a limited function. The following statements are
equivalent:

1. S f (Ωx,Ωx) holds;

2. S1(Ωx,Ωx) holds.

Proof. Use Proposition 3.10 and
n⋃

i=1

Fn =
n⋃

i=1

Fn.

In (AURICHI; DUZI, 2021) it was shown that, practically with the same proof as above,
Sbnd(Ωx,Ωx) is equivalent to S1(Ωx,Ωx).

On the other hand, Examples 3.7 and 3.8 in (GARCÍA-FERREIRA; TAMARIZ-MASCARÚA,
1995), show that, if (X ,τ) be a T1 space, x ∈ X and A = B = Ωx, there are three different types
of selection principles: S1(Ωx,Ωx), SS(Ωx,Ωx) and S f in(Ωx,Ωx).

3.2.2 Open covers

Note that the family OX , for a topological space (X ,τ), does not satisfy the property
(P1). But we see that most variations collapse to S1(OX ,OX). We include the following proof
for the interest of the reader:
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Proposition 3.13. (GARCÍA-FERREIRA; TAMARIZ-MASCARÚA, 1995) Let (X ,τ) be a
topological space and let f : ω → ω∖{0} be a function. The following statements are equivalent:

1. S f (OX ,OX) holds;

2. S1(OX ,OX) holds.

Proof. (2)⇒ (1). It is clear from the Observation 2.13.

(1)⇒ (2). Let ⟨Un : n ∈ ω⟩ be a sequence of elements in OX . Define

V0 =


f (0)−1⋂

i=0

Ui : Ui ∈ Ui, 0 ≤ i ≤ f (0)−1


and, for n ≥ 1,

Vn =


∑

n
j=0 f ( j)−1⋂

i=∑
n−1
j=0 f ( j)

Ui : Ui ∈ Ui,
n−1

∑
j=0

f ( j)≤ i ≤
n

∑
j=0

f ( j)−1

 .

So ⟨Vn : n ∈ ω⟩ is a sequence of elements in OX . By (1), for all n ∈ ω , there is an
Fn ∈ [Vn]

≤ f (n) such that
⋃

n∈ω

Fn ∈ OX . We can suppose that

F0 = {Hi : 0 ≤ i ≤ f (0)−1}

and, for n ≥ 1,

Fn =

{
Hi :

n−1

∑
j=0

f ( j)≤ i ≤
n

∑
j=0

f ( j)−1

}
.

From the definition of the families Vn it follows that for all n ∈ ω , there is Un ∈ Un such
that Hn ⊆Un. Then

⋃
n∈ω

(⋃
Fn

)
⊆
⋃

n∈ω

Un. Therefore, {Un : n ∈ ω} ∈ OX .

Observation 3.14. Note that for a topological space (X ,τ), Proposition 3.6 is still valid. Indeed,
just ignore all the n ∈W innings, do as in the previous proof, and finally add open sets in the
n ∈W innings.

Observation 3.15. Any topological space (X ,τ) that is σ -compact is such that S f in(OX ,OX)

holds. Indeed, let ⟨Un : n ∈ ω⟩ be a sequence of elements in OX and X =
⋃

n∈ω

Cn, with all Cn’s

compact. So, for all n ∈ ω , there is Fn ∈ [Un]
<ℵ0 such that Cn ⊆

⋃
Fn. Then

⋃
n∈ω

Fn ∈ OX .

Note that II ↑ GOR(R) (just note that, in all inning n ∈ ω , Player II chooses an open
interval with length 1

2n , the union of all intervals cannot cover R.). So, by Corollary 2.55, player
I ↑ G1(OR,OR). Then, according to the previous observation and Theorem 2.23, S f in(OR,OR)

holds, but S1(OR,OR) fails.
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Furthermore, in (AURICHI; DUZI, 2021) it is observed that in any compact space
(X ,τ), Sbnd(OX ,OX) is true, but in the space 2ω (that is, the countable product of discrete space
2 := {0,1}) S1(O2ω ,O2ω ) fails, and in R, S f in(OR,OR) is true but Sbnd(OR,OR) fails.

So, for a topological space (X ,τ) and A = B = OX , there are three different selection
principles: S1(OX ,OX), Sbnd(OX ,OX) and S f in(OX ,OX).

3.2.3 Ω-covers

It is clear that the family ΩX satisfies the property (P2). Using Lemma 1 in (SCHEEPERS,
1994) we have that ΩX satisfies property (P1). Then, Propositions 3.6, 3.7, and 3.10 are valid.
The following results provide us with a translation of the selection principle in OX to ΩX .

We begin with the following lemmas:

Lemma 3.16. (SCHEEPERS, 1996) Let (X ,τ) be a topological space. If S1(ΩX ,ΩX) holds,
then S1(ΩXn,ΩXn) holds, for all n ∈ ω∖{0}.

Lemma 3.17. (SCHEEPERS, 1996) Let (X ,τ) be a topological space. If S f in(ΩX ,ΩX) holds,
then S f in(ΩXn,ΩXn) is true for all n ∈ ω∖{0}.

With a few modifications to the proof above, the following result can be obtained:

Lemma 3.18. Let (X ,τ) be a topological space. If Sbnd(ΩX ,ΩX) holds, then Sbnd(ΩXn,ΩXn)

holds for all n ∈ ω∖{0}.

Proof. Fix n ∈ ω∖{0} and let ⟨Um : m ∈ ω⟩ be a sequence of elements in ΩXn . Define, for all
m ∈ ω , Vm = {V ∈ τ : V n ⊆U for some U ∈ Um}. We claim that Vm ∈ ΩX , for all m ∈ ω .

Indeed, let F ∈ [X ]<ℵ0 . As Fn ∈ [Xn]<ℵ0 , it follows that there is an open U ∈ Um such
that Fn ⊂U . Let z = (x1, ...,xn) ∈ Fn. Then, for all i ∈ {1, ...,n}, there are Ui(z) ∈ τ such that

(x1, ...,xn)∈
n

∏
i=1

Ui(z)⊆U . So, for all x ∈ F , consider Ux =
⋂
{Ui(z) : z having x as an element in

the coordinate i ∈ {1, ...,n}} ∈ τ . Consider VF =
⋃
x∈F

Ux ∈ τ . Note that F ⊂VF . So Fn ⊂V n
F ⊆U

and VF ∈ Vm.

It follows that for all m ∈ ω , there are Vm ∈ Vm and k ∈ ω∖{0}, such that |Vm| ≤ k and⋃
m∈ω

Vm ∈ ΩX . Choose, for all m ∈ ω , a set Wm ∈ [Um]
≤k such that there is, for each Z ∈ Vm,

an element W ∈ Wm such that Zn ⊆W . Therefore, we conclude that
⋃

m∈ω Wm ∈ ΩXn . That is,
Sbnd(ΩXn,ΩXn) holds.

With practically the same proof as above, we obtain:

Lemma 3.19. Let (X ,τ) be a topological space and let f : ω → ω∖{0} be a function. If
S f (ΩX ,ΩX) holds, then S f (ΩXn,ΩXn) holds for all n ∈ ω∖{0}.
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From the previous Lemmas 3.16 and 3.17, we have the following results:

Theorem 3.20. (SAKAI, 1988) Let (X ,τ) be a topological space. The following statements are
equivalent:

1. S1(ΩX ,ΩX) holds;

2. S1(OXn,OXn) holds for all n ∈ ω∖{0}.

Theorem 3.21. (JUST et al., 1996) Let (X ,τ) be a topological space. The following statements
are equivalent:

1. S f in(ΩX ,ΩX) holds;

2. S f in(OXn ,OXn) holds for all n ∈ ω .

Using Lemma 3.19, and with few modifications in the proof of the previous theorems,
we can obtain the following result:

Theorem 3.22. Let (X ,τ) be a topological space and let f : ω → ω∖{0} be a function. The
following statements are equivalent:

1. If S f (ΩX ,ΩX) holds, then S f (OXn,OXn) holds, for all n ∈ ω

2. If Sg(OXn,OXn) holds for all n ∈ ω and all infinite subsequences g of f , then S f (ΩX ,ΩX)

holds.

Proof. (1). By the Lemma 3.19, is enough to show the case n = 1.

Indeed, let ⟨Um : m ∈ ω⟩ be a sequence of elements in OX . Re-indexing the sequence
⟨Um : m ∈ ω⟩= ⟨Um,k : m ∈ ω,k ∈ ω∖{0}⟩ and considering g : ω ×ω∖{0}→ ω∖{0} such that
g(m,k) is f (n), where n ∈ ω corresponds to the number, in an order fixed by ω ×ω∖{0}, of the
pair (m,k). Define, for all m ∈ ω and k ∈ ω∖{0},

Vm,2k−1 =

{
2k−1⋃
i=1

Ui : Ui ∈ Um,(k−1)(2k−1)+i

}

and

Vm,2k =

{
2k⋃

i=1

Ui : Ui ∈ Um,(k(2k)−(k−1))+(i−1)

}
.

Define, for all m ∈ ω , Vm =
⋃

k∈ω∖{0}
Vm,k. Let F ∈ [X ]<ℵ0 adm suppose that |F |= r. As

every element of Vm,r is the union of r elements selected from r open covers of X , it follows that
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there is U ∈ Vm,r ⊆ Vm such that F ⊂U . That is, for all m ∈ ω , Vm ∈ ΩX . By hypothesis, for all
m ∈ ω , there is a Wm ∈ [Vm]

≤ f (m) such that
⋃

m∈ω

Wm ∈ ΩX . We suppose that

W0 = {Vi : 0 ≤ i ≤ f (0)−1}

and, for m ≥ 1,

Wm =

{
Vi :

m−1

∑
j=0

f ( j)≤ i ≤
m

∑
j=0

f ( j)−1

}
.

Then there is a ki
0, with Vi ∈ V0,ki

0
, for 0 ≤ i ≤ f (0)− 1, and a ki

m with Vi ∈ Vm,ki
m
, for

m ≥ 1 and
m−1

∑
j=0

f ( j)≤ i ≤
m

∑
j=0

f ( j)−1.

By the definition of the families Vm,k we find that there is F0,ki
0
∈ [U0,li(ki

o)
]≤g(0,li(ki

0)),

for 0 ≤ i ≤ f (0)− 1, and there is Fm,ki
m
∈ [Um,li(ki

m)
]≤g(m,li(ki

m)) for m ≥ 1 and
m−1

∑
j=0

f ( j) ≤ i ≤

m

∑
j=0

f ( j)−1, such that
⋃

W0 =

f (0)−1⋃
i=1

F0,ki
0

and
⋃

Wm =

∑
m
j=0 f ( j)−1⋃

i=∑
m−1
j=0 f ( j)

F0,ki
m

, for m ≥ 1. Therefore,

f (0)−1⋃
i=1

F0,ki
0
∪
⋃

m∈ω

∑
m
j=0 f ( j)−1⋃

i=∑
m−1
j=0 f ( j)

F0,ki
m
∈ OX .

Choosing arbitrary f (m) elements, with m that were not considered in the construction above
and joining them to the previous family, we conclude that (1) is true.

(2). Let ⟨Um : m ∈ ω⟩ be a sequence of elements in ΩX . Re-index the sequence ⟨Um :
m ∈ ω⟩= ⟨Um,n+1 : m,n ∈ ω⟩ and consider g : ω ×ω∖{0}→ ω∖{0} so that g(m,n+1) is f (k),
where k ∈ ω corresponds to the number, in an order fixed by ω ×ω∖{0}, of the pair (m,n+1).

Define, for all m,n ∈ ω , Vm,n+1 = {Un+1 : U ∈ Um,n+1}. We claim that, for all m,n ∈ ω ,
Vm,n+1 ∈OXn+1 . Indeed, let (x1, ...,xn+1)∈ Xn+1. As F = {x1, ...,xn+1} ∈ [X ]<ℵ0 , it follows that
there is U ∈ Um,n+1 such that F ⊂U . So, (x1, ...,xn+1) ∈Un+1.

Since, for all n∈ω , ⟨Vm,n+1 : m∈ω⟩ is a sequence of elements in OXn+1 , by hypothesis it
follows that, for all m∈ω , there is an Fm,n+1 ∈ [Vm,n+1]

≤g(m,n+1) such that
⋃

m∈ω

Fm,n+1 ∈OXn+1 .

Let F ∈ [X ]<ℵ0 . Suppose that F = {x1, ...,xk}, for some k ∈ ω∖{0}.

Since (x1, ..,xk)∈Xk, there is m∈ω such that (x1, ..,xk)∈
⋃

Fm,k. Then (x1, ..,xk)∈Uk,
for some U ∈ Um,k. Then F ⊂U . So⋃

m∈ω

⋃
n∈ω

{U : U ∈ Hm,n+1} ∈ ΩX ,

where Hm,n+1 = {U : Un+1 ∈ Fm,n+1}. Therefore, (2) is true.
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With the previous theorem, Proposition 3.13 and Theorem 3.20, we can obtain the
following result:

Proposition 3.23. Let (X ,τ) be a topological space and let f : ω → ω∖{0} be a function. The
following statements are equivalent:

1. S f (ΩX ,ΩX) holds;

2. S1(ΩX ,ΩX) holds.

On the other hand, note that by Theorem 3.21, S f in(ΩR,ΩR) holds (because, for all
n ∈ ω∖{0}, Rn is σ−compact, and so S f in(ORn,ORn) holds). But, by Theorem 3.20, S1(ΩR,ΩR)

fails (because S1(OR,OR) fails).

Then, by Proposition 3.9 for a topological space (X ,τ) and A = B = ΩX , there are two
selection principles: S1(ΩX ,ΩX) and S f in(ΩX ,ΩX).

3.2.4 Bornologies families

The Proposition 3.23 is also true in a more general way:

Proposition 3.24. (MEZABARBA; AURICHI, 2019) Let (X ,τ) be a topological space, B be
a family of subsets of X , and let f : ω → ω∖{0} be a function. The following statements are
equivalent:

1. S f (O
X
B,O

X
B) holds;

2. S1(O
X
B,O

X
B) holds.

From this result and Theorem 2.39, we can obtain the following results for continuous
function spaces:

Proposition 3.25. Let (X ,τ) be a Tychonoff space, B be a bornology with a compact base, and
let f : ω → ω be a function. The following statements are equivalent:

1. S f (Ωg,Ωg) holds, in CB(X), for all g ∈CB(X);

2. S1(Ωg,Ωg) holds in CB(X), for all g ∈CB(X).

Proposition 3.26. Let (X ,τ) be a Tychonoff space, B be a bornology with compact base, and
let f : ω → ω be a function. The following statements are equivalent:

1. S f (DCB(X),Ωg) is true in CB(X), for all g ∈CB(X);

2. S1(DCB(X),Ωg) is true in CB(X), for all g ∈CB(X).
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3.2.5 Dense subsets

To consider the case A =B =DX , with (X ,τ) being a topological space, we can assume
the following restrictions:

(1) If X has a dense non-countable subset D, with the property that no countable subset of it
is dense, then S f in(DX ,DX) fails (consider the constant sequence D). Therefore, we can
always assume that all dense subsets of X have a countable dense subset.

(2) Let I be the set of all isolated points of X . Note that I ⊆ D, for all D ∈ DX . When
considering (1), it follows that I is countable. If I is dense, then S f in(DX ,DX) is always
true because for any sequence in DX just take, in any inning n ∈ ω , an element of I

different from the previous one. Then we can assume that I is not dense. Therefore, X∖I is
an open, non-empty subset of X .

(3) Finally, note that S f in(DX ,DX) holds if and only if S f in(DX∖I,DX∖I) holds (Indeed, this
result is true for any open non-empty subset of X). Therefore, we can assume that X has
no isolated points.

We will start with the following equivalence:

Theorem 3.27. (BARMAN; DOW, 2011) Let (X ,τ) be a separable space. The following state-
ments are equivalent:

1. S f in(DX ,DX) holds;

2. S f in(DX ,Ωx) holds, for all x ∈ X .

Again, without much complication and without changing the proof of the previous
theorem, we obtain the following result.

Theorem 3.28. Let (X ,τ) be a separable space and let f : ω → ω∖{0} be an increasing function.
The following statements are equivalent:

1. S f (DX ,DX) holds;

2. S f (DX ,Ωx) holds for all x ∈ X .

We can prove an analogous result of Theorem 3.12, for the family of dense subsets:

Theorem 3.29. Let (X ,τ) be a separable space and k ∈ ω∖{0,1} The following statements are
equivalent:

1. Sk(DX ,DX) holds;
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2. S1(DX ,DX) holds.

Observation 3.30. Note that if X is not separable, none of the selection principle is satisfied.

Proof. It is sufficient to prove (1)⇒ (2).

Let ⟨Dn : n ∈ ω⟩ be a sequence of elements in DX . Consider the subsequence ⟨D2m :
m ∈ ω⟩. By (1), there is a sequence ⟨F2m : m ∈ ω⟩ such that, for all m ∈ ω , F2m ∈ [D2m]

≤k and⋃
m∈ω

F2m ∈ DX .

Denote for {am : m ∈ ω}, with am ∈ F2m, the set of elements arbitrarily chosen to satisfy
(2), and let {bm : m ∈ ω} be an enumeration of the remaining elements of the sets F2m, for all
m ∈ ω .

Consider {pm : m ∈ ω} an increasing enumeration of prime numbers minus 2. Consider
the sequence ⟨Dpi

0
: i ∈ ω⟩. Using (1) and Theorem 3.28, it follows that there is a sequence

⟨Fpi
0

: i ∈ ω⟩ such that, for all i ∈ ω , Fpi
0
∈ [Dpi

0
]≤k and

⋃
i∈ω

Fpi
0
∈ Ωb0 .

