• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Dissertação de Mestrado
DOI
10.11606/D.55.2012.tde-19072012-112150
Documento
Autor
Nome completo
Steve da Silva Vicentim
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Carlos, 2012
Orientador
Banca examinadora
Borges Filho, Herivelto Martins (Presidente)
Conte, Luciane Quoos
Tengan, Eduardo
Título em português
Curvas algébricas sobre corpos finitos
Palavras-chave em português
Corpos de funções algébricas
Curvas algébricas
Gênero
Lugares racionais
Resumo em português
A Teoria das curvas algébricas sobre corpos finitos é de fundamental importância para a matemática e tem aplicações essenciais em muitas áreas, tais como Geometria Finita, Teoria dos Números, Teoria de Grafos e Teoria de Códigos. Neste trabalho tratamos do segmento algébrico desta teoria, isto é, corpos de funções algébricas, inicialmente sobre qualquer corpo, apresentando propriedades fundamentais. Depois nos restringimos aos corpos de funções algébricas sobre corpos finitos, e são apresentados resultados referentes à estimativa do gênero e número de lugares racionais, além de propriedades que conectam estes dois números e a característica do corpo, sendo o principal resultado dado por: Para q uma potência de um número primo e N inteiro não negativo, existe uma constante inteira não negativa g0 (dependendo de q e N) tal que, para todo g maior ou igual a 'g IND. 0', existe um corpo de funções sobre 'F IND. q' de gênero g tendo exatamente N lugares racionais
Título em inglês
Algebraic curves over finite fields
Palavras-chave em inglês
Algebraic curves
Algebraic function fields
Genus
Racional places
Resumo em inglês
The Theory of algebraic curves over finite fields is of fundamental importance to mathematics and has essential applications in many areas, such Finite Geometry, Number Theory, Graph Theory and Coding Theory. In this work we treat the algebraic part of this theory, ie, algebraic function fields, initially over any field, presenting fundamental properties. Then we restrict to algebraic function fields over finite fields, and presented results for the estimation of the genus and the number of racional places, as well as properties that connect these two numbers and the characteristic of the constant field, being the main result given by: For q a prime power and N a non-negative integer, there is an integer non-negative 'g IND. 0' (that depends of q and N) such that for all 'g > or =' 'g IND. 0' , there exists a function field over 'F IND. q' with genus g having exactly N racional places
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
steverev.pdf (852.79 Kbytes)
Data de Publicação
2012-07-19
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
Centro de Informática de São Carlos
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2021. Todos os direitos reservados.