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RESUMO

LUIZ, M. N. Tópicos em Geometria de Poisson. 2020. 78 p. Dissertação (Mestrado em Ciên-
cias – Matemática) – Instituto de Ciências Matemáticas e de Computação, Universidade de São
Paulo, São Carlos – SP, 2020.

Este trabalho é uma revisão bibliografica nas areas de geometria de Poisson e teoria de grupoides
e algebroides de Lie. Como resultado final desta interação apresentamos a abordagem geometrica
para o teorema de linearização de Conn para estruturas de Poisson apresentada em [Crainic and
Fernandes 2011].

Palavras-chave: Geometria de Poisson. Grupoides de Lie. Algebroides de Lie. Linearização.





ABSTRACT

LUIZ, M. N. Topics in Poisson Geometry. 2020. 78 p. Dissertação (Mestrado em Ciências –
Matemática) – Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo,
São Carlos – SP, 2020.

This monograph is a review of Poisson geometry, Lie groupoids and Lie algebroids theory and
they relations. We present a summary of the main known results in this areas and as a return of
the striking connection of this topics, we present the geometric approach to Conn’s linearization
theorem present in [Crainic and Fernandes 2011].

Keywords: Poisson Geometry. Lie Groupoids. Lie Algebroids. Linearization.





CONTENTS

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 POISSON GEOMETRY . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.1 Poisson manifold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 The Schouten-Nijenhuis bracket and Poisson cohomology . . . . . . 25
2.2.1 Lower degree computations . . . . . . . . . . . . . . . . . . . . . . . . 28
2.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.3.1 Symplectic manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.3.2 The Lie-Poisson structure on g* . . . . . . . . . . . . . . . . . . . . . 32
2.3.3 The tangent lifts of a Poisson structure . . . . . . . . . . . . . . . . . 33
2.4 The Poisson category . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.5 The splitting theorem for Poisson manifolds . . . . . . . . . . . . . . 36
2.6 Symplectic foliation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.6.1 Singular foliations and singular distributions . . . . . . . . . . . . . . 39
2.6.2 The symplectic foliation of a Poisson manifold . . . . . . . . . . . . . 41
2.6.3 The symplectic foliation of a linear Poisson structure . . . . . . . . . 43
2.7 Isotropy Lie algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.8 Complete Poisson manifold . . . . . . . . . . . . . . . . . . . . . . . . 45
2.9 Symplectic realization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3 LIE ALGEBROID AND LIE GROUPOID . . . . . . . . . . . . . . . 49
3.1 Lie algebroid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.2 Relation between Lie algebroid theory and Poisson geometry . . . . 52
3.2.1 Isotropy algebras and characteristic foliation of a Lie algebroid . . . 55
3.2.2 Splitting theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.2.3 Lie algebroid cohomology . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.3 Lie groupoid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.3.1 The Lie algebroid of a Lie groupoid . . . . . . . . . . . . . . . . . . . 64
3.4 Integrability problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.5 Lie groupoid cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4 CONN’S LINEARIZATION THEOREM . . . . . . . . . . . . . . . . 71
4.1 Compact Lie Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.2 Reduction to a cohomological condition . . . . . . . . . . . . . . . . . 73



BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77



17

CHAPTER

1
INTRODUCTION

The evolution of a Hamiltonian mechanical system takes place in the so called phase-
space which is modeled by a symplectic manifold (M,ω) whose dimension is equal to number
of degrees of freedom of the sytem. The equations describing the time evolution are the so called
Hamilton’s equations which, in the Darboux’s coordinates (q1, . . . ,qm, p1, . . . , pm), assume the
following form

q̇i =
∂h
∂ pi

ṗi =−
∂h
∂qi

for all i ∈ 1, . . . ,m. The function h ∈C∞(M) is called the Hamiltonian of the mechanical system
and it plays the role of the total energy when the system is not dissipative. Defining

{ f ,g} :=
n

∑
i=1

∂ f
∂ pi

∂g
∂qi −

∂ f
∂qi

∂g
∂ pi

,

for all f ,g ∈C∞(M), and given h ∈C∞(M) the Hamilton’s equations can be written as

q̇i = {h,qi}

ṗi = {h, pi}

for all i = 1, . . . ,m.

This bracket satisfies the following proprieties

1. Skew-symmetry: { f ,g}=−{g, f},

2. Bilinearity: {a f +bg,h}= a{ f ,h}+b{g,h},

3. Jacobi identity : {{ f ,g},h}+{{g,h}, f}+{{h, f},g}= 0,

4. Leibniz rule: { f ,gh}= g{ f ,h}+{ f ,g}h,
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for all f ,g,h ∈ C∞(M) Abstracting these proprieties one can introduce the concept Poisson
manifold, e.g. a pair (M,{·, ·}) where M is a smooth manifold and {·, ·} is a bracket on C∞(M)

satisfies the previous proprieties. Poisson structures appear in many different areas of mathemat-
ics, for example dynamical systems, differential geometry, abstract algebra and representation
theory. In all of these areas the possibility to approximate, in a suitable sense, a Poisson structure
with a linear one is of the greatest importance and for this reason the results describing the
possible normal forms theorems for these geometric structures, play a fundamental role in
Poisson geometry.

The main goal of this dissertation is to present a summary of the main known results in
this area, emphasizing the geometrical perspective.

This monograph is organized as follows. In Chapter 2 we introduce the basics of the
theory of Poisson manifolds like the Weinstein splitting theorem, describing the local structure
of Poisson manifolds and implying the existence of the symplectic foliation. In Chapter 3 we
present a summary of the theory of Lie groupoids and Lie algebroids and we introduce the key
tools to develop the theory presented in the following chapter. Following the Spivak’s philosophy,
saying that in a theory we must make the hard work on the definitions and win suitable proves,
in Chapter 4 we present a geometric approach to Conn’s linearization theorem as explained
in [Crainic and Fernandes 2011]. Throughout this work, unless stated otherwise, we assume that
all the manifolds are smooth.
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CHAPTER

2
POISSON GEOMETRY

Proposed by Poisson as a tool for Lagrangian mechanics, and studied by Jacobi and Lie,
the Poisson bracket has connections with different areas such as Lie groups and Lie algebras,
classical mechanics, singularity theory, quantum mechanics and others [Weinstein 1998].

The goal of this chapter is to introduce the Poison Geometry. First, we present the basics
facts and definitions. In the Section 2.2 we introduce the Schouten bracket, use it to define the
cohomology of Poisson manifolds and compute the lower degree groups. Next, we present some
important examples like symplectic manifold and the linear Poisson bracket. In the Section 2.4
we define the notion of Poisson morphism and define the Poisson category, showing that the
Hamiltonian vector field, defined from a f ∈ C∞M, is invariant under Poisson morphism. In
Section 2.5 we present the main result in local theory of Poisson manifolds, the Weinstein’s
splitting theorem. On the next section, we present the main result about the global structures of
a Poisosn manifold, the symplectic foliantion. At last, in the final three sections we define the
isotropy algebra, the concept of complet Poisosn map and symplectic realization.

2.1 Poisson manifold

Definition 1. . A smooth Poisson structure on a finite dimensional manifold M is an R-
bilinear skew-symmetric operation C∞(M)×C∞(M)→C∞(M), ( f ,g) ↦→ { f ,g} defined on the
algebra of the real-valued smooth functions on M satisfying, the:

1. Jacobi identity
{{ f ,g},h}+{{g,h}, f}+{{h, f},g}= 0,

2. Leibniz identity
{ f ,gh}= g{ f ,h}+{ f ,g}h,

for all f ,g,h ∈C∞(M).
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We call the pair (M,{·, ·}) a Poisson Manifold. One can check that any manifold with
the bracket { f ,g}= 0 for all f ,g ∈C∞(M) is a Poisson manifold.

An important consequence of the R-bilinearity and the Leibniz identity is that the
Poisson bracket is a local operation, i.e., { f ,g}(x) depends on the values of the functions f ,g in
a neighborhood of x. Formally speaking, we have:

Proposition 2. Let f , f ′ ∈C∞(M) and x ∈M, and suppose that there is U ⊂M, an open neigh-
borhood of x, such that f

∣∣
U = f ′

∣∣
U . Then

{ f ,g}(x) = { f ′,g}(x), ∀g ∈C∞(M).

Proof. Let α ∈C∞(M) be a function such that α(x) = 1 and supp(α) = {x ∈M|α(x) ̸= 0} ⊂U ,
then, α( f − f ′) = 0. Let g ∈C∞(M), thus,

0 = {g,α( f − f ′)}(x) = α(x){g,( f − f ′)}(x)+{g,α}(x)( f − f ′)(x)

= {g,( f − f ′)}= {g, f}(x)−{g, f ′}(x).

Thanks to proposition (2), we can restrict the Poisson bracket to an open set U ⊂M. For
f ,g ∈C∞(U), take a compact subset K of U and α ∈C∞(M) such that supp(α) ⊂ K. Hence,
we have two global functions α f ,αg ∈C∞(M), satisfying α f

∣∣
K = f

∣∣
K and αg

∣∣
K = g

∣∣
K . So, we

define

{ f ,g}
∣∣
U := {α f ,αg}.

By proposition (2) the definition of { f ,g}
∣∣
U does not depend on the function α .

There is an important subalgebra of the Lie algebra of smooth vector fields: the Hamilto-
nian vector fields.

Definition 3. Given f a smooth function, we define the Hamiltonian vector field of f , denoted
by X f , as the unique vector field that satisfies

X f (g) := { f ,g} , ∀g ∈C∞(M).

It is clear that, by skew-symmetry, we have

X f (g) = { f ,g}=−Xg( f ).

The following lemma ensures that the subset of a Hamiltonian vector field is truly a Lie
subalgebra.
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Proposition 4. The map f → X f is a homomorphism from the Lie algebra C∞(M) of smooth
functions under the Poisson bracket to the Lie algebra of smooth vector fields under the usual
Lie bracket. In other words,

[X f ,Xg] = X{ f ,g}.

Proof. For any f ,g,h ∈C∞(M) we have

[X f ,Xg]h = X f (Xg(h))−Xg(X f (h))

= { f ,{g,h}}−{g,{ f ,h}}

= { f ,{g,h}}+{g,{h, f}}.

By the Jacobi’s identity, we have

[X f ,Xg]h = {{ f ,g},h}

= X{ f ,g}(h).

Since h is arbitrary, it means that [X f ,Xg] = X{ f ,g}.

Proposition 5. Let ϕt be the flow of a vector field X ∈ X(M) and let h ∈C∞(M). Then

1. Let U ⊂M be an open subset. For all f ∈C∞(U),

d
dt
( f ∘ϕt) = {h, f}∘ϕt = {h, f ∘ϕt}

if, and only if, ϕt is the flow of Xh.

2. If ϕt is the flow of Xh, then h∘ϕt = h.

Proof. Let x ∈M, then

d
dt
( f ∘ϕt(x)) = d f(ϕt(x))

(
d
dt
(ϕt(x))

)
{h, f}(ϕt(x)) = d f(ϕt(x)) (Xh(ϕt(x)))

the left-hand side of two equations are equal for any f ∈C∞(U), if, and only if,

d
dt
(ϕt(x)) = Xh(ϕt(x)).

On the other hand, if ϕt is the flow of Xh, then

Xh(ϕt(x)) = dxϕt(Xh(x)).

the chain rule implies that
d
dt

( f (ϕt(x))) = d f(ϕt(x))(Xh(ϕt(x)))

= d f(ϕt(x))(Txϕt(Xh(x)))

= d( f ∘ϕt)x(Xh(x))

= { f ∘ϕt ,h}(x).

The second part is the first one when h = f .
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And we have the following corollary.

Corollary 6. Let g,h ∈C∞(M) such that {g,h}= 0, then g is constant along the integral curves
of Xh.

Is it possible to understand the Poisson bracket, {·, ·}, as a C∞ tensor field Π ∈ X2(M)

Π : T *M×T *M→ R such that

Πx(d fx,dgx) := { f ,g}(x).

In a local coordinate (xi), Π has the following representation

{ f ,g}= Π(d f ,dg) = ∑
i, j

Π
i j ∂ f

∂xi
∂g
∂x j ∀ f , g ∈C∞(M),

where Πi j = {xi,x j}. We call Π the Poisson bivector of (M,{·, ·}).

Conversely, given a bivector field Π, we obtain a skew-symmetric bracket on C∞(M) by

{ f ,g} := Π(d f ,dg).

Since the above bracket is a bi-derivation, to ensure that it is Poisson, it is just necessary
to find the conditions which ensure that {·, ·} satisfies the Jacobi identity.

For example, in terms of the Lie derivative of Π, we can write:

ℒXhΠ(d f ,dg) = Xh({ f ,g})−{Xh( f ),g}−{ f ,Xh(g)}

= {{ f ,g},h}−{{ f ,h},g}−{ f ,{g,h}}

= {{ f ,g},h}+{{g,h}, f}+{{h, f},g}.

Thus, the Jacobi identity for {·, ·} can be replaced by ℒX f Π = 0, for all f .

Another way is in term of a 3-vector field, called Jac.

Proposition 7. For any smooth 2-vector field Π, we can associate to it a 3-vector field defined
by

JacΠ( f ,g,h) = {{ f ,g},h}+{{g,h}, f}+{{h, f},g}.

Proof. Since {·, ·} is R-bilinear, so is Jac R-trilinear. The cyclic sum and skew-symmetry of the
bracket gives the skew-symmetry of Jac. We just have to check if it satisfies the Leibniz identity.
Indeed,

{{ f1 f2,g},h}= f1{{ f2,g},h}+{ f2,g}{ f1,h}+ f2{{ f1,g},h}+{ f1,g}{ f2,h};

{{g,h}, f1 f2}= f1{{g,h} f2}+ f2{{g,h} f1};

{{h, f1 f2},g}= f1{{h, f2},g}+{ f1,g}{h, f2}+ f2{{h, f1},g}+{ f2,g}{h, f1}.
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and we have that,

Jac( f1 f2,g,h) = f1({{ f2,g},h}+{{g,h} f2}+{h, f2},g})

+ f2({{ f1,g},h}+{{g,h} f1}+{{h, f1},g})

= f1 Jac( f2,g,h)+ Jac( f1,g,h) f2

In local coordinates (x1, . . . ,xn) JacΠ can be write as

JacΠ = ∑
i, j,k

(
∮

i jk
∑
s

∂Πi, j

∂xs Π
s,k)

∂

∂xi ∧
∂

∂x j ∧
∂

∂xk ,

where
∮

i jk ai jk means the cyclic sum ai jk +a jki +aki j.

Thus, the following statements are equivalents

∙ {·, ·} is a Poisson bracket;

∙ [X f ,Xg] = X{ f ,g} for all f ,g;

∙ ℒX f Π = 0 for all f ;

∙
∮

i jk ∑s
∂Πi, j
∂xs

Πs,k = 0 for all i, j,k.

A Poisson structure Π on M, defines a natural vector bundle morphism,

# : T *M→ T M,

which maps each covector α ∈ T *x M to the vector #(α) ∈ TxM such that

⟨α ∧β ,Π⟩x = ⟨β ,#x(α)⟩x, β ∈ T *x M,

where the ⟨·, ·⟩x is the pering between T *x M and TxM.