We can suppose that, for all i ∈ ω , Fpi
0
= {c j

0,i : 1 ≤ j ≤ k}. Consider, for any 1 ≤ j ≤ k,

the sets C j
0 = {c j

0,i : i ∈ ω}. So,

⋃
i∈ω

Fpi
0
=

k⋃
j=1

C j
0

As b0 ∈
⋃
i∈ω

Fpi
0
=

k⋃
j=1

C j
0 =

k⋃
j=1

C j
0, we see that there is a j0 ∈ {1, ...,k} such that b0 ∈C j0

0 .

Analogously, for m ≥ 1, consider the sequence ⟨Dpi
m

: i ≥ 1⟩. Using (1) and Theorem
3.28 again, it follows that there is a sequence ⟨Fpi

m
: m ≥ 1⟩ such that for all i ≥ 1, Fpi

m
∈ [Dpi

m
]≤k

and
⋃
i≥1

Fpi
m
∈ Ωbm . We can assume that for all i ≥ 1, Fpi

m
= {c j

m,i : 1 ≤ j ≤ k}.

Consider the sets, for all 1 ≤ j ≤ k, C j
m = {c j

m,i : i ≥ 1}. So,

⋃
i≥1

Fpi
m
=

k⋃
j=1

C j
m

As bm ∈
⋃
i≥1

Fpi
m
=

k⋃
j=1

C j
m =

k⋃
j=1

C j
m it follows that there is a jm ∈ {1, ...,k} such that bm ∈C jm

m .

We claim that D = {am : m ∈ ω}
⋃( ⋃

m∈ω

C jm
m

)
∈ DX . Indeed, let U be a nonempty

element in τ . Since
⋃

m∈ω

F2m ∈ DX , it follows that there is m ∈ ω such that am ∈U , or there is

m′ ∈ ω such that bm′ ∈U .
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If the first case happens, we are done. If it is the second case, it follows that U ∩C jm′
m′ ̸= /0

because bm′ ∈C jm′
m′ . In any case, we conclude that U ∩D ̸= /0. So D ∈ DX . We conclude that (2)

is satisfied.

Since we assume that the topological spaces (X ,τ) considered have no isolated points, it
follows that DX satisfies the properties (P1) and (P2), if (X ,τ) is at least T1. (For T0 spaces this
is not true: for example, if R is equipped with the topology {(−n,n) : n ∈ N}∪{R}. This space
has no isolated points, but D = {0} is dense).

Therefore Proposition 3.10 is valid in this case. Additionally, with a few modifications in
Theorem 3.29, we can obtain that S1(DX ,DX) is equivalent to S f (A ,B), with f : ω → ω∖{0}
be a limited function.

By Proposition 3.26 and Theorem 3.28, we can obtain the following result:

Proposition 3.31. Let (X ,τ) be a separable metric space, B be a bornology with a compact
basis, and let f : ω → ω∖{0} be an increasing function. The following statements are equivalent:

1. S f (DCB(X),DCB(X)) hols in CB(X);

2. S1(DCB(X),DCB(X)) is true in CB(X).

Example 3.32. (BONANZINGA et al., 2014) We have already seen that S f in(ΩR,ΩR) holds,
but S1(ΩR,ΩR) fails.

Since R is a separable metric space, from Theorems 2.35, 2.36, 2.46 and 2.47 it follows
that S f in(DCp(R),DCp(R)) holds; but S1(DCp(R),DCp(R)) fails.

Another example is given in (BELLA; BONANZINGA; MATVEEV, 2009), and a direct
proof that the selection principle S1(DX ,DX) fails is given in (CAMARGO; UZCÁTEGUI, 2018).
The specific space is X =CL(2ω), the set of all clopen subsets of 2ω , when this is considered as
a subset of 22ω

.

Note that by Proposition 3.31, SS(DCp(R),DCp(R)) also fails.

Example 3.33. Consider the set X = ω ×ω . We provide X with a topology τ whose basic open
sets are of the form:

VH = X∖
⋃

h∈H

{(n,h(n)) : n ∈ ω}, where H ∈ [ωω]<ℵ0 .

Note that (X ,τ) is a T1 space, but it is not a Hausdorff space.

We have that S1(DX ,DX) fails. Indeed, note that, for all n ∈ ω , Dn = {(n,m) : m ∈ ω} ∈
DX . Then consider the sequence ⟨Dn : n ∈ ω⟩ of elements in DX . So, for all n ∈ ω , for any
choice dn = (n,kn) ∈ Dn, we have {dn ∈ ω} /∈ DX (taking H = {g}, where g is a function given
by g(n) = kn, it follows that VH ∩{dn : n ∈ ω}= /0).
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On the other hand, SS(DX ,DX) holds. This follows directly from the following observa-
tion:

Observation 3.34. For D ⊆ X , we have D ∈DX if and only if, for all n ∈ ω∖{0}, there is kn ∈ ω

such that |D∩Ckn |> n, where Cn = {(n,m) : m ∈ ω}. Indeed, for sufficiency, suppose otherwise.
Then, there is an n ∈ ω∖{0} such that for all k ∈ ω , |D∩Ck| ≤ n. Note that we can assume that
D∩Ck = {ci

k : 1 ≤ i ≤ n}. Define, for all 1 ≤ i ≤ n, the function fi : ω → ω given by fi(k) = ci
k.

Consider the finite set H = { fi : ω → ω : 1 ≤ i ≤ n}. Then D∩VH = /0, that is, D /∈ DX .

Reciprocally, let VH be a basic open with H ∈ [ωω]<ℵ0 . Suppose that |H|= m ∈ ω∖{0}.
Then, there is a km ∈ ω such that |D∩Ckm|> m. So D∩VH ̸= /0. Since this is true for an arbitrary
open basic, we conclude D ∈ DX .

Then, let ⟨Dn : n ∈ ω⟩ be a sequence of elements in DX . Based on the previous obser-
vation, for all n ∈ ω , we can chooses Fn ∈ [Dn ∩Ckn+1]

n+1 . We claim that
⋃

n∈ω

Fn ∈ DX . Indeed,

let VH be an element of τ , with H ∈ [ωω]<ℵ0 . Suppose that |H| = m ∈ ω∖{0}. It is clear that
|F2m ∩{(k2m, f j(k2m)) : 1 ≤ j ≤ m}| ≤ m. Since |F2m| = 2m, it follows that F2m ∩VH ̸= /0. We
conclude that SS(DX ,DX) holds. Note that, by a similarly argument in the case of S1(DX ,DX),
we obtain that Sbnd(DX ,DX) fails.

Therefore, for a T1 space (X ,τ) and A = B = DX , there are three different selection
principles: S1(DX ,DX), SS(DX ,DX), and S f in(DX ,DX). Is still a open question if Sbnd(DX ,DX)

is different or not of S1(DX ,DX).
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Class (P1) (P2)
Propositions
3.6, 3.7

Proposition
3.10

Additional Im-
plications

Ωx (if X is
T1)

( ×:
Consider
X = {a,b,c}
and τ =
{ /0,X ,{a},{c},
{a,c},{a,b}})

S f =⇒ S1,
with f limited
((GARCÍA-
FERREIRA;
TAMARIZ-
MASCARÚA,
1995)).

OX

× (Consider
a open cover
{{x} : x ∈ X}
in a not unitary
discrete space
X)

(proof of
Proposition
3.6 is the
same of
Proposition
3.13)

× (because
is not valid
the Proposi-
tion 3.9)

S f =⇒ S1,
f function
((GARCÍA-
FERREIRA;
TAMARIZ-
MASCARÚA,
1995)).

ΩX
((SCHEEP-

ERS, 1994))

S f =⇒ S1,
f function
(Proposition
3.23)

KX

S f =⇒ S1,
f func-
tion.(Theorem
4.9)

OX
B

S f =⇒ S1,
f function.
((MEZ-
ABARBA;
AURICHI,
2019))

ΛX

S f =⇒ S1
(because that
principles are
equivalent
to selection
principle in the
case of open
covers)

ΓX

× (In R be
can obtain a el-
ement in ΓX
such that with
additional ele-
ments it not in
ΓX )

(It is
implication
of the
additional
implica-
tion)

(It is
implication
of the
additional
implica-
tion)

S f in =⇒ S1
((SCHEEP-
ERS, 1996))

DX (if X is
T1)

Sk =⇒ S1
(Theorem
3.29)
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CHAPTER

4
EQUIVALENCES IN GAME VARIATIONS FOR
DENSE CLASSES IN SPACES OF THE FORM

Ck(X)

In (AURICHI; BELLA; DIAS, 2018) it is investigated the difference between certain
selective topological games that involve tightness. In that work, the following problem was
proposed:

Problem 4.1 (((AURICHI; BELLA; DIAS, 2018), Problem 4.4.)). What can be said about the
relation between the various games Gk(A ,B), G f (A ,B) and G f in(A ,B)-and their associated
selective properties- for other pairs (A ,B)?

In Chapter 3, we have already seen some relationship between the variation of some
selection principles towards Problem 4.1. In this chapter, we focus on the relations of some
selective topological games with other classes A , B, and we obtain an equivalence result in the
case A = B = DX .

We begin by presenting the version of Theorem 3.27 for games.

Theorem 4.2 ((CLONTZ, 2019)). Let (X ,τ) be a separable space. The following statements are
equivalent:

1. II ↑ G f in(DX ,DX);

2. II ↑ G f in(DX ,Ωx), for all x ∈ X .

With a few modifications to the proof of the previous theorem, we can also obtain a weak
version of Theorem 3.28 for games:

Theorem 4.3. Let (X ,τ) be a separable space and let f : ω → ω∖{0} be an increasing function.
The following statements are equivalent:
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1. II ↑ G f (DX ,DX);

2. II ↑ G f (DX ,Ωx), for all x ∈ X .

Proof. It is sufficient to prove (2)⇒ (1).

To show that, consider a dense subset {di : i ∈ ω} of X . For all i ∈ ω , let σi : <ωDX →
[
⋃

DX ]
<ℵ0 be a winning strategy for Player II in G f (DX ,Ωdi).

Let {Ai : i ∈ ω} be a partition of ω in infinite subsets. Given a finite sequence t =

⟨D0, ..,Dn⟩ ∈ <ωDX , we define

ρ(t) = σi(t ′),

where i ∈ ω is such that n ∈ Ai and t ′ is a subsequence of t obtained by removing all elements
with index not belonging to Ai. As the latest elements of t and t ′ are the same and f is increasing,
ρ : <ωDX → [

⋃
DX ]

<ℵ0 define a strategy for Player II in G f (DX ,DX).

We claim that ρ is a winning strategy. Indeed, consider the following play in G f (DX ,DX):

⟨D0,ρ(D0),D1,ρ(D0,D1), ...,Dn,ρ(D0, ...,Dn), ...⟩.

For all i ∈ ω , consider an increasing enumeration Ai = {mi
k : k ∈ ω}. So,

⟨Dmi
0
,σi(Dmi

0
), ...,Dmi

k
,σi(Dmi

0
, ...,Dmi

k
), ...⟩,

is a play in G f (DX ,Ωdi). As σi is a winning strategy, it follows that

di ∈
⋃

k∈ω

σi(Dmi
0
, ...,Dmi

k
)⊆

⋃
n∈ω

ρ(D0, ...,Dn)

Then,

X = D ⊆
⋃

n∈ω

ρ(D0, ...,Dn).

Therefore, II ↑ G f (DX ,DX).

4.1 Hurewicz’s and Pawlikowski’s Theorems versions for
OX

B

In (SZEWCZAK; TSABAN, 2020) conceptual proofs of the Hurewicz and Pawlikowski
theorems are obtained. These results can be generalized to a more general form.

First, we will need the following definition:

Definition 4.4. A countable B-cover U is called a B-tail cover if the family of intersections of
cofinite subsets of U is a B-cover of X .
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Equivalently, U = {Ui : i ∈ ω} ∈ OX
B is a B-tail cover if and only if the family{

∞⋂
i=k

Ui : k ∈ ω

}
∈ OX

B.

Theorem 4.5. Let (X ,τ) be a topological space and B be a family of subsets of X . The following
statements are equivalent:

1. S f in(O
X
B,O

X
B) holds;

2. I ̸↑ G f in(O
X
B,O

X
B).

Proof. It is sufficient to prove the implication (1)⇒ (2).

Let σ : <ω [
⋃

OX
B]

<ℵ0 →OX
B be a strategy for Player I in G f in(O

X
B,O

X
B). We can assume

that, for any k ∈ ω and using the strategy σ , Player II fails to cover X with the choices made
until round k (otherwise, Player II wins, so σ is not a winning strategy).

Furthermore, we can assume that the strategy σ chooses countable and increasing families
in OX

B (the first statement is based on the fact that S f in(O
X
B,OX

B) is valid, the second statement
is satisfies by the property (P2) on the page (37)).

Also, we can suppose that Player II chooses a single element in each inning (because if
Player II chooses finitely many elements, we can instead consider that he chooses the union of
those elements).

Note that for any reply {Ui : i ∈ ω} ∈ OX
B made with the strategy σ to the choice U of

Player II, we can suppose U =U0. Indeed, note that {U,U ∪U0,U ∪U1, ...} ∈ OX
B. Then, if U

is the element chosen by Player II of the family {U,U ∪U0,U ∪U1, ...}, we suppose that U0 is
the element chosen by Player II of the initial family {Ui : i ∈ ω}. On the other hand if for some
n ∈ ω , U ∪Un is the element chosen by Player II, then we suppose that Un is the element chosen
by Player II in the initial family. As the union, in both cases of the definition of the strategy for
Player II, does not vary, we obtain the result.

Denote by
σ( /0) = U /0 = {U⟨n⟩ : n ∈ ω} ∈ OX

B.

If U⟨n1⟩ is the element chosen by Player II, denote by

σ(⟨U⟨n1⟩⟩) = U⟨n1⟩ =U⟨n1,n⟩ : n ∈ ω} ∈ OX
B.

In general, if Uρ is a choice made by Player II, with ρ ∈ kω and k ≥ 1, denote by

σ(⟨Uρ�1,Uρ�2, ...,Uρ�k⟩) = Uρ = {Uρ_n : n ∈ ω} ∈ OX
B.

We define V0 = U /0 and, for n ≥ 1, Vn =
⋃

ρ∈ nω

Uρ . We claim that Vn is a B-tail cover for any

n ∈ ω . Indeed, note that
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{
∞⋂

i=n

Ui : n ∈ ω

}
= V0 ∈ OX

B.

So V0 is a B-tail cover.

Suppose that for any n ≥ 0, Vn is a B-tail cover. Now, we claim that Vn+1 is a B-tail
cover. Indeed, consider the enumerations Vn = {Vm : m ∈ ω} and

Vn+1 =
⋃

ρ∈ n+1ω

Uρ =
∞⋃

m=0

{V⟨m,k⟩ : k ∈ ω},

with Vm =V⟨m,0⟩ ⊆V⟨m,1⟩ ⊆ ...

Let V be a co-final subset of Vn+1. For all m ∈ ω , let km be the minimum in ω such that
V⟨m,km⟩ ∈ V . So, for each m ∈ ω ,

⋂
(V ∩{V⟨m,k⟩ : k ∈ ω}) =V⟨m,km⟩. Furthermore, because V is

co-finite, we have km = 0, for all but finitely many natural numbers m. Consider I = {m ∈ ω :
km = 0}, which will be co-final. So⋂

V =
⋂
(V ∩{V⟨m,k⟩ : k ∈ ω}) =

⋃
m∈ω

V⟨m,km⟩ =
⋂
m∈I

Vm ∩
⋂

m∈ω∖I

V⟨m,km⟩.

Since Vn is a B-tail cover, it follows that
⋂
k∈I

Vk is open, and then
⋂

V is open.

Now, let B ∈B. Since Vn is a B-tail cover, the set J = {m ∈ ω : B ⊂ Vm} is co-finite.
For all m ∈ ω∖J, let km ∈ ω be the minimum number such that B ⊂V⟨m,km⟩. Then

B ⊂
⋂

m∈J

Vm ∩
⋂

m∈ω∖J

V⟨m,km⟩.

This implies that Vn+1 is a B-tail cover, because we see that any co-finite intersection
has the form of the last statement.

For any n ∈ ω , we denote by V ′
n the family of intersections of co-finite segments of Vn.

Applying S f in(O
X
B,O

X
B) to the sequence ⟨V ′

n : n ∈ ω⟩, there is, for any n ∈ ω , a Wn ∈ [V ′
n ]

<ℵ0

and kn ∈ ω∖{0} such that |Wn|= kn and
⋃

n∈ω

Wn ∈OX
B. Then, there are, for n ∈ ω and 1 ≤ j ≤ kn,

co-final families W ′
j of Vn such that

⋂
W ′

j is an element in Wn.

Finally, for any n ∈ ω and 1 ≤ j ≤ kn, let Wj ∈ W ′
j ∩Uρ be an arbitrary element, with

ρ ∈ nω . In each round n ∈ ω , Player II chooses U ′
n = {Wj : 1 ≤ j ≤ kn}. If B ∈B, there is a

V ∈
⋃

n∈ω

Wn such that B ⊂V =
⋂

W ′
j , for any 1 ≤ j ≤ km and m ∈ ω . So, we see that Player II

wins the game G f in(O
X
B,O

X
B). Therefore, I ̸↑ G f in(O

X
B,O

X
B).

We can use the previous result to obtain the following:

Proposition 4.6. Let (X ,τ) be a topological space such that S f in(O
X
B,O

X
B) holds, where B is a

family of subsets of X . Then, for any strategy σ for Player I in G f in(O
X
B,O

X
B), there is a play

⟨U0,F0,U1,F1, ...⟩
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following the strategy σ such that for all B ∈B, B ⊂ Um, with Um ∈ Fm, for infinitely many
m ∈ ω .

