
U
N

IV
ER

SI
D

A
D

E 
D

E 
SÃ

O
 P

AU
LO

In
st

itu
to

 d
e 

Ci
ên

ci
as

 M
at

em
át

ic
as

 e
 d

e 
Co

m
pu

ta
çã

o

Geometrical and topological investigation of some families of
quadratic differential systems possessing saddle-nodes or

invariant ellipses

Marcos Coutinho Mota

Tese de Doutorado do Programa de Pós-Graduação em
Matemática (PPG-Mat)





SERVIÇO DE PÓS-GRADUAÇÃO DO ICMC-USP

Data de Depósito:

Assinatura: ______________________

Marcos Coutinho Mota

Geometrical and topological investigation of some families of

quadratic differential systems possessing saddle-nodes or

invariant ellipses

Thesis submitted to the Instituto de Ciências

Matemáticas e de Computação – ICMC-USP – in

accordance with the requirements of the Mathematics

Graduate Program, for the degree of Doctor in Science.

FINAL VERSION

Concentration Area: Mathematics

Advisor: Profª. Drª. Regilene Delazari dos

Santos Oliveira

Co-advisors: Prof. Dr. Alex Carlucci Rezende, Prof.

Dr. Joan Carles Artés Ferragud

USP – São Carlos

May 2021



Ficha catalográfica elaborada pela Biblioteca Prof. Achille Bassi 
e Seção Técnica de Informática, ICMC/USP, 

com os dados inseridos pelo(a) autor(a)

                                       Bibliotecários responsáveis pela estrutura de catalogação da publicação de acordo com a AACR2: 
                                       Gláucia Maria Saia Cristianini - CRB - 8/4938 
                                       Juliana de Souza Moraes - CRB - 8/6176

M917g
Mota, Marcos Coutinho
   Geometrical and topological investigation of
some families of quadratic differential systems
possessing saddle-nodes or invariant ellipses /
Marcos Coutinho Mota; orientadora Regilene Delazari
dos Santos Oliveira; coorientador Alex Carlucci
Rezende, Joan Carles Artés Ferragud . -- São
Carlos, 2021.
   396 p.

   Tese (Doutorado - Programa de Pós-Graduação em
Matemática) -- Instituto de Ciências Matemáticas e
de Computação, Universidade de São Paulo, 2021.

   1. quadratic differential system. 2. geometrical
and topological classification. 3. phase portrait.
4. invariant polynomial. 5. configuration of
invariant ellipses and lines. I. Oliveira, Regilene
Delazari dos Santos, orient. II. , Alex Carlucci
Rezende, Joan Carles Artés Ferragud, coorient. III.
Título. 



Marcos Coutinho Mota

Investigação geométrica e topológica de algumas famílias

de sistemas diferenciais quadráticos possuindo selas-nós

ou elipses invariantes

Tese apresentada ao Instituto de Ciências

Matemáticas e de Computação – ICMC-USP,

como parte dos requisitos para obtenção do título

de Doutor em Ciências – Matemática. VERSÃO

REVISADA

Área de Concentração: Matemática

Orientadora: Profª. Drª. Regilene Delazari dos

Santos Oliveira

Coorientadores: Prof. Dr. Alex Carlucci Rezende, Prof.

Dr. Joan Carles Artés Ferragud

USP – São Carlos

Maio de 2021





This thesis is dedicated to my parents, sisters, fiance and, of course, to everyone who is
interested in the classification of planar quadratic differential systems.





ACKNOWLEDGEMENTS

Depois de quatro anos nessa montanha–russa chamada Doutorado é hora de deixar
alguns agradecimentos.

Primeiramente agradeço a Deus pela vida, por todas as oportunidades e por mais
esta conquista.

Agradeço aos meus pais, Marta e José Luiz, às minhas irmãs, Maria das Mercês e
Elizângela e à minha avó Terezinha (in memoriam), por tudo o que fizeram por mim e
por sempre me incentivarem a estudar.

Meu mais carinhoso agradecimento é dedicado à minha noiva Mirianne. Meu amor,
sem você essa luta certamente seria muito mais difícil! Muito obrigado por sempre estar
ao meu lado me dando forças! Você é o melhor presente que a vida me deu durante
este Doutorado! Agradeço também aos seus familiares (minha segunda família), por me
receberem de braços abertos!

Agradeço também aos amigos da Graduação, Mestrado e Doutorado. Particular-
mente deixo especial agradecimento ao amigo Marco Antonio. “Primo”, desde o Mestrado
eu te considero um irmão que a vida me deu! Além disso, você é um dos “culpados” por
eu estar concluindo o Doutorado no ICMC. Em 2016 você insistiu tanto até eu fazer
minha inscrição, obrigado mesmo por isso e por todo o restante (se eu fosse elencar tudo,
certamente não caberia aqui)!

Agradeço a todos os meus ex–professores pelos conhecimentos transmitidos. Em
particular, agradeço aos meus ex–orientadores (em Matemática) Marcos Pavani de Car-
valho e Liliane Martinez Antonow (Graduação), Denis de Carvalho Braga e Luis Fernando
de Osório Mello (Mestrado) por todos os incentivos e ajudas para que eu pudesse chegar
até aqui.

Não poderia deixar de agradecer (e muito) à minha orientadora. Regilene, no
fim de 2016 eu te escrevi dizendo que havia sido aprovado no processo seletivo para o
Doutorado em Matemática do ICMC e perguntei sobre a sua disponibilidade de orien-
tação. Prontamente você me respondeu e já me encaminhou esta proposta de tese (a qual
agora se concretiza). Em 2017 iniciei o Doutorado, fiz disciplinas, exames de qualificação,
realizamos três estágios de docência e, principalmente, trabalhamos por muitas horas em
sua sala (e agora, no fim do Doutorado, virtualmente). Se você tivesse respondido aquele
email em 2016 dizendo que não teria disponibilidade para me orientar, certamente eu



não estaria concluindo esta tese. Muito obrigado por todo o seu tempo dedicado a me
orientar, por todos os ensinamentos, ajudas, conselhos, incentivos, oportunidades, confi-
ança em meu trabalho, paciência e amizade durante toda a orientação! Espero que nossa
amizade e colaborações continuem por muitos anos!

Agradeço muito também ao meu coorientador brasileiro. Alex, depois (e além)
da Regilene, você foi de fundamental importância para o andamento e conclusão dos
trabalhos desenvolvidos ao longo do meu Doutorado. Você tem grande contribuição nesta
tese e, consequentemente, na conclusão dessa etapa da minha vida. Muito obrigado por
todas as ajudas, incentivos, conselhos, por todo o seu tempo e, principalmente, por sua
amizade no decorrer desta coorientação! Fico muito feliz de ter sido seu (primeiro) aluno
de Doutorado! Que nossa amizade e colaborações continuem por muitos anos!

Também deixo um agradecimento aos amigos do nosso “Grupo Dinâmico”.

Agradezco mucho a mi codirector catalán Profesor Joan Carles Artés por invitarme
a estar en Barcelona para trabajar con él en la Universitat Autònona de Barcelona (UAB).
Los seis meses que estuve en Barcelona fue un período muy productivo y significativo para
la conclusión de esta tesis. Joan Carles, agradezco mucho todo su tiempo, su paciencia,
ayudas con el trabajo, todas las enseñanzas, viajes en coche, compañías en la hora de la
comida en el restaurante de la UAB, ¡enfin, por todo! Vuestra ayuda fue fundamental
para la conclusión de esta tesis. Mismo con la pandemia del Coronavirus me gustó mucho
estar en la magnífica Barcelona y espero que tengamos muchas otras oportunidades de
trabajar juntos (claro, sin Coronavirus).

I would like to thank Professor Nicolae Vulpe for the opportunity of working with
him during his visit to São Carlos in 2019. Nicolae, I also thank you for the opportunity
of learning a little bit about the Invariant Theory and, on behalf of everyone who uses this
theory in order to study quadratic systems, thank you very much for having improved
these tools!

También tengo mucho que agradecer a mi amigo Laudino (y claro, su familia:
Laudy, María, Mirian y Carlos) de Cerdanyola del Vallès. Laudy, muchas gracias por
haber abierto las puertas de vuestro piso para yo vivir mientras estuve en Barcelona.
Esté cierto de que no voy olvidarme jamás de este período que he estado en vuestra casa.
Creo que viví en el mejor piso de Cerdanyola. No voy olvidarme de sus estrellas al sonido
de los reggaetones, de su piso, de nuestros paseos en Cerdanyola, del por del sol desde
el balcón, de las charlas sobre varios temas y claro, de la pandemia y de los aplausos en
el balcón al sonido de la canción Resistiré. No olvidaré también a Brenda, que nos ha
brindado con su compañía muy graciosa, casi todos los días pacientemente acostada en
el balcón mirando el paisaje. Vosotros habéis sido los mejores compañeros de piso, ¡vos
agradezco mucho la compañía! ¡Ojalá nos veamos otra vez! 



Aos colegas brasileiros Ana Lívia, Luiz Fernando (e familiares), Mariana e Rubem
que estiveram em Barcelona durante minha estadia por lá, obrigado pelos bons momentos
e passeios juntos!

Deixo também um agradecimento à dona Nair, proprietária do apartamento onde
vivi em São Carlos durante o Doutorado, uma pessoa muito bondosa, sempre pronta e
disposta a ajudar.

Agradeço a todas as pessoas, as quais não tiveram o nome mencionado aqui, mas
que estiveram presente durante toda essa caminhada e que contribuíram de alguma forma
para a conclusão desta etapa da minha vida. Em particular, também agradeço a todos
os professores e funcionários do ICMC e também do Departamento de Matemática da
Universidade Autônoma de Barcelona.

I would like to thank Professors Dr. Alex Carlucci Rezende (UFSCar), Dr. Claudia
Valls Angles (Instituto Superior Técnico da Universidade de Lisboa), Dr. Dana Schlomiuk
(Université de Montréal), Dr. Fabio Scalco Dias (UNIFEI), Dr. Jaume Llibre (Universitat
Autònoma de Barcelona), Dr. Joan Carles Artés (Universitat Autònoma de Barcelona),
Dr. Nicolae Vulpe (Institute of Mathematics and Computer Science, Moldova, Chisinau),
and Dr. Regilene Delazari dos Santos Oliveira (ICMC-USP) for their availability in par-
ticipating in my doctoral defense and also for their valuable suggestions and corrections,
aiming a higher quality of this thesis.

O presente trabalho foi realizado com apoio da Coordenação de Aperfeiçoamento
de Pessoal de Nível Superior – Brasil (CAPES) – Código de Financiamento 001. Deixo
meu muito obrigado à CAPES pelos auxílios financeiros recebidos via PROEX (Processo
número 88882.328773/2019–01) e PRINT (Processo número 88887.371153/2019–00).





“[. . .]

Resistiré, erguido frente a todo

Me volveré de hierro para endurecer la piel

Y aunque los vientos de la vida soplen fuerte

Soy como el junco que se dobla

Pero siempre sigue en pie

Resistiré, para seguir viviendo

Soportaré los golpes y jamás me rendiré

Y aunque los sueños se me rompan en pedazos

Resistiré, resistiré [. . .]”

(Dúo Dinámico, 1988)

El himno de la cuarentena en España en 2020





RESUMO

MOTA, M. C. Investigação geométrica e topológica de algumas famílias de
sistemas diferenciais quadráticos possuindo selas-nós ou elipses invariantes.
2021. 396 p. Tese (Doutorado em Ciências – Matemática) – Instituto de Ciências
Matemáticas e de Computação, Universidade de São Paulo, São Carlos – SP, 2021.

O estudo dos sistemas diferenciais polinomiais quadráticos no plano tem se demonstrado
desafiador, existem centenas de artigos datados de mais de um século sobre esse tema e
ainda existem muitos tópicos para serem estudados e concluídos. Por exemplo, a carac-
terização completa dos retratos de fase de sistemas quadráticos permanece desconhecida
e a classificação topológica completa de tais sistemas tem sido um trabalho complexo.
É bem sabido que a principal dificuldade de se trabalhar com os sistemas quadráticos
é a quantidade de parâmetros. Um sistema quadrático (genérico) é definido por 12 pa-
râmetros, entretanto, usando transformações afins e reescala temporal pode–se reduzir
este número para cinco, mas ainda são muitos parâmetros, uma vez que o correspondente
diagrama de bifurcação é um espaço euclideano de dimensão cinco. Desta forma, faz–se
conveniente utilizar algumas ferramentas (a Teoria dos Invariantes, por exemplo) de modo
a estudar famílias de sistemas quadráticos com propriedades específicas (por exemplo, de
acordo com a estabilidade estrutural ou possuindo classes de curvas algébricas invarian-
tes) para reduzir ainda mais (quando possível) essa quantidade de parâmetros. Nesta
tese objetivamos contribuir com a classificação dos sistemas quadráticos no plano. Mais
precisamente, apresentamos o estudo completo (módulo ilhas) do diagrama de bifurcação
de duas famílias de sistemas quadráticos com propriedades específicas em suas singulari-
dades. Fazemos a classificação topológica completa de todos os retratos de fases (módulo
ciclos limites) de dois conjuntos de sistemas quadráticos de codimensão dois e fazemos a
classificação de todos os sistemas quadráticos que possuem elipses invariantes de acordo
com a chamada configuração de elipses invariantes e retas invariantes. Vale a pena ressal-
tar que esses trabalhos representam três abordagens distintas para o estudo dos sistemas
quadráticos, e cada um deles utiliza técnicas diferentes, que em conjunto são úteis para o
objetivo final de classificar retratos de fases.

Palavras-chave: sistema diferencial quadrático, classificação geométrica e topológica, re-
trato de fase, invariante polinomial, configuração de elipses e retas invariantes.





ABSTRACT

MOTA, M. C. Geometrical and topological investigation of some families of
quadratic differential systems possessing saddle-nodes or invariant ellipses.
2021. 396 p. Tese (Doutorado em Ciências – Matemática) – Instituto de Ciências
Matemáticas e de Computação, Universidade de São Paulo, São Carlos – SP, 2021.

The study of quadratic polynomial differential systems on the plane have been shown a
tough challenge, there exist hundreds of papers about them which are dated for over a
century and until now there exist several topics to be studied and concluded. For instance,
the complete characterization of phase portraits of quadratic systems remains unknown
and the complete topological classification of such systems has been a complex work. It is
well known that the greatest difficult of working with quadratic systems is the quantity of
parameters. A (generic) quadratic system is defined by 12 parameters, however by using
affine transformations and time rescaling one can reduce this number by five, but yet this
is a very large number, once the corresponding bifurcation diagram is a five–dimensional
euclidean space. So, it is convenient to use some tools (as the Invariant Theory) in order
to study families of quadratic systems with specific properties (for instance, according
to the structural stability or possessing classes of invariant algebraic curves) with the
purpose of reducing even more (when it is possible) this quantity of parameters. The
main goal of this thesis is to contribute to the classification of the quadratic systems
on the plane. More precisely, we present the complete study (modulo islands) of the
bifurcation diagram of two families of quadratic systems possessing specific properties on
their singularities, we do the complete topological classification (modulo limit cycles) of
all the phase portraits of two sets of quadratic systems of codimension two and we perform
the classification of quadratic differential systems with invariant ellipses according to their
configurations of invariant ellipses and invariant lines. It is worth mentioning that these
three works represent three different approaches to the study of quadratic systems and
each one of them uses different techniques, which all together are useful towards the final
goal of classifying phase portraits.

Keywords: quadratic differential system, geometrical and topological classification, phase
portrait, invariant polynomial, configuration of invariant ellipses and lines.
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INTRODUCTION

In Artés, Oliveira and Rezende (2020), the authors present a remarkable introduc-
tion to the study of the planar quadratic differential systems. In my point of view, there
is no best introduction to this subject. So in the next paragraphs I ask the authors for a
permission to use some of their ideas for an introduction to this thesis.

“Mathematicians are fascinated in closing problems. Having a question solved or
even sign with a “q.e.d” a question asked in the past is a pleasure which is directly
proportional to the time elapsed between the formulation of the question and the moment
of the answer” (Artés, Oliveira and Rezende (2020)).

The advent of the Differential Calculus opened the possibility of solving many
questions that mathematicians from medieval era asked, but at the same time it opened
the possibility of formulating many new other questions. The search for primitive func-
tions that could not be expressed algebraically or with a finite number of analytic terms
complicated the future research lines, and even new areas of Mathematics were created
to give answers (precise or not) to these questions. And beside the problem of finding a
primitive to a differential equation in a single dimension, if we consider a multivariable
problem, clearly the study becomes much more difficult.

It is known that it took almost 200 years between the appearance of the first
system of linear differential equations and its complete resolution by Laplace in 1812.
After the resolution of linear differential systems, for any dimension, it seemed natural to
address the classification of quadratic differential systems.

However, it was found that the problem would not have an easy solution in a
short period of time. An example of this situation occurs with differential equations such
as those ones used to solve real–life problems, which may not necessarily be directly
solvable, i.e. their solutions do not have an explicit expression. Instead, solutions can be
approximated by using numerical methods. Unlike the linear systems that can be solved
analytically, quadratic systems (not even, therefore, those of higher degree) generically
admit a solution of that kind, at least, with a finite number of terms.

Therefore, during the attempt of solving the non–linear differential systems, an-
other strategy was chosen and that moment allowed the creation of a new area of knowl-
edge in Mathematics, the Qualitative Theory of Ordinary Differential Equations (see
Poincaré (1885)). Since we are not able to give a precise mathematical expression to the
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solution of a system of differential equations, this theory, which became one of the basic
tools of pure and applied Mathematics, intends to express by means of a complete and
precise drawing the behavior (or evolution in time) of any particle located in a vector field
governed by such a differential equation, i.e. its phase portrait.

Even with all the reductions (or simplifications) made to the problem until now,
there are still some difficulties. The most expressive one is that the phase portraits of
differential systems may have invariant sets as limit cycles and graphics. A linear system
cannot generate limit cycles; at most they can present a completely circular phase portrait
where all the orbits are periodic. But a differential system in the plane, polynomial or not,
and starting with the quadratic ones, may present several limit cycles. It is natural to find
an infinite number of these cycles in non–polynomial problems, but the intuition seems to
indicate that a polynomial system should not have an infinite number of limit cycles in a
similar way as it cannot have an infinite number of isolated singular points. And because
the number of singular points is linked to the degree of the polynomial system, it also
seems logical to think that the number of limit cycles could also have a similar link, either
directly as the number of singular points, or even in an indirect way from the number the
parameters of such systems.

In 1900, David Hilbert (Hilbert (1900), Hilbert (1902)) proposed a set of 23 prob-
lems to be solved in the 20th century, and among them, the second part of his well–known
16th problem asks for the maximum number of limit cycles that a polynomial differential
system in the plane with degree n may have. Even being the polynomial case (i.e. a sub-
family of the set of all differential equations) more than one hundred years after, we do
not have an uniform upper bound for this generic problem, only for specific families of
such systems.

In this thesis we restrict ourselves to the study and to the geometrical and topo-
logical classification of planar quadratic differential systems, or simply quadratic systems,
i.e. differential systems of the form

ẋ = p(x,y),

ẏ = q(x,y),
(1)

where p and q are polynomials over R in x and y such that the max{deg(p),deg(q)}= 2.
For system (1) one can always associate the quadratic vector field

ξ = p
∂

∂x
+q

∂

∂y
, (2)

as well as the differential equation

qdx− pdy = 0. (3)
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Moreover, we can also write system (1) as

ẋ = p0 + p1(x,y)+ p2(x,y)≡ p(x,y),

ẏ = q0 +q1(x,y)+q2(x,y)≡ q(x,y),

where pi and qi are homogeneous polynomials of degree i in the variables x and y with
real coefficients. Along this thesis we use indistinctly the expressions quadratic systems
(QS) and quadratic vector fields (QVF) to refer to either (1), or (2), or (3).

This family of systems by definition depends on twelve parameters, but due to
the action of the group Aff(2,R) of real affine transformations and time homotheties, the
class ultimately depends on five parameters, but this is still a large number.

During discussions, in 1966, Coppel (1966) expressed the belief that we could ob-
tain the classification of phase portraits of quadratic systems by purely algebraic means.
That is, by means of algebraic equalities and inequalities, it should be possible to deter-
mine the phase portrait of a quadratic system. This claim was not easy to refute at that
time, since the isolated finite singular points of a quadratic system can be found by means
of the resultant that is of fourth degree, and its solutions can be calculated algebraically,
like those ones of infinity. Moreover, at that time it was known how to generate limit
cycles by a Hopf bifurcation, whose conditions are also determined algebraically.

On the other hand, in 1991, Dumortier and Fiddelaers (1991) showed that, starting
with the quadratic systems (and following with all the higher–degree polynomial systems),
there exist geometric and topological phenomena in phase portraits of such systems whose
determination cannot be established by means of algebraic expressions. More specifically,
most part of the connections among separatrices and the occurrence of double or semi–
stable limit cycles cannot be algebraically determined.

Therefore, the complete classification of quadratic systems is a very difficult task
at the moment and it depends on the solution of the second part of Hilbert’s 16th problem,
even at least partially for the quadratic case.

Even so, a lot of problems have been appearing related to quadratic systems to
which it has been possible to give an answer, even for specific cases. In fact, there are
more than one thousand articles published that are directly related to studies of aspects
of quadratic systems. Professor John William Reyn, from Delft University (Netherlands),
prepared a bibliography that was published several times until his retirement (see Reyn
(1987), Reyn (1994), Reyn (1996), Reyn (1997), Reyn (2007)). It is worth mentioning that
in the last two decades many other articles related to quadratic systems have appeared, so
that the number of one thousand published papers on the subject may have been widely
exceeded.

Many of the questions proposed and the problems solved have dealt with subclassi-
fications of quadratic systems, that is, classifications of systems that shared some specific
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characteristic in common. For instance, one can find classifications of quadratic systems
having a center type singularity (Vulpe (1983), Żo`adek (1994)), having a weak focus of
third order (Artés and Llibre (1997), Llibre and Schlomiuk (2004)), having a nilpotent
singularity (Jager (1990)), without real singular points (Gasull, Ren and Llibre (1986)),
with two invariant straight lines (Reyn (1987)) and so on, up to a thousand articles. In
some of them complete answers could be given, including for the problem of limit cycles
(existence and number of limit cycles), but in other cases, the classification was done
modulo limit cycles, i.e. all the authors present all the possible phase portraits without
taking into account the presence and number of limit cycles. Since in quadratic systems
a limit cycle can only surround a single finite singular point, which must necessarily be a
focus (Coppel (1966)), then it is enough to identify the outermost limit cycle of a nesting
of cycles with a point, and interpret the stability of that point as the outer stability of
this cycle, and study everything that can happen to the phase portrait in the rest of the
phase space.

Within the families of quadratic systems which were studied in the last century,
we would highlight the study of the structurally stable quadratic systems, modulo limit
cycles (see Artés, Kooij and Llibre (1998)). The goal was to determine how many and
which phase portraits of a quadratic system cannot be modified by small perturbations in
their parameters. In order to obtain a structurally stable system modulo limit cycles we
need a few conditions: we do not allow the existence of multiple singular points and the
existence of connections of separatrices. Centers, weak foci, semi–stable cycles, and all
other unstable elements belong to the quotient modulo limit cycles. This important study
presented in Artés, Kooij and Llibre (1998) showed that the structurally stable quadratic
systems have a total of 44 topologically distinct phase portraits. The importance of such
a work is reflected in the fact that it completes everything that can happen in a generic
form in the huge parameter space R12. Every chosen stable quadratic system is one of
these 44, every generic perturbation of a quadratic system is one of these 44, and even
some unstable quadratic systems as those ones which possess a weak focus have its phase
portrait among these 44.

From this scenario we observe that if we intend to work with classification of
phase portraits of quadratic systems before the solution of the second part of Hilbert’s
16th problem, this must be done modulo limit cycles.

There are two ways to perform a systematic study of all the phase portraits of
the quadratic systems. The first way is the one initiated by Reyn in which he began by
studying the phase portraits of all the quadratic systems in which all the finite singular
points have coalesced with infinite singular points (see Reyn (1991)). Later, he studied
those phase portraits in which exactly three finite singular points have coalesced with
points at infinity, so there remains one real finite singularity. And then he completed
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the study of the cases in which two finite singular points have coalesced with infinite
singularities, originating two real points, or one double point, or two complex points. His
work on finite multiplicity three was incomplete and the one on finite multiplicity four
was inaccessible.

In another approach, instead of working from the highest degrees of degeneracy to
the lower ones, is going in the reverse direction. We already know that the structurally
stable quadratic systems produce 44 topologically distinct phase portrait, as already men-
tioned before. In Artés, Llibre and Rezende (2018) the authors classified the structurally
unstable quadratic systems of codimension one modulo limit cycles, which have one and
only one of the simplest structurally unstable objects: a saddle–node of multiplicity two
(finite or infinite), a separatrix from one saddle point to another, or a separatrix forming
a loop for a saddle point with its divergence nonzero. All the phase portraits of codimen-
sion one are split into four groups according to the possession of a structurally unstable
element: (A) possessing a finite semi–elemental saddle–node, (B) possessing an infinite
semi–elemental saddle–node

(0
2

)
SN, (C) possessing an infinite semi–elemental saddle–node(1

1

)
SN, and (D) possessing a separatrix connection. The study of the codimension–one sys-

tems was done in approximately 20 years and finally it was obtained at least 204 (and at
most 211) topologically distinct phase portraits of codimension one modulo limit cycles
(see Artés, Llibre and Rezende (2018)). In Artés, Oliveira and Rezende (2020) and also in
a recent study (yet at a preprint level), two mistakes in Artés, Llibre and Rezende (2018)
were found and the number of cases was reduced (and confirmed) to at least 202 (and a
most 209) topologically distinct phase portraits of codimension one modulo limit cycles.

Once completed the classification of structurally unstable quadratic systems of
codimension one, it is time to study the systems of codimension two (considered by the
combination of families of codimension one), modulo limit cycles. Even though this work
can be exhaustive, it counts with the advantage that how biggest is the degeneration of
the systems, bigger is the literature that we have available. Even with the existence of a
large literature from which we can take new examples of phase portraits still unknown,
new families of quadratic systems must be studied in order to contribute to this systematic
process. In fact, the approach is the same as used in the previous two works (Artés, Kooij
and Llibre (1998) and Artés, Llibre and Rezende (2018)). One must start by looking for
all the potential topological phase portraits (i.e. phase portraits that can be drawn on
paper) of codimension two modulo limit cycles, and then try to realize all of them (i.e.
to find examples of quadratic differential systems whose phase portraits are exactly those
phase portraits obtained previously) or to show that some of them are non–realizable
or impossible (i.e. in case of absence of examples for the realization of a phase portrait,
say Ψ, it is necessary to prove that there is no quadratic differential system whose phase
portrait is topologically equivalent to Ψ). So, it is also very convenient to have studied a
bifurcation diagram that helps us in the realization problem. We recall that if we have a
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parametric system of differential equations (or, simply, a family of differential equations)
the word bifurcation usually means a sudden qualitative change in the nature of a solution
of the system, as a parameter is varied. The parameter value at which a bifurcation occurs
is called a bifurcation parameter value. The bifurcation diagram shows all the bifurcations
of a system as a function of a bifurcation parameter in the system, and corresponding to
each choice of the parameter value we can obtain a corresponding phase portrait.

The study of the codimension two systems is already in progress. In Artés, Oliveira
and Rezende (2020) the authors have considered the set (AA) obtained by the coalescence
of two finite singular points, yielding either a triple saddle, or a triple node, or a cusp
point, or two saddle–nodes. They obtained all the potential topological phase portraits of
the set (AA) and proved their realization. In their study they got 34 topologically distinct
phase portraits (of codimension two) in the Poincaré disc modulo limit cycles.

One of the main goals of this thesis is to contribute to the classification of the
phase portraits of planar quadratic differential systems of codimension two, modulo limit
cycles. Three of the main results of this thesis are related to the topological classification
and realization of phase portraits of the vector fields belonging to sets (AB) and (AC).
The set (AB) contains all quadratic systems possessing a finite saddle–node sn(2) and
an infinite saddle–node of type

(0
2

)
SN obtained by the coalescence of an infinite saddle

with an infinite node. We point out that the complete bifurcation diagram corresponding
to this set was completely studied in Artés, Rezende and Oliveira (2015) and, as we
prove in this thesis, the generic phase portraits obtained by these authors are indeed
all the phase portraits from the set (AB). The set (AC) describes all quadratic systems
possessing a finite saddle–node sn(2) and an infinite saddle–node of type

(1
1

)
SN, obtained

by the coalescence of a finite saddle (respectively, a finite node) with an infinite node
(respectively, an infinite saddle). Notice that the finite singularity that coalesces with an
infinite singularity cannot be the finite saddle–node since then what we would obtain at
infinity would not be a saddle–node of type

(1
1

)
SN but a singularity of multiplicity three.

Even though this is also a case of codimension–two phase portraits and somehow can be
considered inside the set (AC), we have preferred to put it into the set (CC), and consider
this case in a near future study.

In this thesis we present the study of the bifurcation diagrams corresponding to
phase portraits possessing the set of saddle–nodes

{
sn(2)+

(1
1

)
SN
}

, i.e. phase portraits
belonging to the set (AC) and we also present the study of the topological classification and
realization of all of these phase portraits. Additionally, here we present the topological
classification and realization of all the phase portraits belonging to the set (AB). The
results we have mentioned were obtained thanks to the widely experience and help of
Professor Joan Carles Artés, since 2018 collaborating with us. These studies were more
intensive and productive during a sandwich period at Universitat Autònoma de Barcelona
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with the supervision of Professor Joan Carles.

The main technique used in this thesis is the Invariant Theory for quadratic sys-
tems, developed by the Sibirsky’s School in Moldova, especially improved by one of his
main students, Professor Nicolae Vulpe. In what follows we discuss a little bit about this
subject. It is well known that for several years ago there were numerous publications on
topological classification of special families of quadratic or cubic vector fields. Such classifi-
cations in general were done with respect to chosen normal forms, convenient for studying
the specific classification problems. Normal forms are important because they allow us
to reduce the number of parameters on which families depend on. A normal form can
be effective for studying a problem while for another problem it can be inconvenient and
hence another more suitable normal form needs to be found. It is clear that for the study
of the whole family of quadratic differential systems a multitude of such normal forms are
necessary. But how do we cross the results obtained by using one normal form with those
ones obtained by using a different normal form, so as to see the full picture covering the
two normal forms, in case they have a nonempty intersection? This is one direction where
the algebraic invariant theory of differential equations can be very helpful. This theory
has an important role because, unlike other classification results on these systems that
were non–intrinsic, the results obtained by using the theory developed by Sibirsky and his
students were intrinsic, i.e. they were invariant under allowable coordinate changes and
hence independent of the specific presentation of the systems (normal forms) used in the
classifications. This is clearly a great advantage.

In order to classify all the global phase portraits obtained by the study of some
family, we must verify all the topological changes (bifurcations) in the behavior of solutions
of this family depending of course on the real parameters of this family. The bifurcation
diagram will be constructed from the behavior of algebraic sets given by the zeroes of the
invariant polynomials (these are polynomials which have the parameters of the family as
variables) or of comitants (invariant polynomials which depends also on the variables x

and y), and possibly by the existence of some nonalgebraic bifurcation sets numerically
found. On these sets one can detect some geometric properties, as for instance whether a
singularity goes to infinity or not, if two (or more) points coalesce, if there exist invariant
lines, if there exist centers, if there exist weak points (foci or saddles), among others. In
short, everything that has been studied in some particular normal form can be viewed in
terms of invariants and we can obtain its bifurcations independently of the choice of the
normal form.

In this thesis it was possible to classify two families of quadratic systems by using
these algebraic tools together with numerical tools to determine the nonalgebraic bifurca-
tions. One of these families possesses five real parameters and the other is four parametric.
In the first case we consider the real projective space RP4 and in the second one we con-
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sider RP3. By considering a convenient foliation of these spaces (indeed, according to the
geometric features of the bifurcation surfaces) it was possible to complete the study of the
entire bifurcation diagrams, even if they were formed by hundreds of parts (for instance,
in the second bifurcation diagram studied in this thesis, corresponding to the closure of
the considered family we have obtained 631 parts and 226 topologically distinct phase
portraits).

Another way to help in the classification of phase portraits of quadratic systems
is to use the Invariant Theory in order to search for the algebraic invariant curves, since
the knowledge of such curves of a given planar differential system can help us to draw
the respective phase portrait. Professors Dana Schlomiuk and Nicolae Vulpe initiated a
systematic study of quadratic differential systems with specific invariant algebraic curves.
Since the simplest case is of systems with invariant straight lines, their first works involved
only invariant lines for quadratic systems (see Schlomiuk and Vulpe (2004), Schlomiuk and
Vulpe (2008b), Schlomiuk and Vulpe (2008c), Schlomiuk and Vulpe (2008d), Schlomiuk
and Vulpe (2010)). One of the next steps is to study classes of quadratic systems with
invariant conics. In this sense, in Oliveira et al. (2017) the authors started these studies
by considering the class QSH of non–degenerate quadratic differential systems having
invariant hyperbolas. In 2019, during the visit of Professor Nicolae Vulpe to Instituto
de Ciências Matemáticas e de Computação, we have the opportunity to work and learn
with him and (at a distance) with Professor Dana Schlomiuk during their study of the
class QSE of non–degenerate quadratic differential systems having an invariant ellipse. In
their preprint (Oliveira et al. (2021)) they present necessary and sufficient conditions for
an existence of an invariant ellipse, in terms of invariant polynomials. Another important
result of this thesis deals with the classification of quadratic differential systems with
invariant ellipses according to their configurations of invariant ellipses and invariant
lines. This was a second project developed under the supervision of Professor Nicolae
Vulpe during his stay in São Carlos.

It is worth mentioning that these three works represent three different approaches
to the study of quadratic systems and each one of them uses different techniques, which
all together are useful towards the final goal of classifying phase portraits.

This thesis is organized as follows: In Chap. 1 we present some concepts on Qual-
itative Theory of Ordinary Differential Equations which are relevant for this thesis. We
present some references where the concepts can be found in details. For the reader inter-
ested in applications of the general theory, we indicate the results of a paper developed
during our studies of the prerequisites from this thesis. Such a paper (already published)
is the following one:

C. MOTA, MARCOS, D. S. OLIVEIRA, REGILENE. Dynamic aspects of Sprott BC
chaotic system. Discrete Cont. Dyn.–B, 26 (2021), 1653-1673.
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Chap. 2 describes some basic results on Introduction to Algebraic Geometry and
Invariant Theory. As we have said before, the theory of invariant polynomials stated by
Sibirsky and his students is one of the most important tools used in this thesis.

In Chap. 3 we present the study of a four–dimensional bifurcation diagram of
quadratic systems possessing a finite saddle–node sn(2) located at the origin of the plane
as the only finite singularity and an infinite saddle–node of type

(1
1

)
SN. We highlight that

this is the first time that a bifurcation diagram with this high level of dimension is studied
by using the Invariant Theory described in Chap. 2. All the phase portraits obtained in
this study have codimension at least three. The results presented in this chapter can be
found in the paper (already published):

ARTÉS, J.C., MOTA, M.C., REZENDE, A.C. Quadratic differential systems with a finite
saddle–node and an infinite saddle–node (1,1)SN - (A), Internat. J. Bifur. Chaos Appl.
Sci. Engrg., 31 (2021), 2150026.

In Chap. 4 we exhibit the study of a very beautiful three–dimensional bifurcation
diagram of quadratic systems possessing a finite saddle–node sn(2) located at the origin
of the plane, a finite simple singularity and an infinite saddle–node of type

(1
1

)
SN. All

the generic phase portraits obtained in this study have codimension two and, as we see
in Chap. 5, they provide examples for the realization of all phase portraits from the set
(AC). All the results presented in Chap. 4 can be found in the paper:

ARTÉS, J.C., MOTA, M.C., REZENDE, A.C. Quadratic differential systems with a finite
saddle–node and an infinite saddle–node (1,1)SN - (B), to appear at Internat. J. Bifur.
Chaos Appl. Sci. Engrg., 2021.

In each one of these last two mentioned papers we have dedicated an entire sec-
tion to present some incompatibilities found in previous classifications of phase portraits
possessing specific properties on its singularities. Such incompatibilities are obtained after
we compare all of the phase portraits obtained in our bifurcation diagrams with phase
portraits from some previous papers which possess the same topological configuration of
singularities, according to Def. 1 from Artés et al. (2020).

In Chap. 5 we present the topological classification and the realization of all the
phase portraits belonging to the set (AB) and also the topological classification of phase
portraits possessing the set of saddle–nodes

{
sn(2)+

(1
1

)
SN
}

belonging to the set (AC).
These results can also be found in the paper:

ARTÉS, J.C., MOTA, M.C., and REZENDE, A.C. Structurally unstable quadratic vector
fields of codimension two: families possessing a finite saddle-node and an infinite saddle-
node. Electron. J. Qual. Theo. No. 35 (2021), 89pp.

In Chap. 6 we describe the study regarding the classification of quadratic differen-
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tial systems with invariant ellipses according to their configurations of invariant ellipses
and invariant lines. The results of this chapter are contained in the paper:

MOTA, M.C., OLIVEIRA, R.D.S., REZENDE, A.C., SCHLOMIUK, D., VULPE, N.
Geometric analysis of quadratic differential systems with invariant ellipses, <https://
repositorio.usp.br/directbitstream/2845e217-374e-4bf0-a229-283b1ff03372/3005920.pdf>,
preprint, 2021.

Finally we briefly present some concluding comments as well as some ideas for
further studies.

https://repositorio.usp.br/directbitstream/2845e217-374e-4bf0-a229-283b1ff03372/3005920.pdf
https://repositorio.usp.br/directbitstream/2845e217-374e-4bf0-a229-283b1ff03372/3005920.pdf
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CHAPTER

1
PRELIMINARIES

In this chapter we present some results that are tools for a better comprehension
of this thesis. Here we recall some basic and specific concepts on Qualitative Theory of
Ordinary Differential Equations, we explain the context of our studies and we comment
about the problems which we are dealing with in this thesis. The reader with widely
experience in this field of study may skip the two first sections of this chapter.

1.1 Standard concepts

In this section we present several results from a first course regarding the quali-
tative study of the ordinary differential equations. We point out that there are a lot of
other important results and what we do here is only to recall some definitions and as well
as some results that we consider more relevant to our study. The results presented here
can be found in Dumortier, Llibre and Artés (2008) and also in Sotomayor (2011). We
strongly recommend these references for all the details.

Definition 1.1.1. Consider Ω an open subset of the space R×Rn, being R the real line
and Rn the n–dimensional euclidean space. A point belonging to R×Rn is denoted by
(t,x), with t ∈ R and x = (x1, . . . ,xn) ∈ Rn. Let f : Ω→ Rn be a continuous map and I a
non–degenerate interval of R. A differentiable function ϕ : I→ Rn is called a solution of
the differential equation

dx
dt

= f (t,x) (1.1)

on the interval I if

(a) Gr(ϕ) = {(t,ϕ(t)); t ∈ I} ⊂Ω;

(b) dϕ

dt
= f (t,ϕ(t)), for all t ∈ I.
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Equation (1.1) is called first order ordinary differential equation and it is usually written
as

x′ = f (t,x).

Theorem 1.1.2 (Existence and uniqueness of solutions). Let f : Ω = [a,b]×Rn→Rn be
a continuous function which is Lipschitz on the variable x. Then, for all (t0,x0) ∈Ω, there
exists only one solution for the Cauchy problemx′ = f (t,x),

x(t0) = x0,

defined in some interval I contained in [a,b].

Definition 1.1.3. Let ∆ be an open subset of the euclidean space Rn. A vector field of
class C k,1≤ k ≤ ∞, in ∆ is a map F : ∆→ Rn.

Definition 1.1.4. Given a vector field F : ∆→Rn one can naturally associate the ordinary
differential equation

x′ = F(x). (1.2)

This equation is called autonomous differential equation since it is independent on the
temporal variable t. Moreover, its solutions, i.e. the differentiable maps ϕ : I ⊂ R→ ∆

such that
d
dt

ϕ(t) = F(ϕ(t)),

for all t ∈ I, are called trajectories or integral curves of the vector field F , or yet of the
differential equation (1.2).

Definition 1.1.5. An integral curve ϕ : I→ ∆ of a vector field F is called maximal if for
every integral curve Ψ : J→ ∆ such that I ⊆ J and ϕ =Ψ|I we have I = J and, consequently,
ϕ = Ψ. In this case I is called maximal interval.

Theorem 1.1.6. (a) (Existence and uniqueness of maximal solutions). For each x ∈ ∆

there exists an open interval Ix in which it is defined the unique maximal solution
ϕx of (1.2) such that ϕx(0) = x;

(b) (Group property). If y = ϕx(s) and s ∈ Ix, so Iy = Ix− s = {r− s;r ∈ Ix}, ϕy(0) = y and
ϕy(t) = ϕx(t + s) for every t ∈ Iy;

(c) (Differentiability with respect to the initial conditions). The set

D = {(t,x);x ∈ ∆, t ∈ Ix}

is open in Rn+1 and the map

ϕ : D → Rn

(t,x) 7→ ϕ(t,x) = ϕx(t)
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is of class C k. Such a map is called generated flow by F and it verifies the following
equations

D1D2ϕ(t,x) = DF(ϕ(t,x)) ·D2ϕ(t,x), D2ϕ(t,x)
∣∣∣∣
t=0

= E,

for every (t,x) ∈ D. Here, E represents the identity of Rn and D j stands for the
derivative with respect to the jth–variable.

Definition 1.1.7. A map ϕ : R×Rn→ Rn of class C 1 is said to be a flow if

(a) ϕ(0,x) = x;

(b) ϕ(t + s,x) = ϕ(t,ϕ(s,x)), t,s ∈ R.

A flow is called linear if for each t ∈ R, ϕt(x) = ϕ(t,x) is a linear map in Rn.

Theorem 1.1.8 (Continuous dependence of solutions). Consider the differential equation
x′ = F(x) where F : ∆→Rn is of class C 1. Suppose that x(t) is a solution of this equation
which is defined on the closed interval [t0, t1] with x(t0) = x0. Then there exist a neighbor-
hood U ⊂Rn of x0 and a constant k such that if y0 ∈U , then there exists a unique solution
y(t) also defined on [t0, t1] with y(t0) = y0. Moreover, the solution y(t) verifies

|y(t)− x(t)| ≤ k|y0− x0|exp(k(t− t0)),

for all t ∈ [t0, t1].

This result says that, if the solutions x(t) and y(t) start out close to each other,
then they remain close for t close to t0. While these solutions may separate from each
other, they do so no faster than exponentially.

Definition 1.1.9. The set γp = {ϕ(t, p); t ∈ Ip}, i.e. the image of the integral curve of the
vector field F through the point p is called an orbit of F through the point p (in other
words, γp is the trace of the integral curve of F through the point p). We also define the
positive semi–orbit through p as the set γ+p = {ϕ(t, p); t ≥ 0}.

Proposition 1.1.10. Let q ∈ Rn. Then q ∈ γp if and only if γq = γp.

Proof. In fact, if q ∈ γp there exists s ∈ Ip such that q = ϕ(s, p) and then

ϕ(t,q) = ϕ(t,ϕ(s, p)) = ϕ(t + s, p),

for all t ∈ Iq = Ip−s (i.e. t+s∈ Ip), so γq = γp. On the other hand, from the identity γq = γp

it follows directly that
q = ϕ(0,q) ∈ γq = γp.
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The previous proposition implies that there exists an equivalence relation in the set
of orbits of a vector field F : ∆→Rn. Indeed, either two orbits coincide or they have empty
intersection. Therefore, ∆ ⊂ Rn can be decomposed in a disjoint union of differentiable
curves of F . The following theorem presents a classification of the types of orbits of a
vector field F .

Theorem 1.1.11. Let ∆⊂Rn be an open set, F : ∆→Rn a vector field of class C k,k≥ 1,
in ∆ and ϕx : Ix→ ∆ the maximal solution in Ix of the Cauchy problem x′ = F(x),x(0) = x.
Then, one of the following sentences is verified:

(a) ϕx is an injection (in this case the respective orbit is in correspondence with an
interval of R);

(b) Ix = R and ϕx is constant (in this case the orbit is a point);

(c) Ix =R and ϕx is a periodic function, i.e. there exists τ > 0 such that ϕx(t+τ) = ϕx(t)

for all t ∈ Ix and ϕx(t1) 6= ϕx(t2) if |t1− t2|< τ (in this case the orbit is diffeomorphic
to a circle).

Definition 1.1.12. In case we have γp = p, then the orbit is called a singular point (or
simply, a singularity) and, in case we have γp diffeomorphic to a circle we say that γp is
a closed or a periodic orbit.

We have that a singularity (stationary orbit) is a zero of the vector field. A point
p which is not a singularity of a vector field is called regular point.

Example 1.1.13. The singularities of the linear planar systems x′ = Ax, where A is a
2×2 matrix with D = det(A) 6= 0 are well–known (see Sec. 1.2 of Dumortier, Llibre and
Artés (2008), for instance). In fact, consider T =trace(A). Then:

• if D < 0 we have a saddle;

• if D > 0 and T = 0 we have a linear center ;

• if D > 0 and T 2−4D < 0 we have a focus, which can be stable or unstable;

• if D > 0 and T 2−4D > 0 we have a node, which can be stable or unstable.

Note that T 2 = 4D is a parabola on the T D–plane. Motivated by Figure 4.1 of Hirsch,
Smale and Devaney (2004), in Fig. 1 we present the local behavior of each singularity
mentioned before, in the T D–plane.
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Figure 1 – The trace–determinant plane

Definition 1.1.14. The phase portrait of a vector field F : ∆→ Rn or of a differential
equation x′ = F(x) is the decomposition of the open set ∆ by the orbits of F , so that all
the orbits are orientated in the sense of the integral curves of F and the singularities are
endowed with the trivial orientation.

The proof of the following proposition can be found in Sec. 1.4.1 of Chicone (2006).

Proposition 1.1.15 (Reparametrization of Time). Suppose that ∆⊂ Rn is an open set,
F : ∆→ Rn is a smooth vector field and define the following Cauchy problemx′ = F(x),

x(0) = x0.
(1.3)

Assume that Ix0 ⊂R, 0∈ Ix0 , is the maximal interval of the (maximal) solution ϕx0 : Ix0→ ∆

of the Cauchy problem (1.3). Let g : ∆→ R be a positive smooth function. Then the
function

B : Ix0 → R

t 7→ B(t) =
∫ t

0

1
g(ϕx0(s))

ds

is invertible on its range K ⊆ R and, if ρ : K→ Ix0 is the inverse of B, then the identity

ρ
′(t) = g(ϕx0(ρ(t)))

holds for all t ∈ K. Moreover, the function

σ : K → Rn

t 7→ σ(t) = ϕx0(ρ(t))
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is the solution of the Cauchy problemx′ = g(x)F(x),

x(0) = x0.
(1.4)

Remark 1.1.16. Prop. 1.1.15 gives us a relationship among the solutions of the Cauchy
problems (1.3) and (1.4). The vector fields defined by F and gF have the same direction
at each point in ∆, but their sense and lengths may be different. Thus, for a geomet-
rical interpretation of autonomous differential equations, it is clear that the differential
equations

x′ = F(x) and x′ = g(x)F(x)

have topologically equivalent phase portraits. Moreover, one can usually say that the
first differential equation is obtained from the second one by a reparametrization of time.
Additionally, in the particular case where g(x) = c> 0, the time reparametrization in these
case is also called a time rescaling.

Definition 1.1.17. Let F1 and F2 be two vector fields defined on open sets ∆1 and ∆2

of Rn, respectively. We say that F1 is topologically equivalent (respectively C r–equivalent)
to F2 when there exists a homeomorphism (respectively a diffeomorphism of class C r)
h : ∆1 → ∆2 which takes orbits of F1 into orbits of F2 preserving the orientation. More
precisely, let p ∈ ∆1 and γ1(p) the oriented orbit of F1 passing through p, then h(γ1(p))

is the oriented orbit γ2(h(p)) of F2 passing through h(p).

Observe that this definition establishes an equivalence relation between vector
fields defined on open subsets of Rn. The homeomorphism h is called a topological equiv-
alence (respectively differentiable equivalence) between F1 and F2.

Definition 1.1.18. Assume that ∆1 and ∆2 are open sets in Rn. Consider F1 : ∆1→ Rn

and F2 : ∆2→Rn be two vector fields, which generate the corresponding flows ϕ1 : D1→Rn

and ϕ2 : D2→ Rn. We say that F1 is topologically conjugate (respectively C r–conjugate)
to F2 when there exists a homeomorphism (respectively a diffeomorphism of class C r)
h : ∆1→ ∆2 such that

h(ϕ1(t,x)) = ϕ2(t,h(x)),

for every (t,x) ∈ D1.

Observe that in this definition we necessarily have I1(x) = I2(h(x)), where I1(x) and
I2(h(x)) denote the maximal intervals of the respective maximal solutions. The homeomor-
phism h is called a topological conjugation (respectively C r–conjugation) between F1 and
F2.
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Remark 1.1.19. We observe that the conjugation relation is also an equivalence relation
between vector fields defined on open subsets of Rn. It is clear that every conjugation is
an equivalence. Moreover, if h is an equivalence between two vector fields F1 and F2 and
if p is a singularity of F1, then h(p) is a singularity of F2. Also, if h is a conjugation and
if γ is a closed orbit for the vector field F1, then h(γ) is a closed orbit for the vector field
F2 (in this case h(γ) has the same period as γ).

Definition 1.1.20. Assume F : ∆→ Rn a vector field of class C k,k ≥ 1 and consider the
open sets ∆⊂ Rn and A⊂ Rn−1. A map g : A→ ∆, of class C k, is called a local transverse
section of F when for all a ∈ A,

Dg(a)(Rn−1) and F(g(a))

are linearly independent (or form a basis for Rn). Let Σ = g(A) be a set endowed with the
induced topology of Rn. If g : A→ Σ is a homeomorphism we say that Σ is a transverse
section of F .

Theorem 1.1.21 (Flow Box Theorem). Let p be a regular point and consider g : A→ Σ a
local transverse section of Σ of class C k with g(0) = p. Then there exists a neighborhood
V of p in ∆ and there exists a diffeomorphism h : V → (−ε,ε)×B of class C k, with ε > 0
and B an open ball in Rn−1 centered at the origin 0 = g−1(p) such that

(a) h(Σ∩V ) = {0}×B;

(b) h is a C k–conjugation between F |V and the constant vector field Y : (−ε,ε)×B→Rn,
with Y = (1,0, . . . ,0) ∈ Rn.

Remark 1.1.22. Let p be a regular point of a vector field F of class C k, k ≥ 1. By
the Flow Box Theorem we know that there exists a diffeomorphism of class C k which
conjugates F , in some neighborhood of p, with the constant vector field Y = (1,0, . . . ,0).
As a consequence, two vector fields F and G are locally C k–conjugate around their regular
points.

This remark provides us a satisfactory local qualitative knowledge of the orbits of
a vector field near regular points. It is interesting, therefore, the study of the singularities
of a vector field. The next theorem tells us that, under certain hypothesis, for the study of
a singularity p of a system x′ = F(x) it is enough to consider the linear part x′ = DF(p)x

of the system.

Theorem 1.1.23 (Hartman–Grobman). Consider F : ∆→ Rn a vector field of class C 1

and p a singularity which verifies the property that all the eigenvalues of the Jacobian
matrix DF(p) have nonzero real part. There exist a neighborhood W of p in ∆ and a
neighborhood V of 0 in Rn such that F |W is topologically conjugate to DF(p)|V .
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Note that, if F |W is topologically conjugate to DF(p)|V , then the singularities of
the system x′ = F |W look like (in the sense of Rmk. 1.1.19) the singularities of the linear
system x′ = DF(p)|V , which were presented before in Ex. 1.1.13.

Definition 1.1.24. We say that a singularity p of a vector field F : ∆→ Rn of class C 1

is hyperbolic if all the eigenvalues of the Jacobian matrix DF(p) have nonzero real part.

Note that, with the exception of the linear center, all the singularities mentioned
in Ex. 1.1.13 are hyperbolic.