Definition 8. Let (M,Π) be a Poisson manifold and x ∈M. The characteristic space at x is
Cx := Im#x. The dimension of Cx is called the rank of Π at x. We call x a regular point of (M,Π)

if there is a neighborhood U of x such that Rank(Πx) = Rank(Πy) for every y ∈U . Otherwise,
we call x a singular point of (M,Π). If Rank(Πx) does not depend on x, then Π is called a
regular Poisson structure. We call Mreg = {x ∈M | x is a regular point} the set of regular points
and we call Msig = {x ∈M | x is a singular point} the set of singular points.

Proposition 9. Let (M,Π) be a Poisson manifold. For every x ∈M the rank of Π at x is an even
number.



24 Chapter 2. Poisson Geometry

Proof. Suppose dim M = d and let (U,ϕ) be a coordinate neighborhood of x ∈M. On U , the
bivector field can be written as

Π = ∑
16i< j6d

{yi,y j} ∂

∂yi ∧
∂

∂y j .

Evaluating the Poisson structure on x ∈U , we get a skew-symmetric bilinear map Πx : T *x M×
T *x M→ R.

Let U := {µ ∈ T *x M |Πx(µ,ν) = 0 ∀ ν ∈ T *x M}. Choose a complementary space W in
T *x M

T *x M =U⊕W

Take any nonzero q1 ∈W . So, there is p1 such that Πx(q1, p1) ̸= 0. Let

W1 = span{p1,q1}

W ′1 = {w ∈W |πx(w,v) = 0 ∀ v ∈W1}.

So, we have that W1∩W ′1 = {0} and W =W1
⊕

W ′1. Repeating this process we get

V =U⊕W1⊕W2⊕ ...⊕Wn

Thus the rank of Πx is 2n.

The rank of a Poisson manifold is not necessarily continuous with respect to x ∈ M,
however, it varies properly with x. Here, the meaning of "properly" follows the next definition

Definition 10. Let X be a topological space and f : X → N. We say that f is lower semi-
continuous at x ∈ X if there is a neighborhood V of x such that f (y)≥ f (x) for all y ∈V .

This definition is not the usual general definition of lower semi-continuity, but it is
an adaptation to our context. Equipped with the above definition, we can prove the following
proposition.

Proposition 11. The function RankΠ : M→N defined by x ↦→Rank(Πx) is lower semi-continuous.

Proof. Take some local coordinates (x1, . . . ,xn) around x ∈M. If the Rank(x) = 2n the matrix
Πi j(x) had Rank 2n, there wold be a submatrix, A, of #Πi, j of size 2n× 2n with non-zero
determinant. Since the determinant is a continuous function, there is a neighborhood U of x such
that the determinant of A(y) must not vanish for all y ∈U , and the RankΠ is at least 2n on this
neighborhood.

Using the above proposition, we can prove the following one

Proposition 12. the set Mreg, of regular points of a Poisson Manifold, is a dense subset of M

and the set Msing, of singular points, is a closed nowhere dense subset of M.
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Proof. From the definition, Mreg is a union of open sets, therefore open. Since Msing is the
complement of Mreg, it is closed.

To prove that Mreg is a dense subset, suppose that x0 ∈M is a singular point and let V be
a neighborhood of x0. Since Rank(y) ∈ {0,1, · · · ,n} there is some y0 ∈V such that Rank(y) = n

and then, by the lower semi-continuity, y0 is a regular point. Since Mreg is a open dense subset,
its complement, Msing, is a closed nowhere dense.

2.2 The Schouten-Nijenhuis bracket and Poisson coho-
mology

This section follows closely the formulation presented in [Vaisman 2012] and [Dufour and
Zung 2006]. Aiming to define the cohomology of Poisson manifold, we present the Schouten-
Nijenhuis bracket. This operation is an extension of the Lie bracket of vector fields to the
multivector fields on a smooth manifold.

The following theorem is the key to define the Schouten-Nijenhuis bracket.

Theorem 13. There is a unique bilinear operation [·, ·] : X∙(M)×X∙(M)→ X∙(M), called the
Schouten bracket, that satisfies the following properties:

I. For all f ,g ∈C∞(M), [ f ,g] = 0;

II. For all A,B,C ∈ X∙(M) then

[A,B∧C] = [A,B]∧C+(−1)(deg(A)−1)deg(B)B∧ [A,C] (2.2.1)

and deg([A,B]) = deg(A)+deg(B)−1;

III. For functions f ,g ∈C∞(M) and vector fields X ,Y ∈X(M), the Schouten bracket coincides
with the Lie derivative, i.e.,

a) [X , f ] = X( f );

b) [X ,Y ] is the usual Lie bracket for vector fields.

IV. [A,B] =−(−1)(deg(A)−1)(deg(B)−1)[B,A];

V. (−1)deg(A)deg(C)[[A,B],C]+ (−1)deg(B)deg(A)[[B,C],A]+ (−1)deg(C)deg(B)[[C,A],B] = 0.

where deg(A) is the degree of A.

This operation is defined by

[X1∧ . . .∧Xp,B] =
p

∑
i=1

(−1)i+1X1∧ . . .∧ X̂i∧Xp∧ [Xi,B], (2.2.2)
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where X1, . . . ,Xp ∈ X(M), [Xi,A] := ℒXi(A), and the hat, as usual, denotes that the Xi is not
present in the wedge product.

Using the above definition and the fact that the Schouten bracket must be a local operator,
Vaisman proved the theorem (13) in [Vaisman 2012].

One can get another characterization to the Schouten bracket using the following lemma

Lemma 14. For any A ∈ Xa(M), B ∈ Xb(M), ω ∈Ωa+b−1(M)

i[A,B](ω) =(−1)(a−1)(b−1)iA(d(iB(ω)))

+(−1)aiA∧B(d(ω))+(−1)bd(iA∧B(ω)).

In local coordinates (y1, . . . ,yn), any A ∈ ∧aT M, with a≥ 1, is given by

A = ∑
i1<...<ia

Ai1,...,ia ∂

∂yi1
∧ . . .∧ ∂

∂yia
. (2.2.3)

When B = f ∈C∞(M) is a smooth function, the equation (2.2.2) is given in coordinates by

[A, f ] =
a

∑
s=1

(−1)s+1
∑

i1<...<s<...<ia

Ai1,...,ia ∂ f
∂ys

∂

∂yi1
∧ . . .∧ ∂̂

∂ys ∧
∂

∂yia
. (2.2.4)

Aiming to express the Schouten bracket in that local coordinate for two arbitrary multi-
vector fields, we should put the expansion (2.2.3) in the equation (2.2.2).

[A,B] =
a

∑
s=1

∑
(i1<...<s<...<ia)

∑
( j1<...<ib)

A(i1,...,ia)∂B( j1,..., jb)

∂ys
∂

∂yi1
∧ . . .∧ ∂̂

∂ys ∧
∂

∂yia

∧ ∂

∂y j1
∧ . . .∧ ∂

∂y jb

− (−1)(a−1)(b−1)
a

∑
s=1

∑
( j1<...<s<...< jb)

∑
(i1<...<ia)

B( j1,..., ja)∂A(i1,...,ia)

∂ys
∂

∂y j1
∧ . . .∧ ∂̂

∂ys ∧
∂

∂y jb

∧ ∂

∂yi1
∧ . . .∧ ∂

∂yia

Using the expression in coordinates for an arbitrary bivector Π = ∑i< j π i, j ∂

∂yi ∧ ∂

∂y j ,

along with the previous formula, one can show that

[Π,Π] = Jac = ∑
i, j,k

(
∮

i jk
∑
s

∂Πi, j

∂ys Π
s,k)

∂

∂yi ∧
∂

∂y j ∧
∂

∂yk .

In other words:

Proposition 15. A bivector field Π is a Poisson bivetor if and only if,

[Π,Π] = 0.
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Since [Π,Π] is a trivector field, the previous proposition implies that, if M is a two
dimensional manifold, then every bivector field Π on M is Poisson.

Definition 16. We define the Poisson cohomology as the cohomology of the following complex

... Xp−1(M) Xp(M) Xp+1(M) ...
dΠ dΠ dΠ dΠ

Where dΠ(A) = [Π,A].

It is necessary to show that dΠ ∘dΠ = 0.

Proposition 17. If Π is a Poisson tensor, then for every multivector field A, we have

[Π, [Π,A]] = 0.

Proof. Let A be a multivector field of Rank a. By the graded Jacobi identity

(−1)(a−1)(2−1)[Π, [Π,A]]+ (−1)(2−1)(2−1)[Π, [A,Π]]+ (−1)(a−1)(2−1)[A, [Π,Π]] = 0.

But [A,Π] =−(−1)(a−1)(2−1)[Π,A] and, since Π is a Poisson tensor, [Π,Π] = 0, thus

(−1)(a−1)[Π, [Π,A]]+ (−1)(a+1) = 2(−1)(a−1)[Π, [Π,A]] = 0.

So, [Π, [Π,A]] = 0, as we wished.

The Poisson cohomology groups are given by the quotient

H p
Π
(M) =

Ker(dΠ : Xp(M)→ Xp+1(M))

Im(dΠ : Xp−1(M)→ Xp(M))
.

Furthermore, the Schouten bracket can be used to describe the Hamiltonian vector fields.

Proposition 18. If (M,Π) is a Poisson manifold and f ∈C∞(M), then the corresponding Hamil-
tonian vector field X f satisfies the equation

X f =−[Π, f ].

Proof. Setting A as a bivector field on the equation (2.2.4), we have that

[Π, f ] = ∑
i< j

π
i j ∂

∂xi
∂ f
∂x j =−∑

i< j
π

i j ∂ f
∂xi

∂

∂x j =−X f .
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2.2.1 Lower degree computations

In general, it is very difficult to compute the H ·
Π

, but one can give some interpretation to
the firsts Poisson cohomology groups.

Definition 19. Let f ∈C∞(M) be a smooth function on a Poisson manifold. We say that f is a
Casimir function if X f = 0.

The Proposition (18) shows that the Ker(dΠ : C∞(M)→ X(M)) is the vector space of
Casimir functions and thus Im(dΠ : C∞(M)→ X(M)) is the set of Hamiltonian vector fields. So
the zero Poisson cohomology group H0

Π
(M) is the set of Casimir functions.

Definition 20. Let X ∈ X(M). We call X a Poisson vector field if

ℒX(Π) = 0.

For the first Poisson group, we have that the Ker(dΠ : X(M)→ X2(M)) is the set of
vector field such that ℒX(Π) =−[Π,X ] = 0. So H1

Π
is the quotients of the Poisson vector fields

by the Hamiltonian vector fields.

Definition 21. Let Π1,Π2 be two Poisson bi-vectors to a smooth manifold M. We say that Π1

and Π2 are compatible Poisson structures if Π1 +Π2 is a Poisson structure to M.

One can rewrite this condition in terms of the Schouter bracket using that

[Π1 +Π2,Π1 +Π2] = [Π1,Π1]+ [Π2,Π2]+2[Π1,Π2] = 2[Π1,Π2].

So, two Poisson structures are compatible if, and only if,

[Π1,Π2] = 0.

If Π1 and Π2 are compatible Poisson structures, so will do ε1Π1 and ε2Π2.

Let Π(ε) be a smooth family of Poisson structures. Write

Π(ε) = Π0 + εΠ1 + ε
2
Π2 . . .

as a power series expression. To Π(ε) be a Poisson structure we need that

[Π(ε),Π(ε)] = [Π0,Π0]+2ε[Π0,Π1]+ ε
2(2[Π0,Π2]+ [Π1,Π1])+ . . .

= 0.

The coefficient Π1 is called an infinitesimal deformation of Π0 when

dΠ0(Π1) = [Π0,Π1] = 0.
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Since d2 = 0, every Π defined by

Π1 = dΠ0(X) = [Π0,V ] =−ℒX(Π0)

is an infinitesimal deformation. Let ϕt be the flow of −X . For each t, the pull-back ϖ*t Π0 is
again a Poisson structure. Furthermore,

d
dt

ϕ
*
t Π0

∣∣∣∣
t=0

= ℒ−X(Π0)Π1.

On this case, we call Π1 a trivial infinitesimal deformation of Π0. This deformation is
trivial in the sense that d

dt ϕ*t Π0 are the same Poisson structure up to change of coordinate. So we
have that the second Poisson cohomology group is given by

H2
Π =

infinitesimal deformation of Π

trivial infinitesimal deformation of Π

It is possible to extend the definition of # to forms of any degree by

#(ω)(α1, . . . ,αr) = (−1)r(#α1, . . . ,#αr).

We can associate the Poisson cohomology with de Rham cohomology by the next proposition.

Proposition 22. For every smooth differential form η on a Poisson manifold M, we have

dπ(#ω) = #(dω),

were dπ is the differential operation on the Poisson cohomology and d is the differential operation
on de Rham cohomology.

The demonstration of the above proposition can be find in [Dufour and Zung 2006].

2.3 Examples

2.3.1 Symplectic manifolds

Definition 23. Let M be a manifold. A 2-form ω on M is called symplectic if it is closed and
non-degenerate. We call the pair (M,ω) a symplectic manifold.

The notion of symplectormorphism is defined as:

Definition 24. Let (M1,ω1) and (M2,ω2) be a symplectic manifold and let ϕ : M1→M2 be a
diffeomorphism. We call ϕ a symplectomorphism if

ω2(ϕ*(X),ϕ*(Y )) = ω1(X ,Y ).
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For every f smooth function on the symplectic manifold M, we can associate a Hamilto-
nian vector field, X f , by the only vector field such that, iX f ω = d f , in other words, for every
Y ∈ X(M),

ω(X f ,Y ) = d f (Y ) = Y ( f ).

Also, we have another important subset of vector field of a symplectic manifold, which
is called locally Hamiltonian.

Definition 25. A vector field X of a symplectic manifold (M,ω) is called locally Hamiltonian
if ℒX(ω) = 0. Since ω is closed, by the Cartan’s magic formula,

ℒX(ω) = iX dω +d(iX ω) = d(iX ω).

Therefore, equivalently, a vector field is locally Hamiltonian if ixω is closed.

By the Poincaré lemma [Abraham, Marsden and Ratiu 1993], if ω ∈Ωk(M) is closed,
for every x ∈M there is an open neighborhood U of x for which ω

∣∣
U ∈Ωk(U) is exact. As long

as iX ω is closed, there locally is h ∈C∞(M) such that iX ω = dh. Hence, locally X = Xh and
therefore it justifies its name.

For every ω ∈Ωk(M), and every X ∈ X(M)

d
dt

ϕ
X
t ω = (ϕX

t )* (ℒX(ω))

where ϕX
t is the flow of the vector field X [Marsden and Ratiu 2002] . If X is locally Hamiltonian,

then
d
dt

ϕ
X
t ω = 0.

So the flow ϕX
t is a local symplectomorphism, if, and only if, X is locally Hamiltonian.

Using the Hamiltonian vector field, we can define a Poisson bracket on the smooth
functions of (M,ω).

Proposition 26. The bilinear, skew-symmetric bracket on C∞(M), defined by,

{ f ,g} := ω(X f ,Xg) = X f (g) =−Xg( f ),

is a Poisson Bracket.

The bilinearity and the skew-symmetry are inherited from ω , thus is just necessary to
check the Leibniz and Jacobi rules. But, before we prove the above proposition, we will discuss
some proprieties of this bracket.

Firstly, we have that the above bracket commutes with the flow of locally Hamiltonian
vector fields, as can be seen in the next proposition.
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Proposition 27. If X is a locally Hamiltonian vector field, then

(ϕX
t )*{ f ,g}= {(ϕX

t )* f ,(ϕX
t )*g}. (2.3.1)

Proof. If X is locally Hamiltonian then (ϕX
t )*ω = ω , so

(ϕX
t )*{ f ,g}(x) = (ϕX

t )*(ω(X f ,Xg)(x)) = ω(X f ,Xg)(ϕ
X
t (x)) = {(ϕX

t )* f ,(ϕX
t )*g}.

