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“Above all, don’t lie to yourself. The man who lies to himself and

listens to his own lie comes to a point that he cannot distinguish

the truth within him, or around him, and so loses all respect for

himself and for others. And having no respect he ceases to love.”

( Fyodor Dostoevsky, The Brothers Karamazov )





RESUMO

TEZÔTO, I. T. O. Classes de Chern via formas diferenciais. 2022. 134 p. Disser-
tação (Mestrado em Ciências – Matemática) – Instituto de Ciências Matemáticas e de
Computação, Universidade de São Paulo, São Carlos – SP, 2022.

O objetivo dessa dissertação é apresentar algumas das bases matemáticas necessárias
para a construção das classes de Chern em fibrados vetoriais complexos π : E → M,
com M uma variedade diferenciável, a partir da topologia diferencial. No trabalho
abordamos alguns tópicos preliminares de álgebra multilinear, topologia geral, álgebra
comutativa e teoria de categorias com o fim de apresentar as bases necessárias para
desenvolver os conceitos presentes aqui. Em seguida, fazemos uma discussão sobre a
teoria de variedades diferenciáveis necessária, como definições básicas, espaço tangente,
diferenciabilidade, orientação e fronteira. A partir da noção de variedades, introduzimos
as formas diferenciais e suas principais propriedades, que nos permite trabalhar com
integração em variedades diferenciáveis de maneira simplificada devido às propriedades
algébricas que o espaço graduado Ω∗(M) possui. Usando a teoria de formas diferenciais
construímos uma teoria de cohomologia, chamada Cohomologia de DeRham, que é
feita a partir dos espaços vetoriais das formas diferenciais. Os grupos de cohomologia
são essenciais no presente trabalho, pois a partir deles temos as bases para apresentar
diversos dos resultados importantes na tese como a Dualidade de Poincaré, a Fórmula
de Künneth e o Teorema de Leray-Hirsch. Além disso, as classes de cohomologia
são usadas para definir a classe de Euler nos fibrados vetoriais reais de rank 2 e, por
consequência, a definição da primeira classe de Chern nos fibrados vetoriais complexos
de rank 1. Depois, apresentamos de forma simplicada a construção geral das classes de
Chern e algumas de suas propriedades. Por fim, é importante ressaltar a importância do
conceito topológico de fibrados vetoriais no trabalho, tanto reais como complexos, tendo
em vista sua relevância para definir as classes desejadas.

Palavras-chave: Variedades Diferenciáveis, Formas Diferenciais, Cohomologia, Fibra-
dos Vetoriais, Classes Características.





ABSTRACT

TEZÔTO, I. T. O. Chern classes via differential forms. 2022. 134 p. Dissertação (Mes-
trado em Ciências – Matemática) – Instituto de Ciências Matemáticas e de Computação,
Universidade de São Paulo, São Carlos – SP, 2022.

The objective of this dissertation is to present, through differential topology, some of
the mathematical foundations to construct the Chern classes on complex vector bundles
π : E→M, where M is a differentiable manifold. In this work we cover some preliminary
topics of multilinear algebra, general topology, homological algebra and category theory
in order to present the necessary background to develop the concepts here present. Next,
we discuss the theory of differentiable manifolds needed, such as basic definitions,
tangent space, differentiability, orientation and boundary. From the notion of manifolds,
we introduce differential forms and their main properties, which allows us to work
with integration on differentiable manifolds in a simplified way due to the algebraic
properties that the graded space Ω∗(M) possesses. Using the theory of differential forms
we construct a cohomology theory, called de Rham’s Cohomology, which is defined
from the vector spaces of differential forms. The cohomology groups are essential in this
work, because from them we have the basis to present several of the important results in
the thesis such as the Poincaré duality, the Künneth formula and the Leray-Hirsch
theorem. Also, they are important for the definition of Euler classes on real vector
bundles of rank 2 and, consequently, the definition of the first Chern class on complex
line bundles. We then give an overview of the general construction of Chern classes and
give some of its properties. Finally, it is important to emphasize the importance of the
topological concept of vector bundles in the work, both real and complex, in view of its
relevance to define the desired classes.

Keywords: Smooth Manifolds, Differential Forms, Cohomology, Vector Bundles, Char-
acteristic Classes.
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CHAPTER

1
INTRODUCTION

The main objective of this work is to establish the mathematical foundations
in order to study and define Chern classes using differential topology. These classes
have not only mathematical meaning but historical meaning for mathematics. Shiing-
Shen Chern was able to unify different characteristic classes of complex vector bundles,
on what was later called Chern classes, among other notable achievements, such as
Chern-Gauss-Bonnet theorem and Chern-Simons theory.

Using these characteristic classes we are able, in informal mathematical statement,
to tell how much a complex vector bundle is trivial, i.e., how distant it is from a trivial
bundle (or product bundle) B×F .

Throughout this work we study many different subjects with more or less deep-
ening, depending on its necessity to reach our final objective, which is to define Chern
classes using the construction via differential forms and see examples for this theory. Our
work is divided into 9 chapters, where

the first chapter is dedicated to this introduction;

the second chapter is used to present some of the necessary knowledge needed as a
basis for the content in this work, such as multilinear algebra, general topology,
commutative algebra and the very basics of category theory;

the third chapter we work through the minimum necessary topics on differential
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manifolds, such as the introduction to manifolds, its topology and basic concepts,
differentiation and tangent spaces, orientation, manifolds with boundary (in order
to study integration later on) and partition of unity;

the fourth chapter is used to define and understand the importance of differential
forms on multivariable calculus, passing through topics such as differentiation,
integration over manifolds and the Stokes’ theorem;

the fifth chapter is dedicated to the study of de Rham cohomology, which is a
particular type of cohomology, made from the vector spaces of the differential
forms on a certain manifold M. We discuss the concept of de Rham cohomology
and compactly supported cohomology and, then, we work with plenty of examples
on the Euclidean space. After that, we discuss and prove both Poincaré lemmas. In
the end of this chapter we introduce and use the Mayer-Vietoris sequence, both for
de Rham cohomology and compactly supported cohomology;

the sixth chapter is the discussion of the main theorems of this work, namely, the
Poincaré duality, the Künneth formula and the Leray-Hirsch theorem;

the seventh chapter is an introduction to the concepts of Vector bundles. We work
with a detailed example and some propositions and lemmas. Also, here we work
through the proof of an important theorem about vector bundles, the Homotopy
Property of Vector Bundles;

the eighth chapter is an overview on the final part of the theory used to define
Chern classes, such as the compact vertical cohomology, the Thom class and the
Euler class. At the end of the chapter we present the definition of Chern classes
and give some of its properties;

the ninth chapter is the conclusion of this work.
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CHAPTER

2
PRELIMINARIES

2.1. Multilinear algebra
In this section we recall definitions and facts about multilinear algebra, such

as the definition of a multilinear function and of alternate transformations, we give an
explicit basis for the space of alternate transformations and, at the end of the section,
we recall the definition of the pullback of linear functions. Those concepts are the base
to understand differential forms, since a differential k-form is function ω given by
ω : x ∈M 7→ ω(x) ∈ Λk(TxM), where M is an n-manifold. The content presented in this
section is based on (LIMA, 2014) and (MELO, 2019).

Given two vector spaces E and F over a field K, where dim(E)< ∞, we denote
the space of k-linear functions between E and F as Lk(E,F). This is a vector space
with natural operations ( f +g)(x) = f (x)+g(x) and (λ f )(x) = λ · f (x), for x ∈ E and
λ ∈ K. Unless stated otherwise, we always consider K =R. We remember that a k-linear
function T between E and F is a function

T : E×·· ·×E︸ ︷︷ ︸
k−times

→ F,

where T is linear in each of its coordinates independently from one another.

For F = R we denote Lk(E,R) as Lk(E). We assume the fact that if E is finite
dimensional then Lk(E,F) is finite dimensional, regardless of the dimension of F . If no
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mention is made, we consider our vector space E as Rm.

Definition 2.1.1. We say that a k-linear transformation T ∈ Lk(E,F) is alternate if it
satisfies at least one of the following conditions:

T (v1, . . . ,vk) = 0, whenever vi = v j for i ̸= j;

T is antisymmetric, i.e., T (v1, . . . ,vi, . . . ,v j, . . . ,vk) =−T (v1, . . . ,v j, . . . ,vi, . . . ,vk)

for every v1, . . . ,vk ∈ E and i < j.

In fact, it is possible to show that the conditions on the previous definition are
equivalent. We denote the subvector space composed by alternate transformations of
Lk(Rm) as Λk(Rm). We consider Λ0(Rm) = R as a convention.

Example 2.1.2. Some examples of alternate linear transformations are:

Every linear transformation between two vector spaces is alternate, since any of the
two conditions on definition 2.1.1 cannot be unfulfilled by a linear transformation.
Therefore, Λ1(Rm,F) = L(Rm,F), which give us Λ1(Rm) = (Rm)∗.

The determinant of square matrices is a m-linear alternate transformation from
Mm(R) to R. Here we can identify Mm(R) as Rm2

.

Given f1, . . . , fr ∈ (Rm)∗ we can define f1 ∧ ·· · ∧ fr : Rm× ·· · ×Rm → R as a
k-linear transformation by making

( f1∧·· ·∧ fr)(v1, . . . ,vr) = det( fi(v j)).

We define a linear function Alt : Lk(Rm)→ Λk(Rm), called alternator, given by

Alt(T )(v1, . . . ,vk) =
1
k! ∑

σ∈Sk

sign(σ)T (vσ(1), . . . ,vσ(k)),

where Sk is the permutation group of the set {1,2, . . . ,k} and the function sign : Sk→
{−1,1} is equal to 1 if the permutation can be decomposed in an even number of
transpositions and it is equal to −1 if it can be decomposed in an odd number of
transpositions.
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We define the exterior product ∧ : Λk(Rm)×Λl(Rm)→ Λk+l(Rm) by making

ω ∧η =
(k+ l)!

k!l!
Alt(ω⊗η).

which gives us

ω ∧η(v1, . . . ,vk+l) =
1

k!l! ∑
σ∈Sk+l

sign(σ)ω(vσ(1), . . . ,vσ(k)) ·η(vσ(k+1), . . . ,vσ(k+l)).

Remark 2.1.3. The previous definition allows us to work with alternate transformations
that are expressed in a more abstract manner than the ones defined in the third item
of the example 2.1.2. However, theorem 2.1.5 show us that every alternate transforma-
tion in Λk(Rm) can be written as a finite linear combination of fi1 ∧ ·· · ∧ fik, where
{ f1, . . . , fm} is a basis for (Rm)∗. After proving this theorem, we can work with alternate
transformations by not having to resort to this last definition.

Proposition 2.1.4. Given ω,η ,θ multilinear alternate transformations from Rm to R
then

(ω +θ)∧η = ω ∧η +θ ∧η , where ω and θ are both k-linear;

η ∧ (ω +θ) = η ∧ω +η ∧θ , where ω and θ are both k-linear;

a(ω ∧η) = (aω)∧η = ω ∧ (aη), for all a ∈ R;

ω ∧η = (−1)klη ∧ω , for ω ∈ Λk(Rm) and η ∈ Λl(Rm);

(ω ∧η)∧θ = ω ∧ (η ∧θ).

We denote the canonical basis of Rm as {e1, . . . ,em}, where e j =(δ1 j,δ2 j, . . . ,δm j)

is a vector in Rm such that δi j = 0, for i ̸= j, and δ j j = 1. The dual basis of the dual space
(Rm)∗, which is the algebraic dual space of Rm, is the subset of continuous linear func-
tions denoted by {dx1, . . . ,dxm} ⊂ (Rm)∗, where dxi(v) = vi for all v ∈ Rm. Therefore,
we get dxi(e j) = δi j.

The set {dxI = dxi1 ∧ ·· · ∧ dxik |I = {0 < i1 < · · · < ik ≤ m}} is a basis for the
vector space Λk(Rm), when all possible combinations in the index subset I ⊂ {1, . . . ,m}
are done. For elements dxI we are using the same definition given in the third item of
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example 2.1.2. Therefore, making all possible combinations of k elements on a set of m

elements we get dim(Λk(Rm)) =
m!

k!(m− k)!
.

Theorem 2.1.5. For all possible I = {i1 < · · ·< ik} ⊂ {1, . . . ,m}, the set {dxI = dxi1 ∧
·· ·∧dxik} is a basis for Λk(Rm). Moreover, dim(Λk(Rm)) =

m!
k!(m− k)!

.

Proof. Let ω ∈ Λk(Rm) and define ϕ = ∑αIdxI = ∑ω(ei1, . . . ,eik)dxI , for all subsets
of integers I = {i1 < · · · < ik} ⊂ {1,2, . . . ,m}. Consider the subset of integers J =

{ j1, . . . , jk}, then

dxI(e j1, . . . ,e jk) =

0, if I ̸= J

1, if I = J
(2.1)

Applying equality (2.1), we obtain

ϕ(e j1, . . . ,e jk) = ∑
I

αIdxI(e j1, . . . ,e jk) = αJ = ω(e j1 , . . . ,e jk).

A theorem from multilinear algebra states that if k-linear transformations coincide
over the elements from a basis of our vector space Rm, then they are the same. Therefore,
ϕ = ω . Moreover, if ϕ = ∑I αIdxI = 0, then for J = { j1, . . . , jk}, we get

0 = ϕ(e j1, . . . ,e jk) = αIdxI(e j1, . . . ,e jk) = αJ ·1⇒ αJ = 0.

Varying for every possible set J, we show that the elements dxI are linear independent.
This finishes our proof.

Remark 2.1.6. The theorem used on the preceding proof is stated as: Let T,S : E ×
·· ·×E→ F be two alternate k-linear transformations and {e1, . . . ,em} a basis for E. If
T (ei1, . . . ,eik) = S(ei1 , . . . ,eik) for all possible index sets I = {i1 < · · ·< ik} ⊂ {1, . . .m},
then T = S.

Using the previous depicted basis of Λk(Rm) and the property that the wedge
product between two alternate transformation is an alternate transformation we have

Corollary 2.1.7. If k > dim(Rm), then Λk(Rm) = {0}.
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Remark 2.1.8. The theorem of multilinear algebra used on 2.1.5 to imply that ϕ =

ω is a generalization from a theorem of linear algebra, which states that two linear
transformations are equal if they coincide over a basis of their domain, that must be a
finite basis.

Any given linear transformation A : Rm → Rp gives us a linear application
between the spaces of alternate transformations. For each k we get

A∗ : Λ
k(Rp)→ Λ

k(Rm)

defined by
(A∗ω)(v1, . . . ,vk) = ω(Av1, . . . ,Avk).

The alternate transformation A∗ω is called pullback of ω by A. If k = 1 we are looking
at the transpose application of A.

2.2. General Topology
In this section we recall basic definitions and facts about topology that are recur-

rent throughout this work, given its importance to understand the differential structures
of manifolds and the structures of vector bundles. The content presented in this section
was based on (MUNKRES, 2000).

We begin from the definition of a topological space, which is an ordered pair
(X ,τ), with X being any set satisfying the ZFC and τ being a collection of subsets of X ,
which satisfies the following axioms

/0,X ∈ τ;

Any finite intersections of elements of τ must be in τ;

Any arbitrary unions of τ must be in τ .

The collection τ is called a topology in X an its elements are defined as being the
open sets of X . Any given F = Ac = X \A of any open set A ∈ τ is called a closed set of
X . More precisely, a subset F ⊂ X is said to be closed in the topological space (X ,τ) if,
and only if, it is the complement of an open subset in (X ,τ).
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Definition 2.2.1. A subset B ⊂ τ is said to be a basis of the topological space (X ,τ) if
for any open subset A ∈ τ and for any point x ∈ A there is a element B ∈B such that
x ∈ B ⊂ A. A topological space is said to be second countable if it exists a countable
basis made of open sets for him.

Definition 2.2.2. A topological space (X ,τ) is said to be a Hausdorff space, or T2 space,
if for any given distinct points x,y ∈ X there is A,B ∈ τ , A∩B = /0, such that x ∈ A and
y ∈ B.

Theorem 2.2.3 (Lindelöf’s Lemma). Let (X ,τ) be a second countable topological space.
If C is an open cover for X , then there is C ′ ⊂ C a countable subcover for X .

Definition 2.2.4. A topological space (X ,τ) is said to be paracompact if every open cover
has an open refinement that is locally finite, i.e., for every open cover {Uα ∈ τ : α ∈ A}
there is {Vβ ∈ τ : β ∈ B}, where for every β ∈ B there is an α ∈ A such that Vβ ⊂Uα .
Moreover, for every x ∈ X , there is an open neighbourhood Vx of x, such that Vx∩Vβ ̸= /0
for only finitely many β ∈ B.

Definition 2.2.5. Let (X ,τ) and (Y,ρ) be two topological spaces and f : X → Y be a
function between them. We say that f is a continuous function if, for every open set
A ∈ ρ , then f−1(A) is an open set of X , i.e., f−1(A) ∈ τ . Here f−1(A) is the preimage of
the set A.

Definition 2.2.6. Let (X ,τ) and (Y,ρ) be two topological spaces and f ,g : X → Y two
continuous functions. We say that F : X× [0,1]→ Y is an homotopy between f and g if
F is a continuous function and F(x,0) = f (x) and F(x,1) = g(x) for all x ∈ X .

Definition 2.2.7. Let (X ,τ) be a topological space, V a vector space and f : X →V a
function between them. We define the support of f , denoted by supp( f ), as the set

supp( f ) := {x ∈ X | f (x) ̸= 0}

2.3. Homological Algebra
Since we work with cohomology, we recall some basic concepts about homologi-

cal algebra, especially those related with exact sequences. The content presented in this
section was based on (TENGAN; BORGES, 2015).
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Denote Cq as vector spaces indexed in the integers. We call the direct sum
C =⊕q∈ZCq a differential complex if there are homomorphisms

· · · −→Cq−1 d−→Cq d−→Cq+1 −→ . . .

satisfying d2 = 0. The operator d is called the differential operator of the complex C.
We define the cohomology of C as the direct sum H(C) =⊕q∈ZHq(C) where, for each
q ∈ Z, we have the quotient group Hq(C) = (Ker d)/(Imd), for Ker d : Cq→Cq+1 and
Imd : Cq−1→Cq.

Definition 2.3.1. We call a map f : A→ B a chain map between differential complexes if
it commutes between both differential operators of A and B, dA and dB, i.e., f dA = dB f .

The most important concept of homological algebra for us in this work is the one
of exact sequence. We say that the following sequence of vector spaces

· · · −→Vi−1
fi−1−→Vi

fi−→Vi+1 −→ . . .

is an exact sequence if Ker ( fi) = Im( fi−1) for all i. A short exact sequence is an exact
sequence of the form

0−→ A−→ B−→C −→ 0.

If we take a short exact sequence of chain maps f and g between differential
complexes given by

0−→ A•
f−→ B•

g−→C• −→ 0,

then we can induce a long exact sequence on the cohomology groups

· · · −→ Hq(A•)
f ∗−→ Hq(B•)

g∗−→ Hq(C•) d∗−→ Hq+1(A•)−→ . . . ,

where d∗ is a connecting homomorphism. An important fact about exact sequences,
which is extremely useful to us in order to compute cohomology groups, is the next
theorem.

Theorem 2.3.2. Let 0
f0→ V 1 f1→ V 2 f2→ V 3 . . .

fk−1→ V k fk→ 0 be an exact sequence, where
each V q is a finite dimensional vector space, then

k

∑
q=1

(−1)qdim(V q) = 0.
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Proof. For every vector space V q we can write that dimV q = dimKer fi + dimIm fi.
Then,

k

∑
q=1

(−1)qdim(V q) =
k

∑
q=1

(−1)q dimKer fi +
k

∑
q=1

(−1)q dimIm fi.

Since 0
f0→ V 1 f1→ V 2 f2→ V 3 . . .

fk−1→ V k fk→ 0 is an exact sequence, then Im fi =

Ker fi+1. Therefore,

k

∑
q=1

(−1)q dim(V q) =
k

∑
q=1

(−1)q dimKer fi +
k

∑
q=1

(−1)q dimIm fi

=
k

∑
q=1

(−1)q dimKer fi +
k

∑
q=1

(−1)q dimKer fi+1

= 0

Also, the lemma known as Five Lemma is of importance to us.

Lemma 2.3.3 (Five Lemma). Let the following be a commutative diagram of Abelian
groups and groups homomorphisms

A B C D E

A′ B′ C′ D′ E ′

f1

f ′1

g1

f2

f ′2

g2

f3

f ′3

g3

f4

f ′4

g4 g5

in which the rows are exact and the maps g1,g2,g4,g5 are isomorphisms. Then g3 is an
isomorphism.

A proof for this lemma can be found in (MASSEY, 1991).

2.4. Category theory
In order to finish this chapter we discuss some category theory. Note that we are

only working with basic definitions and names, because is what we need for our work.
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Also, we draw attention for the concept of functor, both covariant and contravariant,
which is the most important concept we use in the cohomology chapter. The content
presented in this section is taken from (AWODEY, 2010).

We define a category as being a class consisting of the following:

Objects: A,B,C, . . .

Arrows: f ,g,h, . . .

For each arrow f there are given objects

dom( f ), cod( f )

which are the domain and codomain of f . Those are written as

f : A→ B

to indicate that A = dom( f ) and B = cod( f ).

Given two arrows f : A→ B and g : B→C, where cod( f ) = dom(g), then there is
a given arrow

g◦ f : A→C

called the composite of f and g.

For each object A, there is a given arrow called the identity arrow of A

1A : A→ A.

The arrows on a category should satisfy the two following axioms:

Associativity:
h◦ (g◦ f ) = (h◦g)◦ f

for any given arrows f : A→ B,g : B→C,h : C→ D.

Unit:
f ◦1A = f = 1B ◦ f

for any given arrow f : A→ B.



30 Chapter 2. Preliminaries

Given two objects inside a category we denote the set of arrows between A and B

as Hom(A,B).

Definition 2.4.1. Given two categories C,D we define a functor between them as

F : C→ D

a mapping of objects to objects and arrows to arrows, which satisfies the following:

F( f : A→ B) = F( f ) : F(A)→ F(B);

F(1A) = 1F(A);

F(g◦ f ) = F(g)◦F( f ), for arrows f : A→ B and g : B→C.

The functor above is called covariant functor. In the first item, if we have reversed
arrows, i.e., F( f : A→ B) = F( f ) : F(B)→ F(A), instead of F( f : A→ B) = F( f ) :
F(A)→ F(B), then F would be called contravariant functor. Also, the third item should
be replaced by F(g◦g) = F( f )◦F(g).
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CHAPTER

3
SMOOTH MANIFOLDS

Smooth manifolds as a concept is a very useful way to work with a big variety
of geometrical objects. Usually, we think of a smooth manifold M, often called just
manifold, as a geometric object that locally looks like the Euclidean space and have a
differentiable structure induced from Rn. Throughout this chapter we work and discuss
several definitions and results for the development of our theory. We recall what a smooth
manifold is, discuss some of its structure, such as its differentiable structure and the
tangent space, define orientation and partition of unity for manifolds. We also recall
manifolds with boundary so we are able to talk about the Stokes’ theorem. The content
developed in this chapter was based on (LEE, 2013), (MANFIO, 2021), (LIMA, 2014)
and (MELO, 2019).

3.1. Smooth Manifolds

Definition 3.1.1. Let M be a set. We define a local chart for M as a bijection ϕ : U →
ϕ(U) where U ⊂M and ϕ(U)⊂Rn for some n ∈N. We denote our local chart as (U,ϕ)

or (U,x1, . . . ,xn).

Definition 3.1.2. Let M be a set. If (U,ϕ) and (V,ψ) are any two local charts for M,
then they are said to be compatible if ϕ(U ∩V ) and ψ(U ∩V ) are open sets of Rn and
the transition function ψ ◦ϕ−1 is a diffeomorphism.
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Definition 3.1.3. We define a n-dimensional atlas for M as a collection of local charts
A = {(Uα ,ϕα) : α ∈ I}, where every two of them are compatible, for every α ∈ I we
have that ϕα(Uα) is an open set of Rn and M = ∪α∈IUα , i.e., the collection (Uα)α∈I is a
cover for M.

Given an atlas A for a set M and a local chart (U,ϕ) of M, then we say that ϕ is
compatible with A if it is compatible with every other local chart ψ ∈A .

Lemma 3.1.4. Let A be an atlas for M. If (U,ϕ) and (V,ψ) are local charts in M, both
of them being compatible with A , then ϕ and ψ are compatible.

Proof. Let us suppose that U ∩V ̸= /0, since otherwise it would be trivial. We can write
U = ∪α∈I(U ∩Uα) where I is the index set for A . Therefore,

ϕ(U ∩V ) = ∪α∈Iϕ(U ∩V ∩Uα).

ψ(U ∩V ) = ∪α∈Iψ(U ∩V ∩Uα).

We shall prove that ϕ(U ∩V ∩Uα), ψ(U ∩V ∩Uα) are open sets of Rn and ψ ◦
ϕ−1|ϕ(U∩V∩Uα ) is differentiable for every α ∈ I. Indeed, given the fact that (U,ϕ) and
(V,ψ) are compatible with every (Uα ,ϕα), it follows that ϕα(Uα ∩U) and ϕα(Uα ∩V )

are open sets of Rn. Moreover, ϕ ◦ϕ−1
α and ψ ◦ϕ−1

α are diffeomorphisms. Therefore,
given that ϕα is a bijection, we get

ϕ(U ∩V ∩Uα) = (ϕ ◦ϕ
−1
α )(ϕα(U ∩V ∩Uα))

= (ϕ ◦ϕ
−1
α )(ϕα(Uα ∩U)∩ϕα(Uα ∩V ))

is an open set of Rn and

ψ ◦ϕ
−1|ϕ(U∩V∩Uα ) = (ψ ◦ϕ

−1
α )◦ (ϕα ◦ϕ

−1)|ϕ(U∩V∩Uα )

is a diffeomorphism, which proves that ψ(U ∩V ∩Uα) is an open set of Rn.

Lemma 3.1.5. Given a set M and an atlas A for M, then it exists a single maximal atlas
for M which contains A .



3.1. Smooth Manifolds 33

Proof. Denote Amax as the set of all local charts in M that are compatible with A . It is
straightforward that A ⊂Amax. The last lemma grants us that Amax is an atlas for M.