Definition 1.1.25. Consider γ = {ϕp(t); t ∈ R} a τ0–periodic orbit of a vector field F of
class C r, r≥ 1, in an open set ∆⊂R2. Let Σ be a transverse section of F in p. Due to the
continuity of the flow ϕ of F , for every point q ∈ Σ sufficiently close to p, the trajectory
ϕq(t) remains close to γ , with t in a compact interval, for instance, [0,2τ0]. We define π(q)

as the first point in which ϕq(t) intersects Σ. Being Σ0 the domain of π, we clearly have
p ∈ Σ0 and π(p) = p.

Definition 1.1.26. Given Σ a transverse section of a vector field F , we define a Poincaré
map π : Σ0→ Σ as the map of first return of the flow to Σ, i.e for each point of Σ belonging
to a specific orbit the map π gives us the first point in which the orbit intersects Σ in
positive time. We assume Σ0 sufficiently small in such a way that π is defined for every
point of Σ0.

Definition 1.1.27. A periodic orbit γ of a vector field F : ∆⊂R2→R2 of class C k,k≥ 1,
in the open set ∆⊂R2 is called a limit cycle of F if there exists a neighborhood V ⊂ ∆ of
γ ⊂ ∆ such that γ is the only periodic orbit in V , i.e. a limit cycle is an isolated periodic
orbit in the set of all periodic orbits of the vector field. In addition, a limit cycle is called
simple or hyperbolic if it has multiplicity one.

Proposition 1.1.28. With the same notation used in the previous definition, there exist
only three types of limit cycles:

1. Stable, when limt→+∞ d(ϕ(t,q),γ) = 0, for all q ∈V ;

2. Unstable, when limt→−∞ d(ϕ(t,q),γ) = 0, for all q ∈V ;

3. Semi–stable, when one of the two conditions hold:

• limt→+∞ d(ϕ(t,q),γ) = 0, for all q ∈ V ∩Ext(γ), and limt→−∞ d(ϕ(t,q),γ) = 0,
for all q ∈V ∩ Int(γ);

• limt→−∞ d(ϕ(t,q),γ) = 0, for all q ∈ V ∩Ext(γ), and limt→+∞ d(ϕ(t,q),γ) = 0,
for all q ∈V ∩ Int(γ);
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where Ext(γ) (respectively Int(γ)) means the exterior (respectively the interior) of
the closed curve γ (remember that in this case the very well known Jordan Curve
Theorem holds).

Theorem 1.1.29. A periodic orbit γp = {ϕ(t, p); t ∈R} ⊂ ∆ is a limit cycle of F : ∆→R2

of class C k,k ≥ 1, in the open set ∆⊂ R2 if and only if p ∈ ∆ is an isolated fixed point of
the Poincaré map π : Σ0→ Σ, being Σ a transverse section of F in p.

Theorem 1.1.30. Let ∆⊂R2 be an open set and consider F = (F1,F2) : ∆→R2 a vector
field of class C 1. Suppose that γ is a periodic orbit of F of period T and let π : Σ0→ Σ be
the Poincaré map on a transverse section Σ of F in p ∈ γ . Then

π
′(p) = exp

(∫ T

0
divF(γ(t))dt

)
,

where
divF(x,y) =

∂F1

∂x
(x,y)+

∂F2

∂y
(x,y).

In particular, if
∫ T

0 divF(γ(t))dt < 0 we have that γ is stable and if
∫ T

0 divF(γ(t))dt > 0 we
have that γ is unstable.

Definition 1.1.31. Let ∆ be an open subset of the euclidean space Rn, F : ∆→ Rn a
vector field of class C k,k≥ 1, and ϕ(t) = ϕ(t, p) the integral curve of F passing through a
point p, defined on its maximal interval Ip = (ω−(p),ω+(p)). If ω+(p) = +∞, we define
the ω–limit set corresponding to p (and denoted by ω(p)) as the set of the points q ∈ ∆

for which there exists a sequence {tn} such that

lim
n→∞

tn =+∞, lim
n→∞

ϕ(tn) = q.

Analogously, if ω−(p) = −∞ we define the α–limit set corresponding to p (and denoted
by α(p)) as the set of the points q ∈ ∆ for which there exists a sequence {tn} such that

lim
n→∞

tn =−∞, lim
n→∞

ϕ(tn) = q.

Theorem 1.1.32 (Poincaré–Bendixson). Let ∆ be an open subset of R2, F a vector field
of class C k, k ≥ 1 in ∆ and ϕ(t) = ϕ(t, p) an integral curve of F , defined for every t ≥ 0,
in such a way that γ+p be entirely contained in a compact set K ⊂ ∆. Assume that the
vector field F has a finite number of singularities in ω(p). Then, there exist the following
options for ω(p):

(a) if ω(p) contains only regular points, then ω(p) is a periodic orbit;

(b) if ω(p) contains regular points and also singular points, then ω(p) consists of a set
of orbits with the following property: each one of these orbits tends to one of these
singularities when t→±∞. In other words, ω(p) is a graphic;
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(c) if ω(p) does not contain regular points, then ω(p) is a singularity.

We point out that by a simple reversion on time we clearly have an analogous
version of such a theorem if we consider the α–limit set instead of the ω–limit set.

A classical application of the previous result is the following theorem (see Theorem
1.31 from Dumortier, Llibre and Artés (2008)).

Theorem 1.1.33. Let F a vector field of class C 1 in an open set ∆⊂ R2. If γ is a closed
orbit of F such that Int(γ)⊂ ∆, then there exists a singularity of F which belongs to Int(γ).

In the case where F is a polynomial vector field on R2 of the form X(x,y) =

(P(x,y),Q(x,y)), where P and Q are polynomials in the variables x and y of degree at most
2, in Coppel (1966) it is proved that such a singularity is a focus.

1.2 A summary of the Poincaré compactification tech-
nique

In the previous section we presented some general concepts in Qualitative Theory
of Ordinary Differential Equations. Briefly summarizing such concepts, we presented the
definition of a solution of an ordinary differential equation, we stated the theorem of
existence and uniqueness of solutions for a Cauchy problem, we saw the definition of a
vector field F together with a classification of the types of its orbits and also the definition
of a phase portrait associated to an ordinary differential equation x′ = F(x). We finished
the mentioned section with the Poincaré–Bendixon Theorem which states that if γ is an
orbit of a vector field F such that the positive semi–orbit γ+p is entirely contained in a
compact set K ⊂ ∆⊂ R2, then the ω–limit set ω(p) is well characterized. In this context
we have a natural question: how can we describe the asymptotic behavior of the semi–
orbits which are not contained in compact sets? In other words, how can we study the
solutions that “escape to infinity”? With the Poincaré compactification technique we can
extend analytically the vector field to the compact set

{(x,y,z) ∈ R3; x2 + y2 + z2 = 1, z≥ 0},

where one can apply the Poincaré–Bendixon Theorem. In this section we describe briefly
such a technique. For the reader interested in more details we indicate Chap. 5 of Du-
mortier, Llibre and Artés (2008).

We denote by Pn(R2) the polynomial vector fields on R2 of the form X(x,y) =

(P(x,y),Q(x,y)), where P and Q are polynomials in the variables x and y of degree at most
n (with n ∈N). Any such an X is uniquely determinate by the (n+1)(n+2) coefficients of
P and Q, hence it may be identified with an unique point of R(n+1)(n+2). The coefficient
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topology of Pn(R2) is the induced topology through the mentioned identification by the
usual euclidean topology of R(n+1)(n+2).

For X ∈Pn(R2) the Poincaré compactified vector field p(X) corresponding to X is
a vector field induced on S2 as follows. Let S2 = {y = (y1,y2,y3)∈R3;y2

1+y2
2+y2

3 = 1} (the
Poincaré sphere) and TyS2 the tangent space to S2 at y. Consider the central projections
f+ : T(0,0,1)S2→ S2

+ = {y ∈ S2;y3 > 0} and f− : T(0,0,1)S2→ S2
− = {y ∈ S2;y3 < 0}, where

f±(x) =
(
± x1

∆(x)
,± x2

∆(x)
,± 1

∆(x)

)
, ∆(x) =

√
x2

1 + x2
2 +1.

These maps define two copies of X , one in the northern hemisphere and the other in the
southern hemisphere. Denote by X ′ the vector field defined on S2 except on its equator
S1 = {y∈ S2;y3 = 0} by D f+◦X and D f−◦X . Clearly S1 is identified with the infinity of R2.
In order to extend X ′ to an analytic vector field on S2 (including S1) it is necessary that X

satisfies suitable hypotheses. In the case that X ∈Pn(R2), the Poincaré compactification
p(X) of X is the only analytic extension of yn−1

3 X ′ to S2. For the flow of the compactified
vector field p(X), the equator S1 is invariant. On S2 \S1 there are two symmetric copies of
X , and knowing the behavior of p(X) around S1, we know the behavior of X at the infinity.
The projection of the closed northern hemisphere of S2 on y3 = 0 under (y1,y2,y3) 7→ (y1,y2)

is called the Poincaré disc, and it is denoted by D2.

As S2 is a differentiable manifold, for computing the expression of p(X), we can
consider the following six local charts Ui = {y ∈ S2;yi > 0}, and Vi = {y ∈ S2;yi < 0} where
i = 1,2,3, and the diffeomorphisms Fi : Ui→R2 and Gi : Vi→R2 which are the inverses of
the central projections from the vertical planes tangents at points

(1,0,0), (−1,0,0), (0,1,0), (0,−1,0), (0,0,1), (0,0,−1),

respectively. We denote by z = (u,v) the value of Fi(y) or Gi(y) for any i = 1,2,3. So z

represents different variables, depending on the local chart under consideration. Some
straightforward computations give the following expressions for p(X):

vn ·∆(z)
[

Q
(

1
v
,
u
v

)
−uP

(
1
v
,
u
v

)
,−vP

(
1
v
,
u
v

)]
, (1.5)

vn ·∆(z)
[

P
(

u
v
,
1
v

)
−uQ

(
u
v
,
1
v

)
,−vQ

(
u
v
,
1
v

)]
, (1.6)

∆(z) [P(u,v),Q(u,v)] ,

in the local charts U1, U2 and U3 respectively, where ∆(z) = (u2+v2+1)
1−n

2 . The expression
for Vi is the same as that for Ui except for a multiplicative factor (−1)n−1. In these
coordinates and in the local charts Ui and Vi for i = 1,2, v = 0 always denotes the points
of S1. In what follows we omit the factor ∆(z) by rescaling the vector field p(X). So, in each
local chart we obtain a polynomial vector field. We denote by Pn(S2) all the polynomial
vector fields p(X) on S2 defined as before and endowed with the coefficient topology.
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A singularity q of X ∈Pn(R2) is called infinite (respectively finite) if it is a sin-
gularity of p(X) in S1 (respectively in S2 \S1). Then in order to compute all the infinite
singularities of X we take the nonzero terms of the expressions (1.5) and (1.6) with v = 0
and we obtain

F(u) = Qn(1,u)−uPn(1,u),

G(u) = Pn(u,1)−uQn(u,1),

respectively, where Pn and Qn are the homogeneous part of degree n of P and Q. Thus,
the infinite singularities of X are the points (u,0) satisfying

F(u) = 0, if (u,0) ∈U1,

G(u) = 0, if (u,0) ∈U2.

Note that the equation F(u) = 0 gives us all the infinite singularities of X except, perhaps,
the origin of the local chart U2.

In Sec. 3 of Artés, Llibre and Schlomiuk (2006) the authors explain the Poincaré
compactification technique by using another tools. In particular they deal with complex
(respectively real) foliation with singularities on CP2 (respectively RP2). For the reader
interested in this approach we recommend such a reference.

1.3 The context of this thesis
Having seen a little bit about the general frame of the Qualitative Theory of

Ordinary Differential Equations, in this section we present the context and the main
goals of this thesis. We point out that we are interested in the study of planar polynomial
differential systems, more precisely in the problem of classification of phase portraits of
such systems according to their structural stability.

Let Pn(R2) be the set of all polynomial vector fields on R2 of the form X(x,y) =

(P(x,y),Q(x,y)), with P and Q polynomials in the variables x and y of degree at most n

(with n ∈ N). For X ∈Pn(R2), we consider the Poincaré compactified vector field p(X)

corresponding to X as the vector field induced on S2 as described in our previous section
and also in Andronov et al. (1973), Artés, Llibre and Rezende (2018), Dumortier, Llibre and
Artés (2008), González (1969), Sotomayor (1979). Concerning this, as we saw, a singular
point q of X ∈Pn(R2) is called infinite (respectively finite) if it is a singular point of p(X)

in S1 (respectively in S2 \S1).

Using the classical theory of qualitative study of ordinary differential equations
we know how to classify the finite and infinite singularities. In this thesis, apart from the
classical results, we are interested in the weak singularities.

Definition 1.3.1. We call strong saddle (respectively strong focus) a saddle (respectively
focus) with nonzero trace of the linear part at this point. Such a saddle (respectively
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focus) is defined to have order zero. A saddle (respectively focus) with trace zero is called
a weak saddle (respectively weak focus).

According to this definition, finite saddles and foci (remember Ex. 1.1.13) are
classified as strong or weak. When the trace of the Jacobian matrix evaluated at these
singular points is not zero, we call them strong saddles and strong foci, respectively, and
we denote them by s and f, respectively. But when the trace is zero, except for centers
and saddles of infinite order (or integrable saddles, i.e. saddles with all their Poincaré–
Lyapounov constants equal to zero (see Llibre and Schlomiuk (2004))), it is known that
the saddles and foci of quadratic systems, may have up to order three. We denote them
by s(i) and f (i), respectively, where i = 1,2,3 is the corresponding order.

The following results hold for any quadratic system. We present a reference where
one can find their proofs.

(i) If a quadratic system has a limit cycle, then it surrounds a unique singular point,
and this point is a focus, see Coppel (1966).

(ii) A quadratic system with an invariant straight line has at most one limit cycle, see
Coll and Llibre (1988).

(iii) A quadratic system with more than one real invariant straight line has no limit
cycle, see Bautin (1954).

(iv) In quadratic systems there is at most one limit cycle surrounding a weak focus of
second order and when it exists it is hyperbolic (according to the general Def. 1.1.24),
see Zhang (2001).

(v) There are no limit cycles in quadratic systems surrounding the weak focus of third
order, see Li (1986).

The local classification of the singularities of a vector field p(X) is a well known
subject, but we recall such concepts. Let q be a singular point of p(X). The classical
definitions are:

• q is non–degenerate if det(Dp(X)(q)) 6= 0, i.e. the determinant of the linear part of
p(X) at the singular point q is nonzero;

• q is hyperbolic if the two eigenvalues of Dp(X)(q) have real part different from 0
(remember the general Def. 1.1.24);

• q is semi–hyperbolic if exactly one eigenvalue of Dp(X)(q) is equal to 0.
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However, in this thesis we use a new notation introduced in Artés et al. (2015),
which is directly related to the Jacobian matrix of the singularity:

• q is elemental if both eigenvalues of Dp(X)(q) are nonzero;

• q is semi–elemental if exactly one of the eigenvalues of Dp(X)(q) is equal to zero;

• q is nilpotent if both eigenvalues of Dp(X)(q) are zero, but the Jacobian matrix at
this point is non–identically zero;

• q is intricate if the Jacobian matrix is identically zero;

• q is an elemental saddle if det(Dp(X)(q))< 0, i.e. the product of the eigenvalues of
Dp(X)(q) is negative;

• q is an elemental antisaddle if det(Dp(X)(q))> 0 and the neighborhood of q is not
formed by periodic orbits, in which case we would call it a center, i.e., it is either a
node or a focus.

The intricate singularities are usually called in the literature linearly zero. As such
a kind of singularities usually requires some more sophisticated tools (as the blow–up
technique, see Dumortier, Llibre and Artés (2008)) in order to be better understood, the
term intricate indicates the rather complicated behavior of phase curves around such a
singularity.

In this thesis we use the pattern established by the mentioned authors and we
denote the finite singularities with lower–case letters and the infinite singularities with
capital ones (see Sec. 3.7 of Artés et al. (2021) for all the details). For instance:

• Elemental singularities: saddles (s and S), nodes (n and N), foci ( f ) and centers (c).
We also have nd,n∗,N f and N∞.

• Semi–elemental singularities (are denoted using a bar): finite saddle–node (sn(2)),
finite triple saddle (s(3)), infinite saddle–node of type

(1
1

)
SN or

(0
2

)
SN, among others.

• Nilpotent singularities (are denoted with a hat): finite elliptic–saddle of multiplicity
three (ês(3)), infinite triple singularity of type

(̂1
2

)
PEP−H, among others.

• Intricate singularities (are denoted by the sequence formed by the types of their
sectors): a finite singularity of multiplicity four phpphp(4), an infinite singularity of
multiplicity four

(2
2

)
PHP−PHP, among others.

Regarding the notation presented before, it is worth mentioning that we denote
by “

(a
b

)
. . .” the maximum number a (respectively b) of finite (respectively infinite) sin-

gularities which can be obtained by perturbation of an infinite multiple singularity. For
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instance,
(1

1

)
SN means an infinite saddle–node formed by the coalescence of a finite node

(respectively a finite saddle) with an infinite saddle (respectively an infinite node). Addi-
tionally, for the infinite nilpotent and intricate singularities, we insert a hyphen between
the sectors to split those which appear in one side of the equator of the sphere from
those ones which appear in the other side of the equator, and we will always start with a
sector bordering the infinity, in order to avoid using two dashes. We also use the notion of
sectorial decomposition for the infinite nilpotent and intricate singularities, for instance,(̂1

2

)
PHP−E indicates a nilpotent infinite singularity for which in one side of the equator we

have an elliptic sector (possibly with adjacent parabolic sectors) and on the other side of
the equator, corresponding to this point we have two parabolic sectors with a hyperbolic
sector between them. The reader is invited to see all the details in Artés et al. (2021).

Let p(X)∈Pn(S2) (respectively X ∈Pn(R2)). A separatrix of p(X) (respectively of
X) is an orbit which is either a singular point (respectively a finite singular point), or a limit
cycle, or a trajectory which lies on the boundary of a hyperbolic sector at a singular point
(respectively a finite singular point). Neumann (1975) proved that the set formed by all
separatrices of p(X), denoted by S(p(X)), is closed. The open connected components of S2\
S(p(X)) are called canonical regions of p(X). We define a separatrix configuration as the
union of S(p(X)) plus one representative solution chosen from each canonical region. Two
separatrix configurations S1 and S2 of vector fields of Pn(S2) (respectively Pn(R2)) are
said to be topologically equivalent if there exists an orientation–preserving homeomorphism
of S2 (respectively R2) which maps the trajectories of S1 onto the trajectories of S2.

The skeleton of separatrices is defined as the union of S(p(X)) without the represen-
tative solution of each canonical region. Thus, a skeleton of separatrices can still produce
different separatrix configurations. Moreover, a heteroclinic orbit is a separatrix which
starts and ends on different points and a homoclinic orbit is a separatrix which starts and
ends at the same point. A loop is formed by a homoclinic orbit and its associated singular
point. These orbits are also called separatrix connections.

We now give the notion of graphics, which play an important role in obtaining
limit cycles when they are due to connection of separatrices, for example.

A (non–degenerate) graphic as defined in Dumortier, Roussarie and Rousseau
(1994) is formed by a finite sequence of singular points r1,r2, . . . ,rn (with possible rep-
etitions) and non–trivial connecting orbits γi for i = 1, . . . ,n such that γi has ri as α–limit
set and ri+1 as ω–limit set for i < n and γn has rn as α–limit set and r1 as ω–limit set.
Also normal orientations n j of the non–trivial orbits must be coherent in the sense that
if γ j−1 has left–hand orientation then so does γ j. A polycycle is a graphic which has a
Poincaré return map.

A degenerate graphic is formed by a finite sequence of singular points r1,r2, . . . ,rn

(with possible repetitions) and non–trivial connecting orbits and/or segments of curves of
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singular points γi for i = 1, . . . ,n such that γi has ri as α–limit set and ri+1 as ω–limit set
for i < n and γn has rn as α–limit set and r1 as ω–limit set. Also normal orientations n j of
the non–trivial orbits must be coherent in the sense that if γ j−1 has left–hand orientation
then so does γ j. For more details, see Dumortier, Roussarie and Rousseau (1994).

Remark 1.3.2 (See Artés, Kooij and Llibre (1998)). Any graphic or degenerate graphic
in a real planar polynomial differential system must either

(a) surround a singular point of index greater than or equal to +1 (see Dumortier, Llibre
and Artés (2008), Hirsch (1976) for the definition of index of a singular point), or

(b) contain a singular point having an elliptic sector situated in the region delimited
by the graphic (for the definition of characteristic directions and finite sectoral de-
composition of vector fields p(X) ∈Pn(S2) (or X ∈Pn(R2)) we indicate Dumortier,
Llibre and Artés (2008)), or

(c) contain an infinite number of singular points.

A vector field p(X)∈Pn(S2) is said to be structurally stable with respect to pertur-
bations in Pn(S2) if there exists a neighborhood V of p(X) in Pn(S2) such that p(Y ) ∈V

implies that p(X) and p(Y ) are topologically equivalent; that is, there exists a homeomor-
phism of S2, which preserves S1, carrying orbits of the flow induced by p(X) onto orbits
of the flow induced by p(Y ), preserving sense but not necessarily parametrization.

Since in this thesis we are interested in the classification of the structurally unstable
quadratic vector fields of codimension two, we recall the concept of quadratic vector fields
of lower codimension in structurally stability.

Recalling the works of Peixoto (1962), restricted to the class of the quadratic vector
fields, we have the following result.

Theorem 1.3.3. Consider p(X) ∈Pn(S2) (or X ∈Pn(R2)). This system is structurally
stable if and only if

(i) the finite and infinite singular points are hyperbolic;

(ii) the limit cycles are hyperbolic (remember Def. 1.1.27);

(iii) there are no saddle connections.

Moreover, the structurally stable systems form an open and dense subset of Pn(S2) (or
Pn(R2)).

The studies done up to now on structurally stable systems and codimension one
systems are modulo limit cycles (see the introduction of this thesis for more details), so it
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is sufficient to consider only conditions (i) and (iii) of Thm. 1.3.3. These conditions are
usually called stable objects.

According to Artés, Kooij and Llibre (1998) there are 44 topologically distinct
structurally stable quadratic vector fields. Concerning the codimension one quadratic
vector fields, we allow the break of only one stable object. In other words, a quadratic
vector field X is structurally unstable of codimension one modulo limit cycles if and only
if

(I) It has one and only one structurally unstable object of codimension one, i.e. one of
the following types:

(I.1) a saddle–node q of multiplicity two with ρ0 = (∂P/∂x+∂Q/∂y)q 6= 0;

(I.2) a separatrix from one saddle point to another;

(I.3) a separatrix forming a loop for a saddle point with ρ0 6= 0 evaluated at the
saddle.

(II) It has no structurally unstable limit cycles, saddle–point separatrices forming a loop,
or singular points other than those listed in (I).

(III) If the vector field has a saddle–node, none of its separatrices may go to a saddle
point and no two separatrices of the saddle–node are continuation one of the other.

In what follows, instead of talking about codimension one modulo limit cycles, we
simply say codimension one∗.

As described in Chap. 5 of Artés, Llibre and Rezende (2018), the codimension one∗

quadratic vector fields can be allocated in four sets, according to the bifurcations that
occur to the singular points of structurally stable quadratic vector fields X .

(A) When a finite saddle and a finite node of X coalesce (forming a finite saddle–node
sn(2)) and disappear.

(B) When an infinite saddle and an infinite node of X coalesce (forming an infinite
saddle–node

(0
2

)
SN) and disappear.

(C) When a finite saddle (respectively node) and an infinite node (respectively saddle) of
X coalesce (forming an infinite saddle–node

(1
1

)
SN) and then they exchange positions.

(D) When we have a saddle–to–saddle connection. This set is split into five subsets
according to the type of the connection: (a) finite–finite (heteroclinic orbit), (b)
loop (homoclinic orbit), (c) finite–infinite, (d) infinite–infinite between symmetric
points, and (e) infinite–infinite between adjacent points.
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Recalling the main result in Artés, Llibre and Rezende (2018), as we described
before the phase portraits in all these four sets sum up 209 topological distinct ones, where
202 of these total are proved to be realizable (i.e. the authors could exhibit 202 examples
of quadratic systems whose phase portraits are topologically equivalent to those ones)
and the remaining 7 are conjectured to be impossible (more precisely, the authors provide
some arguments indicating that there are no quadratic system whose phase portrait is
topologically equivalent to those 7 phase portraits).

The next step is to classify, modulo limit cycles, the quadratic vector fields of
codimension two. In what follows we give a more precise definition of codimension, which
can be easily extended for higher dimensions.

Definition 1.3.4. We say that a phase portrait of a quadratic vector field is structurally
stable if any sufficiently small perturbation in the parameter space leaves the phase portrait
topologically equivalent the previous one.

Definition 1.3.5. We say that a phase portrait of a quadratic vector field is structurally
unstable of codimension k if any sufficiently small perturbation in the parameter space
either leaves the phase portrait topologically equivalent the previous one or it moves it
to a lower codimension one, and there is at least one perturbation that moves it to the
codimension k−1.

Remark 1.3.6. We point out that all the phase portraits of quadratic systems with
centers singularities are in number 31 (see Vulpe (1983)) and here we consider systems
without centers.

Then, according to this definition concerning codimension two, we state the fol-
lowing result:

Theorem 1.3.7. A polynomial vector field in P2(R2) is structurally unstable of codimen-
sion two modulo limit cycles if and only if all its objects are stable except for the break of
exactly two stable objects. In other words, we allow the presence of two unstable objects
of codimension one or one of codimension two.

Combining the sets of codimension one∗ quadratic vector fields one to each other,
we obtain 10 new sets, from which one of them is split into 15 subsets, according to Tables
1 and 2.

As before, instead of talking about codimension two modulo limit cycles, we simply
say codimension two∗.

Geometrically, the codimension two∗ sets can be described as follows. Let X be a
codimension one∗ quadratic vector field. We have the following families:
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Table 1 – Families of structurally unstable quadratic vector fields of codimension two considered
from combinations of the sets of codimension one∗: (A), (B), (C), and (D) (which in
turn is split into (a), (b), (c), (d), and (e))

(A) (B) (C) (D)
(A) (AA)
(B) (AB) (BB)
(C) (AC) (BC) (CC)
(D) (AD) (5 cases) (BD) (5 cases) (CD) (5 cases) (DD) see Table 2

Table 2 – Families of structurally unstable quadratic vector fields of codimension two in the set
(DD) (see Table 1)

(a) (b) (c) (d) (e)
(a) (aa)
(b) (ab) (bb)
(c) (ac) (bc) (cc)
(d) (ad) (bd) (cd) (dd)
(e) (ae) (be) (ce) (de) (ee)

(AA) Either when a finite saddle (respectively a finite node) of X coalesces with the finite
saddle–node, giving birth to a semi–elemental triple saddle: s(3) (respectively a triple
node: n(3)), or when both separatrices of the saddle–node limiting its parabolic
sector coalesce, giving birth to a cusp of multiplicity two: ĉp(2), or when another
finite saddle–node is formed, having then two finite saddle–nodes: sn(2)+sn(2). We
point out that phase portraits with s(3) and with n(3) are topologically equivalent to
structurally stable phase portraits. We may find them in the papers Artés, Rezende
and Oliveira (2013) and Artés, Oliveira and Rezende (2016).

(AB) When an infinite saddle and an infinite node of X coalesce plus a finite saddle–node:
sn(2)+

(0
2

)
SN.

(AC) When we have a finite saddle–node and when a finite saddle (respectively node) and
an infinite node (respectively saddle) of X coalesce: sn(2)+

(1
1

)
SN.

(AD) When we have a finite saddle–node plus a separatrix connection, considering all five
types of set D.

(BB) When an infinite saddle (respectively an infinite node) of X coalesces with an existing
infinite saddle–node

(0
2

)
SN, leading to a triple saddle:

(0
3

)
S (respectively a triple node:(0

3

)
N). This case is irrelevant to the production of new phase portraits since all the

possible phase portraits that may be produced are topologically equivalent to a
structurally stable one.



50 Chapter 1. Preliminaries

(BC) When a finite antisaddle (respectively finite saddle) of X coalesces with an existing
infinite saddle–node

(0
2

)
SN, leading to a nilpotent elliptic saddle

(̂1
2

)
E−H (respec-

tively nilpotent saddle
(̂1

2

)
HHH −H). Or it may also happen that a finite saddle

(respectively node) coalesces with an elemental node (respectively saddle) in a phase
portrait already having an

(0
2

)
SN, having then in total

(1
1

)
SN +

(0
2

)
SN.

(BD) When we have an infinite saddle–node
(0

2

)
SN plus a separatrix connection, consid-

ering all five types of set D.

(CC) This case has two possibilities:

(a) when a finite saddle (respectively finite node) of X coalesces with an existing
infinite saddle–node

(1
1

)
SN, leading to a semi–elemental triple saddle

(2
1

)
S

(respectively a semi–elemental triple node
(2

1

)
N);

(b) when a finite saddle (respectively node) and an infinite node (respectively sad-
dle) of X coalesce plus another existing infinite saddle–node

(1
1

)
SN, leading to

two infinite saddle–nodes
(1

1

)
SN+

(1
1

)
SN.

The first case is irrelevant to the production of new phase portraits since all the
possible phase portraits that may be produced are topologically equivalent to a
structurally stable one.

(CD) When we have an infinite saddle–node
(1

1

)
SN plus a saddle to saddle connection,

considering all five types of set D.

(DD) When we have two saddle to saddle connections, which are grouped as follows:

(aa) two finite–finite heteroclinic connections;

(ab) a finite–finite heteroclinic connection and a loop;

(ac) a finite–finite heteroclinic connection and a finite–infinite connection;

(ad) a finite–finite heteroclinic connection and an infinite–infinite connection be-
tween symmetric points;

(ae) a finite–finite heteroclinic connection and an infinite–infinite connection be-
tween adjacent points;

(bb) two loops;

(bc) a loop and a finite–infinite connection;

(bd) a loop and an infinite–infinite connection between symmetric points;

(be) a loop and an infinite–infinite connection between adjacent points;

(cc) two finite–infinite connections;
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(cd) a finite–infinite connection and an infinite–infinite connection between symmet-
ric points;

(ce) a finite–infinite connection and an infinite–infinite connection between adjacent
points;

(dd) two infinite–infinite connections between symmetric points;

(de) an infinite–infinite connection between symmetric points and an infinite–infinite
connection between adjacent points;

(ee) two infinite–infinite connections between adjacent points.

Some of these cases have also been proved to be empty in an on course paper.

As we already said in the introduction, in Artés, Oliveira and Rezende (2020) the
authors obtained 34 phase portraits belonging to the set (AA) and proved their realization.
One of the main goals of this thesis is to continue in this direction by presenting the
topological classification of all the phase portraits of codimension two* belonging to the
set (AB) and phase portraits of codimension two* possessing the set of saddle–nodes{

sn(2)+
(1

1

)
SN
}

belonging to the set (AC). Here we also prove the realization of all of
them.
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CHAPTER

2
ALGEBRAIC CONCEPTS

In this chapter we present some algebraic concepts, a summary of the Invariant
Theory and how this theory is applied in the qualitative study of quadratic systems. These
results contribute for understanding the tools used in this thesis. As we did in the previous
chapter and since this chapter is not a main goal of this thesis (i.e. we are not interested
in indicating here all the details), here we only present the results and we indicate some
references for the reader interested in more information.

2.1 Some notions of algebraic curves

In this section we discuss briefly some basic concepts regarding Algebraic Curves.
We indicate Fulton (2008) (or any other book on introduction to Algebraic Geometry) for
more details.

2.1.1 Intersection number of algebraic curves

The notion of intersection number of two algebraic curves will be very useful in the
definition of multiple singularities and also in the description of the bifurcation surfaces
combined with the notion of divisors and zero–cyles.

Definition 2.1.1. We define the affine two–space over C, or simply the affine plane
A2(C), by the set C×C. Its elements are called points.

Definition 2.1.2. If f ∈ C[x,y], a point p = (a,b) ∈ A2(C) is called a zero of f if f (p) =

f (a,b)= 0. We say that two polynomials f ,g∈C[x,y] are equivalent if f = λg, for some λ ∈
C∗. We define an affine plane curve to be an equivalence class of non–constant polynomials
under this equivalence relation.
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Definition 2.1.3. Let C : f (x,y) = 0 and C̃ : g(x,y) = 0 be two affine algebraic curves over
C. The intersection number of C and C̃ at a point a ∈ A2(C) is the number

Ia( f ,g) = dimC
Oa

( f ,g)
,

where Oa is the local ring of the affine complex plane at a, i.e. Oa is the ring of rational
functions p(x,y)/q(x,y) which are defined at a (i.e. q(a) 6= 0), and ( f ,g) is the ideal
generated by f and g.

Definition 2.1.4. We say that f and g intersect properly at a point a if f and g have no
common component that passes through a.

One can calculate the intersection number Ia( f ,g) of two affine algebraic curves at
a point a by using the following seven axioms:

(A1) Ia( f ,g) is a non–negative integer for any f ,g and a such that f and g intersect
properly at a. Moreover Ia( f ,g) = ∞ if f and g do not intersect properly at a;

(A2) Ia( f ,g) = 0 if and only if a /∈ f ∩g;

(A3) If T is an affine translation on A2(C) and T (b) = a, then Ia( f ,g) = Ib( f ◦T,g◦T );

(A4) Ia( f ,g) = Ia(g, f );

(A5) Two curves f and g are said to intersect transversally at a if a is a simple point
both on f and on g, and if the tangent line to f at a is different from the tangent
line to g at a. We want the intersection number to be one exactly if f and g meet
transversally at a. More generally, we require Ia( f ,g) ≥ ma( f )ma(g) (where ma( f )

stands for the multiplicity of f at a) and the equality holds if and only if f and g

have no tangent lines in common at a;

(A6) The intersection numbers should add when we take unions of curves: if f = ∏ f ri
i

and g = ∏gs j
j then Ia( f ,g) = ∑i, j ris jIa( fi,g j);

(A7) Ia( f ,g) = Ia( f ,(g+ k f )), for any k ∈ C[x,y].

In the case that we have a quadratic polynomial differential system

x′ = P(x,y), y′ = Q(x,y),

the intersection numbers Ia(P,Q) at the singularities a ∈A2(C) can be computed by using
these seven axioms. In this case, we say that a singularity a of the previous system is
simple if Ia(P,Q) = 1, otherwise we say that a has multiplicity r if we have Ia(P,Q) = r.
Roughly speaking, for this last case singularity a produces at most r singularities, as close
to a as we desire, by means of polynomial perturbations of this system.
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Definition 2.1.5. Consider An+1 = An+1(K), where K is a field. The set of all lines in
An+1 passing through the origin 0 = (0, . . . ,0) is called the n–dimensional projective space
and it is denoted by KPn, or simply Pn when K is understood.

We identify Pn with the set of all points in An+1\{0} modulo the equivalence
relation (x1, . . . ,xn+1) ∼ (λx1, . . . ,λxn+1) for all λ ∈ K∗, i.e. two points in An+1\{0} are
equivalent if they are on the same line through the origin. An element of Pn is called a
point. If P is a point, then any (n+1)–tuple (a1, . . . ,an+1) in the equivalence class of P is
called a set of homogeneous coordinates of P. Equivalence classes are usually written as
P = [a1 : · · · : an+1] to distinguish from the affine coordinates. Note that

[a1 : · · · : an+1] = [λa1 : · · · : λan+1], ∀ λ ∈K∗.

We have defined Pn as the collection of all one–dimensional subspaces of the vector
space An+1, but Pn may also be thought as n+1 (overlapping) copies of affine n–space. In
fact, we can express any point

[x1 : · · · : xn+1] ∈Ui = {[a1 : · · · : an+1] ∈ Pn;ai 6= 0}

in terms of n affine coordinates

[x1 : · · · : xn+1] =

[
x1

xi
: · · · : 1 : · · · : xn+1

xi

]
,

and then, Ui ∼= An. Projective spaces will be very useful in Chap. 3 and 4.

Definition 2.1.6. A polynomial f ∈K[x1, . . . ,xn+1] is homogeneous of degree d if

f (λx1, . . . ,λxn+1) = λ
d f (x1, . . . ,xn+1), ∀ λ ∈K.

Definition 2.1.7. For any set S of polynomials in K[x1, . . . ,xn+1] we define the projective
algebraic set

V (S) = {P ∈ Pn; f (P) = 0, for all homogeneous f ∈ S}.

An irreducible projective algebraic set in Pn is called a projective variety.

One can show that an algebraic set Z ⊆ Pn is irreducible if and only if the ideal
generated by Z is prime (i.e. if ab ∈ I(Z), then a ∈ I(Z) or b ∈ I(Z)).

Definition 2.1.8. Two non–constant homogeneous polynomials F,G ∈K[X ,Y,Z] are said
to be equivalent if there is a nonzero λ ∈ K such that G = λF . A projective plane curve
is an equivalence class of homogeneous polynomials.

For two projective curves in CP2, F(X ,Y,Z) = 0 and G(X ,Y,Z) = 0, where F and G

are homogeneous polynomials in the variables X , Y , and Z which are relatively prime over
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C we can define IW (F,G) as follows: suppose for example that W = [a : b : c] where c 6= 0,
hence W = [a/c : b/c : 1]. Let f (x,y) = F(x,y,1) and g(x,y) = G(x,y,1). Then IW (F,G) =

Iw( f ,g) where w = (a/c,b/c). It is known that IW (F,G) is independent of the choice of a
local chart, and of a projective change of variables (see again Fulton (2008)).

These concepts of intersection multiplicity extend to that of intersection multiplic-
ity of several curves at a point of the projective plane, see Sec. 5 of Artés, Llibre and
Schlomiuk (2006) for more details.

2.1.2 Resultants and discriminants

We already know how to compute the intersection number Ia( f ,g) between two
affine algebraic curves at a point a. The natural question that arises is the following
one: how can we proceed in order to find the intersection points between two curves
f ,g ∈C[x,y]? The most general and simple method is to select one of the variables, say y,
to act like part of the coefficients, i.e. we consider f and g as polynomials in the variable
x with coefficients in the ring C[y]. Then we try to find values of y in such a way that
f (x,y) and g(x,y) admit a common root. Geometrically we want to find the projections,
over the y axis, of the points of f ∩g.

Definition 2.1.9. Let f (x) = anxn+ · · ·+a0 and g(x) = bmxm+ · · ·+b0 be two polynomials
of degrees (at most) n and m, respectively, with coefficients in an arbitrary field K (or,
as before, in C[y]). Their resultant R( f ,g) = Rn,m( f ,g) is the element of K given by the
determinant of the (m+n)× (m+n) Sylvester Matrix, given by

an an−1 an−2 · · · 0 0 0
0 an an−1 · · · 0 0 0
... ... ... . . . ... ... ...

0 0 0
... a1 a0 0

0 0 0
... a2 a1 a0

am bm−1 bm−2 · · · 0 0 0
0 bm bm−1 · · · 0 0 0
... ... ... . . . ... ... ...

0 0 0
... b1 b0 0

0 0 0
... b2 b1 b0



,

where the m first rows contain the coefficients an,an−1, . . . ,a0 of f shifted 0,1, . . . ,m− 1
steps and padded with zeroes, and the n last rows contain the coefficients bm,bm−1, . . . ,b0

of g shifted 0,1, . . . ,n− 1 steps and padded with zeroes (see Garcia and Lequain (2012),
for instance, for more details).

The main importance of the resultant lies in the following formula.
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Theorem 2.1.10. Let f (x) = anxn+ · · ·+a0 and g(x) = bmxm+ · · ·+b0 be two polynomials
of degrees n and m (this means an 6= 0 and bm 6= 0), respectively, with coefficients in an
arbitrary field K. Suppose that, in some extension of K, f has n roots α1, . . . ,αn and g

has m roots β1, . . . ,βm (not necessarily distinct). Then

R( f ,g) = am
n bn

m

n

∏
i=1

m

∏
j=1

(αi−β j).

This theorem implies perhaps the most important result about resultants.

Corollary 2.1.11. Let f and g be two nonzero polynomials with coefficients in a field K.
Then f and g have a common non–trivial factor if and only if R( f ,g) = 0. Equivalently,
f and g are coprime if and only if R( f ,g) 6= 0.

Another important tool that is quite useful in this thesis is the notion of discrimi-
nant (see Garcia and Lequain (2012), for more details). The discriminant of a polynomial
f is generally defined in terms of a polynomial function of its coefficients. The discrimi-
nant is widely used in factoring polynomials, number theory, and algebraic geometry, and
it gives some information about the nature of the roots of f .

Definition 2.1.12. The discriminant of a polynomial f (x) = anxn + · · ·+a1x+a0 ∈ C[x]
is a number ∆( f ), which is defined by

∆( f ) = a2n−2
n

n

∏
1≤i≤ j≤n

(αi−α j)
2,

where αi are the roots of f (x) = 0.

Regarding this definition it is clear that the discriminant ∆( f ) = 0 if and only if f

has a repeated root.

It is also known that the discriminant of a polynomial f is given in terms of a
resultant as

∆( f ) =
(−1)n(n−1)/2

an
R( f , f ′),

where f ′ is the derivative of f and n is the degree of f .

We finish this section with the following definition regarding the singularities of
an algebraic curve.

Definition 2.1.13. A point a which belongs to an algebraic curve f ∈ C[x,y] is said to
be non–singular (or regular) if at least one of the partial derivatives fx, fy does not vanish
at a.
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2.1.3 Zero–cycles and divisors

Here we present the notions of zero–cycle and divisor and we indicate a reference
in which the authors use these concepts for the purpose of classifying quadratic systems.

Let V be an irreducible algebraic variety over a field K. A cycle of dimension r or
r–cycle on V is a formal sum ∑W nWW , where W is a subvariety of V of dimension r which
is not contained in the singular locus of V (i.e. the complement of the regular points of
V ), nW ∈ Z, and only a finite number of nW ’s are nonzero. The support of a cycle C is the
set Supp(C) = {W ;nW 6= 0}. We denote by max(C) the maximum value of the coefficients
nW in C. For every m≤max(C) let s(m) be the number of the coefficients nW in C which
are equal to m. We call type of the cycle C the set of ordered couples (s(m),m) where
1≤m≤max(C). The degree of a cycle of C2, (respectively R2, CP2, RP2) is the sum of its
coefficients nW . If J is a cycle we denote by deg(J), its degree. An (n−1)−cycle is called
a divisor.

For a given system S belonging to the family of quadratic systems

x′ = P(x,y), y′ = Q(x,y),

we define the algebraic set Z(P,Q) = {w ∈ C2;P(w) = Q(w) = 0} and we construct the
following zero–cycle

DS(P,Q) = ∑
w∈Z(P,Q)

Iw(P,Q)w,

where Iw(P,Q) is the intersection number or multiplicity of intersection at w of the pro-
jective completions of the curves P = 0 and Q = 0. It is clear that, for a non–degenerate
quadratic system we have deg(DS) ≤ 4 and the number of points in Supp(DS) is lesser
than or equal to four. The zero–cycle DS(P,Q) is not defined for a degenerate system.

These notions which occur frequently in algebraic geometry (see for instance
Hartshorne (1977)), were used for classification purposes of planar quadratic differen-
tial systems by Pal and Schlomiuk (see Schlomiuk and Pal (2001)) and by Llibre and
Schlomiuk (see Llibre and Schlomiuk (2004)). In Artés, Llibre and Schlomiuk (2006) the
authors construct several zero–cycles and divisors related to a real polynomial differential
system

ẋ = f (x,y), ẏ = g(x,y),

with f and g relatively prime polynomials in C[x,y] with max{deg( f ),deg(g)}= m.

Remark 2.1.14. In this thesis we shall use routinely the basic concepts of Differential
and Integral Calculus, such as gradient, Jacobian matrix and Hessian of a function. We
do not mention such results here since they can be found in every Calculus book.
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2.2 Affine invariant polynomials

In this section we provide a summary of the Classical Invariant Theory and how
the concepts are applicable in the qualitative study of differential systems.

The algebraic theory of invariants was originally introduced in Britain in the mid-
dle of the nineteenth century. Initially some formal methods of constructing invariants
were developed. Then, about one hundred years ago, several fundamental problems of
this theory were solved by David Hilbert. In our days the Invariant Theory continues be-
ing developed and applied in various branches of Mathematics and Physics. We indicate
the book of Olver (1999), in which a very nice historical review and several references are
given.

Classical Invariant Theory is the study of intrinsic properties of polynomials. By
intrinsic we mean those properties which are unaffected by a change of variables and
are then purely geometric, independently to the explicit coordinate system in use. We
illustrate with an example. The polynomial

f (x) = (x−1)(x+7)3(x2 +4)2 ∈ R[x]

possesses degree 8 and has clearly four roots, namely, x1 = 1,x2 =−7,x3 = 2i and x4 =−2i.
The most intuitive changes of variables which preserve the degree of polynomials are the
affine transformations x̄=αx+β with α,β ∈R and α 6= 0. By applying this transformation
to this polynomial, after a straightforward computation we obtain the polynomial

f̄ (x̄) =
1

α8 (x̄−α−β )(x̄+7α−β )3(x̄2−2β x̄+4α
2 +β

2)2.

Thus, properties such as factorizability and multiplicity of the roots are intrinsic, whereas
the explicit values of the roots and the particular coefficients of the polynomials are not.

The study of invariants is closely related to the following two problems:

• the equivalence problem: when can one polynomial be transformed into another by
a suitable change of coordinates?

• the associated canonical form problem: how to find a coordinate system in which
the polynomial takes a simpler form?

The solution of these intimately related problems, and much more, are governed by
the invariants, and so the first goal of the Classical Invariant Theory is to determine the
fundamental invariants. With a sufficient number of invariants in hand, one can effectively
solve the equivalence, and canonical form problems, and, at least in principle, completely
characterize the underlying geometry of a given polynomial.
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All these issues appear in the following very simple example. Consider the quadratic
binary form

f (x,y) = ax2 +2bxy+ cy2.

The most obvious change of variables which preserves the class of quadratic binary forms
are the linear transformations:

x̄ = αx+βy, ȳ = γx+δy,

in which the coefficient matrix

A =

(
α β

γ δ

)
is non–singular, i.e. det(A) = αδ −βγ 6= 0. In order to simplify, we assume that the form
f (x,y) as well the matrix A are real. Under such a linear transformation, the image of the
form f (x,y) is a new form f̄ (x̄, ȳ), which is defined so that

f̄ (x̄, ȳ) = f̄ (αx+βy,γx+δy) = f (x,y).

Then, matrix A induces a transformation on the coefficients a,b, and c of f (x,y), mapping
them into the corresponding coefficients ā, b̄, and c̄ of f̄ (x̄, ȳ). From the previous equation
one can write

ā(αx+βy)2 +2b̄(αx+βy)(γx+δy)+ c̄(γx+δy)2 = f (x,y),

and from such an equation we obtain the relation

a = α
2ā+2αγ b̄+ γ

2c̄, b = αβ ā+(αδ +βγ)b̄+ γδ c̄, c = β
2ā+2βδ b̄+δ

2c̄.

From these identities we can conclude that there exists the following relation between the
discriminant ∆ of f (x,y) with the discriminant ∆̄ of f̄ (x̄, ȳ):

∆ = b2−ac = (αδ −βγ)2(b̄2− āc̄) = (αδ −βγ)2
∆̄.

These equations express the underlying invariance of the discriminant of a quadratic form
and provide the simplest example of an invariant (in the sense of Classical Invariant
Theory). We recall the geometrical meaning of the invariant discriminant: it governs the
types of the linear factors of its form. So, it can be applied for the classification of the
class of quadratic forms (see Table 3).

Table 3 – Classification of the class of quadratic forms f (x,y) = ax2 +2bxy+ cy2

Sign of the discriminant Number of roots Canonical form
∆ > 0 2 real (distinct) xy
∆ < 0 2 complex k(x2 + y2), k ∈ {−1,1}

∆ = 0, f 6≡ 0 1 double (real) kx2, k ∈ {−1,1}
∆ = 0, f ≡ 0 – 0
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We point out that in this thesis we are not interested in use effectively the Classical
Invariant Theory. We only want to use the applications of the algebraic invariants of dif-
ferential systems.

The foundations of the theory of algebraic invariants of differential systems were
laid down in the 60’s of the last century in the works of Professor Konstantin Sergeevich
Sibirsky (see Sibirsky (1988)). He was the founder of the Moldovian School in the Qualita-
tive Theory of Differential Equations. The use of algebraic invariants was prompted by his
research (initiated by Professor Nemytsky) in the conditions of the existence of a center
for polynomial differential systems. Sibirsky had noticed that the center conditions that
he has obtained were invariant under the rotation of the phase plane, and therefore, the
rotation invariants of such systems could be used in construction of the center conditions.
So, it has arisen the necessity in constructing invariant polynomials depending on the co-
efficients of differential systems. Since then, Sibirsky and his students (here we highlight
Professor Nicolae Vulpe) have been working on the attempt of joining the concepts of
invariant polynomials of systems of autonomous differential equations with the action of
groups of linear transformations of the phase space.

As it was done before (see for instance Artés, Llibre and Schlomiuk (2006), Artés,
Rezende and Oliveira (2015)), in this thesis we apply the results of Sibirsky and his
students in order to classify topologically planar differential systems. With the purpose
of using this technique we need to introduce some notation and concepts, and also show
briefly how the classical theory of invariants and methods are adapted for our aim. In
order to adapt and use classical methods and technique we first need to pass to the tensor
form of differential systems.

2.2.1 Tensor notation of differential systems

We begin with quadratic systems of the form

dx
dt

= ax+by+ cx2 +dxy+ ey2,

dy
dt

= Ax+By+Cx2 +Dxy+Ey2,

where x and y are unknown functions and t is the independent variable. Denoting by

x1 = x, x2 = y, a1
12 = a1

21 =
1
2

d, a2
12 = a2

21 =
1
2

D,

the previous system can be written in the form

dx1

dt
= a1

1x1 +a1
2x2 +a1

11(x
1)2 +a1

12x1x2 +a1
21x2x1 +a1

22(x
2)2,

dx2

dt
= a2

1x1 +a2
2x2 +a2

11(x
1)2 +a2

12x1x2 +a2
21x2x1 +a2

22(x
2)2.
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This notation is more convenient, since it is possible to summarize it in the compact way

dx j

dt
=

2

∑
α=1

a j
αxα +

2

∑
α,β=1

a j
αβ

xαxβ , j = 1,2,

or, discarding the summation sign, in the form

dx j

dt
= a j

αxα +a j
αβ

xαxβ , j,α,β = 1,2.

Another way to write this last system is in the form

dx j

dt
=

2

∑
ω=1

a j
j1 j2... jω x j1x j2 · · ·x jω , j, j1, j2, . . . , jω = 1,2,

which can be extended to multivariate systems with arbitrary polynomials or series on
the right–hand sides

dx j

dt
= ∑

ω∈Ω

a j
j1 j2... jω x j1x j2 · · ·x jω , j, j1, j2, . . . , jω ∈ {1,2, . . . ,n}, (2.1)

where Ω is some set of positive distinct integers, while the coefficients a j
j1 j2... jω are sym-

metrical with respect to lower indexes, i.e. their values are not dependent on the order of
succession of these indexes.

Definition 2.2.1. The form (2.1) is called a tensor form.

We observe that setting Ω= {1,2} and n= 2 we obtain the initial quadratic system
and if the set Ω is infinite then the right–hand sides of systems (2.1) are formal series.

2.2.2 The definition of an invariant polynomial

In what follows we assume that systems (2.1) are real polynomial systems (in the
case when Ω is infinite, remember that a polynomial of an infinite set of variables is a
polynomial of any finite subset of these variables). In this case we can identify each system
(2.1) to a point a ∈ Rm, where m is the number of the coefficients of this system.

Consider the group Q ⊆ GL(n,R) of linear transformations of the n–dimensional
space X of vectors x = (x1,x2, . . . ,xn) (of the phase space of systems (2.1)). We denote a
linear transformation q ∈ Q in the form

y = qx,

where y = (y1,y2, . . . ,yn) is the vector of new unknown functions and q is a n×n–matrix.