Proof. Fix a strategy σ : <ω
(
[
⋃

OB]
<ℵ0
)
→ OB for Player I in G f in(O

X
B,O

X
B). For all n ∈ ω ,

denote Xn as the topological space X ×{n} equipped with the topology τn = {U ×{n} : U ∈ τ}.
Then, for any n ∈ ω , S f in(O

Xn
Bn

,OXn
Bn

) is true, where Bn = {B×{n} : B ∈B}.

Consider Y =
⋃

n∈ω

Xn = X ×ω , equipped with the topology generated by
⋃

n∈ω

τn. Then,

S f in(O
Y
C ,O

Y
C ) holds, where C =

⋃
n∈ω

Bn (We can divide a sequence ⟨Un : n ∈ ω⟩ in OY
C into

infinitely many disjoint subsequences. Therefore, use each subsequence to obtain a Bn-cover,
for all n ∈ ω).

Let us define a strategy ϕ for Player I in the game G f in(O
Y
C ,O

Y
C ). Let σ( /0)∈OX

B. Define:

ϕ( /0) = {U ×{n} : U ∈ σ( /0),n ∈ ω} ∈ OY
B.

Suppose that Player II chooses F̃0 ∈ [ϕ( /0)]<ℵ0 . Then, there is a k0 ∈ ω such that

F̃0 =
{

U0
j ×{n0

j} : 0 ≤ j ≤ k0
}
.

Define F0 =
{

U0
j : 0 ≤ j ≤ k0

}
∈ [σ( /0)]<ℵ0 . Consider σ(⟨F0⟩) ∈ OX

B. So, define:

ϕ(⟨F̃0⟩) = {U ×{n} : U ∈ σ(⟨F0⟩),ni ∈ ω} ∈ OY
B.

Suppose that Player II chooses F̃1 =
{

U1
j ×{n1

j} : 0 ≤ j ≤ k1
}

, for some k1 ∈ω . Define

F1 =
{

U1
j : 0 ≤ j ≤ k1

}
, and so on in all the next innings. By the previous theorem, it follows

that there is a play
⟨ϕ( /0),F̃0,ϕ(⟨F̃0⟩),F̃1,ϕ(⟨F̃0,F̃1⟩), ...⟩

in G f in(O
Y
C ,O

Y
C ), such that

⋃
n∈ω

F̃n ∈ OY
C .

Consider the respective play

⟨σ( /0),F0,σ(⟨F0⟩),F1,σ(⟨F0,F1⟩), ...⟩

in G f in(O
X
B,O

X
B). Let B ∈B. There is m0 ∈ ω , such that B×{0} ⊂ Am0 , with Am0 ∈ F̃m0 . Then

Am0 =Um0
j0 ×{0}, with 0 ≤ j0 ≤ k0. Put U0 =Um0

j0 ∈ Fm0 . Then B ⊂U0.

Now, consider:

F0 =

{
k ∈ ω : there is U such that U ×{k} ∈

m0⋃
i=0

F̃i

}
.

Choose the first natural number n1 such that n1 > maxF . Consider B×{n1}. Then, there
is m1 ∈ ω such that B ⊂Um1 , with Um1 =Um1

j1 ∈ Fm1 and 0 ≤ j1 ≤ km1 . Note that m0 < m1.
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Consider

F1 =

{
k ∈ ω : there is U such that U ×{k} ∈

m1⋃
i=0

F̃i

}

and choose the first natural number n2 such that n2 > maxF2. Then, there is m2 ∈ ω such that
B ⊂Um2 , with Um2 ∈ Fm2 . Continuing in this same way, we obtain the result.

Additionally, we state the following result.

Lemma 4.7. Let (X ,τ) be a topological space such that S1(O
X
B,O

X
B) holds. Let {Fn}n∈ω be a

finite non-empty open families satisfying that, for all B∈B, we have that B⊂Um, with Um ∈Fm,
for infinitely many m ∈ ω . Then, for all n ∈ ω there is Un ∈ Fn such that {Un : n ∈ ω} ∈ OX

B.

Proof. For any n∈ω , define Vn as the family of all intersections of n elements taken from distinct
elements of the families Fn. By hypothesis, for all n ∈ ω , Vn ∈ OX

B. Then, by S1(O
X
B,O

X
B), it

follows that for all n ∈ ω , there is a Vn ∈ Vn such that {Vn : n ∈ ω} ∈ OX
B.

Since each Vn is the intersection of n elements taken from distinct elements of the families
Fn, we obtain a unique element of infinitely many Fn. Taking arbitrary elements from Fn that
were not considered in the previous choice, we conclude the result.

For all k ∈ ω and families U1, ...,Uk, we define

U1 ∧ ...∧Uk := {U1 ∩ ...∩Uk : U1 ∈ U1, ...,Uk ∈ Uk}.

Theorem 4.8. Let (X ,τ) be a topological space and B be a family of subsets of X . The following
statements are equivalent:

1. S1(O
X
B,O

X
B) holds;

2. I ̸↑ G1(O
X
B,O

X
B).

Proof. It is sufficient to prove the implication (1)⇒ (2). Let σ : <ω
(⋃

OX
B

)
→OX

B be a strategy
for Player I in G1(O

X
B,O

X
B). By hypothesis, we can assume that the choices by σ are countable.

Define
σ( /0) = U /0 = {U⟨n⟩ : n ∈ ω} ∈ OX

B.

If U⟨n1⟩ is the choice of Player II, define

σ(⟨U⟨n1⟩⟩) = U⟨n1⟩ = {U⟨n1,n⟩ : n ∈ ω} ∈ OX
B.

In general, if Uρ is the choice of Player II, with ρ ∈ kω and k ≥ 1, let

σ(⟨Uρ�1,Uρ�2, ...,Uρ�dom(ρ)⟩) = Uρ = {Uρ_n : n ∈ ω} ∈ OX
B.
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Now, we define a strategy for Player I in G f in(O
X
B,O

X
B) as follows. We begin by defining

ϕ( /0) = σ( /0) ∈ OB. Suppose that Player II chooses F0 ∈ [ϕ( /0)]<ℵ0 . Let m0 be the minimum
element in ω such that F0 ⊆ {U⟨0⟩, ...,U⟨m0⟩}. Then, define

ϕ(⟨F0⟩) = U⟨0⟩∧ ...∧U⟨m0⟩ ∈ OX
B.

Suppose that Player II chooses F1 ∈ [ϕ(⟨F0⟩)]<ℵ0 . Let m1 be the minimum element in
ω such that for all k ≤ m0, F1 is a refinement of {U⟨k,0⟩, ...,U⟨k,m1⟩}. For ρ,λ ∈ nω we write
ρ ⪯ λ if ρ(i)≤ λ (i), for all 0 ≤ i ≤ n. Define

ϕ(⟨F0,F1⟩) =
∧

ρ⪯⟨m0,m1⟩
Uρ ∈ OX

B.

Suppose that Player II chooses F2 ∈ [ϕ(⟨F0,F1⟩)]<ℵ0 . Let m2 be the minimum element
in ω such that, for any ρ ⪯ ⟨m0,m1⟩, F2 is a refinement of {Uρ_0, ...,Uρ_m2}. Define

ϕ(⟨F0,F1,F2⟩) =
∧

ρ⪯⟨m0,m1,m2⟩
Uρ ∈ OX

B,

and so on in all the next innings.

By Proposition 4.6, it follows that there is a play

⟨ϕ( /0),F0,ϕ(⟨F0⟩),F1,ϕ(⟨F0,F1⟩), ...⟩

such that, for all B ∈B, there are infinitely many m ∈ ω with B ⊂Um, where Um ∈ Fm. Applying
Lemma 4.7 to the family {Fn : n ∈ ω}, it follows that, for all n ∈ ω , there is Un ∈ Fn such that
{Un : n ∈ ω} ∈ OX

B. Choose k0 ≤ m0 so that Uk0 contains U0. So, consider k1 ≤ m1 satisfying
that U⟨k0,k1⟩ contains U1, and so on. Then, the play

⟨σ( /0),Uk0,σ(⟨Uk0⟩) = Uk0,U⟨k0,k1⟩,σ(⟨Uk0,U⟨k0,k1⟩⟩) = U⟨k0,k1⟩, ...⟩

is a winning strategy for Player II. Therefore, I ̸↑ G1(O
X
B,O

X
B).

4.2 Equivalences of Games in KX

With the same ideas used in the Proposition 3.13, we can obtain the following version of
the Proposition 3.24, but now in the game version.

Theorem 4.9. Let (X ,τ) be a topological space, B be a family of subsets of X and let f : ω →
ω∖{0} be a function. The following statements are equivalent:

1. I ↑ G1(O
X
B,O

X
B);

2. I ↑ G2(O
X
B,O

X
B).



60 Chapter 4. Equivalences in game variations for dense classes in spaces of the form Ck(X)

Proof. It is clear that I ↑ G2(O
X
B,O

X
B) implies I ↑ G1(O

X
B,O

X
B). Reciprocally, suppose that

I ↑ G1(O
X
B,O

X
B). By Theorem 4.8, there is a sequence ⟨Vn : n ∈ ω⟩ of elements in OX

B such that
{Vn : n ∈ ω} /∈ OX

B, where Vn ∈ Vn, for all n ∈ ω .

In the inning 0 in G2(O
X
B,O

X
B), suppose that Player I chooses U0 = {V0 ∩V1 : V0 ∈

V0, V1 ∈ V1}. Note that U0 ∈ OX
B, because V0 and V1 belong to OX

B. Let {U0
0 ,U

1
0 } be the set

chosen by Player II. Then U0
0 ⊂V0 and U1

0 ⊂V1, for some V0 ∈ V0 and V1 ∈ V1.

In the inning k ∈ ω , Player I chooses Uk = {V2k ∩V2k+1 : V2k ∈ V2k, V2k+1 ∈ V2k+1} ∈
OX
B. Let {U2k

k ,U2k+1
k } be the choice of Player II. Then U2k

k ⊂ V2k e U2k+1
k ⊂ V2k+1, for some

V2k ∈ V2k and V2k+1 ∈ V2k+1.

So
⋃

k∈ω{U2k
k ,U2k+1

k } /∈ OX
B. Indeed, otherwise, for all B ∈B, there is a k ∈ ω such that

B⊂U2k
k or B⊂U2k+1

k . Then B⊂V2k or B⊂V2k+1. But this would imply that {Vm : m∈ω} ∈OX
B,

which contradicts our initial hypothesis. Then I ↑ G2(O
X
B,O

X
B).

Observation 4.10. The previous result is also valid for G f (O
X
B,O

X
B), where f : ω → ω∖{0} is

a function, instead of G2(O
X
B,O

X
B).

In particular, I ↑ G1(KX ,KX) is equivalent to I ↑ G2(KX ,KX).

Let B be a bornology. For B ∈B, we define τB = {U ∈ τ : B ⊆U} and BB = {τB : B ∈
B}.

Definition 4.11. The game B-open is played as follows: in each inning n ∈ ω , Player I chooses
B ∈B and Player II responds with Un ∈ τB. Player I wins if {Bn : n ∈ ω} ∈ OB. Otherwise,
Player II is the winner.

Proposition 4.12. BB is a reflection of OX
B

Proof. Let U ∈ OX
B and τB ∈ B, with B ∈ B. So, there is UB ∈ U such that B ⊆ U . Define

f (τB) =UB ∈ τB. It is clear that range( f ) ∈ OX
B and range( f )⊆ U .

Theorem 4.13. The games B-open and G1(OB,OB) are dual.

Proof. Note that the game B-open is equivalent to G1(BB,¬OX
B). The result follows from the

previous proposition and Theorem 2.52.

In particular, if B= {A ⊂ X : A is compact }, we call the game B−open of KX−open.

Before proving the next result, we recall the following characterization of regular spaces:

Proposition 4.14. A topological space (X ,τ) is regular if, and only if, for all x ∈ X and any
neighborhood V of x there is a neighborhood U of x such that U ⊂V .

We have
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Lemma 4.15. Let (X ,τ) be a regular space. The following statements are equivalent:

1. X is compact;

2. For all U ∈ KX , there is U ′ ⊂ U finite such that X ⊂
⋃

U ′.

Proof. (1) implies (2) follows from the fact that U ∈ KX is an open cover of X .

Reciprocally, let U ∈ OX and K ⊂ X compact. Using Proposition 4.14, for all x ∈ K,
with x ∈Ux ∈ U , there is Vx ∈ τ , such that x ∈Vx ⊂V x ⊂Ux.

Consider VK = {Vx : x ∈ K}. We see that VK is an open cover of K. By the compactness
of K, there is

V ′
K = {Vxi : 1 ≤ i ≤ r,{xi : 1 ≤ i ≤ r} ∈ [K]<ℵ0} ⊂ VK,

for some r ∈ ω , such that K ⊂
⋃

V ′
K .

Consider W = {
⋃

V ′
K : K ⊂ X is compact}. Note that W ∈ KX . By (2), it follows that

there is

W ′ = {
⋃

V ′
K j

: K j ⊂ X compact, 1 ≤ j ≤ m} ⊂ W ,

for some m ∈ ω , such that

X ⊂
m⋃

j=1

⋃
V ′

K j
=

m⋃
j=1

r j⋃
i=1

Vx j
i
=

m⋃
j=1

r j⋃
i=1

Vx j
i
⊂

m⋃
j=1

r j⋃
i=1

Ux j
i
,

where

V ′
K j

= {Vx j
i

: 1 ≤ i ≤ r j,{x j
i : 1 ≤ i ≤ r j} ∈ [K]<ℵ0},

with r j ∈ ω e 1 ≤ j ≤ m. So X is compact.

Observation 4.16. Note that the previous result is true if we change, in the statement (2), KX

by OX
B, where B is a bornology with a compact base.

Lemma 4.17. Let (X ,τ) be a regular space. Let σ be a strategy of Player II in G2(KX ,KX).
For all s ∈ <ωKX , define:

Cs =
⋂

U ∈KX

⋃
σ(s_⟨U ⟩)

Then Cs is a compact subset of X .

Proof. Let U ∈ KCs . According to the Lemma 4.15, it suffices to prove that there is a finite
U ′ ⊂U such that Cs ⊂

⋃
U ′. First, note that Cs is a closed subset of X . Let K ⊂ X be a compact.

Then K ∩Cs is compact in Cs. So, there is UK ∈ U such that K ∩Cs ⊂UK .
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On the other hand, for all x ∈ K ∩ (X∖Cs), from the fact that X is regular and from
Proposition 4.14, it follows that there is Ax ∈ τ such that x ∈ Ax and the closure of Ax is disjoint
from Cs. Therefore, {Ax : x ∈ K ∩ (X∖Cs)} is an open cover of K ∩ (X∖Cs). Then,

K = (K ∩Cs)∪ [K ∩ (X∖Cs)]⊂UK ∪

 ⋃
x∈K∩(X∖Cs)

Ax

 .

By the compactness of K, there is rK ∈ ω∖{0} such that

K ⊂UK ∪

(
rK⋃

i=1

Axi

)
,

with {xi : 1 ≤ i ≤ rK} ∈ [K ∩ (X∖Cs)]
<ℵ0 . Then,

V =

{
UK ∪

(
rK⋃

i=1

Axi

)
: K ⊂ X compact,{xi : 1 ≤ i ≤ rK} ∈ [K ∩ (X∖Cs)]

<ℵ0 ,rK ∈ ω∖{0}

}
is an element of KX .

So, Cs ⊂
⋃

σ(s_V ). As
rK1⋃
i=1

Ax1
i

and
rK2⋃
i=1

Ax2
i

are disjoint of Cs, these elements can be

excluded from the set
⋃

σ(s_V ). So, Cs ⊂ UK1 ∪UK2 . Therefore, Cs is a compact subset of
X .

Lemma 4.18. Suppose that a topological space (X ,τ) satisfies the requirement that for all
U ∈ KX there is a countable U ′ ∈ KX such that U ′ ⊆ U . If A ⊆ X is closed, then A satisfies
that for all V ∈ KA there is a V ′ ∈ KA countable such that V ′ ⊆ V .

Proof. Let V ∈ KA. So, every K ⊆ A that is compact is contained in some UK ∈ V .

On the other hand, let C ⊆ X be a compact. As C∩A is a compact subset in A, then C

is contained in some set of the form UC∩A ∪ (X∖A) (which is open in X , because A is closed),
where UC∩A ∈ V . So

U = {UC∩A ∪ (X∖A) : C ⊆ X is compact, UC∩A ∈ V } ∈ KX .

Then, there is U ′ ∈ KX countable such that it is contained in U , we can say

U ′ = {UCn∩A ∪ (X∖A) : UCn∩A ∈ V , n ∈ ω}.

We claim that V ′ = {UCn∩A : n ∈ ω} ∈ KA. Indeed, let K ⊆ A be a compact. So, there is
n ∈ ω such that K ⊂UCn∩A ∪ (X∖A). Then K ⊂UCn∩A. This concludes the proof.

Observation 4.19. The previous lemma is also valid in the following form: If, in a topological
space (X ,τ), for all U ∈ OX

B there is a countable U ′ ∈ OX
B (respectively, OX) with U ′ ⊆ U ,

then any closed subset A of X has the following property: for any V ∈ OA
C , there is a countable

V ′ ∈ OA
C (respectively, OA) with V ′ ⊆ V (here B is a bornology with compact base and

C= {B∩A : B ∈B}).
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The following proof is inspired in Theorem 2.2 of (CRONE et al., 2019)].

Theorem 4.20. Let (X ,τ) be a regular space. Then G1(KX ,KX) and G2(KX ,KX) are equiva-
lent.

Proof. By Theorem 4.9, it is sufficient to prove II ↑ G2(KX ,KX)⇒ II ↑ G1(KX ,KX).