Taking the time derivative of the left-hand side of equation (2.3.1) at t = 0, one has

d
dt

∣∣∣∣
t=0

(
(ϕX

t )*{ f ,g}
)
= ℒXh({ f ,g}),

while taking the time derivative at t = 0 of the the right-hand side, one has

d
dt

∣∣∣∣
t=0

(
{(ϕX

t )* f ,(ϕX
t )*g}

)
=

{
d
dt

∣∣∣∣
t=0

(ϕX
t )* f ,(ϕX

t )*g
∣∣
t=0

}
+

{
(ϕX

t )* f
∣∣
t=0,

d
dt

∣∣∣∣
t=0

(ϕX
t )*g

}
= {ℒXh( f ),g}+{ f ,ℒXh(g)}

Therefore, we proved the following corollary.

Corollary 28. For every f ,g,h ∈C∞(M) the following identity holds:

ℒXh({ f ,g}) = {ℒXh( f ),g}+{ f ,ℒXh(g)}.

Now, we are ready to prove the Jacobi and Leibniz identites:

Proof. ∙ The Jacobi Identity:

{h,{ f ,g}}= ℒXh({ f ,g})

thus, by the corollary (28) we have

{h{ f ,g}}= ℒXh({ f ,g}) = {ℒXh( f ),g}+{ f ,ℒXh(g)}

= {{h, f},g}+{ f ,{h,g}}

= {g,{h, f}}−{ f ,{g,h}}.

∙ Leibniz Rule

{g,h f}= Xg(h f ) = hXg( f )+ f Xg(h) = h{g, f}+ f{g,h}.
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Note that a necessary condition to the bracket of a symplectic manifold to satisfy the
Jacob identity is ℒXh(ω) = d(iXhω), and this is true for all vector fields only when ω is closed.
According to the proposition (9) the bracket defined in the proposition (26) has even Rank, and,
therefore, it will be the Rank of the symplectic form ω . Since the ω is non-degenerated, every
symplectic manifold must have an even dimension.

In the Section 2.5, we will see that locally, every even dimensional manifold admits a
symplectic structure. Although there is no general condition for an arbitrary even-dimensional
manifold to admit a symplectic structure, certainly, the possible obstructions have a topological
nature. However, in dimension two, there is an answer: a 2-dimensional manifold admits a
symplectic structure if, and only if, it is orientable. [Fernandes and Marcut 2015].

The cotangent bundle of every manifold has a special symplectic structure called canoni-
cal form.

let

π := T *M→M (2.3.2)

p = (x,ξ ) ↦→ x, (2.3.3)

be the canonical projection, thus, pointwise, we define the tautological 1-form by the following

Definition 29. The tautological 1-form on T *M as

Θp = π
*
Pξ ∈ T *p (T

*M)

Let (Ui,xi
1, . . . ,x

i
n) be an atlas to M. One can construct the manifold structure, (T *Ui,x1, . . . ,

xn, p1, . . . , pn), to T *M using, for a m ∈M, the basis {(dx1)m, . . . ,(dxn)m} of T *mM and the rela-
tion αm = ∑

n
i=1 ξi(dxi)m. Thus, at this coordinates,

Θ =
n

∑
i=1

pidxi.

From this definition, it is possible to induce a symplectic form on the cotangent bundle
of M, called canonical symplectic 2-form ω , as minus the exterior derivative of Θ, i.e.,

ω =−dΘ.

In the same local coordinates,

ω =
n

∑
i=1

dxi∧d pi.

2.3.2 The Lie-Poisson structure on g*

A linear Poisson structure on a vector space V , is defined by the property that the
Poisson bracket of two linear functions is again a linear function. The linear Poisson structures
are closely related to Lie algebras structures on the dual space of V .
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Let a finite-dimensional Lie algebra, g, with bracket [·, ·], we denote the dual space of g
by g*. Every element e of g defines a linear functional e* by

e* : g*→ R (2.3.4)

ξ ↦→ ⟨ξ ,e⟩ := ξ (e). (2.3.5)

If f ∈C∞(g*), then dξ f : Tξg
*→ R and Tξg

* is naturally isomorphic with g*, one can
think of dξ f as an element of (g*)* ≃ g. Thus, one can define {·, ·} : C∞(g*)×C∞(g*)→C∞(g*)

by
{ f ,g}(ξ ) := ⟨ξ , [dξ f ,dξ g]⟩.

If (e1, ...,ed) is a basis of g, and (x1, ...,xd) is the dual basis one can define (x1, . . . ,xn)

global coordinates on g by xi(v) = ⟨e*i ,v⟩ and global coordinates on g* by yi(α) = ⟨ei,α⟩.

If f ∈C∞(g*)

dξ f =
d
dt

∣∣∣∣
t=0

f (ξ +αt) =
n

∑
i=1

∂ f
∂yi

(ξ )αi = ⟨
n

∑
i=1

∂ f
∂yi

(ξ ),α⟩

and

[dξ f ,dξ g] = ∑
i, j

∂ f
∂yi

(ξ )
∂g
∂y j

(ξ )[ei,e j] = ∑
i, j

∂ f
∂yi

(ξ )
∂g
∂y j

(ξ )∑
k

ck
i, jek (2.3.6)

= ∑
i, j
(∑

k
ck

i, jyk)
∂ f
∂yi

(ξ )
∂g
∂y j

(ξ ) (2.3.7)

By the bilinearity of {·, ·} and [·, ·]

{ f *,g*}= [g, f ]*, ∀ f , g ∈ g, (2.3.8)

and also
{{xi,x j},xk}= [[ei,e j],ek]

*

and this proves the Jacobi identity.

On [Laurent-Gengoux, Pichereau and Vanhaecke 2012], one finds the following result

Theorem 30. For every finite-dimensional vector space V , there is a natural one-to-one conrre-
spondence between a linear Poisson structures on V * and Lie algebra structures on V .

2.3.3 The tangent lifts of a Poisson structure

Given a Poisson manifold (M,Π) there is a canonical way to define a Poisson structure,
ΠT M, on the tangent bundle T M. First of all, we define the tangent lift of a smooth function on
M.
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Definition 31. Let f ∈ C∞(M), we call the the tangent lift of f , the function f̄ ∈ C∞(T M)

defined as follow: for every v ∈ T M

f̄ (v) = v( f ).

using a analogous construction of the cotangent coordinates, one can construct tangent
coordinates (xi,yi) associated to the bases {( ∂

∂x1 )x, . . . ,(
∂

∂xn )x} of T *M. Thus, in this coordinates,

f̄ =
n

∑
i=1

∂ f
∂xi y

i.

Those functions are called fiber-wise linear function. Fiber-wise linear in the sense that,
for every fiber proj−1(x) on T M, the function f̄ is a linear function.

We define the Poisson structure, ΠT M, on T M through the next theorem

Theorem 32. Let (M,Π) be a Poisson manifold. The Poisson bivector field ΠT M defined locally
by

ΠT M = ∑
i, j

Π
i j(x)

∂

∂xi ∧
∂

∂y j +
1
2 ∑

i, j,k

∂Πi j

∂xk yk ∂

∂yi ∧
∂

∂y j ,

is the unique Poisson structure such that the associated bracket satisfies

{ f̄ , ḡ}T M = { f ,g}, for all f ,g ∈C∞(M).

The Poisson structure defined on the above theorem is called fiber-wise linear Poisson
structure on T M.

2.4 The Poisson category

The Poisson category is the category which objects are Poisson manifolds and which
morphisms are defined here bellow.

Definition 33. Let (M,{·, ·}M) and (N,{·, ·}N) be two Poisson manifolds. A Poisson map, or a
Poisson morphism, is a smooth map ψ : M→ N, satisfying:

{ f ∘ψ,g∘ψ}M = { f ,g}N ∘ψ,

for all f ,g ∈C∞(N). Or, equivalently, for the Poisson bivector

ψ*(ΠM)x = (ΠN)x,

where ΠM and ΠN are the Poisson bivector associated to {·, ·}M and {·, ·}N , respectively.

The following proposition ensures that we do have a category.
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Proposition 34. Let (M,ΠM), (N,ΠN) and (P,ΠP) be Poisson manifolds, and let ψ : M→ N

and ϕ : N→ P be differentiable maps.

I. If ψ and ϕ are Poisson maps, then ϕ ∘ψ is a Poisson map,

II. If ψ and ϕ ∘ψ are Poisson maps and, furthermore, if ψ is surjective, then ψ is a Poisson
morphism. In particular, if ψ is a Poisson morphism and a diffeomorphism, then ψ−1 is a
Poisson map. In this case, we say that ψ is a Poisson diffeomorphism, or an isomorphism
on the category of Poisson manifolds.

Proof. The first claim comes immediately from the definition of the Poisson map. For the second
one, let x ∈M, then

(#P)ϕ(ψ(X)) = Tx(ϕ ∘ψ)∘ (#M)x ∘T *x (ϕ ∘ψ)

= Tψ(x)(ϕ)∘Tx(ψ)∘ (#M)x ∘T *x (ψ)∘T *
ψ(x)(ϕ)

= Tψ(x)(ϕ)∘ (#N)ψ(x) ∘T *
ψ(x)(ϕ).

The Poisson vector fields are invariant under Poisson morphism.

Proposition 35. Let ψ : M→ N be a Poisson map between (M,{·, ·}M) and (N,{·, ·}N). For
every h ∈C∞N

Xh = T ψ(Xh∘ψ).

or, equivalently,
(#N)(ψ(x)) = Txψ ∘ (#M)x ∘T *x ψ, ∀x ∈M.

Proof. Using the definitions of Hamiltonian vector field and Poisson map, for every f ∈C∞N,
we have

Xh∘ψ( f ∘ψ) = {h∘ψ, f ∘ψ}M = {h, f}N ∘ψ

= Xh( f )∘ψ.

One can understand equivalent equation by the commutativity of the following diagram, and, to
prove it is necessary to do nothing but replace the Poisson bracket by the bivector field.

T *X M TxM

T *
ψ(x)N Tψ(x)N

#M(x)

Tx(ψ)

#N(ψ(x))

T *x (ψ)
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Furthermore for every h ∈ C∞M, ℒXh(Π) = 0. So, the flow ϕXh is a local Poisson
diffeomorphisms and if Xh is a complete vector field, ϕXh is a global Poisson diffeomorphisms.

Example 36. Let M = R2n with coordinates (p1, . . . , pn,q1, . . . ,qn) and the Poisson bivector
field given by

Π =
n

∑
i=1

∂

∂qi ∧
∂

∂ pi ,

let N = Rn with coordinates (q1, . . . ,qn) and the trivial bracket. The projection proj : R2n→ Rn,
(p1, . . . , pn,q1, . . . ,qn) ↦→ (p1, . . . , pn) is a Poisson map.

Example 37. If there is morphism between two Lie algebras, ϕ : g→ h, the dual transformation,
ϕ* : h*→ g*, is a Poisson morphism in the opposite direction. Indeed, for each f ,g ∈C∞(g*)

and ξ ∈ h*, we have

{ f ∘ϕ
*,g∘ϕ

*}h*(ξ ) = ⟨ξ , [dξ ( f ∘ϕ
*),dξ (g∘ϕ

)]⟩

= ⟨ξ , [dϕ*(ξ ) f ∘dξ ϕ
*,dϕ*(ξ )g∘dξ ϕ

*]⟩

= ⟨ξ , [dϕ*(ξ ) f ∘ϕ
*,dϕ*(ξ )g∘ϕ

*]⟩

= ⟨ξ , [ϕ(dϕ*(ξ ) f ),ϕ(dϕ*(ξ )g)]⟩

= ⟨ξ ,ϕ([dϕ*(ξ ) f ,dϕ*(ξ )g])⟩

= ⟨ξ , [dϕ*(ξ ) f ,dϕ*(ξ )g]∘ϕ
*⟩

= ⟨ϕ*(ξ ), [dϕ*(ξ ) f ,dϕ*(ξ )g]⟩

= { f ,g}g*(ϕ*(ξ )).

Since "take the dual" is functorial, so is the above definition. In this way, we have a contravariant
functor from the category of Lie algebras to the category of Poisson manifolds.

Definition 38. A Poisson submanifold is a submanifold N of a Poisson manifold M such that,
N has a Poisson structure that makes the inclusion map a Poisson map.

Lemma 39. N ⊂M is a Poisson submanifold if, and only if, each tangent space TxN contains
the image of #x : T *x M→ TxM, in other words, if, and only if, all Hamiltonian vector fields are
tangent to N.

2.5 The splitting theorem for Poisson manifolds

A classic result of symplectic geometry is the Darboux’s theorem [Dufour and Zung
2006]. Roughly speaking, it says that two symplectic manifold of the same dimension locally
look like the same. Formally



2.5. The splitting theorem for Poisson manifolds 37

Theorem 40 (Darboux). Let ω be a non-degenerate two-form on a manifold M. Then dω = 0
if, and only if, for every m ∈M, there exists a chart (U,q1, . . . ,qn, p1, . . . , pn) such that qi(m) =

pi(m) = 0 and

ω =
n

∑
i=1

dqi∧d pi.

The difference between a generic Poisson structure and one that comes from a symplectic
form is that the Rank of the generic one does not need to be maximal. In these terms, it is
impossible that all the Poisson structures are locally the same. However, we have an analogous
result, the Splitting Theorem, which tells us that for a Poisson manifold, at any point x ∈M,
the Poisson structure splits in a non-degenerate part, the symplectic one, and in a new Poisson
structure that vanishes at x. The Darboux’s theorem is just a corollary of the Splitting theorem. To
prove it, we will need the following result [Laurent-Gengoux, Pichereau and Vanhaecke 2012]:

Theorem 41 (Straightening theorem). Let M be a smooth manifold, X ∈ X(M) and x ∈ M

satisfying X(x) ̸= 0. Then, there is a coordinate neighborhood (U,y1, ...ym) such that X
∣∣
U = ∂

∂y1
.

Theorem 42 (Splitting theorem). Let (M,Π) be a Poisson manifold, let x ∈ M and let 2r be
the Rank of Π at x. There exists a coordinate neighborhood (U,q1, ...,qr, p1, ..., pn,z1, ...,zs),
centered at x, such that, on U ,

Π =
r

∑
i=1

∂

∂qi ∧
∂

∂ pi + ∑
1≤k<l≤s

Π
k,l ∂

∂ zk ∧
∂

∂ zl .

The functions Πk,l are smooth functions which depend only on z = (z1, ..,zs), and which vanish
at z = 0. The local coordinates (q1, ...,qr, p1, ..., pr,z1, ...,zs) are called splitting coordinates
centered at x.

In [Weinstein 1983], Alan Weinstein presents the following demonstration.

Proof. Since this result is local, we can prove it considering M = Rn. We will proceed by
induction on r. If r = 0, we are done. The induction hypotheses are that the above theorem is
true for every Poisson manifold, at every point where the Rank is 2(r−1). Take x in a Poisson
manifold (M,Π) such that RankxΠ = 2r.

Since RankxΠ> 0, there exists a local function p which Hamiltonian vector field #(d p)=

Xp does not vanish at x. Without losing generality, we may suppose that p(x) = 0. Since
Xp(x) ̸= 0, there exists, by the straightening theorem, a system of coordinates (q,y′2, ...,y

′
d) on a

neighborhood U ′ centered at x, such that Xp =
∂

∂q . For i = 2, ...,d, we have that

{p,q}= Xp(q) =
∂q
∂q

= 1, [Xp,Xq] = X{p,q} = X1 = 0, Xp(y′i) = 0.