Performing this transformation on a system (2.1) corresponding to a point a ∈Rm

we arrive at the system

dyr

dt
= ∑

ω∈Ω

br
r1r2...rω

yr1yr2 · · ·yrω , r,r1,r2, . . . ,rω ∈ {1,2, . . . ,n}, (2.2)
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which corresponds to a point b ∈ Rm. It is clear that b depends on a and q (i.e. we have
b = b(a,q)) and we shall sometimes write b = a(q).

Definition 2.2.2. A polynomial I(a) of the coefficients of systems (2.1) is called an
invariant polynomial for these systems with respect to a group Q if there exists a function
λ (q) depending only on elements of the group such that for every (q,a) ∈ Q×Rm the
following identity holds

I(b) = λ (q)I(a). (2.3)

The function λ (q) is called a multiplicator. If λ (q) ≡ 1 then the invariant I(a) is called
absolute, otherwise it is called relative.

In the next subsection we apply directly this definition in order to construct the
GL–invariants for the simplest class of systems, the linear ones.

2.2.3 Invariants of differential systems

We consider the simplest case, when Ω = {1} and n = 2. Then we obtain the linear
systems

dx j

dt
= a j

αxα , j,α = 1,2,

which in addition can be written in the vector form

dx
dt

= ax, a =

(
a1

1 a1
2

a2
1 a2

2

)
.

We consider the group GL(2,R) of linear transformations. In this case q ∈ GL(2,R) is a
2×2-matrix which is denoted by

q =

(
α β

γ δ

)
,

which is non–singular (i.e det(q) 6= 0). Considering the transformation y = qx we obtain
the corresponding inverse x = q−1y and then we have

dy
dt

= q
dx
dt

= qaq−1y = by

which implies
dy
dt

= by,

where b =

(
b1

1 b1
2

b2
1 b2

2

)
. The equality b = qaq−1 is equivalent to bq = qa, i.e.

(
b1

1 b1
2

b2
1 b2

2

)(
α β

γ δ

)
=

(
α β

γ δ

)(
a1

1 a1
2

a2
1 a2

2

)
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and this leads us to the following identities

b1
1α +b1

2γ = a1
1α +a2

1β , b1
1β +b1

2γ = a1
2α +a2

2β ,

b2
1α +b2

2γ = a1
1γ +a2

1δ , b2
1β +b2

2δ = a1
2γ +a2

2δ .

From these equations we obtain

det(q)b1
1 = αδa1

1−αγa1
2 +βδa2

1−βγa2
2,

det(q)b1
2 =−αβa1

1 +α
2a1

2−β
2a2

1 +αβa2
2,

det(q)b2
1 = γδa1

1− γ
2a1

2 +δ
2a2

1− γδa2
2,

det(q)b2
2 =−βγa1

1 +αγa1
2−βδa2

1 +αδa2
2.

(2.4)

We shall seek for homogeneous invariants of first degree, i.e. invariants of the form

I(a) = k1a1
1 + k2a1

2 + k3a2
1 + k4a2

2, (2.5)

where ki (i = 1,2,3,4) are the parameters which we have to determine.

Using Def. 2.2.2, from relation (2.3) we obtain

I(b) = k1b1
1 + k2b1

2 + k3b2
1 + k4b2

2 = λ (q)(k1a1
1 + k2a1

2 + k3a2
1 + k4a2

2) = λ (q)I(a)

and this identity must be verified for all values of ai
j (i, j = 1,2). Considering (2.4) and

equating in the previous relation the coefficients in front of a1
1 and a1

2 we obtain, respec-
tively

a1
1 :k1αδ − k2αβ + k3γδ − k4βγ = λ (q)k1 det(q),

a1
1 :− k1αγ + k2α

2− k3γ
2 + k4αγ = λ (q)k2 det(q).

(2.6)

Eliminating the function λ (q) from expression (2.6) we arrive at the following relation

k1k2αδ − k2
2αβ + k2k3γδ − k2k4βγ + k2

1αγ− k1k2α
2 + k1k3γ

2− k1k4αγ = 0,

which must be satisfied for all values of α,β ,γ and δ . Computing the coefficients of αβ

we get k2 = 0. Hence, from the second relation of (2.6) we obtain k3 = 0,k4 = k1 and then
the first relation of (2.6) becomes

k1(αδ −βγ) = k1λ (q)det(q) = k1λ (q)(αδ −βγ).

So, λ (q) = 1 and then, up to a constant k1 6= 0 we conclude that from (2.5) we have

I1(a) = a1
1 +a2

2 = tr(a),

where tr(a) is the trace of matrix a. This means that I1(a) is an absolute GL–invariant of
degree one.
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In a similar way (see Sibirsky (1988)), seeking for invariants of the second degree
we obtain that any such an invariant is of the form

I(a) = k1(a1
1 +a2

2)
2 + k2(a1

1a2
2−a1

2a2
1) = k1(tr2(a))+ k2 det(a).

So, the polynomial I2(a) = det(a) is an absolute invariant and any GL–invariant of second
degree for the linear systems is a linear combination of the invariants tr2(a) and det(a).
Finally, investigating GL–invariants of third degree it can be shown that any such an
invariant is of the form

I(a) = k1tr3(a)+ k2tr(a)det(a).

Thus the third degree invariants are expressed polynomially by already obtained invariants
of lesser degrees.

Definition 2.2.3. A polynomial invariant I(a) is called reducible if it is expressed poly-
nomially by invariants of lesser degrees. In this case we write I(a) ∼= 0 and we say that
I(a) is congruent to zero.

In Sibirsky (1988), by using more concepts of tensors and operations with them, it
is shown that any GL–invariant for the linear systems is polynomially expressed by means
of I1(a) and I2(a). In this case we say that these two invariants produce a polynomial basis
of (affine) invariants for the linear systems.

Definition 2.2.4. The set of polynomials {Iθ (a),θ ∈Θ} for systems (2.1) with respect to
the group Q is called a polynomial basis of invariants of these systems if any polynomial
invariant I(a) of systems (2.1) with respect to the group Q can be expressed in the form of
a polynomial of invariants Iθ (a). A polynomial basis of invariants of systems (2.1) under
the group Q is called minimal if after the removing of any invariant polynomial out of
the set, it ceases to be a polynomial basis.

Remark 2.2.5. Note that the minimality of a polynomial basis, consisting of invariants
tr(a) and det(a) follows from the fact that it is impossible to express det(a) by means of
the square of tr(a).

Sibirsky (1988) concluded that the tensorial method can be applied to construct
invariant polynomials which depend not only on the coefficients of differential systems,
but also on the unknown functions, i.e. polynomials of the form K(a,x). Such polynomials
are called comitants. The rule of the invariance of these polynomials is the same as for
polynomial invariants, but with a little addition: the identity

K(b,y) = λ (q)K(a,x)

must be verified for every (a,q,x) ∈ (Rm,Q,X). So, a GL–invariant is a particular case of
a GL–comitant since the first one does not depend on the variable x. It can be shown that



66 Chapter 2. Algebraic concepts

the factor λ (q) is of the form (see Sibirsky (1988, Thm. 7.1))

λ (q) = (det(q))−χ , χ ∈ Z.

The number χ ∈ Z is called the weight of the comitant K(a,x).

Moreover, Sibirsky (1988) made the construction of some basis of invariants and
he proved that the polynomial basis of GL–invariants of systems (2.1) consists of 16
invariants (namely, I1 to I16) and, in addition, if we add 20 more comitants (namely, K1 to
K20) to those 16 invariants we obtain a polynomial basis of GL–comitants of the mentioned
systems.

Invariants and comitants have been extensively applied in planar quadratic dif-
ferential systems (see, for instance, Artés, Llibre and Schlomiuk (2006), Artés, Rezende
and Oliveira (2015), Artés et al. (2021)). In the next subsection we shall provide the main
comitants used in previous studies.

2.2.4 Group actions on quadratic systems

Consider a real quadratic system
dx
dt

= p0 + p1(x,y)+ p2(x,y)≡ p(x,y),

dy
dt

= q0 +q1(x,y)+ q2(x,y)≡ q(x,y),
(2.7)

with max{deg(p),deg(q)}= 2, gcd(p,q) = 1 and

p0 = a00, p1(x,y) = a10x+a01y, p2(x,y) = a20x2 +2a11xy+a02y2,

q0 = b00, q1(x,y) = b10x+b01y, q2(x,y) = b20x2 +2b11xy+b02y2.

Let a=(a00,a10,a01,a20,a11,a02,b00,b10,b01,b20,b11,b02) be the 12–tuple of the coefficients
of system (2.7) and write R[a,x,y] =R[a00,a10,a01,a20,a11,a02,b00,b10,b01,b20,b11,b02,x,y].
We denote by QS the entire class of quadratic systems. Then, to a quadratic system (2.7)
we can associate a point of R12, the ordered 12–tuple of the coefficients of p(x,y), q(x,y)

and this correspondence is an injection

B : QS ↪→ R12

S 7→ a = B(S).

The topology of R12 yields an induced topology on QS.

On the set QS of all quadratic differential systems (2.7) acts (left action) the group
Aff(2,R) of affine transformations on the plane:

Aff(2,R)×QS→ QS
(g,S) 7→ S̃ = gS.
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This action is defined as follows: Consider an affine transformation g ∈Aff(2,R), g : R2→
R2. For this transformation we have:

g :
(

x̃
ỹ

)
= M

(
x
y

)
+B; g−1 :

(
x
y

)
= M−1

(
x̃
ỹ

)
−M−1B, (2.8)

where M = ||Mi j|| is a 2×2 non–singular matrix and B is a 2×1 matrix over R. For every
S ∈QS we can form its induced transformed system S̃ = gS:

dx̃
dt

= p̃(x̃, ỹ),
dỹ
dt

= q̃(x̃, ỹ),

where (
p̃(x̃, ỹ)

q̃(x̃, ỹ)

)
= M

(
(p◦g−1)(x̃, ỹ)

(q◦g−1)(x̃, ỹ)

)
.

The map (2.8) verifies the axioms for a left group action. For every subgroup G⊆Aff(2,R)
we have an induced action of G on QS.

Definition 2.2.6. Consider a subset S of QS and a subgroup G of Aff(2,R). We say
that the subset S is invariant with respect to the group G if for every g∈G and for every
system S in S the transformed system gS is also in S .

For every g ∈ Aff(2,R) let rg : R12 → R12 be the map which corresponds to g

via this action. We know (see Sibirsky (1988)) that rg is linear and that the map r :
Aff(2,R)→ GL(12,R) thus obtained is a group homomorphism. For every subgroup G of
Aff(2,R), r induces a representation of G onto a subgroup G of GL(12,R).

This group action yields an equivalence relation on QS, namely two systems S1, S2

are affinely equivalent when there is an affine transformation sending S1 to S2. The orbit
Orb(S) of a system S under the action of the group is the affine equivalence class of S.

2.2.5 Invariants and comitants associated to the group actions

A very useful concept is the notion of polynomial invariant. This kind of invariant
sends a polynomial differential system with coefficients a to a polynomial U belonging to
the ring R[a,x,y].

Definition 2.2.7. A polynomial U(a ,x,y) ∈R[a,x,y] is called a comitant of system (2.7)
with respect to a subgroup G of Aff(2,R), if there exists χ ∈ Z such that for every
(g, a) ∈ G×R12 and for every (x,y) ∈ R2 the following relation holds

U(rg(a), g(x,y))≡ (det g)−χ U(a,x,y),

where detg = detM. If the polynomial U does not explicitly depend on x and y then it is
called an invariant. The number χ ∈ Z is called the weight of the comitant U(a,x,y).

If G = GL(2,R) (or G = A f f (2,R)) then the comitant U(a,x,y) of system (2.7) is
called GL–comitant (respectively affine comitant).
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These comitants will also be called polynomial invariants. In fact these are the
polynomial invariants which we work with.

Definition 2.2.8. A subset X ⊂ R12 is called G–invariant if for every g ∈ G we have
rg(X)⊆ X .

Let T (2,R) be the subgroup of Aff(2,R) formed by translations. Consider the
linear representation of T (2,R) into its corresponding subgroup T ⊂ GL(12,R), i.e. for
every τ ∈ T (2,R), τ : x = x̃+α, y = ỹ+β we consider as before rτ : R12→ R12.

Definition 2.2.9. A GL–comitant U(a,x,y) of system (2.7) is called a T–comitant if for
every (τ, a)∈ T (2,R)×R12 and for every (x̃, ỹ)∈R2 the relation U(rτ ·a, x̃, ỹ) = U(a, x̃, ỹ)

holds.

Let

Ui(a,x,y) =
di

∑
j=0

Ui j(a)xdi− jy j, i = 1, . . . ,s,

be a set of GL–comitants of system (2.7) where di denotes the degree of the binary form
Ui(a,x,y) in x and y with coefficients in R[a] = R[a00, . . . ,b02]. We denote by

U =
{

Ui j(a) ∈ R[a]; i = 1, . . . ,s, j = 0,1, . . . ,di
}
,

the set of the coefficients in R[a] of the GL–comitants Ui(a,x,y), i = 1, . . . ,s, and by V (U )

its associated algebraic set

V (U ) =
{

a ∈ R12; Ui j(a) = 0, ∀ Ui j(a) ∈U
}
.

Definition 2.2.10. Let U1,U2, . . . ,Us be GL–comitants of a system (2.7). A GL–comitant
U(a,x,y) of system (2.7) is called a conditional T–comitant (or CT–comitant) modulo
〈U1,U2, ...,Us〉 if the following two conditions are satisfied:

(i) the algebraic subset V (U )⊂ R12 is affinely invariant (see Def. 2.2.8);

(ii) for every (τ, a) ∈ T (2,R)×V (U ) we have U(rτ ·a, x̃, ỹ) =U(a, x̃, ỹ) in R[x̃, ỹ].

In other words, a CT–comitant U(a,x,y) modulo 〈U1,U2, ...,Us〉 is a T–comitant
on the algebraic subset V (U )⊂ R12.

We consider the polynomials in R[a,x,y]

Ci(a,x,y) =ypi(a,x,y)− xqi(a,x,y) , i = 0,1,2,

Di(a,x,y) =
∂

∂x
pi(a,x,y)+

∂

∂y
qi(a,x,y) , i = 1,2.

As it was shown in Vulpe (1986) the polynomials of degree one with respect to the coeffi-
cients of the initial system,{

C0(a,x,y), C1(a,x,y), C2(a,x,y), D1(a,x,y), D2(a,x,y)
}
, (2.9)
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are GL–comitants with respect to the coefficients of system (2.7).

Definition 2.2.11. Let f , g ∈ R[a,x,y] and

( f ,g)(k) =
k

∑
h=0

(−1)h
(

k
h

)
∂ k f

∂xk−h∂yh
∂ kg

∂xh∂yk−h .

Then ( f ,g)(k) ∈ R[a,x,y] is the transvectant of index k of ( f ,g) (see Olver (1999)).

Theorem 2.2.12. (See Vulpe (1986)) Any GL–comitant can be constructed from the
elements of the set (2.9) by using the operations: +,−,×, and by applying the differential
operation ( f ,g)(k).

First, the mentioned authors construct the following GL–comitants of the second
degree with respect to coefficients of initial system:

T1 = (C0,C1)
(1) , T2 = (C0,C2)

(1) , T3 = (C0,D2)
(1) ,

T4 = (C1,C1)
(2) , T5 = (C1,C2)

(1) , T6 = (C1,C2)
(2) ,

T7 = (C1,D2)
(1) , T8 = (C2,C2)

(2) , T9 = (C2,D2)
(1) .

In order to be able to calculate the values of the needed invariant polynomials
directly for every canonical system they define a family of T–comitants expressed through
Ci (i = 0,1,2) and D j ( j = 1,2):

Ã = (C1,T8−2T9 +D2
2)

(2)/144,

B̃ =
{

16D1(D2,T8)
(1)(3C1D1−2C0D2 +4T2)+32C0(D2,T9)

(1)(3D1D2−5T6 +9T7)

+2(D2,T9)
(1)(27C1T4−18C1D2

1−32D1T2 +32(C0,T5)
(1))

+6(D2,T7)
(1)
[
8C0(T8−12T9)−12C1(D1D2 +T7)+D1(26C2D1 +32T5)

+C2(9T4 +96T3)
]
+6(D2,T6)

(1)
[
32C0T9−C1(12T7 +52D1D2)−32C2D2

1

]
+48D2(D2,T1)

(1)(2D2
2−T8)−32D1T8(D2,T2)

(1)+9D2
2T4(T6−2T7)

−16D1(C2,T8)
(1)(D2

1 +4T3)+12D1(C1,T8)
(2)(C1D2−2C2D1)

+6D1D2T4(T8−7D2
2−42T9)+12D1(C1,T8)

(1)(T7 +2D1D2)+96D2
2[D1(C1,T6)

(1)

+D2(C0,T6)
(1)]−16D1D2T3(2D2

2 +3T8)−4D3
1D2(D2

2 +3T8 +6T9)

+6D2
1D2

2(7T6 +2T7)252D1D2T4T9

}
/(2833),

D̃ =
[
2C0(T8−8T9−2D2

2)+C1(6T7−T6− (C1,T5)
(1)

+6D1C1D2−T5)−9D2
1C2
]
/36,

Ẽ = [D1(2T9−T8)−3(C1,T9)
(1)−D2(3T7 +D1D2)]/72,
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F̃ = [6D2
1(D

2
2−4T9)+4D1D2(T6 +6T7)+48C0(D2,T9)

(1)

−9D2
2T4 +288D1Ê−24(C2, D̂)(2)+120(D2, D̂)(1)

−36C1(D2,T7)
(1)+8D1(D2,T5)

(1)]/144,

K̃ = (T8 +4T9 +4D2
2)/72,

H̃ = (8T9−T8 +2D2
2)/72.

A minimal polynomial basis of T–comitants of system (2.7) of degrees up to 12
(as polynomials in the coefficients of the systems) was constructed in terms of these
T–comitants in Bularas et al. (1996). The following 42 polynomials are the elements of this
polynomial basis:

A1 = Ã, A22 =
[
C2, D̃)(1),D2

)(1)
,D2
)(1)

,D2
)(1)D2

)(1)
/1152,

A2 = (C2,D)(3)/12, A23 =
[
F̃ , H̃)(1), K̃

)(2)
/8,

A3 =
[
C2,D2)

(1),D2
)(1)

,D2
)(1)

/48, A24 =
[
C2, D̃)(2), K̃

)(1)
, H̃
)(2)

/32,

A4 = (H̃, H̃)(2), A25 =
[
D̃, D̃)(2), Ẽ

)(2)
/16,

A5 = (H̃, K̃)(2)/2, A26 = (B̃, D̃)(3)/36,

A6 = (Ẽ, H̃)(2)/2, A27 =
[
B̃,D2)

(1), H̃
)(2)

/24,

A7 =
[
C2, Ẽ)(2),D2

)(1)
/8, A28 =

[
C2, K̃)(2), D̃

)(1)
, Ẽ
)(2)

/16,

A8 =
[
D̃, H̃)(2),D2

)(1)
/8, A29 =

[
D̃, F̃)(1), D̃

)(3)
/96,

A9 =
[
D̃,D2)

(1),D2
)(1)

,D2
)(1)

/48, A30 =
[
C2, D̃)(2), D̃

)(1)
, D̃
)(3)

/288,

A10 =
[
D̃, K̃)(2),D2

)(1)
/8, A31 =

[
D̃, D̃)(2), K̃

)(1)
, H̃
)(2)

/64,

A11 = (F̃ , K̃)(2)/4, A32 =
[
D̃, D̃)(2),D2

)(1)
, H̃
)(1)

,D2
)(1)

/64,

A12 = (F̃ , H̃)(2)/4, A33 =
[
D̃,D2)

(1), F̃
)(1)

,D2
)(1)

,D2
)(1)

/128,

A13 =
[
C2, H̃)(1), H̃

)(2)
,D2
)(1)

/24, A34 =
[
D̃, D̃)(2),D2

)(1)
, K̃
)(1)

,D2
)(1)

/64,

A14 = (B̃,C2)
(3)/36, A35 =

[
D̃, D̃)(2), Ẽ

)(1)
,D2
)(1)

,D2
)(1)

/128,

A15 = (Ẽ, F̃)(2)/4, A36 =
[
D̃, Ẽ)(2), D̃

)(1)
, H̃
)(2)

/16,

A16 =
[
Ẽ,D2)

(1),C2
)(1)

, K̃
)(2)

/16, A37 =
[
D̃, D̃)(2), D̃

)(1)
, D̃
)(3)

/576,

A17 =
[
D̃, D̃)(2),D2

)(1)
,D2
)(1)

/64, A38 =
[
C2, D̃)(2), D̃

)(2)
, D̃
)(1)

, H̃
)(2)

/64,

A18 =
[
D̃, F̃)(2),D2

)(1)
/16, A39 =

[
D̃, D̃)(2), F̃

)(1)
, H̃
)(2)

/64,

A19 =
[
D̃, D̃)(2), H̃

)(2)
/16, A40 =

[
D̃, D̃)(2), F̃

)(1)
, K̃
)(2)

/64,

A20 =
[
C2, D̃)(2), F̃

)(2)
/16, A41 =

[
C2, D̃)(2), D̃

)(2)
, F̃
)(1)

,D2
)(1)

/64,

A21 =
[
D̃, D̃)(2), K̃

)(2)
/16, A42 =

[
D̃, F̃)(2), F̃

)(1)
,D2
)(1)

/16.

In the previous list, the bracket “[” is used in order to avoid placing the otherwise
necessary up to five parenthesizes “(”.

In order to construct other necessary invariant polynomials one can consider the
differential operator L = x ·L2−y ·L1 acting on R[a,x,y] constructed in Baltag and Vulpe
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(1997), where

L1 = 2a00
∂

∂a10
+a10

∂

∂a20
+

1
2

a01
∂

∂a11
+2b00

∂

∂b10
+b10

∂

∂b20
+

1
2

b01
∂

∂b11
,

L2 = 2a00
∂

∂a01
+a01

∂

∂a02
+

1
2

a10
∂

∂a11
+2b00

∂

∂b01
+b01

∂

∂b02
+

1
2

b10
∂

∂b11
,

as well as the classical differential operator ( f ,ϕ)(2) acting on R[a,x,y] (the transvectant
of the second index):

( f ,ϕ)(2) =
∂ 2 f
∂x2

∂ 2ϕ

∂y2 −2
∂ 2 f

∂x∂y
∂ 2ϕ

∂x∂y
+

∂ 2 f
∂y2

∂ 2ϕ

∂x2 .

Here f (x,y) and ϕ(x,y) are polynomials in x and y.

In Baltag and Vulpe (1997) it is shown that if a polynomial U ∈R[a,x,y] is a comi-
tant of system (2.7) with respect to the group GL(2,R) then L (U) is also a GL–comitant.
The same is true for the operator transvectant of two comitants f and ϕ .

Using this operator and the affine invariant µ0 = Resx
(

p2(a,x,y),q2(a,x,y)
)
/y4

define the following polynomials

µi(a,x,y) =
1
i!

L (i)(µ0), i = 1, . . . ,4,

where L (i)(µ0) = L (L (i−1)(µ0)) and L (0)(µ0) = µ0.

These polynomials are in fact comitants of systems (2.7), invariant with respect to
the group GL(2,R) (see Baltag and Vulpe (1997)). Their geometrical meaning is revealed
in the next lemma.

Lemma 2.2.13 (Baltag and Vulpe (1997), Baltag (2003)). Assume that a quadratic
system S with coefficients a belongs to the family (2.7). Then:

(i) Let λ be an integer such that λ ≤ 4. The total multiplicity of all finite sin-
gularities of this system equals 4− λ if and only if for every i ∈ {0,1, . . . ,λ − 1} we
have µi(a,x,y) = 0 in the ring R[x,y] and µλ (a,x,y) 6= 0. In this case, the factorization
µλ (a,x,y) = ∏

λ
i=1(uix− viy) 6= 0 over C indicates the coordinates [vi : ui : 0] of points at

infinity which coalesced with finite singularities of system S. Moreover, the number of
distinct factors in this factorization is less than or equal to three (the maximum number
of infinite singularities of a quadratic system in the projective plane) and the multiplicity
of each one of the factors uix−viy gives us the number of the finite singularities of system
S which have coalesced with the infinite singularity [vi : ui : 0].

(ii) System S is degenerate (i.e. gcd(P,Q) 6= const) if and only if µi(a,x,y) = 0 in
R[x,y] for every i = 0,1,2,3,4.
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In Schlomiuk and Vulpe (2004) the authors consider the following GL–comitants
for a system (2.7):

M(a,x,y) = 2 Hess
(
C2(x,y)

)
, η(a) = Discrim

(
C2(x,y)

)
,

K(a,x,y) = Jacob
(

p2(x,y),q2(x,y)
)
, µ(a) = Discrim

(
K(a,x,y)

)
,

H(a,x,y) =−Discrim
(
C2(x,y)

)
, N(a,x,y) = K(a,x,y)+H(a,x,y),

θ(a) = Discrim
(
N(a,x,y)

)
,

Lemma 2.2.14 (Schlomiuk and Vulpe (2010)). The number of infinite singularities (real
and complex) of a quadratic system in QS is determined by the following conditions:

(i) 3 real if η > 0;

(ii) 1 real and 2 imaginary if η < 0;

(iii) 2 real if η = 0 and M 6= 0;

(iv) 1 real if η = M = 0 and C2 6= 0;

(v) ∞ if η = M =C2 = 0.

Moreover, for each one of these cases the quadratic system (2.7) can be brought via a
linear transformation to one of the following 5 normal form, respectively:

{
ẋ = a+ cx+dy+gx2 +(h−1)xy,

ẏ = b+ ex+ f y+(g−1)xy+hy2;
(2.10)

{
ẋ = a+ cx+dy+gx2 +(h+1)xy,

ẏ = b+ ex+ f y− x2 +gxy+hy2;
(2.11)

{
ẋ = a+ cx+dy+gx2 +hxy,

ẏ = b+ ex+ f y+(g−1)xy+hy2;
(2.12)

{
ẋ = a+ cx+dy+gx2 +hxy,

ẏ = b+ ex+ f y− x2 +gxy+hy2;
(2.13)

{
ẋ = a+ cx+dy+ x2,

ẏ = b+ ex+ f y+ xy.
(2.14)

Lemma 2.2.15. Let S ∈QS and let a ∈ R12 be its 12–tuple of coefficients. The common
points of p = 0 and q = 0 on the line Z = 0 are given by the common linear factors over
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C of p2 and q2. This yields the geometrical meaning of the comitants µ0, K and H:

gcd(p2(x,y),q2(x,y)) =



constant iff µ0(a) 6= 0;
bx+ cy iff µ0 = 0, K(a,x,y) 6= 0;

(bx+ cy)(dx+ ey) iff

{
µ0(a) = 0,K(a,x,y) = 0
and H(a,x,y) 6= 0;

(bx+ cy)2 iff

{
µ0 = 0,K(a,x,y) = 0,
and H(a,x,y) = 0;

where bx+ cy,dx+ ey ∈ C[x,y] are some linear forms and be− cd 6= 0.

The invariant polynomials N(a,x,y) and θ(a) are responsible for detecting parallel
invariant lines as we can see in the following lemma.

Lemma 2.2.16. A necessary condition for the existence of one couple (respectively two
couples) of parallel invariant straight lines of a system (2.7) corresponding to a ∈ R12 is
the condition θ(a) = 0 (respectively N(a,x,y) = 0).

In Schlomiuk and Vulpe (2004) the authors construct the following T–comitants:

B3(a,x,y) = (C2,D)(1) = Jacob(C2,D) ,

B2(a,x,y) = (B3,B3)
(2)−6B3(C2,D)(3),

B1(a) = Resx (C2,D)/y9 =−2−93−8 (B2,B3)
(4) .

Lemma 2.2.17. (See Schlomiuk and Vulpe (2004)) For the existence of an invariant
straight line in one (respectively 2, 3 distinct) directions in the affine plane it is necessary
that B1 = 0 (respectively B2 = 0, B3 = 0).

At the moment we only have necessary and not necessary and sufficient conditions
for the existence of an invariant straight line or for invariant lines in two or three directions.

We apply the translation x = x′+ x0, y = y′+ y0 to the polynomials p(a,x,y) and
q(a,x,y). Then we obtain p̂(â(a,x0,y0),x′,y′) = p(a,x′+ x0,y′+ y0), q̂(â(a,x0,y0),x′,y′) =

q(a,x′+ x0,y′+ y0). Consider the following polynomials

Γi(a,x0,y0)≡ Resx′
(

Ci
(
â(a,x0,y0),x′,y′

)
,C0
(
â(a,x0,y0),x′,y′

))
/(y′)i+1,

Γi(a,x0,y0) ∈ R[a,x0,y0], i = 1,2.

We denote

Ẽi(a,x,y) = Γi(a,x0,y0)
∣∣
{x0=x, y0=y} ∈ R[a,x,y], i = 1,2.

Remark 2.2.18. We note that the polynomials Ẽ1(a,x,y) and Ẽ2(a,x,y) are affine comi-
tants of systems (2.7) and they are homogeneous polynomials in the coefficients of p,q

and non–homogeneous in x,y and degaẼ1 = 3, deg (x,y)Ẽ1 = 5, degaẼ2 = 4, deg (x,y)Ẽ2 = 6.
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Let Ei(a,X ,Y,Z), i = 1,2, be the homogenization of Ẽi(a,x,y), i.e.

E1(a,X ,Y,Z) = Z5Ẽ1(a,X/Z,Y/Z), E2(a,X ,Y,Z) = Z6Ẽ1(a,X/Z,Y/Z)

The geometrical meaning of these affine comitants is given by the following lemma.

Lemma 2.2.19 (see Schlomiuk and Vulpe (2004)). (1) The straight line L (x,y) ≡ ux+

vy+w = 0, u,v,w ∈ C, (u,v) 6= (0,0) is an invariant line for a quadratic system (2.7) if
and only if the polynomial L (x,y) is a common factor of the polynomials Ẽ1(a,x,y) and
Ẽ2(a,x,y) over C, i.e.

Ẽi(a,x,y) = (ux+ vy+w)W̃i(x,y), i = 1,2,

where W̃i(x,y) ∈ C[x,y].

(2) If L (x,y) = 0 is an invariant straight line of multiplicity λ for a quadratic
system (2.7), then [L (x,y)]λ divides gcd(Ẽ1, Ẽ2) in C[x,y], i.e. there exist Wi(a,x,y) ∈
C[x,y], i = 1,2, such that

Ẽi(a,x,y) = (ux+ vy+w)λWi((a),x,y), i = 1,2.

(3) If the line l∞ : Z = 0 is of multiplicity λ > 1, then Zλ−1 divides gcd(E1,E2).

The following zero–cycle on the complex plane was introduced in Llibre and
Schlomiuk (2004) based on a previous work in Schlomiuk and Pal (2001).

Definition 2.2.20. For a polynomial system (S) we define DC2(S) = ∑s∈C2 nss where ns

is the intersection multiplicity at s of the curves p(x,y) = 0 and q(x,y) = 0, with p and q

being the polynomials defining equations (2.7).

According to Vulpe (2011) (see also Artés et al. (2021)) we have the following
proposition.

Proposition 2.2.21. The form of the zero–cycle DC2(S) for non–degenerate quadratic
systems (2.7) is determined by the corresponding conditions indicated in Table 4, where
we write p+q+ rc + sc if two of the finite points, i.e. rc,sc, are complex but not real, and

D =
[
3
(
(µ3,µ3)

(2), µ2
)(2)− (6µ0µ4−3µ1µ3 +µ

2
2 , µ4)

(4)
]
/48,

P = 12µ0µ4−3µ1µ3 +µ
2
2 ,

R = 3µ
2
1 −8µ0µ2,

S = R2−16µ
2
0 P,

T = 18µ
2
0 (3µ

2
3 −8µ2µ4)+2µ0(2µ

3
2 −9µ1µ2µ3 +27µ

2
1 µ4)−PR,

U = µ
2
3 −4µ2µ4,

V = µ4.
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Table 4 – Number and multiplicity of the finite singularities of QS

No. Zero–cycle
DC2(S)

Invariant
criteria No. Zero–cycle

DC2(S)
Invariant
criteria

1 p+q+ r+ s µ0 6= 0,D < 0,
R > 0,S > 0 10 p+q+ r µ0 = 0,D < 0,R 6= 0

2 p+q+ rc + sc µ0 6= 0,D > 0 11 p+qc + rc µ0 = 0,D > 0,R 6= 0

3 p c +qc + rc + sc µ0 6= 0,D < 0,R≤ 0
12 2p+q µ0 = D = 0,PR 6= 0

µ0 6= 0,D < 0,S≤ 0
4 2p+q+ r µ0 6= 0,D = 0,T < 0 13 3p µ0 = D = P = 0,R 6= 0

5 2p+qc + rc µ0 6= 0,D = 0,T > 0 14 p+q µ0 = R = 0,P 6= 0,
U > 0

6 2p+2q µ0 6= 0,D = T = 0,
PR > 0 15 p c +qc µ0 = R = 0,P 6= 0,

U < 0

7 2p c +2qc µ0 6= 0,D = T = 0,
PR < 0 16 2p µ0 = R = 0,P 6= 0,

U = 0

8 3p+q µ0 6= 0,D = T = 0,
P = 0,R 6= 0 17 p µ0 = R = P = 0,

U 6= 0

9 4p µ0 6= 0,D = T = 0,
P = R = 0 18 0 µ0 = R = P = 0,

U = 0,V 6= 0

Along this thesis we use most of the invariants mentioned in this section (and also
other invariants) in order to contribute to the classification of phase portraits of quadratic
systems. More precisely, in Chap. 3 and 4 we use the geometrical meaning of some of the
invariants mentioned along this section in order to construct bifurcation diagrams and in
Chap. 6 we use these invariants for the study of quadratic systems with invariant ellipses.
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CHAPTER

3
CLASSIFICATION OF QUADRATIC

SYSTEMS WITH A FINITE SADDLE–NODE
AND AN INFINITE SADDLE–NODE

(1,1)SN–(A)

In this chapter we present, for the first time, a study of a five–parametric quadratic
system using the Invariant Theory as tools.

3.1 Introduction and statement of the main results
One of the main goals of this thesis is to present the study of the class of all

quadratic systems possessing a finite saddle–node sn(2) located at the origin of the plane
and an infinite saddle–node of type

(1
1

)
SN. We denote this class by QsnSN11. We recall

that a finite saddle–node is a semi–elemental singular point whose neighborhood is formed
by the union of two hyperbolic sectors and one parabolic sector. By a semi–elemental
singular point we mean a point with zero determinant of its Jacobian matrix with only one
eigenvalue equal to zero. These points are known in classical literature as semi–elementary,
but we use the term semi–elemental, as discussed in page 44. Geometrically, an infinite
saddle–node of type

(1
1

)
SN is obtained by the coalescence of a finite antisaddle (respectively

finite saddle) with an infinite saddle (respectively infinite node).

Whenever one wants to study a specific family of differential systems sharing a
common property, it is necessary to select one (or several) normal form which contains all
the phase portraits sharing the desired property. However, except in some trivial cases, it
is impossible that the normal form does not contain other phase portraits, normally more
degenerate than the cases under study. These other phase portraits are very important to
understand the bifurcations that take place inside the chosen normal form. This is why we
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saddle–node (1,1)SN–(A)

always study not just the family of systems that have the desired property, but the closure
of the normal form which contains that family. That is, we study all the parameter space
of the selected normal form, whether it leads to the desired property or not. However, it is
possible that a different normal form could have been chosen and in that case, the generic
elements of the family under study should be the same, but the elements in the border
might not be. That is, some phase portraits in the border of one normal form could be
common or not, with elements in the border of the second normal form.

Inside the class QsnSN11 where generically the origin is a saddle–node sn(2) and
we have an infinite singularity of type

(1
1

)
SN, we may have or not another simple finite

elemental singularity. Then, we split this class into two different families: QsnSN11(A)

of phase portraits possessing the finite saddle–node as the only finite singularity and
QsnSN11(B) of phase portraits possessing the finite saddle–node and also a simple finite
elemental singularity. In this chapter we provide the analysis of the closure of the family
QsnSN11(A). The present study in this chapter is part of this attempt of classifying all
the codimension–two quadratic systems. All the phase portraits obtained in the study of
the class QsnSN11(A) belong to the closure of the set (AC) (see page 49).

For this analysis we follow the pattern set out in Artés, Rezende and Oliveira
(2015) and we refer to such a mentioned paper for more complete information. We recall
that all the phase portraits are drawn in the Poincaré disc (see page 41).

For the normal form (3.2) from page 82, the class QsnSN11(A) is partitioned into
75 parts: 11 four–dimensional ones, 21 three–dimensional ones, 24 two–dimensional ones,
14 one–dimensional ones and 5 points. This partition is obtained by considering all the
bifurcation sets of singularities, one related to the presence of invariant straight lines and
one related to connections of separatrices, modulo “islands” (see Sec. 3.6). Due to some
values of the parameters, from these 75 parts, four of them correspond to linear systems,
being two one–dimensional and two points (see page 104). The corresponding four phase
portraits form two classes, as indicated in Fig. 2.

Figure 2 – Phase portraits corresponding to linear systems obtained from normal form (3.2)

Theorem 3.1.1. There are 36 topologically distinct phase portraits for the closure of
the family of quadratic vector fields having a finite saddle–node sn(2) as the only finite
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singularity and an infinite saddle–node of type
(1

1

)
SN, and given by the normal form (3.2)

(class QsnSN11(A)). The bifurcation diagram for this class is given in the parameter space
which is the projective four–dimensional space RP4. All these phase portraits are shown
in Figs. 2 and 3. Moreover, the following statements hold:

(a) There are 12 topologically distinct phase portraits in QsnSN11(A). Precisely we have
H2,H3,H4,H5,H6,H10 plus the systems with the separatrix connection 4V1,4V2,7V1.
Moreover, phase portraits 5V5,5V6 and 5V7 also belong to this family since the
coalescence of two infinite singular points does not affect one of the double point at
infinity. There is one generic region in the closure of QsnSN11(A), namely H1, whose
phase portrait does not belong to QsnSN11(A), since H1 has two double complex
singularities at infinity.

(b) There are five phase portraits with more than one non–degenerate graphic, and they
are in the parts 5V5, 5V6, 5V7, 2.5S2, 4.5S3. None of the graphics contain a singularity
inside.

(c) There are eight phase portraits with degenerate graphic, and they are in the parts
8V1, 2.8S2, 5.8S1, 5.8S2, 8.9S1, 2.8.9L1, 8.9.9L1, P4.

(d) From the 36 phase portraits, two of them (located in the border of QsnSN11(A))
correspond to linear systems. The corresponding phase portraits are given in Fig. 2.

Corollary 3.1.2. From the class QsnSN11(A), Table 5 compares the number of phase
portraits possessing some geometric features between the family QsnSN11(A) and its
border.

Table 5 – Comparison between the family QsnSN11(A) and its border

QsnSN11(A)
border of

QsnSN11(A)
Distinct phase portraits 12 24

Phase portraits with more than
3 2one non–degenerate graphic

Phase portraits with
0 8degenerate graphics
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Figure 3 – Phase portraits for quadratic vector fields with a finite saddle–node sn(2) and an
infinite saddle–node of type

(1
1

)
SN from class QsnSN11(A)

From the 12 topologically distinct phase portraits of the family QsnSN11(A), six
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occur in four–dimensional parts and six in three–dimensional parts.

From the remaining 24 phase portraits, which are on the border of QsnSN11(A),
one occurs in a four–dimensional part, seven occur in the three–dimensional parts, nine
occur in the two–dimensional parts, five occur in the one–dimensional parts and two occur
in the zero–dimensional parts.

In Figs. 2 and 3 we have illustrated all the singular points with a small disc. In
case of degenerate systems we have also illustrated the infinite singular point belonging
to the degenerate set with a small disc only if this point is an infinite singularity of the
reduced system. We have drawn with thicker curves the separatrices and also the line
filled up with singularities which is double. We have added some thinner orbits to avoid
confusion in some required cases. Moreover, we label the phase portraits according to the
parts of the bifurcation diagram where they appear. Here we call hypervolumes (H) the
four–dimensional parts of the bifurcation diagram, volumes (V ) the three–dimensional
ones, surfaces (S) the two–dimensional ones, curves (L) the one–dimensional ones, and
points (P) the zero–dimensional ones.

As in Artés, Llibre and Schlomiuk (2006) and Artés, Rezende and Oliveira (2015),
we use the same pattern in order to indicate the elements (V ), (S), (L) and (P) in the bifur-
cation diagram. In this chapter we indicate each one of the hypervolumes (H) surrounded
by a circle, as in Fig. 7.

This chapter is organized as follows. In Sec. 3.2 we describe some basic features
regarding normal form (3.2) and we explain the structure of the bifurcation diagram.

In Sec. 3.3, using algebraic invariants and T–comitants as used in Sibirsky’s School,
we define the algebraic sets that describe the bifurcation diagram for the class QsnSN11(A).

In Secs. 3.4 and 3.5 we explain all the three–dimensional slices (and also the
bifurcation planes on them) in the affine part and in the infinite of RP4, respectively.

In Sec. 3.6 we discuss about the possible existence of “islands” in the bifurcation
diagram.

In Sec. 3.7 we introduce a global invariant denoted by I , which classifies com-
pletely, up to topological equivalence, the phase portraits that we have obtained for the
systems in the class QsnSN11(A). Thm. 3.7.7 shows clearly that they are uniquely deter-
mined (up to topological equivalence) by the values of the invariant I .

The bifurcation diagram described in Secs. 3.4 and 3.5, plus Table 6 (from Sec.
3.7) of the geometric invariants distinguishing the 34 phase portraits corresponding to
quadratic systems, plus Table 7 giving the equivalences with the remaining phase portraits
lead to the proof of the main statement of Thm. 3.1.1.
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3.2 Quadratic vector fields with a finite saddle–node sn(2)

and an infinite saddle–node of type
(1

1

)
SN

As we mentioned before, for the class QsnSN11(B) (which is presented in the next
chapter), we consider quadratic systems possessing a finite saddle–node sn(2), a finite
elemental singularity and an infinite saddle–node of type

(1
1

)
SN.

In this chapter, for the class QsnSN11(A) we are considering that the mentioned
finite elemental singularity has gone to infinity, i.e. we aim to study quadratic systems
having only one finite saddle–node sn(2) (which are located at the origin of the plane),
an infinite saddle–node of type

(1
1

)
SN and other infinite singularities, one of them of at

least multiplicity two. Therefore, in this section we are considering quadratic systems of
codimension at least three.

Using the T–comitants and invariants for quadratic systems as used in Sibirsky’s
School, in Artés, Llibre and Vulpe (2008) the authors have obtained two canonical forms
for quadratic systems possessing one double real finite singularity and no other finite
singularity; see Lemmas 3.24 and 3.25 from Artés, Llibre and Vulpe (2008). In Table 6.1
from Artés et al. (2021) these canonical forms are denoted by 16a and 16b, respectively.
Family 16a is given by

ẋ = dy+gx2 +2dxy,

ẏ = f y+ lx2 +2 f xy,
(3.1)

where d, f , g, l are real parameters and f g− dl 6= 0. On the other hand, family 16b is
described by the differential equations

ẋ = cx+dy,

ẏ = lx2 +2mxy+ny2,
(3.2)

where c, d, l, m, n are real parameters and ld2−2cdm+nc2 6= 0.

For both normal forms we have only one double finite singularity and the two other
finite singularities have escaped to infinity. The geometric difference between them is that
in normal form (3.1) both singularities coalesce with the same infinite singular point
whereas in (3.2) they coalesce with different singular points. These facts are confirmed by
Diagram 9.2 from Artés et al. (2021), where we can observe that family 16a cannot produce
an infinite singularity of type

(1
1

)
SN whereas on family 16b one may obtain such a kind

of infinite singularity in some of the branches of the diagram. Then, as our main goal is
to make a global study of the class QsnSN11 of all real quadratic polynomial differential
systems possessing a finite saddle–node sn(2) and an infinite saddle–node of type

(1
1

)
SN,

in this chapter we provide the study of the canonical form (3.2).
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We observe that canonical form (3.2) depends on five real parameters, namely, c,
d, l, m and n. Then, its bifurcation diagram is actually the five–dimensional Euclidean
space R5. Since the case c = d = l = m = n = 0 corresponds to the null systems and does
not belong to our family, we can work with the real projective space RP4. We point out
that this is the first time that a five–dimensional bifurcation diagram is studied using all
the ideas and theory described, for instance, in Artés, Llibre and Schlomiuk (2006) and
Artés, Rezende and Oliveira (2015). In what follows we describe how we do this work.

Systems (3.2) depend on the parameter λ = (c, l,m,d,n) ∈ R5. We consider sys-
tems (3.2) which are nonzero, i.e. λ = (c, l,m,d,n) 6= 0. In this case, systems (3.2) can be
rescaled with the affine transformation (x,y, t)→ (x,y,αt), α 6= 0. In fact, applying this
transformation we obtain

ẋ = α
′cx+α

′dy,

ẏ = α
′lx2 +2α

′mxy+α
′ny2,

for α ′ = 1/α , α 6= 0. Then, this transformation takes the systems with parameters
(c, l,m,d,n) to systems with parameters (α ′c,α ′l,α ′m,α ′d,α ′n), with α ′ = 1/α . Hence, in-
stead of taking R5 as the parameter space, we may consider the real projective space RP4.
The four–dimensional projective space RP4 can be viewed as the quotient space S4 /∼ of S4

by the equivalence relation: (c, l,m,d,n) is equivalent to itself or to (−c,−l,−m,−d,−n).
So, our parameter is [λ ] = [c : l : m : d : n] ∈RP4 = S4 /∼. Since for α ′ =−1 the signs of all
the parameters change, we may consider d ≥ 0 in [c : l : m : d : n]. Since c2 + l2 +m2 +d2 +

n2 = 1, then d =
√

1− (c2 + l2 +m2 +n2), where 0≤ c2 + l2 +m2 +n2 ≤ 1.

We can therefore view the parameter space as a ball: B = {(c, l,m,n) ∈ R4; c2 +

l2 +m2 +n2 ≤ 1} where on the border of this ball, two opposite points are identified. So,
we are working with a four–dimensional space. The studies done up to now as Artés,
Llibre and Schlomiuk (2006) and Artés, Rezende and Oliveira (2015) were done in a
three–dimensional space. The parameter space was divided into specific two–dimensional
slices which were of interest for the bifurcation. In our case we must divide the parameter
space into three–dimensional slices which later must also be divided into two–dimensional
planes in order to be drawn on a paper. We will see that the number of three–dimensional
slices (and also the number of planes) is very small. Anyway, as we have mentioned before,
this is the first time that this study is done and it is of great interest to have clear ideas
when working at this level of dimensions. The different three–dimensional slices that we
will detect share one common “top” which can be considered as an RP2. We have already
chosen the parameter d as the parameter to distinguish from the affine space and the
infinity. We will chose parameter n to foliate RP4 into three–dimensional spaces. And we
will chose parameter m to split each three–dimensional space into two–dimensional spaces.
The complete and general set can be seen as in Fig. 4, where the different k,k0,k1,kα can
be a single number or several different numbers if more slices are needed. If more slices
were needed, the different cases would correspond alternatively to generic and singular
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slices. Since systems (3.2) show different types of symmetries, whenever we change the
sign of any of the parameters, each parameter equal to zero will correspond to a sin-
gular slice. We will use the parameters c and l as Cartesian coordinates to draw the
bifurcation diagram in two dimensions. So, the simplest bifurcation diagram will have at
least eight slices of different dimensions. In fact, this will be our case. These slices corre-
spond to the different cases (d,m,n) ∈ {(0,0,0),(0,0,1),(0,1,0),(1,0,0),(0,1,1),(1,0,1),
(1,1,0),(1,1,1)}. In Fig. 4 we present a general scenario of the partition of the bifurcation
diagram.

For d 6= 0, we get the affine chart:

RP4 \{d = 0}↔ R4

[c : l : m : d : n]→
(

c
d
,

l
d
,
m
d
,

n
d

)
= (c, l,m,n)

[c : l : m : 1 : n]← (c, l,m,n)

The subspace d = 0 in RP4, which is an RP3, corresponds to the equation c2+ l2+

m2 + n2 = 1 (that is, the full sphere S3 with identification of symmetrical points on the
border).

When two parameters are zero, for example, d = n = 0, we identify the point
[c : l : m : 0 : 0]∈RP4 with [c : l : m]∈RP2. So, this subset {d = n= 0}⊂B can be identified
with RP2, which can be viewed as a disc with two opposite points on the circumference
(the equator) identified.

Now, when three parameters are zero, for example, the plane m = d = n = 0 in RP4

corresponds to the equation c2 + l2 = 1 which is an RP1 space, that is a circle with the
opposite points identified. The concept of equator which was used in bifurcations in RP3

(as for instance in Artés, Llibre and Schlomiuk (2006) and Artés, Rezende and Oliveira
(2015)) now needs to be enlarged to “equators” of dimension two. More precisely, a one–
dimensional equator is when all parameters, except two, are zero. A two–dimensional
equator is when all, except three parameters, are zero.

Proposition 3.2.1. By a rescaling in the variables, we may assume d = 0 or d = 1 in the
normal form (3.2).

Proof. If d 6= 0, by the Reparametrization Theorem (see Prop. 1.1.15) we get that systems
(3.2) are equivalent to

ẋ =Cx+ y,

ẏ = Lx2 +2Mxy+Ny2,

where C = c/d,L = l/d, M = m/d and N = n/d. By renaming the coefficients C→ c, L→ l,
M→ m and N→ n, we obtain systems (3.2) with d = 1. Moreover, we must also consider
the case when d = 0.
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Figure 4 – Scheme of the partition of the bifurcation diagram. The parameter d = 1 (respectively
d = 0) represents the affine (respectively infinite) part of RP4, the three–dimensional
slices are given by the parameter n and from each three–dimensional slice the param-
eter m indicates the planes that must be studied
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3.3 The bifurcation diagram of the systems in QsnSN11(A)

In order to construct the bifurcation diagram for systems (3.2), in this chapter
we consider the concepts of algebraic invariants and T–comitants as formulated by the
Sibirsky’s School for differential equations. For a quick summary see for instance Sec. 7
of Artés, Llibre and Schlomiuk (2006) and also and also Sec. 2.2 of this thesis.

3.3.1 Algebraic sets in RP4

According to Diagram 9.2 from Artés et al. (2021), here we define the algebraic sets
that are needed for the study of the bifurcation diagram of canonical form (3.2). These
algebraic sets are given by the invariants and comitants listed in such a diagram.

Bifurcation set in RP4 due to degeneracy of systems

(V8) Since for systems (3.2) we have a double real finite singularity and two finite singular-
ities have coalesced with different singularities at infinity, according to Diagram 9.2 from
Artés et al. (2021) one must have µ0 = µ1 = κ = 0 and µ2 6= 0. Additionally, calculations
show that µ3 = µ4 = 0 and

µ2 = (ld2−2cdm+nc2)(lx2 +2mxy+ny2).

So we define (V8) as an algebraic set whose equation is equivalent to µ2 = 0, i.e.

(V8) : ld2−2cdm+nc2 = 0,

and therefore on this algebraic set we have µi = 0, i = 0,1,2,3,4, i.e. systems (3.2) are
degenerate.
We point out that our aim is to construct a coherent and continuous bifurcation diagram.
Although the phase portraits possessing a double finite saddle–node sn(2) and an infinite
saddle–node

(1
1

)
SN belong to open sets in this bifurcation diagram, in order to have these

properties for this diagram, we also need to consider the borders of such sets. In particular,
algebraic set (V8) borders open sets in this bifurcation diagram.

Remark 3.3.1. According to Diagram 9.2 from Artés et al. (2021), for the normal form
(3.2) the comitant

L̃ = 8n(lx2 +2mxy+ny2),

multiplied by µ2, allows us to distinguish between different configurations of infinite sin-
gularities. More precisely, we have

µ2L̃ = 8n(ld2−2cdm+nc2)(lx2 +2mxy+ny2)2,

and if µ2L̃ < 0 we have the configuration of singularities
(1

1

)
SN,

(1
1

)
SN, N and if µ2L̃ > 0

we have the configuration of singularities
(1

1

)
SN,

(1
1

)
NS, N.
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Remark 3.3.2. In some of the equations of the following algebraic sets the factor ld2−
2cdm+nc2 is also present. This confirms that the systems on algebraic set (V8) are indeed
degenerate (possessing curves of singularities) because many geometric features happen
at the same time when ld2− 2cdm+ nc2 = 0. However, we are interested in the other
geometric features that the following algebraic sets can provide. In this way, we assume,
without loss of generality, that ld2−2cdm+nc2 6= 0.