Let σ be a winning strategy for Player II in the game G2(KX ,KX) We define a winning
strategy ρ for Player I in the game KX−open as follows. Consider C0 :=C/0, where C/0 is, as in
Lemma 4.17, the first move of the strategy ρ in the game KX−open.

Suppose that Player II responds with V0 ∈ τ such that C0 ⊆V0. Then X∖V0 ⊆ X∖C0. Let
K ⊂ X∖V0 be a compact set. For all x ∈ K, there is Ux ∈ KX such that x ∈ X∖

⋃
σ(⟨Ux⟩). So

K ⊆
⋃

x∈K

X∖
⋃

σ(⟨Ux⟩).

By compactness, there is FK ∈ [ω]<ℵ0 such that

K ⊆
⋃

i∈FK

X∖
⋃

σ(⟨U K
i ⟩).

Then, {⋃
i∈FK

X∖
⋃

σ(⟨U K
i ⟩) : K ⊆ X∖V0 compact, FK ∈ [ω]<ℵ0

}
∈ KX∖V0.

By the previous Lemma, we can fix an countable subset, namely ⋃
i∈F(m)

X∖
⋃

σ(⟨U (m)
i ⟩) : m ∈ ω, F(m) ∈ [ω]<ℵ0

 ∈ KX∖V0.

Fix any bijection ϕ : <ωω −→ ω such that if s ⊂ t then ϕ(s)≤ ϕ(t). Suppose that up
to the inning n ∈ ω in the game KX -open, the sequence C0, V0,...,Cn−1, Vn−1 has been played,
where Vj is an open set that contains C j, for all 0 ≤ j ≤ n−1, and U

ϕ−1( j)_m
i were also defined,

for all m ∈ ω and i ∈
⋃

m∈ω

Fϕ−1( j)_m. If s = ϕ−1( j), we assume that:

1. C
idom(s),...,i2,i1
j =

⋂
U ∈KX

⋃
σ(⟨U s�1

i1 ,U s�2
i2,i1, ...,U

s�dom(s)
idom(s),...,i2,i1

,U ⟩), for 0 ≤ j ≤ n− 1. Note

that this set is a compact subset of X by Lemma 4.17. So,

C j =
⋃

ik∈Fs�k,1≤k≤dom(s)

C
idom(s),...,i2,i1
j

is a compact subset of X .

2. By Lemma 4.18, there is ⋃
i∈Fs_m

⋂
ik∈Fs�k,1≤k≤dom(s)

X∖
⋃

σ(⟨U s�1
i1 ,U s�2

i2,i1, ...,U
s�dom(s)

idom(s),...,i2,i1
,U s_m

i,idom(s),...,i2,i1
⟩)


m∈ω

∈KX∖V j .
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Now, we define the choice of Player I using ρ in this inning. Let t = ϕ−1(n), and define:

C
idom(t),...,i2,i1
n =

⋂
U ∈KX

⋃
σ(⟨U t�1

i1 ,U t�2
i2,i1 , ...,U

t�dom(t)
idom(t),...,i2,i1

,U ⟩).

Note that this set is compact by Lemma 4.17. So,

Cn =
⋃

ik∈Ft�k,1≤k≤dom(s)

C
idom(t),...,i2,i1
n

is a compact subset.

If Vn is a choice of Player II, by Lemma 4.18, it follows that there is:

 ⋃
i∈Ft_m

⋂
ik∈Ft�k,1≤k≤dom(t)

X∖
⋃

σ(⟨U t�1
i1 ,U t�2

i2,i1 , ...,U
t�dom(t)

idom(t),...,i2,i1
,U t_m

i,idom(t),...,i2,i1
⟩)


m∈ω

∈KX∖Vn.

This completes the definition of the strategy ρ : <ω(BK)→ K for Player I in the game
KX -open. We now prove that ρ is a winning strategy. Indeed, suppose that C0, V0, C1, V1,... is a
play in the compact open game, where Player I uses strategy ρ .

Suppose that {Vn : n ∈ ω} /∈ KX . Then, there is a K ⊂ X compact such that K ̸⊂Vn, for
all n ∈ ω . In particular, there are x0 ∈ K and x0 /∈V0. So, there is m0 ∈ ω such that

x0 ∈
⋃

i∈F(m0)

X∖
⋃

σ(⟨U (m0)
i ⟩).

Then, there is a i0 ∈ F(m0) such that

x0 ∈ X∖
⋃

σ(⟨U (m0)
i0 ⟩).

In addition, there is x1 ∈ K such that x1 /∈V1. So, there is m1 ∈ ω such that

x1 ∈
⋃

i∈F(m0,m1)

⋂
j0∈F(m0)

X∖
⋃

σ(⟨U (m0)
j0 ,U

(m0,m1)
i, j0 ⟩).

So, there is i1 ∈ F(m0,m1) such that

x1 ∈
⋂

j0∈F(m0)

X∖
⋃

σ(⟨U (m0)
j0 ,U

(m0,m1)
i1, j0 ⟩).

In particular:

x1 ∈ X∖
⋃

σ(⟨U (m0)
i0 ,U

(m0,m1)
i1,i0 ⟩).

In general, suppose that we have defined m0,m1, ...,mn−1 ∈ ω and i0, i1, ..., in−1, with
il ∈ F(m0,m1,...,ml), such that

xl ∈ X∖
⋃

σ(⟨U (m0)
i0 ,U

(m0,m1)
i1,i0 , ...,U

(m0,m1..,ml)
il ,...,i1,i0 ⟩),
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for all 0 ≤ l ≤ n−1. Since there is xn ∈ K such that xn /∈Vn, it follows that there is mn ∈ ω such
that

xn ∈
⋃

i∈F(m0,m1,...,mn)

⋂
jk∈F(m0,m1,...,mk)

,0≤k≤n−1

X∖
⋃

σ(⟨U (m0)
j0 , ...,U

(m0,m1,...,mn−1)
jn−1,..., j1, j0 ,U

(m0,m1,...,mn)
i, jn−1,..., j1, j0 ⟩).

Then there is in ∈ F(m0,...,mn−1,mn) such that

xn ∈
⋂

jk∈F(m0,m1,...,mk)
,0≤k≤n−1

X∖
⋃

σ(⟨U (m0)
j0 , ...,U

(m0,m1,...,mn−1)
jn−1,..., j1, j0 ,U

(m0,m1,...,mn)
in, jn−1,..., j1, j0⟩).

In particular:

xn ∈ X∖
⋃

σ(⟨U (m0)
i0 , ...,U

(m0,m1,...,mn−1)
in−1,...,i1,i0 ,U

(m0,m1,...,mn)
in,in−1,...,i1,i0 ⟩).

So, we obtain {U (m0,m1...,mn)
in,...,i1,i0 }n∈ω , a sequence of KX -covers such that there is a K ⊂ X

compact, with the property that

K ̸⊂
⋃

σ(⟨U (m0)
i0 , ...,U

(m0,...,mn)
in,...,i0 ⟩),

for all n ∈ ω . That is, this sequence defines a strategy of Player I to defeat σ in the game
G2(KX ,KX). But this contradicts the fact that σ is a winning strategy for Player II in the game
G2(KX ,KX).

Therefore, ρ is a winning strategy for Player I in the compact-open game. By duality,
there is a winning strategy for Player II in G1(KX ,KX). This concludes the proof.

By Observation 4.16 we can obtain the following results

Lemma 4.21. Let (X ,τ) be a regular space and B be a bornology with a compact base. Let σ

be a strategy for Player II in G f in(O
X
B,O

X
B). For s ∈ <ωOX

B, define:

Cs =
⋂

U ∈OX
B

⋃
σ(s_⟨U ⟩).

Then Cs is a compact subset of X .

Lemma 4.22. Let (X ,τ) be a regular space, B be a bornology with a compact base, and let
f : ω →ω∖{0} be a function. Let σ be a strategy for Player II in G f (O

X
B,O

X
B). For all s∈ <ωOX

B,
define:

Cs =
⋂

U ∈OX
B

⋃
σ(s_⟨U ⟩).

Then Cs is a compact subset of X .
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From these results, and with a few modifications to the proof of Theorem 4.20, we obtain
the following results:

Corollary 4.23. Let (X ,τ) be a regular space. Then the games G f in(KX ,KX) and G1(KX ,KX)

are equivalent for Player II.

Corollary 4.24. Let (X ,τ) be a regular space and let f : ω → ω∖{0} be a function. Then, the
games G f (KX ,KX) and G1(KX ,KX) are equivalent.

In addition, we obtain the following result.

Theorem 4.25. Let (X ,τ) be a separable metrizable space and B be a bornology with compact
base. If II ↑ G f in(O

X
B,O

X
B) then X is σ -compact.

Proof. Let C be a countable basis of X and σ be a winning strategy of Player II in G f in(O
X
B,O

X
B).

We denote by OC the family of all families in OX
B whose elements belong to C . Note that

{σ(⟨U ⟩) : U ∈ OC } is countable. In the same way as in the proof of Lemma 4.22, we can prove
that

C/0 =
⋂

n∈ω

⋃
σ(⟨U⟨n⟩⟩)

is a compact subset of X .

For all m ∈ ω fixed, we see that {σ(⟨U⟨m⟩,U ⟩) : U ∈ OC } is countable. Then

C⟨m⟩ =
⋂

n∈ω

⋃
σ(⟨U⟨m⟩,U⟨m,n⟩⟩)

is a compact subset of X .

In general, given s = ⟨s0, ...,sk⟩ ∈<ω ω , with k ∈ ω∖{0}, we have that the following set

{σ(⟨U⟨s0⟩,U⟨s0,s1⟩, ...,Us,U ⟩) : U ∈ OC }

is countable. Then

Cs =
⋂

n∈ω

⋃
σ(⟨U⟨s0⟩,U⟨s0,s1⟩, ...,Us,Us_n⟩)⟩)

is a compact subset of X .

We claim that X =
⋃

s∈<ω ω

Cs. Indeed, suppose that there is x ∈ X∖(
⋃

s∈<ω ω Cs). In particu-

lar, x /∈C/0. So, there is n0 ∈ ω such that

x /∈
⋃

σ(⟨U⟨n0⟩⟩).

Also, x /∈C⟨n0⟩. Then, there is n1 ∈ ω such that
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x /∈
⋃

σ(⟨U⟨n0⟩,U⟨n0,n1⟩⟩).

Suppose that, for all k ∈ ω∖{0}, we have defined n0, ...,nk ∈ ω . As x /∈ C⟨n0,...,nk⟩, it
follows that there is nk+1 ∈ ω such that

x /∈
⋃

σ(⟨U⟨n0⟩, ...,U⟨n0,...,nk⟩,U⟨n0,...,nk,nk+1⟩⟩).

Then

U⟨n0⟩,U⟨n1⟩, ...,U⟨n0,...,nk⟩, ...

is a play by Player I in G f in(O
X
B,O

X
B) that defeats σ , a contradiction. Therefore, X is

σ -compact.

4.3 A weak result for Player II.
As a break in the study of equivalences, we present a little result of equivalence about

open covers, but restricted to Player II. In first place, the following selection principles and
games were defined in (AURICHI; DUZI, 2021).

Definition 4.26. Let (X ,τ) be a topological space, A and B be classes of families of subsets
of X . S f (A ,B)mod f in is the following selection principle: for any sequence ⟨An : n ∈ ω⟩
of elements of A , there is a sequence ⟨Bn : n ∈ ω⟩ such that, for all n ∈ ω , Bn ∈ [An]

<ℵ0 ,
{n ∈ ω : |Bn|> f (n)} is finite and

⋃
n∈ω

Bn ∈ B.

When f ≡ k, with k ∈ ω∖{0}, we simply write Sk(A ,B)mod f in. S f (A ,B)mod1 is
defined similarly to S f (A ,B)mod f in, with the difference that |Bn| ≤ f (n), for all n ≥ 1.

Definition 4.27. Let (X ,τ) be a topological space, A and B be classes of families of subsets
of X . The game G f (A ,B)mod f in is defined as follows: In any inning n ∈ ω , Player I chooses
An ∈ A . Player II responds with Bn ∈ [An]

<ℵ0 . Player II wins if {n ∈ ω : |Bn|> f (n)} is finite
and

⋃
n∈ω

Bn ∈ B. Otherwise, Player I wins.

When f ≡ k, with k∈ω∖{0}, we simply write Gk(A ,B)mod f in. The game G f (A ,B)mod1
is defined similar to G f (A ,B)mod f in, with the difference that, Player II wins if |Bn| ≤ f (n),
for all n ≥ 1.

In that same work, the following result is proved:

Theorem 4.28 (((AURICHI; DUZI, 2021))). Let (X ,τ) be a regular space. The following
statements are equivalent:
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1. II ↑ G1(OX ,OX)mod1;

2. there is a compact set K ⊂ X such that, for every open set V with K ⊂ V , we have
II ↑ G1(OX∖V ,OX∖V ).

We can obtain a different version of that result:

Theorem 4.29. Let (X ,τ) be a regular space and B be a bornology with a compact base. The
following statements are equivalent:

1. II ↑ G1(O
X
B,OX)mod1;

2. there is a compact set K ⊂ X such that, for every open set V with K ⊂ V , we have
II ↑ G1(O

X∖V
C ,OX∖V ), where C= {B∩ (X∖V ) : B ∈B}.

Proof. (2)⇒ (1). Let K be the compact set such that K satisfies (2). We define a strategy σ for
Player II in the game G1(O

X
B,OX)mod1 as follows:

∙ Suppose that, in the first inning, Player I chose U0 ∈ OX
B. Define σ(⟨U0⟩) as a finite

sub-cover of U0 for K. Let V =
⋃

σ(⟨U0⟩) and let σV be a winning strategy for Player II

in the game G1(O
X∖V
C ,OX∖V ).

∙ In the innings n ≥ 1, suppose that Player I chooses Un ∈ OX
B. Consider

U ′
n := {U ∩ (X∖V ) : U ∈ Un}.

Note that U ′
n ∈ O

X∖V
C . Then define:

σ(⟨U0,U1...,Un⟩) = σ
V (⟨U1, ...,Un⟩)

It is clear that σ is a winning strategy for Player II in G1(O
X
B,OX)mod1.

(1)⇒ (2). Let σ be a winning strategy for Player II in the game G1(O
X
B,OX)mod1. By

Lemma 4.22 (which is valid if we consider the game G1(O
X
B,OX)mod1), we have that

K :=
⋂

U ∈OX
B

⋃
σ(⟨U ⟩)

is a compact set.

Now, let V be an open set containing K. Since B has a compact base then C has too. Let
C′ a compact base of C, D ∈ C′ and x ∈ D . Then, there is Ux ∈ OX

B such that x ∈ X∖
⋃

σ(⟨Ux⟩).

So, D ⊂ X∖
⋂

x∈D

⋃
σ(⟨Ux⟩). As D is compact, there is FD ∈ [ω]<ℵ0 such that

D ⊂ X∖
⋂

i∈FD

⋃
σ(⟨Ui⟩).
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Then

{
X∖

⋂
i∈FD

⋃
σ(⟨Ui⟩) : D ∈ C′,FD ∈ [ω]<ℵ0

}
∈ O

X∖V
C .

As X∖V is closed, by Observation 4.19, we have thatX∖
⋂

i∈FDn

⋃
σ(⟨Ui⟩) : n ∈ ω,Dn ∈ C′,FDn ∈ [ω]<ℵ0

 ∈ OX∖V .

On the other hand, if V ∈ O
X∖V
C then the family V ′ = {U ∪V : U ∈ V } ∈ OX

B. Let {pn :
n ∈ ω∖{0}} be an enumeration of prime numbers, and let {mk : k ∈ ω∖{0}} be an enumeration
of
⋃

n∈ω

FDn . Now, we define a strategy σV for Player II in the game G1(O
X∖V
C ,OX∖V ) as follows:

∙ In innings n ≤ 1, suppose that Player I chooses Vn ∈ O
X∖V
C . Player II chooses any element

Un ∈ Vn.

∙ In the next inning, suppose that Player I chose V2 ∈ O
X∖V
C . Then define

σ
V (⟨V0,V1,V2⟩) = σ(⟨Um1 ,V

′
2 ⟩).

∙ In the next inning, if Player I chose V3 ∈ O
X∖V
C then define

σ
V (⟨V0, ...,V3⟩) = σ(⟨Um2,V

′
3 ⟩).

∙ In the next inning, if Player I chose V4 ∈ O
X∖V
C then define

σ
V (⟨V0, ...,V4⟩) = σ(⟨Um1,V

′
2 ,V

′
4 ⟩).

∙ In general, in the innings n = pl
k, with l ≥ 1 and k ≥ 1, if Player I chose Vn ∈ O

X∖V
C then

define
σ

V (⟨V0, ...,Vn⟩) = σ(⟨Umk ,V
′

p1
k
, ...,V ′

pl
k
⟩).

In the innings remaining (that is, if n /∈ {pn : n ∈ ω∖{0}}), if Player I chose Vn then Player
II chooses any element Un ∈ Vn.

Finally, we prove that σV is a winning strategy. Indeed, let y ∈ X∖V and let ⟨Vn : n ∈ ω⟩
be a play by Player I in the game G1(O

X∖V
C ,OX∖V ). Then, there are k ∈ ω and j ∈ FDk such

that y /∈
⋃

σ(⟨U j⟩). But, since σ is a winning strategy in G1(O
X
B,OX)mod1, y must be in some

response of σ when consider the following play for to Player I

⟨U j⟩_⟨V ′
pl

j
: l ∈ ω∖{0}⟩.