Thus, in terms of these coordinates,

Xq =
d

∑
i=2

αi
∂

∂y′i
,
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and the coefficients αi are independent of q. Indeed, for any smooth function f we have

Xq(Xp( f )) = Xp(Xq( f ))

=⇒ αi
∂ 2 f

∂yi∂q
=

∂αi

∂q
∂ f
∂yi

+αi
∂ 2 f

∂yi∂q

So Xq is independent of q and does not vanish at x. Applying the straightening theorem once
more, on the set (q0,y′2, ...,y

′
d), we may introduce a system of coordinates (q, p′,y3, ...,yd) on a

neighborhood of x, where (p′,y3, . . . ,yd) depend only on (y′2, ...,y
′
d), with

∂

∂ p′
= Xq.

Substituting p′ by p we consider (q, p,y3, ...,yd), so the Poisson brackets, in these new
coordinates, take the following form,

{p,q}= 1

{q,yi}=
∂yi

∂ p′
= 0

{p,yi}=
∂yi

∂q
= 0

and we conclude that the Poisson structure Π is given by

Π =
∂

∂q
∧ ∂

∂ p
+ ∑

3≤k<l<d
{yk,yl}

∂

∂yk
∧ ∂

∂yl
.

Since {{yk,yl}, p}= {{yk,yl},q}= 0 for all k, l, we have that {yk,yl} does not depend of p and
q.

Definition 43. The first term of the above decomposition is called the symplectic part while
the second term is called the singular part.

Thus, we can see the Poisson manifold locally as a product S×N such that S is symplectic
and N is Poisson with Rank(x0) = 0. When the Poisson structure is also symplectic, that is, it is
non-degenerate, we recover the Darboux theorem.

Now, one can reduce the problem of local classification of Poisson structures to classify
the Poisson structures Π on Rn, such that Π(0) = 0, i.e., we can assume that, locally, every
Poisson manifold is Rn and that Π(0) = 0.

2.6 Symplectic foliation
The Weinstein’s splitting theorem describes the local structure of a Poisson manifold.

Globally, roughly speaking, we can think of a Poisson manifold as a disjoint union of symplectic
ones, not necessarily of the same dimension.
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We begin this section by presenting some definitions and results on the distribution
theory – in differential geometry sense. Next, we discuss the integrability of the distribution
generated by the Hamiltonian vector fields and how it gives a symplectic structure on each leaf.
We conclude presenting the example of the symplectic leaves of a linear Poisson structure. We
follow closely [Vaisman 2012, Dufour and Zung 2006].

2.6.1 Singular foliations and singular distributions

A intuitive way to think of a foliation is as a partition of a manifold M in immersed
and connected submanifolds, called the leaves of the foliation. We started by defining a regular
foliation.

Definition 44. [Moerdijk and Mrcun 2003] Let M be a smooth manifold of dimension n. A
foliation atlas of co-dimension q on M is an atlas

(ϕi : Ui→ Rn = Rn−q×Rq)i∈I

of M for which the change of coordinates, ϕi j, are locally of the form

ϕi j =
(
gi j(x,Y ),hi j(y)

)
with respect to the decomposition Rn = Rn−q×Rq. A foliation of co-dimension q on M is a
maximal foliation atlas of M.

The above definition includes just the case where the leaves have the same dimension. It
is possible to extend this definition to permit leaves of different dimension.

Definition 45. A smooth singular foliation on a smooth manifold M, in the sense of Stefan-
Sussmann is a partition ℱ = {ℱα} of M into a disjoint union of smooth immersed connected
submanifolds ℱα , which satisfies two conditions. For every x ∈ M, let ℱx be the leaf that
contains x and suppose that its dimension is d.

I. There is a smooth local chart of M with coordinates (x1, ...,xm) in a neighborhood U of
x, U = {−ε < x1 < ε, ...,−ε < xm < ε,}, such that the d-dimensional disk {yd+1 = ...=

ym = 0} coincides with the path-connected component of the intersection of ℱx with U

which contains x;

II. Each d-dimensional disk {yd+1 = cd+1, ...,ym = cm}, where cd+1, ...,cm are constants, is
entirely contained in some leaf ℱα .

It is possible to replace the previous definition using sub-bundles of T M. A general
distribution on M is a choice for every x ∈M of subspace Dx ⊂ TxM which dimension may
depend on x. A general distribution is called smooth if, for any point x ∈M, there exists a set



40 Chapter 2. Poisson Geometry

{X1, . . . ,Xm} of vector field on M such that Dx = Span{X1(x), . . . ,Xm(x)}. Of course, m may
depend on the point x. When the dimension of Dx is constant, the distribution is called regular,
otherwise, it is called singular.

Every family C of smooth vector fields on M gives rise to a smooth singular distribution
DC defined as follows: for each x ∈M, DC

x is the vector space spanned by the values at x of the
vector fields of C.

A distribution D is called invariant with respect to a family of smooth vector fields C

if, for every X ∈C, we have
(ϕ t

X)*Dx = Dϕt
X (x)

,

where (ϕ t
X) is the local flow of X .

Definition 46. We say that a smooth singular distribution D is integrable if every point of M is
contained in a maximal immersed submanifold W , such that for every y ∈W the tangent space
TyW = Dy.

One can ask about the conditions to guarantee that a distribution is integrable. In the
regular case, the answer to this question is given by Frobenius theorem [Warner 1983].

Theorem 47 (Frobenius). The condition to integrability on the regular case is that the distribution
is involutive, i. e., if [X ,Y ] ∈ D whenever X and Y are smooth vector fields lying in D.

For the singular case, the answer is provided by the Stefan-Sussmann’s theorem [Dufour
and Zung 2006].

Theorem 48 (Stefan-Sussmann). Let D be a smooth singular distribution on M. Then the
following three conditions are equivalent:

∙ D is integrable.

∙ D is generated by a family C of smooth vector fields, and it is invariant with respect to C.

∙ D is the tangent distribution of a smooth singular foliation ℱ .

The classical notion of involutivity can be extended to general distributions as follows.

Definition 49. A distribution D is said involutive if there exists a Lie subalgebra X(D) of X(M)

such that the span of the values at x of the fields of X(D) equals Dx, for all x ∈M.

The following theorem [Vaisman 2012] gives a condition for integrability of general
smooth distribution in terms of involutivety.

Theorem 50 (Viflyantsev-Frobenius). A smooth distribution D is integrable if, and only if, it
satisfies the following two conditions:
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I. D is involutive;

II. For all x ∈M and for all v ∈ Dx, there is a path γ(t), such that γ(0) = x, γ ′(0) = v and
which Rank(Dγ(t)) is constant.

2.6.2 The symplectic foliation of a Poisson manifold

Using the characteristic spaces introduced on definition (8), one can define a differentiable
singular distribution on every Poisson manifold (M,Π) as follows:

Definition 51. For all x ∈M,

Cx = Span{Πx(d f ) | f ∈C∞(M)

is called the characteristic distribution.

By definition, C is generated by the family of Hamiltonian vector fields and it is invariant
with respect to them. Furthermore, by the relation

X{ f ,g} = [X f ,Xg],

the set of Hamiltonian vector fields is a Lie algebra and C is an involutive distribution.

In the case of regular Poisson structure, the integrability of the characteristic distribution
comes from the Frobenius’ theorem. Otherwise, since the flow of every Hamiltonian vector field
is a Poisson automorphism, one can conclude the integrability of the characteristic distribution
using Theorem (48) or (50). We will denote the correspondent singular foliation by ℱ .

Since for all x ∈M, the dimension of Dx is even, the leaves of ℱ are even dimension
submanifolds.

For every x ∈M, one defines a symplectic structure on ℱx as follows. If f ,g ∈C∞(ℱx),
we can extend them locally to functions f̃ , g̃ ∈C∞(M), we define the bracket between f and g as

{ f̃ , g̃}(x) = { f ,g}= X f (g)(x) =−Xg( f )(x).

Since the bracket is computed along the flow of X f and Xg, which belongs to ℱx, the result
depends only f̃ and g̃. Now, we can call this foliation by symplectic foliation of the Poisson
manifold M.

There is a more explicit construction to the symplectic foliation, which can be seen
at [Laurent-Gengoux, Pichereau and Vanhaecke 2012]. In this way, the idea is to construct the
manifold using the Hamiltonian vector field. For each x ∈M, we define the subset of M

𝒫x(M) := {x′ ∈M | ∃ piecewise Hamiltonian path in M from x to x′}.

Note that the subsets 𝒫x(M) define a partition of M.
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We choose splitting coordinates ϕ = (q1, ...,qr, p1, ..., pr,z1, ...,zs), on a neighborhood
U of x, and we define

𝒫x(U,ϕ) := {x′ ∈U | z1(x′) = ...= zs(x′) = 0}.

Thus, 𝒫x(U,ϕ) is an embedded submanifold of M of dimension 2r, (q1, ...,qr, p1, ..., pr) forms
a system of coordinates on 𝒫x(U,ϕ) and we have

Π𝒫 =
r

∑
i=1

=
∂

∂qi
∧ ∂

∂ pi
.

The map i : (𝒫x(U,ϕ),Π𝒫)→ (M,Π) is a Poisson map. Indeed, take two functions f ,g ∈
C∞(U), for every x′ ∈𝒫x(U,ϕ), we have that

{ f ,g}(i(x′)) = { f ,g}x′ =
r

∑
i=1

(
∂ f
∂qi

(x′)
∂g
∂ pi

(x′)− ∂g
∂qI

(x′)
∂ f
∂ pi

(x′)
)

= { f ∘ i,g∘ i}𝒫(x′).

Proposition 52. Let x be a point in a Poisson manifold (M,Π) and let ϕ = (q1, ...,qr, p1, ..., pr,

z1, ...,zs) be the splitting coordinates at x, on a coordinate neighborhood U , with ϕ(U) convex.
Then 𝒫x(U) = 𝒫x(U,ϕ).

Proof. For f ∈C∞(U) and x′ ∈𝒫(U,ϕ), we have that ξ f (zi)(x′) = ∑
s
l=1{zi,zl}(x′)∂F

∂ zl
= 0 since

{z− i,zl}(x′) = 0. It follows that Hamiltonian vector fields of U are tangent to 𝒫x(U,ϕ) at
points x′ ∈𝒫x(U,ϕ). Thus, a piecewise Hamiltonian path in U , which starts at x, must stay in
𝒫x(U,ϕ), so 𝒫x(U)⊂𝒫x(U,ϕ). Now, take x′ ∈𝒫 , consider the linear function h on U , given
by

h :=
r

∑
i=1

(qi(x′)pi− pi(x′)qi),

the integral curve of ξh is given by

q̇i =
∂h
∂ pi

= q1(x′)

ṗi =
∂h
∂qi

= pi(x′)

γ(t) = (q1(x′)t, ...,qr(x′)t, p1(x′)t, ..., pr(x′)t).

Since U is convex, γ ⊂U . Thus, x′ ∈𝒫x(U).

We build a topology and a differential structure on each one of the subsets 𝒫x. A subset
V ⊂𝒫x is, by definition, an open subset if, and only if, for all splitting coordinates (U,ϕ) at
x ∈V , with ϕ(U) convex, V ∩U is an open subset of 𝒫x(U) = 𝒫x(U,ϕ). Similarly, an algebra
of functions is defined on 𝒫x(U) by saying that f : 𝒫x(M)→ R is smooth, when its restriction
to every such 𝒫x(U) = 𝒫x(U,ϕ) is smooth. Since the topology and the differential structure on
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these subsets are intrinsically defined, as embedded submanifolds of M, these definitions yield a
well-defined manifold structure on 𝒫x(M).

On dimension two, the symplectic foliation is quite simple. Basic there are two kinds of
leaves: the zero and two-dimensional leaves. The 0-dimensional leaves are the zeros of Π. The
2-dimensional leaves are the connected component of the set {x ∈M |Πx ̸= 0}.

The corollary (6) implies that every Casimir functions are constant along with the
symplectic leaves.

Proposition 53. Let M be a Poisson manifold, S ⊂M is a symplectic leaf, and f is a Casimir
function, then f is constant on S.

Let M be a manifold and S(M) a general foliation such that

∙ every leaf S of S(M) is endowed with a symplectic structure WS;

∙ if f ∈C∞(M), the vector field X f defined by the Hamiltonian vector field of f
∣∣
S(x), i. e.,

X f (x) = X
f
∣∣∣
S(x)

,

is smooth.

Them we define
{ f ,g}= X f (g),

for all F,G ∈C∞(M). So the Poisson structure can be defined by its symplectic foliation.

2.6.3 The symplectic foliation of a linear Poisson structure

To construct a nontrivial example, we returned to the linear Poisson structures. The goal
of this section is to show the following proposition.

Proposition 54. The symplectic leaves of the Lie-Poisson structure of g* are the orbits of the
coadjoint representation of any connected Lie group G whose Lie algebra is g.

We follow the demonstration presented in [Vaisman 2012], but readers are also referred
to [Dufour and Zung 2006, Laurent-Gengoux, Pichereau and Vanhaecke 2012] for further
information. In a coordinate system xi, the equation (2.3.6) implies that one can describe the set
of Hamiltonian vector fields of a Poisson linear structure by: let f ∈C∞(g*), so

X f = ∑
i

∂ f
∂xi

Xxi.

The previous equation shows that the characteristic distribution of a Lie-Poisson structure is
generated by the set of Hamiltonian vector fields, Xlin, of the linear functions on g*. Together,
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the equations (2.3.6) and (2.3.8) define a Lie algebra morphism g→ Xlin which the kernel is the
center of g.

Supposed that G is a Lie group that g is isomorphic to Lie(G). We define a representation
of G on G by

A : G→ Aut(G)

h ↦→ Ah(g) = hgh−1

Through the differential of A on the identity element, e, we can define a representation of G on g

Ad : G→ Aut(g)

h ↦→ A(h)*(X)

and we define the coadjoint representation by

⟨Ad*g(ξ ),x⟩= ⟨ξ ,Adg−1(x)⟩

The tangent vectors to coadjoint orbits can be describe by the following: let x ∈ g, let 𝒪 be an
orbit of coadjoint action and µ ∈ 𝒪 . It is possible to define a curve on 𝒪 as

µ(t) = Ad*e−tx(µ).

And we have in y ∈ g

⟨µ ′(0),y⟩=
〈

d
dt

∣∣∣∣
t=0

µ(t),y
〉
=

d
dt

∣∣∣∣
t=0
⟨µ(t),y⟩= d

dt

∣∣∣∣
t=0
⟨µ,Adetx(y)⟩

=

〈
µ,

d
dt

∣∣∣∣
t=0

Adetx(y)
〉
= ⟨µ,adx(y)⟩= ⟨µ, [x,y]⟩= ⟨ad*x µ,y⟩.

So, µ(0) = µ and µ ′(0) = ad*x (µ). Thus,

Tµ𝒪 = {ad*x (µ)|x ∈ g}.