Bifurcation set in RP4 due to the change of topological type of the origin

(V2) This is the bifurcation set due to the change of topological type of the origin. On this
algebraic set the origin becomes a cusp–type singularity. This phenomenon occurs when
two separatrices of a saddle–node coalesce. According to Artés et al. (2021), for systems
(3.2) a necessary condition for this phenomenon to happen is that the trace of the Jacobian
of the finite singularity is zero and it is described by the invariant

T4 = 4c2n(d2l−2cdm+ c2n)(−m2 + ln).

Taking into consideration Rmk. 3.3.2, we define algebraic set (V2) by

(V2) : c2n(−m2 + ln) = 0.

Remark 3.3.3. We observe that for n = 0, we have (V2) ≡ 0. For normal form (3.2),
according to Diagram 9.2 from Artés et al. (2021) we must consider the comitant

M̃
∣∣∣
n=0

=−32m2x2,

which vanishes if and only if m = 0. Such a mentioned diagram tells us that when n = 0
and m 6= 0 we can consider the invariant

B1

∣∣∣
n=0

=−2c2dm(−dl +2cm),

and when n = m = 0 we can consider the comitant

B4

∣∣∣
n=m=0

= 6clx2(cx+dy).

Due to Rmk. 3.3.2 and the diagram under discussion, for n = 0 we can define

(V2) : c2m = 0 if m 6= 0, (3.3)

and
(V2) : c = 0 if m = 0. (3.4)

Bifurcation set in RP4 due to the presence of invariant straight lines
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(V4) This algebraic set in RP4 contains the points of the parameter space where invariant
straight lines appear. These straight lines may contain connections of separatrices from
different singularities or not. So, in some cases, it may imply a topological bifurcation or
not. According to Cor. 4.6 from Schlomiuk and Vulpe (2004) we have necessary conditions
for the existence of invariant straight lines, which are given in terms of the zeroes of the
comitants B1,B2, and B3. More precisely, such a result tells us that for the existence
of an invariant straight line in one (respectively two or three distinct) directions in the
affine plane it is necessary that B1 = 0 (respectively B2 = 0 or B3 = 0). For systems (3.2),
calculations yield

B1 = 0,

B2 =−648l2(ld2−2cdm+nc2)2x4,

B3 =−6(d2l−2cdm+ c2n)x2y(lx+my).

Taking into consideration Rmk. 3.3.2, we conclude that B1 is identically zero, B2 is equiv-
alent to l = 0 and B3 is nonzero. In the case when B1 is not identically zero, we can simply
rely on the bifurcation B1 = 0 to look for the possible existence of invariant straight lines
(as for instance in Artés, Rezende and Oliveira (2015)). However, in this case when B1 ≡ 0,
we have an invariant line which coalesced with the infinite line Z = 0 (i.e. this line is a
double one), and we may have invariant straight lines in other directions. Any single affine
straight line can be considered “parallel” to the infinity line. Then the invariant B2 ≡ 0
may not cover all the possibilities of existence of a second line. So, we must do the de-
tailed study of whether there can exist or not straight lines. Doing this study it is easy to
determine that any invariant straight line must cross the origin and they exist if l = 0 or
if ld2−2cdm+nc2 = 0 (see Lemma 3.3.4). These are exactly the components of B2 plus
the component d = 0. We define algebraic set (V4) by the equation

(V4) : dl(ld2−2cdm+nc2) = 0.

Lemma 3.3.4. Systems (3.2) possess the following invariant straight lines under specific
conditions:

1. {y = 0}, if l = 0;

2. {x = 0}, if d = 0;

3. {ax+by = 0}, if d = cb/a and n = (2mab− lb2)/a2, for a 6= 0. Moreover, these values
of d and n satisfy the equation ld2−2cdm+nc2 = 0, i.e. we have degenerate systems.

Proof. We consider the algebraic curves

f1(x,y)≡ y = 0,

f2(x,y)≡ x = 0,

f3(x,y)≡ ax+by = 0,
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and we show that the polynomials

K1(x,y) = 2mx+ny,

K2(x,y) = c,

K3(x,y) = c+
lb
a

x+
b(2ma− lb)

a2 y,

are the cofactors of f1 = 0, f2 = 0, and f3 = 0, respectively, after restricting systems (3.2)
to the respective conditions.

We shall detect another bifurcation set that is not necessarily algebraic and on
which the systems have connection of separatrices different from that ones given by (V4).
The equations of this bifurcation set can only be determined approximately by means
of numerical tools and its existence is proved by using arguments of continuity in the
bifurcation diagram. We shall name this set (V7).

Bifurcation set in RP4 due to multiplicities of infinite singularities

(V5) This is the bifurcation set due to the coalescence of infinite singularities. This phe-
nomenon is detected by the invariant η which, for systems (3.2), is given by

η =−4n2(−m2 + ln).

We define algebraic set (V5) by the equation

(V5) : n2(−m2 + ln) = 0.

Remark 3.3.5. Again we observe that for n = 0, we have (V5)≡ 0. According to Diagram
9.2 from Artés et al. (2021), for systems (3.2) we must consider the comitant

M̃
∣∣∣
n=0

=−32m2x2,

which vanishes if and only if m = 0. Such a mentioned diagram tells us that when n = 0
we can define

(V5) : m = 0 if n = 0. (3.5)

We will see that on the slice n= 0 we will always have a coalescence of infinite singularities.

As we said before, we work in the chart of RP4 corresponding to d 6= 0, and we
take d = 1. In order to perform the analysis, we shall use pictures which are drawn on
planes of RP4, having coordinates [c : l : m0 : 1 : n0], with n0 and m0 constants, plus the
open half sphere d = 0 and we shall give pictures of the resulting bifurcation diagram on
these planar sections on a disc or in an affine chart of R2. In these planes the coordinates
are (c, l) where the horizontal line is the c–axis.

As in Artés, Llibre and Schlomiuk (2006) and Artés, Rezende and Oliveira (2015),
in this chapter we use colors to refer to the bifurcation algebraic sets:



90
Chapter 3. Classification of quadratic systems with a finite saddle–node and an infinite

saddle–node (1,1)SN–(A)

(a) algebraic set (V2) is drawn in green (the origin becomes a cusp–type singularity);

(b) the non–degenerate part of algebraic set (V4) is drawn in purple (presence of at
least one invariant straight line). We draw it as a continuous curve if it implies a
topological change or as a dashed curve otherwise;

(c) algebraic set (V5) is drawn in red (two infinite singular points coalesce);

(d) set (V7) is also drawn in purple (connections of separatrices); and

(e) algebraic set (V8) is drawn in cyan (the systems are degenerate).

We use the same color for (V4) and (V7) since both sets deal with connections of
separatrices.

3.3.2 Geometric features of the algebraic sets in RP4

Before we pass to the study of the geometric features of algebraic sets (V2), (V4),
(V5), and (V8), first we remember the definition of a singularity of a several variables
smooth map.

Definition 3.3.6. Let f : U ⊂ Rm→ Rn be a smooth map. A point p ∈U is a singular
point of f if the rank of the Jacobian matrix D f (p) is strictly less than min{m,n}. More
precisely, given f = ( f1, . . . , fn) : U ⊂ Rm→ Rn with fi = fi(x1, . . . ,xm), i = 1, . . . ,n, we say
that p ∈U is a singular point for f if the matrix

∂ f1
∂x1

· · · ∂ f1
∂xm... . . . ...

∂ fn
∂x1

· · · ∂ fn
∂xm

(p)

has rank r < min{m,n}.

We have defined the following algebraic sets:

(V8) : n(ld2−2cdm+nc2) = 0,

(V2) : c2n(−m2 + ln) = 0,

(V4) : l = 0,

(V5) : n2(−m2 + ln) = 0.

Here we are interested in studying the geometric behavior of all of these algebraic
sets, that is, their singularities (according to Def. 3.3.6), their intersection points and
their “tangencies” (in the affine space) with three–dimensional slices of the type d = 1
and constant n. Since this study requires a lot of computations which would take a very
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large number of pages to present all the details, in order to be more succinct we have
developed an algorithm in software Mathematica and we have created a notebook with
all the computations on it. This algorithm is available for free download through the
link <http://mat.uab.cat/~artes/articles/qvfsn2SN11A/sn2SN11A.nb> (some previous
knowledge of Mathematica is recommended for using this algorithm).

In what follows, we describe the main idea of what we have done in this subsection
and we present the results. For more details we recommend the mentioned Mathematica
algorithm.

Remark 3.3.7. In R5 we will create a list of k–dimensional objects, 1 ≤ k ≤ 4, in the
following way. We denote by {Okxi(k)}{1≤k≤4, i(k)∈N} a list of k–dimensional objects, where
each Okxi(k) is a list of objects of dimension k ∈ {1, . . . ,4}. For instance, O4x1 stands for
the first element of the list of four–dimensional objects. By “dimension” of an object we
mean the number of parameters used for defining it.

In order to proceed with the study of all geometric features (of the algebraic sets)
described before, it is interesting to work with the components of each algebraic set (this
idea was used explicitly in Artés, Llibre and Schlomiuk (2006) and Artés, Rezende and
Oliveira (2015)). Then we generate a list of components, which are denoted according to
Rmk. 3.3.7:

• O4x1 : c = 0 which corresponds to the set {0, l,m,d,n};

• O4x2 : l = 0 which corresponds to the set {c,0,m,d,n};

• O4x3 : n = 0 which corresponds to the set {c, l,m,d,0};

• O4x4 : m2− ln = 0 which corresponds to the set {c, l,m,d,m2/l};

• O4x5 : ld2−2cdm+c2n = 0 which corresponds to the set {c,(2cdm−nc2)/d2,m,d,n};

Now we proceed with the study of the singularities of the four–dimensional compo-
nents (i.e. the objects O4xi, i = 1, . . . ,5) and their respective intersections. We also study
the “tangencies” of these objects in the affine space with slices of the type d = 1 and con-
stant n. This study generates a set of three–dimensional or lower objects. More precisely,
we have the new objects:

• O3x1 = {0,0,m,d,n};

• O3x2 = {0, l,m,0,n};

• O3x3 = {0, l,m,d,0};

• O3x4 = {0, l,m,d,m2/l};

• O3x5 = {0, l,m,d,dm2/l};

• O3x6 = {c,0,0,d,n};

• O3x7 = {c,0,m,d,0};

• O3x8 = {c,0,m,d,2dm/c};

http://mat.uab.cat/~artes/articles/qvfsn2SN11A/sn2SN11A.nb
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• O3x9 = {c,0,cdn/2,d,n};

• O3x10 = {c, l,0,d,0};

• O3x11 = {c, l,dl/2c,d,0};

• O3x12 = {c, l,m,0,0};

• O3x13 = {c,cm/d,m,d,dm/c};

• O3x14 = {c,c2dn,cdn,d,n};

• O2x1 = {0,0,0,d,n};

• O2x2 = {0,0,m,d,0};

• O2x3 = {0, l,m,0,m2/l};

• O2x4 = {c,0,0,d,0};

• O2x5 = {c, l,0,0,0};

• O1x1 = {0,0,0,0,n}.

Now we take the list of three–dimensional objects O3xi and we study their sin-
gularities and their respective intersections. We also study the possibility that any of
these objects may be expressed by means of square roots which could produce the change
from real solutions to complex ones under some conditions. This generates a set of two–
dimensional or lower objects which enlarge the set previously found. More precisely, we
have added the new objects:

• O2x6 = {0,0,m,0,n};

• O2x7 = {0, l,0,d,0};

• O2x8 = {0, l,m,0,0};

• O2x9 = {c,0,0,0,n};

• O2x10 = {c,0,m,0,0};

• O1x2 = {0,0,0,d,0};

• O1x3 = {0,0,m,0,0};

• O1x4 = {0, l,0,0,0};

• O1x5 = {c,0,0,0,0}.

Now we take the list of two–dimensional objects O2xi and we study their singular-
ities and their respective intersections. Again we consider the possibility of the presence
of square roots, which imply real or complex solutions under some conditions. This gener-
ates a set of one–dimensional objects which enlarge the set previously found. But we do
not have any new element, since we detect that the elements obtained at this stage have
already been found previously.

Now, these five one–dimensional objects, which are in R5 correspond to points
in the projective space, which will determine the singular slices that we must take into
consideration. As we have said, the bifurcation diagram is very simple and it is described
by the next lemma.

Lemma 3.3.8. The parameter space of systems (3.2), which is an RP4, bifurcates into
three spaces RP3 which are [c : l : m : 1 : 1] (generic), [c : l : m : 1 : 0] and [c : l : m : 0 : 1]
(both singular). Then, inside each one of these three–dimensional slices we must only
consider two cases: m = 1 (generic) and m = 0 (singular). Finally, the space RP2 is given
by [c : l : m : 0 : 0] which is border of [c : l : m : 0 : 1].
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Even though we have found the existence of a nonalgebraic bifurcation, we have
not detected that more slices are needed because of it, i.e. there is complete coherence of
continuity of the phase portraits with the slices already provided.

We now begin the analysis of the two–dimensional bifurcation diagrams by study-
ing completely each one of the elements described in Lemma 3.3.8.

We describe first the labels used for each part of the bifurcation space. As we
have mentioned before, the subsets of dimensions 4, 3, 2, 1 and 0, of the partition of
the parameter space will be denoted respectively by H, V , S, L and P for Hypervolume,
Volume, Surface, Line and Point, respectively. The volumes are named using a number
which corresponds to each bifurcation volume which is placed on the left side of the letter
V and in order to describe the portion of the volume we place an index. The surfaces
that are intersection of volumes are named by using their corresponding numbers on the
left side of the letter S, separated by a point. The surfaces which are singularities of
volumes are named by using the number of the surface twice on the left side of the letter
S. To describe the piece of the surface we place an index. The curves that appear can
come from different sources: they could be intersection of surfaces, intersection among
several volumes, singularities of volumes, and, in general, any object of this classification
of dimension one. The curves are named by using their corresponding numbers (of the
volumes containing them) on the left side of the letter L, separated by a point. In case we
have more than three volumes intersecting on the same curve, we place the three numbers
of the surfaces that we consider more relevant. To describe the segment of the curve we
place an index. Hypervolumes and Points are simply indexed.

We consider an example: algebraic set (V2) splits into 3 different three–dimensional
parts labeled as 2V1, 2V2 and 2V3, plus some two–dimensional parts labeled as 2.iS j

(where i denotes the other volume intersected by (V2) and j is a number), plus some
one–dimensional parts labeled as 2.i.kL j (where i and k denote the other volumes inter-
sected by (V2) and j is a number), and also some zero–dimensional parts. In order to
simplify the labels in all figures we see H1 which stands for the TEX notation H1. Anal-
ogously, 2V1 (respectively, 2.5S1) stands for 2V1 (respectively 2.5S1). And the same
happens with many other pictures.

3.4 Bifurcation diagram in the affine part of RP4

Here we assume that d = 1 and we have to consider the three–dimensional slices
n = 1 and n = 0, which indicate, respectively, a generic and a singular slice for d = 1.

In Fig. 5 we represent the generic plane m= 1 of the parameter space for the generic
slice n= 1, showing only the algebraic surfaces. We will use lower–case letters provisionally
to describe the sets found algebraically in order to not interfere with the final partition
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described with capital letters. Moreover, we obtain the global phase portraits with the
numerical program P4 (see Artés et al. (2005) and Dumortier, Llibre and Artés (2008)). In
this slice we have a partition in two–dimensional parts bordered by curved polygons, some
of them bounded, others bordered by infinity. For each two–dimensional part we obtain
a phase portrait which is coherent with those of all their borders. Except for the part h9

(the rectangle bordered by green, purple, red and infinity). The study of this part is very
important for the coherence of the bifurcation diagram. That is why we have decided to
present only this part (and its borders) in Fig. 5.

Figure 5 – Plane m = 1 on the slice n = 1 (only algebraic sets)

We start the analysis of part h9. The phase portrait in h9 near 2v2 possesses a finite
basin passing through the finite saddle–node, i.e. two separatrices of the finite saddle–node
start at the same infinite saddle–node, whereas the phase portrait in h9 away from 2v2

does not possess the finite basin. Then, there must exist at least one element 7V1 of set
(V7) dividing part h9 into two “new” parts, H9 and H10, which represents a bifurcation due
to the connection of a separatrix of a finite saddle–node and a separatrix of an infinite
saddle–node (see Fig. 6 for a sequence of phase portraits in these parts). As the segment
5v4 corresponds to changes in the infinite singular points, the finite part of the phase
portraits remains unchanged and this element of nonalgebraic set (V7) must intersect 5v4

having this intersection point as one of its endpoints, since in h11 we do not have the
sufficient number of infinite singularities in order to make this nonalgebraic bifurcation
happens. In Lemma 3.4.1 we prove that 7V1 is bounded and it has 4.8s2 and 5.7S1 as
endpoints. The complete bifurcation diagram for the generic plane m = 1 on the slice
n = 1 is presented in Fig. 7.
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Figure 6 – Sequence of phase portraits in part h9 of n = m = 1

Lemma 3.4.1. The element 7V1 of nonalgebraic set (V7) is bounded and it has 4.8S2 and
5.7S1 as endpoints.

Proof. Numerical tools show that this result is true. We have mentioned before that in
H11 we do not have the sufficient number of infinite singularities in order to make the
nonalgebraic bifurcation given by 7V1 happens. However, 7V1 must intersect 5v4 in some
point, since some two different phase portraits 5V3 and 5V4 are detected on this part. Then
such a nonalgebraic set has an endpoint at 5.7S1. On the other hand, we observe that 4V3

represents the existence of an invariant straight line which indicates a topological change
between H8 and H9. If some point of 4V3 were an endpoint of 7V1, then the invariant
line would necessarily be broken in order to make this nonalgebraic bifurcation happens.
Then the second endpoint of 7V1 cannot be on 4V3. Moreover, it also cannot be on 2V2

since on such an algebraic set the finite saddle–node has become a cusp–type singularity.
Therefore, the second endpoint of 7V1 is 4.8S2. See Fig. 7 for the mentioned regions in
this proof.

For the slice n = 1, the only singular plane is m = 0, in which we observe that the
volume regions 4V and 5V coalesce, making the hypervolume regions H2, H3, H4, H9, and
H10 disappear, see Fig. 8.

We now pass to the singular slice n = 0. According to the study of the geometric
features of the algebraic sets, we must consider the planes m = 1 and m = 0, which are,
respectively, generic and singular planes for this slice.

We start studying the generic plane m = 1. According to Rmk. 3.3.5, for this
generic plane we have that (V5) ≡ 0, i.e, there are two infinite singularities that always
coalesce. Moreover, in this case we have that (V8) is reduced to the line l = 2c. In fact,
almost all phase portraits from these values of the parameters d,n,m can be obtained
from the previous ones via a specific coalescence of infinite singularities. We only have
five exceptions, which are the parts which were gone to the infinity during the transition
between the generic slice m = 1 and the singular one: H1, H2, H5, H9, and H11. In Fig. 9
we have drawn this generic plane.

Now we discuss the singular plane m = 0. In this case, algebraic set (V8) is reduced
to the line l = 0 and this movement makes the volume regions 5V6 and 5V9 disappear. The
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H1

H2H3H4

H5

H6H7H8

H10H9

H11

2V1

2V2

2V3

4V14V24V3

5V15V25V35V4

7V1

8V4 8V3

8V2 8V1

5.8S15.7S1
2.5S1

4.8S14.8S2

Figure 7 – Plane m = 1 on the slice n = 1

H6H7 H5H8

H1H11 2V1

2V3

8V2 8V1

4.5S14.5S2 4.5.8L1

Figure 8 – Plane m = 0 on the slice n = 1 (see Fig. 7)

new corresponding regions are 4.5.8L1, 4.5.8L2 and P1 (see the representation of the plane
m = 0 in Fig. 10). Moreover, since we are considering n = 0, according to Rmk. 3.3.5, for
this singular plane we already have that (V5)≡ 0. In addition, equation (3.5) tells us that
M̃ is also 0. Therefore, the phase portraits for the remaining regions of the plane m= 0 can
be obtained from the corresponding phase portraits from the plane m = 1 by performing
a convenient coalescence of infinite singularities. In Fig. 10 we have drawn this singular
plane.
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5V5 5V6

5V75V8

5V9

5V10 2.5S2

2.5S3

5.8S2

5.8S3

4.5S34.5S4

4.5.8L2

Figure 9 – Plane m = 1 on the slice n = 0 (see Fig. 8)

5.5S1

5.5S2
5.5S3

5.5S4

4.5.8L34.5.8L4

2.5.5L1

2.5.5L2

P1

Figure 10 – Plane m = 0 on the slice n = 0 (see Fig. 9)

3.5 Bifurcation diagram in the infinite part of RP4

Here we assume that d = 0 and again we have to consider the three–dimensional
slices n = 1 and n = 0, which now indicate, respectively, the affine and the infinite part of
the infinity of RP4.

First we consider slice n = 1. In this slice we must perform the study of the planes
m = 1 and m = 0, which indicate, respectively, the generic and the singular planes.

For the values of the parameters d and n under consideration, we have that (V8) is
reduced to the double line c2 = 0. Therefore, for m = 1, this is the only topological change
in the bifurcation diagram when we compare this plane with the plane described in Fig. 7
(see Fig. 11).
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H1

H2

H5

H11

H9

H8

4V14V3

5V15V4

2.8S1

2.8S2

2.8S3

2.4.8L1

2.5.8L1

Figure 11 – Plane m = 1 on the affine part of the infinity of RP4 (see Fig. 10)

Using the same arguments as before, we conclude that in the plane m = 0 we have
only one topological change on the bifurcation diagram when we compare this plane with
the plane described in Fig. 8 (see Fig. 12).

H1

H5
H8

H11

2.8S1

2.8S3

4.5S14.5S2

P2

Figure 12 – Plane m = 0 on the affine part of the infinity of RP4 (see Fig. 11)

Remark 3.5.1. The phase portrait corresponding to region 2.8S1 in Fig. 11 possesses a
pair of complex straight lines filled up with singularities. Such straight lines are described
by equations

y = (−1± i)x,

respectively. We point out that this phase portrait is topologically equivalent to 2V1 from
Fig. 3. This is a very curious topological coincidence of phase portraits coming from
very different quadratic systems. There is even one more quadratic system topologically
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equivalent to them but geometrically different, which is the one that has the intricate
point hh(4). This fact has already been detected in different papers as Artés and Llibre
(1994) or Artés et al. (2020).

Now, finally we present the study of the infinity of the infinite part of RP4. Here
we already have d = n = 0, i.e. we are in the half–sphere c2+ l2+m2 = 1. Then we proceed
as we did in the previous section, that is, here we have to study m= 1 (the affine part) and
m = 0 (the equator). For these values of d and n we have that (V5)≡ 0 and (V8)≡ 0, then
all the phase portraits that are obtained here are degenerate. Moreover, equation (3.4)
tells us that the vertical axis is still a bifurcation curve because on it the degeneration is
of degree two. But we verify that the horizontal axis still produces an invariant straight
line but now does not imply any topological change on the bifurcation diagram, this is the
reason why we have drawn this axis as a dashed line in Fig. 13. In such a figure, all the
“generic” parts are labeled as 8.9S j, the lines are labeled as k.8.9L j, where k corresponds
to the curve on this compactified plane, and the points are labeled as points. We use the
orange color for the equator of S2, i.e. d = n = m = 0.

8.9S1

8.9S2

8.9S4

8.9S3

8.9.9L1

8.9.9L28.9.9L1

8.9.9L2

4.8.9L14.8.9L2

2.8.9L1

2.8.9L2

P5P5

P4

P4

P3

Figure 13 – Compactified plane corresponding to the infinite part of the infinity of RP4. The
affine part is given by n = 0,m = 1 and the equator is described by n = m = 0 (see
Fig. 12)

Since the complete bifurcation diagram is quite simple, the best way to see the
continuity between different phase portraits, and the way that they bifurcate ones from
the others, is to set all the planes in a single page in a reduced size as we do in Fig. 14.

Because there is coherence among all the slices that we have presented, we conclude
that no more slices are needed for the complete coherence of the bifurcation diagram and
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therefore we can affirm that we have described a complete bifurcation diagram for family
QsnSN11(A) modulo islands, as we discuss in Sec. 3.6.

8.9S1

8.9S2

8.9S4

8.9S3

8.9.9L1

8.9.9L28.9.9L1

8.9.9L2

4.8.9L14.8.9L2

2.8.9L1

2.8.9L2

P5P5

P4

P4

P3

5V5 5V6

5V75V8

5V9

5V10 2.5S2

2.5S3

5.8S2

5.8S3

4.5S34.5S4

4.5.8L2
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H2H3H4

H5

H6H7H8

H10H9

H11
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2V3

4V14V24V3

5V15V25V35V4

7V1

8V4 8V3

8V2 8V1

5.8S15.7S1
2.5S1

4.8S14.8S2
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H2

H5

H11

H9

H8

4V14V3

5V15V4

2.8S1

2.8S2

2.8S3

2.4.8L1

2.5.8L1

5.5S1

5.5S2
5.5S3

5.5S4

4.5.8L34.5.8L4

2.5.5L1

2.5.5L2
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H6H7 H5H8

H1H11 2V1
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H5
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H11

2.8S1

2.8S3

4.5S14.5S2

P2

Figure 14 – All cl–planes of the bifurcation diagram and the corresponding values of the pa-
rameters d,m and n
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3.6 Other relevant facts about the bifurcation diagram

The bifurcation diagram that we have obtained for the class QsnSN11(A) is com-
pletely coherent, i.e. in each plane, by taking any two points in the parameter space and
joining them by a continuous curve, along this curve the changes in phase portraits that
occur when crossing the different bifurcation surfaces we mention can be completely ex-
plained. The same happens when we move from one point of one plane to a close point
of another plane.

Nevertheless, we cannot be sure that these bifurcation diagram is the complete
bifurcation diagram for QsnSN11(A) due to the possibility of “islands” inside the parts
bordered by unmentioned bifurcation sets. In case they exist, these “islands” would not
mean any modification of the nature of the singular points.

In case there were more bifurcation sets, we should still be able to join two represen-
tatives of any two parts of the 75 parts of QsnSN11(A) found until now with a continuous
curve either without crossing such a bifurcation set or, in case the curve crosses it, it must
do it an even number of times without tangencies, otherwise one must take into account
the multiplicity of the tangency, so the total number must be even. This is why we call
these potential bifurcation sets “islands”. In order to be more precise, we have to answer
the following question: which phase portrait could be in such an island? If we consider
the phase portraits from Artés, Llibre and Rezende (2018) and from those ones of family
(A) of codimension–one (which possess a finite saddle–node sn(2), see page 47) and forcing
the coalescence of two finite singular points with two different infinite singular points to
produce a phase portrait of QsnSN11(A), we can detect up to 8 different phase portraits,
in such a way that two of them do not appear here. Under some conditions these phase
portraits could live in such an island on the bifurcation diagram. However, using other
arguments, it can be proved that they are not realizable. We delay the proof of this fact
since this will be the main matter on a future study on the topological classification of
all the phase portraits of the class QsnSN11 of codimension three∗.

3.7 Completion of the proof of the main theorem

In the bifurcation diagram we may have topologically equivalent phase portraits
belonging to distinct parts of the parameter space. As here we have 75 distinct parts of the
parameter space, to help us identify or distinguish phase portraits, we need to introduce
some invariants and we actually choose integer valued, character and symbol invariants.
Some of them were already used for instance in Artés, Rezende and Oliveira (2015), but
we recall them and introduce some needed ones. These invariants yield a classification
which is easier to grasp.
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First of all we would like to emphasize that due to some values of the parameters,
among the 75 phase portraits obtained in the study of the bifurcation diagram, four of
them correspond to linear systems (see page 104). These four phase portraits can be
clearly divided into two classes as in Fig. 2 (we can distinguish them by considering, for
instance, the number of infinite singularities, which is a numeric invariant).

Now we define six invariants I j, 1≤ j ≤ 6, that allow us to make the classification
of the remaining 71 phase portraits corresponding to quadratic differential systems.

Definition 3.7.1. We denote by I1(S) the number of the real finite singular points. We
note that this number can also be infinity, which is represented by ∞.

Definition 3.7.2. We denote by I2(S) the number of the real infinite singular points.

Definition 3.7.3. For a given infinite singularity s of a system S, let `s be the number
of global or local separatrices beginning or ending at s and which do not lie on the line
at infinity. Then 0≤ `s ≤ 4. We denote by I3(S) the sequence of all such `s when s moves
in the set of infinite singular points of system S. We start the sequence at the infinite
singular point which receives (or sends) the greatest number of separatrices and take the
direction which yields the greatest absolute value, e.g. the values 2110 and 2011 for this
invariant are symmetrical (and, therefore, they are the same), so we consider 2110.

Definition 3.7.4. We denote by I4(S) the total number of local or global separatrices of
the finite multiple singular point linking it to the infinite multiple singular points.

Definition 3.7.5. We denote by I5(S) a character from the set {n,y} describing the
nonexistence (“n”) or the existence (“y”) of elliptic sectors.

Definition 3.7.6. We denote by I6(S) a symbol from the set {[|] , [|2] , [×]} which indi-
cates the following configuration of curves filled up with singularities, respectively: a real
straight line, a double real straight line, and two real straight lines intersecting at a finite
point. This invariant only makes sense to distinguish the degenerate phase portraits.

Theorem 3.7.7. Consider the class QsnSN11(A) and all the phase portraits that we have
obtained for this family. The values of the affine invariant I = (I1, I2, I3, I4, I5, I6) given in
Table 6 yield a partition of these phase portraits of the class QsnSN11(A).

Furthermore, for each value of I in this diagram there corresponds a single phase
portrait; i.e. S and S′ are such that I (S) =I (S′), if and only if S and S′ are topologically
equivalent.

The bifurcation diagram for QsnSN11(A) has four parts corresponding to two
topologically distinct classes of linear systems and also 71 parts corresponding to quadratic
ones. As we have said before, the phase portraits corresponding to linear systems can
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be easily divided into two different classes, as in Fig. 2. Now we have to work in the
classification of the remaining 71 parts. These ones produce 34 topologically different
phase portraits as described in Table 7 and the remaining 37 parts do not produce any
new phase portrait.

The phase portraits that does not possess graphic have been denoted surrounded
by parenthesis, for example (5V2); the phase portraits having two or more graphics have
been denoted surrounded by {{∗}}, for example {{P4}}. Normally we use a single {∗}
when there is just one graphic but this does not happen in the present study.

Proof of Thm. 3.7.7. The mentioned result follows from the results in the previous sec-
tions and a careful analysis of the bifurcation planes given in Sec. 3.3, in Figs. 5 to 13,
the definition of the invariants I j and their explicit values for the corresponding phase
portraits.

Regarding the phase portraits corresponding to quadratic systems, in Table 7 we
list in the first column 34 parts with all the distinct phase portraits of Fig. 3. Correspond-
ing to each part listed in the first column we have in each row all parts whose phase
portraits are topologically equivalent to the phase portrait appearing in the first column
of the same row.

In the second column we set all the parts whose systems yield topologically equiv-
alent phase portraits to those in the first column, but which are identical under perturba-
tions.

In the third column we list all parts whose phase portraits possess an invariant
curve not yielding a connection of separatrices.

In the fourth column we add the phase portraits, topologically equivalent to those
ones from the first column, which corresponds to symmetric parts of the bifurcation
diagram.

The last column refers to other reasons associated to different geometric aspects
and they are described as follows:

1. the phase portrait possesses a singularity of type
(̂2

3

)
PP−PP at infinity;

2. the coincidence described in Rmk. 3.5.1.

Whenever phase portraits appear in a row in a specific column, the listing is done
according to the decreasing dimension of the parts where they appear, always placing the
lower dimensions on lower rows.

Regarding the linear differential systems obtained in this study which correspond
to the parts 4.5.8L3,4.5.8L4,P1,P5 of the bifurcation diagram (see Figs. 10 and 12), as we
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have mentioned before, we can split them into two different classes as in Fig. 2. By consid-
ering, for instance, the number of infinite singularities we obtain that 4.5.8L3,4.5.8L4,P5

have two distinct infinite singularities whereas P1 has only one infinite singularity. There-
fore we conclude the classification of all phase portraits obtained by the study of the class
QsnSN11(A) with respect to the canonical form (3.2).

Table 6 – Geometric classification for the family QsnSN11(A)

I1=



1 & I2=



1 & I3=

{
11 (2V1),
21 (H1),

2 & I3=



1110 & I4=

{
2 (4.5S1),
3 {{4.5S3}} ,

2100 (5.7S1),

2101 & I4=


1 (5V1),
2 {{2.5S2}} ,
3 {{5V6}} ,

2200 (2.5S1),
2210 {{5V7}} ,
3101 {{5V5}} ,

3200 & I4=

{
1 (5V2),
2 (5V3),

3 & I3=



111010 (4V1),
111110 (H5),
210110 (4V2),
211010 (7V1),

211110 & I4=

{
1 (H2),
2 (H3),

220110 (2V3),
311010 (2V2),
320110 (H6),
321010 (H10),
411010 (H4),

∞ & I2=



1 & I5=

{
n {{P4}} ,
y {{8.9.9L1}} ,

2 & I3=


0000 & I5=

 n & I6=


[|] (4.5.8L1),
[|2] (2.5.8L1),
[×] {{2.8.9L1}} ,

y {{5.8S2}} ,
1000 {{8.9S1}} ,
1010 {{5.8S1}} ,

3 & I3=

{
000000 {{2.8S2}} ,
100000 {{8V1}} .
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Table 7 – Topological equivalences for the family QsnSN11(A)

Presented Identical Possessing
phase under invariant curve Symmetry Other reasons

portrait perturbations (no separatrix)
H1 H11

5.5S1
(1), 5.5S2

(1),
5.5S3

(1), 5.5S4
(1)

H2 H9
H3
H4
H5 H8
H6 H7
H10

2V1 2.8S1
(2)

2.5.5L1
(1), 2.5.5L2

(1)

2V2
2V3
4V1 4V3
4V2
5V1 5V4
5V2
5V3
5V5 5V8
5V6 5V9
5V7 5V10
7V1
8V1 8V2, 8V3, 8V4

4.8S1, 4.8S2
2.5S1
2.5S2 2.5S3
2.8S2 2.8S3

2.4.8L1
4.5S1 4.5S2
4.5S3 4.5S4
5.7S1
5.8S1
5.8S2 5.8S3

4.5.8L2
8.9S1 8.9S2, 8.9S3, 8.9S4

4.8.9L1, 4.8.9L2
2.5.8L1 P2
2.8.9L1 2.8.9L2

P3
4.5.8L1
8.9.9L1 8.9.9L2

P4
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CHAPTER

4
CLASSIFICATION OF QUADRATIC

SYSTEMS WITH A FINITE SADDLE–NODE
AND AN INFINITE SADDLE–NODE

(1,1)SN–(B)

In this chapter we present a study of a three–dimensional bifurcation diagram
which provides all the representatives for the topological classification of phase portraits
belonging to the set (AC), as we see in Chap. 5.

4.1 Introduction and statement of the results

As we have said in the previous chapter, one of the main goals of this thesis is
to present the study of the class of all quadratic systems possessing a finite saddle–node
sn(2) located at the origin of the plane and an infinite saddle–node of type

(1
1

)
SN. In the

previous chapter we have studied family QsnSN11(A) of all phase portraits possessing a
finite saddle–node as the only finite singularity. In this chapter we present the study of
family QsnSN11(B) of phase portraits possessing the finite saddle–node and also a simple
finite elemental singularity.

For this study we follow the same pattern as we did in the previous chapter.
Moreover, as we have said before, all the generic phase portraits obtained here belong to
the set (AC). Additionally, we will see in the next chapter that all the phase portraits
belonging to the generic regions of the bifurcation diagram presented in this chapter
provide examples for the realization of all the phase portraits from the set (AC).

In the normal form (4.1), see page 119, the class QsnSN11(B) is partitioned into
631 parts: 112 three–dimensional ones, 265 two–dimensional ones, 203 one–dimensional
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ones and 51 points. This partition is obtained by considering all the bifurcation surfaces
of singularities, one related to the presence of invariant straight lines, one related to
connections of separatrices and one related to the presence of a double limit cycle, modulo
“islands” (see Sec. 4.4).

We point out that we cannot have a global result about the number of limit cycles
that a phase portrait may have. But we can assure that, in some places of the bifurcation
diagram, the corresponding phase portraits have a specific number of limit cycles or even
a quantity with identical parity (taking into account the multiplicity of limit cycles). More
precisely, as we may find an island inside the parameter space for which in its border there
exists a double limit cycle and inside the island there are two more limit cycles, all the
claims regarding limit cycles always must be formulated with respect to the minimum
number of limit cycles (proved to exist), but always having the possibility of the existence
of “more” limit cycles, keeping the parity.

Theorem 4.1.1. There are 226 topologically distinct phase portraits for the closure of
the family of quadratic vector fields having a finite saddle–node sn(2), a finite elemental
singularity and an infinite saddle–node of type

(1
1

)
SN, and given by the normal form (4.1)

(class QsnSN11(B)). The bifurcation diagram for this class is given in the parameter space
which is the projective three–dimensional space RP3. All these phase portraits are shown
in Figs. 15 to 21. Also the following statements hold:

(a) there are 147 topologically distinct phase portraits in QsnSN11(B);

(b) there are 32 phase portraits possessing exactly one simple limit cycle (or an odd
number of them taking into account their multiplicity), and they are in the parts
V25, V48, V52, V57, V60, V72, V75, V78, V101, V104, V106, 2S11, 2S13, 4S38, 4S64, 4S67, 5S13,
5S20, 5S23, 5S26, 5S32, 5S34, 7S15, 7S23, 9S16, 9S17, 9S18, 2.5L5, 4.5L13, 4.5L15, 5.7L8,
5.9L3;

(c) there are three phase portraits with exactly two simple limit cycles (or an even
number of them taking into account their multiplicity) surrounding the same focus,
and they are in the parts V107, V110, 7S24;

(d) there is one phase portrait with exactly three simple limit cycles (or a greater odd
number of them taking into account their multiplicity) surrounding the same focus,
and it is in the part V109;

(e) there are two phase portraits possessing one double limit cycle (and no signs of other
limit cycles), and they are in the parts 10S1, 10S3;

(f) there is one phase portrait possessing one double limit cycle and one simple limit
cycle (and no signs of other limit cycles) both surrounding the same focus, and it is
in the part 10S2;
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(g) there are 45 phase portraits with exactly one nondegenerate graphic surrounding a
focus. These phase portraits are in the parts V26, V49, V53, V102, 4S65, 5S14, 5S15, 5S16,
5S17, 5S18, 5S19, 5S33, 7S3, 7S4, 7S6, 7S7, 7S8, 7S11, 7S13, 7S14, 7S22, 9S21, 2.5L4, 2.7L1,
4.4L12, 4.5L8, 4.5L9, 4.5L14, 5.7L2, 5.7L3, 5.7L4, 5.7L5, 5.7L6, 5.7L7, 5.7L11, 5.9L4,
5.9L5, 7.7L1, 7.9L5, 7.9L7, P7, P14, P20, P49, P50. We highlight that phase portrait
7S14 is topologically equivalent to phase portrait corresponding to the part P27 of
the bifurcation diagram (see Table 26), and for this last phase portrait the weak
focus is of order two;

(h) there is one phase portrait, namely 7S23, which possesses one nondegenerate graphic
and one simple limit cycle, both surrounding the same focus. This phase portrait
is topologically equivalent to phases portraits corresponding to the parts 3.7L4 and
3.7L5 of the bifurcation diagram (see Table 26), and for each one of these two phase
portraits the weak focus is of order one;

(i) there is one phase portrait, namely 7S24, which possesses one nondegenerate graphic
and two simple limit cycles, all of them surrounding the same focus;

(j) there is one phase portrait, namely 7.10L1, which possesses one nondegenerate
graphic and a double limit cycle, both surrounding the same focus;

(k) there are 18 phase portraits having an infinite family of nondegenerate graphics
(with no singularity inside), and these phase portraits are in the parts 9S3, 9S5, 9S7,
9S10, 9S11, 9S29, 9S30, 9S33, 9S35, 9S36, 2.9L1, 2.9L3, 2.9L4, 4.9L1, 4.9L6, 4.9L7, 7.9L1,
7.9L8;

(l) phase portraits 9S16 and 9S17 possess an infinite family of nondegenerate graphics
(with no singularity inside) and also a simple limit cycle;

(m) there are four phase portraits possessing an infinite family of nondegenerate graph-
ics  (with no singularity inside) and also another nondegenerate graphic which sur-
rounds  a focus. These phase portraits are in  the parts  9S19,9S20,7.9L3,7.9L4; 

(n) phase portraits 9S22 and  7.9L6 possess two distinct infinite families of nondegener-
ate graphics, one of them with all the graphics surrounding the same focus and the
other having no singularities inside the graphics;

(o) phase portrait 4.9L4 possesses two infinite families of nondegenerate  graphics (with
no singularity inside) plus another nondegenerate  graphic which surrounds  a fo-
cus;

(p) phase portrait 4.9L5 possesses three distinct infinite families of nondegenerate  graph-
ics, one of them with all the graphics surrounding the same focus and the other two
families having no singularities inside the graphics;
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(q) there are three phase portraits possessing two infinite families of nondegenerate
graphics and there are no singularities inside the graphics. These phase portraits
are in the parts 9S1,9S27,9S28;

(r) there are seven phase portraits with infinite families of degenerate graphics. In fact,
such degenerate graphics exist due to a presence of curves filled up with singularities.
More precisely:

(r1) phase portraits 8S1 and 5.8L1 possess a hyperbola filled up with singularities;

(r2) phase portraits 9.9L1 and P29 possess a parabola filled up with singularities;

(r3) phase portraits 4.8L1 and P3 possess two real straight lines, filled up with
singularities, intersecting at a finite point;

(r4) phase portrait P36 possesses the line at infinity filled up with singularities.

Proposition 4.1.2. There are 40 topologically distinct phase portraits of codimension
two, modulo limit cycles, in the family QsnSN11(B).

Corollary 4.1.3. In Table 8 we give the numbers of phase portraits of both families
QsnSN11(B) and its closure for special types of phase portraits.

Corollary 4.1.4. There exist two topologically distinct phase portraits which appear
simultaneously in both classes QsnSN11(A) (described in Artés, Mota and Rezende (2021a)
and also in the previous chapter) and QsnSN11(B). The correspondences are indicated in
Table 9 and the phase portraits in each row are topologically equivalent.

For family QsnSN11(B), from its 148 topologically different phase portraits, 54
occur in three–dimensional parts, 67 in two–dimensional parts, 24 in one–dimensional
parts and three occur in a zero–dimensional parts.

For the border of QsnSN11(B), from its 78 topologically different phase portraits,
37 occur in two–dimensional parts, 34 in one–dimensional parts and seven occur in zero–
dimensional parts.

In Figs. 15 to 21 we have illustrated all the singularities with a small disc. In case
of degenerate systems we have also illustrated the infinite singular point belonging to the
degenerate set with a small disc only if this point is an infinite singularity of the reduced
system. We have drawn with thicker curves the separatrices and we have added some
thinner orbits to avoid confusion in some cases.

We have drawn all the limit cycles (and loops) possessing a convex shape (see
Lemma 3.31 from Artés, Llibre and Rezende (2018)). The limit cycle is colored in red if it
is simple (as in Artés, Rezende and Oliveira (2015), for instance) and it is colored in dark
green if it is double. In addition, all the graphics are colored in blue. We notice that weak
foci are graphics reduced to a point, so the weak foci could be included in the definition
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Figure 15 – Phase portraits for quadratic vector fields with a finite saddle–node sn(2), a fi-
nite elemental singularity and an infinite saddle–node of type

(1
1

)
SN, from class

QsnSN11(B)
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Figure 16 – Continuation of Fig. 15
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Figure 17 – Continuation of Fig. 16
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Figure 18 – Continuation of Fig. 17
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Figure 19 – Continuation of Fig. 18
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Figure 20 – Continuation of Fig. 19
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Figure 21 – Continuation of Fig. 20

of graphics and then we should have colored them in blue. However, in order to follow the
same pattern as in previous similar studies and according to our definition of graphics we
keep all of them in black.

Remark 4.1.5. We label the phase portraits according to the parts of the bifurcation
diagram where they occur. Here we call volumes (V ) the three–dimensional parts of the bi-
furcation diagram, surfaces (S) the two–dimensional ones, curves (L) the one–dimensional
ones, and points (P) the zero–dimensional ones. These labels could be different for two
topologically equivalent phase portraits occurring in distinct parts. Some of the phase
portraits in three–dimensional parts also occur in some lower dimensional parts border-
ing these three–dimensional parts. An example occurs when a node turns into a focus. An
analogous situation happens for phase portraits in two–dimensional or one–dimensional
parts, coinciding with some phase portraits situated on their border. Moreover, as in
Artés, Llibre and Schlomiuk (2006) and Artés, Rezende and Oliveira (2015), we use the
same pattern in order to indicate the elements (V ), (S), (L) and (P) in the bifurcation
diagram.
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Table 8 – Comparison between the set QsnSN11(B) and its border (the numbers represent the
absolute values in each subclass)

QsnSN11(B)
Border of

QsnSN11(B)
Distinct phase portraits 147 79

Phase portraits with exactly one
25 7simple limit cycle

Phase portraits with exactly two
3 0simple limit cycles

Phase portraits with exactly three
1 0simple limit cycles

Phase portraits with exactly one
2 0double limit cycle

Phase portraits with one double
1 0limit cycle and one simple

limit cycle
Phase portraits with exactly one

38 10nondegenerate graphic
Phase portraits with at least

0 31one infinite family of
nondegenerate graphics

Phase portraits with degenerate
0 7graphics

Table 9 – Topological equivalence between phase portraits from classes QsnSN11(A) and
QsnSN11(B)

QsnSN11(A) QsnSN11(B)
2.8S2 4.8L1

2.8.9L1 P3

This chapter is organized as follows. In Sec. 4.2 we describe the normal form for
the family of quadratic systems having a finite saddle–node, a simple finite elemental
singularity and an infinite saddle–node of type

(1
1

)
SN.

In Sec. 4.3, by considering some T–comitants and invariants for quadratic sys-
tems as used in Sibirsky’s School, we construct the bifurcation surfaces for the class
QsnSN11(B).

In Sec. 4.4 we discuss about the possible existence of “islands” in the bifurcation
diagram.

In Sec. 4.5 we introduce a global invariant denoted by I , which classifies com-
pletely, up to topological equivalence, the phase portraits that we have obtained for the
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systems in the class QsnSN11(B). Thm. 4.5.15 shows clearly that they are uniquely deter-
mined (up to topological equivalence) by the values of the invariant I .

4.2 Quadratic vector fields with a finite saddle–node sn(2),
a finite elemental singularity and an infinite saddle–
node of type

(1
1

)
SN

In Artés, Llibre and Vulpe (2008) the authors have constructed the normal form
for quadratic systems possessing one double and one simple real finite singularities. In
what follows we present an idea of such a construction.

Proposition 4.2.1. Every non–degenerate quadratic system with a finite semi–elemental
double saddle–node sn(2), a finite elemental singularity and an infinite saddle–node of type(1
1

)
SN can be brought via an affine transformation to the following normal form

ẋ = cx+ cy− cx2 +2hxy,

ẏ = ex+ ey− ex2 +2mxy,
(4.1)

where c, e, h, m are real parameters and eh 6= cm.

Proof. We know that a quadratic system (1) can always be written into the form

ẋ = p0 + p1(x,y)+ p2(x,y)≡ p(x,y),

ẏ = q0 +q1(x,y)+ q2(x,y)≡ q(x,y)

with homogeneous polynomials pi and qi (i = 0,1,2) of degree i in x,y:

p0 = a00, p1(x,y) = a10x+a01y, p2(x,y) = a20x2 +2a11xy+a02y2,

q0 = b00, q1(x,y) = b10x+b01y, q2(x,y) = b20x2 +2b11xy+b02y2.

We start supposing that such systems possess four real finite distinct singularities. Assume
that one finite singularity has gone to infinity. Then the quadratic polynomials p2(x,y)

and q2(x,y) have a linear common factor of the form αx+βy. So this infinite singularity
is of the form N[−β : α : 0] and via a rotation we can assume that this point is located on
the direction x = 0, i.e. x is a factor of p2(x,y) and q2(x,y). Then, for these systems we can
take a02 = b02 = 0. Now, since these systems possess three real finite distinct singularities,
we can apply a translation in such a way that one of these singularities can be moved to
the origin, i.e. we can assume a00 = b00 = 0. Therefore we obtain the systems:

ẋ = a1x+b1y+ c1x2 +2d1xy,

ẏ = a2x+b2y+ c2x2 +2d2xy,
(4.2)
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which, besides the point M1(0,0), have two other distinct real singularities Mi(xi,yi) for
i ∈ {2,3}. We observe that for systems (4.2), if x2,3 = 0 then we obtain

p(0,y2,3) = b1y2,3 = 0, q(0,y2,3) = b2y2,3 = 0,

and since y2,3 6= 0 (otherwise we would have a triple point at the origin) we have b1 = b2 = 0.
This implies that systems (4.2) are degenerate. So we can assume x2 6= 0. Performing the
linear transformation

x̄ =
x
x2
, ȳ = y, if y2 = 0,

and
x̄ =

x
x2
, ȳ = x− x2

y2
y, if y2 6= 0,

we keep the form (4.2) and clearly we locate the point M2(x2,y2) at the point M2(1,0).
Imposing that M2(x2,y2) = (1,0) we obtain a1 =−c1 and a2 =−c2. These equalities allow
us to write systems (4.2) into the form

ẋ = a1x+b1y−a1x2 +2d1xy,

ẏ = a2x+b2y−a2x2 +2d2xy,
(4.3)

which have three finite singularities: M1(0,0), M2(1,0) and M3(x3,y3). Calculations show
that M3 has the coordinates

x3 =
d23

2d45
, y3 =

d23(2d45−d23)

4d35d45
,

where
d23 = a2b1−a1b2, d35 = b1d2−b2d1, d45 = a2d1−a1d2,

verifying d23d35d45(2d45−d23) 6= 0 (i.e. the points are finite and distinct).
For systems (4.3), we observe that a2

1 +a2
2 6= 0, otherwise d23 = 0 = d45 what contradicts

the previous condition. Finally, in order to have a double finite singularity at the origin,
i.e. forcing the point M1(0,0) to be double, without loss of generality we can make d23 = 0
by taking b1 = a1 and b2 = a2. Therefore, by renaming the coefficients a1 → c, d1 → h,
a2→ e, d2→m, we arrive at normal form (4.1) that we were looking for. Moreover, since
d35d45 =−(eh− cm)2 6= 0, we conclude that such systems are non–degenerate if and only
if eh− cm 6= 0.

In order to complete the study of the closure of family QsnSN11(B) within the
set of representatives of QsnSN11(B) in the parameter space of normal form (4.1) it is
necessary to consider also the case h = 0.

The next result assures the existence of invariant straight lines under certain con-
ditions for systems (4.1).

Lemma 4.2.2. A non–degenerate system (4.1) possesses the following invariant straight
line if and only if the corresponding condition is satisfied:
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(i) {x = 0}⇔ c = 0;

(ii) {y = 0}⇔ e = 0;

(iii) {x = 1}⇔ h =−c/2;

(iv) {y =−x}⇔ h =−(c+ e+2m)/2.

Proof. We consider the algebraic curves

f1(x,y)≡ x = 0,

f2(x,y)≡ y = 0,

f3(x,y)≡ x−1 = 0,

f4(x,y)≡ x+ y = 0,

and we show that the polynomials

K1(x,y) = 2hy,

K2(x,y) = 2mx,

K3(x,y) =−c(x+ y),

K4(x,y) =−(c+ e)(x−1),

are the cofactors of f1 = 0, f2 = 0, f3 = 0 and f4 = 0, respectively, after restricting sys-
tems (4.1) to the respective conditions.