So, y is contained in some response made by σV . This concludes the proof.
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4.4 Equivalent games in Ck(X)

The game version of Theorem 2.39 is given in the following result:

Theorem 4.30. (MEZABARBA; AURICHI, 2019) Let (X ,τ) be a Tychonoff space, B be a
bornology with compact base and let f : ω →ω∖{0} be a function. Then, the game G f (OB,OB),
and the games G f (Ωg,Ωg) and G f (DCB(X),Ωg) in CB(X) are equivalent for all g ∈CB(X).

In particular, it follows that the game G f (KX ,KX) is equivalent to G f (Ωo,Ωo) in Ck(X),
for any function f : ω → ω∖{0}.

Therefore, we can obtain the following result:

Theorem 4.31. Let (X ,τ) be a Tychonoff space, B be a bornology with compact base, f : ω →
ω∖{0} be a function and g ∈CB(X). The following statements are equivalent:

1. S f (Ωg,Ωg) holds in CB(X);

2. I ̸↑ G f (Ωg,Ωg) in CB(X).

Proof. The result follows from Theorems 2.39, 4.5 and 4.30.

In addition, from Corollary 4.24 and Theorem 4.30, the following result follows:

Corollary 4.32. Let (X ,τ) be a Tychonoff space and let f : ω → ω∖{0} be a function. Then,
the games G1(Ωg,Ωg) and G f (Ωg,Ωg) are equivalent in Ck(X), for all g ∈Ck(X).

From this last result, it also follows:

Corollary 4.33. Let (X ,τ) be a Tychonoff space and let f : ω → ω∖{0} be a function. Then,
the games G1(DCk(X),Ωg) and G f (DCk(X),Ωg) are equivalent in Ck(X), for all g ∈Ck(X).

On the other hand, we can obtain the versions of Theorems 2.47 and 2.46 for CB(X),
with B a bornology with a compact base.

First, we recall the following definitions:

Definition 4.34. Let (X ,τ), (Y,σ) be topological spaces. We say that Y is a continuous one-to-
one image of X , if there is a function f : X → Y bijective and continuous.

Definition 4.35. Let (X ,τ) be a topological space. The i-weight of X is the smallest cardinality
w(Y ) , where Y is a continuous one-to-one image of X . Denote the i-weight of X as iw(X).

Definition 4.36. Let (X ,τ) be a topological space. A subset D ⊂C(X) separates points if any
x,y ∈ X with x ̸= y, there is f ∈ D such that f (x) ̸= f (y).
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We need to Remember the following result

Theorem 4.37. (NOBLE, 1974) Let (X ,τ) be a Tychonoff space. Then d(Cp(X)) = d(Ck(X)) =

iω(X).

With a few modifications to the proof, we can obtain the following result.

Theorem 4.38. Let (X ,τ) be a Tychonoff space and let B be a bornology with a compact base.
Then d(CB(X)) = iω(X).

For the proof we need the following

Theorem 4.39. Let (X ,τ) be a Tychonoff space and let B be a bornology with a compact base.
Let D ⊆CB(X) be a family that separates points and contains the constant function 1. Then the
subalgebra generated by D is dense in CB(X).

This is obtained from:

Theorem 4.40. (Stone-Weierstrass) Let (X ,τ) be a compact Hausdorff space. If D ⊂ C(X)

separates points and contains the constant function 1, then the algebra generated by D is dense in
C(X) (if C(X) with the uniform topology).

Observation 4.41. Note that by this theorem, if iω(X) = ℵ0, then CB(X) is a separable space.
Also, note that if (X ,τ) is a separable metrizable space, then iω(X) = ℵ0.

Lemma 4.42. Let (X ,τ) be a Tychonoff space such that S1(Ωo,Ωo) holds in CB(X). Then, for
all sequences ⟨An : n ∈ ω⟩ of elements in Ωo, there is a pairwise disjoint sequence ⟨Bn : n ∈ ω⟩
of elements in Ωo such that Bn ⊆ An.

Proof. Let ⟨An : n ∈ ω⟩ be a sequence of elements in Ωo. By hypothesis, we can assume that
each An is countable. Note that f ∈ Ωo if, and only if, | f | ∈ Ωo. Then we can assume that the
elements of any An are positive. Suppose that, for all n ∈ ω , An = { f n

m : m ∈ ω}.

We define a strategy σ for I in G1(Ωo,Ωo). In the first inning, define σ( /0) = A0 ∈ Ω0.
Suppose that Player II chooses the element f 0

m0
0
.

Define
σ(⟨ f 0

m0
0
⟩) = { f 0

k0
+ f 1

k1
: ko,k1 ∈ ω, |{ f 0

m0
0
, f 0

k0
, f 1

k1
}|= 3}.

To see that it belongs to Ωo, let [o,B,ε] be a basic neighborhood, with B ∈B e ε > 0. So, there
are f 0

k0
∈ (A0∖{ f 0

m0
})∩ [o,B, ε

2 ] and f 1
k1
∈ (A1∖{ f 0

m0
, f 0

k0
})∩ [o,B, ε

2 ]. Then f 0
k0
+ f 1

k1
∈ [o,B,ε].

Suppose that Player II chose the element f 0
m1

0
+ f 1

m1
1
.

Now, define

σ(⟨ f 0
m0

0
, f 0

m1
0
+ f 1

m1
1
⟩) = { f 0

k0
+ f 1

k1
+ f 2

k2
: ko,k1,k2 ∈ ω, |{ f 0

m0
0
, f 0

m1
0
, f 1

m1
1
, f 0

k0
, f 1

k1
, f 2

k2
}|= 6}.

Let [o,B,ε] be a basic neighborhood , with B ∈B and ε > 0. Then, there are
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f 0
k0
∈ (A0∖{ f 0

m0
. f 0

m1
0
, f 1

m1
1
})∩ [o,B, ε

3 ], f 1
k1
∈ (A1∖{ f 0

m0
, f 0

m1
0
, f 0

k0
, f 1

m1
1
})∩ [o,B, ε

3 ] and

f 2
k2
∈ (A2∖{ f 0

m0
, f 0

m1
0
, f 0

k0
, f 1

m1
1
, f 1

k1
})∩ [o,B, ε

3 ].

So, f 0
k0
+ f 1

k1
+ f 2

k2
∈ [o,B,ε]. Then, σ(⟨ f 0

m0
0
, f 0

m1
0
+ f 1

m1
1
⟩) ∈ Ωo. This way we define all innings

n ∈ ω .

By Theorem 4.31, we have that σ is not a winning strategy. So, there is a set C in Ωo,
with elements of the form

f 0
m0

0
, f 0

m1
0
+ f 1

m1
1
, f 0

m2
0
+ f 1

m2
1
+ f 2

m2
2
, ...

Then we can consider, for all n ∈ ω , the sets Bn = { f n
mi

n
: i ≥ n}. As C ∈ Ωo, it follows that, for

all n ∈ ω , Bn ∈ Ωo, and by the construction done, all sets Bn are pairwise disjoint.

Theorem 4.43. Let (X ,τ) be a Tychonoff space with iω(X) =ℵ0. Let g∈CB(X). The following
statements are equivalent:

1. S1(Ωg,Ωg) holds in CB(X);

2. I ̸↑ G1(Ωg,Ωg) in CB(X);

3. I ̸↑ G1(DCB(X),DCB(X));

4. S1(DCB(X),DCB(X)) holds.

Proof. (1)⇔ (2). Follows from Theorem 4.31. As CB(X) is homogeneous, it follows that it is
sufficient to prove (2)⇒ (3) and (4)⇒ (1), for the case g = o.

(2)⇒ (3). Let σ be a strategy for Player I in game G1(DCB(X),DCB(X)) in CB(X). By
Observation 4.41, we can assume that σ chooses countable subsets, and we fix {gn : n ∈ ω} ∈
DCB(X). We define a strategy ρ for Player I in the game G1(Ωo,Ωo) in CB(X).

Suppose that σ( /0) = { fn : n ∈ ω} ∈ DCB(X). Define ρ( /0) = {| fn − g0| : n ∈ ω}. We
claim that ρ( /0) ∈ Ωo. Indeed, let [o,B,ε] be a basic neighborhood with B ∈B and ε > 0. As
[g0,B,ε] is an open subset of CB(X) and σ( /0) ∈ DCB(X), it follows that there is a k ∈ ω such
that fk ∈ [g0,B,ε]. So, | fk −g0| ∈ [o,B,ε].

Suppose that Player II chooses, in the game G1(Ωo,Ωo) in CB(X), the element | fn0
0
−g0|,

and that σ(⟨ fn0
0
⟩) = { fn0

0,n
: n ∈ ω} ∈ DCB(X). We define

ρ(⟨| fn0
0
−g0|⟩) = {| fn0

0,i
−g0|+ | fn0

0, j
−g1| : i, j ∈ ω}.

Similarly to the previous case (in this case, consider the basic open [gi,B, ε

2 ], with B ∈ B e
i = 0,1), it follows that ρ(⟨| fn0

0
−g0|⟩) ∈ Ωo.

Suppose that Player II chooses, in the game G1(Ωo,Ωo) in CB(X), the element | fn0
0,n

1
0
−

g0|+ | fn0
0,n

1
1
−g1|. Also, suppose that
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σ(⟨ fn0
0
, fn0

0,n
1
0
⟩) = { fn0

0,n
1
0,n

: n ∈ ω} ∈ DCB(X) and
σ(⟨ fn0

0
, fn0

0,n
1
1
⟩) = { fn0

0,n
1
1,n

: n ∈ ω} ∈ DCB(X).

So, we can define

ρ(⟨| fn0
0
−g0|, | fn0

0,n
1
0
−g0|+ | fn0

0,n
1
1
−g1|⟩) = {| fn0

0,n
1
0,i1

−g0|+ | fn0
0,n

1
0,i2

−g1|+

+| fn0
0,n

1
0,i3

−g2|+ | fn0
0,n

1
1, j1

−g0|+ | fn0
0,n

1
1, j2

−g1|+ | fn0
0,n

1
1, j3

−g2| : i1, i2, i3, j1, j2, j3 ∈ ω}.

Similarly to the previous case (in this case, consider the open [gi,B, ε

6 ], with B∈B and i= 0,1,2),
it follows that ρ(⟨| fn0

0
−g0|, | fn0

0,n
1
0
−g0|+ | fn0

0,n
1
1
−g1|⟩) ∈ Ωo.

Following the construction above in all innings n∈ω , it follows that ρ : <ω (
⋃

Ωo)→Ωo

is a strategy of Player I in the game G1(Ωo,Ωo) in CB(X). By (2), we can choose a sequence of
Player II choices that form a set C ∈ Ωo, with elements of the form:

| fn0
0
−g0|, | fn0

0,n
1
0
−g0|+ | fn0

0,n
1
1
−g1|, | fn0

0,n
1
0,n

2
0
−g0|+ | fn0

0,n
1
0,n

2
1
−g0|+

| fn0
0,n

1
0,n

2
2
−g2|+ | fn0

0,n
1
1,n

2
3
−g0|+ | fn0

0,n
1
1,n

2
4
−g1|+ | fn0

0,n
1
1,n

2
5
−g2|, ...

Then, by Lemma 4.42, we can obtain a partition of C in countable many pairwise disjoint of sets
Bn ∈ Ωo. For all n ∈ ω , we define Jn as the set of all m ∈ ω such that Player II chose an element
of Bn in the inning m. Note that these sets are pairwise disjoint and we can assume, for all n ∈ ω ,
that min(Jn)≥ n.

So, we define m0 = n0
0. Now, since the only possibilities are 1 ∈ I0 or 1 ∈ J1, define

m1 = n1
j , where j ∈ {0,1} is the term | fm0,n1

j
−g j| of the choice of Player II in the inning 1. In

general, for all k ≥ 2, since the unique possibilities are k ∈ Ji, with i ≤ k, we define mk = nk
j,

where j ≤ k is the term | fm0,...,mk−1,nk
j
−g j| of the choice of Player II in the inning k. So, for all

k ∈ ω , {| fm0,...,m j −gk| : j ∈ Ik} ∈ Ω0. Indeed, let [o,B,ε] be a neighborhood, with B ∈B and
ε > 0. As Bk ∈ Ωo, it follows that there is a r ∈ ω such that | fm1,..,mr −gk| ∈ [o,B,ε].

Finally, we claim that { fm0,...,m j : j ∈ ω} ∈ DCB(X). Indeed, let [h,B,ε] be a basic
neighborhood, with h ∈ CB(X), B ∈ B e ε > 0. As {gk : k ∈ ω} ∈ DCB(X), it follows that
there is l ∈ ω such that gl ∈ [h,B, ε

2 ]. So, there is r ∈ ω , such that | fm0,...,mr − gl| ∈ [o,B, ε

2 ].
Therefore, fm0,...,mr ∈ [h,B,ε]. So, we obtain a sequence of choices for Player II in the game
G1(DCB(X),DCB(X)) in CB(X) that defeats a strategy σ .

(4)⇒ (1). It follows from the implication (3)⇒ (1) in Theorem 2.39, changing Ωo by
DCB

(X).

With a few modifications to the previous theorem, we can obtain the following results:

Theorem 4.44. Let (X ,τ) be a Tychonoff space such that iω(X) = ℵ0. Let f : ω → ω∖{0} be
a function and g ∈CB(X). The following statements are equivalent:

1. S f (Ωg,Ωg) holds in CB(X);
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2. I ̸↑ G f (Ωg,Ωg) in CB(X);

3. I ̸↑ G f (DCB(X),DCB(X));

4. S f (DCB(X),DCB(X)) holds.

Theorem 4.45. Let (X ,τ) be a Tychonoff space such that iω(X) = ℵ0. Let g ∈ CB(X). The
following statements are equivalent:

1. S f in(Ωg,Ωg) holds in CB(X);

2. I ̸↑ G f in(Ωg,Ωg) in CB(X);

3. I ̸↑ G f in(DCB(X),DCB(X)) in CB(X);

4. S f in(DCB(X),DCB(X)) holds in CB(X).

Finally, from Corollary 4.32, Corollary 4.33, Theorem 4.3 and Theorem 4.44, the follow-
ing result follows:

Corollary 4.46. Let (X ,τ) be a Tychonoff space such that iω(X)=ℵ0. Let f : ω →ω∖{0} be an
increasing function. Then the games G f (DCk(X),DCk(X)) and G1(DCk(X),DCk(X)) are equivalent.
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CHAPTER

5
ADDITIONAL TRANSLATIONS IN GAMES

AND SELECTION PRINCIPLES

5.1 Translations on the pair (DX ,SX)

In (OSIPOV, 2018a) it is shown a list of similarities between the different properties
involving dense families.

Theorem 5.1. ((OSIPOV, 2018a)) Let X be a Tychonoff space and iω(X) = ℵ0. The following
statements are equivalent:

1. S1(DCp(X),SCp(X)) holds;

2. Cp(X) is strongly sequentially dense;

3. S1(ΩX ,ΓX);

4. S1(Ω0,Γ0) holds in Cp(X);

5. S1(DCp(X),Γ0) holds;

6. S f in(DCp(X),SCp(X)) holds;

7. S f in(ΩX ,ΓX) holds;

8. S f in(Ω0,Γ0) holds in Cp(X);

9. S f in(DCp(X),Γ0) holds.

In this section, we make a generalization of the equivalences of this theorem.

Theorem 5.2. Let (X ,τ) be a Tychonoff space and B be a bornology with compact base. The
following statements are equivalent:
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1. CB(X) is strongly sequentially dense

2. S1(O
X
B,Γ

X
B) holds.

Proof. (1)⇒ (2). By Theorem 2.43, is sufficient to prove that

(
OX
B

ΓX
B

)
holds. Let U ∈ OX

B

and D ∈ DCB(X). We define D(U ) = { f ∈C(X) : f (X∖U)≡ 1, for some U ∈ OX
B}. We claim

that D(U ) is dense. Indeed, let g ∈CD(X) and W = ⟨g,B,ε⟩, where B ∈B and ε > 0. As B ∈B

is compact and X is Tychonoff, it follows from Theorem 2.28 that there is h ∈W ∩D(U ).

By (1), D(U ) is sequentially dense. Thus, there is a sequence ⟨ fn : n ∈ ω⟩ of elements
in D(U ) that converges to o. Then, for all n ∈ ω , fn(X∖Un)≡ 1, for some Un ∈ U .

We claim that {Un : n ∈ ω} ∈ ΓX
B. Indeed, let B ∈B, and consider W = ⟨o,B,1⟩. Then

there is n0 ∈ ω such that fn ∈W , for all n ≥ n0. Thus | fn(x)|< 1, for all x ∈ B and n ≥ n0. So,
we have B∩ (X∖Un) = /0. Then B ⊂Un, for all n ≥ n0.

(2)⇒ (1): By Theorem 2.43, CB(X) is Fréchet. Let D ⊂ X be dense. Let g ∈ CB(X).
As D ∈ Ωg, there is a sequence ⟨ fn : n ∈ ω⟩ in D that converges to g. Thus X = [D]seq. Therefore,
Cp(X) is strongly sequentially dense.

Observation 5.3. It is clear that S f in(O
X
B,Γ

X
B) implies that

(
OX
B

ΓX
B

)
holds. Therefore, by

Theorem 2.43, we have that S f in(O
X
B,Γ

X
B) = S1(O

X
B,Γ

X
B).

By the previous observation, the following result follows:

Theorem 5.4. Let (X ,τ) be a Tychonoff space with iω(X) = ℵ0, B be a bornology with
compact base and g ∈CB(X). The following statements are equivalent:

1. S1(DCB(X),SCB(X)) holds;

2. CB(X) is strongly sequentially dense;

3. S1(O
X
B,Γ

X
B) holds;

4. S1(Ωg,Γg) holds in CB(X);

5. S1(DCB(X),Γg) holds;

6. S f in(DCB(X),SCB(X)) holds;

7. S f in(O
X
B,Γ

X
B) holds;
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8. S f in(Ωg,Γg) holds in CB(X);

9. S f in(DCB(X),Γg) holds.

Proof. (1)⇒ (2). Let D be a dense subset of CB(X). Let ⟨Dn : n ∈ ω⟩ be the sequence such that
Dn = D, for all n ∈ ω . It follows from (1) that there is a sequence ⟨ fn : n ∈ ω⟩ of elements in D

such that { fn : n ∈ ω} ∈ SCB(X). This implies that D is sequentially dense in X .