2.7 Isotropy Lie algebra
It is possible to define, algebraically, the cotangent space [Warner 1983] in a point x ∈M

T *x M =
mx

m2
x
,

where mx is the ideal of germ of functions that vanish in x. If M is a Poisson manifold in a way
that the Rank of the Poisson structure is zero at x, m2

x is an ideal of the Lie algebra (C∞(M),{·, ·}).
Indeed, take f g ∈ m2

x , by Leibniz rule, {h, f g}= f{h,g}+{h, f}g, since {h,g}(x) = 0 for all
f ∈C∞(M), {h, f g} ∈ m2

x . In this way, T *x M has a Lie algebra structure, and TxM = (T *x M)* has
a linear Poisson structure.
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Explicitly, this structure is given by

[dx f ,dxg] := dx{ f ,g}.

This Lie algebra is called the isotropy Lie algebra at x and it is denoted by gx . In a local
coordinate (yi) we have the structure constants

[dxyi,dxy j] = ∑
k

∂Πi j

∂yk (x)dyk = ∑
k

ck
i, jdyk. (2.7.1)

This definition will play an important role in the linearization problem presented in the
chapter 3.

2.8 Complete Poisson manifold
Let us turn back to the example (36). Since R2n with that Poisson structure given by

Π =
n

∑
i=1

∂

∂qi ∧
∂

∂ pi

is a symplectic manifold, it is the only symplectic leaf itself. On the other hand, in Rn with the
trivial Poisson structure, every vector field is null, so any point is a symplectic leaf. This simple
example shows us that a Poison morphism does not necessarily map a symplectic leaf into a
symplectic leaf. To avoid this kind of situation it is convenient to define the notion of a complete
Poisson map.

Definition 55. Let f be a function on a Poisson manifold M. We call f complete if the Hamilto-
nian vector field X f is a complete vector field, i. e., its flow is globally defined.

If f is a Casimir function of (M,Π), then X f is a null vector field, so the flow of X f is a
point and is defined for all times. Thus, f is complete vector field.

Definition 56. A Poison manifold is called complete if every Hamiltonian vector field on M is
complete.

On [Marsden and Ratiu 2002] it is presented the following proposition – from the original
reference, corollary 4.1.20:

Proposition 57. A Cr vector field with compact support on a manifold M is complete. In
particular, a Cr vector field defined on a compact manifold is complete.

In our case, we consider r = ∞. The above proposition ensures to us that every support
compact function on an arbitrary Poisson manifold is complete. In particular, it ensures that
every compact Poisson manifold is complete. Now we can define the notion of complete Poisson
maps.
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Definition 58. A Poisson map φ : M→ N will be called complete if the pullback by φ of every
complete function is complete.

The next proposition tells us that the definition of a complete Poisson map is sufficient to
exclude the problem presented at the beginning of the section.

Proposition 59. The image of a complete Poisson map is a union of symplectic leaves.

The following proof is presented in [Silva and Weinstein 1999].

Proof. First, one can see that the condition of "the pullback by φ of every complete function is
complete" could be replaced by "for each f ∈C∞(M), if X f is a complete vector field then XΦ* f

is also complete".

Now, let φ(x) ∈ N, it is possible to find a piecewise Hamiltonian composed of complete
vector fields Xh’s. By definition, every pullback Xφ*h is a complete vector field. Hence, we can
integrate them without restriction, and their flows provide a path on M. The image of this path is
the original one. So, we conclude that any point of the symplectic leaf of φ(x) is contained in the
image of φ .

2.9 Symplectic realization

Definition 60. Let (M,Π) be a Poisson manifold. Then, a full symplectic realization of M is
a symplectic manifold (S,ω) along with a surjective submersion µ : S→ M such that it is a
Poisson map.

In the paper [Weinstein 1983], Weinstein makes a distinction between symplectic real-
izations that are surjective submersions and the ones which are not required to be a surjective
submersion. He called the first ones by full symplectic realizations and the second ones just by
symplectic realizations.

Although the second case is a more general definition, it includes a lot of trivial answers.
For example, the inclusion of a symplectic leaf is a symplectic realization. For our purposes,
from now on, we will consider just the case of full symplectic realization, and, as made by others,
ignore the term "full" [Dufour and Zung 2006, Vaisman 2012].

Definition 61. A symplectic realization of a Poisson manifold M is called complete if the
surjective submersion µ : S→M is complete.

The existence of complete symplectic realization is introduced in [Crainic and Fernandes
2004] as sufficient and necessary condition to the integrability of the T *M Lie algebroid.
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Example 62. Let R2 equipped with the bracket {x,y} = 0 and let the R4 equipped with
the Darboux coordinate (q1,q2, p1, p2). The map µ : R4→ R2 defined by µ(q1,q2, p1, p2) =

(q1, p1q1 +q2) is a surjective submersion Poisson map, so it is a symplectic realization.
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CHAPTER

3
LIE ALGEBROID AND LIE GROUPOID

The concept of a Lie algebroid can be seen as an infinitesimal part of a Lie groupoid,
which will be discussed later. This concept unifies several structures, such as foliated manifolds,
Poisson manifolds and infinitesimal actions of Lie algebras on a manifold. The aim of this
chapter it to present several definitions and results of Lie algebroid and Lie groupoid theory.

First of all, we review the theory for an abstract Lie algebroid and we present some
examples. Next, we present the relation between Poisson geometry and Lie algebroids. In section
(3.2.2), we prove the splitting theorem for Lie algebroids. At last, we introduce some basic
concepts of the Lie groupoid theory. In Section 3.2.1 we introduce the isotropy algebras and
the foliation induced by the anchor map. After that we present the analogue of the Weinstein
Splitting Theorem for Lie algebroids. We present the concept of Lie algebroid cohomology in
the Section 3.2.3. In the subsequent sections we present the Lie groupoid theory and its relation
with Lie algebroid theory.

3.1 Lie algebroid

In order to define a Lie algebroid, we start first introduce the concept of an anchored
vector bundle.

Definition 63. An anchored vector bundle is a vector bundle A
pro jA−−−→M together with a vector

bundle map #: A→ T M called the anchor. The induced map Γ(A)→ X(M) defined pointwise
by #(X)(x0) = #(X(x0)), will be denote simply by #.

Roughly speaking, an anchored vector bundle generalizes the idea of the tangent bundle.
Precisely, the anchor identify every γ ∈ Γ(A) with the derivation #(γ) on C∞(M).

Since a Lie algebroid can be thought as a generalization of Lie algebra and of tangent
bundle to a given manifold, we need to give a Lie algebra structure on Γ(A), the space of global
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sections of an anchored vector bundle. Moreover, one needs that the anchor map preserves the
Lie structure on Γ(A) and on Γ(T M). More precisely:

Definition 64. A Lie algebroid (A, [·, ·],#) over M is an anchored vector bundle along with a
Lie bracket [·, ·] in the space of smooth section Γ(A). The Lie bracket satisfies the following
Leibniz rule

[α, f β ] = f [α,β ]+ℒ#(α)( f )β , ∀ α,β ∈ Γ(A) and f ∈C∞(M).

Note that, by skew-symmetry and Leibniz rule, one has

[ f α,β ] =−[β , f α] = f [α,β ]−ℒ #β ( f )α.

Proposition 65. If (A, [, ].#) is a Lie algebroid, then the anchor # : Γ(A) ↦→ X(M) is a homeo-
morphism of Lie algebra, i.e.,

#[α,β ] = [#α,#β ] ∀α,β ∈ Γ(A).

Proof. Jacobi identity and the Leibniz rule imply:

0 = [[α,β ], f γ]+ [[β , f γ],α]+ [[ f γ,α],β ]

= f [[α,β ],γ]+#[α,β ]( f )γ +[ f [β ,γ]+#β ( f )γ,α]+ [ f [γ,α]−#α( f )[γ,β ]

= f [[α,β ],γ]+#[α,β ]( f )γ

+ f [[β ,γ],α]−#α( f )[β ,γ]+#β ( f )[γ,α]−#α(#β ( f )γ

+ f [[γ,α],β ]−#β ( f )[γ,α]+#α( f )[γ,β ]−#β (#α( f ))γ

= ((#[α,β ]− [#α,#β ])( f ))γ

Since α,β ,γ and f are arbitrary, we have #[α,β ] = [#α,#β ].

Example 66. I. Any Lie algebra is a Lie algebroid over a point, where the anchor is the null
function.

II. Any vector bundle with the null anchor and trivial bracket is a Lie algebroid.

III. The tangent bundle of any smooth manifold with the standard Lie bracket of vector fields
and the identity map as anchor is a Lie algebroid.

A less trivial example is

Example 67. Let ω be a closed 2-form on M. Thus, we give a Lie algebroid structure on M,
called Aω , defined by
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∙ The vector bundle structure
Aω = T M⊗ (M×R).

∙ The anchor map, which is the projection on the first component.

∙ The Lie bracket Γ(Aω)≃ X(M)×C∞(M), which is defined by

[(X , f ),(Y,g)] = ([X ,Y ],ℒX(g)−ℒY ( f )+ω(X ,Y )).

Let X , Y, Z ∈ X(M) and f ,g,h ∈C∞(M), so we can prove

∙ The Jacobi Identity:

[X + f , [Y +g,Z +h]] = [X + f , [Y,Z]+ℒY (h)−ℒZ(g)+w(Y,Z)

= [X , [Y,Z]]+ℒX(ℒY (h))−ℒX(ℒZ(g))

+ℒX(ω(Y,Z))−ℒ[Y,Z]( f )+ω(X , [Y,Z])

[Y +g, [Z +h,X + f ]] = [Y +g, [Z,X ]+ℒZ( f )−ℒX(h)+w(Z,X)

= [Y, [Z,X ]]+ℒY (ℒZ( f ))−ℒY (ℒX(h))

+ℒY (ω(Z,X))−ℒ[Z,X ](g)+ω(Y, [Z,X ])

[Z +h, [X + f ,Y +g]] = [Z +h, [X ,Y ]+ℒX(g)−ℒY ( f )+w(X ,Y )

= [Z, [X ,Y ]]+ℒZ(ℒX(g))−ℒZ(ℒY ( f ))

+ℒZ(ω(X ,Y ))−ℒ[X ,Y ](h)+ω(Z, [X ,Y ])

thus, we have

[X + f , [Y +g,Z +h]]+ [Y +g, [Z +h,X + f ]]+ [Z +h, [X + f ,Y +g]] =

= [X , [Y,Z]]+ [Y, [Z,X ]]+ [Z, [X ,Y ]]

+ℒ[X ,Y ](h)+ℒ[Z,X ](g)+ℒ[Y,Z]( f )−ℒ[X ,Y ](h)−ℒ[Z,X ](g)−ℒ[Y,Z]( f )

+ℒX(ω(Y,Z))−ℒY (ω(X ,Z))+ℒZ(ω(X ,Y ))

−ω([X ,Y ],Z)−ω([Y,Z],X)+ω([X ,Z],Y )

= dω(x,y,z)

Since ω is closed, dω = 0 and this bracket satisfies Jacobi.

∙ Leibniz Rule

[X + f ,hY +hg] = [X ,hY ]+ℒX(hg)−ℒhY ( f )+ω(X ,hY )

= ℒX(g)Y +gℒX(Y )+ℒX(g)h+gℒX(h)−gℒY ( f )+ f ω(X ,Y )

= g([X ,Y ]+ℒX(h)−ℒY ( f )+w(X ,Y ))+ℒX(g)(Y +h)
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Example 68 (Transformation Algebroid Associated to the Infinitesimal Action). Let M be a
manifold equipped with an infinitesimal action of a Lie algebra g, i.e, a Lie algebra homomor-
phism φ : g→ X(M). The vector bundle M×g over M has the following Lie algebroid structure,
with anchor and the Lie bracket given by

#(x,ξ ) = φ(ξ )x

[u,v](x) = [u(x),v(x)]+(φ(u(x))(v))(x)− (φ(v(x))(x))(x),

where u,v ∈C∞(M,g)∼= Γ(M,g×M) and x ∈M.

Definition 69. Let (A1,#1, [·, ·]1) and (A2,#2, [·, ·]2) be Lie algebroids over the same manifold M.
A Lie algebroid morphism over the same manifold is a vector bundle morphism Φ : A1→ A2,
e. g., a functions Φ : A1 → A2 such that, for every x ∈ M, the map pro j−1

1 (x)→ pro j−1
2 (x)

induced by F is a linear map satisfying

I #2 ∘Φ = #1

II Φ([α,β ]1) = [Φ(α),Φ(β )]2, for all α,β ∈ A1.

A Lie algebroid isomorphism is a morphism that is invertible.

Remark 70. A general definition of Lie algebroid morphism is given in [Crainic and Fernandes
2011], but in this monograph we are just interested in morphism of Lie algebroids over the same
manifold.

3.2 Relation between Lie algebroid theory and Poisson
geometry

The first way to relate the Poisson geometry with Lie algebroid theory is given by the
following important example.

Proposition 71. Let (M,{·, ·}) be a Poisson manifold. Then, there exists a R-bilinear, skew-
symmetric operation [·, ·] : Γ(T *M)×Γ(T *M)→ Γ(T *M) defined by

[α,β ] = ℒ#α(β )−ℒ#β (α)−d(Π(α,β )).

So we are ready to give a Lie algebroid structure to every cotangent bundle of a Poisson
manifold.

Proposition 72. The cotangent bundle of a Poisson manifold M, with the bracket above and the
Poisson bundle morphism #, given by the contraction with Π, is a Lie algebroid over M. It is call
this the cotangent Lie algebroid of the Poisson manifold (M,Π).
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Proof. To check the Jacobi identity:

[α, [β ,γ]] = [α,ℒ#β (γ)−ℒ#γ(β )−dΠ(β ,γ)]

= ℒ#α(ℒ#β (γ))−ℒ#α(ℒ#γ(β ))−ℒ#α(dΠ(β ,γ))

−ℒ#ℒ#β (γ)
(α)+ℒ#ℒ#γ (β )(α)+ℒ#dΠ(β ,γ)(α)

d(Π(α,ℒ#β (γ))+d(Π(α,ℒ#γ(β ))+d(Π(α,dΠ(β ,γ))

[β , [γ,α]] = [β ,ℒ#γ(α)−ℒ#α(γ)−dΠ(γ,α)]

= ℒ#β (ℒ#γ(α))−ℒ#β (ℒ#α(γ))−ℒ#β (−dΠ(γ,α))

−ℒ#ℒ#γ (α)(β )+ℒ#ℒ#α (γ)(β )+ℒ#dΠ(γ,α)(β )

−d(Π(β ,ℒ#γ(α))+d(Π(β ,ℒ#α(γ))+d(Π(β ,dΠ(γ,α))

[γ, [α,β ]] = [γ,ℒ#α(β )−ℒ#β (α)−dΠ(α,β )]

= ℒ#γ(ℒ#α(β ))−ℒ#γ(ℒ#β (α))−ℒ#γ(dΠ(α,β ))

−ℒ#ℒ#α (β )(γ)+ℒ#ℒ#β (α)(γ)+ℒ#dΠ(α,β )(γ)

d(Π(γ,ℒ#α(β ))+d(Π(γ,ℒ#β (α))+d(Π(γ,dΠ(α,β ))

So, we have that

[α, [β ,γ]]+ [β , [γ,α]]+ [γ, [β ,α]] = ℒ[#α,#β ](γ)+ℒ[#β ,#γ](α)+ℒ[#γ,#α](β )

−ℒ#[β ,γ](α)−ℒ#[α,γ](β )−ℒ#[α,β ](γ)

+d(Π(α,dΠ(β ,γ)+Π(β ,dΠ(γ,α))+Π(γ,dΠ(α,β )))

since, #[α,β ] = [#α,#β ] for all α,β ∈ Γ(A) and

d(Π(α,dΠ(β ,γ)+Π(β ,dΠ(γ,α))+Π(γ,dΠ(α,β ))) = 0,

we get

[α, [β ,γ]]+ [β , [γ,α]]+ [γ, [β ,α]] = 0

To check Leibniz’s rule:

[α, f β ] = ℒ#α( f β )−ℒ# f β (α)−d(Π(α, f β ))

= f i#αβ +d f i#αβ + f d(i#αβ )− f ℒ#β (α)−d f ∧ i#β α−d f Π(α,β )− f Π(α,β )

= f (i#αβ +d(i#αβ )−ℒ#β (α)−Π(α,β ))+d f i#αβ −d f i#β α−d f Π(α,β )

= f (ℒ#α(β )−ℒ#β (α)−Π(α,β ))+d f (i#αβ − i#β α−Π(α,β ))
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We saw in Section 2.3.2 that the dual space of any Lie algebra has a linear Poisson
structure. We have an analogous result for Lie Algebroid, but in this case, the Poisson structure is
fiber-wise linear. In this section we follow mostly [MEINRENKEN 2017, Courant 1990, Dufour
and Zung 2006].