In order to prove that Amax is the maximal atlas, we must take another atlas B

for M which contains A . Given that B is an atlas, then every one of its elements are
compatible with elements of A , since A is a subset of B. Therefore B ⊂Amax. The
uniqueness of such atlas is given by a similar argument. We suppose now B is another
maximal atlas for M which contains A . From this we can imply that every element of B

is compatible with every element of A . Therefore, B ⊂Amax, and given that they are
both maximals, then B = Amax.

Theorem 3.1.6. Let M be a set and A = {(Uα ,ϕα) : α ∈ I} an atlas for M. Then there
is a unique topology in M which turns every Uα in an open set in M and every ϕα in an
homeomorphism. This topology is given by

τA = {V ⊂M : ϕα(Uα ∩V ) is an open set of Rn,∀α ∈ I}.

Proof. By definition of τA we get ϕα(Uα ∩ /0) = /0, ϕα(Uα ∩M) = ϕα(Uα), which
proves that /0,M ∈ τA . Moreover, we recall that ϕα is a bijection for every α ∈ I, then
ϕα(Uα ∩V1∩V2) = ϕα((Uα ∩V1)∩ (Uα ∩V2)) = ϕα(Uα ∩V1)∩ϕα(Uα ∩V2), i.e., finite
intersections of elements of τA are its own elements, and, similarly, ϕα(Uα ∩ (∪βVβ )) =

∪β ϕα(Uα ∩Vβ ), i.e., arbitrary unions remain in τA . This proves that τA is a topology
on M.

Notice that ϕα(Uα) is an open set of Rn by definition. Let (Uβ ,ϕβ ) be another
local chart of M, then, by definition of compatible charts, ϕβ (Uβ ∩Uα) is an open set of
Rn. Therefore, Uα ∈ τA . Also, for V ∈ τA , ϕα(V ) = ϕα(V ∩Uα) which is an open set of
Rn. In order to finish proving that ϕα is an homeomorphism, let A be an open set of Rn

and consider V = ϕ−1
α (A). Let β ∈ I and notice that ϕβ (V ∩Uβ ) = ϕβ ◦ϕ−1

α ◦ϕα(V ∩
Uβ ) = ϕβ ◦ϕ−1

α (A∩ϕα(Uβ )), where ϕβ ◦ϕ−1
α is a diffeomorphism and (A∩ϕα(Uβ )) =

(A∩ϕα(Uα ∩Uβ )) is an open set of Rn. Therefore, ϕα is an homeomorphism for every
α ∈ I.

Finally, let τ be another topology on M such that every Uα is an open set and every
ϕα is an homeomorphism. Let V ∈ τ . By definition of τ , V ∩Uα ∈ τ , then ϕα(Uα ∩V )

is an open set on Rn for every α ∈ I. Therefore, τ ⊂ τA . On the other hand, let V ∈ τA ,
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then ϕα(V ∩Uα) is an open set of Rn for every α ∈ I. Since ϕα is an homeomorphism on
τ , then ϕ−1

α (ϕα(V ∩Uα)) =V ∩Uα ∈ τ for every α ∈ I. We can write V = ∪α(V ∩Uα),
then V ∈ τ and, consequently, τA ⊂ τ .

Definition 3.1.7. We define a differentiable manifold with dimension n as a pair (M,A ),
where M is a set and A is a maximal atlas of dimension n, where the induced topology
τA is Hausdorff and second countable.

Example 3.1.8. The Euclidean space Rn is a manifold and one possible atlas is composed
by a single chart (Rn, Id). More generally, every finite dimensional real vector space is
a manifold and has a possible atlas composed by a single chart given by (V,T ), where
T : V → Rn is the linear transformation that takes a basis of V to a basis of Rn.

Example 3.1.9. The n-sphere Sn = {x ∈ Rn+1 : ||x|| = 1} is a differentiable manifold.
An atlas for it is given by A = {(Sn \{N},πN),(Sn \{S},πS)}, where πN and πS are the
stereographic projections. We have

πN : Sn \{N}→ Rn

x 7→ πN(x) =
1

1− xn+1
(x1, . . . ,xn),

π
−1
N : Rn→ Sn \{N}

y 7→ π
−1
N (y) =

( 2y1

||y||2 +1
, . . . ,

2yn

||y||2 +1
,
||y||2−1
||y||2 +1

)
,

πS : Sn \{S}→ Rn

x 7→ πS(x) =
1

1+ xn+1
(x1, . . . ,xn),

π
−1
S : Rn→ Sn \{S}

y 7→ π
−1
S (y) =

( 2y1

||y||2 +1
, . . . ,

2yn

||y||2 +1
,
||y||2 +1
||y||2 +1

)
,

To prove that Sn is a n-dimensional manifold it suffices to prove now that the
stereographic projections are compatible charts. First of all, notice that πN(Sn \{N,S}) =
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Rn \{0} and πS(Sn \{N,S}) =Rn \{0}, which is an open set of Rn. Moreover, πS ◦π
−1
N :

Rn \{0}→ Rn \{0}, πN ◦π
−1
S : Rn \{0}→ Rn \{0} and, for x ̸= 0, we get

(πS ◦π
−1
N )(x) =

1
||x||2

(x1, . . . ,xn),

(πN ◦π
−1
S )(x) =

1
||x||2

(x1, . . . ,xn),

i.e., πN ◦π
−1
S is a diffeomorphism. This proves that Sn is n-dimensional manifold.

Proposition 3.1.10. Every manifold M is paracompact.

Proof. We know that M is a Hausdorff, second countable and regular space space. By
the Urysohn’s metrization theorem (which can be found at (MUNKRES, 2000)), M is
metrizable. Therefore, M is paracompact.

Definition 3.1.11. Let N be a n-manifold. A subset M⊂N is a submanifold of dimension
m of N if for every p ∈M there is a local chart (U,ϕ) of N, where p ∈U , such that

ϕ(U ∩M) = ϕ(U)∩Rm.

Notice that M can be seen as a m-manifold by taking a local chart (U,ϕ) of N,
with p ∈U , and defining ϕ : M∩U → ϕ(U)∩Rm, where ϕ = ϕ|M∩U .

3.2. Smooth maps and the tangent space
In this section we recall the notion of a differentiable function between manifolds.

This idea allows us to work with tangent spaces and allows us to prove that every local
chart is, in fact, a diffeomorphism. As everything related to manifolds, differentiability
between manifolds is a concept that strongly relies on the notion of differentiability on
the Euclidean space.

Definition 3.2.1. Let M be a m-dimensional manifold, N be a n-dimensional manifold
and f : M→ N be a function between manifolds. We say that f is differentiable at a
point p ∈M if there are local charts, (U,ϕ) for M and (V,ψ) for N, where p ∈U and
f (U)⊂V , such that the composite ψ ◦ f ◦ϕ−1 is differentiable at the point ϕ(p)∈ ϕ(U).
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We say that the composite ψ ◦ f ◦ϕ−1 is the representation of f according to the local
charts (V,ψ) and (U,ϕ). Moreover, f is said to be differentiable if it is differentiable
at every point of M. Lastly, f is said to a be a diffeomorphism if it is a differentiable
bijection with inverse f−1 : N→M also differentiable.

Proposition 3.2.2. Let M be a m-dimensional manifold, N a n-dimensional manifold
and f : M→ N a differentiable function at a point p ∈M. Then the differentiability of f

at p does not depend on the choice of the local charts as given in definition 3.2.1.

Proof. Let (U,ϕ), (U ′,ϕ ′) be local charts for M and (V,ψ), (V ′,ψ ′) be local charts for N,
where p ∈U ∩U ′ and f (U)⊂V , f (U ′)⊂V ′. Suppose ψ ◦ f ◦ϕ−1 and ψ ′ ◦ f ◦ϕ ′−1 are
the representations of f according to the local charts (V,ψ), (U,ϕ) and (V ′,ψ ′), (U ′,ϕ ′)
respectively. Consider, without loss of generality, that ψ ◦ f ◦ϕ−1 is differentiable at
ϕ(p), then

ψ
′ ◦ f ◦ϕ

′−1(ϕ ′(p)) = (ψ ′ ◦ψ
−1)◦ (ψ ◦ f ◦ϕ

−1)◦ (ϕ ◦ϕ
′−1)(ϕ ′(p))

= (ψ ′ ◦ψ
−1)◦ (ψ ◦ f ◦ϕ

−1)(ϕ(p))

is differentiable at the point ϕ ′(p), since ϕ ◦ϕ ′−1, ψ ′ ◦ψ−1 are diffeomorphisms and
ψ ◦ f ◦ϕ−1 is differentiable at ϕ(p).

Proposition 3.2.3. Let (M,A ) be a differentiable manifold, a subset U ⊂M, an open
set V ⊂ Rn and a bijection ϕ : U →V . Then (U,ϕ) ∈A if, and only if, U ∈ τA and ϕ

is a diffeomorphism.

Proof. Suppose that ϕ is a diffeomorphism and U is an open set of M. We already know
that ϕ(U) is an open set of Rn, then we just need to prove that the local chart (U,ϕ)

is compatible with every local chart of A . Let (U ′,ϕ ′) ∈ A , then U ′ is an open set
of M and ϕ ′ is an homeomorphism. We have that ϕ(U ∩U ′) and ϕ ′(U ∩U ′) are open
sets of Rn, since U ∩U ′ is an open set of M. Now, since ϕ is a diffeomorphism, the
representation ϕ ′ ◦ϕ−1 of ϕ−1, according to the local charts Id : ϕ(U ∩U ′) ⊂ Rn→
ϕ(U ∩U ′)⊂ Rn and ϕ ′|U∩U ′ : U ∩U ′→ ϕ ′(U ∩U ′), is differentiable. In the same way
ϕ ◦ϕ ′−1 is differentiable, proving that (U,ϕ) ∈A .
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On the other hand, suppose (U,ϕ) ∈A . By definition of τA , U is an open set of
M. Let Id : V →V , then

Id ◦ϕ ◦ϕ
−1 = Id : V →V,

ϕ ◦ϕ
−1 ◦ Id = Id : V →V

are the representations of ϕ and ϕ−1 according to local charts (V, Id) and (U,ϕ), respec-
tively. Since Id : V →V differentiable, then ϕ is differentiable and has a differentiable
inverse, i.e., ϕ is a diffeomorphism.

Now, we define the tangent space of a manifold M at a point p ∈M. This space
must have a structure of real vector space and it is useful for us to work with the
differential of a differentiable function between manifolds.

We define the set Cp := {λ : (−ε,ε)→M | λ (0) = p,λ is differentiable} and
the following equivalence relation onto it: let λ ,µ ∈Cp, we say that they are equivalent,
which is denoted by λ ∼ µ , if there is a local chart (U,ϕ) on M, p ∈ U , such that
(ϕ ◦λ )′(0) = (ϕ ◦µ)′(0).

Proposition 3.2.4. The relation ∼ given in last paragraph does not depend on the local
chart.

Proof. Indeed, let (V,ψ) be another local chart on M such that p ∈V , then

(ψ ◦λ )′(0) = (ψ ◦ϕ
−1 ◦ϕ ◦λ )′(0)

= d(ψ ◦ϕ
−1)(ϕ(p)) · (ϕ ◦λ )′(0)

= d(ψ ◦ϕ
−1)(ϕ(p)) · (ϕ ◦µ)′(0)

= (ψ ◦µ)′(0).

Since maps of the form ϕ ◦λ are maps between Euclidean spaces, therefore, we
can apply the chain rule.

Proposition 3.2.5. The relation ∼ is an equivalence relation on Cp.

Proof. The reflexivity and symmetry property are immediate. Now, on the transition
property, let λ ,µ,γ ∈Cp, such that λ ∼ µ and µ ∼ γ . Therefore, there are local charts
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(U,ϕ), (V,ψ) on M, where p ∈U ∩V , such that

(ϕ ◦λ )′(0) = (ϕ ◦µ)′(0),

(ψ ◦µ)′(0) = (ψ ◦ γ)′(0).

We get

(ϕ ◦λ )′(0) = (ϕ ◦µ)′(0)

= d(ϕ ◦ψ
−1)(ψ(µ(0))) · (ψ ◦µ)′(0)

= d(ϕ ◦ψ
−1)(ψ(γ(0))) · (ψ ◦ γ)′(0)

= (ϕ ◦ψ
−1 ◦ψ ◦ γ)′(0)

= (ϕ ◦ γ)′(0),

by working on the local chart (U ∩V,ϕ).

Definition 3.2.6. We define TpM, the tangent space of M at the point p, by making
TpM :=Cp/∼.

In order to prove that TpM has a real vector space structure we define an appli-
cation induced from a local chart. Let (U,ϕ) be a local chart of M, where p ∈M. We
define

ϕ : TpM→ Rn

[λ ] 7→ (ϕ ◦λ )′(0)

which is well-defined thanks to proposition 3.2.4. Moreover, this map is easily seen to be
injective. In order to prove that ϕ is surjective we take, for every v ∈Rn, the composition
λ = ϕ−1 ◦α , where α : (−ε,ε)→ ϕ(U) is given by α(t) = ϕ(p)+ t · v. Given that ϕ

is a bijection we can now give a space vector structure on TpM by inducing operations
from the Euclidean space, where ϕ becomes a linear isomorphism, namely

[λ ]+ [µ] = ϕ
−1(ϕ([λ ])+ϕ([µ])),

a · [λ ] = ϕ
−1(a ·ϕ([λ ])),

for every [λ ], [µ] ∈ TpM and a ∈ R.
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Remark 3.2.7. Similarly to proposition 3.2.4 we can verify that the vector space structure
on TpM does not depend on the local chart we are defining it.

Definition 3.2.8. Let M be a m-manifold, N be a n-manifold and f : M → N be a
differentiable application at a point p ∈ M. We define the differential of f at p as an
application d f (p) : TpM→ Tf (p)N, by making d f (p) · [λ ] = [ f ◦λ ], for every [λ ] ∈ TpM.

Proposition 3.2.9. The differential d f (p) is well-defined and it is a linear map between
tangent spaces.

Proof. Let (U,ϕ) be a local chart on M, with p ∈U , and (V,ψ) be a local chart on N,
where f (U)⊂V . Let [λ ] ∈ TpM, then

ψ([ f ◦λ ]) = (ψ ◦ f ◦λ )′(0) = (ψ ◦ f ◦ϕ
−1

ϕ ◦λ )′(0) = d(ψ ◦ f ◦ϕ
−1)(ϕ(p)) ·ϕ([λ ]).

By applying ψ
−1 on both sides we get

d f (p) · [λ ] = ψ
−1 ◦ (d(ψ ◦ f ◦ϕ

−1)(ϕ(p)) ·ϕ([λ ])).

This shows that d f (p) is well defined since its definition depends only on the equivalence
class [λ ] and that it is linear, since it can be written as a composite of linear operators.

Remark 3.2.10. Let (U,ϕ) be a local chart on a m-dimensional manifold M and p ∈U .
We say that the following set {

∂

∂x1
(p), . . . ,

∂

∂xm
(p)
}

is a basis for the tangent space TpM where
∂

∂xi
(p) = ϕ

−1(ei).

Let f : M→ N be a differentiable application at p and (V,ψ) be a local chart for
N, such that f (U)⊂V , where{

∂

∂y1
( f (p)), . . . ,

∂

∂yn
( f (p))

}
is the basis for Tf (p)N. If A = (ai j) is the matrix representation for the differential d f (p),
then

d f (p) · ∂

∂xi
(p) =

n

∑
j=1

ai j
∂

∂y j
( f (p)).
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We know that
∂

∂xi
(p) = ϕ

−1(ei) and
∂

∂y j
( f (p)) = ψ

−1(e j). Therefore, by the

linearity of ψ we have

ψ(d f (p) ·ϕ−1(ei)) =
n

∑
j=1

ai je j,

which implies that

d(ψ ◦ f ◦ϕ
−1)(ϕ(p)) · ei =

n

∑
j=1

ai je j.

Therefore, A is the same as the jacobian matrix at the point ϕ(p) of ψ ◦ f ◦ϕ−1, the
representation of f according to ϕ and ψ .

Proposition 3.2.11. [Chain Rule] Let M, N and P be manifolds and f : M→ N and
g : N→ P differentiable at p and f (p) respectively. Then g◦ f is differentiable at p and
d(g◦ f )(p) = dg( f (p))◦d f (p).

Proof. Let (U,ϕ), (V,ψ) and (W,η) be local charts on M, N and P, respectively, such
that p ∈U and f (U)⊂V and g(V )⊂W . Then

η ◦g◦ f ◦ϕ
−1 = η ◦g◦ (ψ−1 ◦ψ)◦ f ◦ϕ

−1

= (η ◦g◦ψ
−1)◦ (ψ ◦ f ◦ϕ

−1)

where ψ ◦ f ◦ϕ−1 is differentiable at ϕ(p) and η ◦g◦ψ−1 is differentiable at ψ( f (p)).
Therefore, g◦ f is differentiable at p.

Now, for the formula, let [λ ] ∈ TpM, then

d(g◦ f )(p)·[λ ] = [(g◦ f )◦λ ] = [g◦( f ◦λ )]= dg( f (p))·[ f ◦λ ] = dg( f (p))◦d f (p)·[λ ].

3.3. Orientation
In this section we recall the notion of orientation on a manifold. Besides its

importance to integration of forms, orientation plays an important role on cohomology
and characteristic classes, since we need it to prove Poincaré’s Duality and to define the
Euler class on vector bundles of rank 2.
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Let (U,ϕ) and (V,ψ) be two local charts of a manifold M. We say that they are
orientation preserving when

U ∩V = /0 or

U ∩V ̸= /0 and the matrix representation of d(ϕ ◦ψ−1)(x) has a positive determi-
nant for every x ∈ ψ(U ∩V ).

Note that ϕ ◦ψ−1 is a diffeomorphism, therefore d(ϕ ◦ψ−1)(x) has a non-zero
determinant at every point x ∈ ψ(U ∩V ). Moreover, since the determinant function is
continuous, then the determinant of the differential d(ϕ ◦ψ−1) has a constant sign in
every connected component of ψ(U ∩V ).

We call an atlas A of M to be oriented whenever two random local charts
belonging to it are orientation preserving. Moreover, A is said to be a maximal oriented
atlas if it is not a proper subset of any other oriented atlas of M. As in lemma 3.1.5 we
can prove that every oriented atlas is contained in a maximal oriented atlas.

Definition 3.3.1. Let M be a manifold. We say that M is an orientable manifold if there
exists an oriented atlas for it. We say that an oriented manifold is a pair (M,A ), where
M is a manifold and A is a maximal oriented atlas. A is called an orientation for M and
every local chart (U,ϕ) ∈A is called positive.

Example 3.3.2. The manifold (Rn,{(Rn, Id)}) is an orientable manifold. In fact, ev-
ery finite dimensional vector space V is an orientable manifold. We can consider the
atlas A = {(V,T )} where T is a linear isomorphism to Rn, T (vi) = ei for a basis
{v1,v2, . . . ,vn} of V , which is orientation preserving. In case where T is not orientation
preserving, we can make the composite T ′ = T ◦ξ , where ξ (v1) =−v1 and ξ (vi) = vi.
Therefore, det(T ′) = det(T ◦ξ ) = det(T ) ·det(ξ )> 0.

Example 3.3.3. Computations made in example 3.1.9 show us the n-sphere Sn is an
orientable manifold with atlas A = {(Sn \{N},πN),(Sn \{S},πS)}.

Definition 3.3.4. Let M be a manifold. We define the tangent bundle of M as T M =

⊔p∈MTxM = ∪p∈M({p}×TpM) = {(p,v) | p ∈M,v ∈ TpM}.
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Proposition 3.3.5. The tangent bundle of a n-manifold M is a 2n-manifold. Moreover,
T M is an orientable manifold.

Sketch of proof. We set the function π : T M→M defined as π(p,v) = p. Let (U,ϕ) be
a local chart on M. We define a map ϕ : π−1(U)→ ϕ(U)×Rn ⊂ R2n by setting

ϕ(p,v) = (ϕ(p),dϕ(p) · v),

for every p ∈U and v ∈ TpM.

The set A = {(π−1(U),ϕ) : (U,ϕ) are local charts of M} is an atlas of T M, i.e.,
its elements are bijections, where the induced topology of A , τA , is Hausdorff and
second countable.

Moreover, notice that the transition functions ψ ◦ϕ
−1 have a Jacobian matrix(

D(ψ ◦ϕ−1)(x) 0
0 D(ψ ◦ϕ−1)(x)

)
with positive determinant for every x ∈ ϕ(U ∩V ).

The complete proof can be found on (MANFIO, 2021).

3.4. Manifolds with boundary
A semi-space on the Euclidean space is a subset H ⊂ Rn defined by means of

a linear functional, i.e., H = {x ∈ Rn : α(x)≥ 0}, where α ∈ (Rn)∗ \{0}. For instance,
H = {(x1, . . . ,xn) ∈ Rn : xi ≥ 0} are semi-spaces of Rn. The boundary of H, denoted by
∂H, is defined as ∂H = {x ∈ Rn : α(x) = 0}= Ker (α).

Let int(H) be the interior of H according to the usual topology of Rn, then
H = int(U)∪∂H, where the union is disjoint. Furthermore, an open set A⊂ H is of two
types

A⊂ int(H), which is an open subset of Rn, or

A∩∂H ̸= /0, which is not an open subset of Rn.

We define ∂A = A∩∂H.
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Definition 3.4.1. Let H be a semi-space of Rn and A ⊂ H an open subset of H. Let
f : A→ Rm be a map from A. We say that f is differentiable on A if f is the restriction
on A of a differentiable application F : U → Rm on an open subset U ⊂ Rn such that
A⊂U . Also, we define the differential of f as D f (p) = DF(p) for every p ∈ A.

Remark 3.4.2. An important remark is that the definition of differentiability of f : A→
Rm on the previous definition does not depend on the choice of F , i.e., for another exten-
sion F ′ of f then DF ′(p) = DF(p), for p ∈ A. Moreover, all definitions and propositions
in past sections for manifolds with no boundary remain valid.

Proposition 3.4.3. Let A ⊂ H and B ⊂ K be open subsets of semi-spaces on Rn. Let
f : A→ B be a diffeomorphism. Then f (∂A) = ∂B and the restriction f |∂A is a diffeo-
morphism between the boundaries ∂A and ∂B.

Proof. Let x ∈ int(A) ⊂ int(H). The subset int(A) is an open subset of Rn, therefore,
there is an open subset U ⊂ Rn, such that x ∈U ⊂ A, such that f |U : U → f (U)⊂ B is a
diffeomorphism between open sets of Rn by the inverse function theorem. Then f (x) ∈
f (U), which is an open set, implies that f (x) ∈ int(B) and, consequently, f (int(A))⊂
int(B). Therefore, f−1(∂B)⊂ ∂A. By the same reasoning applied to f−1 : B→ A we can
prove the inverse inclusion and arrive at the conclusion that f (∂A) = ∂B. Moreover, by
the same definition of differentiability applied on f , we can see that f |∂A is differentiable.
For this we use the same extension used for f .

Let M be a set, we say that (U,ϕ), ϕ : U ⊂M→ ϕ(U)⊂ Rn, is a local chart if
it is a bijection and ϕ(U) is an open set of a semi-space H of Rn. Moreover, if (U,ϕ)

and (V,ψ) are two local charts for M, then we say they are compatible if

U ∩V = /0 or

U ∩V ̸= /0 and ϕ(U ∩V ) is an open subset of H and ψ(U ∩V ) is an open subset
of K, where both H and K are semi-spaces on Rn. Also, the application ψ ◦ϕ−1 :
ϕ(U ∩V )→ ψ(U ∩V ) must be a diffeomorphism everywhere on ϕ(U ∩V ).

Definition 3.4.4. A manifold with boundary M of dimension n is a pair (M,A ), where
A = {(Uα ,ϕα) : α ∈ I} is a maximal atlas for M and ϕα(Uα) is an open set of a semi-
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space of Rn. Moreover, the induced topology τA on M, as in theorem 3.1.6, must be
Hausdorff and second countable.

Definition 3.4.5. Let M be a manifold with boundary. We define the set of points p that
are on the boundary of M, denoted by ∂M, as the points p ∈M such that there is a local
chart (U,ϕ), p ∈U , satisfying ϕ(p) ∈ ∂H for the semi-space H ⊃ ϕ(U).

Note that by proposition 3.4.3 we have that if (V,ψ) is another local chart,
where p ∈V , then ψ ◦ϕ−1 is a diffeomorphism between the boundaries of open sets of
semi-spaces ∂ϕ(U ∩V )⊂ ∂H and ∂ψ(U ∩V )⊂ ∂K, i.e., ψ(p) ∈ ∂K.

Definition 3.4.6. Let M and N be manifolds with boundary and f : M→N an application
between them. As in definition 3.2.1 we say that f is differentiable at a point p ∈M, if
there are local charts (U,ϕ) of M and (V,ψ) of N, f (U)⊂V , such that the composite

ψ ◦ f ◦ϕ
−1

is differentiable everywhere on ϕ(U) as in definition 3.4.1.

Theorem 3.4.7. Let M be a manifold with boundary of dimension n and atlas A =

{(Uα ,ϕα) : α ∈ I}. Then there is a maximal atlas B induced by A that turns ∂M into a
differentiable manifold of dimension n−1.

Proof. Indeed, define B = {(Vα ,ψα) : α ∈ I} where Vα = Uα ∩ ∂M and ψα = ϕα |Vα
.

Each pair (Vα ,ψα) is a local chart for ∂M, since ψα is a bijection and

ψα(Vα) = ϕα(Uα ∩∂M) = ϕα(Uα)∩∂H, for some semi-space H,

which is an open set of Rn−1. Since H = Ker (α) for some α ∈ (Rn)∗ \ {0}, then
H ≃ Rn−1. Moreover, the compatibility of any two local charts (Vα ,ψα),(Vβ ,ψβ ) of B

comes from the fact that ψβ ◦ψ−1
α : ψα(Vα ∩Vβ )→ ψβ (Vα ∩Vβ ) stands for ϕβ |Uβ∩∂M ◦

ϕ−1
α |Uα∩∂M : ϕα(Uα ∩Uβ )∩∂H → ϕβ (Uα ∩Uβ )∩∂K, which is a diffeomorphism by

proposition 3.4.3.

Finally, B is an atlas for ∂M, since

∪α∈IVα = ∪α∈IUα ∩∂M = (∪α∈IUα)∩∂M = M∩∂M = ∂M.
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We then take the maximal atlas B on ∂M that contains B. The induced topology τB is
Hausdorff and second countable since τB is the same as the subspace topology induced
by τA , which is Hausdorff and second countable.