We observe that systems (4.1) depend on four real parameters, namely, c, e, h

and m. Then, the corresponding bifurcation diagram is actually the four–dimensional
Euclidean space R4. Since the case c = e = h = m = 0 corresponds to the null system and
it does not belong to our family, we can consider the real projective space RP3. In what
follows we describe how we do this study.

Systems (4.1) depend on the parameter λ = (c,e,h,m) ∈ R4. We consider systems
(4.1) which are nonzero, i.e. λ = (c,e,h,m) 6= 0. In this case, systems (4.1) can be rescaled
with the time rescaling (x,y, t)→ (x,y, t/α), α 6= 0. In fact, applying this transformation
we obtain

ẋ = α
′cx+α

′cy−α
′cx2 +2α

′hxy,

ẏ = α
′ex+α

′ey−α
′ex2 +2α

′mxy,

for α ′= 1/α , α 6= 0. Then, this transformation takes the systems with parameters (c,e,h,m)

to systems with parameters (α ′c,α ′e,α ′h,α ′m), with α ′ = 1/α . Hence, instead of consid-
ering as a parameter space the set R4 we may consider the real projective space RP3. The
three–dimensional projective space RP3 can be viewed as the quotient space S3 /∼ of S3

by the equivalence relation: (c,e,h,m) is equivalent to itself or to (−c,−e,−h,−m). So,
our parameter is [λ ] = [c : e : h : m] ∈ RP3 = S3 /∼. Since for α ′ = −1 the signs of all the
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parameters change, we may consider h≥ 0 in [c : e : h : m]. Since c2+e2+h2+m2 = 1, then
h =

√
1− (c2 + e2 +m2), where 0≤ c2 + e2 +m2 ≤ 1.

We can therefore view the parameter space as a ball: B = {(c,e,m) ∈R3; c2+e2+

m2 ≤ 1} where on the equator two opposite points are identified. When m = 0, we identify
the point [c : e : h : 0] ∈ RP3 with [c : e : h] ∈ RP2. So, this subset {m = 0} ⊂ B can
be identified with RP2, which can be viewed as a disc with two opposite points on the
circumference (the equator) identified (see Fig. 22).

Figure 22 – The parameter space

For h 6= 0, we get the affine chart:

RP3 \{h = 0}↔ R3

[c : e : h : m]→
(c

h
,

e
h
,
m
h

)
= (c,e,m)

[c : e : 1 : m]← (c,e,m).

The plane h = 0 in RP3 corresponds to the equation c2 + e2 +m2 = 1 (the full
sphere S2) and the line h = m = 0 in RP3 corresponds to the equation c2 + e2 = 1 (the
equator m = 0 of S2).

We now consider planes in R3 of the form m = m0, where m0 is a constant. The
projective completion of such a plane in RP3 has the equation m−m0h = 0. So we see how
the slices m = m0 need to be completed in the ball (see Fig. 23). We note that when h = 0
necessarily we must have m = 0 on such a slice, and thus the completion of the image of
the plane m = m0, when visualized in S3, must include the equator.

The specific equations of the correspondence of the points in the plane m = m0 of
R3 (m0 a constant) onto points in the interior of S2 (B = {(c,e,m)∈R3; c2+e2+m2 < 1})
follows from the bijection:

R3↔B

(c,e,m)↔
(

c
r
,
e
r
,
m
r

)
,
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with r =
√

c2 + e2 +m2 +1. That is, for each plane m = constant in R3, there corresponds
an ellipsoid c2 + e2 +m2(1+m0)

2/m2
0 = 1,m≥ 0 (see Fig. 23).

Figure 23 – Correspondence between planes and ellipsoides

Proposition 4.2.3. By a rescaling in the variables, we may assume h = 0 or h = 1 in the
normal form (4.1).

Proof. If h 6= 0, by the Reparametrization Theorem (see Prop. 1.1.15) we get that systems
(4.1) are equivalent to

ẋ =Cx+Cy−Cx2 +2xy,

ẏ = Ex+Ey−Ex2 +2Mxy,

where C = c/h,E = e/h and M = m/h. By renaming the coefficients C→ c, E → e and
M → m, we obtain systems (4.1) with h = 1. Moreover, we must also consider the case
when h = 0.

4.3 The bifurcation diagram of the systems in QsnSN11(B)

In this chapter we use the concepts of algebraic invariant and T–comitant as for-
mulated by Sibirsky’s School for differential equations. For a quick summary see Chap. 2.

In this section we describe the algebraic invariants and T–comitants which are
relevant in the study of normal form (4.1).

4.3.1 Algebraic bifurcation surfaces at the affine part of RP3

From Sec. 7 of Artés, Llibre and Vulpe (2008) and also from Vulpe (2011) we
get the formulas which give the bifurcation surfaces of singularities in R12, produced
by changes that may occur in the local nature of finite singularities. From Schlomiuk
and Vulpe (2005) we get equivalent formulas for the infinite singular points. All of these
formulas were lately compiled and improved in the book Artés et al. (2021).

Bifurcation surface in RP3 due to degeneracy of system
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(S8) Since for systems (4.1) we have an infinite saddle–node of type
(1

1

)
SN we have that

µ0 = 0. Moreover, since

µ1 =−4(eh− cm)2x, µ2 =−4(eh− cm)2xy,

and
µ3 = µ4 = 0,

we define (S8) as a surface whose equation is given by µ1 = 0, i.e.

(S8) : eh− cm = 0,

and therefore on this surface we have that µi = 0, i = 0,1,2,3,4, i.e. systems (4.1) are
degenerate (see Artés et al. (2021)). We point out that our aim is to construct a coherent
and continuous bifurcation diagram. Although the phase portraits possessing a double
finite saddle–node sn(2), a finite elemental singularity and an infinite saddle–node

(1
1

)
SN

are located in open sets in this bifurcation diagram, in order to have these properties for
this diagram, we also need to consider the borders of such sets. In particular, surface (S8)

borders open sets in this bifurcation diagram. In Fig. 24 we present the surface (S8) in
the three–dimensional affine space which is the hyperplane h = 1 in R4.

Figure 24 – Surface (S8) for h = 1

Remark 4.3.1. In the equations of the following surfaces the factor eh−cm is also present.
This confirms that the systems on surface (S8) are indeed degenerate (possessing curves of
singularities) because many geometric features happens at the same time when eh−cm= 0.
However, we are interested in the other geometric features that the following surfaces can
provide. In this way, we assume, without loss of generality, that eh− cm 6= 0.

Bifurcation surface in RP3 due to the change of topological type of the origin



4.3. The bifurcation diagram of the systems in QsnSN11(B) 125

(S2) This is the bifurcation surface due to the change of topological type of the origin. On
this surface the origin becomes a cusp–type singularity. This phenomenon occurs when
two separatrices of a saddle–node coalesce and, according to Artés et al. (2021), for normal
form (4.1) this phenomenon is described by the invariant E1 which in this case is given
by

E1 =−8(c+ e)(−eh+ cm)4.

Taking into consideration Rmk. 4.3.1, we define surface (S2) by

(S2) : c+ e = 0.

Geometrically, such a surface is a plane on the projective space RP3 with projective
coordinates c, e and m.

The surface of C∞ bifurcation points due to a strong saddle or a strong focus
changing the sign of their traces (weak saddle or weak focus)

(S3) This is the bifurcation surface due to weak finite singularities, which occurs when
the trace of a finite singular point is zero. According to Vulpe (2011), if the invariant
polynomials T4 and T3 verify the conditions T4 = 0 and T3 6= 0 then systems (4.1) have
exactly one weak singularity. Indeed, for normal form (4.1) the previous conditions are
equivalent to

T4 =−8h(c+ e)2(c− e−2m)(−eh+ cm)2 = 0,

T3 =−8h(c+ e)(c−3e−4m)(−eh+ cm)2 6= 0.

Taking into consideration Rmk. 4.3.1 we define surface (S3) as

(S3) : c− e−2m = 0.

We highlight that this bifurcation can produce a topological change if the weak point is
a focus or just a C∞ change if it is a saddle, except when this bifurcation coincides with a
loop bifurcation associated with the same saddle, in which case, the change may also be
topological (see for instance Artés, Rezende and Oliveira (2015, p. 50)).
We clearly have that such a surface is a plane on the projective space RP3 with projective
coordinates c, e and m.

Bifurcation surface in RP3 due to the presence of invariant straight lines

(S4) This surface contains the points of the parameter space there appear invariant
straight lines (see Lemma 4.2.2). This surface is split into some regions. Depending on
these regions, the straight line may contain connections of separatrices from different
points or not. So, in some cases, it may imply a topological bifurcation and, in others,
just a C∞ bifurcation. According to Artés et al. (2021), the equation of this surface is given
by the invariant B1. It is worth mentioning that B1 = 0 is only a necessary condition for
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the existence of an invariant straight line, but it is not sufficient (see Corollary 4.6 from
Schlomiuk and Vulpe (2004)), i.e. we may find some component of B1 = 0 that does not
represent an invariant straight line. For normal form (4.1) the invariant B1 is given by

B1 =−8c2e2(c+2h)(c+ e+2h+2m)(−eh+ cm)3.

Taking into consideration Rmk. 4.3.1, we define surface (S4) by the equation

(S4) : ce(c+2h)(c+ e+2h+2m) = 0.

In Fig. 25 we present the surface (S4) in the three–dimensional affine space which is the
hyperplane h = 1 in R4.

Figure 25 – Surface (S4) for h = 1

The bifurcation surfaces presented before are all algebraic and they, except (S4),
are the bifurcation surfaces of finite singularities of systems (4.1) in the parameter space.
We shall detect other two bifurcation surfaces not necessarily algebraic. On one of them the
systems have global connection of separatrices different from that given by (S4) and on the
other the systems possess a double limit cycle. The equations of these bifurcation surfaces
can only be determined approximately by means of numerical tools. Using arguments
of continuity in the phase portraits we can prove the existence of these components not
necessarily algebraic in the part where they appear, and we can check them numerically.
We shall name them surfaces (S7) (connection of separatrices) and (S10) (double limit
cycles).

Remark 4.3.2. On surface (S10) the respective systems have at least one double limit
cycle. Although this surface is obtained numerically, we can predict in which portion of
the bifurcation diagram it can be placed. It must be in the neighborhood of the points of
the bifurcation diagram corresponding to a weak focus f (2) of order two. So, according to
Vulpe (2011, Main Theorem, item (b2)), the necessary condition for the existence of weak
points of order two or higher is governed by T4 =F1 = 0. Taking into account Rmk. 4.3.1,
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for normal form (4.1) the expression of F1 is given by F1 = c2+2cm+3ce+2e. For h = 1,
calculations yield

T4 = F1 = 0⇔ c− e−2m = 2c2 +(1−2m)c−2m = 0. (4.4)

Such a quadratic equation has discriminant

∆ = 4m2 +12m+1,

which is zero if and only if

m =
1
2

(
±2
√

2−3
)
.

Therefore, for the equation T4 = F1 = 0 we have:

• one double real root if ∆ = 0, i.e. m =
(
±2
√

2−3
)
/2;

• two simple real roots if ∆ > 0, i.e. m <
(
−2
√

2−3
)
/2 or m >

(
2
√

2−3
)
/2;

• two complex roots if ∆ < 0, i.e. m ∈
((
−2
√

2−3
)
/2,
(

2
√

2−3
)
/2
)

.

These roots indicate the existence of weak singularities of order two or higher.
On the other hand, for non–degenerate systems (4.1) with h = 1 we have that

T4 = F1 = F2 = 0

if and only if c =−6/5,e = 36/5 and m =−21/5, and calculations show that F3F4 6= 0.
Then, according to Vulpe (2011, Main Theorem, item (b3)), we have a third order weak
singularity for m =−21/5.

Bifurcation surface in RP3 due to multiplicities of infinite singularities

(S5) This is the bifurcation surface due to multiplicity of infinite singularities. This phe-
nomenon is detected by the invariant η (see Lemma 6.1 from Artés et al. (2021)), which
for normal form (4.1) is given by

η =−4h2(−c2 +8eh−4cm−4m2) = 0.

We define surface (S5) by the equation

(S5) : h(c2−8eh+4cm+4m2) = 0.

In Fig. 26 we present the surface (S5) in the three–dimensional affine space which is the
hyperplane h = 1 in R4.
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Figure 26 – Surface (S5) for h = 1

The surface of C∞ bifurcation due to a node becoming a focus

(S6) This surface contains the points of the parameter space where a finite node of the
systems turns into a focus. This surface is a C∞ but not a topological bifurcation surface.
In fact, when we only cross the surface (S6) in the bifurcation diagram, the topological
phase portraits do not change. However, this surface is relevant for isolating the regions
where a limit cycle surrounding an antisaddle cannot exist. Using the results of Artés,
Llibre and Vulpe (2008), we must consider the invariant W4. For normal form (4.1), W4 is
given by the polynomial

W4 = 64h2(c+ e)4(−eh+ cm)4(c2−2ce+ e2−8eh+4cm+4em+4m2).

Taking into consideration Rmk. 4.3.1 and the fact that W4 can be considered only when
E1 6= 0, i.e. c+ e 6= 0 (see Artés et al. (2021, Table 6.2)), we define surface (S6) as

(S6) : h(c2−2ce+ e2−8eh+4cm+4em+4m2) = 0.

In Fig. 27 we present the surface (S6) in the three–dimensional affine space which is the
hyperplane h = 1 in R4.

Figure 27 – Surface (S6) for h = 1
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We also must consider the invariant polynomial W2, which for normal form (4.1)
is described by the equation

W2 = 64h2(eh− cm)4(3c2 +2ce+3e2−8eh+4cm+4em+4m2).

This invariant polynomial, according to Artés et al. (2021, Table 6.2), can only be consid-
ered when E1 = c+e= 0, and W2 is zero when (for normal form (4.1)) G9 = h2(eh−cm) 6= 0,
i.e. h 6= 0. Taking into consideration Rmk. 4.3.1 and the inclusion {E1 = 0} ⊆ {T4 = 0}
we observe that, for normal form (4.1), the solutions of the equation W2 = 0 are indeed
the solutions of the system formed by the equations

c+ e = 0, h(c− e−2m) = 0, h2(3c2 +2ce+3e2−8eh+4cm+4em+4m2) = 0.

Calculations yield W2 = 0 as a set with coordinates (c,e,h,m), and such a set is given by

{(−h,h,h,−h);h ∈ R}.

In what follows we work at the chart of RP3 corresponding to h 6= 0, and we take
h = 1. Therefore, W2 = 0 with coordinates (c,e,m) is given by {(0,0,0),(−1,1,−1)}.
We denote this two–point set by (S6.2). More precisely, (S6.2)={S6.21,S6.22}, where
S6.21={(−1,1,−1)} and S6.22={(0,0,0)}.

Remark 4.3.3. As we mentioned before, surface (S6) is relevant for isolating the regions
where a limit cycle surrounding an antisaddle cannot exist. Then, according to Rmk. 4.3.2
it is interesting to determine the intersection T4 = F1 = 0 with W4 = 0. For normal form
(4.1), calculations yield

W4

∣∣∣∣
T4=F1=0

=
4c2(3+2c)

1+ c
,

and then W4 intersects the curve given by T4 = F1 = 0 at c = 0 and c = −3/2 (which
are equivalent to m = 0 and m = −3, respectively). We observe that W4 has a relative
minimum at m = 0, since

∂W4

∂m

∣∣∣∣
T4=F1=0|c=0

= 0,
∂ 2W4

∂m2

∣∣∣∣
T4=F1=0|c=0

= 8,

and, moreover, W4 is decreasing at m =−3 because

∂W4

∂m

∣∣∣∣
T4=F1=0|c=−3/2

=−12.

As a result we conclude, respectively, that:

• if for m > 0 we do not have a weak focus of order two (or higher), then for every
m > 0 we will not find such a kind of singularity, since we will not be “crossing”
surface (S6);
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• if for m <−3 we have a weak focus of order two (or higher), then for every m <−3
we will find such a kind of singularity.

Remark 4.3.4. Even though we can draw a two–dimensional picture of the algebraic
bifurcation surfaces of singularities in affine parts of RP3 as we did before, it is pointless
to see a single two–dimensional image of all these bifurcation surfaces together in an affine
part of RP3. As we shall see later, the full partition of the parameter space obtained from
these bifurcation surfaces has 631 parts.

Due to the last remark we shall foliate the three–dimensional bifurcation diagram
in RP3 by the planes m = m0, with m0 constant, plus the open half sphere h = 0 and we
shall give pictures of the resulting bifurcation diagram on these planar sections on a disc
or in an affine chart of R2.

As we said before, we work at the chart of RP3 corresponding to h 6= 0, and we
take h = 1. In order to perform the analysis, we shall use pictures which are drawn on
planes m = m0 of RP3, having coordinates [c : e : 1 : m0]. In these planes the coordinates
are (c,e) where the horizontal line is the c–axis.

As the final bifurcation diagram is quite complex, it is useful to introduce colors
which will be used to refer to the bifurcation surfaces:

(a) surface (S2) is drawn in green (the origin becomes a cusp–type singularity);

(b) surface (S3) is drawn in yellow (when the trace of a singular point becomes zero).
We draw it as a continuous curve if the singular point is a focus or as a dashed curve
if it is a saddle;

(c) surface (S4) is drawn in purple (presence of at least one invariant straight line). We
draw it as a continuous curve if it implies a topological change or as a dashed curve
otherwise;

(d) surface (S5) is drawn in red (two infinite singular points coalesce);

(e) surface (S6) is drawn in black (an antisaddle is on the edge of turning from a node
to a focus or vice versa);

(f) the two–point set (S6.2) is also drawn in black;

(g) surface (S7) is also drawn in purple (connections of separatrices);

(h) surface (S8) is drawn in cyan (the systems are degenerate); and

(i) surface (S10) is drawn in gray (presence of a double limit cycle).
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We use the same color for (S4) and (S7) since both surfaces deal with connections
of separatrices mostly.

The following lemmas of this section present the study of the geometric behavior
of all of these surfaces for h 6= 0 (the case h = 0 will be considered separately), that is,
their singularities, their intersection points and their extrema (maxima and minima) with
respect to the coordinate m.

Lemma 4.3.5. Surface (S2) has no singularities.

Proof. Surface (S2) is described by the equation c+ e = 0, which is a plane.

Lemma 4.3.6. For any m ∈ R, surface (S3) has no singularities.

Proof. Surface (S3) is given by the equation c−e−2m= 0, and such an equation describes
a plane for each m ∈ R.

Lemma 4.3.7. For h 6= 0, surface (S4) has five straight lines of singularities given by
[0 : 0 : 1 : m], [0 : e : 1 :−1− e/2], [−2 : 0 : 1 : m], [−2 : e : 1 :−e/2] and [c : 0 : 1 :−1− c/2].

Proof. When h = 1, surface (S4) is described by the equation ce(c+2)(c+e+2m+2) = 0.
Such an equation tells us that surface (S4) is the union of four planes, namely {c = 0},
{e= 0}, {c+2= 0} and {c+e+2m+2= 0}. As the planes themselves have no singularities,
the singularities of such a surface consist of the intersections among these planes, which
are the straight lines [0 : 0 : 1 : m], [0 : e : 1 :−1−e/2], [−2 : 0 : 1 : m], [−2 : e : 1 :−e/2] and
[c : 0 : 1 :−1−c/2]. Note that as {c = 0} and {c+2 = 0} are parallel, they do not provide
us any intersection.

Lemma 4.3.8. For h 6= 0, surface (S5) has no singularities.

Proof. When h = 1, surface (S5) is written as c2− 8e+ 4cm+ 4m2 = 0. This equation
describes a parabolic cylindrical surface which has no singularities.

Lemma 4.3.9. For h 6= 0, [−2 : 0 : 1 : 1] is the only singularity of surface (S6).

Proof. When h = 1, surface (S6) is given by the quadric Q = c2− 8e− 2ce+ e2 + 4cm+

4em+4m2 = 0. Computing the derivatives of Q, we obtain:

∂Q
∂c

= 2(c− e+2m),
∂Q
∂e

=−2(4+ c− e−2m),
∂Q
∂m

= 4(c+ e+2m).

These three surfaces (together with Q) have the common point (−2,0,1). We point out
that Q is a quadric whose reduced equation is given by(√

3+2
)

x2
2 +

1
2

(√
3+1

)
y2

2− z2
2 = 0,
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for some coordinate system (Σ,O), with O = (x2,y2,z2) obtained from (c,e,m) with the
rigid movements of translation and rotation.

Lemma 4.3.10. For h 6= 0, surface (S8) has no singularities.

Proof. When h = 1, surface (S8) is described by equation e− cm = 0. This equation
describes a hyperbolic paraboloid surface, known as a saddle surface, which has no singu-
larities.

Lemma 4.3.11. For h 6= 0, surfaces (S2) and (S3) intersect along the straight line
[c :−c : 1 : c].

Proof. For h = 1, solving the system of equations

(S2) : c+ e = 0,

(S3) : c− e−2m = 0,

we obtain e =−c and m = c. This result corresponds to the straight line [c :−c : 1 : c].

Lemma 4.3.12. For h 6= 0, surfaces (S2) and (S4) intersect along the straight lines
[0 : 0 : 1 : m], [−2 : 2 : 1 : m] and [c :−c : 1 :−1].

Proof. For h = 1, we have the system of equations

(S2) : c+ e = 0,

(S4) : ce(c+2)(c+ e+2m+2) = 0.

As the equation of surface (S4) has four factors, we have to compute the intersection of
each one of them with the equation of surface (S2). Calculations yield:

• c = 0 and e = 0. This solution corresponds to the curve [0 : 0 : 1 : m] and it has
multiplicity two;

• c =−2 and e = 2. This solution corresponds to the curve [−2 : 2 : 1 : m];

• e =−c and m =−1. This solution corresponds to the curve [c :−c : 1 :−1].

Lemma 4.3.13. For h 6= 0, surfaces (S2) and (S5) intersect along the curves [c :−c : 1 :
−
√
−2c−c/2] and [c :−c : 1 :

√
−2c−c/2]. Moreover, the curve [c :−c : 1 :−

√
−2c−c/2]

assumes its extremum (with relation to the coordinate m) for c =−2.
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Proof. For h = 1, we have the system of equations

(S2) : c+ e = 0,

(S5) : c2−8e+4cm+4m2 = 0.

Solving this system we obtain the following solutions:

• e = −c and m = −
√
−2c− c/2. This solution corresponds to the curve [c : −c : 1 :

−
√
−2c− c/2];

• e = −c and m =
√
−2c− c/2. This solution corresponds to the curve [c : −c : 1 :

√
−2c− c/2].

In order to find the extremum of the curve [c :−c : 1 :−
√
−2c− c/2] we equalize the last

coordinate to m and compute the discriminant with respect to c of the obtained function:

Discrimc(−8c− c2−4cm−4m2) = 64(m+1),

whose solution is m =−1. Finally, solving the equation −
√
−2c−c/2 = m by substituting

m by the zero of the discriminant (i.e. m =−1), we obtain c =−2, which is the extremum
value of the curve with respect to m.

Lemma 4.3.14. For h 6= 0, surfaces (S2) and (S6) intersect along the curves [−e : e :
1 : −

√
(2− e)e] and [−e : e : 1 :

√
(2− e)e]. Moreover, these curves assume their extrema

(with relation to the coordinate m) for e = 1.

Proof. For h = 1, we have the system of equations

(S2) : c+ e = 0,

(S6) : c2−8e−2ce+ e2 +4cm+4em+4m2 = 0.

Solving this system we obtain the following solutions:

• c = −e and m = −
√

(2− e)e. This solution corresponds to the curve [−e : e : 1 :
−
√

(2− e)e];

• c = −e and m =
√

(2− e)e. This solution corresponds to the curve [−e : e : 1 :√
(2− e)e].

In order to find the extremum of the curve [−e : e : 1 : −
√
(2− e)e] we equalize the last

coordinate to m and compute the discriminant with respect to e of the obtained function:

Discrime(2e− e2−m2) = 4−4m2,

whose solutions are m =±1. Finally, solving the equation −
√

(2− e)e = m by substituting
m by the zeroes of the discriminant (i.e. m =±1), we obtain e = 1 for m =−1 and we do
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not obtain solution for m = 1.
Analogously, for the curve [−e : e : 1 :

√
(2− e)e] calculations yield the same discriminant

as before, whose solutions are m=±1. Solving the equation
√
(2− e)e=m by substituting

m by the zeroes of the discriminant (i.e. m = ±1), we obtain e = 1 for m = 1 and we do
not obtain solution for m =−1.
Therefore, e = 1 is the extremum value of both curves with respect to m.

Lemma 4.3.15. For h 6= 0, the two–point set (S6.2) belongs to the surfaces (S2) to (S4),
(S6) and (S8). Moreover, (S5) intersects the two–point set (S6.2) at S6.22={(0,0,0)}.

Proof. For h = 1, it is easy to show that S6.21={(−1,1,−1)} and S6.22={(0,0,0)} verify
this result.

Lemma 4.3.16. For h 6= 0, surfaces (S2) and (S8) intersect along the straight lines
[0 : 0 : 1 : m] and [c :−c : 1 :−1].

Proof. For h = 1, we have the system of equations

(S2) : c+ e = 0,

(S8) : e− cm = 0.

Solving this system we obtain the following solutions:

• c = 0 and e = 0. Then we have the straight line [0 : 0 : 1 : m];

• e =−c and m =−1. This corresponds to the straight line [c :−c : 1 :−1].

Lemma 4.3.17. For h 6= 0, surfaces (S3) and (S4) intersect along the straight lines
[0 : e : 1 :−e/2], [c : 0 : 1 : c/2], [−2 : e : 1 :−1− e/2] and [−1 : e : 1 :−(1+ e)/2].

Proof. For h = 1, we have the system of equations

(S3) : c− e−2m = 0,

(S4) : ce(c+2)(c+ e+2m+2) = 0.

As the equation of surface (S4) has four factors, we have to compute the intersection
of each one of them with the equation of surface (S3). Calculations yield the following
solutions:

• c = 0 and m =−e/2. This solution corresponds to the straight line [0 : e : 1 :−e/2];

• e = 0 and m = c/2. This solution corresponds to the straight line [c : 0 : 1 : c/2];
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• c =−2 and m =−1− e/2. This solution corresponds to the straight line [−2 : e : 1 :
−1− e/2];

• c = −1 and m = −(1+ e)/2. This solution corresponds to the straight line [−1 : e :
1 :−(1+ e)/2].

Lemma 4.3.18. For h 6= 0, surfaces (S3) and (S5) intersect along the curves [c : 2(2+c+

2
√

c+1) : 1 : −2(1+
√

c+1)− c/2] and [c : 2(2+ c− 2
√

c+1) : 1 : −2(1−
√

c+1)− c/2].
Moreover, this last curve assumes its extremum (with relation to the coordinate m) for
c = 3.

Proof. For h = 1, we have the system of equations

(S3) : c− e−2m = 0,

(S5) : c2−8e+4cm+4m2 = 0.

Solving this system we obtain the following solutions:

• e = 2(2+ c+2
√

c+1) and m = −2(1+
√

c+1)− c/2. This solution corresponds to
the curve [c : 2(2+ c+2

√
c+1) : 1 :−2(1+

√
c+1)− c/2];

• e = 2(2+ c−2
√

c+1) and m = −2(1−
√

c+1)− c/2. This solution corresponds to
the curve [c : 2(2+ c−2

√
c+1) : 1 :−2(1−

√
c+1)− c/2].

In order to find the extremum of the curve [c : 2(2+c−2
√

c+1) : 1 :−2(1−
√

c+1)−c/2],
we equalize the last coordinate to m and compute the discriminant with respect to c of
the obtained function:

Discrimc(−2c− c2/4−4m− cm−m2) = 4−8m,

whose solution is m = 1/2. Finally, solving the equation −2(1−
√

c+1)− c/2 = m by
substituting m = 1/2, we obtain c = 3, which is the extremum value of the curve with
respect to m.

Lemma 4.3.19. For h 6= 0, surfaces (S3) and (S6) intersect along the curves [(e−√
e2 +8e)/2 : e : 1 :−(

√
e+
√

e+8)
√

e/4] and [(e+
√

e2 +8e)/2 : e : 1 :−(
√

e−
√

e+8)
√

e/4].

Proof. For h = 1, we have the system of equations

(S3) : c− e−2m = 0,

(S6) : c2−8e−2ce+ e2 +4cm+4em+4m2 = 0.

Solving this system we obtain the following solutions:
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• c = (e−
√

e2 +8e)/2 and m = −(
√

e+
√

e+8)
√

e/4. This solution corresponds to
the curve [(e−

√
e2 +8e)/2 : e : 1 :−(

√
e+
√

e+8)
√

e/4];

• c = (e+
√

e2 +8e)/2 and m = −(
√

e−
√

e+8)
√

e/4. This solution corresponds to
the curve [(e+

√
e2 +8e)/2 : e : 1 :−(

√
e−
√

e+8)
√

e/4].

Lemma 4.3.20. For h 6= 0, surfaces (S3) and (S8) intersect along the hyperbola [c :
c2/(c+2) : 1 : c/(c+2)].

Proof. For h = 1, we have the system of equations

(S3) : c− e−2m = 0,

(S8) : e− cm = 0.

Solving this system we obtain e= c2/(c+2) and m= c/(c+2). Then we have the hyperbola
[c : c2/(c+2) : 1 : c/(c+2)].

Lemma 4.3.21. For h 6= 0, surfaces (S4) and (S5) intersect along the curves [0 : m2/2 :
1 : m], [−2 : (m− 1)2/2 : 1 : m], [c : 0 : 1 : −c/2] and [c : 2 : 1 : −2− c/2]. Moreover, the
straight lines [c : 0 : 1 :−c/2] and [c : 2 : 1 :−2−c/2] correspond to a contact of order two
between these two surfaces.

Proof. For h = 1, we have the system of equations

(S4) : c(c+2)e(c+ e+2m+2) = 0,

(S5) : c2−8e+4cm+4m2 = 0.

As the equation of surface (S4) has four factors, we have to compute the intersection
of each one of them with the equation of surface (S5). Calculations yield the following
solutions:

• c = 0 and e = m2/2. This solution corresponds to the parabola [0 : m2/2 : 1 : m];

• c = −2 and e = (m− 1)2/2. This solution corresponds to the parabola [−2 : (m−
1)2/2 : 1 : m];

• e = 0 and m =−c/2. This solution corresponds to the straight line [c : 0 : 1 :−c/2];

• e = 2 and m = −2− c/2. This solution corresponds to the straight line [c : 2 : 1 :
−2− c/2].
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Moreover, for h = 1 surface (S5) has a contact of order two with the plane e = 0 (then
with the surface (S4)) along the straight line γ1 = [c : 0 : 1 :−c/2]. In fact, by computing
the resultant with respect to c of e = 0 and (S5) we see that Resc[e,(S5)] = e2. In order
to conclude the proof of this claim it is enough to observe that the gradient vector of the
plane e = 0 in every point [c : e : 1 : m] is [0 : 1 : 1 : 0] whereas the gradient vector of (S5)

along the straight line γ1 is ∇S5(γ1) = [0 :−8 : 1 : 0], then the surface (S5) remains only
on one of the two topological subspaces delimited by the plane e = 0.
Analogously, for h = 1 surface (S5) has a contact of order two with the plane c+e+2m+

2 = 0 (then with the surface (S4)) along the straight line γ2 = [c : 2 : 1 :−2−c/2]. Indeed,
as before, by computing the resultant with respect to c of c+ e+ 2m+ 2 = 0 and (S5)

we see that Resc[c+ e+2m+2,(S5)] = (e−2)2. Moreover, we observe that the gradient
vector of the plane c+e+2m+2 = 0 in every point [c : e : 1 : m] is [1 : 1 : 1 : 2] whereas the
gradient vector of (S5) along the straight line γ2 is ∇S5(γ2) = [−8 : −8 : 1 : −16], then
the surface (S5) remains only on one of the two topological subspaces delimited by the
plane c+ e+2m+2 = 0.

Lemma 4.3.22. For h 6= 0, surfaces (S4) and (S6) intersect along the curves [0 : e : 1 :
−
√

2e− e/2], [0 : e : 1 :
√

2e− e/2], [−2 : e : 1 : 1− e/2], [c : 0 : 1 : −c/2] and [−2+ 1/e :
e : 1 : −(e2 + 1)/(2e)]. Moreover, the curve [0 : e : 1 :

√
2e− e/2] has its extremum (with

relation to the coordinate m) for e= 2 and the curve [−2+1/e : e : 1 :−(e2+1)/(2e)] has its
extremum for e =±1. In addition, the straight lines [−2 : e : 1 : 1−e/2] and [c : 0 : 1 :−c/2]
correspond to a contact of order two between these two surfaces.

Proof. For h = 1, we have the system of equations

(S4) : c(c+2)e(c+ e+2m+2) = 0,

(S6) : c2−8e−2ce+ e2 +4cm+4em+4m2 = 0.

As the equation of surface (S4) has four factors, we have to compute the intersection of
each one of them with the equation of surface (S6). Calculations yield the solutions:

• c = 0 and m =−
√

2e−e/2. This solution corresponds to the curve [0 : e : 1 :−
√

2e−
e/2];

• c= 0 and m=
√

2e−e/2. This solution corresponds to the curve [0 : e : 1 :
√

2e−e/2];

• c = −2 and m = 1− e/2. This solution corresponds to the straight line [−2 : e : 1 :
1− e/2];

• e = 0 and m =−c/2. This solution corresponds to the straight line [c : 0 : 1 :−c/2];

• c = −2+ 1/e and m = −(e2 + 1)/(2e). This solution corresponds to the hyperbola
[−2+1/e : e : 1 :−(e2 +1)/(2e)].
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In order to find the extremum of the curve [0 : e : 1 :
√

2e− e/2] we equalize the last
coordinate to m and compute the discriminant with respect to e of the obtained function:

Discrime(8e− e2−4em−4m2) =−64(m−1),

whose solution is m = 1. Now, solving the equation
√

2e− e/2 = m by substituting m = 1,
we obtain e = 2, which is the extremum value of the curve with respect to m.
Analogously, in order to find the extrema of the curve [−2+1/e : e : 1 :−(e2+1)/(2e)] we
equalize the last coordinate to m and compute the discriminant with respect to e of the
obtained function:

Discrime(−1− e2−2em) = 4(m2−1),

whose solutions are m =±1. Proceeding, solving the equation −(e2+1)/(2e) = m by sub-
stituting m = 1 we obtain e =−1, and by substituting m =−1 we obtain e = 1. Therefore,
e =±1 are the extrema values of the curve with respect to m.
It remains to show that the straight lines [−2 : e : 1 : 1− e/2] and [c : 0 : 1 : −c/2] corre-
spond to a contact of order two between surfaces (S4) and (S6).
In fact, for h = 1 surface (S6) has a contact of order two with the plane e = 0 (then with
the surface (S4)) along the straight line γ3 = [c : 0 : 1 : −c/2]. Indeed, by computing the
resultant with respect to c of e = 0 and (S6) we see that Resc[e,(S6)] = e2. In order to
conclude the proof of this claim we observe that the gradient vector of the plane e = 0
in every point [c : e : 1 : m] is [0 : 1 : 1 : 0] whereas the gradient vector of (S6) along the
straight line γ3 is ∇S6(γ3) = [0 :−4(2+c) : 1 : 0], then, for each fixed value of the parame-
ter c the surface (S6) remains only on one of the two topological subspaces delimited by
the plane e = 0.
Analogously, for h = 1 surface (S6) has a contact of order two with the plane c+ 2 = 0
(then with the surface (S4)) along the straight line γ4 = [−2 : e : 1 : 1− e/2]. In fact, as
before, by computing the resultant with respect to e of c+ 2 = 0 and (S6) we see that
Rese[c+ 2,(S6)] = (c+ 2)2. Moreover, we observe that the gradient vector of the plane
c+2= 0 in every point [c : e : 1 : m] is [1 : 0 : 1 : 0] whereas the gradient vector of (S6) along
the straight line γ4 is ∇S6(γ4) = [−4e : 0 : 1 : 0], then, for each fixed value of the parameter
e the surface (S6) remains only on one of the two topological subspaces delimited by the
plane c+2 = 0.

Lemma 4.3.23. For h 6= 0, surfaces (S4) and (S8) intersect along the straight lines
[c : 0 : 1 : 0], [0 : 0 : 1 : m], [−2 :−2m : 1 : m] and [c :−c : 1 :−1].

Proof. For h = 1, we have the system of equations

(S4) : c(c+2)e(c+ e+2m+2) = 0,

(S8) : e− cm = 0.

As the equation of surface (S4) has four factors, we have to compute the intersection of
each one of them with the equation of surface (S8). Calculations yield the solutions:
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• e = 0 and m = 0. This solution corresponds to the straight line [c : 0 : 1 : 0].

• c = 0 and e = 0. This solution corresponds to the straight line [0 : 0 : 1 : m] and it
has multiplicity three;

• c =−2 and e =−2m. This solution corresponds to the straight line [−2 :−2m : 1 : m]

and it has multiplicity two;

• e =−c and m =−1. This solution corresponds to the straight line [c :−c : 1 :−1].

Lemma 4.3.24. For h 6= 0, surfaces (S5) and (S6) intersect along the curves [c : 0 : 1 :
−c/2], [c : 4(4+ c+ 2

√
2c+4) : 1 : −2

√
2c+4− c/2− 4], and [c : 4(4+ c− 2

√
2c+4) : 1 :

2
√

2c+4− c/2− 4]. Moreover, this last curve takes its extremum (with relation to the
coordinate m) for c = 6. In addition, the straight line [c : 0 : 1 : −c/2] corresponds to a
contact of order two between these two surfaces.

Proof. For h = 1, we have the system of equations

(S5) : c2−8e+4cm+4m2 = 0,

(S6) : c2−8e−2ce+ e2 +4cm+4em+4m2 = 0.

Solving this system we obtain:

• e = 0 and m =−c/2. This solution corresponds to the straight line [c : 0 : 1 :−c/2];

• e = 4(4+ c+2
√

2c+4) and m =−2
√

2c+4− c/2−4. This solution corresponds to
the curve [c : 4(4+ c+2

√
2c+4) : 1 :−2

√
2c+4− c/2−4];

• e = 4(4+ c− 2
√

2c+4) and m = 2
√

2c+4− c/2− 4. This solution corresponds to
the curve [c : 4(4+ c−2

√
2c+4) : 1 : 2

√
2c+4− c/2−4].

In order to find the extremum of the curve [c : 4(4+c−2
√

2c+4) : 1 : 2
√

2c+4−c/2−4],
we equalize the last coordinate to m and compute the discriminant with respect to c of
the obtained function:

Discrimc(4c− c2/4−8m− cm−m2) =−16(m−1),

whose solution is m = 1. Finally, solving the equation 2
√

2c+4−c/2−4 = m by substitut-
ing m by the zero of the discriminant (i.e. m = 1), we obtain c = 6, which is the extremum
value of the curve with respect to m.
To prove the contact between both surfaces along the straight line γ = [c : 0 : 1 :−c/2], we
start by computing the resultant of these two surfaces with respect to c. As a result we
obtain Resc[(S5),(S6)] = e2(e2+16e(m−2)+64m2). In order to conclude the proof of this
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claim we apply the affine change of coordinates given by m=−(c+2v)/2, v∈R. Under this
transformation, the gradient vector of (S5) along the curve γ is ∇S5(γ) = [0 :−8 : 1 : 0],
whereas the gradient vector of (S6) along the curve γ is ∇S6(γ) = [0 : −8− 4c : 1 : 0],
whose second coordinate is positive or negative, for each fixed value of the parameter c.
As ∇S5(γ) does not change its sign, this vector will point to the same direction (or to
the contrary direction, depending on the value of the parameter c) in relation to (S6)

restricted to the previous change of coordinates. Then, for each fixed value of the param-
eter c, the surface (S6) remains only on one of the two topological subspaces delimited
by the plane e = 0, and for all values of the parameter c the surface (S5) remains only
on one of the two topological subspaces delimited by the plane e = 0.

Lemma 4.3.25. For h 6= 0, surfaces (S5) and (S8) intersect along the parabola [c : c2/2 :
1 : c/2]. In addition, this parabola corresponds to a contact of order two between these
two surfaces.

Proof. For h = 1, we have the system of equations

(S5) : c2−8e+4cm+4m2 = 0,

(S8) : e− cm = 0.

Solving this system we obtain e = c2/2 and m = c/2. This solution corresponds to the
parabola [c : c2/2 : 1 : c/2].
In order to prove the contact between both surfaces along the parabola γ = [c : c2/2 : 1 :
c/2], we start by computing the resultant of these two surfaces with respect to m. As
a result we obtain Resm[(S5),(S8)] = (c2− 2e)2. In order to conclude the proof of this
claim we apply the affine change of coordinates given by m = (c−2v)/2, v∈R. Under this
transformation, the gradient vector of (S8) along the curve γ is ∇S8(γ) = [−c : 1 : 1 : c],
whereas the gradient vector of (S5) along the curve γ is ∇S5(γ) = [8c : −8 : 1 : −8c],
whose second coordinate is always negative. As for each fixed value of the parameter c we
have that ∇S8(γ) does not change its sign, this vector will always point to the opposite
direction in relation to (S5) restricted to the previous change of coordinates. Then, the
surface (S8) remains only on one of the two topological subspaces delimited by the surface
(S5).

Lemma 4.3.26. For h 6= 0, surfaces (S6) and (S8) intersect along the hyperbola [c :
c2/(c+2) : 1 : c/(c+2)]. Moreover, this hyperbola corresponds to a contact of order two
between these two surfaces.

Proof. For h = 1, we have the system of equations

(S6) : c2−8e−2ce+ e2 +4cm+4em+4m2 = 0,

(S8) : e− cm = 0.
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Solving this system we obtain e = c2/(c+2) and m = c/(c+2). This solution corresponds
to the hyperbola [c : c2/(c+2) : 1 : c/(c+2)], for c 6=−2.
In order to prove the contact between both surfaces along the hyperbola γ = [c : c2/(c+2) :
1 : c/(c+2)], we start by computing the resultant of these two surfaces with respect to m.
As a result we obtain Resm[(S6),(S8)] = (c2− (c+2)e)2. In order to conclude the proof
of this claim we apply the affine change of coordinates given by m = (c−2v− cv)/(c+2),
v ∈R,c 6=−2. Under this transformation, the gradient vector of (S8) along the curve γ is
∇S8(γ) = [−1+4/(c+2)2 : 1 : 1 : c], whereas the gradient vector of (S6) along the curve γ

is ∇S6(γ) = [(8c(c+4))/(c+2)2 :−8 : 1 :−8c], whose second coordinate is always negative.
As for each fixed value of the parameter c we have that ∇S6(γ) does not change its sign,
this vector will always point to the opposite direction in relation to (S8) restricted to the
previous change of coordinates. Then, the surface (S6) remains only on one of the two
topological subspaces delimited by the surface (S8).

The purpose now is to find the slices in which the intersection among at least
three surfaces or other equivalent phenomena happen. Since there are 36 distinct curves
of intersections or contacts between any two surfaces, we need to study 666 different
possible intersections of these surfaces. As the relation is very long, we indicate only a
few of them deploying the different algebraic techniques used to solve them. The full set
of proves can be found in the Mathematica file available at the link <http://mat.uab.es/
~artes/articles/qvfsn2SN11B/sn2SN11B.nb>.

Remark 4.3.27. In the next five lemmas we use the following notation. A curve of sin-
gularities of a surface or a curve of intersection or contact between two surfaces will be
denoted by solABxC, where A < B are the numbers of the surfaces involved in the inter-
section or contact and C is a cardinal. We point out that on such lemmas we indicate
only one value of the parameter m where the respective intersection occurs, i.e. the corre-
sponding surfaces may have intersection in other value of m. Moreover, these five lemmas
illustrate how we obtain the intersection among at least three surfaces or other equivalent
phenomena.

Lemma 4.3.28. Surfaces (S2), (S3) and (S4) intersect in slice when m = 0.

Proof. By Lemmas 4.3.11 and 4.3.12, we have the curves sol23x1 = [c : −c : 1 : c] and
sol24x1 = [0 : 0 : 1 : m]. Equalizing each corresponding coordinate:

c = 0, −c = 0, c = m,

and solving the obtained system, we have the solution c = 0,m = 0. Since the curves are
parametrized by c and m, we must substitute the solutions of the system in the expressions
of the curves and consider the value of the coordinate m. Then,

sol23x1|c=0 = [0 : 0 : 1 : 0] and sol24x1|m=0 = [0 : 0 : 1 : 0],

http://mat.uab.es/~artes/articles/qvfsn2SN11B/sn2SN11B.nb
http://mat.uab.es/~artes/articles/qvfsn2SN11B/sn2SN11B.nb
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implying that the value of m where the three surfaces intersect is m = 0.

Lemma 4.3.29. Surfaces (S2), (S4) and (S5) intersect in slice when m = 3.

Proof. By Lemmas 4.3.12 and 4.3.13, we have the curves sol24x2 = [−2 : 2 : 1 : m] and
sol25x2 = [c :−c : 1 :

√
−2c− c/2]. Equalizing each corresponding coordinate:

c =−2, −c = 2, m =
√
−2c− c/2,

and solving the obtained system, we have the solution c =−2,m = 3. Since the curves are
parametrized by c and m, we must substitute the solutions of the system in the expressions
of the curves and consider the value of the coordinate m. Then,

sol24x2|m=3 = [−2 : 2 : 1 : 3]

and
sol25x2|c=−2 = [−2 : 2 : 1 : 3],

implying that the value of m where the three surfaces intersect is m = 3.

Lemma 4.3.30. Surfaces (S2), (S4) and (S6) intersect in slice when m =−1.

Proof. By Lemmas 4.3.12 and 4.3.14, we have the curves sol24x3 = [c : −c : 1 : −1] and
sol26x1 = [−e : e : 1 :−

√
(2− e)e]. Equalizing each corresponding coordinate:

c =−e, −c = e, −
√

(2− e)e =−1,

and solving the obtained system, we have the solution c =−1,e = 1. Since the curves are
parametrized by c and e, we must substitute the solutions of the system in the expressions
of the curves and consider the value of the coordinate m. Then,

sol24x3|c=−1 = [−1 : 1 : 1 :−1]

and
sol26x1|e=1 = [−1 : 1 : 1 :−1],

implying that the value of m where the three surfaces intersect is m =−1.

Lemma 4.3.31. Surfaces (S3), (S4) and (S5) intersect in slice when m =−4.

Proof. By Lemmas 4.3.17 and 4.3.18, we have the curves sol35x1 = [c : 2(2+c+2
√

c+1) :
1 : −2(

√
c+1+ 1)− c/2] and sol45x1 = [0 : m2/2 : 1 : m]. Equalizing each corresponding

coordinate:
c = 0, m2/2 = 2(2+ c+2

√
c+1),

and
m =−2(

√
c+1+1)− c/2,
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and solving the obtained system, we have the solution c = 0,m =−4. Since the curves are
parametrized by c and m, we must substitute the solutions of the system in the expressions
of the curves and consider the value of the coordinate m. Then,

sol35x1|c=0 = [0 : 8 : 1 :−4]

and
sol45x1|m=−4 = [0 : 8 : 1 :−4],

implying that the value of m where the three surfaces intersect is m =−4.

Lemma 4.3.32. Surfaces (S4), (S5) and (S6) intersect in slice when m = 1.

Proof. By Lemmas 4.3.21 and 4.3.22, we have the curves sol45x3 = [c : 0 : 1 : −c/2] and
sol46x3 = [−2 : e : 1 : 1− e/2]. Equalizing each corresponding coordinate:

c =−2, e = 0, −c/2 = 1− e/2,

and solving the obtained system, we have the solution c =−2,e = 0. Since the curves are
parametrized by c and e, we must substitute the solutions of the system in the expressions
of the curves and consider the value of the coordinate m. Then,

sol45x3|c=−2 = [−2 : 0 : 1 : 1]

and
sol46x3|e=0 = [−2 : 0 : 1 : 1],

implying that the value of m where the three surfaces intersect is m = 1.

The next result presents all the algebraic values of m corresponding to singular
slices in the bifurcation diagram. Its proof follows from Rmk. 4.3.2, Lemmas 4.3.28 to
4.3.32 and by computing all the remaining different possible intersections, singularities or
contacts among three or more surfaces.

Lemma 4.3.33. The full set of needed algebraic singular slices in the bifurcation diagram
of family QsnSN11(B) is formed by 18 elements which correspond to the values of m in
(4.5). These elements indicate the 17 finite slices plus the infinite one.

m1 =+∞, m3 = 3, m5 = 1, m7 =
1
2
, m13 = 0, m15 =

1
2

(
2
√

2−3
)
, m17 =−

1
2

m21 =−
8
9
, m23 =−

24
25

, m25 =−1, m35 =−
5
4
, m37 =−

3
2
, m39 =−2,

m41 =
1
2

(
−2
√

2−3
)
, m43 =−3, m45 =−4, m47 =−

21
5
, m53 =−8.

(4.5)

The numeration in (4.5) is not consecutive since we reserve numbers for other slices
not algebraically determined and for generic slices.
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Now we sum up the content of the previous lemmas. In (4.5) we list all the algebraic
values of m where significant phenomena occur for the bifurcation diagram generated by
singularities. We first have the two extreme values for m, i.e. m = +∞ (corresponding to
h = 0) and m =−8. We remark that to perform the bifurcation diagram of all singularities
for m =+∞ we set h = 0 and, in the remaining three variables (c,e,m), yielding the point
[c : e : m] in RP2, we take the chart m 6= 0 in which we may assume m = 1.

In order to determine all the parts generated by the bifurcation surfaces from
(S2) to (S10), we first draw the horizontal slices of the three–dimensional parameter
space which correspond to the explicit values of m obtained in Lemma 4.3.33. However, as
it will be discussed later, the presence of nonalgebraic bifurcation surfaces will be detected
and the singular slices corresponding to their singular behavior as we move from slice to
slice will be approximately determined. We add to each interval of singular values of m

an intermediate value for which we represent the bifurcation diagram of singularities. The
diagram will remain essentially unchanged in these open intervals except for the parts
affected by the bifurcation. All the sufficient values of m are shown in (4.6).

m1 =+∞ m19 =−1/2− ε∗4 m37 =−3/2

m2 = 4 m20 =−1/2− ε5 m38 =−7/4

m3 = 3 m21 =−8/9 m39 =−2

m4 = 2 m22 =−9/10 m40 =−5/2

m5 = 1 m23 =−24/25 m41 = (−2
√

2−3)/2

m6 = 3/4 m24 =−98/100 m42 =−295/100

m7 = 1/2 m25 =−1 m43 =−3

m8 = 1/2− ε1 m26 =−1− ε6 m44 =−7/2

m9 = 1/2− ε∗1 m27 =−1− ε∗6 m45 =−4

m10 = 1/2− ε2 m28 =−1− ε7 m46 =−4− ε11

m11 = 1/2− ε∗2 m29 =−1− ε∗7 m47 =−21/5

m12 = 1/2− ε3 m30 =−1− ε8 m48 =−21/5− ε12

m13 = 0 m31 =−1− ε∗8 m49 =−21/5− ε∗12

m14 =−5/100 m32 =−1− ε9 m50 =−21/5− ε13

m15 = (2
√

2−3)/2 m33 =−1− ε∗9 m51 =−21/5− ε∗13

m16 =−1/4 m34 =−1− ε10 m52 =−21/5− ε14

m17 =−1/2 m35 =−5/4 m53 =−8

m18 =−1/2− ε4 m36 =−13/10 m54 =−10

(4.6)

The values indexed by positive odd indexes in (4.6) correspond to explicit values of
m for which there exists a bifurcation in the behavior of the systems on the slices. Those
indexed by even values are just intermediate points which are necessary to the coherence
of the bifurcation diagram.
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Due to the presence of many branches of nonalgebraic bifurcation surfaces, we
cannot point out exactly neither predict the specific value of m where the changes in the
parameter space happen. Thus, with the purpose to set an order for these changes in the
parameter space, we introduce the following notation. If the bifurcation happens between
two specific values of m, then we add or subtract a sufficiently small positive value εi or ε∗j
to/from a specific value of m; this specific value of m (which is a reference value) can be
any of the two values that define the range where the non–specific values of m are inserted.
The representation εi means that the mi refers to a generic slice, whereas ε∗j means that
the m j refers to a singular slice. Moreover, considering the values εi, ε∗i , εi+1 and ε∗i+1, it
means that εi < ε∗i < εi+1 < ε∗i+1 meanwhile they belong to the same interval determined
by algebraic bifurcations.