Let E π−→M be a vector bundle. Let µt : E→ E, (x,v) ↦→ (x, tv) be the fiber-wise scalar
multiplication by t ∈ R. For every t ̸= 0 this application is a diffeomorphism.

Definition 73. A multivector field ν ∈ Xk(E) is called fiber-wise linear if it is homogeneous of
degree 1− k, that is,

µ
*
t (ν) = t(1−k)

ν , t ̸= 0.

Let (U,x1, . . . ,xn) be a chart on M and let (y1, . . . ,ym) be the fiber coordinates, hence,
we have a local coordinate (π−1U,x1, . . . ,xn,y1, . . . ,ym) such that, a fiber-wise linear multivector
field has the form

ν = ∑
(i1,...,ik)

∑
j

c(i1,...,ik)j y j ∂

∂yi1
∧ . . .∧ ∂

∂yik
+ ∑

(i1,...,ik−1)
∑

j
a(i1,...,ik−1,r) ∂

∂xr ∧
∂

∂yi1
∧ . . .∧ ∂

∂yik−1
,

where c(i1,...,ik)j and a(i1,...,ik−1,r) are smooth functions on U . We are interested in fiber-wise linear
bi-vector fields.

Let p : E*→M the dual vector bundle of E. Every α ∈ Γ(E) can be seen as a smooth
function, φα on E*, φα(x,v) ↦→ α(v)(x). Of course, this function is linear on each fiber of E. We
have another subset of smooth function on E*, the functions which are constant on the fibers. It
is clear that this functions are in one-to-one correspondence with the smooth function on the base
M. In fact, if we have a function f ∈C∞(E*) that is constant on the fibers, f (x) = f (vx)∈C∞(M),
where vx ∈ E*x . On the other hand, let f ∈C∞(M), so f ∘ p ∈C∞(E*) is constant on the fibers.

Now we are ready to prove the following theorem.

Theorem 74. For any Lie algebroid A→M, the total space of dual bundle p : A*→M has a
unique Poisson bracket such that for all α,β ∈ Γ(A) and f ,g ∈C∞(M),

{φα ,φβ}= φ[α,β ],

{φα , f ∘ p}= #(α)( f )∘ p,

{ f ∘ p,g∘ p}= 0.

Proof. Let A
∣∣
U =U×Rm be a local bundle trivialization over open subset U ⊂M, let (e1, . . . ,em)

be the corresponding basis of sections of A, and let (x1, . . . ,xn) be the local coordinates on U .
First of all, note that the differentials of the functions yi = φei and x jyi = φx jyi

span T *(A*)

everywhere, except where all y j vanish. Thus,

Π(dφα ,dφβ ) = φα,β
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define a bi-vector field on A*. In local coordinate, it look like

Π =
1
2 ∑

i, j
[ei,e j]

∂

∂yi
∧ ∂

∂y j
+∑

i, j
(#(ei)(xi))

∂

∂yi
∧ ∂

∂x j .

The Jacobi identity is trivially verified for all functions except for the case when two
functions are fiber-wise linear, φα ,φβ , and one is constant on the fibers, f ∘ p.

{{φα ,φβ}, f ∘ p}= {φ[α,β ], f ∘ p}= #([α,β ])( f ) = {α,{β , f}}−{β ,{α, f ∘ p}}.

Example 75. In Section (2.3.3) we saw the fiber-wise linear Poisson structure defined on the
dual of the cotangent bundle with the Lie algebroid structure given in the Section (3.2).

Example 76. In this example we describe the fiber-wise linear Poisson structure on Lω . Let
x1, . . . ,xm be local coordinates on M. We have the local frame (p1, . . . , pm,s,x1, . . . ,xm), for
T M⊕ (M×R), where pi =

∂

∂xi
and s = 1 is the constant function. Thus, we have

[pi, p j] = ω(pi, p j)

[pi,s] = ℒpi(s)

#(pi)(x j) =
∂xi

∂x j
= δ

j
i

#(s)(xi) = #(s)(xi) = 0

where δ
j

i = 1, if i = j , and zero otherwise. Then, in these local coordinates the bivector is given
by

Π = ∑
i, j

ω(pi, p j)
∂

∂ pi
∧ ∂

∂ p j
+∑

i

(
ℒpi(sx)

∂

∂ pi
∧ ∂

∂ sx

)
+∑

i

∂

∂ pi
∧ ∂

∂xi
.

3.2.1 Isotropy algebras and characteristic foliation of a Lie algebroid

Let (A, [·, ·],#) be a Lie algebroid over a manifold M. Given z ∈M, we will denote by Az

the fiber of A over z, and by Ker#z the kernel of the anchor map

#z : Az→ TzM. (3.2.1)

The kernel Ker#z has a natural Lie algebra structure, defined as the following. For any αz,βz ∈
Ker#z, let α,β arbitrary sections of A such that α(z) = αz and β (z) = βz, so we set

[αz,βz] = [α,β ](z). (3.2.2)

The above bracket is well defined. Indeed, take another section of A,α̃ , with α̃(z) = αz,
then, locally, there are functions f1, ..., fn on M which vanish at z and a basis (α1, ...,αn) of A such
that α̃−α =∑

n
i=1 fiαi. By the Leibniz rule, we have [α̃,β ](z)− [α,β ](z)=∑

n
i=1 fi(z)[αi,β ](z)−

∑
n
i=1(#β )( fi)(z)αi(z) = 0, because fi(z) = 0 and #β (z) = 0.
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Definition 77. For any z ∈M we call the Lie algebra

gz(A) := Ker#z

the isotropy Lie algebra at z

The distribution 𝒞 : x ∈M ↦→ 𝒞x = Im#x is called the characteristic distribution of A,
and dimension of Im#x is called the Rank of # at x.

Let (α1, . . . ,αm) be a local basis of sections of a Lie algebroid A, then we have that
[αi,α j] = ∑k ck

i jαk. Since the anchor is a morphism of Lie algebras we get

[#(αi),#(α j)] = #([αi,α j]) = ∑
k

ck
i j#(αk).

Thus, the characteristic distribution is integrable.

3.2.2 Splitting theorem

Analogue of the Weinstein Splitting Theorem for Poisson manifolds, for all Lie algebroid
there are some local coordinates and sections that simplify the Lie algebroid structure.

Theorem 78. Let (A, [·, ·],#) be a Lie algebroid over M. Then A can be decomposed locally into
the direct product of a tangent algebroid and a Lie algebroid whose Rank at origin is 0. More
precisely, if the Rank of # at a point z of M is q, then there is a system of local coordinates
(x1, ...,xq,y1, ...ys) on M centered at z, and a basis of local sections (α1, ...,αq,β1, ..,βr) of A

over a neighborhood of z, such that the following conditions are satisfied for all possibles indices:

[αi,α j] = 0, #αi =
∂

∂xi
, (3.2.3)

[βi,α j] = 0,#βi(x j) = 0,ℒ ∂

∂xi
#βi = 0, (3.2.4)

[βi,β j] = ∑
k

f k
i j(y)βk, (3.2.5)

where f k
i j(y) are functions which depend only on the variables y = (y1, ...,ys).

Proof. We will prove by induction on the Rank#x = q. When q = 0, we are done, thus, we will as-
sume that q > 0. Suppose that, for any integer d such that 0≤ d < q we have found a local coordi-
nate system (x1, ..,xd,y1, ...,ys+q−d) of M, and a basis of local sections (α1, ...,αd,β1, ...,βr+q−d)

satisfying (3.2.3), (3.2.4) and (3.2.5).

Since d < q, there must be some βi such that #z(β ) ̸= 0. Without loss of generality, we
can assume that i = 1. By the straightening theorem, it is possible to assume that #β1 =

∂

∂y1
.
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We want to find a coordinate system with the property that

[β1,βi] = 0, ∀i = 2, ...,(r+q−d), (3.2.6)

so we replace βi by ∑
r+q−d
j=1 g j

i β j, where the functions g j
i depend only on (y1, ...,ys+q−d). By the

Leibniz rule, the condition (3.2.6) is equivalent to

[β1,
(r−q−d)

∑
j=1

g j
1β j] =

(r−q−d)

∑
j=1

[β1,g
j
1β j] =

(r−q−d)

∑
j=1

g j
1[β1,β j]+

∂g j
1

∂y1
β j (3.2.7)

=
(r−q−d)

∑
j=1

( (r−q−d)

∑
k=1

g j
i f K

i, jβk +
∂g j

1
∂y1

β j

)
. (3.2.8)

Since the equation (3.2.8) is an ordinary differential equation, we can find a coordinate system
satisfying (3.2.6). The equation (3.2.6) implies that, for every i = 2, ...,(r+q−d)

ℒ ∂

∂y1
(#βi) = [#β1,#βi] = #[β1,βi] = 0.

Note that,

[β1,(#βi(y1))β1] = #βi(y1)[β1,β1]+ℒ#β1(#βi(y1))β1 = 0.

Replacing βi by βi− (#βi(y1))β1 for each i≥ 2 we have that,

#(βi− (#βi(y1))β1)(y1) = (#βi− (#βi(y1))#β1)(y1) = #βi(y1)−#βi(y1)
∂y1

∂y1
= 0 (3.2.9)

At last,

[βi,β j] = f 1
i, jβ1 +

r+q−d

∑
k=2

f k
i, jβk, i, j ≥ 2. (3.2.10)

Applying the anchor map to the (3.2.10), and valuing it on y1, we get

0 = [#βi,#β j](y1) = #
(

f 1
i, jβ1 +

r+q−d

∑
k=2

f k
i, jβk

)
= f 1

i, j. (3.2.11)

Thus, we have

[βi,βJ] =
r+q−d

∑
k=2

f k
i, jβk. (3.2.12)

Now, reindexing the variables, we have the induction procedure.

Example 79. When we consider the tangent bundle of a manifold M as a Lie algebroid, the
anchor is the identity morphism, so the set of βi is empty. Let (xi, . . . ,xn) be local coordinates to
M. A clever guess is to set αi =

∂

∂xi
and, so, the theorem 78 holds.

Example 80. Let Aω be the Lie algebroid associated to a closed 2-form as in the Example 67.
We can set αi = ( ∂

∂xi
,0) and β = (0,1). Let (M,Π) be a Poisson manifold with split coordinates

(p1, . . . , pn,q1, . . . ,qn,z1, . . . ,zm−2n), so, setting αi = d pi,αi+n = dqi and βi = zi, the theorem
holds, again.
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3.2.3 Lie algebroid cohomology

This section is based on [Crainic 2003]. Aiming to define the Lie algebroid cohomology,
we will introduce the concept of A-connection on a vector bundle. Let E→M be a C∞ vector
bundle over M and let (A, [·, ·],#) be a Lie algebroid over M. An A-connection ∇ on E is a
bilinear map

∇ : Γ(A)×Γ(E)→ Γ(E)

(α,s) ↦→ ∇αs,

such that, for all f ∈C∞(M), α ∈ Γ(A) and s ∈ Γ(E),

(i) ∇ f αs = f ∇αs;

(ii) ∇α( f s) = f ∇αs+#α( f )s.

The curvature of the connection is the map

R∇ : Γ(A)×Γ(A)→ End(Γ(E)),

R∇(α,β )(X) = ∇α∇β X−∇β ∇αX−∇[α,β ]X .

We say that an A−connection is flat if R∇ = 0.

Remark 81. When the A = T M we recover the usual notion of connection on vector bundles.

Definition 82. A represetation of a Lie algebroid A over M consists of a pair (E,∇) of a vector
bundle E over M endowed with a flat connection ∇.

Given a representation (E,∇) of a Lie algebroid A we define a p-cochain on A with
values on (E,∇) as a multilinear skew-symmetric map

c : Γ(A)× . . .×Γ(A)→ Γ(E)

(α1, . . . ,αp) ↦→ c(α1, . . . ,αp)

The space Cp(A,E) of p-cochains coincides with the space of sections Γ(∧pA*⊗E). The family
C∙(A,E) turns into a differential complex with the following differential operator d : Cp(A,E)→
Cp+1(A,E)

dc(α1, . . . ,αp+1) =
p+1

∑
k=1

(−1)k+1
∇αk(ω(α1, . . . , α̂k, . . . ,αp+1))

+∑
k<l

(−1)k+l
ω([αk,αl], . . . , α̂k . . . , α̂l . . . ,αp+1).
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We call cohomology of A with coefficients in E, denoted H∙(A,E), the cohomology
of the complex (C∙(A,E),d). When E is the trivial line bundle with ∇α f = ℒ#α( f ), we use
the notation C∙(A) and H∙(A). The Lie algebroid cohomology generalizes many cohomology
theories [Crainic and Fernandes 2011].

Example 83 (Lie algebra cohomology). When A = g is a Lie algebra, the vector bundle E→ p

is nothing but a vector space. A representation is merely a homomorphism ρ : g→ gl(V ), where
gl(V ) is the Lie algebra of endomorphisms of V with the usual commutator. Precisely, ρ is linear
and, for all X ,Y ∈ g

ρ([X ,Y ]) = ρ(X)ρ(Y )−ρ(Y )ρ(X).

An p-chain will be a p-linear alternating mapping c ∈ Hom(∧qg,V ) and the differential
operator will be defined by the formula

d(x)(α1, . . . ,αp+1) =
p+1

∑
k=1

(−1)k+1
ρ(αk)(c(α1, . . . , α̂i, . . . ,αp+1))

+∑
k<l

(−1)k+lc([αk,αl],α1, . . . , α̂k, . . . , α̂l, . . . ,αp+1).

This cohomology coincides with the Chevalley-Eilenberg complex [Chevalley and Eilen-
berg 1948].

Here we are interested in the next two Lie algebra cohomologies.

1. Let V = R and ρ(X) = 0 for all X ∈ g. We denote the cohomology simply by H∙(g) and
the differential operator is reduced to

d(ω)(X1, . . . ,Xq+1) = ∑
i< j

(−1)i+ j
ω([Xi,X j],X1, . . . , X̂i, . . . , X̂ j, . . .Xq+1).

When q= 1, we have that d : C0(g)→C1(g) is null. So, H1(g) =Ker (d) : C1(g)→C2(g).
Since for ω ∈C1(g) and X ,Y ∈ g

dω(X ,Y ) =
1
2

ω([X ,Y ])

ω is a cocycle if, and only if, it vanishes for all elements on [g,g]. Thus,

H1(g) = g/[g,g].