Definition 3.4.8. Let M be a manifold with boundary of dimension n. Let p ∈M and
(U,ϕ) be a local chart of M, such that p∈U and ϕ(U) is an open subset of the semi-space
H. We define

TpM = dϕ(p)−1(Rn) = dϕ(p)−1(Tϕ(p)H), for ϕ(p) ∈ int(H), and

Tp∂M = dϕ(p)−1(∂H), for ϕ(p) ∈ ∂H.

3.5. Partition of Unity
Partitions of unity play a fundamental role in our theory, since we are able to

define and work with integration on manifolds properly. Furthermore, we use partitions
of unity throughout this work in order to define functions in cohomology. In some sense,
the concept of partition of unity is the tool enabling us to expand notions from local
open sets on a given manifold to the whole manifold. In this section we recall the basic
definitions and most important results for us in this work.

Definition 3.5.1. Let M be a manifold. We say that a family of subsets of M, denoted
by C = (Cλ )λ∈L, is locally finite if, for every point p ∈M, there is at least one open
neighbourhood V of p such that V ∩Cλ ̸= /0 for only a finite number of λ . If C can cover
all M, we call it a locally finite cover of M.

Examples 3.5.2. Some examples of locally finite families.

Every finite family C is a locally finite family;

Every open cover C = (Cλ )λ∈L of M where every Cλ intersects only a finite
number of Cα is a locally finite family.

The family C = (Ci)i∈N of Rm, defined by

Ci = {x ∈ Rm; i−1 < |x|< i+1}

is a locally finite family;
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The family C = (Ci)i∈N of Rm given by C1 = Rm and Ci+1 = Rm \B(0, i), for
every i ∈ N, is a locally finite family.

The following proposition is of extreme importance for the definition of partition
of unity.

Proposition 3.5.3. Let M be a manifold. If C = (Cλ )λ∈L is a locally finite open cover of
M, then C can be considered to be countable.

Proof. We need only to use theorem 2.2.3 on the open cover C and then use the fact that
the topology on M is Hausdorff.

Definition 3.5.4. Let M be a manifold. We define the partition of unity as a family of
differentiable functions (ψλ )λ∈L, ψλ : M→ R, satisfying

ψλ (x)≥ 0, for every λ ∈ L and x ∈M;

The family C = (supp(ψλ ))λ∈L is a locally finite family;

For every x ∈M, we have ∑λ∈L ψλ (x) = 1.

Note that the second condition allows the third condition to be well-defined, since

∑λ∈L ψλ turns into a finite sum when applying it at a specific point x ∈M. Also, from
the first and third condition we obtain that 0 ≤ ψλ (x)≤ 1, for every λ ∈ L and x ∈M.
We usually denote the partition of unity as ∑λ∈L ψλ = 1.

Example 3.5.5. Let R be a manifold with usual topology being induced by A =

{(R, Id)}. Let ε ∈ (0,∞) and define the open cover U = {(n− 1− ε,n+ 1+ ε)}n∈Z.
Notice that this open cover is a locally finite open cover for R, since the set (n−1−ε,n+

1+ε) intersects only a finite number of other open sets, namely {(m−1−ε,m+1+ε)},
where m−1− ε ≤ n+1+ ε or m+1+ ε ≥ n−1− ε .

We define a partition of unity ρn : R→ [0,1] subordinate to U , i.e., supp(ρn)⊂
(n−1− ε,n+1+ ε), by making

ρn(x) =


x− (n−1), n−1≤ x≤ n

1− (x−n), n≤ x≤ n+1

0, otherwise
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Notice (supp(ρn)) is a locally finite family and that 0 ≤ ρn(x) ≤ 1 for every
x ∈ R. Also, let x ∈ R, such that n−1≤ x≤ n for some n ∈ Z, then

∑
m∈Z

ρm(x) = ρn(x)+ρn−1(x) = x− (n−1)+1− (x− (n−1)) = 1.

Remark 3.5.6. This example was taken from the website <https://ncatlab.org/nlab/show/
partition+of+unity> at the time this work was being written.

We state the most important result for us in this section without proof, which can
be found on (LEE, 2013).

Theorem 3.5.7. Let M be a differentiable manifold. If C = (Cλ )λ∈L is an open cover of
M, then there exists a partition of unity ∑λ∈L ψλ = 1 that is strictly subordinated to the
open cover C , i.e., supp(ψλ )⊂Cλ for every λ ∈ L.

https://ncatlab.org/nlab/show/partition+of+unity
https://ncatlab.org/nlab/show/partition+of+unity
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CHAPTER

4
DIFFERENTIAL FORMS

Differential forms are objects defined on manifolds that allow us to work with
multivariable calculus in an easier manner since their vector space have good algebraic
properties, such as an exterior product. Usually, these properties help us define and work
with integration on manifolds. Besides understanding what is a differentiable form and
how to integrate it, we also recall a very important operator for our theory, which is the
exterior derivative, a higher degree analogue of the usual differentiation. Finally, we end
this chapter by proving Stokes theorem. A result whose proof shows us the benefits by
using this new language. We note that the content presented in this chapter was based on
(LIMA, 2014), (MELO, 2019), (TAO, 2018) and (BOTT; TU, 1982).

4.1. Introduction to differential forms on manifolds

Definition 4.1.1. Given an open subset U ⊂ Rm we define a differential k-form ω

as a C∞-function ω : U → Λk(Rm). The set of all differential k-forms is denoted by
Ωk(U). Also, we write ω(x) = ∑I αI(x)dxI , where each αI : U → R is C∞ and αI(x) =

ω(x) · (ei1, . . . ,eik) for I = {i1 < · · ·< ik} ⊂ {1, . . . ,m}.

Example 4.1.2. Let U ⊂ R3 be an open subset, then

real C∞-functions f : U → R are the differential 0-forms;
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the differential 1-forms are applications ω = adx+bdy+cdz where a,b,c : U→R
are C∞-functions, i.e., differential 0-forms;

the differential 2-forms are applications ω = adx∧dy+bdy∧dz+cdx∧dz, where
a,b,c : U → R are C∞-functions;

the differential 3-forms are applications ω = adx∧dy∧dz, where a : U → R is a
C∞-function.

Given the nature of a differential form we are able to define the exterior product
between two differential forms

∧ : Ω
k(Rm)×Ω

l(Rm)→Ω
k+l(Rm),

by making a pointwise definition (ω ∧η)(x) = ω(x)∧η(x). We can see that ω ∧η is a
bilinear form because it is bilinear at every point x ∈U . The properties from proposition
2.1.4 remain valid for differential forms.

Remark 4.1.3. The set Ωk(U) is a real vector space and a C∞(U)-module over R.

Let f : U ⊂ Rm→V ⊂ Rn be a C∞-function between open sets of the Euclidean
space. We can define the pullback f ∗ between the vector spaces of differential k-forms
of V and U , denoted by f ∗ : Ωk(V )→Ωk(U), by making

( f ∗ω)(x)(v1, . . . ,vk) = ω( f (x))(D f (x) · v1, . . . ,D f (x) · vk)

for every ω ∈Ωk(V ) and x ∈U . Notice that for any given vectors v1, . . .vk ∈Rm we have
that D f (x) · v1, . . . ,D f (x) · vk ∈ Rn. Therefore, f ∗ω is well-defined.

Proposition 4.1.4. Let ω,ω ∈ Ωk(V ) and η ∈ Ωl(V ) and assume the last definitions
regarding the function f . Then the following properties for pullbacks are valid

f ∗(ω +ω) = f ∗ω + f ∗ω;

f ∗(ω ∧η) = ( f ∗ω)∧ ( f ∗η);

f ∗(φ ·ω) = (φ ◦ f ) · f ∗ω , for every φ ∈C∞(V,R);
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(g◦ f )∗ = f ∗ ◦g∗, for a C∞-function g : V ⊂ Rn→W ⊂ Rp.

Proof. In order to prove the first and second items we need only to apply the definitions
of sum and wedge product, respectively, combined with the definition of pullback at each
point x ∈U .

For the third item, let x ∈U and v1, . . . ,vk vectors on Rm. Then

f ∗(φ ·ω)(x) · (v1, . . . ,vk) = (φ ·ω)( f (x)) · (D f (x) · v1, . . . ,D f (x) · vk)

= (φ( f (x))) · (ω( f (x))) · (D f (x) · v1, . . . ,D f (x) · vk)

= (φ ◦ f )(x) · (ω( f (x))) · (D f (x) · v1, . . . ,D f (x) · vk).

For the fourth and last item, notice that (g◦ f )∗ω and f ∗(g∗ω) are differential
k-forms on Ωk(U), since g∗ω ∈Ωk(V ). Let ω ∈Ωk(W ), x ∈U and v1, . . .vk,∈ Rm, then

[(g◦ f )∗(ω)(x)](v1, . . . ,vk) = ω(g( f (x))) · (D(g◦ f )(x) · v1, . . . ,D(g◦ f )(x) · vk)

= ω(g( f (x))) · (Dg( f (x))D f (x) · v1, . . . ,Dg( f (x))D f (x) · vk).

Define y = f (x) and ui = D f (x) · vi for i ∈ {1, . . . ,k}, then

(g∗ω)(y)(u1, . . . ,uk) = ω(g(y)) · (Dg(y) ·u1, . . . ,Dg(y) ·uk), and, consequently,

f ∗(g∗ω)(x)(v1, . . . ,vk) = (g∗ω)( f (x)) · (D f (x) · v1, . . . ,D f (x) · vk)

= (g∗ω)(y)(u1, . . . ,uk).

The chain rule finishes the proof.

We now define a differential k-form on a manifold M. It is important to notice
that every definition and proposition we have done until now continue to be valid in this
case.

Definition 4.1.5. We define a differential k-form on a manifold M as a function associat-
ing each point x ∈M to a k-linear alternate transformation on TxM, i.e.,

ω : x ∈M 7→ ω(x) ∈ Λ
k(TxM).
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If {du1(x), . . . ,dum(x)} is the dual basis of
{

∂

∂u1
(x), . . . ,

∂

∂um
(x)
}

, induced by a certain

local chart (U,ϕ) around x on TxM, then we write ω(x) = ∑I αI(ϕ(x))duI(x). Each
αI : ϕ(U)⊂ Rm→ R is a C∞-function. Moreover, the space of differential forms on M

is denoted by Ωk(M).

Since ϕ is a bijection we simply write ω(x) = ∑I αI(x)duI , given that the context
makes it clear that for every x ∈U the set {du1(x), . . . ,dum(x)} = {du1, . . . ,dum} is a
basis for (TxM)∗.

Furthermore, let (V,ψ) be another local chart such that x ∈ V , then ψ ◦ϕ−1

is a diffeomorphism from ϕ(U ∩V ) to ψ(U ∩V ). If
{

∂

∂v1
(x), . . . ,

∂

∂vm
(x)
}

is the ba-

sis for TxM, induced by (V,ψ), with dual basis {dv1, . . . ,dvm}, we can write ω(x) =

∑J βJ(x)dvJ . For every set J we can relate

βJ(x) = ∑
I

det
(

∂uI

∂vJ

)
αI(x),

where
(

∂uI

∂vJ

)
=
(

∂uI

∂vJ
(ϕ(x))

)
is the k×k submatrix of the matrix representation of d(ψ ◦

ϕ−1)(ϕ(x)), indexed by {i1, . . . , ik} on the rows and by { j1, . . . , jk} on the columns. Note
that αI(x) stands for αI(ϕ(x)) and βJ(x) stands for βJ(ψ(x)). Therefore, the differential
k-form ω on definition 4.1.5 does not depend on the local chart (U,ϕ) taken.

Example 4.1.6. Let M be a m-manifold and ω ∈ Ωk(M). Let (U,ϕ) be a local chart

such that supp(ω) ⊂U . Let
{

∂

∂u1
(x), . . . ,

∂

∂um
(x)
}

be the basis for TxM induced by

(U,ϕ), where x ∈U , with dual basis {du1, . . . ,dum}. We can write ω(x) = ∑I αI(x)duI .
We prove that ((ϕ−1)∗ω)(ϕ(x)) = ∑I αI(x)dxI , where αI(x) still stands for αI(ϕ(x)).
Indeed,

((ϕ−1)∗ω)(ϕ(x)) · (ei1, . . . ,eik) = ω(ϕ−1(ϕ(x))) · (Dϕ
−1(ϕ(x)) · ei1 , . . . ,Dϕ

−1(ϕ(x)) · eik)

= ω(x) ·
(

∂

∂ui1
(x), . . . ,

∂

∂uik
(x)
)

= αI(ϕ(x)) = αI(x).

We denote the set of differential k-forms on M with compact support as Ωk
c(M).
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Proposition 4.1.7. Let M be a m-manifold, N be a n-manifold and f : M → N be a
differentiable proper function, i.e., a differentiable function satisfying the property that
inverse images of compact sets are compact sets, then

f ∗(Ωk
c(N))⊂Ω

k
c(M).

Proof. Let ω ∈Ωk
c(N). Then f−1(supp(ω)) is compact and we only need to prove that

supp( f ∗ω)⊂ f−1(supp(ω)), since the support is a closed set. Let x ∈M \ f−1(supp(ω))

and v1, . . . ,vk ∈ TxM, then

0 = ω( f (x)) · (D f (x) · v1, . . . ,D f (x) · vk) = ( f ∗ω)(x) · (v1, . . . ,vk).

This means x∈M\supp( f ∗ω). Therefore, supp( f ∗ω)⊂ f−1(supp(ω)) and the inclusion
stated in the proposition statement is proved.

Now, after introducing the basic notions of differential forms on manifolds we
can present a proposition that relates differential forms and the orientability of a manifold.

Proposition 4.1.8. An n-manifold M is orientable if and only if it has a global nowhere
vanishing n-form.

Proof. Let M be an orientable manifold with oriented atlas A = {Uα ,ϕα : α ∈ I}. For
all transition functions ϕβ ◦ϕ−1

α : ϕα(Uα ∩Uβ )→ ϕβ (Uα ∩Uβ ) we write

(ϕβ ◦ϕ
−1
α )∗(dx1∧·· ·∧dxn) = λ ·dx1∧·· ·∧dxn,

where λ is some positive function on ϕα(Uα ∩Uβ ), since D(ϕβ ◦ϕ−1
α ) is a linear iso-

morphism at every point of ϕα(Uα ∩Uβ ) and its matrix representation has a positive
determinant everywhere. Also, note that dim(Λn(TxM)) = 1. Using properties of pullback
functions we then have

ϕ
∗
β

dx1∧·· ·∧dxn = (ϕ∗αλ )(ϕ∗αdx1∧·· ·∧dxn).

Write ϕ∗αdx1∧·· ·∧dxn = ωα ∈Ωn(M), for each α , and f = ϕ∗αλ = λ ◦ϕα . We obtain
ωβ = f ωα , where f is a positive function in the intersection Uα ∩Uβ .

Now, define ω = ∑α ραωα , where {ρα} is a partition of unity subordinated to
the open cover {Uα}. Then ω is a non-vanishing n-form since for each point p ∈ M,
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every ωα defined on this point are multiples of one another by means of the positive
function f and there is at least one ρα ≥ 0 that does not vanish at this point.

Conversely, let ω be a global nowhere vanishing n-form on M and let ϕα : Uα →
ϕα(Uα)⊂ Rn be a local chart. We may assume that ϕα(Uα) is homeomorphic to Rn. By
applying the pullback of ϕα we obtain ϕ∗αdx1∧·· ·∧dxn = fαω , since dim(Λn(TxM))= 1
at every x ∈M, where fα is a non-vanishing real valued function on Uα . Given that Uα

is a connected open set, then fα must be either positive over Uα or negative over Uα .
There is no loss in generality to assume that fα is positive. Otherwise, we would only
need to compose T ◦ϕα , where T : Rn→ Rn is an orientation reversing diffeomorphism,
such as T (x1, . . . ,xn) = (−x1, . . . ,xn), which would give us − fα . Since we may assume
fα to be positive for all α , then any transition function ϕβ ◦ϕ−1

α takes dx1∧·· ·∧dxn to
a positive multiple of itself by means of the pullback (ϕβ ◦ϕ−1

α )∗, which would mean
that D(ϕβ ◦ϕ−1

α ) has a positive determinant everywhere on ϕα(Uα ∩Uβ ). Therefore,
{(Uα ,ϕα) : α ∈ I} is an oriented atlas.

Given two global non-vanishing n-forms ω and ω ′ on an n-manifold M, which is
orientable, then they differ by a nowhere vanishing function f : ω = f ·ω ′. This is true
because dimΛn(TxM) = 1 at every point x ∈ M. Suppose M is a connected manifold,
then f must be everywhere positive or everywhere negative. If f is positive then we say
that ω and ω ′ are equivalent. This fact allows us to define an equivalence relation that
gives rise to two equivalence classes. Since last proposition is a way to relate orientability
on M with global non-vanishing differential n-forms, then, when M is connected, it only
has two possible orientations.

4.2. Integration on manifolds

Integration of forms is the concept that shows all the potential of this language,
since we can unify integrals of various types of functions in one definition. We use
integration extensively on cohomology and to prove important theorems on chapter 6.
Also, we use integration in order to work with compact vertical cohomology, so we can
discuss the Thom isomorphism and, then, define the Euler class and first Chern class.

In order to define integrals on manifolds we initially suppose that ω ∈Ωm
c (V ) for
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an open subset V ⊂ Rm and that ω can be written as

ω = a(x)dx1∧·· ·∧dxm.

We then define the integral of ω in V as
∫

V ω =
∫

V a(x)dx.

Let f : U ⊂ Rm→V ⊂ Rm be a diffeomorphism and a : V → R be an integrable
function. Then the Variable Change theorem states that∫

V
a(x)dx =

∫
U
(a◦ f ) · |D f (x)|dx.

Looking at the pull-back of ω by f we got f ∗ω(x) = (a◦ f )(x) ·det(D f (x))dx1∧·· ·∧
dxm ∈ Ωm

c (U). Then from the definition of integral we obtain that
∫

U f ∗ω = ±
∫

V ω ,
where the sign depends on whether f preserves or inverses orientation on the connected
components of U .

Now, saying that ω has a compact support means that the function a has a
compact support. Therefore, the concepts in the beginning of this section is well-defined
and the integration map is a linear functional on (Ωm

c (V ))∗. We are now able to define
integration of a differential form over an oriented manifold.

Definition 4.2.1. Let M be an oriented m-manifold. We define the integration as a linear
application over the elements duI ∫

M
: Ω

m
c (M)→ R

for every given ω ∈Ωm
c (M) satisfying supp(ω)⊂U , where ϕ : U ⊂M→ ϕ(U)⊂ Rm

is a local chart of M. We make∫
M

ω =
∫
Rm

(ϕ−1)∗ω =
∫

ϕ(U)
(ϕ−1)∗ω.

By the Variable Change theorem the preceding definition is well defined, since
transition functions ψ ◦ϕ−1 preserve orientation. Here, being well-defined, means that
the sign remains positive if we took another local chart (V,ψ), p ∈V , and apply the last
definition. Note that, by doing this we have made a choice on the orientation of M.

We now define integration of forms with compact support not contained in any
domain of any local chart. In order to do this we choose A = {(Ui,ϕi) : i∈ I} an oriented



56 Chapter 4. Differential Forms

atlas for M and {λi} a partition of unity that is strictly subordinated to our atlas. Notice
we take our index i in N due to proposition 3.5.3 and theorem 3.5.7. We make∫

M
ω = ∑

i

∫
M

λiω.

Since supp(ω) is a compact subset of M then the sum above is a finite sum and
supp(ωi) ⊂Ui for every i ∈ I. Moreover, the integral definition is not dependent from
the partition of unity {λi} we have chosen nor from the initial oriented atlas A picked,
which proves that the integral is a well-defined linear functional.

Proposition 4.2.2. The integral
∫

M ω does not have a definition dependent on the oriented
atlas nor on the partition of unity.

Proof. Suppose {Vj} is another oriented atlas for M and {ρ j} a partition of unity subor-
dinate to {Vj}. Given that ∑ j ρ j = 1 and that the sum ∑i

∫
Ui

λiω is not dependant on the
index j, then

∑
i

∫
Ui

λiω = ∑
i, j

∫
Ui

λiρ jω.

For each i and j we have supp(λiρ jω)⊂Ui∩Vj. Therefore,∫
Ui

λiρ jω =
∫

V j

λiρ jω.

Finally, we have

∑
i

∫
Ui

λiω = ∑
i, j

∫
V j

λiρ jω = ∑
j

∫
V j

ρ jω.

Proposition 4.2.3. Let M be an oriented and compact m-manifold. If ω ∈Ωm(M), then
ω is integrable.

As a linear function on (Ωm
c (M))∗ we expect our integral to satisfy linear proper-

ties. Also, we expect it to satisfy usual properties of integrals from integration theory.

Proposition 4.2.4. Let ω,η ∈Ωm
c (M) where M is an oriented m-dimensional manifold.

Then the following are true

∫
M(ω +η) =

∫
M ω +

∫
M η ;
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∫
M c ·ω = c ·

∫
M ω , for every number c ∈ R;

If ω ≥ 0 and ω(x)> 0 for at least one x ∈M, then
∫

M ω > 0;

If ω ∈Ωm
c (N), where N is an oriented m-manifold, and f : M→ N is a diffeomor-

phism preserving orientation, then
∫

M f ∗ω =
∫

N ω .

Proof. For the first item, suppose that supp(ω),supp(η)⊂U , where ϕ : U → ϕ(U) is a
local chart of M. Then,∫

M
(ω +η) =

∫
ϕ(U)

(ϕ−1)∗(ω +η) =
∫

ϕ(U)
(ϕ−1)∗ω +

∫
ϕ(U)

(ϕ−1)∗η =
∫

M
ω +

∫
M

η .

Suppose now that supp(ω) ⊂U and supp(η) ⊂ V , for local charts (U,ϕ) and
(V,ψ), where it is not important whether U ∩V = /0 or U ∩V ̸= /0. Let {ρU ,ρV} be a
partition of unity for {U,V}. Then,∫

M
(ω +η) =

∫
ϕ(U)

(ϕ−1)∗(ρU [ω +η ])+
∫

ψ(V )
(ψ−1)∗(ρV [ω +η ])

=
∫

ϕ(U)
(ϕ−1)∗(ρU ω)+

∫
ψ(V )

(ψ−1)∗(ρV ω)+

+
∫

ϕ(U)
(ϕ−1)∗(ρU η)+

∫
ψ(V )

(ψ−1)∗(ρV η)

=
∫

M
(ρU +ρV ) ·ω +

∫
M
(ρU +ρV ) ·η

=
∫

M
ω +

∫
M

η .

The general case comes now from similar arguments.

The second item in this proposition follows the same line of reasoning of the first
item combined with the third item of proposition 4.1.4, where c is seen as a constant
C∞-function.

In order to prove the third item let (Ui) be an atlas for M and {λi} be a partition
of unity for (Ui). Then ω = ∑i λiω and

∫
M ω = ∑i

∫
M λiω . Also, ω = ∑I αIduI ≥ 0

means that aI ≥ 0 for every I and, consequently,
∫

M λiω =
∫

ϕi(Ui)
(ϕ−1

i )∗λiω ≥ 0. Let i0
be the index such that ω(x) = (λi0ω)(x) > 0, then

∫
M λi0ω =

∫
ϕi0(Ui0)

(ϕ−1
i0 )∗λi0ω > 0.

Therefore, ∫
M

ω = ∑
i

∫
M

λiω ≥
∫

M
λi0ω > 0.
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The fourth and last item in this proposition is, in reality, a general statement of
the ideas in the beginning of this section. We would only need to adapt the context of the
arguments for general manifolds and the fact that a differential form is usually written as
a sum ω = ∑I αIduI .

4.3. Exterior derivative
The exterior derivative is an important linear operator for the theory of differential

forms and for de Rham cohomology. From an analytic point of view it grants us the
generalization of the notion of derivatives of 0-forms, which is the usual derivative.
This application basically takes as input differential k-forms and gives back as output
differential (k+1)-forms by making the gradient of the αJ functions. We begin in the
Euclidean space by looking at Ω0(U), which is basically the space C∞(U), for U an open
subset of Rm.

Initially, we define the exterior derivate d : Ω0(U)→Ω1(U) simply as being the
gradient, that is

f 7→ d f = ∑
j

∂ f
∂x j

dx j

For ω ∈Ωk(U), written as ω = ∑J αJdxJ , we take the gradient of the functions αJ and
define

dω = ∑
J

daJ ∧dxJ = ∑
j
∑
J

∂aJ

∂x j
dx j∧dxJ ∈Ω

k+1(U).

Example 4.3.1. Let ω ∈Ω1(R2) given by ω = adx+bdy, then

dω = da∧dx+db∧dy =
(

∂a
∂x

dx+
∂a
∂y

dy
)
∧dx+

(
∂b
∂x

dx+
∂b
∂y

dy
)
∧dy

=
∂a
∂y

dy∧dx+
∂b
∂x

dx∧dy =
(

∂b
∂y
− ∂a

∂x

)
dx∧dy.

Now, let ω ∈Ω1(R3) given by ω = adx+bdy+ cdz, then

dω =
(

∂b
∂x
− ∂a

∂y

)
dx∧dy+

(
∂c
∂y
− ∂b

∂ z

)
dy∧dz+

(
∂c
∂x
− ∂a

∂ z

)
dx∧dz.

Finally, for ω ∈Ω2(R3), defined as ω = ady∧dz+bdz∧dx+ cdx∧dy, we have

dω =
(

∂a
∂x

+
∂b
∂y

+
∂c
∂ z

)
dx∧dy∧dz.
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We have some important facts about exterior derivatives that provide us the
algebraic basis for our cohomology theory. Note that the second item is know as the
Leibniz rule.

Proposition 4.3.2. Let ω ∈Ωk(U) and η ∈Ωl(U), for an open subset U ⊂Rm. Also, let
f : U ⊂Rm→V ⊂Rn be a C∞-function between open sets of the Euclidean space. Then

d(ω +η) = dω +dη ;

d(ω ∧η) = dω ∧η +(−1)degree(ω)ω ∧dη ;

d( f ∗ω) = f ∗(dω), where ω ∈Ωk(V );

Proof. In order to prove the first item we need only to assume ω = adxI and η = bdxJ .
The general case ω = ∑I αIdxI and η = ∑J βJdxJ comes from the fact that d is linear
over the elements dxI .

For the second item we may assume the same initial conditions for ω and η ,
then the general case is the outcome from the fact that d is linear over the elements dxI .
Therefore

d(ω ∧η) = d(adxI ∧bdxJ) = d(abdxI ∧dxJ) = (bda+adb)∧dxI ∧dxJ

= bda∧dxI ∧dxJ +adb∧dxI ∧dxJ

= (da∧dxI)∧bdxJ +(−1)degree(ω)adxI ∧ (db∧dxJ)

= dω ∧η +(−1)degree(ω)
ω ∧dη .

