• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Disertación de Maestría
DOI
https://doi.org/10.11606/D.55.2020.tde-19022020-144649
Documento
Autor
Nombre completo
Mara Sueli Simao Moraes
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Carlos, 1981
Director
Tribunal
Táboas, Plácido Zoega (Presidente)
Carvalho, Luiz Antonio Vieira de
Rodrigues, Sergio
Título en portugués
BIFURCAÇÃO DE SOLUÇÕES PERIÓDICAS DE UM OSCILADOR NÃO LINEAR AMORTECIDO E FORÇADO
Palabras clave en portugués
Não disponível
Resumen en portugués
Não disponível
Título en inglés
Not available
Palabras clave en inglés
Not available
Resumen en inglés
Suppose the equation x + g(x) = -λ1x + λ2f where f is a scalar function which is 2π-periodic, λ1, λ2 are real parameters, xg(x) > 0 for x ≠ 0. The initial problem is to Characterize the existence and the number of 2π-periodic solutions of (1) which lie in a neighborhood of a 2π-periodic orbit of the degenerated equation x + g(x) = 0 (2) whose orbit in the (x, x) - space encircles the origin. The Liapunov-Schmidt reduction method is applied to obtain the bifurcation equations. The results are then obtained by successive use of the Implict Function theorenm,. We also characterize the existence and the number of 4π-periodic solutions of (1) which lie in a neighborhood of a 2π-periodic orbit of (2).
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
Fecha de Publicación
2020-02-19
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
CeTI-SC/STI
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2021. Todos los derechos reservados.