2. We can set V = g and the adjoint representation ρ(X)(Y ) = ad(X ,Y ) = [X ,Y ] for all
X ,Y ∈ g. On this case the diferential operator of the cohomology H∙(g,g) is given by

d(ω)(X1, . . . ,Xq+1) =
q+1

∑
i=1

(−1)i+1[Xi,ω(X1, . . . , X̂i, . . . ,Xq+1)]

+∑
i< j

(−1)i+ j
ω([Xi,X j],X1, . . . , X̂i, . . . , X̂ j, . . .Xq+1).
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Example 84 (Poisson cohomology). The Poisson cohomology, discussed in Section 2.2, can
be seeing as a special case of the Lie algebroid cohomology. Let A = T *M be the cotangent
algebroid of the Poisson manifold (M,Π) and E = M×R be the trivial line bundle. Choosing
the following representation

#: Γ(T *M)×C∞(M)→C∞(M)

(ω, f ) ↦→ #(ω)( f )

A p-cochain is nothing but a p-vector field.

Proposition 85. The differential operator d of the cotangent algebroid of the Poisson manifold
(M,Π) with the above representation is given by

d = dΠ = [Π, ·].

Proof. For a vector X ∈ X(M) and α,β ∈ Γ(T *M) we have

d(X)(α,β ) =ℒ#(α)(X(β ))−ℒ#(β )(X(α))−⟨[α,β ],X⟩

=ℒ#(α)(β )(X)+ ⟨β ,ℒ#(α)(X)⟩−ℒ#(β )(α)(X)−⟨α,ℒ#(β )(X)⟩

−ℒ#(α)(β )(X)+ℒ#(β )(α)(X)+X(Π(α,β ))

=⟨β ,ℒ#(α)(X)⟩−⟨α,ℒ#(β )(X)⟩+X(Π(α,β ))

On the other hand,

dΠ(x)(α,β ) =[Π,X ](α,β ) = ℒX(Π) =−ℒX(Π(α,β ))+Π(ℒX(α ∧β ))

=−X(Π(α,β ))+Π(ℒX(α),β )+Π(α,ℒX(β ))

=−X(Π(α,β ))−ℒX(α)(#(β ))+ℒX(β )(#(α))

=−X(Π(α,β ))−X(Π(β ,α))+ ⟨α,ℒX(#(β ))⟩+X(Π(α,β ))−⟨β ,ℒX(#(α))⟩

=⟨β ,ℒ#(α)(X)⟩−⟨α,ℒ#(β )(X)⟩+X(Π(α,β )).

Therefore, the result holds for the case X ∈ X(M). Now suppose the result has been proved for
A ∈ Xa(M), and let X ∈ X(M). From theorem 13

[Π,A∧X ] = [Π,A]∧X +(−1)aA∧ [Π,X ].

On Section 7.5 from [Mackenzie 2005], Mackenzie proves that

d(AX) = d(A)∧X +(−1)aA∧d(X)

Since the result holds for X ∈ X(M) and A ∈ Xa(M), thus it also holds for ξ ∈ Xa+1(M).
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3.3 Lie groupoid

Definition 86. A groupoid 𝒢 ⇒ M over a set M, called objects set, is a set 𝒢 , called set of
arrows, together with:

1. Two surjective maps s, t : 𝒢 →M, associating to each arrow g its source object s(g) and
its target object t(g). We call them, respectively, the source and the target map.

t(g) s(g)

2. The partial composition map, m : 𝒢2→ 𝒢 , (g,h) ↦→ gh

z y xg h

gh

where 𝒢2 = {(g,h) ∈ 𝒢 ×𝒢 |s(g) = t(h)}, satisfying

a) Compatibility with s e t:

s(gh) = s(h), t(gh) = t(g) ∀ (g,h) ∈ 𝒢(2).

b) Associativity:

(hg) f = h(g f ) ∀ f ,g,h ∈ 𝒢 with s(g) = t(h) e s(h) = t(k).

w z y xh

h

g

hg

f

g f

f

3. The inclusion map

e : M→ 𝒢 , x ↦→ 1x,

such that, for any g : x→ y,

g1x = g = 1yg.

4. The inverse map,

i : 𝒢 → 𝒢 , g ↦→ g−1,

such that s(i(g)) = t(g), t(i(g)) = s(g), and

g−1g = 1s(g), gg−1 = 1t(g).

y x
g

g−1
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Example 87. Let B be a set and G be a group. We define a groupoid structure on B×G×B as
follows.

∙ s, t are defined, respectively, as the projections onto the first and third factor;

∙ The identity is the map x ↦→ (x,1,x), where 1 is the group identity;

∙ The multiplication operation (z,h,y)(y′,g,x) = (z,hg,x), is defined only if y′ = y;

∙ The inverse map of (y,g,x) is (x,g−1,y).

For example, every group is a groupoid over B = {p}.

Example 88. Let B be a topological space. We define the space of arrows between every x,y ∈ B

as the homotopy-classes ⟨c⟩ of continuous maps c : I → B which endpoints are x and y. The
groupoid structure over B is given by

∙ s(⟨c⟩) = c(0);

∙ t(⟨c⟩) = c(1);

∙ e(x) = ⟨c⟩= x;

∙ composition

⟨c1⟩⟨c2⟩=

{
c1(2t), 0≥ t ≤ 1

2

c2(2t), 1
2 ≤ t ≤ 1

;

∙ ⟨c⟩−1 = ⟨c(1− t)⟩.

Now, we present the concept of morphism between two groupoids, 𝒢 ⇒M and 𝒢 ′⇒M′.

Definition 89. Let 𝒢 ⇒M and 𝒢 ′⇒M′ be groupoids. A morphism betwenn 𝒢 and 𝒢 ′ is a pair
of maps Φ : 𝒢 → 𝒢 ′, ϕ : M→M′, such that,

I ϕ(s(g)) = s′(Φ(g)) and ϕ(t(g)) = t ′(Φ(g)), that is, the following diagram commutes

𝒢 𝒢 ′ 𝒢 𝒢 ′

M M′ M M′
s

Φ

s′

Φ

t t ′

ϕ

ϕ

II Φ(g1g2) = Φ(g1)Φ(g2)

for all g,g1,g2 ∈ 𝒢 with s(g1) = t(g2). We also say that Φ is a morphism over ϕ .

Remark 90. The groupoid definitions is the same of a category which all the arrows are
mesomorphs. The definition of groupoid morphs is a functor.
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Definition 91. A Lie groupoid is a groupoid 𝒢 ⇒M which 𝒢 and M are smooth manifolds,
the structural functions are smooth and s, t are submersion.

Remark 92. It is usual to permit that the space of arrows be a non-Hausdorff manifold [Crainic
and Fernandes 2011]. When it is Hausdorff it is called Hausdorff groupoid but during this
monograph we assume that all groupoids are Hausdorff groupoids.

A morphism between Lie groupoids is a morphism of groupoids (Φ,ϕ) where both Φ

and ϕ are smooth. We say that a morphism between two Lie groupoids is a isomorphism if both
(Φ,ϕ) are diffeomorphisms.

Example 93. Let E π−→M be a vector bundle. Let Φ(E) be the set of all isomorphisms η : Ex→
Ey, for all x,y ∈M. Then Φ(E) is a Lie groupoid over M.

∙ The source and target are given by Ex
ψ−→ Ry,s(ψ) = x and t(ψ) = y.

∙ The indent map of x is 1x = Id : Ex→ Ex.

∙ The multiplication is defined by the composition of linear maps.

∙ The inverse of ψ : Ex→ Ey is the inverse map ψ−1 : Ey→ Ex

Example 94. Let G×M→M be a smooth action of a Lie group G in a manifold M. We define
G×M⇒M by:

Given any arrow (g,x) ∈ G×M

s(g,x) = x, t(g,x) = gx.

Let (g2,y),(g1,y) ∈ G×M, such that y = g1x, so

(g2,y)(g1,x) = (g2g1,x).

(g,x)−1 = (g−1,gx),

1x = (x,e), where e is the identity of G.

We denote G×M⇒M by GnM.

Example 95. Let 𝒢 ⇒M be a Lie groupoid. We define a Lie groupoid over 𝒢 as

∙ The arrows manifold is 𝒢 ×s 𝒢 = {(h,g ∈ 𝒢 ×𝒢 | s(h) = s(g)}.

∙ The composition is defined by

(h,g)∘ (g, f ) = (h, f ).
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We define a groupoid morphism

𝒢 ×s 𝒢 𝒢 𝒢 ×s 𝒢 𝒢

𝒢 M 𝒢 M

δ

Pro j1 s

δ

Pro j2 t

t t

where δ (h,g) = hg−1.

Definition 96. For a groupoid 𝒢 ⇒M and x ∈M we define

I The s-fiber of x by 𝒢x := s−1(x).

II The t-fiber of x by 𝒢 x := t−1(x).

III The isotropy group at x by 𝒢 x
x := s−1(x)∩ t−1(x).

3.3.1 The Lie algebroid of a Lie groupoid

If G is a Lie Group the vector space of left (right) invariant vector fields is a Lie subalgebra
of X(G). This subalgebra is finite dimensional and caries a lot of information about the Lie
group. Indeed, it is isomorphic to the tangent space of the group at identity. This construction
defines a functor from the category of Lie groups to the category of Lie algebras. In this section,
we will show how a Lie groupoid gives rise to a Lie algebroid. To this purpose, it is necessary to
generalize the idea of right-invariant vector fields.

Definition 97. Let 𝒢 ⇒M be a Lie groupoid. Let T s𝒢 be the vector bundle over 𝒢 defined by

T s𝒢 := Ker(ds)⊂ T𝒢 .

We define Lie(𝒢 ) whose fiber in x ∈M are the same of the tangent space in 1x of T s(𝒢 ),
more precisely,the total space of the Lie algebroid would be

Lie(𝒢 ) := T s𝒢
∣∣
M.

When we try to extend the idea of right action of arrow of 𝒢 ⇒M to M, this action is
not everywhere defined.

Definition 98. Let y
g←− x be a arrow and define the right action of g by

Rg : s−1(y)→ s−1(x)

h ↦→ hg,

and the differential of Rg on h ∈ 𝒢 gives us a linear isomorphism, defined by

dRg : Th𝒢→ Thg𝒢.
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Now, we are ready to define a good notion of right invariant vector field on 𝒢 .

Definition 99. We define the space of right invariant vector fields of 𝒢 as

Xs
inv(𝒢 ) = {X ∈ Γ(T s𝒢 ) : Xhg = dRg(Xh), ∀(g,h) ∈ 𝒢(2)}.

The next proposition ensures that Lie(𝒢 ) is a Lie algebroid over M.

Proposition 100. If 𝒢 ⇒M is a Lie groupoid and Xs
inv(𝒢 ) the space of right invariant vector

bundles of 𝒢 , then

1. The vector bundle morphism

Γ(Lie(𝒢 ))→ Xs
inv(𝒢 )

α ↦→ α̃g = dRg(αt(g))

is an isomorphism.

2. Xs
inv(𝒢 )⊂ X(𝒢 ) is a Lie subalgebra.

3. The derivative of the target map induces a Lie algebra homomorphism dt : Xs
inv(𝒢 )→

X(M).

4. For all α,β ∈ Γ(A) and for any f ∈C∞.

[α, f β ] = f [α,β ]+dt(α)( f )β

Thanks to the above preposition, the vector bundle Lie(𝒢 ) is a Lie algebroid over M

whose the anchor map is the diferential of the target map, # = dt, and the bracket is given by the
restriction of the vector fields bracket in T𝒢 to Xs

inv(𝒢 ).

Example 101. When the groupoid is a Lie group, Lie(𝒢 ) is the Lie algebra associated to 𝒢 .

Definition 102. When a Lie algebroid (A, [·, ·],#)∼= Lie(𝒢 ), for some Lie groupoid, we say that
𝒢 integrates A.

Proposition 103. Let (A, [·, ·],#) be a Lie algebroid and x0 ∈ A a fixed point. If U is a neighbor-
hood of x0 which integrates to a Lie groupoid 𝒢 , then the fiber of the source map s : 𝒢 ⇒U

above x0 is a Lie group integranting gx0 .

3.4 Integrability problem

We have seen in the previous section how to construct a Lie algebroid, starting from a
Lie groupoid. A natural question one is led to ask is: under what conditions is it possible to do
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the opposite process, i. e., when is it possible to get a Lie groupoid that integrates a given Lie
algebroid?

In the case of Lie groups and Lie algebras, the answer is given by the Lie’s third theorem.
A classic and famous proof is obtained as a consequence of the Ado’s theorem [Tao 2011]. A
different approach is presented in [Duistermaat and Kolk 1999], which is based on a path space
approach to construct the Lie group integrating the original Lie algebra.

The integrability problem of Lie algebroids was solved by Marius Crainic and Rui Loja
Fernandes both in the general case and for the Poisson one, and this was presented in [Crainic
and Fernandes 2003] and [Crainic and Fernandes 2004], respectively. Adapting the idea used
by Duistermaat and Kolk for the Lie’s third theorem, Crainic and Fernandes showed that it is
possible to define a groupoid, associated with a general Lie algebroid, called Weinstein groupoid.
This section presents a brief discussion of the Lie third theorem for Lie algebroids. We followed
the construction of [Crainic and Fernandes 2011], to which we refer the reader for further details.

To define this groupoid it is necessary to define the concept of A-path and homotopy of
A-path.

Definition 104. Let (A, [·, ·],#) be a Lie algebroid. We call a C∞ curve a : I→ A an A-path if

#a(t) =
d
dt
(π(a(t))

where π(a(t)) is the base path of a(t). We denote the space of A-paths, endowed with C1 topology,
by P(A).

The notion of A-path is summarized by the diagram bellow

T I TA T M

I A

Ta

Pr j

T π

a

#

Let ∇ be an usual T M-connection on A. We can associate a contravariant A-connection,
denoted by ∇̄, as

∇̄αβ = ∇#β α +[α,β ].

Proposition 105. Let (A, [·, ·],#) be a Lie algebroid and aε : I× I→ A a variation of A-paths.
If ∇ is a T M- connection on A with torsion T∇, then the solution b = b(ε, t) of the differential
equation

∂tb−∂εa = T∇(a,b), b(ε,0) = 0,

does not depend on ∇. Moreover, #b = d
dε
(π(a)).

So, we define the homotopic of A-paths as:
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Definition 106. We say that two A-paths a0 and a1 are homotopic if there exist a variation aε

such that the function b, defined on the proposition above, satisfies b(ε,1) = 0.

The space of A-paths is a foliated manifold where two paths a0 and a1 belong to the
same leaf if they are homotopic. We define the Weinstein groupoid, 𝒢 (A), as a set by the leaf
space of the foliation above. The composition map is given by the concatenation of paths and the
structural maps are given by s(a) = π(a(0)) and t(a) = π(a(1)).

Given a Lie algebroid, it is always possible to define the corresponding Weinstein
groupoid. However, it is not always true that the Weinstein groupoid admits a structure of Lie
groupoid, i. e., sometimes it is impossible to provide 𝒢 (A) with a smooth structure that makes it
into a Lie groupoid. Finding a necessary and sufficient condition for the Weinstein groupoid to
admit a structure of a Lie groupoid is the main result of [Crainic and Fernandes 2003].

3.5 Lie groupoid cohomology

This section is based on [Crainic 2003]. We denote by 𝒢 (p) the space of p-composable
strings x

g1←− g2←− . . .
gp←− y.