For the third item, let ω = g : V → R be a 0-form. Therefore, if x ∈U e w ∈ Rm, then

f ∗(dg)(x) ·w = dg( f (x)) · f ′(x) ·w = d(g◦ f )(x) ·w = d( f ∗g)(x) ·w.

Now,let ω = adxI = adxi1 ∧ ·· · ∧ dxik be a differential k-form on V , where a :
V → R is a 0-form. Consider adg1∧·· ·∧dgk, where a is at least C1 and the gi’s are at
least C2, all defined in V . Using the second property and the hypothesis of induction on
k, we obtain

d(adg1∧·· ·∧dgk) = da∧dg1∧·· ·∧dgk.



60 Chapter 4. Differential Forms

Also,

f ∗ω = f ∗a · f ∗dxi1 ∧·· ·∧ f ∗dxik = f ∗a ·d(xi1 ◦ f )∧·· ·∧d(xik ◦ f ).

Therefore,

f ∗(dω) = f ∗(da∧dxi1 ∧·· ·∧dxik)

= f ∗da∧ f ∗dxi1 ∧·· ·∧ f ∗dxik

= d( f ∗a)∧d(xi1 ◦ f )∧·· ·∧d(xik ◦ f )

= d( f ∗a ·d(xi1 ◦ f )∧·· ·∧d(xik ◦ f ))

= d( f ∗ω).

Theorem 4.3.3. For every ω ∈Ωk(U), we have d(dω) = 0.

Proof. Consider that ω = adxI , which gives us dω = ∑
m
j=1

∂a
∂x j

dx j∧dxI . Therefore,

d(dω)=
[ m

∑
k, j=1

∂ 2a
∂xk∂x j

dxk∧dx j
]
∧dxI =

[
∑
j<k

(
∂ 2a

∂x j∂xk
− ∂ 2a

∂xk∂x j

)
dx j∧dxk

]
∧dxI = 0.

The third piece of the expression above grants us the equality is equal 0 due the fact that
a is a function that is at least C2, then we can apply Schwartz theorem. The general case
comes from this computation and the linearity of the d over the elements dxI .

Let x1, . . . ,xn be the standard coordinate system in Rn and y1, . . . ,yn be another
coordinate system for Rn, then there is a diffeomorphism f :Rn→Rn changing variables,
i.e., yi = xi ◦ f = f ∗(xi). Let g be a smooth function on Rn, i.e., g ∈Ω0(Rn), then, by the
chain rule, we get

dg = ∑
i

∂g
∂yi

dyi = ∑
i, j

∂g
∂yi

∂yi

∂x j
dx j = ∑

j

∂g
∂x j

dx j,

which proves that exterior derivative is independent of the coordinate system on Rn.

We now define the exterior derivative on a manifold M. It is important to notice
that all properties for the exterior derivative on the Euclidean case remain true for
manifolds.
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Definition 4.3.4. Let M be a n-manifold. We define the linear operator d : Ωk(M)→
Ωk+1(M) as

x ∈M 7→ (dω)(x) = (dϕω)(x)

where ϕ : U → ϕ(U)⊂ Rn is a local chart around x and dϕω stands for d((ϕ−1)∗ω) =

∑I dαI ∧dxI .

Let (V,ψ) be another local chart, where U ∩V ̸= /0, then dψω and dϕω coincide
by means of a diffeomorphism on U ∩V . Indeed, ξ = ψ ◦ϕ−1 is a diffeomorphism,
then (ϕ−1)∗ = (ψ−1 ◦ ξ )∗ = ξ ∗ ◦ (ψ−1)∗, where ξ ∗ is a linear isomorphism between
Ωk(ϕ(U ∩V )) and Ωk(ψ(U ∩V )). Therefore, the last definition is well-defined.

4.4. Stokes Theorem

Theorem 4.4.1 (Stokes theorem). Let M be an oriented m-manifold with boundary. Then
for every ω ∈Ωm−1

c (M) we get ∫
M

dω =
∫

∂M
ω.

Proof. Suppose, without loss of generality, that ω ∈Ωm−1
c (M) has support supp(ω)⊂U ,

where ϕ : U→ ϕ(U)⊂H for a semi-space H of Rm, and ω = a(x)du1∧·· ·∧ d̂u j∧·· ·∧
dum. Otherwise, ω could be rewritten as a finite sum ∑

k
i=1 λiω for a partition of unity

{λi} subordinate to the open cover {Ui}i∈N of M and ω = ∑I αIduI . In any case, this
assumptions would fall in the previous case.

By applying the exterior derivative d on ω we obtain

dω =
∂a
∂u j

du j∧du1∧·· ·∧ d̂u j∧·· ·∧dum.

We assume that are our semi-space H is as follows H = {(x1, . . . ,xm) ∈Rm|xm ≥
0}, since given any semi-space K, then there is a diffeomorphism between K and H.
Moreover, proposition 3.4.3 shows that this diffeomorphism takes one boundary to
another boundary. Therefore, by example 4.1.6, we get∫

M
dω =

∫
Rm

(ϕ−1)∗dω =
∫ (∫

H

∂a
∂x j

dx j
)
∧dx1∧·· ·∧ d̂x j∧·· ·∧dxm.
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Now, the function a : U → R has a compact support. By integrating
∫

∂a
∂x j

dx j

for j ̸= m we have that the integral has value zero, because x j varies freely on the real

line R and supp
(

∂a
∂x j

)
|x j ⊂ [a,b]. If j = m, then

∫
∞

x,xm=0

∂a
∂xm

dxm =−a(x1, . . . ,xm−1,0).

Conversely, computing
∫

∂M ω , for j ̸= m, we have that∫
∂M

ω =
∫

∂H
(ϕ|−1

∂U)
∗
ω =

∫
∂H

a(x)dx1∧·· ·∧ d̂x j∧·· ·∧dxm = 0,

since x j can vary freely on the real line R and a : U → R has a compact support. Also, if
j = m, then ∫

∂M
ω =

∫ (∫
∂H

a(x)dxm
)

dx1∧·· ·∧dxm−1,

where
∫

∂H a(x)dxm =−a(x1, . . . ,xm−1,0), by making the induced orientation on ∂H.
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CHAPTER

5
DE RHAM COHOMOLOGY

In this chapter we recall a specific cohomology theory, called de Rham coho-
mology, where our vector spaces are Ωk(M) and our differential operator is the exterior
derivative d. Throughout the first section of this chapter we explore the properties of de
Rham cohomology and compute some examples. After that, we recall another type of
cohomology, called de Rham cohomology for compact supports or, simply, compactly
supported cohomology, which is basically de Rham cohomology, but restricted to dif-
ferential forms, which supports are compact sets. Then we prove the Poincaré lemmas,
which are the explicit computation of the cohomology groups of the Euclidean space Rn.
We end this chapter by working with Mayer-Vietoris sequence, both usual and compactly
supported, which is a technique used to compute cohomology groups of manifolds that
are not diffeomorphic to Rn themselves. In this work cohomology is a essential piece to
understand characteristic classes, since a characteristic class is a cohomology class for
us. We note that the content developed in this chaper was based on (MELO, 2019) and
(BOTT; TU, 1982).

5.1. De Rham Cohomology

Suppose that M is m-manifold. In the past chapter we have proven that the
exterior derivative d is a linear operator between vector spaces. Therefore, we can talk
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about its kernel

Zk(M) = {ω ∈Ω
k(M);dω = 0}

which is the space of the differential forms called closed forms, i.e., the differential
k-forms with exterior derivative equal to 0. We can also speak of the image of d, denoted
here by Bk(M). Differential forms on Bk(M) are called exact forms. We have

Bk(M) = {ω ∈Ω
k(M) : where dη = ω for some η ∈Ω

k−1(M)}.

When k = 0, we define Bk(M) = {0}. More specifically, we have subgroups of Ωk(M)

where the group operation is the sum of differential forms

Zk(M) = Ker d : Ω
k(M)→Ω

k+1(M),

Bk(M) = Imd : Ω
k−1(M)→Ω

k(M)

By establishing the sequence

0 d→Ω
0(M)

d→Ω
1(M)

d→ . . .
d→Ω

m(M)
d→ 0

we have a complex of cochains, since dim(M) = m and d2 = 0. The property d2 = 0 also
implies that Bk(M)⊂ Zk(M), which then make it possible to define the quotient group
Hk

dR(M) := Zk(M)/Bk(M). Those are called the de Rham cohomology groups. Given
ω ∈ Zk(M) we usually denote its class in Hk

dR(M) by [ω]. Usually, we can write Hk(M)

instead of Hk
dR(M), since there is no space for misunderstanding.

Examples 5.1.1. We give some examples of de Rham cohomology groups of the Eu-
clidean space Rn.

Suppose R0 = {0}, where 0 is the zero vector. We made this assumption in order
to make R0 a vector space. Therefore,

Hq(R0) =

R, q = 0;

0, q > 0.

For q = 0 the set of all closed forms is R. Indeed, let ω ∈Ω0(R0) be a random dif-
ferential 0-form. For the alternate functions of degree 0 we assume as a convention
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that Λ0(E) = R for any vector space E. From this we have Λ0(R0) = R and then
ω : {0}→ R. This means that ω is constant and, therefore, is a closed form, since
the exterior derivative of constant functions is zero. We can make the association
ω ∈Ω0(R0) 7→ ω(0) ∈ R to identify Ω0(R0) with R. The only option for a exact
form is the element 0. From this,

H0(R0) =
closed 0-forms
exact 0-forms

=
Ω0(R0)

{0}
=

R
{0}

= R.

Suppose q > 0. Then, by corollary 2.1.7, Λq(R0) = {0}, which implies Hq(R0) =

0.

Suppose n = 1. The space Ω0(R1) is the space of smooth functions, since ω ∈
Ω0(R1) is a function ω : R1→ Λ0(R1) = R1. Therefore, since R is a connected
topological space, then Ker (d)⊂Ω0(R1) is composed only by constant functions,
given they are the only real functions to real values where the exterior derivative
returns zero. We get

{closed 0-forms}= Ker (d) = constant functions = R.

Since {0}= {exact 0-forms}, then

H0
dR(R

1) = {closed 0-forms}/{exact 0-forms} ≃ R.

Again, here we identify the differential 0-forms ω ∈ Ker (d) to the constant value
xω ∈ R they assume.

In order to compute H1
dR(R

1) we first notice that Ω1(R1) = Ker (d), since d :
Ω1(R1)→Ω2(R1) = {0}. Moreover, we prove that every 1-form is exact. Indeed,
let ω = g(x)dx be a differential 1-form. Define f =

∫ x
0 g(u)du. By the fundamental

theorem of calculus we know that f is a differentiable real valued function. There-
fore, f ∈Ω0(R1). Also from the fundamental theorem of calculus we can take the
derivative of f , which is of the form d f = g(x)dx.

This proves that {closed 1-forms}= {exact 1-forms}, which implies H1
dR(R

1) = 0.
This means that the only equivalence class in H1

dR(R
1) is the equivalence class of

the element 0, which can be identified with the element 0 of differential 1-forms:
0dx.



66 Chapter 5. De Rham Cohomology

A more general result, with proof found in proposition 5.3.2, called the Poincaré
lemma, is given by

Hq(Rn) =

R, q = 0;

0, q > 0.

Example 5.1.2. Let U be an open set on R1 given by a disjoint union of m open intervals
I j, then

H0(U) = Rm,

H1(U) = 0.

Indeed, we can establish an isomorphism

ϕ : Ω
k(U)→

m⊕
j=1

Ω
k(I j)

by putting
ϕ(ω) = (ω|I1, . . . ,ω|Im). (5.1)

Each ω|I j is a differential form because is a restriction of a differential form on an
open subset. The isomorphism ϕ induces an isomorphism over the cohomology groups
Hk

dR(U) ≃
⊕m

j=1 Hk
dR(I j) by working with the equivalence classes of closed forms in

equation (5.1). Indeed, if ω ∈Ωk(U) is a closed form, then dω = 0 and for every I j ⊂U

we get that d(ω|I j) = 0. Also, if ω = dη , then ω|I j = (dη)|I j = d(η |I j).

Let I ⊂ R be an open interval. We study the cohomology groups Hq(I). First of
all, we set that {exact 0-forms}= {0}. Also, let ω ∈ Ω0(I), then ω(x) ∈ Λ0(TxI) = R,
for every x ∈ I. This means that we can look at ω ∈ Ω0(I) as a function ω : I → R.
Suppose that ω is closed, i.e., dω = 0. Then ω is a constant function defined on the
interval I, since I is a connected set. From this we get

{closed 0-forms}= {constant functions on I to R}= R.

Therefore, H0(I) = {closed 0-forms}/{exact 0-forms}= R/{0}= R.

For ω ∈Ω1(I), then dω = 0, since d : Ω1(I)→Ω2(I) = {0} and I is a manifold
of dimension 1. Indeed, for η ∈Ω2(I), then η : x 7→ η(x) ∈ Λ2(TxI) = Λ2(R) = {0} by
corollary 2.1.7. Moreover, every ω ∈Ω1(I) is exact by the same reasoning found on the
second case of last example. This gives us that H1(I) = {0}, which finishes this example.
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Remark 5.1.3. A generalization for this last example is: Let M be a manifold composed
by m connected components, then we have an isomorphism H0

dR(M)≃ Rm.

Let f : U ⊂M→V ⊂ N be a C∞-function between open sets of manifolds, then

d( f ∗ω) = f ∗d(ω). (5.2)

From (5.2) we have that if f : M → N then f ∗(Zk(N)) ⊂ Zk(M). Also, the inclusion
f ∗(Bk(N)) ⊂ Bk(M) is valid. Indeed, given ω ∈ Bk(N) then ω = dη , η ∈ Ωk−1(N).
Since f ∗(ω) = f ∗(dη) = d( f ∗η) and f ∗η ∈Ωk−1(M), the property is proved.

Because of those inclusions we can define a function between the cohomology
classes

f ∗ : Hk
dR(N)→ Hk

dR(M)

which works simply as the pullback, but now with equivalence classes of closed forms,
considering the calculations we made above. As pullbacks, we have the following
properties

( f ◦g)∗ = g∗ ◦ f ∗;

(idM)∗ = idHk
dR(M).

Definition 5.1.4. Let M be a m-manifold. We define the algebra Ω∗(M) =⊕m
k=0Ωk(M),

with sum operation being the natural sum of differential forms and the product operation
being the wedge product.

Remark 5.1.5. The algebra Ω∗(M) is naturally graded. By definition Ω∗(M) is a direct
sum. To conclude that this is a graded algebra we remember that the wedge product,
which is our ring multiplicative function, is given by ∧ : Ωk(M)×Ωl(M)→Ωk+l(M),
for any given manifold. Therefore, Ω∗(M) is a graded algebra.

Definition 5.1.6. We call the combination of the complex Ω∗(M) with the operator d as
the de Rham complex on M.

According to (BOTT; TU, 1982): “The de Rham complex may be viewed as
a God-given set of differential equations, whose solutions are the closed forms.” An
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example to this statement is the 1-form f dx+gdy ∈Ω1(R2), which solution resides in

solving the differential equation
∂g
∂x
− ∂ f

∂y
= 0.

Definition 5.1.7. Let M be a manifold and U ⊂M an open subset of M. We define the
graded algebra Ω∗(U) as follows

Ω
∗(U) = {ω|U : ω ∈Ω

∗(M)}

and we denote its de Rham cohomology by H∗dR(U).

We can also talk about the cohomology ring H∗(M) which is given by H∗(M) =

⊕m
k=0Hk(M) and product operation [ω]∧ [η ] = [ω ∧η ].

Proposition 5.1.8. The wedge product ∧ on the cohomology level is well-defined.

Proof. In order to prove that ∧ is well-defined on the level of cohomology we need to
check two properties. First of all, let ω and η be two closed differential forms. Then
α ∧β is closed. Indeed,

d(ω ∧η) = dω ∧η +(−1)degree(ω)
ω ∧dη = 0.

Also, suppose that ω or η is an exact differential form, besides being closed
forms, then ω ∧η must be an exact differential form. Suppose that ω = dγ , then

ω ∧η = dγ ∧η = d(γ ∧η)− (−1)degree(γ)
γ ∧dη = d(γ ∧η).

This proves that the wedge product on the cohomology level [ω]∧ [η ] = [ω ∧η ]

is well-defined.

5.2. Compactly supported cohomology

Another important type of cohomology is the cohomology group of differential
forms with compact support. We start by defining the graded algebra Ω∗c(M) and then
we give some examples.
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Definition 5.2.1. Let M be a manifold. We define the cohomology of compact support
on M by making

Ω
∗
c(M) = {ω ∈Ω

∗(M) : such that ω has compact support}.

The cohomology ring for differential forms with compact support is denoted by H∗c (M).
Note that each cohomology group Hk

c (M) is still given by the same definition of quotient
groups, but now we are restricting ourselves by working only with differential forms
with compact support. Moreover, supp(dω) ⊂ supp(ω) for any ω ∈ Ω∗c(M), showing
that the exterior derivative is well-defined for compact support forms.

Examples 5.2.2. In this example we compute some compactly supported cohomology
for the Euclidean space Rn.

Suppose n = 0 and R0 = {a}. Then

Hq
c ({a}) =

R, for q = 0

0, elsewhere

Remind that Ta{a} can be identified as the trivial vector space {0}. Therefore,
for q > 0 we have Ωq({a}) = {0}, since for ω ∈ Ωq({a}) we have ω : {a} →
Λq(Ta{a}) = {0}. Restricting to Ω

q
c({a}) gives us Hq

c ({a}) = {0}. For q = 0
we know that Λ0(Ta{a}) = R, therefore Ω0({a}) = R. Since, any differential 0-
form on Ω0({a}) has a finite domain, then it has a compact support. Therefore
H0

c ({a}) = R.

Suppose n = 1. Then

Hq
c (R1) =

0, for q = 0

R, for q = 1

Suppose q = 0. From example 5.1.1 the closed 0-forms are constant functions
on R1. Since there are no constant functions with compact support, besides the 0
function, then H0

c (R1) = 0.

Suppose q = 1 and define the integration map∫
R1

: Ω
1
c(R1)−→ R1
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which is a surjective and well-defined map. It is well-defined because is defined
on forms with compact support and it is surjective because we can apply it on
the 1-forms ωa = χ[0,a]dx, where χ[0,a] is the characteristic function of the interval
[0,a]. This map vanishes on the exact 1-forms d f where f is a function (0-form)
with compact support. Suppose supp( f ) is a subset on the interior of some interval
[a,b], then ∫

R1

d f
dx

dx =
∫ b

a

d f
dx

dx = f (b)− f (a) = 0.

This proves that d f ∈ Ker (
∫
R1). On the other hand, take g(x)dx ∈ Ker (

∫
R1) ⊂

Ω1
c(R1). The function

f (x) =
∫ x

−∞

g(u)du

has a compact support, since g(x)dx ∈ Ker (
∫
R1). From d f = g(x)dx we get that

Ker
∫
R1 = {exact 1-forms with compact support}. Then

H1
c (R1) =

closed 1-forms with compact support
exact 1-forms with compact support

=
Ω1

c(R1)

Ker
∫
R1

= R1.

The last equality is given by the first isomorphism theorem of group theory.

More generally, we have the Poincaré lemma for cohomology with compact
support, which states that

Hq
c (Rn) =

0, for q < n

R, for q = n

Notice in the last item that we obtain a major difference between the compactly
supported cohomology and the usual de Rham cohomology, where H0(Rn) is always R
for any n and Hq(Rn) = 0 is always 0 for any n and for q > 0.

Let f : M→ N be a proper C∞-function. We are able to also induce a function
f ∗ : Hk

c (N)→ Hk
c (M), by restricting our application to the equivalence classes of closed

forms with compact support. Notice that if ω ∈Ωk
c(N) is a closed form, then d(ω) = 0.

Therefore, d( f ∗ω) = f ∗(dω) = 0. The same property shows us that exact forms are
taken to exact forms. Moreover, since f is a proper function, then the compact support is
preserved.
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5.3. Poincaré Lemmas

Consider the functions π : Rn×R→ Rn, the projection on the first factor, and
s : Rn→ Rn×R, the zero section s(x) = (x,0). The pullback functions are of the form
π∗ : Ω∗(Rn)→ Ω∗(Rn×R) and s∗ : Ω∗(Rn×R)→ Ω∗(Rn). Both of these maps are
assumed to be C∞. We use these pullbacks to prove that H∗(Rn+1)≃ H∗(Rn).

Proposition 5.3.1. The maps H∗(Rn×R1)
s∗−→ H∗(Rn) and H∗(Rn)

π∗−→ H∗(Rn×R1)

are isomorphisms.

Proof. We know that π ◦ s = 1. By applying the pullback we get (π ◦ s)∗ = s∗ ◦π∗ = 1.
On the other hand, s ◦π(x, t) = (x,0) ̸= (x, t) = Id(x, t), which means that (s ◦π)∗ =

π∗ ◦ s∗ ̸= 1 on the level of forms. For a given function f (x, t) ∈ Ω0(Rn×R1) we have
that (π∗ ◦ s∗)( f )(x, t) = (s◦π)∗( f )(x, t) = f (s◦π(x, t)) = f (x,0), make f constant on
the second factor.

We want to show that π∗ ◦ s∗ is the identity on the cohomology level. In order to
do this we must show that there is a map K defined on Ω∗(Rn×R1), called homotopy
operator, that satisfies 1−π∗ ◦ s∗ =±(dK±Kd). Notice the expression dK±Kd is able
to take closed forms to exact forms, since for a closed form ω we get (dK±Kd)(ω) =

dK(ω). This allows us to induce the zero element in cohomology and show that 1 =

π∗ ◦ s∗ on the cohomology level. Moreover, in order to obtain dK±Kd well-defined, K

must decrease the degree of forms by 1.

Given η ∈ Ω∗(Rn×R1) we can write it as a linear combination of the subset
{(π∗φ) f (x, t),(π∗φ) f (x, t)dt}, for a given φ ∈ Ω∗(Rn) and f ∈ Ω0(Rn×R). We are
able to define the map K as a linear map, by deciding how it operates on which type of
q-form. Therefore, we define K : Ωq(Rn×R)→Ωq−1(Rn×R) by establishing

(π∗φ) f (x, t) 7→ 0

(π∗φ) f (x, t)dt 7→ (π∗φ)
∫ t

0
f (x,u)du

For the first case, suppose ω = (π∗φ) · f (x, t) ∈Ωq(Rn×R). We want to prove
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that 1−π∗ ◦ s∗ =±(dK±Kd). Applying the left side of this equation on ω we get

(1−π
∗ ◦ s∗)ω = (π∗φ) · f (x, t)− (π∗ ◦ s∗)((π∗φ) · f (x, t))

= (π∗φ) · f (x, t)− (π∗ ◦ (s∗ ◦π
∗)φ) · (π∗ ◦ s∗) f (x, t)

= (π∗φ) · f (x, t)− (π∗φ) · f (x,0)

since π∗ ◦ s∗ takes functions f (x, t) to f (x,0). On the other hand, now applying the right
side of the equation on ω , which is of the first type, we get

(dK−Kd)ω =−Kdω =−K
(
(dπ

∗
φ) · f (x, t)+(−1)q(π∗φ) ·

((
∑

∂ f
∂xi

dxi

)
+

∂ f
∂ t

dt
))

= (−1)q−1(π∗φ) ·
∫ t

0

∂ f
∂u

du

= (−1)q−1(π∗φ)( f (x, t)− f (x,0)).

Therefore, for differential forms of the first type we have that 1− π∗ ◦ s∗ =

±(dK±Kd), showing that K is the operator we desire on this first case.

Now suppose, ω is of the second type, i.e., ω = (π∗φ) f (x, t)dt ∈ Ω∗(Rn×R).
First of all, (1− π∗ ◦ s∗)ω = ω , i.e., (π∗ ◦ s∗)ω = 0. Indeed, f (x, t)dt ∈ Ω1(Rn×R),
then

(π∗ ◦ s∗)ω = (π∗ ◦ s∗)((π∗φ) f (x, t)dt)

= (π∗φ) · ( f (x,0)) · (π∗ ◦ s∗)dt

= (π∗φ) · ( f (x,0)) · (π∗ ◦d(s∗t))

= (π∗φ) · ( f (x,0)) · (π∗ ◦d(t ◦ s))

= (π∗φ) · ( f (x,0)) · (π∗ ◦0)

= 0

where, from the third for the fourth line we are facing t as the projection on the second
factor of Rn×R. On the other hand,

dω = (π∗dφ) f (x, t)dt +(−1)q−1(π∗φ) ·
(
∑

i

∂ f
∂xi

dxi∧dt
)
,
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then computing Kdω and dKω we get

dKω = d
(
(π∗φ)

∫ t

0
f (x,u)du

)
= (π∗dφ)

∫ t

o
f (x,u)du+(−1)q−1(π∗φ) ·

[∫ t

0

∂ f
∂x

dx+ f dt
]
,

Kdω = K
(
(π∗dφ) f (x, t)dt +(−1)q−1(π∗φ) ·

(
∑

i

∂ f
∂xi

dxi∧dt
))

= (π∗dφ)
∫ t

0
f (x,u)du+(−1)q−1(π∗φ) ·

∫ t

0

∂ f
∂x

dx,

where
∂ f
∂x

dx = ∑i
∂ f
∂xi

dxi. Then (dK−Kd)ω = (−1)q−1ω = (−1)q−1(1− π∗ ◦ s∗)ω ,

which now proves the proposition by looking this expression on the cohomology level.

Corollary 5.3.2. [Poincaré Lemma] The cohomology group of the Euclidean space Rn

is the same as the cohomology group of the point, i.e.,

Hq(Rn) = Hq({0}) =

R, q = 0

0, elsewhere

As a matter of fact, this last proposition can be generalized for a generic manifold
M. By applying the same methods used in proposition 5.3.1 we can prove the following

Proposition 5.3.3. Let M be a manifold. Then H∗(M×R1)≃H∗(M) is an isomorphism
via π∗ and s∗.

Corollary 5.3.4 (Homotopy Axiom for de Rham Cohomology). Any two homotopic
maps induce the same map in cohomology.