We now begin the analysis of the bifurcation diagram by studying completely one
generic slice and after by moving from slice to slice and explaining all the changes that
occur. As an exact drawing of the curves produced by intersecting the surfaces with the
slices gives us very small parts which are difficult to distinguish, and points of tangency are
almost impossible to recognize, we have produced topologically equivalent figures where
parts are enlarged and tangencies are easy to observe.

The reader may find the exact pictures of the 17 finite singular slices described in
(4.5) in a PDF file available at the link <http://mat.uab.es/~artes/articles/qvfsn2SN11B/
sn2SN11B.pdf>. We point out that these 17 slices contain only the algebraic surfaces.

We now describe the labels used for each part of the bifurcation space. As we have
mentioned in Rmk. 4.1.5, the subsets of dimensions 3, 2, 1 and 0, of the partition of the
parameter space will be denoted respectively by V , S, L and P for Volume, Surface, Line
and Point, respectively. The surfaces are named using a number which corresponds to
each bifurcation surface which is placed on the left side of the letter S. To describe the
portion of the surface we place an index. The curves that are intersection of surfaces are
named by using their corresponding numbers on the left side of the letter L, separated by
a point. To describe the segment of the curve we place an index. Volumes and Points are
simply indexed (since three or more surfaces may be involved in such an intersection).

We consider an example: surface (S2) splits into 20 different two–dimensional parts
labeled from 2S1 to 2S20, plus some one–dimensional arcs labeled as 2.iL j (where i denotes
the other surface intersected by (S2) and j is a number), and some zero–dimensional parts.
In order to simplify the labels in all figures we see V1 which stands for the TEX notation
V1. Analogously, 2S1 (respectively 2.3L1) stands for 2S1 (respectively 2.3L1), see Fig. 30
for example. And the same happens with many other pictures.

In Fig. 28 we represent the generic slice of the parameter space when m = m2 = 4,
showing only the algebraic surfaces.

http://mat.uab.es/~artes/articles/qvfsn2SN11B/sn2SN11B.pdf
http://mat.uab.es/~artes/articles/qvfsn2SN11B/sn2SN11B.pdf
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Figure 28 – Slice of parameter space when m = 4 (only algebraic surfaces)

In Fig. 28 we point out that there are some dashed branches of surface (S3)
(in yellow) and (S4) (in purple). This means the existence of a weak saddle, in the



4.3. The bifurcation diagram of the systems in QsnSN11(B) 147

case of surface (S3), and the existence of an invariant straight line without separatrix
connection, in the case of surface (S4); they do not mean a topological change in the
phase portraits but a C∞ change. In the next figures we will use the same representation
for these characteristics of these two surfaces.

We also point out that the gray dots that appear in surface (S3) indicate weak
singularities of order two or higher, according to Rmk. 4.3.2 and 4.3.3.

With the purpose of explaining all the changes in the bifurcation diagram, we
would have to present two versions of the picture of each slice: one of them without
labels and the other with labels in each new part (as it was done, for instance, in Artés,
Rezende and Oliveira (2013) and Artés, Rezende and Oliveira (2014)). However, as the
number of slices is considerably large (see equation (4.6) – 54 slices to be more precise)
we would have to present 108 pictures, which would occupy a large number of pages.
Then, we will present only the labeled drawings (just the “important part” in each slice)
containing the algebraic and nonalgebraic bifurcation surfaces. In the next section, we
prove the existence of such nonalgebraic surfaces and their necessity for the coherence of
the bifurcation diagram.

Remark 4.3.34. Wherever two parts of equal dimension d are separated only by a part of
dimension d−1 of the black bifurcation surface (S6), their respective phase portraits are
topologically equivalent since the only difference between them is that a finite antisaddle
has turned into a focus without change of stability and without appearance of limit cycles.
We denote such parts with different labels, but we do not give specific phase portraits in
pictures attached to Thm. 4.1.1 for the parts with the focus. We only give portraits for
the parts with nodes, except in the case of existence of a limit cycle or a graphic where the
singular point inside them is portrayed as a focus. Neither do we give specific invariant
description in Sec. 4.5 distinguishing between these nodes and foci.

4.3.2 Bifurcation surfaces due to connections (nonalgebraic) in the
affine part of RP3

We start this section explaining the generic slice when m = 4 presented in Fig. 28.
In this slice we make a complete study of all its parts, whereas in the next slices we only
describe the changes. Some singular slices will produce only few changes which are easy to
describe, but others can produce simultaneously many changes, even a complete change
of all parts and these will need a more detailed description.

As said in last section, in Fig. 28 we present the slice when m = 4 with only
the algebraic surfaces. We now place for each set of the partition on this slice the local
behavior of the flow around the singular points. For a specific value of the parameters
of each one of the sets in this partition we compute the global phase portrait with the
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numerical program P4 (see Artés et al. (2005) and Dumortier, Llibre and Artés (2008)).

In this slice we have a partition in two–dimensional parts bordered by curved
polygons, some of them bounded, others bordered by infinity. From now on, we use lower–
case letters provisionally to describe the sets found algebraically in order to not interfere
with the final partition described with capital letters. For each two–dimensional part we
obtain a phase portrait which is coherent with those of all their borders, except for four
parts, which are shown in Fig. 28 and named as follows:

• v8: the triangle bordered by green, purple and yellow curves;

• v9: the pentagon bordered by green, yellow and purple curves and infinity;

• v28: the curved pentagon bordered by black, purple and yellow curves and infinity;

• v35: curved quadrilateral bordered by green, red and purple curves and infinity.

The study of these parts is quite important for the coherence of the bifurcation diagram.
That is why we have decided to present only these parts in Fig. 28.

We begin with the analysis of the parts v8 and v9. First we consider part v8. If we
are sufficiently close to part 2s5, the respective phase portrait is topologically equivalent
to the one in V8, because in 2s5 we have the phase portrait topologically equivalent to
2S5, see Fig. 16. However, on 4s3, the separatrix of the infinite saddle–node connects
with a separatrix of the finite saddle–node producing an invariant straight line linking
the pair of infinite saddle–nodes. When perturbing this straight line by entering part v8,
this connection is broken and the separatrix of the infinite saddle–node connects with
the infinite stable node and the separatrix of the finite saddle–node connects with the
infinite unstable node, leading to a phase portrait topologically different from V8. This
proves that the region v8 must be split into at least two connected regions. On the other
hand, on 2s5 the phase portrait possesses a cusp point and all the canonical regions in its
corresponding phase portrait are topologically the same as in phase portrait V8, except
for the infinite basin involving the finite saddle–node which became the cusp point. By
a basin we understand a region bordered by two separatrices of a same singularity which
have the same limit–object, most commonly, they end at an infinite singularity and we
call it an infinite basin or they end at a finite singularity and we call it a finite basin.

As we have concluded that we have at least two different phase portraits inside
region v8, there must exist at least one element 7S1 of surface (S7) dividing part v8

into two “new” parts, V8 and V10, which represents a bifurcation due to the connection
between a separatrix of a finite saddle–node with a separatrix of a finite saddle. It is worth
mentioning that the segment 3s4 refers to the presence of weak saddle which shows that
the movement from v8 to v9 does not imply a topological change. Then, part v9 must also
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be divided into V9 and V11 by an element 7S2 of surface (S7) with the same bifurcation
as 7S1. In fact, 7S2 is clearly a “continuation” of 7S1. Coupled with this idea, we have
parametrized the yellow surface, “walked” on it and found that there exists a topological
change in the corresponding phase portraits. Then, 7S1 has one of its endpoints on 3s4

(dividing it into 3S4 and 3S5) and Lemma 4.3.35 assures that the other endpoint is 4.8`1.

Lemma 4.3.35. The endpoint of 7S1 (rather than the one which is on 3s4) is 4.8`1.
Moreover, 7S2 is not bounded.

Proof. Numerical tools show that the endpoint of 7S1, rather than the one which is on
3s4, is 4.8`1. In what follows, we prove that this endpoint cannot be on segments 4s3 and
2s5. Moreover, 7S2 is not bounded.
If this endpoint was located on 4s3, as we said before, there must exist a connection
between a separatrix of a finite saddle–node with a separatrix of a finite saddle. Then, in
this case, the invariant line would be broken in order to make this bifurcation happens.
We point out that the endpoint of 7S1 also cannot be located on 2s5, since 7S1 describes a
connection between a separatrix of a finite saddle with a separatrix of a finite saddle–node
and this separatrix (of the saddle–node) disappears when on 2s5 the finite saddle–node
becomes a cusp–type singularity.
Therefore, as the endpoint of 7S1 is neither on 4s3 nor on 2s5, this confirms the evidence
pointed out by the numerical calculations that 7S1 ends at 4.8`1.
Moreover, as we know that on 4s19 there is no invariant straight line that produces a
topological change, it is not relevant whether 7S2 crosses 4s19 or not.

We show the sequence of phase portraits along these subsets in Fig. 29. We also
draw the complete bifurcation diagram for these two parts in Fig. 30.

We have added in the bifurcation diagram a label associated to each part of the
bifurcation (S7) indicating the type of connection produced by this bifurcation. The
possibilities are “(`oop)”, “( f – f )” (for a connection between different finite singularities),
“( f –∞)” (for a connection between a finite singularity and an infinite one), and “(∞–∞)”
(for a connection between different infinite singularities). These labels are indicated only
in the first time that the corresponding nonalgebraic bifurcation is detected.

We now perform the study of part v28. We consider the segment 3s10 in Fig. 28,
which is one of the borders of part v28. On this segment, the corresponding phase portrait
possesses a weak focus (of order one) and, consequently, this branch of surface (S3)
corresponds to a Hopf bifurcation. This means that either in v24 or in v28 we must have
a limit cycle; in fact it is in v28.
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Figure 29 – Sequence of phase portraits in parts v8 and v9 of slice m= 4 (the labels are according
to Fig. 30). We start from v8. We recall that the phase portrait 3S4 (respectively
3.7L1 and 3S5) is equivalent to the phase portrait V8 (respectively 7S1 and V10) up
to a weak saddle. If we start on 2s5 we can reach V10 by the path 2S5→ 4.8L1→V10.
When crossing 2s5, we shall obtain the phase portrait V8 in a subset of v8. From
this point we may choose three different ways to reach the subset V10 by crossing
the purple surface: (1) from the phase portrait 3.7L1 to the V10; (2) from the phase
portrait 7S1 to the V10; and (3) from the degenerate phase portrait 4.8L1 to the V10.
Now, from v9, when crossing 2s6 (topologically equivalent to 2s5), we shall obtain the
phase portrait V9 (topologically equivalent to V8) in a subset of v9. From this point
we may choose two different ways to reach the subset V11 (topologically equivalent
to V10) by crossing the purple surface: (1) from the phase portrait 3.7L1 to the V11
or (2) from the phase portrait 7S2 (topologically equivalent to 7S1) to the V11

However, when we get close to 6s1 and 4s23, the limit cycle has been lost, which
implies the existence of at least one more element of surface (S7) (see 7S3 in Fig. 30)
in a neighborhood of 3s10; furthermore, the phase portrait in a small neighborhood of
6s1 (respectively 4s23) is not coherent to that obtained just after making the limit cycle
disappears. If we fix a value for the parameter c in order to be in this part and we
make the parameter e increases from 3s10 towards 4s23, then we obtain generically three
topologically distinct phase portraits inside part v28, which implies the existence of not
only one but at least two elements of surface (S7), namely, 7S3 and 7S4 in Fig. 30. Such
new phase portraits are V25, with limit cycle, V26 and V28, without limit cycles (see Fig. 31
for a sequence of phase portraits in these parts). Even though parts V26 and V28 have
no limit cycles, they provide topologically distinct phase portraits since the connection
of separatrices on 7S4 is due to the saddle–node

(1
1

)
SN and the finite saddle–node, i.e.

connection of separatrices from different points, whereas the connection on 7S3 is due to
a saddle–node to itself (i.e. a loop–type connection). In Lemma 4.3.36 we show that 7S3

and 7S4 have one of its ends at the curve 7.8`1 and, in addition, they are not bounded.
We plot the complete bifurcation diagram for these two parts in Fig. 30.
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Figure 30 – Complete bifurcation diagram for slice m = 4
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Figure 31 – Sequence of phase portraits in part v28 of slice m = 4 (the labels are according to
Fig. 30). By starting on 3s10 we can reach V28 by the path 3S10→ 7.8L1→V28. Now,
when crossing 3s10, we shall obtain phase portrait V25 (with limit cycle) in a subset
of v28. From this point we may choose at least five different ways to reach the phase
portrait of the region V28: (1) V25 → 7.8L1 → V28; (2) V25 → 7S3 → 7.8L1 → V28; (3)
V25 → 7S3 → V26 → 7.8L1 → V28; (4) V25 → 7S3 → V26 → 7S4 → 7.8L1 → V28; and (5)
V25→ 7S3→V26→ 7S4→V28

Lemma 4.3.36. One of the endpoints of 7S3 and 7S4 is 7.8`1. Moreover, 7S3 and 7S4 are
not bounded.

Proof. Numerical analysis suggest that surfaces 7S3 and 7S4, which corresponds to a loop–
type bifurcation and finite–infinite separatrix connection, respectively, have one of its ends
on the curve 7.8`1. Indeed, if the starting point of any of these surfaces is any point of
3s10, then a portion of this subset must not refer to a Hopf bifurcation, which contradicts
the fact that on 3s10 we have a weak focus of order one. On the other hand, we observe
that it is not possible that the starting point of these surfaces is on 6s1, since on black
surfaces we have only a C∞ node–focus bifurcation. In fact, this can happen only if surface
(S6) intersects other surfaces like (S3) and (S8). Moreover, the endpoint of 7S3 and 7S4

cannot be on 4s23 because, in order to have this, in any case, first we need to break the
invariant straight line. Then, the only possible endpoint of surfaces 7S3 and 7S4 is 7.8`1.
Using the same arguments we can conclude that such surfaces are not bounded.

Now, we carry out the analysis of part v35. The phase portrait in v35 near 2s1

possesses a finite basin passing through the finite saddle–node, i.e. two separatrices of the
finite saddle–node start at the same finite antisaddle, whereas the phase portrait in v35
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near 4s26 does not possess the finite basin. Then, there must exist at least one element
7S5 of surface (S7) dividing part v35 into two “new” parts, V34 and V35, which represents
a bifurcation due to the connection between a separatrix of a finite saddle–node with a
separatrix of an infinite saddle (see Fig. 32 for a sequence of phase portraits in these parts).
As the segment 5s2 corresponds to changes in the infinite singular points, the finite part of
the phase portraits remains unchanged and this element of surface (S7) must intersect 5s2

having this intersection point as one of its endpoints, since in v33 we have only one infinite
singularity, namely, the infinite saddle–node. With these arguments we have parametrized
the red surface, “walked” on it and found that there exists a topological change in the
phase portraits obtained. In Lemma 4.3.37 we prove that 7S5 is unbounded and it has
5.7`1 as endpoint. We plot the complete bifurcation diagram for these two parts in Fig. 30.

Figure 32 – Sequence of phase portraits in part v35 of slice m = 4 (the labels are according to
Fig. 30). By starting on 2s1 we can reach V34 by one of the following paths: (1)
2S1 → 2.5L1 → 5S2 → 5.7L1 → V34; (2) 2S1 → 2.5L1 → 5S2 → V35 → 7S5 → V34; (3)
2S1→ 2.5L1→ 5S2→ V35→ 7S5→ 5.7L1→ V34; (4) 2S1→ 2.5L1→ V35→ 7S5→ V34;
and (5) 2S1→V35→ 7S5→V34

Lemma 4.3.37. The element 7S5 of surface (S7) is unbounded and it has 5.7`1 as
endpoint.

Proof. Numerical tools indicate that one of the endpoints of 7S5 is 5.7`1. In what follows,
we prove that it cannot be on 4s26 and 2s1.
In fact, as 4s26 represents the existence of an invariant line which does not indicate a
topological change, it cannot contain an endpoint of 7S5, unless there exists a degenerate
portion of 4s26 where this endpoint is located. Moreover, as on 2s1 the finite saddle–node
already has become a cusp–type singularity, we do not have a finite saddle–node in order
to perform the topological changes given by 7S5. Then, 7S5 must intersect the red surface.
In fact, its endpoint is 5.7`1 because in v33 we do not have the necessary number of infinite
singularities in such a way that the bifurcations given by 7S5 could happen.
Therefore, we confirm the evidence pointed out by the numerical calculations that 7S5
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has 5.7`1 as an endpoint. By the same arguments we conclude that such a surface is
unbounded.

Having analyzed all the parts pointed out on page 148 and explained the existence
of all possible nonalgebraic surfaces in there (modulo islands), we have finished the study
of the generic slice m = 4. However, we cannot be sure that these are all the additional
bifurcation surfaces in this slice. There could exist others which are closed surfaces small
enough to escape our numerical research. For all other two–dimensional parts of the
partition of this slice, whenever we join two points which are close to different borders of
the part, the two phase portraits are topologically equivalent. So, we do not encounter
more situations than the ones mentioned before. In short, it is expected that the complete
bifurcation diagram for m = 4 is the one shown in Fig. 30. In this and the next figures,
we have colored in light yellow the open regions with one limit cycle, in black the labels
referring to new parts which are created in a slice and in red the labels corresponding to
parts which has already appeared in previous slices.

We already know that there are no more singular slices for m > 3. We have to
prove also that there are no other significant nonalgebraic slices for m≥ 4. In order to do
this we must describe the slice at infinity, which correspond to the case h = 0 and m = 1.
By studying and describing all the phase portraits in these slices and finding coherence in
continuity between the phase portraits on the infinite slice and the slice m = 4, we have
proved that we do not need more singular slices. In the limit to infinity, the bifurcation
diagram (of the algebraic surfaces) tends to be the one shown in Fig. 33.

Figure 33 – The transition from m > 4 to infinity. The orange arrows show the movement that
the surfaces must do as m→ ∞
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4.3.3 Bifurcation surfaces at the infinite part of RP3

In order to make this transition (or convergence) clearer, we need to describe the
algebraic curves which appear in the slice m = +∞. In fact, as we said before, the slice
m = +∞ is obtained by considering h = 0 and m = 1 in the normal form (4.1), which
becomes

ẋ = cx+ cy− cx2,

ẏ = ex+ ey− ex2 +2xy.
(4.7)

In this way, according to the definition of surfaces (S2) to (S10) we observe that, under
these conditions of the parameters h and m, we have:

• surface (S2) remains the same;

• surface (S3) needs to be redefined since now we have Ti = 0, i = 1, . . . ,4;

• surface (S4) reduces to ce(c+ e+2) = 0;

• surfaces (S5) and (S6) must also be redefined since now we have η = W4 = 0,
respectively;

• two–point set (S6.2) does not make sense here, since G9 = 0; and

• surface (S8) reduces to c = 0.

Then, we must define surfaces (S3), (S5) and (S6) in terms of other nonzero invariants
(or comitants) which represent the same geometrical meaning as those ones that vanish.

The curve at slice m =+∞ of C∞ bifurcation due to a strong saddle or a strong
focus changing the sign of their traces (weak saddle or weak focus)

(S ′
3) This is the bifurcation surface due to finite weak singularities, which occurs when

the trace of a finite singular point is zero. Calculations yield

T4 = T3 = T2 = T1 = 0, σ = c+ e+2x(1− c) 6= 0.

According to Vulpe (2011), Main Theorem, item (e), under these conditions, systems (4.1)
could possess one and only one weak singularity. Moreover these systems have one weak
singularity, which is of the type indicated in the sequence if and only if one of the following
conditions holds:

• s(1)⇔F1 6= 0,H = B1 = 0,B2 > 0;

• f (1)⇔F1 6= 0,H = B1 = 0,B2 < 0.
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Therefore, for h = 0 and m = 1 systems (4.1) do not have weak singularities of order two
or higher. Moreover, under these conditions we have:

F1 =−2c2(c+3e+2), H = 0,

B1 = 2c2(c+ e)2(c− e−2),

B2 =−2c3(c+ e)(c−3e−4)(c−1)2.

According to the Main Theorem just mentioned, if the conditions F1 6= 0 and B1 = 0
imply B2 6= 0, then we have a weak focus or a weak saddle. In fact, the condition B1 = 0
implies c = e+2 and the condition F1 6= 0 implies c 6= 0 and c+3e+2 6= 0 (i.e. e+1 6= 0).
So, from the expression of B2 we have

c−3e−4 =−2(e+1) 6= 0.

Therefore, in the slice m =+∞ we define surface (S ′
3) by the equation of the straight line

(S ′
3) : c− e−2 = 0.

The bifurcation curve in slice m =+∞ due to multiplicities of infinite singular-
ities

(S ′
5) This is the bifurcation surface due to multiplicity of infinite singularities. As we said

before, under the conditions h = 0 and m = 1 we have that η = 0. Then, we already have
that two infinite singularities have coalesced. In order to detect when we have a triple
infinite singularity, we calculate

M̃ =−8(c+2)2x2, C2 = x2(ex− y(2+ c)).

According to Lemma 5.5 from Artés et al. (2021), a triple infinite singularity occurs if and
only if M̃ = 0 and C2 6= 0. Therefore, in the slice m =+∞ we have a coalescence of infinite
singularities on the straight line

(S ′
5) : c+2 = 0.

In fact, this argument shows the reason why we have drawn a red straight line instead of
a parabola in Fig. 33.
On the other hand, according to the mentioned Lemma, if (c,e) = (−2,0), then the line
at infinity is filled up with singularities, since C2 = 0.

The curve in slice m =+∞ of C∞ bifurcation due to a node becoming a focus

(S ′
6) This surface contains the points of the parameter space where a finite node of the

systems turns into a focus. This surface is a C∞ but not a topological bifurcation surface.
In fact, when we cross surface (S ′

6) in the bifurcation diagram, the topological phase
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portraits do not change. However, as in the affine part of RP3, this surface is relevant for
isolating the regions where a limit cycle surrounding an antisaddle cannot exist. According
to Artés, Llibre and Vulpe (2008) and Artés et al. (2021), as we have (assuming h = 0 and
m = 1) G9 =W4 = 0, we must consider the invariant W7 = 0, which defines a parabola

(S ′
6) : c2−2c(e−2)+(e+2)2 = 0.

Since these curves have the same geometrical meaning as those previous ones that
became zero, we keep the respective colors for these curves as we have described before.

Another important bifurcation algebraic curve for this slice is the following one.

Bifurcation algebraic curve in the slice m = +∞ due to the presence of an
infinite nilpotent singularity of type

(̂1
2

)
E−H

(L0) For h = 0 and m = 1, the corresponding phase portraits on the line c+ 1 = 0 in
the bifurcation diagram possess an infinite singularity of the type

(̂1
2

)
E−H, which is the

transition between the singularities
(̂1

2

)
PEP−H and

(̂1
2

)
E −PHP. Such a straight line

is needed for the coherence of the bifurcation diagram. In fact, according to Artés et al.

(2021) we know that the comitant Ñ is related to a triple infinite singularity and such a
comitant only makes sense in the slices where such a kind of singularity appears, i.e. in
the slices where we do not have a triple infinite singularity this comitant does not affect
at all. Moreover, Ñ “works like” T4, in the sense that the curve Ñ = 0 splits the parameter
space into two distinct canonical regions and the phase portrait over Ñ = 0 is topologically
equivalent to the phase portrait in one of its sides and topologically distinct to the one
in the other side. In such a way we need to determine the points on the parameter space
that verifies the equation Ñ = 0. Calculations yield

Ñ =−4(c+1)x2.

It is clear that the straight line c+ 1 = 0 verifies this equation. Therefore we define the
curve (L0) by the equation

(L0) : c+1 = 0,

and we draw such a straight line with the brown color.

In order to determine the endpoints of each one of these curves, we take the
respective projective equation with homogeneous coordinates C, E and M, we put M = 0
and then we calculate the roots of the resulting polynomial.

As in slice m =+∞ we are in a surface, in fact the upper half–sphere S2, we point
out that all the “generic” parts in this slice are labeled as 9S j, the lines are labeled as 9.iL j

and the points as points. We use the orange color for the equator of S2, i.e. h = m = 0.
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We now have finished describing the algebraic curves that appear in slice m =+∞.
In Fig. 34 we present this slice completely and properly labeled. We draw special attention
to the fact that the nonalgebraic curves (numerically detected and which existence was
proved before) still remain in this slice and they maintain the same relative positions
with respect to the algebraic curves in the transition from slice m = 4 to slice m = +∞,
numerical tools support this claim.
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Figure 34 – Slice of parameter space when m =+∞

There are some relevant facts on the bifurcation diagram that are worth being
remarked. On one side we already have the curve (L0) which has topological relevance
only on h = 0, as we already have described. Moreover, we also have that surface (S5)

which is a parabola in the affine slices degenerates as a double line when h = 0. This
degeneration apart from collapsing some parts of the bifurcation diagram, introduces a
new bifurcation in some other parts where before it did not exist. Such bifurcations will
also be relevant for large negative values of m.
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Even more, we also have surface (S7) which in slice m = 4, its part 7S5 borders V34

and V35, but it does not affect either part V33 or V30. However, at infinity, after the collapse
of the parabola (S5) the border of region V30 on h = 0 is also split into two because of
7.9L8. The difference between the topological behavior in 9S30 and 9S33 deals with the
existence of separatrices of an elliptic–saddle at infinity. This allows the possibility of
a separatrix connection between one of this separatrices and a separatrix of the finite
saddle–node. Since the elliptic–saddle does not exist for h = 1 this bifurcation looses all
the sense in the affine space. Since we have detected the two possible bifurcations from the
separatrix connection implied by 7.9L8, we then prove its existence. See all the respective
phase portraits in Figs. 15 to 21. These are the reasons why some three–dimensional parts
of the affine space which have their border on h = 0 split into several two–dimensional
regions (plus the corresponding one–dimensional borders).

In Table 10 we indicate the “death” of all volume parts from slice m = 4 to m =+∞.
Then we have established the correspondence between the phase portraits of the slices
m = 4 and m =+∞. Therefore, the convergence presented in Fig. 33 is coherent.

Table 10 – Transition from slice m = 4 to m =+∞. Here we present the correspondence between
the volume regions from slice m = 4 and the respective parts from slice m =+∞

Parts in Parts in Parts in Parts in
slice m = 4 slice m =+∞ slice m = 4 slice m =+∞

V1 8.9L3 V21 P41
V2 8.9L3 V22 8.9L1
V3 8.9L3 V23 9S10, 9S11, 9S12
V4 9S2 V24 9S13, 9S14, 9S15
V5 9S1 V25 9S16, 9S17, 9S18
V6 9S4 V26 9S19, 9S20, 9S21
V7 9S3 V27 9S25, 9S26
V8 9S6 V28 9S22, 9S23
V9 9S5 V29 P34
V10 9S8 V30 9S29, 9S30, 9S33
V11 9S7 V31 P36
V12 9S9 V32 9S32
V13 8.9L2 V33 5.9L6, 5.9L7, P51
V14 8.9L2 V34 9S31
V15 P41 V35 9S34
V16 P41 V36 8.9L3
V17 8.9L1 V37 9S35, 9S36
V18 9S27, 9S28 V38 5.9L8
V19 P36, P41 V39 9S37
V20 9S24, P41 V40 8.9L3
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4.3.4 Transition from slice to slice in the affine part of RP3

Since there is coherence (modulo islands, as we discuss in Sec. 4.4) between the
slices m =+∞ and m = 4, no more slices m > 4 are needed.

Having finished the complete study of slice m = 4 and having presented the tran-
sition from m = 4 to m = +∞, the next step is to decrease the values of m, according to
equation (4.6), and make an analogous study for each one of the slices that we need to
consider and also search for changes when going from one slice to the next one.

We now start decreasing the values of the parameter m in order to explain as much
as we can the bifurcations in the parameter space.

We consider the curved triangle V37 in the second quadrant of slice m = 4 (see
Fig. 30), having 2.4L1 as a vertex. As we move down from m = 4 to m = 3 (a singular
slice), this triangle collapses to a single point, which we denote by P1 in Fig. 35.

V2

V14

V33

V18

V30 V29

V36

V40

V38

P1

Figure 35 – Slice of parameter space when m = 3 (see Fig. 30)

When we go to the next generic slice, m = 2, we observe that from this P1 a new
curved triangle V41 is born, “pushing to the right” the old curved triangle V36, as we can
see in Fig. 36.

Now, studying the singular slice m = 1 we observe the following phenomena (com-
pare Figs. 30 and 37):

• the curve 4.5L3 of the red parabola coalesces with 4.4L3 (see Fig. 30) and also with
4.5L5 (see Fig. 36), forming the point P2 presented in Fig. 37. This movement makes
region V30 vanishes;
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• the black parabola degenerates and becomes a double straight line, which is now
parallel to the yellow straight line and it still intersects the red parabola at P2 (this
fact was expected by the shape of the black surface shown in Fig. 27);

• the cyan straight line is parallel to the black and yellow surfaces.

V14

V33
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V30 V29

V36

V40

V38

V2
2S7

5S10

4S27

V41

2.4L2

4.5L5

2.5L3

Figure 36 – Slice of parameter space when m = 2 (see Fig. 35)

Having in mind all these movements together, we observe from Fig. 30 that it
is clear that the regions V30,V18,V27,V28,V24,V25 and V26 must vanish. As we now have
that the black, cyan and yellow surfaces intersect at infinity (because they are parallel),
the nonalgebraic surfaces 7S3 and 7S4 “have gone” to infinity of the third quadrant of
the bifurcation diagram. In fact, later we will detect that they will “return” at the first
quadrant of the next generic slice, m = 3/4. Moreover, the appearance of the black surface
as a double straight line splits each one of the regions V1,V3,V40 and V41 into two regions
each, which are separated in this slice but which are continuous in the three–dimensional
space. So they received the same label. About the respective borders, we will indicate (in
black color) only those containing the black straight line, since the others already have
been defined previously and they were not “modified” by the presence of the black straight
line. In addition, we observe that the nonalgebraic surfaces 7S1, 7S2 and 7S5 still remain
in this slice. As in this slice we detect significant changes in the bifurcation diagram, in
Fig. 37 we present one picture that gives a global idea of the bifurcation diagram when
m = 1.
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Figure 37 – Slice of parameter space when m = 1 (see Fig. 36)

Going on with the study of the slices, we pass to the study of the generic slice
m = 3/4, see Fig. 40. This is a very interesting slice. Here we observe that the black
straight line again has become a parabola, now in the semi–positive plane (in fact, this
was expected by Fig. 27). Such a parabola generates six new volume regions, namely, v44

to v48 plus v51 (see Fig. 38). This is implied by the fact that as in the slice m = 4, one
of its branches intersects the cyan and the yellow straight line in a point, namely, 7.8L1.
Because of this triple intersection there must exist the new volume regions v48 and v51,
see Fig. 38. We have denoted them in lower–case letters and we have produced a gap
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in the numeration because we detect that some new nonalgebraic surface will be needed,
producing new volume regions.

Figure 38 – Slice of parameter space when m = 3/4 (only algebraic surfaces)

Performing an analysis of this slice we note that the nonalgebraic surfaces 7S1, 7S2

and 7S5 remain. In addition, for each two–dimensional part we obtain a phase portrait
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which is coherent with those of all their borders. Except for the part v48 (the curved
triangle bordered by the black, yellow and infinite line in Fig. 38), which corresponds
to part V48 in Fig. 40, which as we will see, will be split into several regions. Consider
the segment 3s11 in Fig. 38, which is one of the borders of part v48. On this segment the
corresponding phase portrait possesses a weak focus (of order one) and, consequently, this
branch of surface (S3) corresponds to a Hopf bifurcation. This means that either in v47 or
in v48 we must have a limit cycle; in fact it is in v48. However, approaching 6s5, the limit
cycle has been lost, which implies the existence of at least one more element of surface
(S7) (surface 7S6 in Fig. 40) in a neighborhood of surface 3S11; furthermore, the phase
portrait in a small neighborhood of 6s5 is not coherent to that one obtained just after
making the limit cycle disappears. If we fix a value of the parameter c in order to be in
this part and we make the parameter e decreases from 3s11 towards 6s5, then we obtain
three topologically distinct phase portraits inside part v48, which implies the existence of
not only one but at least two elements of surface (S7), the surfaces 7S6 and 7S7 in Fig. 40;
such new phase portraits are V48, with limit cycle, V49 and V50, without limit cycles (see
Fig. 39 for a sequence of phase portraits in these parts).

Figure 39 – Sequence of phase portraits in part v48 of slice m = 3/4 (the labels are according to
Fig. 40). By starting on 3s11 we can reach region V50 by the path 3S11→ 7.8L2→
V50. Now, when crossing 3s11, we shall obtain the phase portrait V48 (containing a
limit cycle) in a subset of v48. From this point we may choose five different ways
to reach the subset V50: (1) V48 → 7.8L2 → V50; (2) V48 → 7S6 → 7.8L2 → V50; (3)
V48 → 7S6 → V49 → 7.8L2 → V50; (4) V48 → 7S6 → V49 → 7S7 → 7.8L2 → V50; and (5)
V48→ 7S6→V49→ 7S7→V50
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Even though parts V49 and V50 have no limit cycles, they provide topologically
distinct phase portraits since the connection on 7S6 is due to a saddle–node to itself,
whereas the connection of separatrices on 7S7 is due to the finite saddle–node and the
infinite saddle, i.e. connection of separatrices from different points. In Lemma 4.3.38 we
show that 7S6 and 7S7 have one of its endpoints at the point 7.8`2 and, in addition, they
are not bounded. We plot the complete bifurcation diagram for these two parts in Fig. 40.
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Figure 40 – Slice of parameter space when m = 3/4 (see Fig. 37)
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Lemma 4.3.38. One of the endpoints of 7S6 and 7S7 is 7.8`2. Moreover, 7S6 and 7S7 are
not bounded.

Proof. We proceed exactly as in the proof of Lemma 4.3.36. In fact, numerical analysis
suggests that 7S6 and 7S7, which correspond to a loop–type bifurcation and a finite–infinite
separatrix connection, respectively, have one of its ends in the curve 7.8`2. Indeed, if the
starting point of any of these surfaces were any point of segment 3s11, then a portion of
this subset must not refer to a Hopf bifurcation, which contradicts the fact that on 3s11 we
have a weak focus of order one. On the other hand, we observe that it is not possible that
the starting point of these surfaces be on 6s5, since on black surfaces we only have a C∞

node–focus bifurcation. In fact, this could happen unless we have a degenerate portion
of black surface in which these surfaces would start. Then, the only possible endpoint
of surfaces 7S6 and 7S7 is 7.8`2. Using the same arguments we can conclude that such
surfaces are not bounded.

The regions V44 to V47 do not bring any new topologically distinct phase portrait
since all of them border already known phase portraits by a node–focus bifurcation. Also
the borders 2S8, 4S31 and 5S12 are already known phase portraits. In fact, the only new
phase portraits discovered in this slice are those ones in Fig. 39.

We will follow the list of slices presented in (4.6) and now we study the singular
slice m = 1/2. Here we observe the existence of a contact point between the red parabola
and the yellow straight line. We denote this contact by 3.5L1, see Fig. 41. In fact, for
m = 1/2 this is the only significant change in the bifurcation diagram.
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Figure 41 – Slice of parameter space when m = 1/2 (see Fig. 40)
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Now, moving down from m = 1/2 we observe that, from values of m less than
but very close to 1/2 the red parabola “keeps moving” and makes 3.5L1 generates a new
volume region. Such a region has a semi–circumference shape and we denote it by V52, see
Fig. 42. As we have already proved, there exist two elements of surface (S7) in region V48

(which now contains V52) and after numerical analysis for values of m less than 1/2, but
very close to it, we still verify the same changes in the phase portraits as shown in the
sequence in Fig. 39. We also verify that it does not occur any topological change in the
phase portrait described by 5S13. Then we conclude that the red parabola has “crossed”
the yellow straight line, but it did not touch the purple surface 7S6.
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Figure 42 – Slice of parameter space when m = 1/2− ε1 (see Fig. 41)

In order to obtain a coherence of the bifurcation diagram, due to the presence
of two nonalgebraic surfaces in region V48, we did a careful study of this region. After
obtaining the last generic slice, numerical analysis suggest that the red parabola, for a
smaller and close value of m, must touch surface 7S6 in a curve (see 5.7L2 in Fig. 43).

Going further with our numerical analysis, we observe that after decreasing a little
bit the values of m, a new volume region V53 appears, limited by the two surfaces which
are 5S14 and 7S8 and the curve 5.7L2 (as always the representation that we see in figures
are one–dimensional less). Surface 5S14 separates region V49 from V53 and surface 7S8

separates region V52 from V53, see Fig. 44. We point out that our numerical analysis is a
valid argument, since we have the coherence of the obtained phase portraits.
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Figure 43 – Slice of parameter space when m = 1/2− ε∗1 (see Fig. 42)
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Figure 44 – Slice of parameter space when m = 1/2− ε2 (see Fig. 43)

For a better comprehension of the graphics producing limit cycles in perturbations,
in Fig. 45 we present an amplification of the neighborhood in the parameter space of the
curve 5.7L2 (see Fig. 44) with the corresponding phase portraits.

Now, for the next singular slice, numerical analysis suggest that surface 5S14 must
touch surface 7S7 again in a curve, namely, 5.7L3, splitting the part 7S7 as in Fig. 46.
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Figure 45 – Graphics producing limit cycles: neighborhood of 5.7L2 (see Fig. 44)
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Figure 46 – Slice of parameter space when m = 1/2− ε∗2 (see Fig. 44)

We detect that for an even smaller value of m, surface (S5) crosses surface (S7)

but this does not generate a new volume region, because the bifurcation given by the part
7S7 deals with a separatrix of an infinite singularity which does not exist in region V53.
However, it does generate a new bifurcation surface, namely, 5S15, which is the border
between V50 and V53. All the respective phase portraits are coherent with their neighbors
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and this generic slice is presented in Fig. 47. In such a figure we intend to give an idea of
the global bifurcation diagram, specially to show how “close” to the origin some surfaces
are. This notion is very important in order to better understand the singular slice m = 0.
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Figure 47 – Slice of parameter space when m = 1/2− ε3 (see Fig. 46)
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The next slice to be analyzed is the singular slice m = 0 (see Fig. 48).
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Figure 48 – Slice of parameter space when m = 0 (see Fig. 47)

As we mentioned before and we saw in Fig. 47, several surfaces were “very close”
to the origin. When m = 0, several things happen simultaneously:

• the cyan straight line coalesce with the c–axis. This movement makes regions V4, V5,
V14, V19, and V20 vanish. We denote by 4.8L3 to 4.8L5 the three new one–dimensional
parts of c–axis, by P3 the origin and by P5 the point (c,e) = (−2,0);
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• the red parabola now is tangent to the c–axis at the origin. This makes regions V2,
V29, and V36 vanish;

• the black parabola is also tangent to the c–axis at the origin and this makes regions
V1 (curved quadrilateral bordered by black, red and purple surfaces), V3 (curved tri-
angle bordered by black, cyan and red surfaces), and V40 (curved quadrilateral bor-
dered by black, green, red and purple surfaces) vanish. Moreover, the black parabola
is also tangent to the straight line c = −2 at the point P4 making the region V41

vanishes;

• the yellow straight line now passes through the origin, making V6, V8, and V10 vanish,
and it coalesces 3.10L1 to P3;

• the curve 5.7L3 shrinks to the origin, making V47 (curved triangle bordered by black,
red and yellow surfaces), V48 (curved triangle bordered by purple, red and yellow
surfaces), and V49 (curved triangle bordered by red and purple surfaces) vanish;

• the purple straight line, which is parallel to the green one, passes through P5.

The critical slice m = 0 is shown in Fig. 48, where, as usual, we indicate in red
colors the old labels and in black color the new ones.

Now we begin the study of slices corresponding to negative values of m, see (4.6).
The first slice to be considered is m =−5/100. As we saw in the slice m = 0, the displace-
ment of the black, cyan, yellow and red surfaces caused the “death” of several regions.
As we move down, such surfaces keep moving themselves and it is natural to expect that
several regions arise when we go from m = 0 to m =−5/100. In fact, in this new slice we
observe that such surfaces (and also the purple one that crossed the c–axis at P5 when
m = 0) moved and gave “birth” to the following 20 volume regions v54 to v73, and all
their borders, as in Fig. 53. Moreover, the curve 3.10L1 (from slice m = 1/2−ε3) that was
carried to the origin when m = 0 now becomes 3.10L2, which already appeared in previous
slices. The reason why it belongs to the same curve is that in the next slice we will find a
single point which here is split into two. This also makes that the segment in surface (S3)
that we see in this slice between 3.4L6 and 3.10L2 which appears from the bifurcation, is
linked in a lower slice to part 3S7 and so it receives the same name. On the other hand,
due to the presence of the cyan straight line (in which systems (4.1) are degenerate) and
due to its movement between two slices, we can found new nonalgebraic surfaces splitting
some volume regions. This phenomena happens here. Indeed, almost the phase portraits
obtained from each “new” two–dimensional part is coherent with those of all their borders.
We have only four exceptions, which are shown in Fig. 49 and named as follows:

• v58: the curved quadrilateral bordered by black, green, purple and red surfaces;
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• v59: the curved triangle bordered by black, green and purple surfaces;

• v61: the curved quadrilateral bordered by black, green, yellow and red surfaces;

• v67: the right triangle bordered by purple surfaces.

Figure 49 – Slice of parameter space when m =−5/100 (only algebraic surfaces)
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We start analyzing parts v58 and v59. First we consider part v59. The respective
phase portrait is topologically equivalent to the one in V59. On 4s40, the separatrix of the
infinite saddle–node connects with a separatrix of the finite saddle–node producing an
invariant straight line linking the pair of infinite saddle–nodes. When entering part v59,
this connection is broken and the separatrix of the infinite saddle–node connects with
the infinite unstable node and the separatrix of the finite saddle–node connects with the
infinite stable node. However, when we approach 2s9, the phase portrait in a neighborhood
of this segment is topologically different from the one we described just after entering
part v59. Indeed, the phase portrait in v59 near 2s9 possesses an infinite basin passing
through the finite saddle–node, i.e. two separatrices of the finite saddle–node end at the
same infinite singular point (in this case, the infinite saddle–node), whereas the phase
portrait in v59 near 4s40 does not possess the infinite basin and each one of the same two
separatrices of the saddle–node ends in different infinite singular points. Then, there must
exist at least one element 7S10 of surface (S7) dividing part v59 into two “new” parts,
V59 and V71, which represents a bifurcation due to the connection between a separatrix of
a finite saddle–node with a separatrix of an infinite saddle. It is worth mentioning that
the segment 6s13 refers to the C∞ surface of node–focus bifurcation, which implies that
whatever we find in part v58 there must exist in part v59 and viceversa. Then, part v58

must also be divided into V58 and V70 by an element 7S9 of surface (S7) with the same
bifurcation as 7S10. Clearly we have that 7S9 is a “continuation” of 7S10. Coupled with
this idea, we have parametrized the black surface, “walked” on it and found that there
exists a topological change in the phase portraits obtained.

Then, we know that 7S10 has one of its endpoints on 6s13 (dividing it into 6S13 and
6S12) and Lemma 4.3.39 assures that the other endpoint is 4.8`6. We show the sequence
of phase portraits along these subsets in Fig. 50.

Moreover, as the segment 5s18 corresponds to changes in the infinite singular points,
the finite part of the phase portraits remains unchanged and then segment 7s9 must
intersect 5s18 having this intersection point as one of its endpoints, since in v57 we have
only one infinite singularity, namely, the infinite saddle–node. With these arguments we
also have parametrized the red surface, “walked” on it and found that there exists a
topological change in the phase portraits obtained. In fact, in Lemma 4.3.40 we prove
that surface 7S9 has 5.7`4 as endpoint. As V58 is topologically equivalent to V59 and V70 is
topologically equivalent to V71, the sequence of phase portraits along these subsets then
is given by the path V71→V59 presented in Fig. 50.

We plot the complete bifurcation diagram for these two parts in Fig. 53.

Lemma 4.3.39. The endpoint of 7S10 (rather than the one which is on 6s13) is 4.8`6.

Proof. Numerical tools evidence that the endpoint of 7S10, rather than the one which is
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on 6s13, is 4.8`6. In what follows, we prove that this endpoint cannot be on segments
4s40 and 2s9. In fact, if this endpoint was located on 4s40, then there should exist a
portion of this segment in which the separatrix of the infinite saddle–node connects with
the infinite unstable node, causing the break of the invariant straight line. As we are
considering projective coordinates, this fact contradicts Lemma 4.2.2. On the other hand
the endpoint of 7S10 cannot be located on 2s9, since 7S10 describes a connection between
a separatrix of a finite saddle–node with a separatrix of an infinite saddle and on 2s9 the
finite saddle–node already has become a cusp–type singularity. Therefore, as the endpoint
of 7S10 is not on 4s40 nor in 2s9, this confirms the evidence pointed out by the numerical
calculations that 7S10 ends at 4.8`6.

Figure 50 – Sequence of phase portraits in parts v59 and v58 of slice m = −5/100 (the labels
are according to Fig. 53). We start by analyzing v59. First we recall that the phase
portrait 4S40 (respectively V71, 7S10 and V59) is topologically equivalent to the phase
portrait 4S39 (respectively V70, 7S9 and V58) due to a node–focus bifurcation. If
we start on 4s40 we can reach V59 by one of the six following paths: (1) 4S40 →
4.8L6 → V59; (2) 4S40 → 4.8L6 → 7S10 → V59; (3) 4S40 → 4.8L6 → V71 → 7S10 → V59;
(4) 4S40→ V71→ 4.8L6→ 7S10→ V59; (5) 4S40→ V71→ 7S10→ 4.8L6→ V59; and (6)
4S40→V71→ 7S10→V59

Lemma 4.3.40. The endpoint of 7S9 (rather than the one which is on 6s13) is 5.7`4.

Proof. Numerical tools evidence that the endpoint of 7S9 is 5.7`4. As V58 is topologically
equivalent to V59 and V70 is topologically equivalent to V71, repeating the same arguments
used in the proof of Lemma 4.3.39 we conclude that 7S9 must intersect the red surface. In
fact, its endpoint is 5.7`4 because on v57 we do not have the necessary number of infinite
singularities in such a way that the bifurcation given by 7S9 could happen.

We now present the study of part v61. We consider the segment 2s10 in Fig. 49,
which is one of the borders of part v61. The respective phase portrait in this border is
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topologically equivalent to the one in 2S10, with the origin being a cusp–type singularity.
When entering part v61 near 2s10 the infinite saddle–node has a separatrix starting at the
infinite unstable node. On the other hand, in the phase portrait in v61 near 3s15 such a
separatrix has a limit cycle as its α–limit. Then, there must exist at least one element
7S11 of surface (S7) dividing part v61 into two “new” parts, V61 and V72, which represents
a bifurcation due to the connection between a separatrix of an infinite saddle–node with
a separatrix of an infinite saddle. Moreover, as the segment 5s19 corresponds to changes
in the infinite singular points, the finite part of the phase portraits remain unchanged and
then 7S11 must intersect 5s19 having this intersection point as one of its endpoints, since
in v60 we have only one infinite singularity, namely, the infinite saddle–node. In Lemma
4.3.41 we prove that surface 7S11 has 7.8`3 as endpoint. We show the sequence of phase
portraits along these subsets in Fig. 51 and the complete bifurcation diagram for this part
is presented in Fig. 53.

Lemma 4.3.41. The endpoint of 7S11 (rather than the one which is on 5s19) is 7.8`3.

Proof. Numerical tools evidence that the endpoint of 7S11, rather than the one which is on
5s19, is 7.8`3. In fact, as we saw before, 7S11 indicates a bifurcation due to the connection
between a separatrix of an infinite saddle–node with a separatrix of an infinite saddle. We
point out that it is not possible that the endpoint of this surface is on 6s14, since on black
surfaces we have only a C∞ node–focus bifurcation. Indeed, this could happen unless we
have a degenerate portion of black surface in which 7S11 would start. On the other hand,
if the endpoint was on 3s15 then there should exist a degenerate portion of 3s15 in which
7S11 ends, otherwise a portion of this subset must not refer to a Hopf bifurcation, which
contradicts the fact that on 3s15 we have a weak focus of order one.

Figure 51 – Sequence of phase portraits in part v61 of slice m =−5/100 (the labels are according
to Fig. 53). When crossing 2s10, we shall obtain the phase portrait V61 in a subset
of v61. From this point we can reach the subset V72 by crossing the purple surface
7S11. We observe that the separatrix of the infinite saddle–node coalesces with the
separatrix of the infinite saddle, forming a closed graph, which breaks, given birth
to a limit cycle

The last case to be considered is part v67. The respective phase portrait on sur-
face 4S41 is topologically equivalent to V66 because on this point, surface (S4) produces
a straight line not formed by separatrices. On the other hand, on 4s42 there exists a
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connection between the separatrix of the infinite saddle–node with the separatrix of the
finite saddle, forming an invariant straight line. Moreover, the phase portrait possesses an
infinite basin passing through the infinite unstable node, i.e. two separatrix of the finite
saddle–node start at the infinite unstable node. When entering part v67 the separatrix
connection is broken and the separatrix of the finite saddle starts at the unstable infinite
node and the separatrix of the infinite saddle–node ends at the infinite stable node. In ad-
dition, the infinite basin remains on this phase portrait. But this is not the same when we
are close to 4s36 and 4s41, since when we approach them, we detect that the infinite basin
is lost and the separatrix of the infinite saddle–node now ends at the finite saddle–node.
This topological change suggests that there must exist at least one element 7S12 of surface
(S7) dividing part v67 into two “new” parts, V67 and V73, which represents a bifurcation
due to the connection between a separatrix of a finite saddle–node with a separatrix of
an infinite saddle–node (see Fig. 52 for a sequence of phase portraits in these parts).

Figure 52 – Sequence of phase portraits in part v67 of slice m =−5/100 (the labels are according
to Fig. 53). When crossing 4s41, we shall obtain the phase portrait V67 in a subset
of v67. From this point we can reach the subset V73 by crossing the purple surface
7S12. We observe that the separatrix of the infinite saddle–node coalesces with the
separatrix of the finite saddle–node, and then such a connection is broken, forming
an infinite basin passing through the infinite unstable node

In Lemma 4.3.42 we prove that 7S12 has 4.4`6 and 4.8`7 as start/endpoints. The
complete bifurcation diagram for these two parts is shown in Fig. 53.

Lemma 4.3.42. The nonalgebraic surface 7S12 has 4.4`6 and 4.8`7 as start/endpoints.

Proof. Numerical tools evidence that this result is valid. Indeed, as we mentioned before,
7S12 represents a bifurcation due to the connection between a separatrix of an infinite
saddle–node with a separatrix of a finite saddle–node. We start by observing that if 7S12

has one of its start/endpoints at any point of the segment 4s42 (without the extreme
points) then there would exists a portion of such a segment in which the invariant line is
broken, contradicting the fact that on 4S42 we have an invariant straight line. Analogously
we conclude that 7S12 cannot have one of its start/endpoints at any point of segment
4s36 (without the extreme points). Finally, the endpoint cannot be on 4s41 (or even in
the point 4.4`5) since 4s41 represents only an invariant straight line without separatrices
connection (otherwise it would exist a degenerate portion of 4s41 in which 7S12 would
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have its start/endpoint). Therefore, the nonalgebraic surface 7S12 has 4.4`6 and 4.8`7 as
start/endpoints.
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Figure 53 – Complete bifurcation diagram for slice m =−5/100 (see Fig. 48)
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Before we go to the next slice, in order to finish describing the complete slice
m = −5/100, we point out that in this slice we have limit cycles at the following new
regions: V57, V60 and V72. In addition, numerical analysis confirm that the nonalgebraic
surfaces 7S2 and 7S5 to 7S8 are still present at this slice. In particular, surfaces 7S6 and
7S8 still intersect along the curve 5.7L2. The only thing that remains to be proved is that,
according to Fig. 53, the nonalgebraic surface 7S8 has 4.5`9 as an endpoint, see Lemma
4.3.43.

Lemma 4.3.43. For m =−5/100, the endpoint of 7S8 (rather than 5.7`2) is 4.5`9.