Definition 107. A left action of 𝒢 ⇒M on a manifold X consists of a smooth map µ : X →M,
called moment map of the action, together with a smooth map

𝒢 ×M X → X

(g,x) ↦→ gx,

where 𝒢 ×M X = {(g,x) ∈ 𝒢 ×X | s(g) = µ(x)} and such that, for all (g,x) ∈ 𝒢 ×M X ,

µ(gx) = t(g)

and which satisfies the usual identities of an action, i. e.,

i g(hx) = (gh)x, for all g,h ∈ 𝒢 and X ∈ X for which it is defined.

ii 1µ(x)x = x, for all x ∈ X

we call X left 𝒢−space.

Definition 108. A left representation of a Lie groupoid 𝒢 ⇒M is a vector bundle proj : E→M,
endowed with an action of 𝒢 whose moment map is precisely proj and which is fiber-wise linear.

Definition 109. An E−valued differentiable p-cochain on 𝒢 is a smooth map c which asso-
ciates to a string an element c(g1, . . . ,gp) ∈ Ex. We denote the space of E−valued p-cochain by
Cp

d (𝒢 ,E).
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We can define a differential operator d : Cp
d (𝒢 ,E)→Cp+1

d (𝒢 ,E)

d(c)(g1, . . . ,gp,gp+1) =g1c(g2, . . . ,gp)

+
p

∑
i=1

(−1)ic(g1, . . . ,gigi+1, . . . ,gp+1)+(−1)p+1c(g1, . . . ,gp).

Definition 110. We define the differentiable cohomology of 𝒢 with coefficients in E, H*d (𝒢 ,E),
as the differential cohomology of the complex (C*d(𝒢 ,E),d). When E is the trivial line bundle,
we use the notation C*d(𝒢 ) and H*(𝒢 ).

Proposition 111. For any proper Lie groupoid 𝒢 , and E, for all k ≥ 1,

HK
d (𝒢 ,E) = 0.

Let P be a right 𝒢 -space. We call it proper if the map

𝒢 ×M P→ P×P

(g, p) ↦→ (gp, p)

is proper, i. e., if the inverse images of compact subsets are compact.

Theorem 112. Let 𝒢 ⇒M be a s−connected Lie groupoid, and let E be a representation of 𝒢 .
Then there exists a map

Φ : H p
d (𝒢 ,E)→ H p

𝒢 (Lie(𝒢 ),E),

which is compatible with the product structures. Moreover, if the s-fibers are homologically
n−connected, then Φ is an isomorphism in degrees p≤ n, and it is injective in degree p = n+1.

Example 113 (Lie Group Cohomology). Let G be a Lie group and V a vector space. A repre-
sentation of G on V is a smooth group homomorphism ρ : G→ GL(V ), where GL(V ) is the
general linear group of all invertible linear transformations of V .

Similar to the Lie algebra cohomology, given a Lie group G and a representation ρ : G→
GL(V ), we define the cochains as

Cq(G,V ) = {c : Gq→V | c is smooth}.

We define d : Cq(G,V )→Cq+1(G,V ) by

(dω)(g0, . . . ,gq) =ρ(g0)ω(g1, . . . ,gq)+
q−1

∑
i=0

(−1)i+1
ω(g0, . . . ,gigi+1, . . . ,gq)

+(−1)q+1
ω(g0, . . . ,gk−1).

Then, the Lie group cohomology is defined as follows.
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Definition 114. Given a Lie group G with a representation ρ : G→ GL(V ). Using the previous
definition of Cq(G,V ) and d : Cq(G,V )→Cq+1(G,V ), we define the Lie group cohomology
with coeffcients in V by

Hq(G,V ) :=
Ker(d : Cq(G,V )→Cq+1(G,V ))

Im(d : Cq−1(G,V )→Cq(G,V ))
.

When V = R and ρ is trivial, we denote Cq(G,R) and Hq(G,R) only by Cq(G) and
Hq(G).

In [Est 1953, Est 1953], Van Est presented the following result that permits us to relate
Lie group cohomology with Lie algebra cohomology.

Theorem 115 (Van Est). Let G be a n−connected Lie Group and ρ : G→GL(v) a representation.
If g is the Lie algebra of G, then H i(G,V ) is isomorphic with H i(g,V ) for all i = 0,1, . . . ,m.
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CHAPTER

4
CONN’S LINEARIZATION THEOREM

Let (M,Π) be a Poisson manifold and let x0 ∈M such that Π(x0) = 0. Let Π = Π1 +

Π2 + . . . be the Taylor expansion of Π with respect to a local coordinate centered on x0. From
the condition that the Schouten bracket of Π with itself vanishes, one deduces

0 = [Π,Π] =

[
∑
k

Π
k,∑

k
Π

k

]
=
[
Π

1,Π1]+2
[
Π

1,Π2]+ (2[Π1,Π3]+ [Π2,Π2])+ · · ·
Since every coefficient on the above expansion is a polynomial function of the local coordinates,
considering the terms of same degree, we get

[
Π

1,Π1]= 0,[
Π

1,Π2]= 0,

2
[
Π

1,Π3]+ [Π2,Π2]= 0,

and so on . . .

So, by [Π1,Π1] = 0, the linear term of the expansion is a Poisson structure.

Our interest is to study the case in which Π1 is non-null. According to equation (2.7.1)
we can notice that Π(1) is the linear Poisson structure associated to the isotropy Lie algebra gx0 .

It is always possible to truncate the series expansion and take an approximation of a
bivector field by a linear one. But now, we may ask if there is any condition for a Poisson structure
to be locally isomorphic to the linear approximation. The following definition summarizes the
core of the linearization problem.

Definition 116. We say that Π is locally linearizable if there is a locally defined diffeomorphism
Φ such that Φ*Π = Π(1).
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T heorem 118 gives some conditions to the isotropy Lie algebra to carry all the infor-
mation, up to local isomorphisms, about the Poisson structure near x0 such that Π(x0) = 0. The
following definition formalizes this idea.

Definition 117. A finite-dimensional Lie algebra g is called non-degenerate if every Poisson
structure Π, which vanishes at a point x0 and whose Π(1) is the linear Poisson structure corre-
sponding to g, is linearizable.

In [Weinstein 1983], Alan Weinstein proposed the following problem: how to classify the
Lie algebras that are non-degenerate? In that paper, Weinstein conjectured that every compact
semi-simple Lie algebra is non-degenerate. This claim was proved by Conn using non-trivial
analytic arguments [Conn 1985].

Recently, a more geometric approach to Conn’s theorem was presented by Marius Crainic
and Rui Loja Fernandes on [Crainic and Fernandes 2011].

The goal of this chapter is to present a discussion, based on [Crainic and Fernandes 2011]
as the main reference, about the proof of the following theorem.

Theorem 118 (Conn). Let (M,Π) be a Poisson manifold and x0 ∈M such that Π(x0) = 0. If the
isotropy Lie algebra gx is semi-simple of compact type, then Π is linearizable around x0.

4.1 Compact Lie Algebras
The studies of this section is presented in [Duistermaat and Kolk 1999].

Definition 119. For every Lie algebra g, we can associate a bilinear form, called Killing form,
defined by

k(x,y) = tr(adX ∘adY ), X ,Y ∈ g.

Corollary 120 (3.6.3 [Duistermaat and Kolk 1999]). Let g be a finite-dimensional Lie algebra.
Then the following conditions are equivalent:

∙ g is compact and semi-simple.

∙ g is compact and its center is zero.

∙ g has a negative definite Killing form.

∙ Every connected Lie group with Lie algebra isomorphic to g is compact. In any of these
cases, g= [g,g].

In [Dufour and Zung 2006] the next theorem is presented.

Theorem 121 (Whitehead). If g is semi-simple and V is a finite-dimensional g-module, then
H1(g,V ) = H2(g,V ) = 0.
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4.2 Reduction to a cohomological condition
By a Poisson version of Morse’s path method it is possible to find a sufficient condition

to a Poisson structure to be linearizable around x0. This condition involves only the local
cohomology of the Poisson manifold and the cohomology of the isotropy Lie algebra at x0.

Proposition 122. Let (M,{·, ·}) be a Poisson Manifold such that Π vanishes at x0. Assume that
the Lie algebra cohomology groups H1(gx0) = H1(gx0 ,gx0) = 0. If H1

Π
(M,x0) = 0, then {·, ·} is

linearizable at x0.

Proof. Since this is a local fact, without loss of generality, one can assume that M = Rn and
x0 = 0. We define a path of Poisson structures by

Πt(x) =
1
t

Π(tx), t ∈ [0,1] .

We will show that there exists a vector field X in an open neighborhood of 0 whose
linearization vanishes at the origin and

ℒX(Π) =−Π̇1. (4.2.1)

Indeed, taking the time derivative of [Πt ,Πt ] = 0, at t = 1, one has

d
dt

[Πt ,Πt ]

∣∣∣∣
t=1

=
[
Π̇1,Π1

]
+
[
Π1,Π̇1

]
=
[
Π,Π̇1

]
− (−1(2−1)(2−1))

[
Π,Π̇1

]
= 0

so dΠ(Π̇1) =
[
Π,Π̇1

]
= 0, and since H2

Π
(M,0) = 0, there is an open neighborhood U of the

origin and a vector field on U such that

Π̇1 = dΠY =−ℒY (Π).

Since Π̇1 = 0 at x0, if we evaluate both sides of the above expression on a pair of 1-forms
α,β

Yx0([α,β ]) = ℒY (Π)(α,β )
∣∣
x=0 = Π̇1(α,β )

∣∣
x0
= 0.

By hypothesis, H1(gx0) = 0, so [gx0,gx0 ] = gx0 and then, we have that Yx0 = 0.

Let Y0 be the linearization of Y at the origin. Since Π̇1 = 0 has zero linearization at the
origin, if we compare the linear terms of the both sides at x0

dΠx0
Y0 = 0.

Hence, Y0 is a 1-cocycle for the adjoint representation of gx0 . Since H1(gx0 , gx0) = 0, there is
v ∈ gx0 such that Y0 = dΠx0

v. Since (dΠ)
2 = 0, if we set X = Y −dΠv we have that

ℒX(Π) = 0
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and the linearization of X at the origin is zero.

Now we can construct a time dependent vector field defined by Xt(x) := 1
t2 X(tx). So, by

4.2.1,
ℒXt (Πt) =−Π̇t .

Let Φt be the flow in the Xt such that it is defined in some neighborhood V of the origin for
t ∈ [0,1]. So

d
dt
(Φt)*Πt = (Φ)*

(
ℒXt (Πt)+

dΠt

dt

)
= 0.

So, (Φt)*Πt is constant in relation to t and Φ1 is the desired diffeomorphism.

Thus, we have a cohomological condition that implies in the linearization. By the
Whitehead theorem (121), the condition of semi-simplicity implies that H1(gx0) =H1(gx0,gx0) =

0. With the purpose of trying to change this condition to one that refers to the isotropy Lie algebra
in x0 only, we will go back to the integrability problem for associated Lie algebroid of M.

Theorem 123. Let (M,Π) be a Poisson manifold, x0 ∈M such that gx0 is semi-simple of compact
type . If some neighborhood of x0 is integrable by a Lie groupoid with 1-connected s-fibers, then

H2
Π(M,x0) = 0.

Now we reduce the proof of Coinn’s linearization theorem to local integrability around x0.
On [Crainic and Fernandes 2004], Crainic and Fernandes, show the relation of the integrability
of Poisson manifolds and symplectic realization.

Theorem 124. Let (M,Π) be a Poisson manifold and x0 ∈M a fixed point. If a neighborhood
U of x0 admits a symplectic realization ν : S→ U with the property that ν−1(x0) is simply
connected and compact, then there exists a neighborhood of x0 which is integrable by a Hausdorff
Lie groupoid with simple connected s-fibers.

The following theorem shows that, if the hypotheses of Conn’s linearization theorem
are true, the hypotheses of the previous theorem are also true. Thus, the statements of Conn’s
linearization theorem holds.

Theorem 125. Let (M,Π) be a Poisson manifold, x0 ∈M a fixed point, such that, the isotropy
Lie algebra g at x0 is semi-simple of compact type with associated simply connected Lie group
G. Then there exists a symplectic realization ν : S→U of some open neighborhood U of x0

such that ν−1(x0) = G.

Example 126 (A non-linearizable Poisson structure). Consider the linear Poisson structure on
sl*(2)≃R3 given by {x,y}0 =−z,{y,z}0 = x,{z,x}0 = y. The function f (x,y,z) = x2 +y2− z2

is in the center of {·, ·}. So, f is a Casimir function whose symplectic leaves are hyperboloids
with vertex in the origin of R3. Let g( f ) be such that g( f ) = 0 if f ≤ 0 and g( f ) > 0 if
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f > 0. Consider the perturbation to {·, ·}0 given by {x,y}=−z, {y,z}= x− y
x2+y2 g( f (x,y,z)),

{z,x}= y+ x
x2+y2 g( f (x,y,z)).

The Hamiltonian vector field

Xz =−
(

y+
x

x2 + y2 g( f (x,y,z))
)

∂

∂x
+

(
x− y

x2 + y2 g( f (x,y,z))
)

∂

∂y
.

Since −y ∂

∂x +x ∂

∂y is a periodic vector field, the integral curves of Xz in the region out of the cone
{x2 + y2− z2 = 0} will spiral in the direction of the cone. Thus, while the symplectic leaves of
{·, ·} are closed, the symplectic leaves of {·, ·} in the region contain the cone {x2 + y2− z2 = 0}
in their closure.

On [Weinstein 1987], Weinstein presented the following theorem.

Theorem 127. Let g be a semi-simple Lie algebra of non-compact type with rank at least two.
Then g is degenerate.

The reader can refer to [Dufour and Zung 2006, Weinstein 1987] for a more detailed
discussion.

Lemma 128. Let X ,Y be two Poisson vector fields of a Poisson manifold (M,Π). Π+X ∧Y is
a Poisson structure if, and only if, X , Y and [X ,Y ] are linearly dependent or [X ,Y ] = 0.

Proof. Calculating the Schouten bracket of Π+X ∧Y with itself, we have

[Π+X ∧Y,Π+X ∧Y ] = [Π,Π]+2[Π,X ∧Y ]+ [X ∧Y,X ∧Y ]

= 2([Π,X ]∧Y −X ∧ [Π,Y ])+ [X ∧Y,X ∧Y ]

= [X ∧Y,X ]∧Y −X ∧ [X ∧Y,Y ]

= X ∧ [Y,X ]∧Y −X ∧ [X ,Y ]∧Y

= 2X ∧ [Y,X ]∧Y.

The previous expression is equal to zero just when [X ,Y ] = 0 or X , Y , and [X ,Y ] are linearly
dependent.

The following theorem says that for any non-compact real semi-simple Lie algebra of
real rank at least 2, it is possible to find two vector fields satisfying the conditions of the lemma
above.

Theorem 129. Let g be a real semi-simple Lie algebra of real rank r ≥ 1. Then for the linear
Poisson structure Πlin on the dual space g*, there are r smooth Poisson vector fields X1, . . . ,Xr

which are flat at the origin and which commute pair-wise, and such that, in an open subset of g*

whose closure contains the origin. These vector fields span a r-dimensional distribution whose
intersection with characteristic distribution is trivial.
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So, taking two vector fields, X and Y , given by the theorem above, the Poisson structure
Π = Πlin +X ∧Y has linear part equal to Πlin. Since X and Y are linearly independent and are
traversal to the symplectic leaves of Πlin, the rank of Π is equal to the rank of Πlin +2. Thus,
Πlin can not be isomorphic to Π.
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