(2) ⇒ (1). Let ⟨Dn : n ∈ ω⟩ be a sequence of elements in DCB(X). By Theorem 5.2,
S1(O

X
B,Γ

X
B) holds. It is clear that ΓX

B ⊂ OX
B. Therefore, S1(O

X
B,O

X
B) holds. By Theorem 4.43,

it follows that S1(DCB(X),DCB(X)) holds. Then, there is a sequence ⟨ fn : n ∈ ω⟩ of elements
such that, for all n ∈ ω , fn ∈ Dn and { fn : n ∈ ω} ∈ DCB(X). Finally, by (2), { fn : n ∈ ω} is
sequentially dense, that is, { fn : n ∈ ω} ∈ SCB(X).

(2)⇔ (3). It is Theorem 5.2.

(3)⇔ (4). It is part of Theorem 2.43.

(4)⇒ (5) and (8)⇒ (9). It follows directly from the fact that DCB(X) ⊆ Ωg.

(5)⇒ (2). Let D ∈ DCB(X) and g ∈CB(X). Using (5) for the constant sequence whose
only element is D, there is a sequence ⟨ fn : n ∈ ω⟩ of elements in DCB(X) that converges to g.
Therefore, D is sequentially dense.

(7)⇔ (8). This is part of Theorem 2.45.

The implications (1)⇒ (6) and (3)⇒ (7) are immediate.

(9)⇒ (2). Similar to (5)⇒ (2).

(6)⇒ (2). Similar to (1)⇒ (2).

5.2 Other equivalences of Games and selection principle

We denote, for all n ∈ ω , In = ⟨− 1
n+1 ,

1
n+1⟩. We can obtain the game version of Theorem

2.43:
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Theorem 5.5. Let (X ,τ) be a Tychonoff space and B be a bornology with a compact base. Then
II ↑ G1(O

X
B,Γ

X
B) if, and only if, II ↑ G1(Ωg,Γg) in CB(X), for all g ∈CB(X).

Proof. As CB(X) is a homogeneous space, it suffices to prove the case g = o.

Let σ be a winning strategy for Player II in G1(O
X
B,Γ

X
B). For any A ∈ Ωo, define

Un(A) = { f−1(In) : f ∈ A}. We have Un(A) ∈ OX
B. We define the strategy ρ , for Player II

in the game G1(Ωo,Γo), in the following way: ρ(⟨A0, ..,An⟩) = fn ∈ An, where f−1
n (In) =

σ(⟨U0(A0), ...,Un(An)⟩).

We claim that ρ is a winning strategy. Indeed, consider

⟨A0,ρ(⟨A0⟩), ...,An,ρ(⟨A0, ...,An⟩), ...⟩

a play in G1(Ωo,Γo). Then

⟨U0(A0),σ(⟨U0(A0)⟩), ...,Un(An)),σ(⟨U0(A0), ...,Un(An)⟩), ...⟩

is a play in G1(O
X
B,Γ

X
B). As σ is a winning strategy, it follows that {Cn : n ∈ ω} ∈ ΓX

B, where
Cn = σ(⟨U0(A0), ...,Un(An)⟩) = f−1

n (In), for some fn ∈ An and for all n ∈ ω .

We claim that { fn : n ∈ ω} ∈ Γo. Indeed, we prove that o = lim{ fn : n ∈ ω}. This set is
infinite, because {Cn : n ∈ ω} is infinite. Also, o /∈ { fn : n ∈ ω}, because o /∈ An, for all n ∈ ω .
Let ⟨o,B,ε⟩, where B ∈B and ε > 0. Choose an n1 ∈ ω such that 1

n1+1 < ε .

So, there is n2 ∈ ω such that B ⊂Ck, for all k ≥ n2. Taking n0 = max{n1,n2}, we have
B ⊂Ck = f−1

k (In)⊂ f−1
k (⟨−ε,ε⟩), for all k ≥ n0. This is, fk ∈ ⟨o,B,ε⟩. for all k ≥ n0. Therefore,

{ fn : n ∈ ω}∖⟨o,B,ε⟩ is finite.

Reciprocally, let σ be a winning strategy for player II in game G1(Ωo,Γo). Let U ∈OX
B,

define A(U ) = { f ∈C(X) : f (X∖U)≡ 1, for some U ∈ OX
B}.

Using that X is Tychonoff and that B ∈B is compact, by Theorem 2.28, it follows that
A(U ) ∈ Ωo. We define a strategy ρ for Player II in G1(O

X
B,Γ

X
B) as follows: ρ(⟨U0, ...,Un⟩) =

Un ∈ Un, where fn(X∖Un)≡ 1 and fn = σ(⟨A0(U0), ...,An(Un)⟩).

Let

⟨U0,ρ(⟨U0⟩), ...,Un,ρ(⟨U0, ...,Un⟩), ...⟩

be a play in G1(O
X
B,Γ

X
B). Then

⟨A0(U0),σ(⟨A0(U0)⟩), ...,An(Un),σ(⟨A0(U0), ...,An(Un)⟩), ...⟩

is a play in the game G1(Ωo,Γo). As σ is a winning strategy, we have { fn : n ∈ ω} ∈ Γo, where
fn = σ(⟨A0(U0), ...,An(Un)⟩) ∈ An(Un), for all n ∈ ω .
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We claim that {τ(⟨U0, ...,Un⟩) =Un : n ∈ ω} ∈ ΓX
B. Indeed, the set is infinite, because

{ fn : n ∈ ω} is infinite. Let B ∈ B. As { fn : n ∈ ω}∖⟨o,B,1⟩ is finite, it follows that there is
n0 ∈ ω such that fk ∈ ⟨o,B,1⟩, for all k ≥ n0. Then | fk(x)|< 1, for all k ≥ n0 and x ∈ B. Thus,
B∩(X∖Uk)= /0, for all k≥ n0. Therefore, B⊂Uk, for all k≥ n0. Then {U ∈{Un : n∈ω} : B ̸⊂U}
is finite. This concludes the proof.

With few modifications, we can obtain the following results:

Theorem 5.6. Let (X ,τ) be a Tychonoff space, B be a bornology with compact base, and let
f : ω → ω∖{0} be a function. Then II ↑ G f (O

X
B,Γ

X
B) if, and only if, II ↑ G f (Ωg,Γg) in CB(X),

for all g ∈CB(X).

Theorem 5.7. Let (X ,τ) be a Tychonoff space and B be a bornology with a compact base. Then
II ↑ G f in(O

X
B,Γ

X
B) if, and only if, II ↑ G f in(Ωg,Γg) in CB(X), for all g ∈CB(X).

Let us remember the following result of the equivalence between selection principle and
game:

Theorem 5.8. (SCHEEPERS, 1994) Let (X ,τ) be a ω-Lindelöf space. The following statements
are equivalent:

1. S1(ΩX ,ΓX) holds;

2. I ̸↑ G f in(ΩX ,ΓX).

Using that S1(Ω,Γ) = S f in(Ω,Γ), we obtain the following results,

Corollary 5.9. Let (X ,τ) be a ω-Lindelöf space. The following statements are equivalent:

1. S f in(ΩX ,ΓX) holds;

2. I ̸↑ G f in(ΩX ,ΓX).

Corollary 5.10. Let (X ,τ) be a ω-Lindelöf space. The following statements are equivalent:

1. I ̸↑ G1(ΩX ,ΓX);

2. I ̸↑ G f in(ΩX ,ΓX).

The previous results can be extended for the context of more general covering families

Theorem 5.11. Let (X ,τ) be a B-Lindelöf space, with B a family of subsets of X . The following
statements are equivalent:

1. S1(O
X
B,Γ

X
B) holds;
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2. I ̸↑ G1(O
X
B,Γ

X
B).

Proof. The implication (2)⇒ (1) is clear. Therefore, it is sufficient to prove (1)⇒ (2). Let σ

be a strategy for Player I in G1(O
X
B,Γ

X
B). We define specific elements of OX

B as follows:

∙ Let U /0 = {U⟨n⟩ : n ∈ ω} be an enumeration of σ( /0) ∈ OX
B.

∙ For all m ≥ 1, we assume that Uα , is defined for all α ∈ <ωω such that |α|= k. We can
write α = ⟨m1, ..,mk⟩. We define

Uα = σ(⟨U⟨m1⟩,U⟨m1,m2⟩...,Uα⟩)∖{U⟨m1⟩,U⟨m1,m2⟩, ...,Uα}= {Uα_n : n ∈ ω} ∈ OX
B

.

∙ Consider ⟨Uα : α ∈ <ωω⟩. By (2), it follows that for all α , there is nα such that W =

{Uα_nα
: τ ∈ <ωω} ∈ ΓX

B. Define a sequence of positive integers n1,n2, ... such that
n1 = n /0 and nk+1 = n⟨n1,...,nk⟩, for all k ≥ 1. Then, the sequence:

U⟨n1⟩,U⟨n1,n2⟩, ...

is a strategy of Player II that defeats σ , because V = {U⟨n1,...,nk⟩ : k ≥ 1} ∈ ΓX
B, since it is

an infinite subset of W . Thus, σ is not a winning strategy.

With few modifications to the previous theorem, we can obtain the following result:

Theorem 5.12. Let (X ,τ) be a B-Lindelöf space, where B is a family of subsets of X . The
following statements are equivalent:

1. S f in(O
X
B,Γ

X
B) holds;

2. I ̸↑ G f in(O
X
B,Γ

X
B).

By the Observation 5.3, we can obatin the following result.

Corollary 5.13. Let (X ,τ) be a B-Lindelöf space, where B is a family of subsets of X . The
following statements are equivalent:

1. I ̸↑ G1(O
X
B,Γ

X
B);

2. I ̸↑ G f in(O
X
B,Γ

X
B).
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5.3 Games about n-denses sets

Definition 5.14. A subset A ⊆ Cp(X) is called n−dense in Cp(X), if for all n−finite set
{x1, ...,xn} ⊂ X such that xi ̸= x j, for i ̸= j, and opens sets W1, ...,Wn in R there is a g ∈ A

such that g(xi) ∈Wi, for all i = 1, ...,n.

Note that if A is n-dense, for all n ∈ ω , then A is dense.

Denote by An the family of n dense subsets of Cp(X) and A instead of A1.

Definition 5.15. Let f ∈ C(X). A subset B ⊆ Cp(X) is called n-dense at a point g, if for all
n-finite sets {x1, ...,xn} ⊂ X and ε > 0 there is h ∈ B such that h(xi) ∈ (g(xi)− ε,g(xi)+ ε), for
i ∈ {1, ...,n}.

Note that if, for all n ∈ ω , B is n-dense in a point g, then f ∈ B.

Denote by Bn,g the family of all n-dense sets at a point g, and write Bg instead of B1,g.

Let U be an open cover of X and n ∈ ω . We say that U is a n-cover of X if, for any
F ⊂ X with |F | ≤ n, there is U ∈ U such that F ⊂U .

Denote by On the family of all n-cover of X .

In (OSIPOV, 2018b), the following results were obtained from the equivalences of the
selection principles with respect to the families defined above,

Theorem 5.16. Let (X ,τ) be a Tychonoff space. The following statements are equivalent:

1. S1(A ,A ) holds;

2. S1(OX ,OX) holds;

3. S1(Bg,Bg) holds for all g ∈Cp(X);

4. S1(A ,Bg) holds, for all g ∈Cp(X).

Theorem 5.17. Let (X ,τ) be a Tychonoff space. The following statements are equivalent:

1. S f in(A ,A ) holds;

2. S f in(OX ,OX) holds;

3. S f in(Bg,Bg) holds for all g ∈Cp(X);

4. S f in(A ,Bg) holds, for all g ∈Cp(X).

We can obtain the version of the previous theorems in its game version:

Theorem 5.18. Let (X ,τ) be a Tychonoff space. The following statements are equivalent:
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1. II ↑ G1(A ,A );

2. II ↑ G1(OX ,OX);

3. II ↑ G1(Bg,Bg), for all g ∈Cp(X);

4. II ↑ G1(A ,Bg), for all g ∈Cp(X).

Proof. (1)⇒ (2). Let σ be a winning strategy for Player II in G1(A ,A ). We define a strategy
for Player II in G1(OX ,OX).

First, note that for any U ∈ OX we have A(U ) = { f ∈ Cp(X) : f (X∖U) ≡ 1 and f �

K ≡ q, for some U ∈ U ,K ⊂ U finite, and q ∈ Q} ∈ A . Indeed, let x ∈ X and W ⊂ R be an
open. Let q ∈Q∩W . As U ∈ OX , there is U ∈ U such that x ∈U . Because X∖U is closed and
X is Tychonoff, it follows that there is h ∈C(X) such that h(X∖U)≡ 1 and h(x) = q ∈W . That
is, h ∈ A(U ).

In the inning 0 ∈ ω suppose that Player I in G1(OX ,OX) chooses U0 ∈ OX . Then,
suppose that Player I, in G1(A ,A ), chooses A(U0) ∈ A . Consider σ(⟨A(U0)⟩) := f0 ∈ A(U0).
So, we define ρ(⟨U0⟩) =U0, where U0 is open such that f0(X∖U0)≡ 1.

In the inning n ≥ 1 suppose that Player I in G1(OX ,OX), choose Un ∈OX . Then, suppose
that Player I in G1(A ,A ), choose A(Un) ∈A . Consider σ(⟨A(U0), ...,A(Un)⟩) := fn ∈ A(Un).
So, we define ρ(⟨U0, ...,Un⟩) =Un, where Un is open such that fn(X∖Un)≡ 1.

As σ is a winning strategy, we have { fn : n ∈ ω} ∈A . We claim that {Un : n ∈ ω} ∈OX .
Indeed, let x ∈ X . Consider W = (−1

2 ,
1
2). Then, there is m ∈ ω such that fm(x) ∈ W . So,

x /∈ X∖Um, that is, x ∈Um. Thus, ρ is a winning strategy for Player II in G1(OX ,OX).

(2) ⇒ (3). Due to the homogeneity of Cp(X), we can assume that g ≡ 0. Let σ be a
winning strategy for Player II in G1(OX ,OX). We define a strategy ρ for Player II in G1(B0,B0).

First, note that if B ∈ B0 we have that, for any n ∈ ω , Un(B) = {g−1((−1
n ,

1
n)) : g ∈

B} ∈ OX . Indeed, let x ∈ X . Taking into account ε = 1
n , we see that there is a g ∈ B such that

g(x) ∈ (−1
n ,

1
n). This is, x ∈ g−1((−1

n ,
1
n)) ∈ Un(B).

Let {Mk : k ∈ ω} be a partition of ω in infinite sets and {pk : k ∈ ω} an increasing
sequence of prime numbers. Suppose that, for all k ∈ ω , Mk = {mi,k : i ∈ ω}.

For any sequence α = ⟨B0, ...,Bk⟩ ∈ <ωB0, with k ∈ ω , consider the sequence α ′ whose
elements are Upkm

(Bi), where Bi are elements of α with sub-indices in Mmk and mk ∈ ω is such
that k ∈ Mmk . We define:

ρ(α) = gk,

where gk is a function such that σ(α ′) = g−1
k ((− 1

pmk
, 1

pmk
)) ∈ Upmk

(Bk).

Then ρ : <ωB0 →
⋃

B0 is a strategy for Player II in G1(B0,B0).
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We claim that ρ is a winning strategy. Indeed, consider the following play

⟨B0,ρ(⟨B0⟩),B1,ρ(⟨B0,B1⟩), ...,Bn,ρ(⟨B0, ...,Bn⟩), ...⟩,

in G1(B0,B0).

Consider a re-indexing of the sequence ⟨Bn : n ∈ ω⟩= ⟨Bi,k : i,k ∈ ω⟩, where Bn = Bi,k

if n = mi,k, with i,k ∈ ω . For all k ∈ ω , consider the subsequences αk = ⟨Bi,k : i ∈ ω⟩. As σ is
a winning strategy, it follows that for all k ∈ ω , Vk = {σ(αk � i) = g−1

i,k ((
1
pk
, 1

pk
)) : i ∈ ω} ∈ OX .

We claim that {gn : n ∈ ω} ∈ B0.

Indeed, let x ∈ X and W = (−ε,ε), with ε > 0. Choose k ∈ ω such that 1
pk

< ε . So,
as Vk ∈ OX , there is i ∈ ω such that x ∈ g−1

i,k ((−
1
pk
, 1

pk
)). That is gi,k(x) ∈ (− 1

pk
, 1

pk
) ⊂ (−ε,ε).

Therefore, ρ is a winning strategy for Player II in the game G1(B0,B0) on Cp(X).

(3)⇒ (4). It is evident from that A ⊆ Bg, for all g ∈Cp(X).

(4) ⇒ (1). Let σg be a winning strategy for Player II in G1(A ,Bg). Consider {Mk :
k ∈ ω} be a partition of natural numbers in infinite sets and {qk : k ∈ ω} is an enumeration of
rational numbers Q. Suppose that for all k ∈ ω , Mk = {mi,k : i ∈ ω}.

For any sequence α = ⟨A0, ...,Ak⟩ ∈ <ωA , with k ∈ ω , consider the sequence α ′ whose
elements are elements of α with sub-indices in Mmk e mk ∈ ω such that k ∈ Mmk . With the final
elements of α and α ′ being the same, we can define:

ρ(α) = σ fk(α
′) ∈ Ak,

where fk is a constant function equal to qk.