Proof. Let F : M×R1 → N be a homotopy between two maps f ,g : M → N. Take
s0,s1 : M→M×R1 the 0-section and the 1-section respectively, i.e., s0(x) = (x,0) and
s1(x) = (x,1). We can easily see that

g = F ◦ s0

f = F ◦ s1
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Applying the pullback on both sides of the equations we have

g∗ = (F ◦ s0)
∗ = s∗0 ◦F∗

f ∗ = (F ◦ s1)
∗ = s∗1 ◦F∗

As we saw in the main proposition, s∗0 is the inverse for π∗ in the cohomology. Changing
s∗0 for s∗1 does not cause any changes in the proof. Therefore, both functions work as
inverse for π∗ on cohomology, which means they are equal. Then f ∗ = g∗.

Definition 5.3.5. Let M and N two manifolds. They are said to have the same homotopy
type if there are two C∞ maps, f : M→ N and g : N→M such that g◦ f and f ◦g are
C∞ homotopic to the identity on M and N respectively. In particular, when a manifold
has the same homotopy type of a point then it is said to be contractible.

Definition 5.3.6. Let M be a manifold. Let A ⊂ M and i : A→ M the inclusion. Let
r : M → A be a retraction of M onto A, i.e., r is at least a continuous map and its
restriction to A is the identity map on A: r|A = IdA. From this we have that r ◦ i : A→ A

is the identity. Moreover, if i◦ r : M→M is homotopic to the identity on M, then r is
said to be a deformation retraction of M onto A.

Corollary 5.3.7. Two manifolds with the same homotopy type have the same de Rham
cohomology.

Proof. Let f : M→ N and g : N →M such that g ◦ f is homotopic to idM and f ◦ g is
homotopic to idN . Therefore,

id∗M = (g◦ f )∗ = f ∗ ◦g∗,

id∗N = ( f ◦g)∗ = g∗ ◦ f ∗,

implying that f ∗ and g∗ are isomorphisms on the level of cohomology.

Corollary 5.3.8. If A is a deformation retract of M, then A and M have the same de
Rham cohomology.

Theorem 5.3.9 (Poincaré Lemma for Compactly Supported Cohomology). The com-
pactly supported cohomology group of the Euclidean space is given by

Hq
c (Rn) =

R, for q = n

0, for q < n
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Proof. We start the proof by looking at the case where q∈ {1, . . . ,n−1}. Let ω ∈Ω
q
c(Rn)

and ε > 0 such that supp(ω) ⊂ {x ∈ Rn; ||x|| < ε/2} = V . Let U = V c. Consider the
function π : U → S = {x ∈ Rn; ||x|| = 2ε} given by π(x) = 2ε

x
||x||

. If i : S→U is the

inclusion, then π ◦ i is homotopic equivalent to the identity Id|U on U by means of
the homotopy F(x, t) = tπ(x)+ (1− t)x. Also, by the same reason, i◦π is homotopic
equivalent to the identity Id|S. Therefore, by corollary 5.3.7, Hq(U) = Hq(S), which
clearly have the same cohomology of Sn−1, i.e., Hq(U) = Hq(Sn−1). Poincaré Lemma
tell us that there is (q−1)-form η1 such that ω = dη1. Since ω = 0 on U , then dη1|U = 0.
By the fact that Hq−1(U) = Hq−1(Sn−1) = 0, there is η2 ∈Ωq−2(U) such that dη2 = η1

on U . There is f : Rn→ [0,1], a C∞-function, that values 1 in {x ∈Rn; ||x|| ≥ 2} and 0 in
{x ∈ Rn; ||x|| ≤ 3/2}. Define η3 = d( f ·η2) on U and η3 = 0 on Uc. Notice this proves
that η3 is a closed C∞-form on Rn. We get that η = η1−η3 is a form with compact
support (supp(η) ⊂ Br, where r = max{ε/2,2}) and ω = dη . Therefore, every form
Ω

q
c(Rn) is exact, which proves that Hk

c (Rn) = 0. From examples 5.2.2 we can replicate
the argument to prove that H0

c (Rn) = 0 for any natural n.

Let ω ∈Ωn
c(Rn) such that

∫
Rn ω = 0. Let the number ε and the set U be as before.

Once again, ω = dη1 on Rn and, therefore, dη1|U = 0. By Stokes theorem,

0 =
∫
Rn

ω =
∫

B2ε

ω =
∫

B2ε

dη1 =
∫

S
η1.

Then η1|S is an exact form, since
∫

S η1 = 0. We saw that U and S have the same
cohomology groups, then η1 is an exact form on U as well, which means that there
is η2 such that dη2 = η1 on U . As before, let η3 = d( f ·η2) on U and η3 = 0 on Uc.
Again, η = η1−η3 is a form with compact support such that ω = dη , which means that
[ω] = 0 ∈ Hn

c (Rn). Since integration
∫
Rn : Ωn

c(Rn)→ R is a surjective linear application,
then

Hn
c (Rn) =

closed n-forms with compact support
exact n-forms with compact support

=
Ωn

c(Rn)

Ker
∫
Rn

= R.

Remark 5.3.10. The fact that Hq(Sn−1) = 0 has a proof in the next section. Also,
since Hn−1(S) = Hn−1(Sn−1), given by the fact that S and Sn−1 are diffeomorphic, and
H(Sn−1) =R, which also has proof in the next section, proves that Ker

∫
Sn−1 is composed

by the exact forms on Sn−1.
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5.4. Mayer-Vietoris Sequence
Using category theory language we say that Ω∗ is a contravariant functor from

the category of Euclidean spaces, which consists of {Rn}n∈Z as objects and smooth maps
f : Rm→ Rn as arrows, and the category of commutative differential graded algebras,
with them being the objects and their homomorphisms being the arrows.

The Mayer-Vietoris sequence is an algebraic technique used to compute the
cohomology groups of manifolds that can be written as finite unions of its open sets.
Initially, we suppose M as a union of two open sets M =U ∪V . When an open cover
for M is given by n sets we can use a simple induction argument that is presented in the
next section in order to prove important theorems in this work. Let U ⊔V be the disjoint
union of U and V and ∂0, ∂1 the inclusions of U ∩V into U and V , respectively, then we
can establish the inclusions

M←U
⊔

V
∂0←−−←−−
∂1

U ∩V,

and by applying our contravariant functor Ω∗ gives us a sequence of restrictions of
differential forms

Ω
∗(M)→Ω

∗(U)⊕Ω
∗(V )

−∂ ∗0−−−→−−−→
∂ ∗1

Ω
∗(U ∩V ).

The restriction of forms to submanifolds are meant to be its image under the
pullback map induced by the inclusion.

Here we need more explanation of what is happening under those inclusions.
First of all, let us write U =U1 and V =U2 to make our notations easier. We recall that
the disjoint unions of sets is given by {Ai : i ∈ I} a family of sets indexed by I and is
defined as ⊔

i∈I

Ai = {(x, i) : x ∈ Ai}.

Therefore, for only two sets we obtain U1⊔U2 = ∪i∈{1,2}{(u, i) : u ∈Ui}, which
now gives meaning to both of our inclusions ∂1,∂2, i.e.,

U1∩U2
∂i−→ Xi = {(x, i) : x ∈U1∩U2 ⊂Ui} ⊂U1

⊔
U2.
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On the other hand, when applying the functor Ω∗ on the inclusion M←U1
⊔

U2

we obtain
Ω
∗(M)→Ω

∗(U1
⊔

U2).

However, Ω∗(U1
⊔

U2) is isomorphic to Ω∗(U1)
⊕

Ω∗(U2) by establishing the
map (ω,τ) 7→ η , where η(x,1) = ω(x) and η(x,2) = τ(x).

Then, the Mayer-Vietoris sequence is given by

0−→Ω
∗(M)

(∗)−→Ω
∗(U)

⊕
Ω
∗(V )

(∗∗)−→Ω
∗(U ∩V )−→ 0 (5.3)

by considering the restrictions on each U and V on (∗) and by putting (ω,τ) 7→ τ−ω

on (**), where each τ and ω is considered to be restricted to U ∩V .

Proposition 5.4.1. The Mayer-Vietoris sequence is exact.

Proof. The function on (∗) in equation (5.3) is clearly injective, since a differential form
defined on M is 0 when each of its restriction to U and V is 0. Moreover, the difference
δ on (∗∗) is surjective. Indeed, let {ρU ,ρV} be a partition of unity subordinated to the
cover {U,V} and let ω ∈ Ω∗(U ∩V ). By putting (−ρV ω,ρU ω) we have an element
of Ω∗(U)⊕Ω∗(V ), since −ρV ω becomes well-defined on U \V and ρU ω becomes
well-defined on V \U . Then

δ (−ρV ω,ρU ω) = ρU ω− (−ρV ω) = (ρU +ρV )ω = ω.

Finally, the image of the function on (∗) is the same as the kernel of the
difference δ . Let ω ∈ Ω∗(M), then by making the restrictions on U and V we have
(ω|U ,ω|V ) ∈Ω∗(U)⊕Ω∗(V ). Then, δ (ω|U ,ω|V ) = ω|V −ω|U = 0, since we are work-
ing with differential forms restricted to U ∩V and ω|U , ω|V are the same on U ∩V .

We know that a short exact sequence gives rise to a long exact sequence on the
cohomology level. Therefore, the Mayer-Vietoris short exact sequence gives rise to the
Mayer-Vietoris long exact sequence on the cohomology level which is given by

. . .Hq(M)−→ Hq(U)⊕Hq(V )−→ Hq(U ∩V )
d∗−→

d∗−→ Hq+1(M)−→ Hq+1(U)⊕Hq+1(V )−→ Hq+1(U ∩V ) . . .
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The operator d∗ is called the coboundary operator and it is given by the following

d∗[ω] =

[−d(ρV ω)], on U

[d(ρU ω)], on V

for ω ∈Ωq(U ∩V ) being a closed form and {ρU ,ρV} a partition of unity for {U,V}. The
operator d∗ is well-defined. Indeed, since the following Mayer-Vietoris short sequence is
exact

0→Ω
q(M)→Ω

q(U)⊕Ω
q(V )→Ω

q(U ∩V )→ 0,

then, given a closed form ω ∈ Ωq(U ∩V ), there is η ∈ Ωq(U)⊕Ωq(V ) that maps to
ω through δ , which is η = (−ρV ω,ρU ω). This definition allow us to define ρV ω in
all U since for x ∈U ∩V c, ρV (x)ω(x) = 0 ·ω(x) = 0. The same is valid for ρU ω . The
following diagram is commutative

Ωq+1(U ∩V )Ωq+1(U)⊕Ωq+1(V )

Ωq(U ∩V )Ωq(U)⊕Ωq(V )
δ

d d

δ

The application d on the left side maps η 7→ (−d(ρV ω),d(ρU ω)) which is
mapped through δ to d(ρU ω)− (−d(ρV ω)) = d((ρU +ρV )ω) = d(ω) = 0. Therefore,
the applications d(ρU ω) and−d(ρV ω) coincide over U ∩V . This means that in the exact
sequence

0→Ω
q+1(M)

f→Ω
q+1(U)⊕Ω

q+1(V )
δ→Ω

q+1(U ∩V )→ 0

we have d(η) ∈ ker(δ ) = Im( f ). Therefore, exists only one ψ ∈ Ωq+1(M) such that
f (ψ) = d(η).

Example 5.4.2 (Cohomology group of S1). Consider an open covering {U,V} of S1 as
in figure 1, which is the geometric representation of the open cover given in example
3.1.9. Also, notice that U ∩V , on figure 2, is made up of two connected components.
Recall that their image by any of the local charts πN , πS is equal to R\{0}.
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Figure 1 – Geometric representation of an open cover for S1.

Source: Elaborated by the author.

Figure 2 – Geometric representation of the intersection of U and V .

Source: Elaborated by the author.

The short Mayer-Vietoris sequence induces the long Mayer-Vietoris sequence

0→ H0(S1)
r→ H0(U)⊕H0(V )

δ→ H0(U ∩V )
d∗→

d∗→ H1(S1)
w→ H1(U)⊕H1(V )→ H1(U ∩V )→ 0

By the fact that the open sets U and V are connected sets diffeomorphic to
R1, then H0(S1) = H0(U) = H0(V ) = R and Hq(U) = Hq(V ) = Hq(R1) = 0 for q > 0.
Also, by the figure we see that U ∩V has two connected pieces, each one of them
being connected sets diffeomorphic to R1, then H0(U ∩V ) =R⊕R and H1(U ∩V ) = 0.
Therefore, Mayer-Vietoris long exact sequence looks like

000H1 (S1)
R⊕RR⊕RR0

By applying theorem 2.3.2 we are able to compute H1(S1) = R.
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Now, let us look more closely what is the meaning of the identifications we have
made above on the language of forms. For both H0(U) and H0(V ) we are considering
the equivalence classes of constant functions f : U → R and g : V → R and establishing
the relation

([ f ], [g]) 7→ (x,y)

in order to say that H0(U)⊕H0(V ) = R2, where f (u) = x, for all u ∈U , and g(v) = y,
for all v ∈V .

Also, let [ f ] ∈ H0(S1), then r([ f ]) = ([ f |U ], [ f |V ]). Notice that both f |U and f |V
are constant functions. Since U ∩V ̸= /0, then ( f |U)|V = ( f |V )|U = f |U∩V , which means
that f |U and f |V have the same constant value as image on R. Therefore, the function
f is a constant function, which allow us to identify H0(S1) = R. Note that the same
argument can be repeated to H0(Sn) for every n.

Now let us understand what is happening to identifications made for δ on the
language of forms. By definition of the Mayer-Vietoris sequence we get that δ (ω,τ) =

τ|U∩V −ω|U∩V . We can write U ∩V = A
⊔

B, where each A and B are connected subsets
of S1 and A∩B= /0. This allows us to identify H0(U∩V ) =H0(A

⊔
B) =H0(A)⊕H0(B).

This shows us that

δ (ω,τ) = τ|U∩V −ω|U∩V = τ|A⊔B−ω|A⊔B 7→ (τ|A−ω|A,τ|B−ω|B).

From a geometrical point of view, when we have f ∈ H0(U ∩V ), then f can be
defined to reach two different values on R, where f is constant on each of the connected
components A and B of U ∩V . This also gives us that δ has a one-dimensional image
on H0(U ∩V ), because for (ω,τ) ∈ H0(U)⊕H0(V ), then both ω and τ have constant
values, which means that

(τ|A−ω|A,τ|B−ω|B)

have the same constant values on each coordinate.

At last, we study the identifications for the homomorphism d∗. First of all, notice
that

Imd∗ = Ker w,

Imδ = Ker d∗,
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H0(U ∩V )≃ Ker d∗⊕ Imd∗,

and, since H0(U∩V ) is 2-dimensional, then Imd∗ is 1-dimensional. Consequently, Ker w

is 1-dimensional and H1(S1) is 1-dimensional, since Imw is 0-dimensional. In order to
find a generator for H1(S1) we need to find a differential form [α] ∈ H0(U ∩V ) such
that [α] /∈ Imδ for a closed form, because, otherwise, we would get that [α] ∈ Ker d∗

and, consequently, d∗[α] = 0, which would not provide us a generator for the desired
cohomology group.

Therefore, α must admit different constant values for each connected component
A and B of U ∩V . We can choose [α] = ([ω], [τ]) ∈ H0(A)⊕H0(B), where ω is the
constant function equal to 1 and τ is the constant function equal to 0. With this definition
α is a closed form on U ∩V . Then

d∗[α] =

[−d(ρV α)], on U

[d(ρU α)], on V

which gives us

d∗[α] =

([−d(ρV ω)], [−d(ρV τ)]), on U

([d(ρU ω)], [d(ρU τ)]), on V

where [−d(ρV τ)] = 0 on B ⊂ U and [d(ρU τ)] = 0 on B ⊂ V . On the other hand
[−d(ρV ω)] = [−dρV ] on A⊂U and [d(ρU ω)] = [dρU ] on A⊂V . Since [d(ρU α)] and
[−d(ρV α)] coincide on the intersection U ∩V for each of the subsets A and B, then d∗[α]

is a global closed form on S1, which generates H1(S1).

Example 5.4.3 (Cohomology groups of S2). Take U an open set of S2 which is the north
hemisphere passing a bit after the equator and V as another open set doing the same thing
but starting by the south hemisphere. Therefore, U ∩V is homeomorphic to S1×R. The
short Mayer-Vietoris sequence induces the long Mayer- Vietoris sequence

0→ H0(S2)→ H0(U)⊕H0(V )→ H0(U ∩V )→

→ H1(S2)→ H1(U)⊕H1(V )→ H1(U ∩V )→

→ H2(S2)→ H2(U)⊕H2(V )→ H2(U ∩V )→ 0

By the fact that the open sets U and V are connected sets diffeomorphic to R2,
then H0(S2) = H0(U) = H0(V ) = H0(U ∩V ) = R and Hq(U) = Hq(V ) = Hq(R2) = 0
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for q > 0. Also, we know that U ∩V is homeomorphic to S1×R and the latter is
homotopy equivalent to S1, then Hq(U ∩V ) = Hq(S1). Therefore, Mayer-Vietoris long
exact sequence looks like

R0H1 (S2)
RR⊕RR0

000H2 (S2)
Applying theorem 2.3.2 to parts of our Mayer-Vietoris long exact sequence gives

us that H1(S2) = 0 and H2(S2) = R.

Example 5.4.4. In order to generalize the computation of the cohomology groups of the
n-sphere Sn we suppose the covering of Sn with open sets U and V as before, then U ∩V

is homeomorphic to Sn−1×R and, consequently, of the same homotopy type as before.
Therefore, by following the same steps in the previous two examples, we get

Hq(Sn) =

R, q = 0,n

0, otherwise

5.5. Mayer-Vietoris sequence for compact support
First of all, Ω∗c is not a functor from the category of manifolds and smooth maps,

because it does not take necessarily forms with compact support to forms with compact
support. Indeed, consider the pullback of forms under the projection π : M×R→M.
Let ω ∈Ω∗c(M) and let x = (p,a) ∈M×R. We get

(π∗ω)(x)(v1, . . . ,vm) = ω(p)(Dπ(x) · v1, . . . ,Dπ(x) · vm),

which shows that a ∈ R varies all over the real line. Therefore, π∗ω does not have
compact support.

In order to work with Ω∗c as a functor, we need to consider only a subset of the
set of smooth maps. If we consider

proper maps, then we have that Ω∗c is a contravariant functor;
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inclusions of open sets, then we have that Ω∗c is a covariant functor.

We work with the second case in this work. Let i : U →M be an inclusion of an
open set U of M. Then by applying the functor Ω∗c we obtain i∗ : Ω∗c(U)→Ω∗c(M) as a
map which extends any form on U to a form on M by making this form evaluates as 0 on
M \U .

The covariant functor Ω∗c gives rise to a Mayer-Vietoris sequence as well. Suppose
M =U ∪V being covered by two open sets. Since the functor Ω∗c is a covariant functor
for inclusions of open sets then the inclusions

M←U
⊔

V
∂0←−−←−−
∂1

U ∩V

define a sequence between the graded algebras

Ω
∗
c(M)

sum←−Ω
∗
c(U)⊕Ω

∗
c(V )

f←−Ω
∗
c(U ∩V )

where f is the signed inclusion given by ω 7→ (− j∗ω, i∗ω), with j∗ expanding the
definition of ω for the rest of U by 0 and i∗ doing the same expansion on V . Also, when
applying the function sum, we are extending the definition of forms to 0 on the rest of M.

Proposition 5.5.1. The Mayer-Vietoris short sequence for compactly supported coho-
mology

0←Ω
∗
c(M)

sum←−Ω
∗
c(U)⊕Ω

∗
c(V )

f←−Ω
∗
c(U ∩V )← 0

is exact.

Proof. The function f is injective since (− j∗ω, i∗ω) = (0,0) implies that i∗ω = 0 and
j∗ω = 0, then, consequently, ω = 0. Moreover, the sum from Ω∗c(U)⊕Ω∗c(V )→Ω∗c(M)

is surjective, by taking ω ∈Ω∗c(M) and defining (ρU ω,ρV ω) ∈Ω∗c(U)⊕Ω∗c(V ). Finally,
a differential form on the image of f is of the form (− j∗ω, i∗ω) for a function ω ∈
Ω∗c(U ∩V ), which is equal to zero when applying the sum function, since − j∗ω and i∗ω

coincide on the intersection U ∩V , except for their sign, and they have value 0 at every
other point of M. Therefore the image of f is the same as the kernel of the sum.
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As before the Mayer-Vietoris short exact sequence gives rise to a Mayer-Vietoris
long exact sequence

· · · ← Hq+1
c (M)← Hq+1

c (U)⊕Hq+1
c (V )← Hq+1

c (U ∩V )
d∗←

d∗← Hq
c (M)← Hq

c (U)⊕Hq
c (V )← Hq

c (U ∩V )← . . .

through means of a connecting homomorphism d∗. Let {ρU ,ρV} be a partition of unity
subordinated to {U,V}. Then for [ω] ∈Hk

c (M) we define d∗ : Hk
c (M)→Hk+1

c (U ∩V ) as

d∗([ω]) = [d(ρU ω|U∩V )].

Notice that d∗ is well-defined this way, because ρU ω ∈Ωk
c(U) and ρV ω ∈Ωk

c(V ).
Therefore, for [ω] ∈ HK

c (M), i.e., ω is a closed differential form, then

0 = d(ω) = d(ρU ω +ρV ω)⇒ d(ρU ω) = d(−ρV ω),

which means that supp(d(ρU ω))⊂U∩V . Moreover, notice that d(ρU ω|U∩V )= (dρU)ω|U∩V

is a closed form, since

d2(ρU ω|U∩V ) = d2(ρU)︸ ︷︷ ︸
=0

ω|U∩V −d(ρU)dω|U∩V︸ ︷︷ ︸
=0

= 0.

Example 5.5.2 (Compactly supported cohomology for the circle S1). A simple way
to look at these cohomology groups is to recall that S1 is already a compact manifold,
therefore compactly supported cohomology should be the same as the usual de Rham
cohomology groups for S1. On the other hand, using the Mayer-Vietoris sequence
argument to compute these groups, consider the open covering for S1 as in example 5.4.2,
with geometric representations as in figures 1 and 2.

The Mayer-Vietoris long exact sequence induced by the Mayer-Vietoris short
exact sequence for compactly supported cohomology is

← H1
c (S

1)← H1
c (U)⊕H1

c (V )← H1
c (U ∩V )←

← H0
c (S

1)← H0
c (U)⊕H0

c (V )← H0
c (U ∩V )←

By using the Poincaré lemma for compactly supported cohomology we know
that H0

c (U) = H0
c (V ) = 0 and H1

c (U) = H1
c (V ) = R and, since U ∩V is composed by
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two connected components each one diffeomorphic to R, then H0
c (U ∩V ) = 0 and

H1
c (U ∩V ) = R⊕R. Since the sequence above is a long exact sequence, then H0

c (S
1) =

Ker f , for f : H1
c (U ∩V )→ H1

c (U)⊕H1
c (V ), which is 1-dimensional. Therefore, by

applying theorem 2.3.2, we are able to compute H1
c (S

1) = R.
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CHAPTER

6
POINCARÉ DUALITY, KÜNNETH

FORMULA AND LERAY-HIRSCH
THEOREM

In this chapter we discuss some very important results for our theory, such as
the Poincaré Duality, the Künneth formula and the Leray-Hirsch theorem. We begin by
presenting the Mayer-Vietoris argument as a form to compute de Rham cohomology
groups for generic manifolds that have a finite good cover. In other words, the Mayer-
Vietoris is a induction process into the cardinality of those covers. For this we need to
use the five lemma, recall some concepts of Riemannian geometry for manifolds, as well
as other set theory and homological algebra concepts. We begin by proving a proposition
that illustrates the Mayer-Vietoris argument, by showing the finitude of dimensions of
the cohomology groups of a manifold under certain conditions. After that, we understand
what is a pairing and establish important diagrams in order to understand and to prove
Poincaré’s Duality. We note that we prove Poincaré’s Duality not only for oriented
manifolds with finite good cover, but for any oriented manifolds. We end the chapter by
showing the Künneth formula, using very similar algebraic arguments, and making an
initial sketch for the proof of Leray-Hirsch theorem. The content in this chapter is mainly
based on (BOTT; TU, 1982), with additional resources taken on (MELO, 2019) and
(HAFKENSCHEID, 2020). Also, there are references to (SPIVAK, 1979) and (GARZA,
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2019).

6.1. The Mayer-Vietoris argument

Definition 6.1.1. Let M be a n-manifold. An open cover {Vα}α∈I of M, is called a
good cover for M, if any finite intersections Vα1 ∩·· ·∩Vαp ̸= /0 are diffeomorphic to the
Euclidean space Rn. Such a manifold M is said of finite type.

Definition 6.1.2. Let M be a n-manifold. We define a Riemannian structure on M as a
smoothly varying metric ⟨−,−⟩ on the tangent space TpM of M at each point p ∈M.
More precisely, a Riemannian metric on M is a function g that takes p ∈M 7→ gp, where
each gp is a positive-definite inner product on TpM, i.e., gp : TpM×TpM→ R. Another
way to think about this definition is given X ,Y smooth vector fields on M, then ⟨X ,Y ⟩ is
a smooth function on M, i.e., we are applying ⟨X ,Y ⟩ on each point p ∈M smoothly.

Proposition 6.1.3. Any n-manifold M has a Riemannian structure.

Proof. Let {Uα}α∈I be a locally finite open cover of M, where each Uα is a coordinate
open set of M, i.e., ϕα : Uα → ϕα(Uα)⊂ Rn is a diffeomorphism for each α ∈ I. There
is {ρα}α∈I a partition of unity subordinate to the atlas {Uα}α∈I . On each Uα we can
define a metric gα = ϕ∗αgEuc where gEuc is the Euclidean metric on Rn and ϕ∗αgEuc is the
pullback of gEuc along the local chart ϕα . We define

g := ∑
α∈I

ρα ·gα ,

where the hypothesis of locally finiteness from the partition of unity allows g to be
well-defined.

Theorem 6.1.4. Any n-manifold M has a good cover. Moreover, if M is compact, then it
has a finite good cover.

Proof. By the previous proposition M has a Riemannian structure. By (SPIVAK, 1979),
every manifold M with a Riemannian structure can be covered with geodesically convexed
neighborhoods, which are neighborhoods where every two points are connected by means
of a arc path. Any finite intersection of geodesically convex neighborhoods is geodesically
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convex. Every geodesically convex neighborhood in M is diffeomorphic to Rn. Therefore,
the open cover consisting of geodesically convex neighborhoods is a good cover.