Proof. Numerical analysis suggests that surface 7S8, which corresponds to a loop–type
bifurcation, have one of its ends at the point 4.5`9. Indeed, using the same argument as
in the proof of Lemma 4.3.38 we conclude that the endpoint of this surface is not on
3s12. Now, if the endpoint is on 4s38 then there should exist a portion of this segment
in which the respective invariant straight line would be broken. Finally, if the endpoint
is on 5s16, then there should exist a portion of red parabola which is a “path” between
V52 and V54. We know that crossing the red parabola means that two infinite singularities
coalesce. Then, if in V54 we make the infinite saddle and the infinite node coalesce, then
we would have a saddle–node of type

(0
2

)
SN. Even if this infinite singularity disappears,

we would be crossing the red parabola, going to V52 and arriving there without limit cycle
(since this transition does not change the finite part, for instance, the separatrix of the
finite saddle–node which has the finite antisaddle as a ω–limit does not disappear), a
contradiction, since we already know that on V52 the respective phase portrait has a limit
cycle.

Remark 4.3.44. In the next figures we present some regions without labels, just for the
reader follows the movement of the surfaces. Of course, the respective red labels can be
found looking for previous figures. For instance, in Fig. 54 the curved quadrilateral region
bordered by black, green, red and yellow surfaces corresponds to the region V44 in Fig. 53.

In Rmk. 4.3.2 we have concluded that the equation T4 = F1 = 0 has one double
root if ∆ = 0, i.e. m =

(
±2
√

2−3
)
/2. In this way, the slice m =

(
2
√

2−3
)
/2 is singular

because the curve 3.10L2, which cuts twice the slices with m ∈
((

2
√

2−3
)
/2,0

)
, cuts

the slice when m =
(

2
√

2−3
)
/2 in a single point. Moreover, the part 3S6 vanishes. The

result can be seen in Fig. 54.
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V16
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3.10L2

Figure 54 – Slice of parameter space when m =
(

2
√

2−3
)
/2 (see Fig. 53)

Analogously, again according to Rmk. 4.3.2 we proved that the equation described
by T4 = F1 = 0 has no real roots for ∆ < 0, i.e. for m ∈

((
−2
√

2−3
)
/2,
(

2
√

2−3
)
/2
)

.
Therefore, on the next generic slice, namely, m =−1/4, the only important thing that we
observe is that the curve 3.10L2 does not cut these slices, see Fig. 55.

V16
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V15

V67
V66

V63

V13

3S7

Figure 55 – Slice of parameter space when m =−1/4 (see Fig. 54)

Proceeding with the study of the next singular slice, m = −1/2, we observe that
triangle V13 (see Fig. 55) collapses into a point, namely, P6. This is caused by the displace-
ment of yellow and purple algebraic surfaces. The rest of the bifurcation diagram remains
topologically equivalent to the previous one. We present this result in Fig. 56.
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Figure 56 – Slice of parameter space when m =−1/2 (see Fig. 55)

When we move down with values of the parameter m very close to m =−1/2, we
verify that the yellow and purple surfaces mentioned before keep their movement and
from the point P6 arises a new volume region which we denote by V74. We denote this
generic slice by m = −1/2− ε4 and we present it in Fig. 57. The phase portrait will be
equivalent to the one in V63 since the bifurcation that splits them is just due to a straight
line that does not represent a separatrix connection.
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V63V74

4S45

4S44
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4.4L7

3.4L7

3.4L8

Figure 57 – Slice of parameter space when m =−1/2− ε4 (see Fig. 56)
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Following the study of values of m less than but closer to m = −1/2 numerical
analysis indicates that there must exist a point (see P7 in Fig. 58) in which 5.7L5 coalesces
with 2.5L4 (see Fig. 53). This situation gives a singular slice m = −1/2− ε∗4 which we
describe in Fig. 58.

V60

V72

V61

V57

V58

P7

Figure 58 – Slice of parameter space when m =−1/2− ε∗4 (see Fig. 57)

We detect that from point P7, due to the displacement of the surfaces, even for
values less than but closer to m =−1/2, we now have a new volume region with a curved
triangle shape which we denote by V75. Such a region is detected by taking a small neigh-
borhood of 2S10 (over it) and of 5S18 (under it) and then by decreasing the value of the
parameter c up to the intersection point between these two surfaces (see Fig. 53). More-
over, this region contains a limit cycle and one of its edges (namely, 7S13) must be a
continuation of the nonalgebraic surface 7S11. In fact, both pieces of nonalgebraic surface
indicate a connection between a separatrix of the infinite saddle–node of type

(1
1

)
SN and

a separatrix of the infinite saddle. This nonalgebraic bifurcation given by 7S13 is exactly
what we need in order to have a coherent transition between V58 and V75. In addition, as
in V57 we only have the infinite saddle–node of type

(1
1

)
SN, as it was expected by Fig. 57,

the nonalgebraic surface 7S13 must have one of its ends now on 5.7L6, which separates
the already known part 5S18 from the new part 5S23. In Fig. 59 we present this generic
slice and we denote it by m =−1/2− ε5.
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V75
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2S13

Figure 59 – Slice of parameter space when m =−1/2− ε5 (see Fig. 58)

Now we observe that for m =−8/9, the volume region V60 disappeared. Indeed, it
was reduced to the point P8, as in Fig. 60.

P8 V57

V45

V72

V75V64

V44

Figure 60 – Slice of parameter space when m =−8/9 (see Fig. 59)

Proceeding with the study of the next generic slice, m =−9/10, from the point P8



184
Chapter 4. Classification of quadratic systems with a finite saddle–node and an infinite

saddle–node (1,1)SN–(B)

arises a new volume region, which we denote by V76, see Fig. 61.
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Figure 61 – Slice of parameter space when m =−9/10 (see Fig. 60)

When m =−24/25, the volume region V44 disappears. In fact, it is reduced to the
point P9, as in Fig. 62.
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V65

V41
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Figure 62 – Slice of parameter space when m =−24/25 (see Fig. 61)
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In the next generic slice, m = −98/100, from the point P9 arises a new volume
region, which we denote by V77, see Fig. 63.
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Figure 63 – Slice of parameter space when m =−98/100 (see Fig. 62)

In the next singular slice, m = −1, we have a coalescence of the cyan, green and
purple surfaces and this displacement kills the following 18 volume regions: V7, V9, V11,
V15, V31, V32, V33, V34, V35, V41, V43, V61, V62, V63, V64, V65, V66 and V72 (see these regions
in Fig. 63). Moreover, when m = −1 we also have that the yellow surface passes trough
P13, making the volume region V16 disappears. In addition, by using numerical tools, we
detect the death of the volume regions V58 and V59. In fact, this phenomenon is caused by
the coalescence of the two pieces 7S9 and 7S13 of the nonalgebraic surface (S7). This is
why we have drawn these two surfaces very close to each other up to Fig. 63. We denote
by 7.7L1 the nonalgebraic surface that corresponds to this coalescence and in Fig. 64 we
indicate it with ticker line. It is clear that such a surface has one of its ends on the red
surface (more precisely, at the point P14, which represents the coalescence of 5.7L4 and
5.7L6, respectively) and due to the nature of the bifurcation described by 7S9, the other
endpoint of 7.7L1 is P11. On the other hand, again by using numerical tools, we detect
that the nonalgebraic surface 7S12 now has one of its endpoints also at P11 (the other
endpoint remains at P13). In Fig. 64 we present this slice properly labeled.
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Figure 64 – Slice of parameter space when m =−1 (see Fig. 63)

Additionally, by using carefully the numerical program P4 (see Artés et al. (2005)
and Dumortier, Llibre and Artés (2008)) we take a small neighborhood under the yellow
surface, i.e. e = c−2m− ε and m =−1, and we detect that for

c = δ −1, ε = δ +δ
2, δ ∈ R,

we have that
(c,e) = (δ −1,1−δ

2), δ ∈ R,

and then, surface 7S12 together with 7.7L1 could be approximated by the equation

e =−c2−2c,

which is a parabola (an algebraic equation) on the ce–plane. Then we can also have an
approximation for the point P14 (the tangent point of such a parabola with the red surface).
On the other hand, we detect that, under the previous conditions over the parameters
c,e,m (and from the beginning, h = 1) we have the algebraic invariant curve

g(x,y) = (1+δ )(−1+δ + x)x+(−1+δ +2x)y, δ ∈ R,

with cofactor 2y. These facts are particularly amazing, since therefore 7.7L1 is algebraic
and represents an algebraic connection given by the coalescence of the two pieces 7S9
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and 7S13 of the nonalgebraic surface (S7). The resulting parabola has one piece which
represents a single connection of separatrices (namely, 7S12), one piece which represents
simultaneously two distinct connections of separatrices (namely, 7.7L1) and the remaining
part of this parabola does not indicate any additional topological change for the bifurca-
tion diagram. But in order to indicate the existence of such a parabola, in Fig. 64 we have
drawn 7S12 together with 7.7L1 resembling a parabola and the respective piece that does
not represent any topological change is drawn as a dashed curve.

By finishing analyzing this singular slice, when we keep going down with the values
of the parameter m, due to the continuous displacement of such surfaces it is natural to
expect the birth of several new volume regions. In fact, when we consider a generic slice
m = −1− ε6, very close to m = −1, we get the following 21 new volume regions: V78 to
V98. Such regions and their respective borders are drawn in Fig. 65. In what follows we
explain a little bit about the existence of the pieces of nonalgebraic surfaces 7S14 to 7S21

presented in such a figure.

Numerical analysis indicates that surface 7.7L1 (from Fig. 64) splits itself into two
new pieces of nonalgebraic surface (S7), as in Fig. 65. Moreover, we also have the birth
of the following three volume regions: V78, V79, and V80. In what follows we justify the
existence of such nonalgebraic surfaces and, consequently, of these new volume regions.

We begin by recalling that before the slice m =−1, we had that the nonalgebraic
surface 7S13 had a continuation 7S11 (which was “squeezed” in the slice m = −1 by the
triple surface). Numerical analysis suggests that, after the splitting of the triple surface,
the nonalgebraic surface 7S14 has a continuation, which we denote by 7S20. In fact, by
taking a small neighborhood of 4S55 and start decreasing the value of the parameter
c, we detect that, at some moment, the region over V70 becomes V78 and the region
under V86 becomes V87. As V70 is topologically equivalent to V86 and V78 is topologically
equivalent to V87 then we have the existence of some element of surface (S7), namely 7S20,
being a continuation of 7S14. Both nonalgebraic surfaces describe a connection between
a separatrix of the infinite saddle–node and a separatrix of the infinite saddle. So, 7S20

has one endpoint on 4.7L1. We observe that the nonalgebraic surface 7S20 cannot have its
other endpoint neither on surface 6S18 (which represents only a C ∞ node–focus bifurcation,
unless there exists a degenerate portion of such a surface being an endpoint of 7S20) nor
on 3S20 (since otherwise a portion of this subset must not refer to a Hopf bifurcation,
which contradicts the fact that on 3S20 we have a weak focus of order one). Then, the
other endpoint of 7S20 is 7.8L4.
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Figure 65 – Slice of parameter space when m =−1− ε6 (see Fig. 64)
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We now pass to analyze V78. As before, when we approach 5S23 under it, we
obtain a phase portrait that is topologically equivalent to V75. However, by taking a small
neighborhood of 5S17 (respectively 5S23) and by decreasing (respectively increasing) the
value of the parameter c, we obtain a phase portrait that does not belong either to V70 or to
V75. In fact, this phase portrait contains a limit cycle (as in V75) but it does not contain the
infinite basin (presented in V75) as in V70. These facts suggest that there must exist a new
volume region (which we denote by V78 in Fig. 65) “between” V70 and V75. Consequently,
there must exist two pieces of nonalgebraic surface (S7) bordering this new region. We
denote such surfaces by 7S14 (which describes a connection between a separatrix of the
infinite saddle–node and a separatrix of the infinite saddle) and 7S15 (which indicates a
connection between a separatrix of the finite saddle–node and a separatrix of the infinite
saddle). Since in V57 we do not have a sufficient number of infinite singularities in order
to make the bifurcation given by these two nonalgebraic surfaces happens, we conclude
that these surfaces must have one of their endpoints on the red surface, indeed, on the
curves 5.7L7 and 5.7L8, respectively. Then we also have a new piece 5S26 of surface (S5)
bordering this new region. We know that there exist two other borders of V78 (and also
of V87). On the other hand, when we approach 3S18 under it, we obtain a phase portrait
that is topologically equivalent to V75 and, by taking a small neighborhood under 3S18,
when we decrease the value of parameter e we get a phase portrait that is topologically
equivalent to V78. So, the nonalgebraic surface 7S15 must intersect the yellow surface,
splitting 3S18 into two parts, namely, 3S18 and 3S19. This is confirmed if we parametrize
and “walk above” the yellow surface between its intersection with the red surface and the
purple one. Therefore, we have obtained all the borders of regions V78 (and V87).

We now pass to describe the existence of the volume region V79 and also the
nonalgebraic surface 7S16. In fact, when we approach 5S24 under it, we obtain a phase
portrait that is topologically equivalent to V76, but when we approach 4S57 over it, we
obtain a phase portrait that is different from the previous one (which we denote by
V79). In fact, if in region V76 we fix a value of the parameter c and start decreasing the
parameter e, we observe that, in some moment, the infinite basin from V76 is lost. This
phenomenon happens due to a connection between a separatrix of the finite saddle–node
and a separatrix of the infinite saddle. Then there must exist a nonalgebraic surface 7S16

splitting the volume region V76 into two parts, namely, V76 and V79. Moreover, if we take
a small neighborhood over the yellow surface, we detect that surface 7S16 has one of its
endpoints on the yellow surface. Indeed, surface 7S16 is clearly a continuation of surface
7S15, because both surfaces represent the same nonalgebraic bifurcation and they have
endpoints on the yellow surface, in fact, at the curve 3.7L2. We also observe that surface
7S16 has its another endpoint on the black surface, indeed, at the curve 6.7L2. On the
other hand, as the black surface only represents a C ∞ node–focus bifurcation, we conclude
that surface 7S16 must cross the black surface and, indeed, a careful numerical analysis
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indicates that there exists a piece of nonalgebraic surface 7S17 being a continuation of
7S16 and splitting V77 into V77 and V80. Moreover, if we parametrize surface 5S25 we detect
that, for some negative value of the parameter c, the same bifurcation described by 7S17

happens at 5.7L9, which splits 5S25 into 5S25 and 5S27. Since as in V69 we do not have the
sufficient number of separatrices in order to perform the bifurcation described by 7S17 we
conclude that 5.7L9 is, in fact, the other endpoint of 7S17. As in Fig. 65, this nonalgebraic
surface is a border of V80 which is topologically equivalent to V89 (since surface 4S58

represents an invariant straight line which does not indicate a separatrix connection).

We have seen that up to slice m =−98/100, we had the existence of the nonalge-
braic surface 7S2 being a common border of the regions V9 and V11. Such a surface was
“squeezed” in the slice m = −1 by the triple surface (formed by cyan, green and purple
surfaces) and, it is natural to expect that after the splitting of this triple surface, it arises
a new piece of nonalgebraic surface in the neighborhood of the region where 7S2 was
located. In fact, it happens here. If we approach 4S52 under it, we obtain a phase portrait
that is topologically equivalent to V83 and, when we approach 2S19 over it we obtain a
phase portrait which is topologically equivalent to V82. This suggests that there exists
some element of surface (S7) between 4S52 and 2S19, which represents a nonalgebraic
bifurcation due to the connection between a separatrix of the finite saddle–node with a
separatrix of the infinite saddle–node. We denote such a nonalgebraic surface by 7S18.
We observe that as in 2S19 the finite saddle–node has become a cusp–type singularity,
then 7S18 cannot have an endpoint on 2S19. Moreover, as the dashed surface 4S52 only
represents a C ∞ bifurcation, then 7S18 cannot have an endpoint on it either. On the other
hand, if 7S18 has an endpoint on 4S47, then in order to make the respective bifurcation
happens, the corresponding invariant straight line would be broken. Therefore, 7S18 has
4.8L12 as an endpoint and by using the same arguments we conclude that such a surface
is unbounded.

On the other hand in slice m = −1 (and before it), we had the existence of the
nonalgebraic surface 7S12 being a common border of the regions V67 and V73 and describing
a connection between a separatrix of the finite saddle–node with a separatrix of the
infinite saddle–node. We observe that even after the splitting of the triple surface, this
nonalgebraic surface remains in this region, but now numerical analysis indicates that it
intersects the yellow surface at two curves, which are denoted by 3.7L3. Indeed, when we
are “close” to the curve 4.4L9 (see Fig. 65), due to the displacement of the yellow surface,
numerical analysis suggests that it “cuts” the nonalgebraic surface 7S12. In fact, when we
take a small neighborhood over 3S17 and start decreasing the value of the parameter c,
we observe that, at some moment, the region V67 becomes V73 and, if we take the same
neighborhood under 3S17 and start decreasing the value of the parameter c, we observe
that, at some moment, the region V74 becomes V97. As V73 is topologically equivalent to
V97 and V67 is topologically equivalent to V74 then we have the existence of some element
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of surface (S7), namely 7S19, being a continuation of 7S12. So, 7S19 has one endpoint on
3.7L3. We note that 7S19 cannot have its other endpoint either on 4S49 or on 4S45, since
otherwise the respective invariant lines would be broken in order to make the respective
nonalgebraic bifurcation happens (as we already proved before for surface 7S12). Then,
the other endpoint of 7S19 is 4.4L9. Now, if we are “close” to the curve 2.3L4 (see Fig. 65)
and we take a small neighborhood over the yellow surface and start decreasing the value
of the parameter c, we observe that, in some moment, the region V73 becomes V67 and if
we take a small neighborhood under the yellow surface we obtain the same sequence of
phase portraits. These facts suggest that the nonalgebraic surface 7S12 has another piece
of nonalgebraic surface (which we also denote by 7S19) being its continuation and which
due to the bifurcation that it represents, it cannot intersect surfaces 2S18 and 4S45, then
it must have its other endpoint on 4.8L12.

Moreover, up to slice m =−98/100, we had the existence of the nonalgebraic sur-
face 7S5 being a common border of the regions V34 and V35. Such a surface was “squeezed”
in the slice m =−1 by the triple surface and, it is natural to expect that after the splitting
of this triple surface, it arises a new piece of nonalgebraic surface in the neighborhood of
the region where 7S5 was located. In fact, it happens here. If we approach 4S60 under it, we
obtain a phase portrait that is topologically equivalent to V96 and, when we approach 2S16

over it we obtain a phase portrait which is topologically equivalent to V95. This suggests
that there exists some element of surface (S7) between 4S60 and 2S16, which represents a
nonalgebraic bifurcation due to the connection between a separatrix of the finite saddle–
node with a separatrix of the finite saddle. We denote such a nonalgebraic surface by 7S21.
We observe that as in 2S16 the finite saddle–node has become a cusp–type singularity,
then 7S21 cannot have an endpoint on 2S16. In addition, as the dashed surface 4S60 only
represents a C ∞ bifurcation, then 7S16 cannot have an endpoint on it either. On the other
hand, if 7S18 has an endpoint on 4S50, then in order to make the respective bifurcation
happens, the invariant straight line would be broken. Therefore, 7S21 has 4.8L13 as an
endpoint and such a surface is unbounded.

In Fig. 65 we sum up all the information given on the previous paragraphs.

After numerical analysis for values of m less than m =−1−ε6, but very close to it,
we observe that there must exist a singular value of the parameter m in which the curves
3.5L3 and 5.7L8 coalesce and this makes the volume region V75 disappears. In fact, such
a region is reduced to the point P15 from slice m =−1− ε∗6 , as in Fig. 66.
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Figure 66 – Slice of parameter space when m =−1− ε∗6 (see Fig. 65)

Numerical analysis suggests that for a little bit smaller value of the parameter m,
namely m =−1− ε7, corresponding to the point P15 we now have two curves and a piece
of the red surface (namely, 3.5L4, 5.7L10, and 5S30, respectively) as in Fig. 67.
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Figure 67 – Slice of parameter space when m =−1− ε7 (see Fig. 66)

Again by using numerical tools we detect that there must exist a singular value
m =−1− ε∗7 in which the curves 5.6L3 and 5.7L9 coalesce, making the volume region V77

disappears. Indeed, such a region is reduced to the point P16, as in Fig. 68.
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Figure 68 – Slice of parameter space when m =−1− ε∗7 (see Fig. 67)

Moving on with our numerical analysis, we observe that in generic slice m=−1−ε8,
from the point P16 we now have two curves and a piece of the red surface (namely, 5.6L4,
5.7L10, and 5S30, respectively) as in Fig. 69.
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Figure 69 – Slice of parameter space when m =−1− ε8 (see Fig. 68)

Now, we detect that there must exist a singular value m = −1− ε∗8 in which the
curves 5.7L10 coalesce, making the volume region V76 disappears, see Fig. 70.
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Figure 70 – Slice of parameter space when m =−1− ε∗8 (see Fig. 69)

The next nonalgebraic generic slice, m = −1− ε9, is again obtained by numeri-
cal tools and it represents the absence of the curve 5.7L10 and the displacement of the
nonalgebraic surface 7S12 towards 3S17, making the volume region V67 “smaller”. See the
representation in Fig. 71.
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Figure 71 – Slice of parameter space when m =−1− ε9 (see Fig. 70)
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On the other hand, as it was expected, due to the movement of these surfaces,
there must exist a singular value m =−1−ε∗9 in which V67 vanishes. In fact, it is reduced
to the curve 3.7L3 as in Fig. 72.
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Figure 72 – Slice of parameter space when m =−1− ε∗9 (see Fig. 71)

When we keep going down with the parameter m, we detect that for m =−1−ε10

the nonalgebraic surface 7S19 no longer intersects 3S22. In fact, we describe this situation
in Fig. 73.
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Figure 73 – Slice of parameter space when m =−1− ε10 (see Fig. 72)
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We draw special attention for the fact that, up to here, the volume regions V71 and
V80 have become even smaller (see Fig. 73). Indeed, when we have the algebraic singular
slice m = −5/4, such regions are reduced to the points P18 and P17, respectively, as in
Fig. 74.
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Figure 74 – Slice of parameter space when m =−5/4 (see Fig. 73)

In the generic slice m =−13/10, we observe that from the points P18 and P17 the
volume regions V99 and V100 arise, respectively. Such regions, and their respective borders
are presented in Fig. 75 in which we intend to show all the volume regions (modulo islands)
in this slice.
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Figure 75 – Slice of parameter space when m =−13/10 (see Fig. 74)

By performing the study of the next singular slice, namely, m=−3/2, we only have
one significant change in the bifurcation diagram. In fact, for this value of the parameter
m the volume region V79 reduces to the point P19, as in Fig. 76.
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Figure 76 – Slice of parameter space when m =−3/2 (see Fig. 75)

Due to the displacement of all the surfaces, as it was expected, from the point P19

a new volume region arises, which we denote by V101. In Fig. 77 we present a piece of the
bifurcation diagram containing V101 when we consider the generic value m =−7/4.
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Figure 77 – Slice of parameter space when m =−7/4 (see Fig. 76)

Now when we go to the singular slice m =−2, we detect that the volume regions
V70 (together with V78) and V73 are reduced to the points P20 and P21, respectively. The
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remaining bifurcation diagram does not present any other significant change, see Fig. 78.
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Figure 78 – Slice of parameter space when m =−2 (see Fig. 76)

By studying the next generic slice, m =−5/2, we observe that due to the displace-
ment of the yellow surface, from the point P21 a new volume region arises and we denote it
by V103. Moreover, due to the displacement of the purple surface (which is parallel to the
green one) and the red surface, we detect the birth of two new volume regions, namely,
V102 and V104. In what follows, we explain about the existence of this two volume regions,
in particular, we explain why there exists the respective nonalgebraic surface 7S22. In
fact, when we approach 4S67 to the right hand side we obtain a phase portrait that is
topologically equivalent to V104. On the other hand, when we approach 4S65 over it we
obtain a phase portrait that is topologically equivalent to V102. Then, there must exist a
piece of surface (S7) being a common border of these two regions. We denote this piece of
nonalgebraic surface by 7S22, which corresponds to a loop–type bifurcation (of the finite
saddle–node to itself). When we parametrize and make a study of the red surface, we
obtain 5S33 being a border of V102 and 5S34 being a border of V104, respectively. Then the
nonalgebraic surface 7S22 has one of its endpoints on the red surface, more precisely, at
5.7L11. In fact, since 5S33 is a border of V53 and 5S34 is a border of V52, we conclude that
7S22 is a continuation of the nonalgebraic surface 7S8. We claim that the other endpoint of
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7S22 is 4.4L12. Indeed, if the other endpoint of 7S22 is on 4S67, then the invariant straight
line should be broken in order to make the respective loop–type bifurcation happens. For
the same reason the endpoint of 7S22 cannot be in 4S65, see this slice in Fig. 79.
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Figure 79 – Slice of parameter space when m =−5/2 (see Fig. 78)

For a better comprehension of the graphics producing limit cycles in perturbations,
in Fig. 80 we present an amplification of the neighborhood in the parameter space of the
curve 4.4L12 (see Fig. 79) with the corresponding phase portraits.

In Rmk. 4.3.2 we have concluded that the equation T4 = F1 = 0 has one double
root if ∆ = 0, i.e. m =

(
±2
√

2−3
)
/2. In this way, the slice m =

(
−2
√

2−3
)
/2 is singular.

In fact, at this value of the parameter m we have a double curve 3.10L3, which in this case
indicates a weak saddle of order two. This point splits surface 3S21 into two parts. Since
these two pieces of surface (S3) clearly produce topologically equivalent phase portraits,
we denote both pieces by 3S21. The result can be seen in Fig. 81.
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Figure 80 – Graphics producing limit cycles: neighborhood of 4.4L12 (see Fig. 79)
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/2 (see Fig. 79)

Again according to Rmk. 4.3.2, the equation T4 = F1 = 0 has two real roots for
∆ > 0, i.e. for m /∈

((
−2
√

2−3
)
/2,
(

2
√

2−3
)
/2
)

. Therefore, on the next generic slice,
namely, m =−295/100, the curve 3.10L3 becomes two, creating surface 3S26, as in Fig. 82.
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Figure 82 – Slice of parameter space when m =−295/100 (see Fig. 81)

Proceeding the study of the next singular slice, m =−3, we observe that here the
curved triangle V69 (see Fig. 79) coalesces in a point, namely P22. This is caused by the
displacement of the black and red surfaces. Moreover, we also note that the two curves
3.10L3 moved themselves, causing the death of both pieces of surface 3S21. Then we have
the corresponding points P23 and P24. We present this result in Fig. 83.
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Figure 83 – Slice of parameter space when m =−3 (see Fig. 82)

When we make a study of values of the parameter m less than m = −3, but very
close to it, up to m =−7/2 we detect three important facts: first, from the point P22 a new
volume region arises and we denote it by V105. Second, from P23 a piece of surface (S3) is
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born, namely, 3S29. The third fact (which is the most interesting one) is that from P24 two
pieces of surface (S3) are born, namely, 3S28 (without limit cycle) and 3S27 (with limit
cycle). We observe that both pieces of surface must have an endpoint of surface 7S20 (which
refers to a connection between a separatrix of the infinite saddle–node and a separatrix of
the infinite saddle) being a common edge. In fact, numerical analysis supports this claim.
We note that there must exist a continuation of the nonalgebraic surface 7S20. Indeed, we
start by approaching 3S28 over it and then we obtain a phase portrait V106, which contains
a limit cycle. However, when we approach 4S62 and also 6S19 we obtain (in both cases)
a phase portrait that is topologically equivalent to V88 (without limit cycles). Then we
must have an element of surface (S7), namely, 7S23, which corresponds to a bifurcation
due to a connection between a separatrix of the infinite saddle–node and a separatrix of
the infinite saddle. Therefore, 7S23 is indeed a continuation of 7S20. Due to our numerical
analysis described above and due to the fact that on black surfaces we can only have a
C ∞ node–focus bifurcation, we conclude that the other endpoint of 7S23 is 7.8L5 and 7S23

is a border of the new volume region V106.

On the other hand, surface 3S27 has 3.10L5 (the gray surface of f (2)) being a
common edge with 3S20. As surface 3S27 contains a limit cycle and we know that on
surface (S3) one can have Hopf bifurcation, we can expect that in some neighborhood
of this surface we have a region containing two limit cycles. Indeed, when we approach
such a surface under we obtain a phase portrait that is topologically equivalent to V87

(i.e. containing only one limit cycle) and, on the other hand, when we approach 3S27 over
it we obtain a phase portrait V107, which contains two limit cycles surrounding the same
focus. However, when we approach 4S62 and also 6S19 we obtain (in both cases) a phase
portrait that is topologically equivalent to V88 (without limit cycles). Then there must
exist an element 10S1 of surface (S10) which corresponds to a bifurcation of double limit
cycle in order to keep the coherence in the bifurcation diagram. Lemma 4.3.45 assures the
existence of such a surface and there we indicate its endpoints.

Lemma 4.3.45. Surface 10S1 corresponds to a bifurcation of a double limit cycle and its
endpoints are on 7.8L5 and 3.10L5.

Proof. We consider Fig. 84. Part V87 first appeared in slice when m = −1− ε6 and its
corresponding phase portrait possesses a limit cycle. We note that on surfaces 3S20, 3S27,
3S28 and on their linking points the phase portraits possess a weak focus of order at
least one and, consequently, they refer to a Hopf bifurcation. If we are in part V87 and
cross surface 3S20, we enter part V88 and the limit cycle is lost. Following this idea, the
same should happen if we cross surface 3S27, but it is not what happens. After crossing
this surface, the limit cycle persists when entering part V107. In fact the Hopf bifurcation
creates a second limit cycle. We note that these two limit cycles surrounds a unique focus.
Then, as in part V88 we do not have limit cycles and in V107 we have two of them (around
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the same focus), and there must exist at least one element 10S1 of surface (S10) dividing
these two parts and corresponding to the presence of a double limit cycle. Now, it remains
to prove where 10S1 starts from. We know that curve 3.10L5 corresponds to the presence
of a weak focus of order two. With this in mind, it is more comprehensible that leaving
part V87 and crossing the yellow surface, we enter in two topologically distinct parts, one
with limit cycles and the other without them. The linking curve 3.10L5 of surfaces 3S20

and 3S27 is responsible for this, i.e. if we “walk” along surface 3S20, which does not possess
limit cycle, and cross 3.10L5, the focus becomes weaker and a Hopf bifurcation happens,
implying the birth of a limit cycle in the representatives of 3S27. Then, by this argument
and by numerical evidences, surface 10S1 starts from 3.10L5. Moreover, since surface 3S27

has a limit cycle and this limit cycle is lost when we pass by the curve 3.7L4, and if we
take several parallel straight lines sufficiently close to 3S28 and 3S27 over it, we detect
numerically that the other endpoint of surface 10S1 is 7.8L5.
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V85
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V96

7S21
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Figure 84 – Slice of parameter space when m =−7/2 (see Fig. 83)

We presented the slice m=−7/2 in Fig. 84 and we show in Fig. 85 an amplification
of the neighborhood in the parameter space of the curve 3.7L4 with the corresponding
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phase portraits. In these and in the next figures we have colored in light green the regions
whose respective phase portraits possess two limit cycles.

3S28

3S27

3S20

7.8L5

3.10L5

Figure 85 – Neighborhood in the parameter space of the curve 3.7L4 with the corresponding
phase portraits: the existence of double limit cycle from a f (2)

Regarding the previous lemma, we have to show three impossible situations:

1. surfaces 10S1 and 7S23 cannot intersect each other, since otherwise we would nec-
essarily have a region containing 3 limit cycles (1 from V106 plus 2 generated by a
piece of surface 10S1) being neighbor of V88, which does not contain limit cycles, a
contradiction. In Fig. 86 we present this hypothetic situation indicating only the
respective number of limit cycles in each region (we do the same in the next two
figures). In this and in the next figures we have colored in light purple the regions
whose the respective phase portraits possess three limit cycles;

2. surface 10S1 cannot have an endpoint on 7S23, since otherwise we would have a piece
of 7S23 with one (simple) limit cycle and other piece without limit cycles. Then the
linking point would be a bifurcation due to a double limit cycle. See Fig. 87;

3. the endpoint of 10S1 cannot be on 3.7L4, due to the different stability of the an-
tisaddles on the neighbors of 3.7L4. In fact, this situation could happen unless we
have a singularity of center type. But, according to Vulpe (2011, Main Theorem,
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item (b4)), for the normal form (4.1) we do not have such a singularity, since on
Rmk. 4.3.2 we see that F3F4 6= 0. In Fig. 88 we present this hypothetic situation.

1

1

2

2

3 0

0
0

Figure 86 – Hypothetic situation of intersection between 7S23 and 10S1. We indicate the respec-
tive number of limit cycles that each region possesses (see Fig. 85)
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0
0

Figure 87 – Hypothetic situation in which surface 10S1 has an endpoint on 7S23. We indicate
the respective number of limit cycles that each region possesses (see Fig. 85)

1
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0
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Figure 88 – Hypothetic situation in which surface 10S1 has an endpoint on 3.7L4. We indicate
the respective number of limit cycles that each region possesses (see Fig. 85)

The next important value of the parameter m to be considered is m =−4. At this
level, the volume region V57 (see Fig. 79) reduces to the point P25 as in Fig. 89.

P25

V101

V52

V100

V104

V45

V46

Figure 89 – Slice of parameter space when m =−4 (see Fig. 84)
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By studying values of the parameter m less than but closer to m = −4, namely
m = −4− ε11, we observe that from the point P25 a new volume region arises and we
denote it by V108 as in Fig. 90.

V101

V52

V100

V104

V45
V46

5S36

V108

3S30

4S69

3.5L6

4.5L17

3.4L15

Figure 90 – Slice of parameter space when m =−4− ε11 (see Fig. 89)

Regarding Rmk. 4.3.2, we know that for m = −21/5 we have a third order weak
singularity. In fact, as we saw in such a remark, this singularity comes from equation

T4 = F1 = F2 = 0,

then if we move down from m = −7/2 (see Fig. 84) towards m = −21/5, we observe
that the curve 3.10L5 (which was indicating a weak focus of second order) for m =−7/2
represents a weak focus of third order. As we saw in Rmk. 4.3.2, this situation happens
for only one value of the parameter m, i.e. we have a point that represents this weak focus
of third order. We denote such a point by P26, see Fig. 91.
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3S27

7S23

10S1
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3.7L4

7S20

V89

P26

Figure 91 – Slice of parameter space when m =−21/5 (see Fig. 90)

Now, for smaller values of m, close to m =−21/5, the weak singularity is again of
order two. Moreover, if we parametrize the yellow surface and “walk” on it, by starting on
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the piece that represents 3S20 and move down with the parameter c, at a certain moment
we pass by a bifurcation that allows us to detect the existence of two limit cycles on a
portion of the yellow surface. After that we pass by another bifurcation that gives us a
phase portrait that is topologically equivalent to 3S27. We denote the portion containing
two limit cycles by 3S31. As this surface contains two limit cycles and we know that on
surface (S3) one can have Hopf bifurcation, we can expect that in some neighborhood of
this surface we have a region containing three limit cycles. Indeed, we already know that
over this surface we have a phase portrait corresponding to V107, i.e. containing two limit
cycles. When we approach such a surface under it we obtain a phase portrait V109, which
contains three limit cycles surrounding the same focus. However, when we approach 3S20,
3S27 (under) and also in a (over) neighborhood of the nonalgebraic border 7S20 we obtain
(in all the cases) a phase portrait that is topologically equivalent to V87 (with only one
limit cycle). Then there must exist an element 10S2 of surface (S10) which corresponds
to a bifurcation of double limit cycle in order to keep the coherence in the bifurcation
diagram. In fact, we detect that 10S2 is a continuation of 10S1. Lemma 4.3.46 assures the
existence of such a surface and there we indicate its endpoints.

Lemma 4.3.46. Surface 10S2 corresponds to a bifurcation of a double limit cycle and its
endpoints are on 3.10L6 and 3.10L7.

Proof. We consider Fig. 92. Part V107 first appeared in slice when m = −7/2 and its
corresponding phase portrait possesses two limit cycles. If we are in this part and cross
surface 3S27, we enter part V87 and one of the limit cycles is lost. Following this idea, the
same should happen if we cross surface 3S31, but that is not what happens. After crossing
this surface, due to the presence of two limit cycles on this surface, the Hopf bifurcation
creates a third limit cycle. We note that these three limit cycles are around the same
focus, because there exists only one focus in this portion of the parameter space. Then,
as in part V87 we have one limit cycle and in V109 we have three of them (around the
same focus), there must exist at least one element 10S2 of surface (S10) dividing these
two parts and corresponding to the presence of a double limit cycle.
Now, it remains to prove where 10S2 starts from. We know that curve 3.10L7 corresponds
to the presence of a weak focus of order two. With this in mind, it is more comprehensible
that leaving part V107 and crossing the yellow surface, we enter in two topologically distinct
parts, one with one limit cycle and the other with three of them. The linking curve
3.10L7 of surfaces 3S27 and 3S31 is responsible for this, i.e. if we “walk” along surface
3S27, which possesses one limit cycle, and cross 3.10L7, the focus becomes weaker and a
Hopf bifurcation happens, implying the birth of second limit cycle in the representatives
of 3S31. Then, by this argument and by numerical evidences, surface 10S2 starts from
3.10L7. Moreover, since surface 3S31 has two limit cycles and one of them is lost when
we pass by the curve 3.10L7, and (on the bifurcation diagram) if we take several parallel
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straight lines sufficiently close to 3S31 and 3S20 over and under, we detect numerically
that, in fact, the other endpoint of surface 10S2 is 3.10L6 and therefore such a surface is
a continuation of surface 10S1.

We present the generic slice m =−21/5− ε12 in Fig. 92 as an amplification of the
neighborhood in the parameter space of the curve 3.10L7 with the corresponding phase
portraits.

3S28

3S27

3S20

7.8L5

3.10L6

3S31

3.10L7

Figure 92 – Slice of parameter space when m =−21/5− ε12 (see Fig. 91)

When we keep going down, by performing the study of values of the parameter
m less than m = −21/5, but very close to it, numerical analysis suggests that for some
singular nonalgebraic value m=−21/5−ε∗12, the curves 3.10L7 and 3.7L4 coalesce, creating
the point P27, which represents a weak focus of order two, see Fig. 93.
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3S28

3S20

7.8L5

3.10L6

3S31

P27

Figure 93 – Slice of parameter space when m =−21/5− ε∗12 (see Fig. 92)

Having analyzed the next generic slice (modulo islands) m =−21/5− ε13 we note
that from the point P27 a new piece of surface (S3) arises, namely, 3S32, which contains a
limit cycle. Such a piece of surface has an endpoint on 3.7L5 (the connection between 3S31

and 3S32, which refers to a connection between a separatrix of the infinite saddle–node
and a separatrix of the infinite saddle) and its another endpoint is the gray curve 3.10L8,
which is a weak focus of order two. As surface 3S32 contains a limit cycle and we know that
on surface (S3) we can have Hopf bifurcation, we can expect that in some neighborhood of
this surface we have a region containing two limit cycles. Indeed, when we approach such
a surface over it we obtain a phase portrait that is topologically equivalent to V106 (i.e.
containing only one limit cycle). On the other hand, when we approach 3S32 under it we
obtain a phase portrait V110, which contains two limit cycles surrounding the same focus.
However, when we approach 3S28 (under it) and 6S18 (over it) we get (in both cases) a
phase portrait that is topologically equivalent to V86 (without limit cycles). Then we must
have an element 10S3 of surface (S10) which corresponds to a bifurcation of double limit
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cycle in order to keep the coherence in the bifurcation diagram. We observe that surface
10S3 is a continuation of surface 10S2. Lemma 4.3.47 assures the existence of surface 10S3

and there we prove where its endpoints are located. As we do not have other significant
change in the bifurcation diagram, here we only present in Fig. 94 an amplification of the
neighborhood in the parameter space of the curve 3.7L5 with the corresponding phase
portraits.

3S20

3.10L6

3S31

3S28

7.8L5

3.10L8

3S32

3.7L5

Figure 94 – Neighborhood in the parameter space of the curve 3.7L5 with the corresponding
phase portraits: the existence of double limit cycle from f (2) and for m =−21/5−ε13

Lemma 4.3.47. Surface 10S3 corresponds to a bifurcation of a double limit cycle and its
endpoints are on 7.10L1 and 3.10L8.

Proof. We consider Fig. 94. Part V106 first appeared in slice when m =−7/2 and its corre-
sponding phase portrait possesses one limit cycle. We note that on surfaces 3S28, 3S32 and
at their linking curve 3.10L8, the respective phase portraits possess a weak focus of order



212
Chapter 4. Classification of quadratic systems with a finite saddle–node and an infinite

saddle–node (1,1)SN–(B)

at least one and, consequently, they refer to a Hopf bifurcation. If we are in part V106 and
cross the surface 3S28, we enter part V86 and the limit cycle is lost. Following this idea,
the same should happen if we cross the surface 3S32, but that is not what happens. After
crossing this surface, the limit cycle persists when entering part V110. In fact the Hopf
bifurcation creates a second limit cycle. We note that these two limit cycles are around
the same focus, because there exists only one focus in this portion of the parameter space.
Then, as in part V86 we do not have limit cycles and in V110 we have two of them (around
the same focus), there must exist at least one element 10S3 of surface (S10) dividing these
two parts and corresponding to the presence of a double limit cycle.
Now, it remains to prove where 10S3 starts from. We know that the curve 3.10L8 corre-
sponds to a presence of a weak focus of order two. With this in mind, it is more comprehen-
sible that leaving part V106 and crossing the yellow surface, we enter into two topologically
distinct parts, one of them with limit cycles and the other one without limit cycles. The
linking curve 3.10L8 of the surfaces 3S28 and 3S32 is responsible for this, i.e. if we “walk”
along the surface 3S28, which does not possess limit cycles, and cross 3.10L8, the focus
becomes weaker and a Hopf bifurcation happens, implying the birth of a limit cycle in the
representatives of 3S32. Then, by this argument and by numerical evidences, surface 10S3

starts from 3.10L8. Moreover, since surface 3S32 has one limit cycle and when we pass by
the curve 3.7L5 we have two of them, and (on the bifurcation diagram) if we take several
parallel straight lines sufficiently close to 3S32 and 3S31 (under), we detect that there is
no element of V86 neither of V87 between V110 and V109. Therefore the other endpoint of
surface 10S3 is 7.10L1 and such a surface is a continuation of surface 10S2.

When we perform the study of the values of the parameter m smaller but very
close to m =−21/5− ε13, we observe that there must exist a nonalgebraic singular value
m =−21/5− ε∗13 in which the nonalgebraic surface 7S21 is tangent to the piece of surface
3S29 (see Fig. 84) at 3.7L6. We present this fact in Fig. 95.

V103

V95

3.7L6

V96

3S29

3S25

3.10L4

7S21

7S21

V95

Figure 95 – Slice of parameter space when m =−21/5− ε∗13 (see Fig. 94)
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Now, for some generic nonalgebraic value m = −21/5− ε14, as it was expected,
from 3.7L6 a new volume region arises and we denote it by V111, see Fig. 96.
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Figure 96 – Slice of parameter space when m =−21/5− ε14 (see Fig. 95)

The last singular slice (m =−8) describes the death of the volume region V45 (see
for instance Fig. 75). Indeed, it reduces to the point P28 as in Fig. 97.

V1

V100

V40

V46

V108

P28

V105

Figure 97 – Slice of parameter space when m =−8 (see Fig. 96)

We finally arrive at the last generic slice, namely, m = −10. Here, the only im-
portant fact is that from the point P28 we have the birth of the volume region V112. The
remaining bifurcation diagram does not present any other significant change. We show
this new volume region (and its borders) in Fig. 98. In such a figure we intend to give an
idea of the entire bifurcation diagram for m =−10.
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Figure 98 – Slice of parameter space when m =−10 (see Fig. 97)

After having finished the study of all values of the parameter m presented in
(4.6), when we compare the two finite extreme values of such a parameter, i.e. m = 4 and
m =−10, we observe that the regions V1,V3,V12,V17,V21,V22,V38,V39, and V40 appear in all
slices.

We point out that the slice m = −∞ is easily obtained from the slice m = +∞.
In fact, due to the symmetry in h (see page 122), the slices m = +∞ and m = −∞ are
symmetrical. These slices correspond to h = 0 and m =±1, respectively. Setting h = 0 and
m =−1, systems (4.1) become

ẋ = cx+ cy− cx2,

ẏ = ex+ ey− ex2−2xy,

which differs from (4.7) only by the sign of the parameter m (i.e. by the sign of 2xy).
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Due to the symmetry in discussion, in Fig. 99 we present the slice when m =−∞

properly labeled. As we mentioned before for the slice m = +∞, here we draw special
attention for the fact that the nonalgebraic surfaces (numeric detected and which existence
was proved before) still remain at this slice and they “follow the movements” of the
algebraic surfaces during the transition between the slices m=−10 and m=−∞. Moreover,
in Table 11 we indicate the death of all volume parts from slice m =−10 to m =−∞. Then
we have established the correspondence between the phase portraits of the slices m =−10
and m =−∞.
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Figure 99 – Slice of parameter space when m =−∞

Since there is coherence among the generic slices bordering the most singular slices
m= 1, m= 0 and m=−1, with their respective generic side slices, no more slices are needed
for the complete coherence of the bifurcation diagram. So, all the values of m in (4.6) are
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Table 11 – Transition from slice m = −10 to m = −∞. Here we present the correspondence be-
tween the volume regions from slice m = −10 and the respective parts from slice
m =−∞

Parts in Parts in Parts in Parts in
slice m =−10 slice m =−∞ slice m =−10 slice m =−∞

V1 5.9L1 V86 P41
V3 9S12 V87 P41
V12 8.9L3 V88 P41
V17 8.9L3 V89 P41
V21 9S1 V90 P41
V22 9S2 V91 8.9L1
V38 5.9L1 V92 9S9
V39 8.9L1 V93 P34
V40 5.9L1 V94 P41
V46 5.9L2 V95 9S5
V47 9S15 V96 9S7
V48 9S18 V97 P34
V49 9S21 V98 9S4
V50 9S23 V99 9S25, 9S26
V51 9S24 V100 P41
V52 5.9L3 V101 P41
V53 5.9L4, P50, 5.9L5 V102 9S19, 9S20, 9S22
V54 P36 V103 9S6
V55 P36 V104 9S16, 9S17
V56 9S32 V105 8.9L1
V68 9S3 V106 P41
V74 P34 V107 P41
V81 9S35, 9S36, 9S37 V108 9S13, 9S14
V82 9S29, 9S33, 9S34 V109 P41
V83 9S30, 9S31 V110 P41
V84 9S27, 9S28 V111 9S8
V85 8.9L2, P34, P41 V112 9S10, 9S11

sufficient for the coherence of the bifurcation diagram. Thus, we can affirm that we have
described a complete bifurcation diagram for class QsnSN11(B) modulo islands, as we
discuss in Sec. 4.4.

4.4 Other relevant facts about the bifurcation diagrams

The bifurcation diagram we have obtained for the class QsnSN11(B) is completely
coherent, i.e. in this family, by taking any two points in the parameter space and joining
them by a continuous curve, along this curve the changes in phase portraits that occur
when crossing the different bifurcation surfaces we mention can be completely explained.
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Nevertheless, we cannot be sure that this bifurcation diagram is the complete
bifurcation diagram for QsnSN11(B) due to the possibility of the existence of “islands”
inside the parts bordered by unmentioned bifurcation surfaces. In case they exist, these
“islands” would not mean any modification of the nature of the singular points. So, on
the border of these “islands” we could only have bifurcations due to saddle connections
or multiple limit cycles.

In case there were more bifurcation surfaces, we should still be able to join two
representatives of any two parts of the 631 parts of QsnSN11(B) found until now with a
continuous curve either without crossing such a bifurcation surface or, in case the curve
crosses it, it must do it an even number of times without tangencies, otherwise one must
take into account the multiplicity of the tangency, so the total number must be even. This
is why we call these potential bifurcation surfaces “islands”.

However, we have not found a different phase portrait which could fit in such an
island. A potential “island” would be the set of parameters for which the phase portraits
possess a double limit cycle and this “island” would be inside the parts where W4 < 0
since we have the presence of a focus.

The topological study that we do in the next chapter solves partially this problem,
since there we prove that all the realizable phase portraits of class (AB) are, in fact, all the
40 generic phase portraits obtained in this chapter. But the possible existence of “islands”
in the bifurcation diagram still persists since they can be related to the existence of double
limit cycles, as we discussed in the previous paragraph.

4.5 Completion of the proof of the main theorem
In the bifurcation diagram we may have topologically equivalent phase portraits

belonging to distinct parts of the parameter space. As here we have 631 distinct parts
of the parameter space, to help us identify or distinguish phase portraits, we need to
introduce some invariants and we actually choose integer valued, character and symbol
invariants. Some of them were already used in Artés, Rezende and Oliveira (2013), Artés,
Rezende and Oliveira (2014), Artés, Rezende and Oliveira (2015), and Artés, Mota and
Rezende (2021a), but we recall them and introduce some needed ones. These invariants
yield a classification which is easier to grasp.

Definition 4.5.1. We denote by I1(S) a symbol from the set { /0, [×] , [∪] , [)(]} which
indicate the following configuration of curves filled up with singularities, respectively:
none (non–degenerate systems – in this case all systems do not contain a curve filled up
with singularities), two real straight lines intersecting at a finite point, a parabola, and an
hyperbola. This invariant only makes sense to distinguish the degenerate phase portrait
obtained.



218
Chapter 4. Classification of quadratic systems with a finite saddle–node and an infinite

saddle–node (1,1)SN–(B)

Definition 4.5.2. We denote by I2(S) the sum of the indices of the isolated real finite
singular points.

Definition 4.5.3. We denote by I3(S) the number of the real infinite singular points. We
note that this number can also be infinity, which is represented by ∞.

Definition 4.5.4. For a given infinite singularity s of a system S, let `s be the number of
global or local separatrices beginning or ending at s and which do not lie on the line at
infinity. We have 0≤ `s ≤ 4. We denote by I4(S) the sequence of all such `s when s moves
in the set of infinite singular points of system S. We start the sequence at the infinite
singular point which receives (or sends) the greatest number of separatrices and take the
direction which yields the greatest absolute value, e.g. the values 2110 and 2011 for this
invariant are symmetrical (and, therefore, they are the same), so we consider 2110.

Definition 4.5.5. We denote by I5(S) the total number of local or global separatrices of
the finite multiple singularity which link it with the infinite multiple singular points.

Definition 4.5.6. We denote by I6(S) a character from the set {sn(2), ĉp(2)} which de-
scribes the type of the multiple singularity located at the origin.

Definition 4.5.7. We denote by I7(S) the number of local or global separatrices starting
or ending at the nodal sector of the finite saddle–node.

Definition 4.5.8. We denote by I8(S) a character from the set {n,y} which indicates if
the separatrix of the infinite saddle–node

(1
1

)
SN has the same limit of a separatrix of the

finite saddle–node sn(2).

Definition 4.5.9. We denote by I9(S) a character from the set {n,y} describing the
nonexistence (“n”) or the existence (“y”) of basins (see page 148).

Definition 4.5.10. We denote by I10(S) a character from the set {n,y} describing the
nonexistence (“n”) or the existence (“y”) of graphics.

Definition 4.5.11. We denote by I11(S) the number of local or global separatrices starting
or ending at the finite antisaddle.

Definition 4.5.12. We denote by I12(S) the total number of local or global separatrices
linking the finite simple singularity to the infinite saddle–node

(1
1

)
SN.

Definition 4.5.13. We denote by I13(S) the number of limit cycles around a focus.

Definition 4.5.14. In case there exist an infinite singularity which does not belong to
the hyperbola filled up with singularities, we denote by I14(S) a character from the set
{n,y} (for no or yes, respectively) describing if the infinite singularity is located between
two other infinite singularities which belong to the same branch of the hyperbola filled
up with singularities.
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As we have noted previously in Rmk. 4.3.34, we do not distinguish between phase
portraits whose only difference is that in one we have a finite node and in the other a
focus. Both phase portraits are topologically equivalent and they can only be distinguished
within the C 1 class. In case we may want to distinguish between them, a new invariant
may easily be introduced.