Then ρ : <ωA →
⋃

A is a strategy for Player II in G1(B0,B0).

We claim that ρ is a winning strategy. Indeed, consider the following play

⟨A0,ρ(⟨A0⟩),A1,ρ(⟨A0,A1⟩), ...,An,ρ(⟨A0, ...,An⟩), ...⟩,

in G1(A ,A ).

Consider a re-indexing of sequence ⟨An : n ∈ ω⟩ = ⟨Ai,k : i,k ∈ ω⟩, where An = Ai,k if
n = mi,k, with i,k ∈ ω . For all k ∈ ω , consider the subsequences αk = ⟨Ai,k : i ∈ ω⟩.

Since, for all k ∈ ω , σ fk is a winning strategy, it follows that {σ fk(αk � i) = fi,k : i ∈ ω} ∈
B fk . We claim that { fi,k : i ∈ ω,k ∈ ω} ∈ A . Indeed, let x ∈ X and W ⊂ R be an open. Choose
qk ∈Q∩W . Since W is open, there is ε > 0 such that (qk − ε,qk + ε)⊂W . So, there is i ∈ ω

such that fi,k(x) ∈ (qk − ε,qk + ε)⊂W .

Therefore, ρ is a winning strategy for Player II in G1(A ,A ).
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With a few modifications, we can obtain the following additional results:

Theorem 5.19. Let (X ,τ) be a Tychonoff space and let f : ω → ω∖{0} be a function. The
following statements are equivalent:

1. II ↑ G f (A ,A );

2. II ↑ G f (OX ,OX);

3. II ↑ G f (Bg,Bg), for all g ∈Cp(X);

4. II ↑ G f (A ,B f ), for all g ∈Cp(X).

Theorem 5.20. Let (X ,τ) be a Tychonoff space. The following statements are equivalent:

1. II ↑ G f in(A ,A );

2. II ↑ G f in(OX ,OX);

3. II ↑ G f in(Bg,Bg), for all g ∈Cp(X);

4. II ↑ G f in(A ,B f ), for all g ∈Cp(X).
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CHAPTER

6
VARIATIONS IN SELECTIVELY CCC

PROPERTY AND GAMES

6.1 Selectively ccc
In (AURICHI, 2013) it is introduced a selectively-ccc property.

This property is equivalent to the selection principle S1(Mc,D0). In this section, we
study different connections between the selection principle and our game version, in order to
obtain, in the following section, the same equivalences in the star version. We start with the
following:

Observation 6.1. For a topological space (X ,τ), note that Mc ⊂ D0. Indeed, let A ∈ Mc and
suppose that

⋃
A is not dense. Then there is B ∈ τ such that B∩(

⋃
A ) = /0. In particular, B /∈A .

So, A ( A ∪{B} and A ∪{B} is a cellular family. This contradicts the maximality of A .
Therefore A ∈ D0.

Therefore, in addition to the fact that every element in D0 admits a refinement that is a
maximal cellular family, the following result follows.

Lemma 6.2. (AURICHI, 2013) Let (X ,τ) be a topological space. The following statements are
equivalent:

1. S1(Mc,D0) holds;

2. S1(D0,D0) holds.

More generally, we have the following.

Theorem 6.3. Let (X ,τ) be a topological space and let f : ω → ω∖{0} be a function. The
following statements are equivalent:
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1. S f (Mc,D0) holds;

2. S f (D0,D0) holds.

Theorem 6.4. Let (X ,τ) be a topological space. The following statements are equivalent:

1. S f in(Mc,D0) holds;

2. S f in(D0,D0) holds.

Taking into account the game G1(Mc,D0), by the same observations made, we can
obtain the following results:

Theorem 6.5. Let(X ,τ) be a topological space and let f : ω → ω∖{0} be a function. The
following statements are equivalent:

1. II ↑ G f (Mc,D0) (I ̸↑ G f (Mc,D0));

2. II ↑ G f (D0,D0) (I ̸↑ G f (Mc,D0)).

Theorem 6.6. Let (X ,τ) be a topological space and let f : ω → ω∖{0} be a function. The
following statements are equivalent:

1. II ↑ G f in(Mc,D0) (I ̸↑ G f in(Mc,D0));

2. II ↑ G f in(D0,D0) (I ̸↑ G f in(Mc,D0)).

In addition, we have the following characterizations of the game version of the selection
principle. First, we show the f in case.

Theorem 6.7. (SCHEEPERS, 2000) Let (X ,τ) be a topological space. The following statements
are equivalent:

1. S f in(D0,D0) holds;

2. I ̸↑ G f in(D0,D0).

Proof. Is sufficient to prove that (1)⇒ (2). Let σ be a strategy for Player I in G f in(D0,D0). By
hypothesis, we can assume that σ chooses only countable many elements of D0.

Also, we can assume that σ chooses families containing the family of the previous inning.
Indeed, if σ is a normal strategy in G f in(D0,D0), we define a new increasing strategy ϕ as
follows. Put ϕ( /0) = σ( /0) ∈ D0. Suppose that Player II chooses V0 ∈ [ϕ( /0)]<ℵ0 . Suppose that
Player II chooses V ′

0 = V0 in the game where Player I uses strategy σ .
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Define ϕ(⟨V0⟩) = σ( /0)∪σ(⟨V ′
0 ⟩) ∈ D0. Player II chooses V1 ∈ [ϕ(V0)]

<ℵ0 . Suppose
that Player II chooses V ′

1 = V1∩σ(⟨V ′
0 ⟩) in the game where Player I uses the strategy σ . Define

ϕ(⟨V0,V1⟩) = σ( /0)∪σ(⟨V ′
0 ⟩)∪σ(⟨V ′

0 ,V
′

1 ⟩).

Player II chooses V2 ∈ [ϕ(⟨V0,V1⟩)]<ℵ0 . Suppose that Player II chooses V ′
2 = V2 ∩

σ(⟨V ′
0 ,V

′
1 ⟩) in the game where Player I uses the strategy σ . Define

ϕ(⟨V0,V1,V2⟩) = σ( /0)∪σ(⟨V ′
0 ⟩)∪σ(⟨V ′

0 ,V
′

1 ⟩)∪σ(⟨V ′
0 ,V

′
1 ,V

′
2 ⟩),

and so on, for all inning n ∈ ω . Then, if Player I has no winning strategy using increasing
sequences, we would have

⋃
n∈ω

Vn /∈ D0.

Note that
⋃

n∈ω

V ′
n ⊂

⋃
n∈ω

Vn. Then
⋃

n∈ω V ′
n /∈ D0, that is, I has no winning strategy using

normal strategies.

Finally, we can assume that σ has the following property: for all sequences ⟨V0, ...,Vn⟩,

where V j is a finite family, we have
n⋃

j=0

⋃
V j ⊂ A, for all A ∈ σ(⟨V0, ...,Vn⟩). Indeed, let σ

be a normal strategy for Player I. Define ϕ( /0) = σ( /0) ∈ D0. Suppose that Player II chooses
V0 ∈ [ϕ( /0)]<ℵ0 . Now, suppose that Player II chooses V ′

0 = V0 in the game where Player I uses
a strategy σ . Define ϕ(⟨V0⟩) = {A∪

(⋃
V ′

0
)

: A ∈ σ(⟨V ′
0 ⟩)} ∈ D0.

Suppose that Player II chooses V1 ∈ [ϕ(V0)]
<ℵ0 . So, suppose that Player II chooses

V ′
1 =

{
A : A∪

(⋃
V ′

0
)
∈ V1

}
in the game where Player I uses the strategy σ . Define

ϕ(⟨V0,V1⟩) = {A∪

(
1⋃

j=0

V ′
j

)
: A ∈ σ(⟨V ′

0 ,V
′

1 ⟩)},

and so on, for all innings n ∈ ω . Then, if Player I does not have a winning strategy with the
above property, we would have

⋃
n∈ω Vn /∈D0. But

⋃
n∈ω Vn =

⋃
n∈ω V ′

n . Therefore, Player I will
not have a winning strategy using normal strategies.

Thus, we can consider σ , the strategy of Player I, who chose increasing sequences of
countable elements in D0 such that the union of the elements played by Player II, until the inning
n ∈ ω , is contained in each of the elements of the move made by Player I in the inning n+1. We
denote by σ( /0) = {Un : n ∈ ω}. For all n1 ∈ ω , σ(⟨Un1⟩) = {U⟨n1⟩_n : n ∈ ω}. For any n2 ∈ ω ,
σ(⟨Un1 ,U(n1)_n2⟩) = {U⟨n1,n2⟩_n : n ∈ ω}, and so on. Thus, for all γ ∈<ω ω , we have:

1. If m < n, Uγ_m ⊆Uγ_n;

2. For all n ∈ ω , Uγ ⊆Uγ_n;

3. {Uγ_n : n ∈ ω} ∈ D0.
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For any n,k ∈ ω , we define:

Un
k =

Uk, if n = 0;(⋂
{Uγ_n : γ ∈n−1 ω}

)
∩Un−1

k , otherwise.

By the properties above, it follows that, for each n ∈ ω , Un = {Un
k : k ∈ ω} is an increasing

family of open sets. Also, for each n ∈ ω , Un ∈ D0. Indeed, let U be a non-empty element in τ .
By property 3 above, we have that there are finite γ ∈ nω such that U ∩Uγ = /0. So, there is a
k ∈ ω such that Un

k ∩U ̸= /0.

Applying S f in(D0,D0) to the sequence ⟨Un : n ∈ ω⟩, there are Vn ∈ [Un]
<ℵ0 such that⋃

n∈ω

Vn ∈ D0. As Un is an increasing family, it follows that there is kn ∈ ω such that
⋃

Vn =Un
kn

and {Un
kn

: n ∈ ω} ∈ D0.

By the construction of the open sets Un
k , we have Un

kn
⊆U⟨k1,...,kn⟩, for all n ∈ ω . Thus,

{U⟨k1,...,kn⟩ : n ∈ ω} ∈ D0. So if, in each inning n ∈ ω of the game where Player I uses the
strategy σ , Player II chooses the open set U⟨k1,...,kn⟩ then Player II is the winner. Therefore,
I ̸↑ G1(D0,D0).

Using the previous result, we can now show the result for selectively-ccc spaces:

Theorem 6.8. (SCHEEPERS, 2000) Let (X ,τ) be a topological space. The following statements
are equivalent:

1. S1(D0,D0) holds;

2. I ̸↑ G1(D0,D0).

Proof. Again, it is sufficient to prove that (1) ⇒ (2). Let σ be a strategy for Player I in the
game G1(D0,D0). By hypothesis, we can consider that σ chooses countable families in D0.
Let σ( /0) = {Un : n ∈ ω}. For n1 ∈ ω , σ(⟨Un1⟩) = {U⟨n1⟩_n : n ∈ ω}, and so on. Thus, for each
γ ∈ <ωω , we have {Uγ_n : n ∈ ω} ∈ D0.

Fix m ∈ ω , and let j ∈ ω and ρ : {1, .., jm}→ ω . Define:

Uρ(m, j) =
⋂

γ∈ m{1,..., j}

(⋃
{Uγ_ρ�i : i ≤ jm}

)
.

Note that the above sets are open. Furthermore, for each m, j ∈ ω , U (m, j) := {Uρ(m, j) : ρ :
{1, ..., jm} → ω} ∈ D0. Indeed, let U be a non-empty element in τ . Let {γi : 1 ≤ i ≤ jm} be a
numeration of m{1, ..., j}. As {Uγ1_n : n ∈ ω} ∈ D0, there is a k1 such that U ∩Uγ_1 k1 ̸= /0. As
{U⟨γ2,k1⟩_n : n ∈ ω} ∈ D0, there is a k2 such that U ∩U⟨γ2,k1⟩_k2 ̸= /0. So, for each 1 ≤ i ≤ jm,
there is a ki such that U ∩U⟨γi,k1,...,ki−1⟩_ki ̸= /0. Define ρ : {1, ..., jm} → ω such that ρ(i) = ki.
Then U ∩Uρ(m, j) ̸= /0.
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Using the same construction as in Lemma 2 in (PAWLIKOWSKI, 1994), there are
increasing sequences ⟨ jn : n ∈ ω⟩ and ⟨mn : n ∈ ω⟩ such that, for all U ∈ τ not empty, there
are infinitely many n ∈ ω and functions ρ : {1, ...,mn+1 −mn} → jn+1 in such a way that
U ∩Uρ(mn, jn) ̸= /0. Fixed sequences ⟨ jn : n ∈ ω⟩ e ⟨mn : n ∈ ω⟩, for all k1 < k2 < ... < kn in ω

and ρ1, ...,ρn, where each ρi : {1, ...,mki+1 −mki}→ jki+1, we define the open sets:

W (k1, ...,kn;ρ1, ...,ρn) =
⋂
i≤n

Uρi(mki, jki).

Consider the family Wn = {W (k1, ...,kn;ρ1, ...,ρn) : k1 < k2 < ... < kn in ω and ρ1, ...,ρn, where
ρi : {1, ...,mki+1 −mki} → jki+1}. By the property of the sequences jn’s and mn’s, we see that
⟨Wn : n ∈ ω⟩ is a sequence in D0. Applying S1(D0,D0), it follows that there is, for all n ∈ ω ,
Sn =W (kn

1, ...,k
n
n;ρn

1 , ...,ρ
n
n ) such that {Sn : n ∈ ω} ∈ D0.

For all n ∈ ω , choose ln ∈ {kn
1, ...,k

n
n}∖{li : i < n} and ρn = ρn

in , where in is such that
ln = kn

in . From the definition of the sets Sn and the choice of indexes, it follows that, for all n ∈ ω ,
Sn ⊆ Uρn(mln, jln). Consider the function f : ω → ω given by f (i) ≤ jl1 , for all i ≤ j

ml1
l1

; and
f (mln + i) = ρn(i), for i ≤ mln+1 −mln , with n ≥ 1. Then, the game:

σ( /0),U f (1),σ(U f (1)),U( f (1), f (2),σ(U f (1),U( f (1), f (2))), ...

is defeated by Player II, because

⋃
n∈ω

Sn ⊆
⋃

n∈ω

Uρn(mln, jln)⊆
⋃

n∈ω

U( f (1),..., f (n)).

Therefore, I ̸↑ G1(D0,D0).

With few modifications, we obtain:

Theorem 6.9. Let (X ,τ) be a topological space and let f : ω → ω∖{0} be a function. The
following statements are equivalent:

1. S f (D0,D0) holds;

2. I ̸↑ G f (D0,D0).

Theorem 6.10. Let (X ,τ) be a topological space. The following statements are equivalent:

1. S f in(D0,D0) holds;

2. I ̸↑ G f in(D0,D0).
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6.2 Star selectively-ccc
Let (X ,τ) be a topological space. For A ⊆ X and P ⊆℘(X), we define the following

set:
St(A,P) =

⋃
{P ∈ P : P∩A ̸= /0}.

In (BAL; KOCINAC, 2020) a selection star-ccc property is introduced as follows:

Definition 6.11. We say that a topological space (X ,τ) is star selectively-ccc if for all U ∈ OX ,
and any sequence ⟨An : n∈ω⟩, with An ∈Mc, there is a sequence ⟨An : n∈ω⟩ such that An ∈An,
for all n ∈ ω , and St(B,U ) = X , where B =

⋃
n∈ω

An. This property is denoted by SS*Ox,1(Mc,OX).

Theorem 6.12. (BAL; KOCINAC, 2020) Any selectively-ccc space is star selectively-ccc. There
is a star selectively-ccc space that is not selectively-ccc space.

Problem 6.13. (BAL; KOCINAC, 2020) There exists a game-theoretic characterization of
selectively star-ccc?

In direction of this problem, we introduced the following game:

Definition 6.14. For each U ∈ OX , define the following game GU
1 (Mc,OX): in each inning

n ∈ ω , Player I chooses An ∈ Mc. Then Player II chooses An ∈ An. Player II wins the game if
St(B,U ) = X , where B =

⋃
n∈ω

An. Otherwise, Player I wins.

From the same observations made for selectively-ccc spaces, we have:

Lemma 6.15. Let (X ,τ) be a topological space. The following statements are equivalent:

1. SS*OX ,1(Mc,OX) holds;

2. SS*OX ,1(D0,D0) holds.

Proof. We just need to include the following observation: if B ⊆ A, then St(B,U )⊆ St(A,U ).

In general, we obtain the following:

Theorem 6.16. Let (X ,τ) be a topological space and let f : ω → ω∖{0} be a function. The
following statements are equivalent:

1. SS*OX , f (Mc,OX) holds;

2. SS*OX , f (D0,D0) holds.

Theorem 6.17. Let (X ,τ) be a topological space. The following statements are equivalent:
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1. SS*OX , f in(Mc,O) holds;

2. SS*OX , f in(D0,D0) holds.

Additionally, we have the following:

Theorem 6.18. Let (X ,τ) be a topological space and let f : ω → ω∖{0} be a function. For all
U ∈ OX , the following statements are equivalent:

1. II ↑ GU
f (Mc,D0) (I ̸↑ GU

f (Mc,D0));

2. II ↑ GU
f (D0,D0) (I ̸↑ GU

f (Mc,D0)).

Theorem 6.19. Let (X ,τ) be a topological space. For all U ∈ OX , the following statements are
equivalent:

1. II ↑ GU
f in(Mc,D0) (I ̸↑ GU

f in(Mc,D0));

2. II ↑ GU
f in(D0,D0) (I ̸↑ GU

f in(Mc,D0)).