Definition 6.1.5. Let M be a manifold and U = {Uα}α∈I , V = {Vβ}β∈J be two covers
of M. We say that V is a refinement of U , denoted by U < V , if every Vβ ⊂Uα for
some α . More precisely, a refinement is a map φ : J→ I that takes Vβ ⊂Uφ(β ).

Definition 6.1.6. A directed set is a set I combined with a relation < satisfying

Reflexivity: a < a for every a ∈ I;

Transitivity: if a < b and b < c, then a < c;

Upper bound: For any a,b ∈ I, there is an element c ∈ I, satisfying a < c and b < c.

Proposition 6.1.7. The set of open covers on a manifold is a directed set.

Proof. The reflexivity and transitivity properties are immediate. For the upper bound
property we take the family {Uα ∩Vβ}α∈I,β∈J . Such a family is an open cover, since
every Uα and every Vβ are open sets of M, and for any given point p ∈M there is α ′ ∈ I

and β ′ ∈ J such that p ∈Uα ′ and p ∈Vβ ′ . Therefore, p ∈Uα ′ ∩Vβ ′ .

Proposition 6.1.8. Let M be a manifold. If M has a finite good cover, then its cohomology
group is finite dimensional. Therefore, every compact manifold M has a finite dimensional
cohomology group.

Proof. Let U and V be two open sets of M. The Mayer-Vietoris long exact sequence for
U ∪V is

· · · → Hq−1(U ∩V )
d∗→ Hq(U ∪V )

r→ Hq(U)⊕Hq(V )→ . . . .

From linear algebra and the fact that this is a long exact sequence we get

Hq(U ∪V )≃ Ker r⊕ Imr ≃ Imd∗⊕ Imr,

where the first isomorphism is a direct implication of the linearity of d∗ and by the
exactness of the Mayer-Vietoris long sequence we get Ker r ≃ Imd∗.
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Looking at the long exact sequence and the relations we establish between kernels
and images we can state the following: If the cohomology groups Hq(U), Hq(V ) and
Hq−1(U ∩V ) are finite dimensional, then Hq(U ∪V ) is finite dimensional.

Now the proof proceeds by induction on the cardinality of the good cover. Sup-
pose that our good cover is only given by M, i.e., the case n = 1. Therefore, M is a
manifold diffeomorphic to Rn and, by corollary 5.3.7 H∗(M) = H∗(Rn), which is finite
dimensional by the Poincaré Lemma. At the beginning of the proof we have made the
arguments for the case n = 2, which aids us to prove the general case. Suppose the hy-
pothesis is valid for a manifold with good cover given by p elements, i.e., a manifold M

with a good cover {U0,U1, . . . ,Up−1} composed by p elements has a finite dimensional
cohomology. Let N be a manifold with good cover {U0,U1, . . . ,Up} composed by p+1 el-
ements. The manifold (U0∪·· ·∪Up−1)∩Up has a good cover {U0p,U1p, . . . ,U(p−1)p}=
{U0∩Up,U1∩Up, . . . ,Up−1∩Up} with p elements. By the hypothesis of induction the
q-th cohomology group of U0 ∪ ·· · ∪Up−1, Up and (U0 ∪ ·· · ∪Up−1)∩Up are finite
dimensional. Therefore, by the Mayer-Vietoris long exact sequence

· · · →Hq−1((U0∪·· ·∪Up−1)∩Up)
d∗→Hq(N)

r→Hq(U0∪·· ·∪Up−1)⊕Hq(Up)→ . . . ,

we prove that Hq(U0∪·· ·∪Up) = Hq(N) is finite dimensional.

Proposition 6.1.9. Let M be a manifold with a finite good cover. Then H∗c (M) is finite
dimensional.

Proof. For the compactly supported case, recall that the Mayer-Vietoris long exact
sequence is as follows

. . .Hq
c (U)⊕Hq

c (V )
g→ Hq

c (U ∪V )
d∗→ Hq+1

c (U ∩V )→ . . .

Then from linear algebra and from the fact that the sequence is exact we get that

Hq
c (U ∪V )≃ Ker d∗⊕ Imd∗ ≃ Img⊕ Imd∗,

where g is given by the sum of the extended differential forms on each Hq(U) and Hq(V ).

From this point the proof proceeds as in the usual cohomology case.

Remark 6.1.10. The induction argument made in proposition 6.1.8 is called Mayer-

Vietoris argument. The same argument is used in the proof of the Poincaré Duality and
the Künneth formula.
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6.2. Poincaré Duality on an Orientable Manifold

Let V and W be finite-dimensional vector spaces and the function ⟨−,−⟩ : V ⊗
W → R be a pairing (real linear map) from their tensor product to the real line. We say
⟨−,−⟩ to be non-degenerate if

⟨v,w⟩= 0 for all w ∈W implies that v = 0, and

⟨v,w⟩= 0 for all v ∈V implies w = 0.

Equivalently, we are able to define ⟨−,−⟩ as non-degenerate if

the map v 7→ ⟨v,−⟩ defines an injection V ↪→W ∗ and

the map w 7→ ⟨−,w⟩ defines an injection W ↪→V ∗.

More precisely, we are able to state the following lemma.

Lemma 6.2.1. Let V and W be finite dimensional vector spaces. The pairing ⟨−,−⟩ :
V ⊗W → R is non-degenerate if, and only if, the map v 7→ ⟨v,−⟩ is an isomorphism
V ∼−→W ∗.

Proof. Suppose the pairing ⟨−,−⟩ is non-degenerate. This implies that we have injections
V ↪→W ∗ and W ↪→V ∗. Taking into account that those vector spaces are finite dimensional,
then dimV = dimV ∗ and dimW = dimW ∗. Therefore, dimV = dimW ∗, which means
that v 7→ ⟨v,−⟩ is an isomorphism in V ∼−→W ∗.

On the other hand, suppose that the map v 7→ ⟨v,−⟩ is an isomorphism from V to
W ∗. Therefore, the kernel of this map is made only of v = 0, i.e., ⟨v,w⟩= 0 for all w ∈W

implies that v = 0. The other condition for non-degeneracy is derived from the fact that
W →V ∗ is also an isomorphism.

Define a map PD : Ωq(M)→ (Ω
n−q
c (M))∗ given by

PD(ω)(η) =
∫

M
ω ∧η
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for every form ω ∈Ωq(M) and for every form η ∈Ω
n−q
c (M). For every ω we have that

PD(ω) is a linear map due to bilinearity of the wedge product. We have the following
property

PD(dω)(η) =
∫

M
dω ∧η

=
∫

M
d(ω ∧η)−ω ∧ (−1)qdη

=
∫

M
d(ω ∧η)︸ ︷︷ ︸
=0

−
∫

M
ω ∧ (−1)qdη

= PD(ω)((−1)q+1dη)

= (−1)q+1PD(ω)(η)

where d(ω ∧η) = 0 is a (n+1)-form on a n-manifold. Also, this shows us that PD is
sign-commutativity, i.e., PD commutes except for the sign. Moreover, PD induces a
pairing on the cohomology level, which is the following integration map∫

: Hq(M)⊗Hn−q
c (M)→ R,

by putting [ω]⊗ [η ] 7→
∫

M ω ∧η , which is well-defined. We omit, for the rest of this
work, the notation of the equivalence classes that concerns the cohomology spaces.

By proving that this integration map is non-degenerate, whenever M is orientable
and has a finite good cover, then, equivalently by lemma 6.2.1, we have that Hq(M)≃
(Hn−q

c (M))∗, which is the finite version of the Poincaré Duality. In order to prove it we
need the following lemma.

Lemma 6.2.2. The Mayer-Vietoris sequences given by the usual cohomology groups and
the compactly support cohomology can be paired to form a sign-commutative diagram

For ω ∈ Hq(U ∩V ) and η ∈ Hn−q−1
c (U ∪V ) the sign commutativity is∫

U∩V
ω ∧d∗η =±

∫
U∪V

(d∗ω)∧η
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which is induced from the map PD . Recall that d∗ : Hn−q−1
c (U ∪V )→ Hn−q

c (U ∩V )

and d∗ : Hq(U ∩V )→ Hq+1(U ∪V ) are the connecting homomorphisms for each type
of cohomology. By lemma 6.2.1 is equivalent to say that the following diagram is
commutative. Notice that we compensate the sign-commutativity by the multiplication
(−1)q+1d∗, which gives us an adapted signed commutativity diagram. This will allows
us to further apply this proposition using the Five lemma in the next theorem. Also, the
column on the right is the dual sequence derived from the Mayer-Vietoris sequence for
compactly supported cohomology as in proposition 5.5.1.

Hq(U ∪ V )

Hq(U ∩ V )

Hq(U)⊕Hq(V )

Hq+1(U ∪V )

Hn−q
c (U ∪ V )∗

Hn−q
c (U ∩V )∗

Hn−q
c (U)∗⊕Hn−q

c (V )∗

Hn−q−1
c (U ∪V )∗

(−1)q+1d∗ (d∗)∗

PD |U∪V

PD |U ⊕PD |V

PD |U∩V

PD |U∪V

([ωU ], [ωV ])

η−ω

sum∗

f ∗

Proof. In order to prove the commutativity of the third square recall that d∗ : Hq(U ∩
V )→Hq+1(U∪V ), where for all [ω]∈Hq(U∩V ), then d∗[ω]∈Hq+1(U∪V ) is defined
by

d∗[ω] =

[−d(ρV ω)], on U

[d(ρU ω)], on V

where we have verified in both cases they coincide over the intersection U ∩V . Secondly,
d∗ : Hn−q−1

c (U ∪V ) → Hn−q
c (U ∩V ), where for all [η ] ∈ Hn−q−1

c (U ∪V ), we have
d∗[η ] = [d(ρU η |U∩V )]. Moreover, given d∗[η ]∈Hn−q

c (U∩V ) then, for a pair of partition
of unity {ρU ,ρV}, we have

(−(extension by 0 of d∗η to U),(extension by 0 of d∗η to V ) = (d(ρU η),d(ρV η))

= ((dρU)η ,(dρV )η)
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Notice the last equality comes from the fact that the functions ρU ,ρV are differ-
ential 0-forms, therefore, for ρV , we get

d(ρV η) = (dρV )∧η +(−1)degree(ρV )ρV ∧d(η)
d(η)=0
= (dρV )η

due to the fact that η is a closed form. We have not used any property related to the
fact that η has a compact support, so this equality is equally valid for differential forms
without support compact, such as ω . We get∫

U∩V
ω ∧d∗η =

∫
U∩V

ω ∧ (dρV )η = (−1)degree(ω)
∫

U∩V
(dρV )ω ∧η , (6.1)

where the second equality comes from the fact we are commuting the forms ω and (dρV ).
On the other hand, remember that supp(d∗ω)⊂U ∩V , because, by definition, we are
extending the definition of ω to U ∪V \U ∩V by putting d∗ω as zero in this previous
set. Since in U ∩V there is no differentiation between d(ρU ω) and d(ρV ω), then we can
choose ρV ω as our representative in the following∫

U∪V
d∗ω ∧η =−

∫
U∩V

(dρV )ω ∧η . (6.2)

Therefore, using (6.1) and (6.2), we get∫
U∩V

ω ∧d∗η = (−1)degree(ω)
∫

U∩V
(dρV )ω ∧η

= (−1)degree(ω)+1
(
−
∫

U∩V
(dρV )ω ∧η

)
= (−1)degree(ω)+1

∫
U∪V

d∗ω ∧η

= (−1)q+1
∫

U∪V
d∗ω ∧η ,

proving that the diagram is commutative in the third square. The first two squares are
easily seen to be commutative.

Theorem 6.2.3 (Poincaré Duality - Finite Case). Let M be an oriented n-manifold with a
finite good cover. Then

Hq(M)≃ (Hn−q
c (M))∗

Proof. The proof follows by induction on the number of open sets of a good cover of M.
For n = 1, our good cover is given by {M} which means that M is diffeomorphic to Rn.
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According to the Poincaré lemmas, we get

0 = Hq(M)≃ Hn−q
c (M) = 0, for q = 1,2, . . . ,n,

Since (Hn−q
c (M))∗≃Hn−q

c (M), because according to proposition 6.1.9 Hn−q
c (M)

is finite dimensional, then Hq(M)≃ (Hn−q
c (M))∗, for every q ∈ {1, . . . ,n}.

For q = 0, let f ∈Ω0(M), such that supp( f ) is compact and
∫

M f = 1. Then

PD(1)([ f (x)dx1∧·· ·∧dxn]) =
∫

M
f = 1,

and the constant function 1 and [ f dx1∧·· ·∧dxn] are generators for H0(M) and Hn
c (M),

respectively, then PD is an isomorphism between H0(M) and (Hn
c (M))∗. This can be

proven the same way as in the first argument.

For the case n = 2 let {U,V} be a good open cover for M. Both U and V are
diffeomorphic to Rn, then by the case n = 1 Poincaré Duality holds for them. Since
{U,V} is a good cover, then U ∩V is diffeomorphic to Rn, which means that Poincaré
Duality holds for U ∩V as well. Applying the Five lemma (lemma 2.3.3) on the following
diagram, which is commutative and has exact rows by the preceding lemma, proves that
the Poincaré Duality holds for the union U ∪V = M.

Hq−1(U)⊕Hq−1(V ) Hq−1(U ∩V ) Hq(M) Hq(U)⊕Hq(V ) Hq(U ∩V )

(Hn−q+1
c (U))∗⊕ (Hn−q+1

c (V ))∗ (Hn−q+1
c (U ∩V ))∗ (Hn−q

c (M))∗ (Hn−q
c (U))∗⊕ (Hn−q

c (V ))∗ (Hn−q
c (U ∩V ))∗

For the general case where M has a good cover composed by p+1 elements we
use the Mayer-Vietoris argument as used in proposition 6.1.8.

We can extend the Poincaré Duality to a manifold M which does not need to have
necessarily a finite good cover. In order to prove this, we prove a lemma.

Lemma 6.2.4. Let M be a manifold. There are two open sets U and V such that M =U∪V

where each one of those open sets can be written as a disjoint union of open sets.

Proof. We start the proof by writing M as a union of compact sets M = ∪i∈NKi, where
each Ki is a compact set and Ki ⊂ intKi+1. Put {Wi = A1i ∪ ·· · ∪Ani|i ∈ N} as the set
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of finite open covers for each of the compact sets Ki \ intKi−1, where every open set
A1i, . . . ,Ani ⊂Wi is such that A ji ⊂ int(Ki+1)\Ki−2. One geometric example for such a
cover is seen at figure 3.

Figure 3 – For M = R2 and each Ki = Di as the disc of radius i centered at the origin, we get
that the region between the two dotted blue circles is an open set W3 = A13 covering
D3 \ int(D2) such that A13 ⊂ int(D4)\D1.

Source: Elaborated by the author.

The family {Wi}i∈N satisfies that Wi∩Wi+ j = /0 for every j≥ 2. Finally, we make
U = ∪iW2i and V = ∪iV2i+1.

Lemma 6.2.5. Let M be a n-manifold and B a basis of open sets of M satisfying

for U,V ∈B, then U ∩V ∈B, and

PD |U : Hq(U)→ (Hn−q
c (U))∗ is an isomorphism for every U ∈B,

then PD : Hq(M)→ (Hn−q
c (M))∗ is an isomorphism.

Proof. Let F be the family of finite unions of elements of B. Notice that if U =

U1∪·· ·∪Up ∈F , then by the Poincaré Duality (finite case) we have that PD |U is an
isomorphism. Notice that B is not demanded to be a good cover for M, but is satisfies
the same hypothesis of a good cover that are needed in the last lemmas and Poincaré
Duality.
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From lemma 6.2.4 we get that M =U ∪V where each U and V can be written as
disjoint unions of elements of F . We write U = ∪iW2i from the previous lemma, where
each W2i is, by last paragraph, such that PD |W2i is an isomorphism. Then we have the
identifications

Hq(U) = ∏
i

Hq(W2i), and

Hn−q
c (U) =

⊕
i

Hn−q
c (W2i),

which maintains our differential forms transitioning from one identification to another
well-defined. Also, we get that (Hn−q

c (U))∗ = ∏i Hn−q
c (W2i)

∗ and PD |U(([ωi])i) =

(PD |W2i([ωi]))i. This gives us that PD |U : Hq(U)→ Hn−q
c (U) is an isomorphism.

Since the same arguments can be repeated with V , then PD |V is also an isomor-
phism. By the fact that M =U ∪V , then PD is an isomorphism by the finite case of
Poincaré Duality.

Theorem 6.2.6 (Poincaré Duality). Let M be an oriented n-manifold. Then

Hq(M)≃ (Hn−q
c (M))∗

Proof. Using the last lemma, then we only need to recall that every manifold M has a
good cover by theorem 6.1.4 and that good covers satisfies the hypothesis of our previous
lemma.

6.3. Künneth Formula
A fiber bundle is a whole structure (E,B,π,F) satisfying some conditions

The sets E, B and F are topological spaces, called total space, base space and fiber,
respectively;

The map π : E → B is a continuous surjection, called projection map or bundle
projection;

Every x ∈ B has an open neighborhood U such that there is a homeomorphism

ϕ : π−1(U)→U×F where the composition U×F
ϕ−1

→ π−1(U)
π→U is locally a

projection in the first factor (π ◦ϕ−1)(x,y) = x for all (x,y) ∈U×F .
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Some important remarks are that π−1(U) holds the subspace topology, the set of all
homeomorphisms {(Ui,ϕi)} are called a local trivialization of the bundle and the fact that
the preimage π−1({p}) is homeomorphic to F for every p∈B, because (π ◦ϕ−1)−1({p})
is homeomorphic to F for every p ∈U . Moreover, the set π−1({p}) is called a fiber over
the point p. Finally, we say that E is a fiber bundle over M with fiber F .

Due to the nature of our theory we work with smooth fiber bundles, which means
our topological spaces E, B and F are smooth manifolds and the local trivialization
are smooth homeomorphisms. In our particular case, they are C∞ manifolds and C∞

diffeomorphisms. Therefore, we usually denote B as M.

Now, we introduce the structure group in our fiber bundles by using a set of local
trivializations. Let G be a topological group that acts effectively on F on the left. We
say that our fiber bundle has a structure group G if it has a set of local trivializations
{(Uα ,ϕα)} where, for any two homeomorphisms ϕα and ϕβ , the composite

ϕα ◦ϕ
−1
β

: (Uα ∩Uβ )×F → (Uα ∩Uβ )×F

satisfies
ϕα ◦ϕ

−1
β

(x,v) = (x,gαβ (x) · v),

where gαβ : Uα ∩Uβ → G is a continuous function called transition function. Note that
for v ∈ F everything is coherent with the definitions above because G is a group acting
on F on the left.

Note that the action of G over F is effective when the only element that acts
trivially on F is the identity 1G, i.e., if g ∈ G and g · v = v for all v ∈ F , then g = 1G. In
order to explain the meaning of this property we shall restrict the functions ϕα ◦ϕ

−1
β

to
{x}×F . We get

ϕα ◦ϕ
−1
β
|{x}×F(x,v) = (x,gαβ (x) · v),

for all v ∈ F , which can be seen as a diffeomorphism on F belonging to DiffF . Indeed,
we can establish a relation G→ DiffF by means of the map gαβ (x) 7→ ϕα ◦ϕ

−1
β
|{x}×F .

Since the group action is effective then the kernel of this last map is only the element 1G,
which means that every diffeomorphism of F of the form ϕα ◦ϕ

−1
β
|{x}×F is associated

with only one element of G without incoherence.

Transition functions must satisfy three properties



6.3. Künneth Formula 99

gαα(x) = 1G, for every x ∈Uα ;

gαβ (x) = g−1
βα

(x);

gαγ(x) = gαβ (x)gβγ(x). This last property is called the cocycle condition which
applies on the overlap of three open neighborhoods Uα ∩Uβ ∩Uγ .

Example 6.3.1. Some examples of fiber bundles are:

The trivial bundle E = B×F with the projection bundle being only the projection
on the first factor;

If M is a n-manifold, then the tangent bundle T M is a fiber bundle with fiber being
the Euclidean space Rn.

Theorem 6.3.2 (Künneth Formula). Let M and F be manifolds, M with a finite good
cover, then

H∗(M×F) = H∗(M)⊗H∗(F),

which in more detail is written as

Hn(M×F) = ⊕
p+q=n

H p(M)⊗Hq(F)

for all non-negative integer n.

Proof. We face the product M×F as the trivial bundle over M, also called the product
bundle. We can establish projections on the first and second factors, given by π and ρ ,
respectively. We have the diagram

M×F

M

F

π

ρ

By means of the pullbacks π∗ : Ω∗(M)→Ω∗(M×F) and ρ∗ : Ω∗(F)→Ω∗(M×
F) we can define a map Ψ : Ωk(M)⊗Ωl(F)→Ωk+l(M×F) given by

ω⊗η 7→ π
∗
ω ∧ρ

∗
η .
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The map Ψ is well-defined since pullbacks take n-forms to n-forms, then π∗ω

is a k-form on Ωk(M×F) and ρ∗η is a l-form on Ωl(M×F). Therefore, π∗ω ∧ρ∗η ∈
Ωk+l(M×F). From Ψ we can induce a map in cohomology by considering only closed
forms ω ∈Ωk(M) and η ∈Ωl(F) as representatives of equivalence classes. We denote
this map as ψ : Hk(M)⊗H l(F)→Hk+l(M×F), which is given by [ω]⊗ [η ] 7→ [π∗ω ∧
ρ∗η ].

The map ψ is also well-defined. Indeed, if ω and η are closed forms, then, by
the fact that exterior derivative commutes with pullbacks, we get

d(π∗ω ∧ρ
∗
η) = d(π∗ω)∧ρ

∗
η +(−1)degree(ω)

π
∗
ω ∧d(ρ∗η)

= π
∗(dω)∧ρ

∗
η +(−1)degree(ω)

π
∗
ω ∧ρ

∗(dη)

= 0.

Also, suppose that ω or η are exact as well. Let ω = dγ without loss of generality. Then

π
∗
ω ∧ρ

∗
η = π

∗(dγ)∧ρ
∗
η

= d(π∗γ)∧ρ
∗
η

= d(π∗γ ∧ρ
∗
η)+(−1)degree(γ)+1

π
∗
γ ∧d(ρ∗η)

= d(π∗γ ∧ρ
∗
η)+(−1)degree(γ)+1

π
∗
γ ∧ρ

∗(dη)

= d(π∗γ ∧ρ
∗
η).

Notice those are similar steps as the ones given in proposition 5.1.8.

The proof proceeds by induction on the cardinality of the good cover of M. For
each induction step we aim to prove that ψ :⊕n

p=0H p(M)⊗Hn−p(F)→ Hn(M×F) is
an isomorphism.

The first part of the inductive argument is to consider that M has a good cover
composed by only one element. Thus, M is diffeomorphic to Rm and by the Poincaré
Lemma we know its cohomology groups. The general statement of the Poincaré Lemma
says that for a manifold N it is possible to relate H∗(N×R)≃ H∗(N). We can extend
this by induction to H∗(N×Rn)≃H∗(N) on n. Therefore, since H∗(M)⊗H∗(F)≃R⊗
H∗(F)≃ H∗(F) and H∗(M×F) = H∗(Rm×F)≃ H∗(F) we obtain the isomorphism
desired.
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For the case n = 2, consider U and V open sets of M and p a fixed integer. From
the Mayer-Vietoris short exact sequence we can induce the Mayer-Vietoris long exact
sequence. Tensoring the Mayer-Vietoris long exact sequence with Hn−p(F) we obtain
the following sequence

· · · → H p(U ∪V )⊗Hn−p(F)→

→ (H p(U)⊗Hn−p(F))⊕ (H p(V )⊗Hn−p(F))→

→ H p(U ∩V )⊗Hn−p(F)→ . . .

This sequence is an exact sequence and this can be shown by simply taking the
functions connecting the original long exact sequence and tensoring it with the identity.
The exactness is preserved in the new following exact sequence by making the sum of all
functions from one space to another

· · · → ⊕n
p=0(H

p(U ∪V )⊗Hn−p(F))→

→⊕n
p=0((H

p(U)⊗Hn−p(F))⊕ (H p(V )⊗Hn−p(F))→

→⊕n
p=0(H

p(U ∩V )⊗Hn−p(F))→ . . .

By means of the function ψ we can establish a relation between two long exact
sequences as in the following diagram

⊕n
p=0H p(U ∪V )⊗Hn−p(F) ⊕n

p=0((H
p(U)⊗Hn−p(F))⊕ (H p(V )⊗Hn−p(F)) ⊕n

p=0H p(U ∩V )⊗Hn−p(F)

Hn((U ∪V )×F) Hn(U×F)⊕Hn(V ×F) Hn((U ∩V )×F)

ψ ψ ψ

Now we have in the previous diagram that both rows are exact sequences, then
we only need to prove that every square is commutative in order to apply the five lemma
on it. Most of the squares can be shown that are commutative directly by the fact that we
are working with linear or multi-linear functions. The problem may arise when we work
with the square in our diagram that is "from p to p+1", i.e.,

⊕n
p=0 (H

p(U ∩V ) ⊗Hn−p(F))

Hn(U ∩V )×F)

⊕n
p=0
(
H p+1(U ∪V ) ⊗Hn−p(F)

)

Hn+1(U ∪V )×F)

d∗

d∗
ψ ψ
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Let ω⊗η ∈H p(U ∩V )⊗Hn−p(F). Notice that in this case d∗ stands for d∗⊗ Id.
By applying ψd∗ and d∗ψ we get

ψd∗(ω⊗η) = π
∗(d∗ω)∧ρ

∗
η , and,

d∗ψ(ω⊗η) = d∗(π∗ω ∧ρ
∗
η).

If {ρU ,ρV} is a partition of unity subordinated to {U,V}, then {π∗ρU ,π
∗ρV}

is a partition of unity on (U ∪V )×F = M×F subordinated to {U ×F,V ×F}, given
that π : M×F → M. Indeed, ρU is a 0-form, then π∗ρU ∈ Ω0(U ×F), (π∗ρU)(x) =

ρU(π(x)) = ρU(p)≥ 0, for π(x) = p ∈M, and supp(π∗ρU) = supp(ρU). Since the same
can be said for π∗ρV , then we have that π∗ρU(x)+π∗ρV (x) = ρU(p)+ρV (p) = 1.

Notice that ψ :⊕n
p=0(H

p(U ∩V )⊗Hn−p(F))→ Hn((U ∩V )×F), then, when
restricted to V , we get

d∗(π∗ω ∧ρ
∗
η) = d((π∗ρU)(π

∗
ω ∧ρ

∗
η))

= d((π∗ρU π
∗
ω)∧ρ

∗
η)

= (dπ
∗(ρU ω))∧ρ

∗
η +(−1)degree(ω)

π
∗(ρU ω)∧dη

= π
∗(d∗ω)∧ρ

∗
η .

Applying the definition of d∗ when working on U we can get get the same
equality as above. In the equality above we use the facts that η is a closed form and d

commutes with pullbacks. Also, we use that pullbacks are linear over wedge product, i.e.,
( f ∗ω)∧ ( f ∗η) = f ∗(ω ∧η). This completes the proof that the diagram is commutative.

By applying the case n = 1 on U , V , and U ∩V and by applying the five lemma
on the diagram (the rows are exact), we prove that

ψ :⊕n
p=0(H

p(U ∪V )⊗Hn−p(F))→ Hn((U ∪V )×F)

is an isomorphism. Notice that ψ was firstly defined not on a direct sum but between
spaces H p(U ∪V )⊗Hn−p(F)→ Hn((U ∪V )×F). However, it remains to be well-
defined on the direct sum. The rest of the proof proceeds by Mayer-Vietoris argument as
stated in the beginning.
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Example 6.3.3. By using the Künneth formula we can compute the cohomology of
the 2-torus more easily. Let T 2 = S1×S1 be the 2-torus. The last theorem gives us the
equality

H∗(T 2) = H∗(S1×S1) = H∗(S1)⊗H∗(S1),

since the open cover given in example 3.1.9 is a finite good cover for S1. On example
5.4.2 we saw that H0(S1) = H1(S1) = R. Therefore, by the Künneth formula we have

H0(T 2) = H0(S1)⊗H0(S1) = R⊗R≃ R;

H1(T 2) = (H0(S1)⊗H1(S1))⊕ (H1(S1)⊗H0(S1)) = (R⊗R)⊕ (R⊗R)≃ R2;

H2(T 2) = H1(S1)⊗H1(S1) = R⊗R= R;

We obtain that Hn(T 2) =R(
2
n). More generally, we can compute Hn(T k) =R(

k
n),

where T k = S1 . . .S1 is the k-torus.

Similarly we can prove the next theorem.

Theorem 6.3.4 (Künneth Formula for Compatly Supported Cohomology). Let M and F

be manifolds with a finite good cover, then

H∗c (M×N) = H∗c (M)⊗H∗c (N).

The next theorem, Leray-Hirsch Theorem, can be seen as generalization of the
Künneth Formula, since for this statement we work with a general fiber bundle. Let
π : E→M be a fiber bundle over M with fiber F . If we suppose that there are cohomology
classes e1, . . . ,er on E that can be restricted to a basis of the cohomology of each fiber,
then we can define

ψ : H∗(M)⊗R{e1, . . . ,er}→ H∗(E)

similarly as on the proof of the Künneth Formula. Before stating the theorem and giving
a sketch of its proof, let us understand in more depth the paragraph above.

When demanded that the set {e1, . . . ,er} is composed of global cohomology
classes on E that when restricted to each fiber is a basis for the cohomology of the fiber,
means that if Ep = π−1({p}) is the fiber over the point p, then there is an inclusion
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ip : Ep→ E and the set {i∗pe1, . . . , i∗per} generates the cohomology ring H∗(Ep), i.e., it
generates every cohomology group Hq(Ep) of every degree q. Notice that every Ep is
diffeomorphic to the fiber F , which allows us to induce an inclusion i : F → E and then
making the set {i∗e1, . . . , i∗er} the one that generates H∗(F) and it is denoted, by means
of an abuse of notation, by the set R{e1, . . . ,er}.

Therefore, we define the function ψ : H∗(M)⊗R{e1, . . . ,er}→ H∗(E) as

ω⊗η 7→ π
∗
ω ∧

( r

∑
k=0

αkek

)
,

where η is written as a linear combination of the set {i∗e1, . . . , i∗er}.

Theorem 6.3.5 (Leray-Hirsch). Let E be a fiber bundle over M with fiber F . Suppose
M has a finite good cover. If there are global cohomology classes e1, . . . ,er on E which
when restricted to each fiber freely generate the cohomology of the fiber, then H∗(E) is a
free module over H∗(M) with basis {e1, . . . ,er}, i.e.

H∗(E)≃ H∗(M)⊗R{e1, . . . ,er} ≃ H∗(M)⊗H∗(F).

Proof. The proof is on the cardinality of the good cover of M. When proved the case
n = 2 we can generalize by using the Mayer-Vietoris argument. For n = 1 the theorem
reduces to the Künneth Formula. For n = 2 we have {U,V} a good cover for M. E

is a fiber bundle over M, therefore exists diffeomorphisms ϕU : π1(U)→U ×F and
ϕV : π−1(V )→V ×F , where π ◦ϕ

−1
U and π ◦ϕ

−1
V are projections on the first factor of

U×F and V ×F , respectively. From the fact that E|π−1(U) and E|π−1(V ) have the same
homotopy type of U×F and V ×F , respectively, and the Künneth Formula, then

H∗(E|π−1(U))≃ H∗(U×F)≃ H∗(U)⊗H∗(F),

H∗(E|π−1(V ))≃ H∗(V ×F)≃ H∗(V )⊗H∗(F).

We then establish the following diagram

⊕n
p=0H p(U ∪V )⊗Hn−p(F) ⊕n

p=0((H
p(U)⊗Hn−p(F))⊕ (H p(V )⊗Hn−p(F)) ⊕n

p=0H p(U ∩V )⊗Hn−p(F)

Hn(E|
π−1(U∪V )) Hn(E|

π−1(U))⊕Hn(E|
π−1(V )) Hn(E|

π−1(U∩V ))

ψ ψ ψ

so that the rest of the proof follows the same reasoning as in the proof of Künneth For-
mula.
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Remark 6.3.6. Check (GARZA, 2019) for the general statement of the Leray-Hirsch
theorem.
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CHAPTER

7
VECTOR BUNDLES

In this chapter we recall what is a vector bundle, by understanding its structure
through the definition of fiber bundles given in Künneth formula’s section. We present
examples and a great number of results regarding vector bundles. We draw attention
to two particular results, the "Homotopy Property of Vector Bundles" and its corollary,
which states that any vector bundle over a contractible manifold is trivial. This corollary
has a central role for proving Thom isomorphism. We develop the content in this chapter
based on (BOTT; TU, 1982), (HUSEMOLLER, 1993) and (MELO, 2019).

We say that a fiber bundle π : E→M is a vector bundle of rank n when its fiber
F is a finite n-dimensional vector space V n, where V n = Rn or V n = Cn. More precisely,
π−1({p}) has a vector space structure for every p ∈M and there is a open cover {Uα}
of M such that

E|π−1(Uα )
≃Uα ×V n

and diffeomorphisms ϕα : π−1(Uα)→Uα×V n, which for every p∈M, we get π−1({p})
diffeomorphic to V n and v 7→ ϕ−1

α (p,v) is a linear isomorphism for every p ∈Uα . We
call π : E →M a real vector bundle when V = R and a complex vector bundle when
V = C.

The structure group of our vector bundle is G = GL(n,V ) because the composites

ϕα ◦ϕ
−1
β

: (Uα ∩Uα)×V n→ (Uα ∩Uα)×V n
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induce vector space automorphisms of V n and the transition functions

gαβ : Uα ∩Uβ → GL(n,V )

can be identified as the matrices making the change of variables between systems of
coordinates given by ϕα and ϕβ , i.e.,

ϕα ◦ϕ
−1
β

(x,v)|{x}×V n = (x,gαβ (x) · v).

Example 7.0.1. Consider V n a n-dimensional vector space and its projectivization given
by P(V n) = {1-dimensional subspaces of V n}, which is a manifold. We can derive some
types of vector bundles using the projectivization, such as

The product bundle V̂ = P(V n)×V n, which is a trivial bundle;

The universal subbundle S = {(l,v) ∈ V̂ |v ∈ l}.

The universal quotient bundle Q given by the exact sequence, called tautological
exact sequence over P(V ), 0→ S→ V̂ → Q→ 0.

The fiber of S above each point l in P(V ) consists of all the points in l, for l being
a line on V n. The fibers in Q are the quotient between the related fibers on V̂ and S.

Definition 7.0.2. Let π : E → M be a vector bundle over M with fiber V n and U an
open set of M. We define s : U → E to be a section of the vector bundle E over U if
π ◦ s = Id|U .

Proposition 7.0.3. Every vector bundle has a well-defined global zero section.

Proof. For every p ∈M there is a fiber over it Ep = π−1({p}). We define a global zero
section s : M→E as a map p 7→ 0Ep ∈Ep⊂E. Since trivializations induces isomorphisms
v 7→ ϕ−1

α (p,v) for every fixed p ∈Uα , then π ◦ s(p) = π(0Ep) = p.

Transition functions on fiber bundles satisfy the cocycle property on triple inter-
sections. This remains true on vector bundles.
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Lemma 7.0.4. Let π : E →M be a vector bundle over M. Let {gαβ} be the transition
functions given by the trivializations ϕα and ϕβ . If the cocyle {g′

αβ
} comes from the

trivializations ϕ ′α and ϕ ′
β

, then there are maps λα : Uα → GL(n,V ) such that

gαβ = λα ·g′αβ
·λ−1

β

on Uα ∩Uβ , where λ−1
α means λ−1

α (p) for p ∈Uα , i.e., an inverse matrix at each point
p ∈Uα .

Proof. For every two trivializations of E, ϕα and ϕ ′α , defined on π−1(Uα), then ϕ ′α ◦
ϕ−1

α : Uα ×V n →Uα ×V n is a diffeomorphism and, for each p ∈Uα there is a non-
singular transformation of V n, which can be seen as a change of variables between
ϕα(π

−1(p))|{p}×V n and ϕ ′α(π
−1(p))|{p}×V n . We denote the set of these non-singular

transformations as a function λα : Uα → GL(n,V ). Therefore,

ϕα(π
−1(p)) = λα(p) ·ϕ ′α(π−1(p)), for every p ∈Uα

which implies

gαβ (x) · v = ϕα ·ϕ−1
β
|{x}×V n(x,v)

= (λα(x) · [ϕ ′α ·ϕ ′
−1
β |{x}×V n] ·λ−1

β
(x)) · v

= (λα(x)g′αβ
(x)λ−1

β
(x)) · v,

for every x ∈Uα ∩Uβ .

We say that two cocycles with the relation expressed in the last lemma are
equivalent. This concept leads to an important property of a vector bundle E, which is
the possibility to reduce its structure group GL(n,V ) to one of its subgroups, i.e., given
the cocycle {gαβ}, we can find an equivalent cocycle {g′

αβ
} with values only in this

subgroup. Let H be such a subgroup, then we say that the structure group of E can be
reduced to H.

Definition 7.0.5. Let π : E →M and π ′ : E ′→ N be two vector bundles. We say that
there is a bundle homomorphism between E and E ′ when there are continuous functions
f : E→ E ′ and g : M→ N and f is fiber-preserving, which is linear on the corresponding
fibers, i.e., f |π−1(p) : π−1(p) ⊂ E → (π ′)−1(g(p)) ⊂ E ′ is a linear map. We say that E

and E ′ are isomorphic when f admits an inverse which is bundle homomorphism from
E ′ to E.
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7.1. Real Vector Bundles

Example 7.1.1. The tangent bundle of S2, T S2 =
⋃

p∈S2({p}×TpS2), is a real vector
bundle. Geometrically, T S2 can be seen as the 2-sphere and all its tangent spaces.

Figure 4 – Geometric representation of T S2.

Source: Elaborated by the author.

Let UN = S2 \ {N} and US = S2 \ {S}. The stereographic projections ϕN ,ϕS

compose an atlas for S2, A = {(UN ,ϕN),(US,ϕS)} and the bundle projection π : T S2→
S2 is given by π(p,v) = p, for every p ∈ S2 and every v ∈ TpS2. Therefore, π−1({p}) =
TpS2, which has a real vector space structure.

Denote the local chart ϕN : UN → R2 as (UN ,x1,x2). We can induce a function
T ϕN : UN×R2→ π−1(UN) given by

(p,v1,v2) 7→
(

p,
(

v1
∂

∂x1
(p),v2

∂

∂x2
(p)
)

︸ ︷︷ ︸
∈T S2

p

)

which is a linear isomorphism by fixating the point p ∈UN .

Moreover, for all p ∈UN , (π ◦T ϕN)(p,(v1,v2)) = p for every (v1,v2) ∈R2. The
computations just made can be repeated with (US,ϕS). Then, to finish the proof that this
tangent bundle is a real vector bundle we need just to compute its transition functions and
analyse is structure group. We derive the transition functions from the local trivializations
induced from the local charts in A .
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Let the 2-sphere be with polar coordinates and tangent spaces with a given basis
as in figure 5, where the green tangent space is over the point B in S2 and the blue tangent
space is over the point A in S2.

Figure 5 – Vector fields on the 2-sphere.

Source: Elaborated by the author.

Looking at a net section of the sphere planified and with cartesian coordinates we
obtain a collection of pairs of the vectors that generates each tangent space, which may
have different rotation angles, as in figure 6. The transition functions are the functions
that adjust the rotation between the coordinate systems given in each tangent space,
presented in a net section of the 2-sphere.

Figure 6 – Net section of the 2-sphere with cartesian coordinates.

Source: Elaborated by the author.

In the 2-sphere, with local charts (UN ,ϕN)= (UN ,x1,x2) and (US,ϕS)= (US,y1,y2),
given (p,w1,w2) ∈ (UN ∩US)×R2 we have

T ϕ
−1
S ◦T ϕN(p,w1,w2) = T ϕ

−1
S

(
p,w1

∂

∂x1
(p),w2

∂

∂x2
(p)
)
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= T ϕ
−1
S

(
p,
[
w1

∂y1

∂x1
(p)+w2

∂y1

∂x2
(p)
]

∂

∂y1
(p),

[
w1

∂y2

∂x1
(p)+w2

∂y2

∂x2
(p)
]

∂

∂y2
(p)
)

=
(

p,
[
w1

∂y1

∂x1
(p)+w2

∂y1

∂x2
(p)
]
,
[
w1

∂y2

∂x1
(p)+w2

∂y2

∂x2
(p)
])

This means that for a point p ∈ UN ∩US we get that the transition function
gUNUS : UN ∩US→ GL(2,R) is given by

gUNUS(p) =


∂y1

∂x1
(p)

∂y1

∂x2
(p)

∂y2

∂x1
(p)

∂y2

∂x2
(p)


where the matrix above is the rotation necessary to adjust between the coordinate systems
induced on TpS2 by each of the local charts (UN ,ϕN) and (US,ϕs).

Remark 7.1.2. The images on this last example have as basis drawings firstly developed
by Matthias Zach, postdoctoral researcher at Leibniz Universitat Hannover and participant
on the defense committee, on a reunion with Timo Essig, postdoctoral researcher at
Christian-Albrechts-Universitat zu Kiel, and myself. This is the reason why the sources
were named after me, since there is no document or work by Matthias Zach available for
me to reference.

Example 7.1.3 (Tangent bundle). Inspired by the last example we can prove that the
tangent bundle T M of any smooth manifold M is a real vector bundle. We can induce
a function Uα ×Rn → π−1(Uα) from a local chart (Uα ,ϕα) of M the same way we
induced the function T ϕN : UN×R2→ π−1(UN) from the local chart (UN ,ϕN) of T S2.

Definition 7.1.4. Let E be a real vector bundle. We say that E is orientable as a vector
bundle if its structure group can be reduced to the subgroup of linear transformations
with positive determinant GL+(n,R).

Definition 7.1.5. Let E be a real vector bundle and {(Uα ,ϕα)} be a trivialization for E.
We define {(Uα ,ϕα)} to be oriented if for every α,β ∈ I, the transition function gαβ has
positive determinant at every point x ∈Uα ∩Uβ .

Proposition 7.1.6. Let E be a real vector bundle. Then E is orientable as a vector bundle
if, and only if, has an oriented trivialization {(Uα ,ϕα)}.
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Proof. It comes straightforward out of the two previous definitions.

Definition 7.1.7. Let E be a real vector bundle and {(Uα ,ϕα)} and {(Vβ ,ψβ )} two
oriented trivializations for E. We say that both these trivializations are equivalent if for
every point x ∈Uα ∩Vβ , the linear transformation (ϕα ◦ψ

−1
β

)(x) = ϕα ◦ψ
−1
β
|{x}×Rn :

Rn→ Rn has a positive determinant.

Proposition 7.1.8. The definition above gives us an equivalence relation on the set of
oriented trivializations.

Proof. In order to prove equivalence relations we have to show the reflexive, the sym-
metric and transition properties.

The reflexive property comes straight from the fact that we are relating a oriented
trivialization {(Uα ,ϕα)} with itself. Therefore, from the definition of the equivalence
relation we obtain the transition functions gαβ (x) = ϕα ◦ϕ

−1
β

(x), which have positive
determinant since {(Uα ,ϕα)} is an oriented trivialization.

The symmetric property comes from the property that the matrix representation
of (ϕα ◦ψ

−1
β

)(x) has an inverse with positive determinant.

At last, for the transitive property, take three trivializations U = {(Uα ,ϕα)},
V = {(Vβ ,ψβ )} and W = {(Wγ ,ηγ)}, where U and V are related and V and W are
related. By definition of the equivalence relation we get

(ϕα ◦ψ
−1
β

)(x) : Rn→ Rn, has a positive determinant for every x ∈Uα ∩Vβ

(ψβ ◦η
−1
γ )(x) : Rn→ Rn has a positive determinant for every x ∈Vβ ∩Wγ .

Therefore, every composite (ϕα ◦η−1
γ )(x) : Rn → Rn has a positive determi-

nant for every x ∈ Uα ∩Wγ , since (ϕα ◦η−1
γ )(x) = (ϕα ◦ψ

−1
β

) ◦ (ψβ ◦η−1
γ )(x) for a

trivialization (Vβ ,ψβ ) such that x ∈Vβ .

At the end of section 4.1 we saw that connected orientable manifolds have only
two orientations. Similarly, we can prove, using oriented trivializations, the following

Proposition 7.1.9. Let E be a real vector bundle over a connected manifold M. Then
the equivalence relation over the set of oriented trivializations is given by two elements
called orientations for E.
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Theorem 7.1.10. Let π : E→M be real a vector bundle over M. Suppose E is orientable
as a vector bundle and M is an orientable manifold. Then E is orientable as a manifold.

Proof. Let {(Uα ,ψα)} be an oriented atlas for M with transition functions hαβ = ψα ◦
ψ
−1
β

. Remember that hαβ must be orientation preserving, which means its Jacobian
matrix J(hαβ ) must have a positive determinant in every point. For a set of oriented
local trivializations {(Uα ,ϕα)} for E, the transition functions gαβ must have a positive
determinant at every point x ∈Uα ∩Uβ .

We can establish an atlas for E by making the compositions (ψα × IdRn)◦ϕα ,
which is denoted by A = {(π−1(Uα),(ψα × IdRn)◦ϕα)}. Notice that we can cover E

because given any x ∈ E we get π(x) ∈M, then there is α such that π(x) ∈Uα , which
implies x ∈ E|π−1(Uα )

. Notice that each local chart from A gives us the diffeomorphic
sets

E|π−1(Uα )
∼−→Uα ×Rn ∼−→ Rm×Rn.

The transition functions for A are given by the compositions

[(ψα × IdRn)◦ϕα ]◦ [ϕ−1
β
◦ (ψ−1

β
× IdRn)] : Rm×Rn→ Rm×Rn

where

[(ψα × IdRn)◦ϕα ]◦ [ϕ−1
β
◦ (ψ−1

β
× IdRn)](x,y) = (ψα × IdRn)◦ (ϕα ◦ϕ

−1
β

)(ψ−1
β

(x),y)

= (ψα × IdRn)(ψ−1
β

(x),gαβ (ψ
−1
β

(x)) · y)

= (hαβ (x),gαβ (ψ
−1
β

(x)) · y).

Therefore, the Jacobian matrix for this transition function is

(
J(hαβ ) 0

0 gαβ (ψ
−1
β

(x))

)

which has a positive determinant. Therefore, A is an oriented atlas for E.

Given the general linear group of square matrices with order n and entries
determined by real values, GL(n,R), we can determine two subgroups, defined by

O(n) = {A ∈ GL(n,R)|AT ·A = A ·AT = I}, with AT being the transpose matrix of A.
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SP(n) = {A ∈ GL(n,R)|vT ·A · v > 0,∀v ∈ Rn \{0} and A = AT}

where SP(n) are the positive definite symmetric matrices. Using polar decomposition for
matrices we obtain the direct product GL(n,R) = O(n)×SP(n), where direct product
in this case means exactly multiplication of matrices. Since gαβ (x) ∈ GL(n,R), then by
last proposition gαβ (x) =Ux,αβ ·Px,αβ , which proves the following

Proposition 7.1.11. Let E be a real vector bundle with rank n and structure group
G = GL(n,R). Then G can be reduced to O(n).

7.2. Complex Vector Bundles

We recall that π : E→M is a complex vector bundle of rank n over M, when it
is a fiber bundle with fiber V n = Cn and a structure group GL(n,C). If n = 1 we call it a
complex line bundle.

Remark 7.2.1. Since the structure group of a real vector bundle of rank n can be reduced
to the orthogonal group O(n), then, by the Hermitian analogue, the complex vector
bundle of rank n can be reduced to the unitary group U(n) = {A ∈ GL(n,C) : A∗A =

AA∗ = AA−1 = I}, where A∗ is the conjugate transpose of A, i.e., ⟨Ax,y⟩= ⟨x,A∗y⟩.

Proposition 7.2.2. Given a certain complex vector bundle π : E→M of rank n, then it
is also a real vector bundle π : ER→M of rank 2n.

Proof. We can simply forget the complex structure of our fiber Cn by using the forgetful
functor.

Proposition 7.2.3. Every complex vector bundle E is oriented as a real vector bundle.

Proof. According to remark 7.2.1 the structure group of E can be reduced to U(n). If A

is a matrix belonging to the structure group of E, then we can write as a real matrix of
order 2n composed by the blocks [

Ar −Ai

Ai Ar

]
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where Ar is a real matrix of order n composed by the real part of the components of
the matrix A and Ai is a real matrix of order n composed by the complex part of the
components of the matrix A. We denote this matrix as AR. Since we can rewrite A∗

following the same reasoning and the multiplication of matrices is preserved in this new
form, then ARA∗R = A∗RAR = ARA−1

R = I. This proves that AR has a positive determinant
for every A ∈U(n), which shows that E is oriented as a real vector bundle by definition
7.1.4.

7.3. Operations on vector bundles
Given real vector bundles E and E ′ over a manifold M, of ranks n and m respec-

tively, we can define operations between them as if they were vector spaces.

Definition 7.3.1. Let π : E→M and π ′ : E ′→M be real vector bundles over M, of ranks
n and m respectively, with fibers at each point x denoted by Ex and E ′x respectively. For
an open cover {Uα} of M, let {(Uα ,ϕα)} and {(Uα ,ϕ

′
α)} be local trivializations for E

and E ′, respectively. We define

The direct sum E⊕E ′ as a real vector bundle over M, with fiber Ex⊕E ′x at each
point x. Its local trivializations are given by ϕα ⊕ϕ ′α : E|π−1(Uα )

⊕E ′|π ′−1(Uα )
→

Uα × (Rn⊕Rm). The transition functions for this vector bundle are given by

(
gαβ 0

0 g′
αβ

)

The tensor product E⊗E ′ as a real vector bundle over M, with fiber Ex⊗E ′x at each
point x. Its local trivializations are given by ϕα ⊗ϕ ′α : E|π−1(Uα )

⊗E ′|π ′−1(Uα )
→

Uα × (Rn⊗Rm). The transition functions for this vector bundle are given by
gαβ ⊗g′

αβ
;

The dual bundle E∗ as a real vector bundle over M, with fiber E∗x at each point x.
Recall that given a linear transformation between real vector spaces T : V →W

we can define a linear map T ∗ : W ∗→ V ∗ given by the transpose of the matrix
of T . Then, for the trivializations of E∗ we put (ϕ∗α)

−1 : E∗|π(Uα )→Uα × (Rn)∗,
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for each trivialization ϕα : E|π(Uα )→Uα ×Rn. For each point x ∈Uα , we are, in
fact, establishing a relation between (Rn)∗ and the fiber E∗x by means of ϕ∗α(x),
which is the dual transformation of the isomorphism v 7→ ϕ−1

α (x,v). The transition
functions of E∗ are given by

(ϕ∗α)
−1 ◦ϕ

∗
β
= ((ϕα ◦ϕ

−1
β

)∗)−1 = (g∗
αβ

)−1.

The Hom-bundle Hom(E,E ′) as a real vector bundle over M, with fiber Hom(Ex,E ′x),
the space of linear maps from Ex to E ′x, at each point x ∈M. In order to make easier
for us to work with this space we identify it with E∗⊗E ′.

The pullback bundle. Let M and N be manifolds and π : E→M a vector bundle
over M. Let f : N→M be a map between manifolds. We define the vector bundle
f−1E on N, called the pullback of E by f , as a subset of N×E that is given by the
set

f−1E = {(n,e) ∈ N×E| f (n) = π(e)} ⊂ N×E.

The projection bundle π ′ : f−1E → N is given by the projection on the first co-
ordinate π ′(n,e) = n. A fiber f−1Ey over a point y ∈ N is isomorphic to the
fiber Ex, where f (y) = x.The trivialization set for f−1E is given by the pullback
functions f ∗ϕα for, the trivialization set {(Uα ,ϕα)} of E, and trivializing sets
{ f−1Uα}, which gives an open cover for f−1E over N. Also, we can identify
( f−1E)| f−1Uα

≃ f−1(E|π−1(Uα )
). This identification shows us that product bundle

pulls back to product bundle, making f−1E locally trivial. Following the same
reasoning, we have that transition functions are given by the pullback f ∗gαβ

of the transition functions gαβ of E by f . Also, it can be easily seen by defi-

nition that given a composition of maps between manifolds P
g→ N

f→ M, then
( f ◦g)−1E = g−1( f−1E). The properties for this pullback bundle derives from the
pullback property ( f ◦g)∗ = g∗ ◦ f ∗. Finally, if h : f−1E→ E is projection on the
second factor, then the pullback bundle is the maximal subset of N×E that makes
the diagram commutative
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MN

Ef−1E
h

f

π ′ π

The projectivization of a vector bundle ρ : E → M. Suppose E has transition
functions gαβ : Uα ∩Uβ → GL(n,V ), where Ep is the fiber over each point p ∈M.
The projectivization of E is a vector bundle π : P(E)→M over M, where each fiber
at a point p ∈M is the projective space P(Ep). Moreover, the transition functions
gαβ : Uα ∩Uβ → PGL(n,V ) are induced from the transition functions of E, gαβ ,
and PGL(n,V ) = GL(n,V )/{scalar matrices}.