Finally, with practically the same proof of Theorem 6.7 and Theorem 6.8, only by making
a change in the winning criterion and using the observation in the proof of Lemma 6.15, we
obtain the following results:

Theorem 6.20. Let (X ,τ) be a topological space. The following statements are equivalent:

1. SS*OX , f in(D0,OX) holds;

2. I ̸↑ GU
f in(D0,D0), for all U ∈ OX .

Theorem 6.21. Let (X ,τ) be a topological space. The following statements are equivalent:

1. SS*OX ,1(D0,OX) holds;

2. I ̸↑ GU
1 /(D0,D0), for all U ∈ OX .

Theorem 6.22. Let (X ,τ) be a topological space and let f : ω → ω∖{0} be a function. The
following statements are equivalent:

1. SS*OX , f (D0,OX) holds;

2. I ̸↑ GU
f (D0,D0), for all U ∈ OX .
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6.3 Equivalences in selectively-ccc spaces

In the direction of the Problem 4.1 we study the case of the class Mc. We introduce the
following.

Definition 6.23. We say that a topological space (X ,τ) is open-separable if there is a B ∈ D0

countable.

Definition 6.24. Let A ⊆ X , we define, ΩA = {A ⊆ τ : ∀ U open in A,∃ B ∈ A ,U ∩B ̸= /0}.

Lemma 6.25. Let (X ,τ) be a topological space. The following statements are equivalent:

1. S1(D0,D0) holds;

2. X is open-separable and S1(D0,ΩA) holds, for all A ∈ τ;

3. X have a countable family A ∈ D0 such that S1(D0,ΩA) holds, for all A ∈ A .

Proof. 1) ⇒ 2) ⇒ 3) are clear, because D0 ⊆ ΩA, for all A ∈ τ . It is sufficient to prove the
implication 3)⇒ 1). Let A = {An : n ∈ ω} ∈ D0 such that S1(D0,ΩAn) holds for all n ∈ ω . Let
⟨An : n ∈ ω⟩ be a sequence with elements in D0 and {Fn : n ∈ ω} be a partition of ω in infinitely
disjoint sets.

Applying S1(D0,ΩAn), for all n∈ω , in the sequence ⟨Am : m∈Fn⟩, we find that there are,
for all m ∈ Fn, Bn

m ∈ Am such that {Bn
m : m ∈ Fn} ∈ ΩAn . We claim that

⋃
n∈ω

{Bn
m : m ∈ Fn} ∈ D0.

Indeed, let U ∈ τ . As A ∈ D0, there is a k ∈ ω such that U ∩Ak ̸= /0. As {Bk
m : m ∈ Fk} ∈ ΩAk ,

there is l ∈ Fk such that Bk
l ∩ (U ∩Ak) ̸= /0. Thus Bk

l ∩U ̸= /0, which concludes the proof.

With few modifications, we obtain:

Lemma 6.26. Let (X ,τ) be a topological space. The following statements are equivalent:

1. S f (D0,D0) holds;

2. X is open-separable and S f (D0,ΩA) holds, for all A ∈ τ;

3. X have a countable family A ∈ D0 such that S f (D0,ΩA) holds, for all A ∈ A .

Lemma 6.27. Let (X ,τ) be a topological space. The following statements are equivalent:

1. S f in(D0,D0);

2. X is open-separable and S f in(D0,ΩA) holds, for all A ∈ τ;

3. X have a countable family A ∈ D0 such that S f in(D0,ΩA) holds, for all A ∈ A .
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Observation 6.28. Let C ,B ⊂ τ and A ⊂ X . If C ∪B ∈ ΩA then C ∈ ΩA or B ∈ ΩA. Indeed,
suppose that C /∈ ΩA and B /∈ ΩA. So, there are open sets U,V in A such that C∩U = /0, for all
C ∈ C and B∩V = /0, for all B ∈ B. Then U ∩V is an open subset in A, and D∩ (U ∩V ) = /0
for all D ∈ C ∪B, that is, C ∪B /∈ ΩA.

From this observation, we obtain the following result:

Theorem 6.29. Let (X ,τ) be an open-separable space. If S2(D0,D0) holds, then S1(D0,D0)

holds.

Proof. Let (An : n∈ω) be a sequence in D0. Applying S2(D0,D0) to the sequence (A2n : n∈ω),
we have that there are {An,Bn} ⊂ A2n, for all n ∈ ω , such that

⋃
n∈ω

{An,Bn} ∈ D0. Choose

An ∈ A2n, for all n ∈ ω . Let {pi : i ∈ ω} be an increasing enumeration of the odd number
primes. Then, for all i ∈ ω , consider (Apn

i
: n ∈ ω). By S2(D0,ΩBi), it follows that there are

{Ci
n,D

i
n} ⊂ Apn

i
such that

⋃
n∈ω

{Ci
n,D

i
n} ∈ ΩBi . By the above observation, we have for all i ∈ ω ,

{Ci
n : n ∈ ω} ∈ ΩBi or {Di

n : n ∈ ω} ∈ ΩBi . For each n, i ∈ ω , define:

F i
n =

Ci
n, {Ci

n : n ∈ ω} ∈ ΩBi

Di
n, {Di

n : n ∈ ω} ∈ ΩBi

Note that F i
n ∈ Apn

i
, for all n, i ∈ ω . Then {An : n ∈ ω}∪

⋃
i∈ω{F i

n : n ∈ ω} ∈ D0. Indeed, let
U ∈ τ . As

⋃
n∈ω

{An,Bn} ∈D0, there is m ∈ ω such that U ∩Am ̸= /0 or U ∩Bm ̸= /0. If the first case

is true, we are done. In the other case, U ∩Bm is an open subset of Bm. As {Fm
n : n ∈ ω} ∈ ΩBm ,

there is l ∈ ω such that Fm
l ∩ (U ∩Bm) ̸= /0. Then U ∩Fm

l ̸= /0. This concludes the proof.

Using the same argument, we obtain the following result:

Theorem 6.30. Let (X ,τ) be an open-separable space and k ≥ 1. All selection principles
Sk(D0,D0) are equivalent.

Observation 6.31. In Theorem 2.17. in (BONANZINGA et al., 2014), we see that the Pixley-
Roy space PR(R) is such that S f in(D0,D0) holds, but S1(D0,D0) fails.
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CHAPTER

7
FINAL CONSIDERATIONS

In Chapter 3 we obtain, with certain conditions in the classes A and B, equivalences in
some variation of selection principles. We must mention that the implications and equivalences
of Proposition 3.10 are valid in the game version (see (AURICHI; BELLA; DIAS, 2018)).

Our main objective in Chapter 4 was to obtain possible equivalences between selective
topological games considering the class of dense subsets of a topological space X .

We see that, in general, selective topological games in the class of dense subsets in
topological spaces are different. Indeed, consider the space X = <ωω with the topology generated
by the basis

B= {X∖
⋃
f∈F

{ f � n : n ∈ ω} : F ⊂ ω
ω is f inite}.

Firstly, let k0,k1, ...,km−1 ∈ ω , with m ∈ ω (here k−1 = /0), we have that the set D =

{(k0,k1...,km−1,k) : k ∈ ω} is dense in X , because for any F ⊂ ωω finite the set { f � m : f ∈ F}
is finite, and then there is (k0, ..,km−1,km) ∈ D such that (k1, ..,kn−1,km) ̸= f � m, for all f ∈ F .
So D∪

(
X∖
⋃

f∈F{ f � n : n ∈ ω}
)
̸= /0.

Now, in the game G1(DX ,DX), in the inning 0, Player I chooses D0 = {(k) : k ∈ ω}.
If Player II chooses x0 = (k0) ∈ D0, then Player I chooses D1 = {(k0,k) : k ∈ ω}. If Player II

chooses x1 = (k0,k1) ∈ D1, then Player I chooses D2 = {(k0,k1,k) : k ∈ ω}, and so on. Taking
f = (k0, ...,kn, ...) we have {xn : n ∈ ω}∩X∖{ f � n : n ∈ ω}= /0, that is, {xn : n ∈ ω} /∈ DX . So,
I ↑ G1(DX ,DX), and then II ̸↑ G1(DX ,DX).

On the other hand, suppose that Player I chooses A0 ∈ DX in the inning 0 in the game
G2(DX ,DX). As A0 is dense, we can choose a0

1,a
0
2 ∈ A1 such that they do not belong to a same

branch (branch is a set of the form { f � n : n ∈ ω}, with f ∈ ωω). Then, Player II chooses
{a0

1,a
0
2}. It is clear that {a0

1} or {a0
2} is a set such that no branch contains two elements of it. Let

{t0} be the set {a0
1}.

In the next inning, suppose that Player I chooses A1 ∈ DX . If there is an element a1
1 in A1
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such that it is not in any branch that does not intersect {t0}, then Player II chooses {a1
1,a

1
2}, with

a1
2 an arbitrary element in A1. Note that the set {t0,a1

1} is a set such that no branch contains two
elements of it. If all the elements in A1 are in a branch that intersects {t0}, since A1 is dense, we
can choose incompatible elements a1

1 and a1
2 (that is, a1

1 ̸⊂ a1
2 and a1

2 ̸⊂ a1
1) in A2 such that t0 ⊂ a1

1

and t0 ⊂ a1
2. So, Player II chooses {a1

1,a
1
2}. Note that the set is such that no branch contains two

elements of it. So, in any of the cases, we have a set with 2 elements, namely {t0, t1}, such that
no branch contains two elements of it.

In the next inning, suppose that Player I chooses A2 ∈ DX . If there is an element a2
1

in A2 such that it is not in any branch that does not intersect {t0, t1}, then Player II chooses
{a2

1,a
2
2}, with a2

2 an arbitrary element in A1. Note that the set {t0, t1,a2
1} is a set such that no

branch contains two elements of it. If all elements in A1 are in a branch that intersects {t0, t1},
since A1 is dense, there is ti such that we can choose a2

1 and a2
2 incompatible elements in A2 with

ti ⊂ a2
1 and ti ⊂ a2

2. So, Player II chooses {a2
1,a

2
2}. Note that for j ̸= i, the set {t j,a2

1,a
2
2} is such

that no branch contains two elements of it. So, in any of the cases, we have a set with 3 elements,
namely {t0, t1, t2}, such that no branch contains two elements of it.

In general, in the inning n ≥ 1, suppose that Player I chooses An ∈ DX . If there is an
element an

1 in An such that it is not in any branch that does not intersect {t0, t1, .., tn−1}, then
Player II chooses {an

1,a
n
2}, with an

2 an arbitrary element in An. Note that the set {t0, t1, ..., tn−1,an
1}

is a set such that no branch contains two elements of it. If all the elements in An are in a branch
that intersects {t0, t1, ..., tn−1}, since An is dense, there is ti such that we can choose an

1 and an
2

incompatible elements in An with ti ⊂ an
1 and ti ⊂ an

2. So, Player II chooses {an
1,a

n
2}. Note that

the set {t j : j ̸= i}∪{an
1,a

n
2} is such that no branch contains two elements of it. So, in any of the

cases, we have a set with n+1 elements, namely {t0, t1, ..., tn}, such that no branch contains two
elements of it.

In summary, we obtain a strategy σ for Player II such that, for each n ∈ ω , the set of
answers played includes a set {t0, ..., tn} with the property that no branch contains two elements
of it.

We have that σ is a winning strategy. Indeed, let D be the set of all the answers of Player
II in a play using σ . If D /∈ DX , then there is a basic open U = X∖

⋃
F∈ ω ω{ f � n : n ∈ ω}, with

F finite, such that D∩U = /0. So, D ⊂
⋃

F∈ ω ω{ f � n : n ∈ ω}. Suppose that |F | = m. Then,
since the set {t0, ..., tm} ⊂ D is such that no branch contains two elements of it, there is a ti such
that ti /∈

⋃
F∈ ω ω{ f � n : n ∈ ω}. So, D ̸⊂

⋃
F∈ ω ω{ f � n : n ∈ ω}, a contradiction. Then D ∈ DX .

Therefore, II ↑ G2(DX ,DX).

We can see that X is a T1 space that is not a Hausdorff space. The following question is
still open:

Problem 7.1. Restricted to Hausdorff spaces, the selective topological games G1(DX ,DX) and
G2(DX ,DX) are equivalent?
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Furthermore, if X is a P-space and 1st-countable, then Problem 7.1 has a positive answer.
Indeed, if X is a Hausdorff space, then X is a discrete space and therefore all games Gk(DX ,DX),
G f (DX ,DX) and G f in(DX ,DX) are equivalents, where k ∈ ω and f : ω → ω∖{0} is a function.

On the other hand, if X is not a Hausdorff space, then we have II ↑ G2(DX ,DX)⇒ II ↑
G1(DX ,DX). Indeed, let σ be a winning strategy for Player II in G2(DX ,DX). Suppose that
Player I chooses D0 ∈ DX in the first inning of the game G1(DX ,DX). Suppose that σ(⟨D0⟩) =
{x0,y0}. So, define ϕ(⟨D0⟩) = x0. Next, Player I chooses D1 ∈ DX .

Recall that

II ↑ G2(DX ,DX)⇒ S2(DX ,DX)⇒ S1(DX ,DX)⇒ S1(DX ,Ωx),

for all x ∈ X .

Then, using that S1(DX ,Ωy0) holds, there is {z1
n : n ∈ ω} ⊂ D1 such that {z1

n : n ∈ ω} ∈
Ωy0 . Let {U0

n : n∈ω} be a local base for y0. Then
⋂

n∈ω U0
n is an open (because X is P-space) and

contains y0. Therefore, there is m1 such that z1
m1

∈
⋂

n∈ω U0
n . Define ϕ(⟨D0,D1⟩) = z1

m1
. Thus,

in each inning 2n, n ∈ ω , we define ϕ(⟨D0,D1, ...,D2n⟩) = xn, where σ(⟨D0,D2, ...,D2n⟩) =
{xn,yn}. On the other hand, in each inning 2n+1, with n∈ω , we define ϕ(⟨D0,D1, ...,D2n+1⟩)=
z2n+1

m2n+1
, where

z2n+1
m2n+1

∈
⋂

m∈ω

Un
m

and {Un
m : m ∈ ω} is a local base of yn (here we use S1(DX ,Ωyn)).

Then, we claim that {xn : n ∈ ω} ∪ {z2n+1
m2n+1

: n ∈ ω} ∈ DX . Indeed, let U ∈ τ . As σ

is a winning strategy, we see that there is k ∈ ω such that xk ∈ U or yk ∈ U . If the first case
is true, we are done. Suppose that yk ∈ U . Then, there is l ∈ ω such that yk ∈ Uk

l ∈ U . So
z2k+1

m2k+1
∈
⋂

m∈ω Uk
m ⊂U . Therefore, ϕ is a winning strategy for Player II in the game G1(DX ,DX).

Due to the impossibility, for now, of answering positively Question 7.1 we focus on
function spaces C(X). However, we had to restrict ourselves due to the following problems,
which are still open:

Problem 7.2. If (X ,τ) is a regular space and f : ω →ω∖{0} is a function. The games G f (ΩX ,ΩX)

and G1(ΩX ,ΩX) are equivalent?

Problem 7.3. Let (X ,τ) be a regular space. If s ∈ <ωΩX and σ is a strategy in G f (ΩX ,ΩX),
then

Cs =
⋂

U ∈ΩX

⋃
σ(s_U )

is finite?

And, more generally:
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Problem 7.4. Let (X ,τ) be a regular or Tychonoff space and B a bornology with a compact
basis. If s ∈ <ωOX

B and σ is a strategy in G f (O
X
B,O

X
B), then

Cs =
⋂

U ∈OX
B

⋃
σ(s_U )

is an element of B?

If the statements in either of the first two problems are true, we can obtain a version of
Corollary 4.46 for the function space Cp(X). If the statement of Problem 7.4 is true, we can
probably obtain a version of Corollary 4.46 by CB(X).

In particular, when X is a P-space, Problems 7.2 and 7.3 have positive answers, and
therefore we have an equivalence of the topological games G1(DX ,DX) and G f (DX ,DX), with
f : ω → ω∖{0} an increasing function.

In Chapter 5 we obtain generalizations of equivalences and translations, about selection
principles and selective topological games, in other classes of dense subsets.

In Chapter 6 we obtain equivalences in variations of selection principles associated
with the selectively-ccc property. An interesting question is about the variations in the selective
topological games associated with that property.
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Rothberger, 24
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open-separable, 92

Strategy
definition, 25
predetermined, 25
winning, 25

Strongly sequentially dense, 22

Topology
of uniform convergence, 27

103



U
N

IV
ER

SI
D

A
D

E 
D

E 
SÃ

O
 P

AU
LO

In
st

itu
to

 d
e 

Ci
ên

ci
as

 M
at

em
át

ic
as

 e
 d

e 
Co

m
pu

ta
çã

o


	Title page
	Title page
	Dedication
	Acknowledgements
	Epigraph
	Abstract
	Resumo
	List of symbols
	Contents
	Introduction
	Preliminaries
	Selection principles and selective topological games
	Families of sets
	Selection principles and selective topological games
	Winning strategies

	Bornologies
	Function spaces and selection principles
	Duality
	Examples


	Equivalences in variations of selection principles
	Equivalences of selection principles with arbitrary classes of families
	Some specific cases
	Tightness
	Open covers
	-covers
	Bornologies families
	Dense subsets


	Equivalences in game variations for dense classes in spaces of the form TEXT
	Hurewicz's and Pawlikowski's Theorems versions for TEXT
	Equivalences of Games in TEXT
	A weak result for Player II.
	Equivalent games in TEXT

	Additional translations in games and selection principles
	Translations on the pair TEXT
	Other equivalences of Games and selection principle
	Games about TEXT-denses sets

	Variations in selectively ccc property and games
	Selectively ccc
	Star selectively-ccc
	Equivalences in selectively-ccc spaces

	Final Considerations
	Bibliography