Remark 7.3.2. A point in P(E) is the coordinate made of point and a line, (p, lp), where
lp is in the fiber Ep. For instance, for E = T S2 we have (p, lp) where lp ⊂ TpS2. Other
types of vector bundles can be derived from the projectivization.

We define the pullback bundle π−1E as a vector bundle over P(E), whose fiber
at every point lp of P(E) is Ep. A set definition for this is

π
−1E = {((x, l),(y, v⃗)) ∈ P(E)×E|π(x, l) = x = y = ρ(y, v⃗)}.

Also, we can define a universal subbundle over P(E) as well, which is given by

S = {(lp,v) ∈ π
−1E|v ∈ lp},

where each fiber over lp is all of the points in lp, where lp is viewed as 1-dimensional
subvector space of Ep.

Remark 7.3.3. On what follows until the end of this chapter is taken from (HUSEMOLLER,
1993). From the statement of the results to the complete ideas of their proofs are fully
taken from this source. Adaptations were made for this work mainly related to the lan-
guage used throughout this dissertation, which is slightly different from Husemoller’s
book.

We want to prove the next theorem in order to prove the next corollary, which
are important facts about vector bundles, especially the corollary.
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Theorem 7.3.4 (Homotopy Property of Vector Bundles). Let M and N be manifolds and
E be a vector bundle on M. If f0 and f1 are homotopic maps from N to M, then f−1

0 E is
isomorphic to f−1

1 E as vector bundles over N.

Corollary 7.3.5. Any vector bundle over a contractible manifold is trivial.

For this we work through some lemmas and propositions, where our vector
bundles have the base space as a topological space B and fiber is a vector space V .

Lemma 7.3.6. Let π : E → B be a vector bundle over B of rank n. Suppose that B =

B1∪B2, where B1 = A× [a,c] and B2 = A× [c,b], for a < c < b. If our vector bundle E

restricted to B1 and B2, i.e., E|π−1(B1)
and E|π−1(B2)

, are trivial, then E is trivial.

Proof. Let ϕ
−1
i : Bi×V →E|π−1(Bi)

be the inverse of trivializations ϕi for i= 1,2. Denote
vi = ϕi|((B1∩B2)×V ) for i = 1,2. The composition h = v−1

2 ◦v1 is an isomorphism of trivial
bundles over A×{c}. Therefore, h(x,y) = (x,g(x) · y), for (x,y) ∈ (B1∩B2)×V , and
g is a map g : A→ GL(n,V ). By defining w : B2×V → B2×V by putting w(x, t,y) =

(x, t,g(x) · y), where x ∈ A, t ∈ [c,b] and y ∈V , then we are able to extend the definition
of h for every point x ∈ A to B2 (remember that B2 = A× [c,b]).

Using this extension we see that the bundle isomorphisms ϕ
−1
1 : B1×V →

E|π−1(B1)
and ϕ

−1
2 ◦w : B2×V → E|π−1(B2)

coincide on the closed set (B1 ∩B2)×V .
Therefore, by topological properties we can extend to a global trivialization ϕ : B×V →
E, where the restrictions ϕ|B1×V and ϕ|B2×V are equal to ϕ

−1
1 and ϕ2 ·w respectively.

Lemma 7.3.7. Let π : E→ B× [0,1] be a vector bundle over B× I with fiber V . Then
there exists an open covering {Ui}i∈[0,1] of B, such that E|π−1(Ui×[0,1]) is trivial.

Proof. Since E is a vector bundle over B× [0,1], for every b ∈ B and t ∈ [0,1] there
are open neighborhoods U(t) of b and V (t) of t such that we find a trivialization ϕt :
E|π−1(U(t)×V (t))→ (U(t)×V (t))×V . Fix b ∈ B. Notice that [0,1] is a compact space,
therefore exists a finite sequence of numbers {0 = t0 < t1 < · · ·< tn = 1} where for each
ti we have local trivializations ϕti : E|π−1(U(ti)×[ti−1,ti])→ (U(ti)× [ti−1, ti])×V , for open
neighborhoods U(ti) of b ∈ B. Applying the preceding lemma inductively on the open
set U = ∩1≤i≤nU(ti) we prove that E|π−1(Ub×[0,1]) is locally trivial. Repeating this step
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for every b ∈ B we can find an open covering {Ui}i∈[0,1] of B, such that E|π−1(Ui×[0,1]) is
locally trivial.

Definition 7.3.8. Let (B,τ) be a topological space and {Bi}i∈L be a locally finite open
cover for B. We say that a family of continuous functions (ηi)i∈L, ηi : B→ [0,1], is
an envelope of unity subordinated to Bi if supp(ηi) ⊂ Bi and for each b ∈ B we get
maxi∈L ηi(b) = 1.

Proposition 7.3.9. Let π : E→ B× [0,1] be vector bundle over B× [0,1] of rank n and B

a paracompact topological space. Define r : B× [0,1]→ B× [0,1] by r(b, t) = (b,1), i.e.,
constant on the second factor. Then, there exists a map u : E→ E such that (u,r) : E→ E

is a morphism of vector bundles and u is an isomorphism on each fibre.

Proof. By lemma 7.3.7 we can find an open cover {Ui}i∈[0,1] of B such that we have the
trivializations ϕi : E|π−1(Ui×[0,1])→ (Ui× [0,1])×V . Since B is assumed to be paracom-
pact, then {Ui}i∈[0,1] is assumed to be locally finite. According to (HUSEMOLLER, 1993)
there is an envelope of unity {ρi}i∈[0,1] subordinate to the open covering {Ui}i∈[0,1]. No-
tice that each ϕi can be seen as a isomorphism between vector bundles over (Ui× [0,1]).
Denote hi = ϕ

−1
i .

Define (ui,ri) : E→ E as a morphism between vector bundles by putting

ri(b, t) = (b,max(ρi(b), t)), for (b, t) ∈Ui× [0,1], and

ui =

Id,on E \{π−1(Ui× [0,1])}

ui(ϕ
−1
i (b, t,x)) = hi(b,max(ρi(b), t),x),on (b, t,x) ∈ (Ui× [0,1])×V .

We now make use of set theory techniques. We can apply a well order on the set
[0,1], i.e., we can put a total order on [0,1] such that every non-empty subset S has a
least element in this ordering. Notice that this is not the usual order in R and that this
statement is equivalent to the axiom of choice.

Let b ∈ B. Since B is paracompact there is an open neighborhood U(b) of b

such that Ui ∩U(b) ̸= /0 only for i ∈ I(b), where I(b) ⊂ [0,1] is finite. Denote I(b) =

{i1, . . . , in(b)}, where i1 < i2 < · · ·< in(b) is given by the well order. For each b∈ B, define
the composition r = rin(b) . . .ri1 on U(b)× [0,1] and define the composition u= uin(b) . . .ui1

on π−1(U(b)× [0,1]). The map r is well defined, since each ri has ρi in its definition,
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with support as a subset of Ui, and U(b)⊂ ∪i jUi j . The same reasoning proves that u is
well-defined.

Let i /∈ I(b), then Ui ∩U(b) = /0 and supp(ρi)∩U(b) = /0, which means that
ρi(c) = 0 for c ∈U(b). Therefore, for i /∈ I(b), we have

ri(b, t) = (b,max(ρi(b), t)) = (b,max(0, t)) = (b, t), for (b, t) ∈U(b)× [0,1], and

ui(hi(b, t,x)) = hi(b,max(ρi(b), t),x)

= hi(b,max(0, t),x)

= hi(b, t,x), for points hi(b, t,x) ∈ π
−1(U(b)× [0,1]).

This means we can see u and r as a composition of infinite maps, where all except
a finite number of maps are the identity near a point. This makes our functions r and u

defined on B× [0,1] and on all vector bundle E, respectively. Moreover, since each ui is
an isomorphism on each fibre, then u is an isomorphism on each fibre.

Corollary 7.3.10. Using the same notation and definitions of the last theorem, then there
is an isomorphism (u,r) : E|π−1(B×{0})→ E|π−1(B×{1}) of vector bundles.

Proof. First of all, making the identification B×{0}= B×{1}= B does not lose any
key information on the topology of the preceding spaces. By identifying the function
r(b,0) = (b,1) = b, we obtain from last theorem a morphism (u,r) : E|π−1(B×{0}) →
E|π−1(B×{1}) of vector bundles, where u is an isomorphism on each fiber. Moreover, (u,r)
is an isomorphism because of the identification r(b,0) = (b,1) = b we made.

We now proceed to the proofs of theorem 7.3.4 and corollary 7.3.5.

Proof of theorem 7.3.4. Note that every isomorphism stated here is a isomorphism be-
tween vector bundles and remember that all manifolds are paracompacts. Let F : N×
[0,1]→M be an homotopy between functions f0 and f1. Then f−1

0 E and F−1(E)|N×{0}
are isomorphic and f−1

1 E and F−1(E)|N×{1} are isomorphic. By last corollary, F−1(E)|N×{0}
and F−1(E)|N×{1} are isomorphic. Therefore, f−1

0 E and f−1
1 E are isomorphic.
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Proof of Corollary 7.3.5. Let π : E → M be a vector bundle over M, a contractible
manifold. There are maps f and g such that f : M→ {x} and g : {x} → M such that
the composition g ◦ f is homotopic to the identity IdM on M. Therefore, by theorem
7.3.4, E and (g◦ f )−1E are isomorphic. Note that (g◦ f )−1E is the same as f−1(g−1E).
Since g : {x} → M, then g−1E is vector bundle over the point {x}, which makes this
vector bundle trivial and isomorphic to {x}×V . Since, pullback preserves trivial vector
bundles, then f−1(g−1E) is also a trivial vector bundle. Therefore, E is a trivial vector
bundle.
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CHAPTER

8
CHERN CLASSES

In this chapter we give an overview on the content left necessary to define Chern
classes and present some of its properties. This overview guide is based entirely on
(BOTT; TU, 1982).

First of all, we need to recall the compact vertical cohomology on a vector bundle,
which is denoted by H∗cv(E).

Definition 8.0.1. Let π : E →M be a rank n vector bundle over a m-manifold M. We
start by defining the graded algebra Ω∗cv(E), which is composed by forms ω ∈Ωn(E),
such that for every compact set K ⊂M, then π−1(K)∩ supp(ω) is compact. Notice that
supp(ω) might not be a compact set on E, but supp(ω|π−1(x))⊂ π−1(x)∩ supp(ω) is a
compact set, i.e., its support restricted into each fiber is compact. The cohomology ring
of Ω∗cv(E) is the set H∗cv(E).

Let ω ∈Ω∗cv(E) and {(Uα ,ϕα)} be an oriented trivialization for E, which is now
supposed to be oriented. For an open set Uα , there are coordinate functions x1, . . . ,xm.
For Eπ−1(Uα )

, there are fiber coordinates t1, . . . , tn. Restricting ω to π−1(Uα), denoted by
ωα , then it can be locally written as one of the two following types

(π∗φ) f (x1, . . . ,xm, t1 . . . , tn)dti1 . . .dtir , for r < n, or

(π∗φ) f (x1, . . . ,xm, t1, . . . , tn)dt1 . . .dtn,
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where f (x,−) is a function of compact support for every fixed x = (x1, . . . ,xm) and
φ ∈Ω∗(M).

We define a map π∗ : Ω∗cv(E)→Ω∗−n(M), called integration along the fiber, by
making π∗ωα = 0, when ωα is of the first type, and

π∗ωα = φ

∫
Rn

f (x, t)dt1 . . .dtn,

when ωα is of the second type.

This map is well-defined. Indeed, for forms of the first type is immediate to see
that the map is well-defined. For forms of second type, since supp( f (x,−)) is compact
for each x, then

∫
Rn f (x, t)dt1 . . .dtn < ∞. Moreover, the form

(π∗φ) f (x1, . . . ,xm, t1, . . . , tn)dt1∧·· ·∧dtn

turns into a form with degree subtracted by n, then φ
∫
Rn f (x, t)dt1 . . .dtn ∈ Ω∗−n(M),

since now it depends only from the point x.

For another open set Uβ , then the coordinates related to each ωα and ωβ can be
related by an element of GL+(n,R), then π∗ωα = π∗ωβ . Also, the operator π∗ commutes
with the exterior derivative.

An important fact about the compact vertical cohomology is the Thom isomor-
phism. This theorem is what makes possible for us to define the Euler class for vector
bundles of rank 2 and, then, the first Chern class. This isomorphism can be seen as a
Poincaré Duality, but now we are working with the compact vertical cohomology.

Theorem 8.0.2 (Thom Isomorphism). Let π : E→M be a vector bundle of rank n over
M. If E is oriented, then

H∗cv(E)≃ H∗−n(M).

In order to prove the Thom isomorphism for a manifold M of finite type we
establish the following Mayer-Vietoris sequence from the graded algebras

0→Ω
∗
cv(E|U∪V )→Ω

∗
cv(E|U)⊕Ω

∗
cv(E|V )→Ω

∗
cv(E|U∩V )→ 0.

From this sequence we establish the following diagram, using the induced map
from the integration along the fiber π∗ on the cohomology level
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H∗(E|U∪V ) H∗(E|U)⊕H∗(E|V ) H∗(E|U∩V ) H∗+1(E|U∪V )

H∗−n(U ∪V ) H∗−n(U)⊕H∗−n(V ) H∗−n(U ∩V ) H∗+1−n(U ∪V )

π∗ π∗ π∗ π∗

The rest of the proof follows the same reasoning applied for the finite case of
Poincaré’s Duality. The general case uses arguments from Riemannian metrics and
presheaves theory, where the latter was not introduced in this work.

Definition 8.0.3. Let T : H∗−n(M)→ H∗cv(E) be the Thom Isomorphism in the last
theorem. Let [1] ∈ H0(M) be the cohomology class given by the constant function 1 on
M, then we define T ([1]) ∈ Hn

cv(E) to be the Thom class of the oriented vector bundle
E.

Now, we take the next step, which is to define the Euler class on an oriented
vector bundle of rank 2, in order to define the first chern class. Therefore, let π : E→M

be a vector bundle of rank 2 over M and {Uα} a coordinate open cover of M trivializing
E. A differential form of maximum degree on an oriented manifold is called positive
if it is in the chosen orientation class of the manifold. If σ is the positive differential
form that generates the cohomology group Hn−1(Sn−1), then the form ψ = µ∗σ is the
angular form on Rn \{0}, where µ : Rn \{0}→ Sn−1 is the deformation retraction given
by

x
||x||

.

Let there be a Riemannian structure on E. Consider E0 the complement of the
zero section of E. There is a global angular form ψ on E0, where ψ restricted to each
fiber is the angular form on Rn \ {0}. This form gives us the Thom class by making
d(ρ ·ψ), where ρ is the radius function on E. In our particular case ψ is found from the
construction of the Euler class.

We start by considering an orthonormal frame over each Uα . From this we are
able to define polar coordinates rα and θα on E0|π−1(Uα )

. Notice that for coordinates
x1, . . . ,xn we have that π∗x1, . . . ,π

∗xn,rα ,θα are coordinates on E0|π−1(Uα )
. Between

two different open sets , Uα and Uβ , the radius rα and rβ coincide on Uα ∩Uβ , however
θα and θβ differ by a rotation. The 0-form that is defined as the angle rotation in
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the counterclockwise direction from α-coordinate system to a β -coordinate system is
denoted by ϕαβ . We make

θβ = θα +π
∗
ϕαβ , for ϕαβ : Uα ∩Uβ → R.

For each ϕαβ there are 1-forms ξα on Uα such that

1
2π

dϕαβ = ξβ −ξα .

We define the Euler class as a 2-form on M, denoted by e, which is a global form
on M by glueing all dξα , since for any α,β , dξα = dξβ on Uα ∩Uβ . Note that e is a
closed form and can be often denoted by e(E). This class is functorial, which means
that for f : N→M, a C∞ map, then e( f−1E) = f ∗e(E). The global angular form on E0

satisfies dψ =−π∗e, where ψ is given by the glueing of
dθα

2π
−π∗ξα .

Remark 8.0.4. In order to see this construction in more detail and with more geometric
intuition check (BOTT; TU, 1982), pages 70−74.

Definition 8.0.5. Let M be a manifold. We define the first Chern class, denoted as c1, of
a complex line bundle L over M as the Euler class of the underlying real bundle LR, i.e.,
c1(L) = e(LR) ∈ H2(M).

Notice that by proposition 7.2.3 every complex vector bundle is oriented as a real
vector bundle, then last definition is well-defined and we can apply the Euler class in LR.

Let L and L′ two complex line bundles. Then c1(L⊗L′) = c1(L)+ c1(L′). We
will assume this last equality, but it can be proved by using a relation between the
transition functions of these complex line bundles, since we can write the Euler class
of a real vector bundle of rank 2 using its transition functions. This expression can be
found in (BOTT; TU, 1982) in the end of page 73. Also, if L∗ is the dual space of L,
then L∗⊗L = Hom(L,L), which has a nowhere vanishing given by the identity map.
Therefore, L∗⊗L is a trivial bundle and its first Chern class is zero, then c1(L∗) =−c1(L).

Let ρ : E→M be a complex vector bundle and let π : P(E)→M be its projec-
tivization. From now on, we work with some vector bundles on P(E). First of all, the
pullback bundle π−1E, with fiber Ep over each point lp. Also, we work with the universal
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subbundle S = {(lp,v) ∈ π−1E|v ∈ lp}, where the fiber over each point lp consists of all
the points of lp. If S∗ is the dual bundle of S, then set x = c1(S∗).

The element x is a cohomology class in H2(P(E)). The restriction of S to a fiber
P(Ep) is the universal subbundle S of P(Ep). Then c1(S) is the restriction of −x = c1(S)

to P(Ep) by the functorial property of the Euler class e( f−1SR) = f ∗e(SR), where f is the
inclusion i : P(Ep) ↪→ P(E). Therefore, the cohomology classes 1,x, . . . ,xn−1 are global
classes on P(E), whose restriction to each fiber P(Ep) freely generate the cohomology
of the fiber. Using the Leray-Hirsch theorem we are able to see that the cohomology
H∗(P(E)) is a free module over H∗(M) with basis {1,x, . . . ,xn−1}. This means that the
class xn can be written as unique linear combination of this basis with coefficients in
H∗(M). We call these coefficients the Chern classes of the complex vector bundle E,
satisfying the equation

xn + c1(E)xn−1 + · · ·+ cn(E) = 0, for ci(E) ∈ H2i(M), (8.1)

where ci(E), the i-th Chern class of E, stands for π∗ci(E), the pullback of the coefficients
from H2i(M). Moreover, we define the total Chern class, given by

c(E) = 1+ c1(E)+ · · ·+ cn(E) ∈ H∗(M).

Now we got two definitions of the first Chern class. Denote c1(−) as the definition
coming from the Leray-Hirsch theorem and e(−) the definition from the Euler class.
Let L be a complex line bundle. We have that the projectivization and the pullback of
L are M and L, respectively. Also, the universal sub-bundle S on P(L) is L. Therefore,
x = e(S∗R) =−e(SR) =−e(LR)⇒ x+e(LR) = 0. Then from the coefficients uniqueness
of equation (8.1) we get that c1(L) = e(LR). Also, for a trivial bundle E = M×V , then
P(E) = M×P(V ), which implies. xn = 0. This means that ci(E) = 0 for all i, since xn is
an unique combination of the basis {1,x, . . . ,xn−1} where coefficients are ci(E).

Proposition 8.0.6. The Chern classes have the following important properties

Let E be a complex vector bundle of rank n, then ci(E) = 0 for i > n;

Let E be a complex vector bundle of rank n, then c0(E) = 1;

On trivial bundles all Chern classes ci(E), i > 0, are zero;
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(Naturality) Let f : Y → X be a map and E a complex vector bundle over X , then
c( f−1E) = f ∗c(E);

Let S∗ be the dual bundle of the universal sub-bundle S⊂ P(V n)×V n, then c1(S∗)

generates H∗(P(V n));

(Whitney Product Formula) If E and E ′ are complex vector bundles over M, then
c(E⊕E ′) = c(E)c(E ′);

If E is a complex vector bundle of rank n and E has a non-vanishing section, then
cn(E) = 0.

If E is a complex vector bundle of rank n, then cn(E) = e(ER).

We give an outline on the ideas for most properties. We start by stating that the
first two properties are considered to be definitions.

The naturality comes from the properties of pullback bundle f−1P(E)=P( f−1E)

and f−1S∗E = S∗f−1E , where SX is the universal sub-bundle over P(X).

The Whitney product formula derives from the Splitting principle, which states
that for a complex vector bundle π : E →M of rank n, there is a manifold F(E) and a
map σ : F(E)→M, such that the pullback bundle σ−1E = L1⊕·· ·⊕Ln is a complex
vector bundle over F(E) and we have the embedding σ∗ : H∗(M) ↪→ H∗(F(E)).

In order to prove that cn(E) = 0 whenever ρ : E → X is a complex vector
bundle of rank n with a non-vanishing section, we must take the mentioned section
s from the hypothesis and induce a section s on P(E) by doing s : X → P(E) where
s(p) = ls(p) ⊂ Ep. We then take the line bundle s−1SE over X . Its fibers at points p are
s−1Ep = ls(p) ⊂ Ep. The section s is a non-vanishing section on the line bundle s−1SE .
Then s−1SE is isomorphic to the trivial line bundle X×C. From the naturality we get that
s∗c1(SE) = 0 and s∗c1(S∗E) = s∗x = 0. Applying the pullback s∗ on the Chern polynomial
we get

s∗(xn + c1(E)xn−1 + · · ·+ cn(E)) = 0 =⇒ s∗xn + s∗c1(E)s∗xn−1 + · · ·+ s∗cn(E) = 0.

This gives us s∗cn(E) = 0, which really means (s∗ ◦π∗)cn(E) = cn(E) = 0.
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The last property follows by Splitting principle on the sequence of equalities

σ
∗cn(E) = cn(σ

−1E)

= c1(L1) · · ·c1(Ln)

= e((L1)R) · · ·e((Ln)R)

= e((L1)R⊕·· ·⊕ (Ln)R)

= e((σ−1E)R)

= σ
∗e(ER)

The conclusion follows from the injectivity of σ∗.

Definition 8.0.7. A set M is said to be a complex manifold if it satisfies all definitions and
has all the same properties of a smooth manifold with the exception that the local charts
for M are holomorphic functions ϕα : Uα → ϕ(U)⊂ Cn for an open cover {Uα}α∈A for
M.

Example 8.0.8. The complex projective space P(Cn) is assumed to be a complex man-
ifold for this example. Let E = P(Cn+1)×Cn+1 be a trivial complex vector bundle of
rank n+1 over P(Cn+1). We have the tautological sequence

0→ S→ E→ Q→ 0. (8.2)

We may represent the tangent bundle T P(Cn+1) over P(Cn+1) as

T P(Cn+1)≃ Hom(S,Q) = Q⊗S∗.

We can tensor (8.2) with S∗, which provide us

0→ S∗⊗S→ S∗⊗E→ S∗⊗Q→ 0.

The bundle S∗⊗S remains to be a line bundle. Then, by making x = c1(S∗), we get

c(P(Cn+1)) = c(T P(Cn+1)) = c(S∗⊗Q)

= c(S∗⊗E) = c(S∗⊕·· ·⊕S∗)

= c(S∗)n+1 = (c0(S∗)+ c1(S∗))n+1

= (1+ x)n+1
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Example 8.0.9. For a vector bundle E = L1⊕·· ·⊕Ln, where each Li is a line bundle,
we define

Λ
pE =

⊕
1≤i1<···<ip≤n

(Li1⊗·· ·⊗Lip).

Using the Whitney product formula we get

c(ΛpE) = c
( ⊕

1≤i1<···<ip≤n

(Li1⊗·· ·⊗Lip)
)

= ∏
1≤i1<···<ip≤n

c(Li1⊗·· ·⊗Lip)

= ∏
1≤i1<···<ip≤n

(c0(Li1⊗·· ·⊗Lip)+ c1(Li1⊗·· ·⊗Lip))

= ∏
1≤i1<···<ip≤n

(1+ xi1 + · · ·+ xip)

where xi = c1(Li) and for line bundles we may assume c1(L⊗L′) = c1(L)+ c1(L′).

Example 8.0.10. Let L be a complex line bundle. The tensor bundle L⊗L∗ is a line
bundle with a non-vanishing section given by the identity map, then

c1(L⊗L∗) = 0⇒ c1(L∗) =−c1(L) (8.3)

If E = L1⊕·· ·⊕Ln and each c(Li) = (1+ c1(Li)), then by the Whitney product
formula we get

c(E) = ∏
1≤i≤n

(1+ c1(Li)).

Also, the dual bundle is given by E∗ = L∗1⊕·· ·⊕L∗n. By (8.3) we get

c(E∗) = ∏
1≤i≤n

(1− c1(Li)).

Then cq(E∗) = (−1)qcq(E).
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CHAPTER

9
CONCLUSION

Throughout this work, we approach a great amount of mathematical concepts
from many different fields of mathematics, passing through analysis, topology, algebra
and geometry, in order to achieve the main goal of these studies, i.e., understand the
mathematics needed to have a basic comprehension of the Chern classes construction
using differential topology. The topics studied are smooth manifolds, differential forms,
which includes integration and Stokes theorem, de Rham cohomology and Vector bundles.
Moreover, we have presented some very important results in this text, such as the Poincaré
Duality, the Künneth formula and the Homotopy Property of Vector Bundles. Finally, in
chapter 8, we reach our objective, which is to present a simplified introduction for the
construction of Chern classes, starting by the geometric construction of the first Chern
class and, then, generalizing it with Leray-Hirsch theorem.

Furthermore, we notice that in order to comprehend in full extent the concept
of Chern classes using differential topology one would still need to look in more detail
to Cech cohomology, generalizations of Mayer-Vietoris and Künneth formula theorem,
more profound category theory, such as sheaves and presheaves, and Thom Isomorphism.
Also, Chern classes applications are many and important to mathematics and physics,
since it provides us key topological information about complex vector bundles in the
following sense: let be two complex vector bundles with different Chern classes, then
they are different vector bundles. Ultimately, this work may be seen as an introduction
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for the field of Chern classes using differential topology, which purpose is to give the
most complete as possible and coherent basis for the basics of this subject.
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