Theorem 4.5.15. Consider the class QsnSN11(B) and all the phase portraits that we
have obtained for this family. The values of the affine invariant

I = (I1, I2, I3, I4, I5, I6, I7, I8, I9, I10, I11, I12, I13, I14)

given in the diagram from Tables 12 to 17 yield a partition of these phase portraits of the
class QsnSN11(B).

Furthermore, for each value of I in this diagram there corresponds a single phase
portrait; i.e. S and S′ are such that I (S) =I (S′), if and only if S and S′ are topologically
equivalent.

The bifurcation diagram for QsnSN11(B) has 631 parts which produce 226 topolog-
ically different phase portraits as described in Tables 12 to 32. The remaining 405 parts
do not produce any new phase portrait which was not included in the 226 previous ones.
The difference is basically the presence of a strong focus instead of a node and vice versa
and weak singular points.

The phase portraits having neither limit cycle nor graphic have been denoted
surrounded by parenthesis, for example (V77); the phase portraits having one, two or
three limit cycles have been denoted surrounded by brackets, for example [V57] possessing
one limit cycle, [[V107]] possessing two limit cycles, and [[[V109]]] possessing three limit
cycles; the phase portraits having one graphic have been denoted surrounded by {∗}
and those ones having two or more graphics have been denoted surrounded by {{∗}},
for example {5S17} and {{9S10}}, respectively. Moreover, the phase portraits having one
limit cycle and one (respectively more than one) graphic have been denoted surrounded
by [{∗}] (respectively [{{∗}}]), for example [{7S23}] (respectively [{{9S17}}]). In addition,
the phase portraits possessing a double limit cycle have been denoted surrounded by [∗]2

and those ones which possesses a double limit cycle and also a simple one have been
denoted surrounded by [[∗]2], for instance [10S1]

2 and [[10S2]
2], respectively.

Proof of Thm. 4.5.15. The mentioned result follows from the results in the previous sec-
tions and a careful analysis of the bifurcation diagrams given in Sec. 4.3, in Figs. 28 to
99, the definition of the invariants I j and their explicit values for the corresponding phase
portraits.
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We recall some facts regarding the equivalence relations used in this study: the
affine and time rescaling, C 1 and topological equivalences.

The coarsest one among these three is the topological equivalence and the finest
is the affine equivalence. We can have two systems which are topologically equivalent but
not C 1−equivalent. For example, we could have a system with a finite antisaddle which
is a structurally stable node and in another system with a focus, the two systems being
topologically equivalent but belonging to distinct C 1−equivalence classes, separated by
the surface (S6) on which the node turns into a focus.

In Tables 18 to 32 we list in the first column 226 parts with all the distinct phase
portraits of Figs. 15 to 21. Corresponding to each part listed in column one we have in
each row all parts whose phase portraits are topologically equivalent to the phase portrait
appearing in column one of the same row.

In the second column we set all the parts whose systems yield topologically equiv-
alent phase portraits to those in the first column, but which may have some algebro–
geometric features related to the position of the orbits. In the third column we present
all the parts which are topologically equivalent to the ones from the first column having
a focus instead of a node.

In the fourth (respectively fifth and sixth) column we list all parts whose phase
portraits have a node which is at a bifurcation point producing focus close to the node
in perturbations, a node–focus to shorten (respectively a finite weak singular point; and
possess an invariant curve not yielding a connection of separatrices).

The last column refers to other reasons associated to different geometric aspects
and they are described as follows:

(1) the degenerate phase portrait possesses either a weak finite singular point, or a
node–focus, or a cusp–type singularity, or an invariant line, or even a combination
of these elements;

(2) the phase portrait possesses a singularity of type
(̂1

2

)
E−H at infinity;

(3) the phase portraits correspond to symmetric parts of the bifurcation diagram.

Whenever phase portraits appear in a row in a specific column, the listing is done
according to the decreasing dimension of the parts where they appear, always placing the
lower dimensions on lower lines.
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Table 12 – Geometric classification for the family QsnSN11(B)

I1=



/0 & I2=



−1 & I3=



2 & I4=



2210 {{4.9L1}} ,
3101 {{7.9L1}} ,

3201 & I5=

 1 & I6=

{
sn(2) {{9S7}} ,
ĉp(2) {{2.9L1}} ,

2 {{9S1}} ,
3310 {{9S3}} ,
4201 {{9S5}} ,

3 & I4=



111110 (4.4L6),
111111 (4S34),
211011 (2.4L4),

211101 & I5=

{
1 (4S17),
2 (4S3),

211111 & I7=

{
0 (7S12),
2 (V13),

211210 (4S37),
211211 (V63),
212110 (7S21),
221101 (4S42),
221110 (7S1),
221201 (2S16),

221210 & I8=

{
n (V21),
y (V10),

311011 (4S50),
311110 (4S6),
311111 (2S17),

312110 & I5=

{
0 (V92),
1 (V4),

321021 (V95),
321110 (2S5),
311111 (V73),
321201 (V68),
331110 (V8),
411111 (V93),
421110 (V6),

1 & I3=A1 (next page),

[×] & I3=

{
2 {{P3}} ,
3 {{4.8L1}} ,

[∪] & I3=

{
1 {{P29}} ,
2 {{9.9L1}} ,

[)(] & I3=


2 {{5.8L1}} ,

3 & I14=

{
n {{8S1}} ,
y (8S2),
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Table 13 – Geometric classification for the family QsnSN11(B) (cont.)

I1=



A1[
I1= /0,
I2=1

]
& I3=



1 & I4=



11 & I5=



1 & I6=


sn(2) & I7=


0 & I13=

{
(0) (V33),
(1) [V60] ,

1 {7S8} ,
2 {V53} ,

ĉp(2) & I13=

{
(0) (2S2),
(1) [2S11] ,

2 & I13=

{
(0) (4S1),
(1) [4S38] ,

21 & I7=


0 & I13=

 (0) & I9=

{
n (P51),
y (V38),

(1) [V57] ,

1 & I13=

 (0) & I10=

{
n (V1),
y {P50} ,

(1) [V52],

22 & I6=


sn(2) & I7=


0 (5.9L7),
1 {P49} ,
2 {5.9L4} ,

ĉp(2) (P39),

31 & I10=

{
n (5.9L6),
y {5.9L5} ,

32 & I7=


0 (5.9L8),

1 & I13=

{
(0) (5.9L1),
(1) [5.9L3] ,

2 & I4=



1110 & I7=

{
0 {{4.9L6}} ,
1 {{4.9L4}} ,

1111 & I5=

 2 & I7=

{
0 (4.5L3),
2 {4.5L14} ,

3 {P20} ,

2100 & I7=

{
0 (7.9L9),
1 {7.9L7} ,

2101 & I5=



0 (9S24),

1 & I6=


sn(2) & I7=


0 {{9S29}} ,
1 {{7.9L3}} ,
2 {{9S19}} ,

ĉp(2) {{2.9L3}} ,
2 {{9S27}} ,

2110 & I12=

{
0 (4.5L8),
1 (4.5L4),

A2 (next page),
3 & I4=A3 (next page),
∞ {{P36}} ,
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Table 14 – Geometric classification for the family QsnSN11(B) (cont.)

I1=



A2I1= /0,
I2=1,
I3=2

& I4=



2111 & I5=



1 & I6=


sn(2) & I7=


0 (5S5),
1 {{4.9L7}} ,

2 & I11=

{
0 {5.7L11} ,
2 {{4.9L5}} ,

3 {5S33} ,
ĉp(2) (2.5L2),

2 & I7=


0 (4.5L1),

1 & I13=

 (0) & I11=

{
1 (4.5L18),
3 (5S4),

(1) [4.5L15],
2 {5S16},

3 & I7=


0 {P14} ,

1 & I13=

 (0) & I10=

{
n (4.5L10),
y {4.5L9} ,

(1) [4.5L13],

2120 & I7=

{
0 (5.7L1),
1 {5.7L3} ,

2121 & I11=



0 & I13=

{
(0) {5.7L7},
(1) [5.7L8] ,

1 & I5=

{
2 {{7.9L6}} ,
3 (5.7L9),

3 & I5=

{
2 {{9S28}} ,
3 {{7.9L8}} ,

2200 & I11=


0 {7.9L5} ,
1 {9S21} ,
2 (2.9L5),
3 (9S34),

2211 & I13=

 (0) & I12=

{
0 (5S8),
1 (5S28),

(1) [5S32] ,

3101 & I7=


0 {{9S35}} ,

1 & I13=

{
(0) {{9S10}} ,
(1) [{{9S16}}] ,

3111 & I5=


2 & I6=


sn(2) & I7=


0 (5S6),

2 & I13=

{
(0) (5S37),
(1) [5S34] ,

ĉp(2) {P7} ,
3 {5.7L4} ,

3120 & I5=


1 & I6=

 sn(2) & I7=

{
0 (5S2),
2 {5S14} ,

ĉp(2) (2.5L1),

2 & I10=


n (5S3),

y & I11=

{
0 {5.7L2} ,
2 {5S15} ,

A4 (next page),
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Table 15 – Geometric classification for the family QsnSN11(B) (cont.)

I1=



A4I1= /0,
I2=1,
I3=2

& I4=



3121 & I5=



1 & I6=

 sn(2) & I7=

{
1 {{9S33}} ,
3 {{9S20}} ,

ĉp(2) {{2.9L4}} ,

2 & I13=


(0) & I11=


0 {{7.9L4}} ,
1 (2.5L7),
2 {{9S22}} ,
3 {{9S30}} ,

(1) [2.5L5],

3 & I13=

 (0) & I10=

{
n (5S27),
y {5S17} ,

(1) [5S26] ,

3200 & I13=

 (0) & I11=

{
1 (9S12),
2 (9S37),

(1) [9S18] ,
3211 {5.7L6} ,

3221 & I13=

{
(0) (5S25),
(1) [5S23] ,

4111 & I5=

{
2 {2.5L4} ,
3 {5.7L5} ,

4120 & I7=


0 (5S1),

1 & I13=

{
(0) (5S9),
(1) [5S13] ,

4121 & I5=


2 & I7=


0 {{9S36}} ,

2 & I13=

{
(0) {{9S11}} ,
(1) [{{9S17}}] ,

3 & I13=

{
(0) (5S22),
(1) [5S20] ,

4211 {5S18} ,
5111 {5S19} ,

A3I1= /0,
I2=1,
I3=3

& I4=


110110 & I5=

 1 & I7=

{
0 (4S8),
2 {4S65} ,

2 {4.4L12} ,

111010 & I5=

{
0 (4S22),
1 (4S33),

A5 (next page),
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Table 16 – Geometric classification for the family QsnSN11(B) (cont.)

I1=



A5I1= /0,
I2=1,
I3=3

& I4=



111110 & I5=



0 & I7=

{
0 (7S5),
1 {7S7} ,

1 & I7=


0 {7.7L1} ,

1 & I13=

 (0) & I11=

{
1 (4S59),
3 (V14),

(1) [4S64] ,
2 (V55),

2 (4S40),

111111 & I7=



0 & I13=

{
(0) (7S17),
(1) [7S15] ,

1 & I13=


(0) {7S14}
(1) [{7S23}],
(2) [[{7S24}]]
(1)2 [{7.10L1}]2,

210110 & I5=



1 & I6=


sn(2) & I11=


0 {7S22} ,
1 {V102} ,
3 (V29),

ĉp(2) (2S3),

2 & I13=

 (0) & I11=

{
1 (4S70),
2 (4S2),

(1) [4S67] ,

211010 & I7=

{
0 (7S18),
1 {7S4} ,

211011 & I6=

{
sn(2) (7S9),

ĉp(2) {2.7L1} ,

211101 & I6=


sn(2) & I7=


0 (V35),
1 {7S6} ,
2 {V49} ,

ĉp(2) (2S1),

211110 & I5=


0 & I12=

{
0 (V51),
1 (V20),

1 & I13=

{
(0) (V90),
(1) [V101] ,

2 (V2),
A6 (next page),
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Table 17 – Geometric classification for the family QsnSN11(B) (cont.)

I1=



A6I1= /0,
I2=1,
I3=3

& I4=



211111 & I6=



sn(2) & I13=



(0) & I12=

{
0 (V71),
1 (V80),

(1) & I7=

{
n [V78] ,
y [V106] ,

(1)2 & I7=

{
n [10S1]

2 ,

y [10S3]
2 ,

(2) & I7=

{
n [[V107]] ,
y [[V110]] ,

(1),(1)2
[
[10S2]

2
]
,

(3) [[[V109]]] ,

ĉp(2) & I13=

{
(0) (2S15),
(1) [2S13] ,

221101 {7S13} ,

221111 & I13=

{
(0) (V77),
(1) [V75] ,

310110 & I7=


0 (V36),

2 & I13=

{
(0) (V112),
(1) [V104] ,

311010 & I6=


sn(2) & I7=


0 (V82),
1 {7S3} ,
2 {V26} ,

ĉp(2) (2S19),

311011 & I6=

{
sn(2) {7S11} ,
ĉp(2) (2S9),

311101 & I11=


0 [V48] ,
1 (V3),
2 (V39),

311111 & I13=

{
(0) (V65),
(1) [V72] ,

321011 (V59),

411010 & I7=


0 (V81),

1 & I13=

{
(0) (V23),
(1) [V25] ,

411011 (V62).
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4.5.1 Proof of the main theorem

The bifurcation diagram described in Sec. 4.3, plus Tables 12 to 17 of the geomet-
rical invariants distinguishing the 226 phase portraits, plus Tables 18 to 32 giving the
equivalences with the remaining phase portraits lead to the proof of the main statement
of Thm. 4.1.1.

As it was expected, in the class QsnSN11(B), all the unfoldings of the phase por-
traits corresponding to parts of volume regions yield a phase portrait of codimension one
from sets (A) and (C) (i.e. with a finite saddle–node sn(2) and with a infinite saddle–node
of type

(1
1

)
SN, respectively, see page 47 for the description of these sets and also Artés et

al. (2021) for more details). In Tables 33 and 34 we present the correspondence between
the phase portraits of the volume regions with their respective unfoldings of codimension
one. In such tables, on the first column we present all the topologically distinct phase
portraits of the volume regions from the class QsnSN11(B). On the second (respectively
third, fourth and fifth) column we present the phase portrait obtained after we perform
a perturbation of the respective phase portrait from the first column in order to split the
finite saddle–node sn(2) into a saddle plus a node (respectively to make the finite saddle–
node sn(2) disappears, to make the infinite saddle–node

(1
1

)
SN looses a saddle (respectively

a node) for the finite part). In all of these columns, when the phase portrait possesses a
limit cycle, we indicate the corresponding phase portrait which does not possess limit cycle
(for instance, V25 ≡V23(L.C.) means that the phase portrait V25 is topologically equivalent
to V23 with limit cycle). Moreover, we indicate Artés, Llibre and Rezende (2018) for the
notation and respective phase portraits of codimension one that appear as unfoldings on
these tables.
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Table 33 – The respective unfoldings of codimension one of the phase portraits corresponding
to parts of volume

Unfoldings of codimension one
Phase portrait from Splitting Disappearing Splitting Splitting

QsnSN11(B) sn(2) sn(2)
(1

1

)
SN (↓ s)

(1
1

)
SN (↓ n)

V1 U1
C,2 U1

C,1 U1
A,3 U1

A,12
V2 U1

C,23 U1
C,17 U1

A,32 U1
A,61

V3 U1
C,26 U1

C,16 U1
A,23 U1

A,66
V4 U1

C,7 U1
C,4 U1

A,15 U1
A,32

V6 U1
C,6 U1

C,4 U1
A,18 U1

A,27
V8 U1

C,10 U1
C,4 U1

A,17 U1
A,42

V10 U1
C,12 U1

C,4 U1
A,16 U1

A,52
V13 U1

C,14 U1
C,4 U1

A,14 U1
A,55

V14 U1
C,22 U1

C,17 U1
A,55 U1

A,61
V20 U1

C,30 U1
C,16 U1

A,51 U1
A,67

V21 U1
C,12 U1

C,4 U1
A,15 U1

A,53
V23 U1

C,18 U1
C,15 U1

A,28 U1
A,57

V25 ≡V23(L.C.) U1
C,18(L.C.) U1

C,15(L.C.) U1
A,28(L.C.) U1

A,57(L.C.)

V26 U1
C,24 U1

C,15(L.C.) U1
A,43 U1

A,64
V29 U1

C,20 U1
C,17 U1

A,42 U1
A,60

V33 U1
C,3 U1

C,1 U1
A,9 U1

A,11
V35 U1

C,31 U1
C,16 U1

A,36 U1
A,69

V36 U1
C,21 U1

C,17 U1
A,27 U1

A,60
V38 U1

C,2 U1
C,1 U1

A,2 U1
A,11

V39 U1
C,26 U1

C,16 U1
A,22 U1

A,65
V48 ≡V3(L.C.) U1

C,26(L.C.) U1
C,16(L.C.) U1

A,23(L.C.) U1
A,66(L.C.)

V49 U1
C,31 U1

C,16(L.C.) U1
A,37 U1

A,70
V51 U1

C,30 U1
C,15 U1

A,52 U1
A,68

V52 ≡V1(L.C.) U1
C,2(L.C.) U1

C,1(L.C.) U1
A,3(L.C.) U1

A,12(L.C.)

V53 U1
C,3 U1

C,1(L.C.) U1
A,10 U1

A,13
V55 U1

C,22 U1
C,15 U1

A,55 U1
A,62

V57 ≡V38(L.C.) U1
C,2(L.C.) U1

C,1(L.C.) U1
A,2(L.C.) U1

A,11(L.C.)

V59 U1
C,25 U1

C,15 U1
A,41 U1

A,63
V60 ≡V33(L.C.) U1

C,3(L.C.) U1
C,1(L.C.) U1

A,9(L.C.) U1
A,11(L.C.)

V62 U1
C,19 U1

C,15 U1
A,25 U1

A,56
V63 U1

C,13 U1
C,4 U1

A,16 U1
A,54

V65 U1
C,27 U1

C,16 U1
A,39 U1

A,65
V68 U1

C,11 U1
C,4 U1

A,18 U1
A,45



244
Chapter 4. Classification of quadratic systems with a finite saddle–node and an infinite

saddle–node (1,1)SN–(B)

Table 34 – The respective unfoldings of codimension one of the phase portraits corresponding
to parts of volume

Unfoldings of codimension one
Phase portrait from Splitting Disappearing Splitting Splitting

QsnSN11(B) sn(2) sn(2)
(1

1

)
SN (↓ s)

(1
1

)
SN (↓ n)

V71 U1
C,28 U1

C,15 U1
A,54 U1

A,68
V72 ≡V65(L.C.) U1

C,27(L.C.) U1
C,16(L.C.) U1

A,39(L.C.) U1
A,65(L.C.)

V73 U1
C,9 U1

C,4 U1
A,17 U1

A,41
V75 ≡V77(L.C.) U1

C,32(L.C.) U1
C,16(L.C.) U1

A,30(L.C.) U1
A,69(L.C.)

V77 U1
C,32 U1

C,16 U1
A,30 U1

A,69
V78 ≡V80(L.C.) U1

C,29(L.C.) U1
C,16(L.C.) U1

A,26(L.C.) U1
A,67(L.C.)

V80 U1
C,29 U1

C,16 U1
A,26 U1

A,67
V81 U1

C,18 U1
C,15 U1

A,27 U1
A,56

V82 U1
C,24 U1

C,15 U1
A,42 U1

A,63
V90 U1

C,23 U1
C,17 U1

A,31 U1
A,61

V92 U1
C,7 U1

C,4 U1
A,16 U1

A,33
V93 U1

C,5 U1
C,4 U1

A,18 U1
A,25

V95 U1
C,8 U1

C,4 U1
A,17 U1

A,35
V101 ≡V90(L.C.) U1

C,23(L.C.) U1
C,17(L.C.) U1

A,31(L.C.) U1
A,61(L.C.)

V102 U1
C,20 U1

C,17(L.C.) U1
A,43 U1

A,59
V104 ≡V112(L.C.) U1

C,21(L.C.) U1
C,17(L.C.) U1

A,28(L.C.) U1
A,58(L.C.)

V106 ≡V71(L.C.) U1
C,28(L.C.) U1

C,15(L.C.) U1
A,54(L.C.) U1

A,68(L.C.)

V107 ≡V80(2 L.C.) U1
C,29(2 L.C.) U1

C,16(2 L.C.) U1
A,26(2 L.C.) U1

A,67(2 L.C.)

V109 ≡V80(3 L.C.) U1
C,29(3 L.C.) U1

C,16(3 L.C.) U1
A,26(3 L.C.) U1

A,67(3 L.C.)

V110 ≡V71(2 L.C.) U1
C,28(2 L.C.) U1

C,15(2 L.C.) U1
A,54(2 L.C.) U1

A,68(2 L.C.)

V112 U1
C,21 U1

C,17 U1
A,28 U1

A,58
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CHAPTER

5
STRUCTURALLY UNSTABLE QUADRATIC

VECTOR FIELDS OF CODIMENSION TWO:
FAMILIES POSSESSING A FINITE

SADDLE–NODE AND AN INFINITE
SADDLE–NODE

In this chapter we present the topological classification of phase portraits belonging
to the sets (AB) and (AC), as we described at the end of Chap. 1.

5.1 Introduction and statement of the main results

In Chap. 1 we saw a little bit about the context of the classification of quadratic
systems modulo limit cycles according to the structural stability. In Chap. 3 and 4 we
have used a more geometrical and algebraic approach in order to study the entire bifur-
cation diagram of the families QsnSN11(A) and QsnSN11(B). In this chapter we use a
more topological approach. Our main goal is to obtain all the potential topological phase
portraits of the set (AB) and also all the potential phase portraits possessing the set of
saddle–nodes

{
sn(2)+

(1
1

)
SN
}

from the set (AC), and then study the realization of all of
them. Here we use effectively the results from Chap. 4 and also the results from Artés,
Rezende and Oliveira (2015). Therefore, with this chapter we contribute significantly to
the classification of quadratic systems of codimension two modulo limit cycles.

We point out that in each picture representing a phase portrait we only draw
the skeleton of separatrices (see page 45). Additionally, in what follows, instead of talking
about codimension one modulo limit cycles, we simply say codimension one∗. Analogously
we simply say codimension two∗ instead of talking about codimension two modulo limit
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cycles.

Let ∑
2
0 denote the set of all planar structurally stable vector fields and ∑

2
i (S) denote

the set of all structurally unstable vector fields X ∈ P2(R2) of codimension i, modulo
limit cycles belonging to the set S, where S is a set of vector fields with the same type
of instability modulo orientation. For instance, in Artés, Llibre and Rezende (2018) the
authors classified the sets ∑

2
1(A), ∑

2
1(B), ∑

2
1(C), and ∑

2
1(D). In Artés, Oliveira and Rezende

(2020) the authors classified the set ∑
2
2(AA) and in this study we consider the sets ∑

2
2(AB)

and ∑
2
2(AC), which denote, respectively, the set of all structurally unstable vector fields

X ∈ P2(R2) of codimension two∗ belonging to the sets (AB) and (AC).

Theorem 5.1.1. If X ∈ ∑
2
2(AB), then its phase portrait on the Poincaré disc is topo-

logically equivalent modulo orientation and modulo limit cycles to one of the 71 phase
portraits of Figs. 100 to 102.
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Figure 100 – Structurally unstable quadratic phase portraits of codimension two∗ of the set
(AB)
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Figure 101 – (Cont.) Structurally unstable quadratic phase portraits of codimension two∗ of
the set (AB)
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Figure 102 – (Cont.) Structurally unstable quadratic phase portraits of codimension two∗ of
the set (AB)
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Theorem 5.1.2. If X ∈ ∑
2
2(AC), then its phase portrait on the Poincaré disc is topo-

logically equivalent modulo orientation and modulo limit cycles to one of the 40 phase
portraits of Figs. 103 and 104.

Figure 103 – Structurally unstable quadratic phase portraits of codimension two∗ of the set
(AC)
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Figure 104 – (Cont.) Structurally unstable quadratic phase portraits of codimension two∗ of
the set (AC)

This chapter is organized as follows. In Sec. 5.2 we make a brief description of
phase portraits of codimensions zero and one that are needed in this chapter.

In Sec. 5.3 we prove Thm. 5.1.1 and in Sec. 5.4 we prove Thm. 5.1.2. In order to
verify the realization of the corresponding phase portraits we compute each one of them
with the numerical program P4 (see Artés et al. (2005)).

Once again, remember that by modulo limit cycles we mean all nests with limit
cycles are assimilated with the unique singular point (a focus) within such an nest, i.e.
we may say that the phase portraits are blind to limit cycles. Additionally, the phase
portraits are also blind with respect to distinguishing if a singular point is a focus or a
node, because these are not topological properties. But as the phase portraits are not
blind to detecting other important features like various types of graphics, in Sec. 5.5 we
discuss about the existence of graphics and also limit cycles in this study.

5.2 Quadratic vector fields of codimension zero and one

In this section we summarize all the needed results from the book of Artés, Llibre
and Rezende (2018). The following three results are the restriction of Thm. 1.1 from
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the mentioned book to the sets (A), (B), and (C), respectively. We denote by ∑
2
1(A)

(respectively ∑
2
1(B) and ∑

2
1(C)) the set of all structurally unstable vector fields X ∈P2(R2)

of codimension one∗ belonging to the set (A) (respectively (B) and (C)).

Theorem 5.2.1. If X ∈∑
2
1(A), then its phase portrait on the Poincaré disc is topologically

equivalent modulo orientation and modulo limit cycles to one of the 69 phase portraits of
Figs. 105 to 107, and all of them are realizable.

Figure 105 – Unstable quadratic systems of codimension one∗ of the set (A) (cases with a finite
saddle–node sn(2))
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Figure 106 – (Cont.) Unstable quadratic systems of codimension one∗ of the set (A) (cases with
a finite saddle–node sn(2))
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Figure 107 – (Cont.) Unstable quadratic systems of codimension one∗ of the set (A) (cases with
a finite saddle–node sn(2))

Remark 5.2.2. In Artés, Oliveira and Rezende (2020) the authors have proved that phase
portrait U1

A,49 from Fig. 1.4 of Artés, Llibre and Rezende (2018) is actually impossible.
Therefore, in our Figs. 105 to 107 we have simply “skipped” this phase portrait, since all
of the remaining ones are indeed realizable. We present this impossible phase portrait in
Fig. 112 and there we denote it by U1,I

A,49.
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Theorem 5.2.3. If X ∈∑
2
1(B), then its phase portrait on the Poincaré disc is topologically

equivalent modulo orientation and modulo limit cycles to one of the 40 phase portraits of
Figs. 108 and 109, and all of them are realizable.

Figure 108 – Unstable quadratic systems of codimension one∗ of the set (B) (cases with an
infinite saddle–node of type

(0
2

)
SN)
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Figure 109 – (Cont.) Unstable quadratic systems of codimension one∗ of the set (B) (cases with
an infinite saddle–node of type

(0
2

)
SN)

Theorem 5.2.4. If X ∈∑
2
1(C), then its phase portrait on the Poincaré disc is topologically

equivalent modulo orientation and modulo limit cycles to one of the 32 phase portraits of
Figs. 110 to 111, and all of them are realizable.
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Figure 110 – Unstable quadratic systems of codimension one∗ of the set (C) (cases with an
infinite saddle–node of type

(1
1

)
SN)



258
Chapter 5. Structurally unstable quadratic vector fields of codimension two: families

possessing a finite saddle–node and an infinite saddle–node

Figure 111 – (Cont.) Unstable quadratic systems of codimension one∗ of the set (C) (cases with
an infinite saddle–node of type

(1
1

)
SN)

Before we state our next theorem, consider the following remark.

Remark 5.2.5. Consider all the impossible phase portraits from the book Artés, Llibre
and Rezende (2018). In that book these phase portraits are described with a specific
notation. However, here we changed a little bit their notation in order to associate each
impossible phase portrait with the set in which such a phase portrait is proved to be
impossible, but we keep the respective indexes. For instance, in that book we have the
presence of the impossible phase portrait U1

I,105, which is a non–realizable case from the
set (A). Such a phase portrait is denoted here by U1,I

A,105. We also use this new notation
for phase portraits which are proved to be impossible in the sets (B) and (C).

The next result describes which phase portraits were discarded in the set (A) in
Artés, Llibre and Rezende (2018) because they were not realizable, but their role now is
important in the process of discarding impossible phase portraits of codimension two∗.

Theorem 5.2.6. In order to obtain a phase portrait of a structurally unstable quadratic
vector field of codimension one∗ from the set (A) it is necessary and sufficient to coalesce
a finite saddle and a finite node from a structurally stable quadratic vector field, which
leads to a finite saddle–node, and after some small perturbation it disappears. For the
vector fields in set (A), the following statements hold.

(a) In Table 35 we may see in the first and fifth columns the structurally stable quadratic
vector fields (following the notation present in Artés, Kooij and Llibre (1998) and
Artés, Llibre and Rezende (2018)) which, after the coalescence of singularities men-
tioned before, lead to at least one phase portrait of codimension one∗ from the set
(A).

(b) Inside this set (A), we have a total of 77 topologically distinct phase portraits ac-
cording to the different α–limit or ω–limit of the separatrices of their saddles, seven
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of which are proved non–realizable in Artés, Llibre and Rezende (2018) and another
one is proved non–realizable in Artés, Oliveira and Rezende (2020) (all of these eight
non–realizable phase portraits are given in Table 36). These numbers are given in
the second and sixth columns of Table 35.

(c) From these potential phase portraits, most of them are realizable. That is, even
though there is the topological possibility of their existence, some of them break
some analytical property which makes them not realizable inside quadratic vector
fields. We have a total of 69 realizable phase portraits. In the third and seventh
columns of Table 35 we present the number of realizable cases coming from the
bifurcation of each structurally stable phase portrait, and in the fourth and eighth
columns we present the bifurcated phase portraits of codimension one∗ associated
to each one.

(d) There are then eight non–realizable cases from the set (A) which we now collect in
a single picture (see Fig. 112) and denote by U1,I

A,k, where U1,I
A stands for Impossible

of codimension one∗ from the set (A) and k ∈ {1,2,3,49,103,104,105,106}, see Re-
mark 5.2.5. These phase portraits are all drawn in Artés, Llibre and Rezende (2018).
Anyway, we provide Table 36 in order to relate easily (giving also the page where
they appear first and the page they are proved to be impossible).
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Table 35 – Potential and realizable bifurcated phase portraits for a given structurally stable
quadratic vector field. In this table, SSQVF stands for structurally stable quadratic
vector fields (according to Artés, Kooij and Llibre (1998)), #p (respectively #r) for
the number of topologically potential (respectively realizable) phase portraits of codi-
mension one∗ bifurcated from the respective SSQVF, and SU1 for the respective
phase portraits of codimension one∗ (according to Artés, Llibre and Rezende (2018))

SSQVF #p #r SU1 SSQVF #p #r SU1
S2

2,1 1 1 U1
A,1 S2

10,6 2 2 U1
A,34,U1

A,35
S2

3,1 3 3 U1
A,2,U1

A,3,U1
A,4 S2

10,7 4 3 U1
A,36,U

1
A,37,U1

A,38
S2

3,2 1 1 U1
A,5 S2

10,8 1 1 U1
A,39

S2
3,3 1 1 U1

A,6 S2
10,9 2 2 U1

A,40,U1
A,41

S2
3,4 1 1 U1

A,7 S2
10,10 4 2 U1

A,42,U1
A,43

S2
3,5 3 3 U1

A,8,U1
A,9,U1

A,10 S2
10,11 1 1 U1

A,44
S2

5,1 3 3 U1
A,11,U1

A,12,U1
A,13 S2

10,12 2 2 U1
A,45,U

1
A,46

S2
7,1 1 1 U1

A,14 S2
10,13 4 4 U1

A,47,U1
A,48,U1

A,50
S2

7,2 2 2 U1
A,15,U

1
A,16 S2

10,14 4 3 U1
A,51,U

1
A,52,U

1
A,53

S2
7,3 1 1 U1

A,17 S2
10,15 1 1 U1

A,54
S2

7,4 1 1 U1
A,18 S2

10,16 1 1 U1
A,55

S2
9,1 1 1 U1

A,19 S2
12,1 2 2 U1

A,56,U
1
A,57

S2
9,2 1 1 U1

A,20 S2
12,2 3 3 U1

A,58,U
1
A,59,U

1
A,60

S2
9,3 1 1 U1

A,21 S2
12,3 2 2 U1

A,61,U
1
A,62

S2
10,1 3 3 U1

A,22,U1
A,23,U1

A,24 S2
12,4 3 2 U1

A,63,U
1
A,64

S2
10,2 2 2 U1

A,25,U
1
A,26 S2

12,5 2 2 U1
A,65,U

1
A,66

S2
10,3 3 2 U1

A,27,U1
A,28 S2

12,6 2 2 U1
A,67,U

1
A,68

S2
10,4 2 2 U1

A,29,U1
A,30 S2

12,7 3 2 U1
A,69,U

1
A,70

S2
10,5 3 3 U1

A,31,U1
A,32,U1

A,33

Table 36 – Non–realizable phase portraits from the set (A) which could bifurcate (if existed)
from structurally stable quadratic vector fields. The first and fourth columns indicate
the structurally stable quadratic vector field (SSQVF from Artés, Kooij and Llibre
(1998)) which suffers a bifurcation, the second and fifth columns indicate the pages
where they appear in Artés, Llibre and Rezende (2018) and the third and sixth
columns present the corresponding impossible phase portraits (remember that phase
portrait U1

A,49 from Fig. 1.4 of Artés, Llibre and Rezende (2018) is proved to be
impossible in Artés, Oliveira and Rezende (2020))

SSQVF Page Impossible SSQVF Page Impossible
S2

10,3 70 U1,I
A,1 S2

10,14 77 U1,I
A,3

S2
10,7 (73) 190 U1,I

A,103 S2
12,4 (80) 191 U1,I

A,105

S2
10,10 75; 191 U1,I

A,2;U1,I
A,104 S2

12,7 (82) 188 U1,I
A,106

S2
10,13 76 U1,I

A,49
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Figure 112 – Phase portraits of the non–realizable structurally unstable quadratic vector fields
of codimension one∗ from the set (A)

In what follows we present an analogous theorem regarding discarded phase por-
traits from the set (B) in Artés, Llibre and Rezende (2018).

Theorem 5.2.7. In order to obtain a phase portrait of a structurally unstable quadratic
vector field of codimension one∗ from the set (B) it is necessary and sufficient to coalesce
an infinite saddle with an infinite node from a structurally stable quadratic vector field,
which leads to an infinite saddle–node of type

(0
2

)
SN, and after some small perturbation

it disappears. For the vector fields in set (B), the following statements hold.

(a) In Table 37 we may see in the first and fifth columns the structurally stable quadratic
vector fields (following the notation present in Artés, Kooij and Llibre (1998) and
Artés, Llibre and Rezende (2018)) which, after the coalescence of singularities men-
tioned before, lead to at least one phase portrait of codimension one∗ from the set
(B).

(b) Inside this set (B), we have a total of 55 topologically distinct phase portraits ac-
cording to the different α–limit or ω–limit of the separatrices of their saddles, 15 of
which are non–realizable (they are given in Table 38). These numbers are given in
the second and sixth columns of Table 37.

(c) From these potential phase portraits, most of them are realizable. That is, even
though there is the topological possibility of their existence, some of them break
some analytical property which makes them not realizable inside quadratic vector
fields. We have a total of 40 realizable phase portraits. In the third and seventh
columns of Table 37 we present the number of realizable cases coming from the
bifurcation of each structurally stable phase portrait, and in the fourth and eighth
columns we present the bifurcated phase portraits of codimension one∗ associated
to each one.
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(d) There are then 15 non–realizable cases from the set (B) which we now collect in a
single picture (see Fig. 113) and denote by U1,I

B,k, where U1,I
B stands for Impossible of

codimension one∗ from the set (B) and

k ∈ {4,5,6,7,107,108,109,110,111,112,113,114,115,116,117},

see Rmk. 5.2.5. These phase portraits are all drawn in Artés, Llibre and Rezende
(2018). Anyway, we provide Table 38 in order to relate easily (giving also the page
where they appear first and the page they are proved to be impossible).

Table 37 – Potential and realizable bifurcated phase portraits for a given structurally stable
quadratic vector field. In this table, SSQVF stands for structurally stable quadratic
vector fields (according to Artés, Kooij and Llibre (1998)), #p (respectively #r) for
the number of topologically potential (respectively realizable) phase portraits of codi-
mension one∗ bifurcated from the respective SSQVF, and SU1 for the respective
phase portraits of codimension one∗ (according to Artés, Llibre and Rezende (2018))

SSQVF #p #r SU1 SSQVF #p #r SU1
S2

8,1 2 2 U1
B,1,U1

B,2 S2
10,12 2 1 U1

B,22
S2

9,1 2 2 U1
B,3,U1

B,4 S2
10,13 2 2 U1

B,23,U1
B,24

S2
9,2 2 2 U1

B,5,U
1
B,6 S2

10,14 2 2 U1
B,25,U

1
B,26

S2
9,3 2 2 U1

B,7,U1
B,8 S2

10,15 2 1 U1
B,27

S2
10,1 2 2 U1

B,9,U1
B,10 S2

10,16 1 1 U1
B,28

S2
10,2 2 1 U1

B,11 S2
11,1 1 1 U1

B,29
S2

10,3 2 1 U1
B,12 S2

11,2 2 2 U1
B,30,U1

B,31
S2

10,4 2 1 U1
B,13 S2

11,3 1 1 U1
B,32

S2
10,5 2 1 U1

B,14 S2
12,1 2 1 U1

B,33
S2

10,6 2 1 U1
B,15 S2

12,2 1 1 U1
B,34

S2
10,7 2 2 U1

B,16,U
1
B,17 S2

12,3 1 1 U1
B,35

S2
10,8 2 1 U1

B,18 S2
12,4 2 1 U1

B,36
S2

10,9 2 1 U1
B,19 S2

12,5 2 1 U1
B,37

S2
10,10 2 1 U1

B,20 S2
12,6 2 2 U1

B,38,U1
B,39

S2
10,11 2 1 U1

B,21 S2
12,7 2 1 U1

B,40
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Table 38 – Non–realizable phase portraits from the set (B) which could bifurcate (if existed)
from structurally stable quadratic vector fields. The first and fourth columns indicate
the structurally stable quadratic vector field (SSQVF from Artés, Kooij and Llibre
(1998)) which suffers a bifurcation, the second and fifth columns indicate the pages
where they appear in Artés, Llibre and Rezende (2018) and the third and sixth
columns present the corresponding impossible phase portraits

SSQVF Page Impossible SSQVF Page Impossible
S2

10,2 86;200 U1,I
B,107 S2

10,11 90;200 U1,I
B,115

S2
10,3 86;203 U1,I

B,108 S2
10,12 91;200 U1,I

B,116

S2
10,4 87;200 U1,I

B,109 S2
10,15 92;200 U1,I

B,117

S2
10,5 87;207 U1,I

B,110 S2
12,1 94 U1,I

B,4

S2
10,6 88;200 U1,I

B,111 S2
12,4 96 U1,I

B,5

S2
10,8 89;200 U1,I

B,112 S2
12,5 96 U1,I

B,6

S2
10,9 89;200 U1,I

B,113 S2
12,7 97 U1,I

B,7

S2
10,10 90;203 U1,I

B,114

Figure 113 – Phase portraits of the non–realizable structurally unstable quadratic vector fields
of codimension one∗ from the set (B)

Finally, we present an analogous theorem regarding discarded phase portraits from
the set (C) in Artés, Llibre and Rezende (2018).
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Theorem 5.2.8. In order to obtain a phase portrait of a structurally unstable quadratic
vector field of codimension one∗ from the set (C) it is necessary and sufficient to coalesce
a finite node (respectively a finite saddle) with an infinite saddle (respectively an infinite
node) from a structurally stable quadratic vector field, which leads to an infinite saddle–
node of type

(1
1

)
SN, and after some small perturbation, this saddle–node is split into

a finite saddle (respectively a finite node) and an infinite node (respectively an infinite
saddle). For the vector fields in set (C), the following statements hold.

(a) In Table 39 we may see in the first and fifth columns the structurally stable quadratic
vector fields (following the notation present in Artés, Kooij and Llibre (1998) and
Artés, Llibre and Rezende (2018)) which, after the coalescence of singularities men-
tioned before, lead to at least one phase portrait of codimension one∗ from the set
(C).

(b) Inside this set (C), we have a total of 34 topologically distinct phase portraits ac-
cording to the different α–limit or ω–limit of the separatrices of their saddles, two
of which are non–realizable (they are given in Table 40). These numbers are given
in the second and sixth columns of Table 39.

(c) From these potential phase portraits, only two of them are not realizable. That is,
even though there is the topological possibility of their existence, two of them break
some analytical property which makes them not realizable inside quadratic vector
fields. We have a total of 32 realizable phase portraits. In the third and seventh
columns of Table 39 we present the number of realizable cases coming from the
bifurcation of each structurally stable phase portrait, and in the fourth and eighth
columns we present the bifurcated phase portraits of codimension one∗ associated
to each one.

(d) There are then two non–realizable cases from the set (C) which we present in Fig. 114
and denote by U1,I

C,k, where U1,I
C stands for Impossible of codimension one∗ from the

set (C) and k ∈ {8,9}, see Rmk. 5.2.5. These phase portraits are all drawn in Artés,
Llibre and Rezende (2018). Anyway, we provide Table 40 in order to relate easily
(giving also the page where they appear first and the page they are proved to be
impossible).
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Table 39 – Potential and realizable bifurcated phase portraits for a given structurally stable
quadratic vector field. In this table, SSQVF stands for structurally stable quadratic
vector fields (according to Artés, Kooij and Llibre (1998)), #p (respectively #r) for
the number of topologically potential (respectively realizable) phase portraits of codi-
mension one∗ bifurcated from the respective SSQVF, and SU1 for the respective
phase portraits of codimension one∗ (according to Artés, Llibre and Rezende (2018))

SSQVF #p #r SU1 SSQVF #p #r SU1
S2

4,1 1 1 U1
C,1 S2

10,16 1 1 U1
C,14

S2
5,1 2 2 U1

C,2,U1
C,3 S2

11,1 1 1 U1
C,15

S2
9,1 1 1 U1

C,4 S2
11,2 1 1 U1

C,16
S2

10,2 2 1 U1
C,5 S2

11,3 1 1 U1
C,17

S2
10,3 1 1 U1

C,6 S2
12,1 2 2 U1

C,18,U1
C,19

S2
10,5 1 1 U1

C,7 S2
12,2 2 2 U1

C,20,U1
C,21

S2
10,6 1 1 U1

C,8 S2
12,3 2 2 U1

C,22,U1
C,23

S2
10,9 2 1 U1

C,9 S2
12,4 2 2 U1

C,24,U1
C,25

S2
10,10 1 1 U1

C,10 S2
12,5 2 2 U1

C,26,U
1
C,27

S2
10,12 1 1 U1

C,11 S2
12,6 3 3 U1

C,28,U1
C,29,U1

30
S2

10,14 1 1 U1
C,12 S2

12,7 2 2 U1
C,31,U1

C,32
S2

10,15 1 1 U1
C,13

Table 40 – Non–realizable phase portraits from the set (C) which could bifurcate (if existed) from
structurally stable quadratic vector fields. The first column indicates the structurally
stable quadratic vector field (SSQVF from Artés, Kooij and Llibre (1998)) which
suffers a bifurcation, the second column indicates the pages where they appear in
Artés, Llibre and Rezende (2018) and the third column present the corresponding
impossible phase portrait

SSQVF Page Impossible
S2

10,2 101 U1,I
C,8

S2
10,9 103 U1,I

C,9

Figure 114 – Phase portraits of the non–realizable structurally unstable quadratic vector fields
of codimension one∗ from the set (C)

An important result to study the impossibility of some phase portraits is Cor. 3.29
of Artés, Llibre and Rezende (2018), which we state as follows.

Corollary 5.2.9. If one of the structurally stable vector fields that bifurcates from a
potential structurally unstable vector field of codimension one∗ is not realizable, then this
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unstable system is also not realizable.

Our aim is to prove the following result, which is the analogous of the previous
corollary for the sets (AB) and (AC).

Theorem 5.2.10. If one of the phase portraits of codimension one∗ that bifurcates from
a potential codimension two∗ phase portrait from the sets (AB) and (AC) is not realizable,
then this latter phase portrait is also not realizable.

Proof. In what follows we prove the equivalent statement: If a potential codimension two∗

phase portrait X from the sets (AB) and (AC) is realizable, then the phase portraits of
codimension one∗ that bifurcates from X are also realizable.

We start from the set (AB). We already know that a realizable phase portrait belongs to
the set (AB) if and only if it has a finite saddle–node sn(2) and an infinite saddle–node
of type

(0
2

)
SN obtained by the coalescence of an infinite saddle with an infinite node.

In Artés, Rezende and Oliveira (2015) the authors classified the set of all real quadratic
polynomial differential systems with a finite semi–elemental saddle–node sn(2) located at
the origin of the plane and an infinite saddle–node of type

(0
2

)
SN located in the bisector

of first and third quadrants. Such a classification was done with respect to the normal
form

ẋ = gx2 +2hxy+(n−g−2h)y2,

ẏ = y+ lx2 +(2g+2h−2l−n)xy+(l−2g−2h+2n)y2,
(5.1)

where g, h, l, and n are real parameters. The parameter space of this normal form is a
four–dimensional space, which can be projectivized, as it was done in Artés, Rezende and
Oliveira (2015) and the authors proved that all generic phenomena occur for g = 1. In
the paper under discussion the authors used the Invariant Theory in order to construct
and study their bifurcation diagram. In Lemma 5.5 from the book Artés et al. (2021) the
authors proved that a necessary and sufficient condition for a generic quadratic system
to possess an infinite saddle–node of type

(0
2

)
SN and another simple infinite singularity is

that the comitants η and M̃ verify the conditions

η = 0, M̃ 6= 0,

for all the possible values of the parameters of the system. Additionally, in Table 5.1 from
that book the authors present the invariant polynomials which are responsible for the
number, kinds (real or/and complex), and multiplicities of finite singularities of a generic
quadratic system. In particular, they show that if the invariant polynomial D verifies the
condition

D= 0,
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then we have a finite singularity of multiplicity at least two. In fact, for systems (5.1)
calculations show that these systems verify such conditions, since for that normal form
(with g = 1) we obtain

η = 0, M̃ =−8(1+2h+ l−n)2(x− y)2 6= 0, D= 0.

Now, for g = 1, consider the perturbation of systems (5.1)

ẋ = (1− ε)x2 +2hxy+(n−1−2h)y2,

ẏ = y+ l(1− ε)x2 +((2+2h−n)(1− ε)−2l)xy+(l−2−2h+2n)y2,
(5.2)

where |ε| is small enough. For these systems, calculations show that

η = 4ε((1+2h+ l−n)2− (−1−2h+n)2
ε)2 6= 0, D= 0.

So, according to Lemma 5.5 from the mentioned book, we have three distinct infinite
singularities (all of them are real if ε > 0 and, if ε < 0, we have one real infinite singularity
and two complex ones). Additionally, as D= 0, perturbation (5.2) leaves unperturbed the
finite saddle–node.

On the other hand, for g = 1 consider the perturbation of systems (5.1)

ẋ =−ε + x2 +2hxy+(n−1−2h)y2,

ẏ =−εl + y+ lx2 +(2+2h−2l−n)xy+(l−2−2h+2n)y2,
(5.3)

where |ε| is small enough. For systems (5.3) we have

η = 0, M̃ =−8(1+2h+ l−n)2(x− y)2 6= 0,

and

D=−768ε(−1+(2(1+h)(−1+ l)+n)2
ε)2(1+2h+h2−n+n2((−1+ l)(1+2h+ l)+n)ε).

According to Lemma 5.5 mentioned before, the perturbation (5.3) has not affected the
infinite singular points and, according to Table 5.1 from the mentioned book, we no
longer have finite multiple singularities, i.e. the perturbation splits the origin into two
points (which are real or complex, depending on the sign of ε).

Therefore the result holds for the set (AB).

Now, consider the set (AC). A realizable phase portrait belongs to the set (AC) if and only if
it has a finite saddle–node sn(2) and an infinite saddle–node of type

(1
1

)
SN, obtained by the

coalescence of a finite saddle (respectively, finite node) with an infinite node (respectively,
infinite saddle). Remember that, as we discussed in page 26, the case in which the finite
saddle–node is the finite singularity that coalesces with an infinite singularity will be
considered in the future during the study of the set (CC). In Chap. 4 we classified the set
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of all real quadratic polynomial differential systems with a finite semi–elemental saddle–
node sn(2) located at the origin of the plane and an infinite saddle–node of type

(1
1

)
SN.

Such a classification was done with respect to the normal form (4.1), i.e.

ẋ = cx+ cy− cx2 +2hxy,

ẏ = ex+ ey− ex2 +2mxy,

where c, h, e, and m are real parameters, with the (non–degeneracity) condition eh 6= cm.
The parameter space of this normal form is a four–dimensional space, which can be
projectivized, as it was done in that chapter where we proved that all generic phenomena
occur for h = 1. In Lemma 5.2 from the book Artés et al. (2021) the authors proved that
a necessary and sufficient condition for a generic quadratic system to possess an infinite
saddle–node of type

(1
1

)
SN is that the comitants µ0 and µ1 verify the conditions

µ0 = 0, µ1 6= 0,

for all the possible values of the parameters of the system. Additionally, as in the previous
case, from Table 5.1 it is possible to conclude that if the invariant polynomial D verifies
the condition

D= 0,

then we have a finite singularity of multiplicity at least two. Indeed, for systems (4.1)
with h = 1 calculations show that such conditions are fulfilled, since

µ0 = 0, µ1 =−8(e− cm)2x 6= 0, D= 0.

Now, for h = 1, consider the perturbation of systems (4.1)

ẋ = cx+ cy− cx2 +2xy+ εy2,

ẏ = ex+ ey− ex2 +2mxy+ εy2,
(5.4)

where |ε| is small enough, calculations show that for systems (5.4) the comitant µ0 is
given by

µ0 = ε(−4(1−m)(e− cm)+(c− e)2
ε).

So the perturbation under consideration splits the infinite saddle–node
(1

1

)
SN. Addition-

ally, we conclude that the perturbation maintains the finite saddle–node, since for systems
(5.4) calculations show that the invariant polynomial D vanishes.

Finally, for h = 1 (as we did for the set (AB)), consider the perturbation of systems (4.1)

ẋ =−ε + cx+ cy− cx2 +2xy,

ẏ =−εe+ ex+ ey− ex2 +2mxy,
(5.5)

where |ε| is small enough. For systems (5.5) we have

µ0 = 0, µ1 =−4(e− cm)2x 6= 0,
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and

D=768ε(e− cm)3 (16ε
2(e−m)3−8(c−1)e(e− cm)2)

+768ε
2(e− cm)4 ((9c(3c−2)−13)e2 +4(11−9c)em−4m2) .

According to the results (from the book Artés et al. (2021)) presented before, we conclude
that systems (5.5) have the infinite saddle–node

(1
1

)
SN and do not have the finite saddle–

node sn(2), i.e. the perturbation (5.5) of systems (4.1) keeps the infinite saddle–node and
splits the finite saddle–node.

Then the theorem also holds for the set (AC), as we wanted to prove.

In Artés, Mota and Rezende (2021c) the authors present a conjecture, which is
the general case of the previous theorem.

Conjecture 5.2.11. If one of the phase portraits of codimension k that bifurcates from a
potential codimension k+1 phase portrait is not realizable, then this latter phase portrait
is also not realizable.

Remark 5.2.12. In Qualitative Theory of Ordinary Differential Equations is quite com-
mon to use the term “perturbation” to denote an infinitesimal modification of the param-
eters of a system such that a different phase portrait bifurcates from it. In this thesis we
use the term “evolution” in order to say that we “move a codimension one∗ phase portrait
to its border and detect which phase portraits are in the other side of this border”, so with
an evolution of a codimension one∗ phase portrait we produce a codimension two∗ phase
portrait. In this sense we mean that we modify (in a continuous way) the first system
inside the region of parameters in which it is defined up to the other side of the border
of this region where we obtain a system having one codimension more. In a certain way,
with this modification we are provoking an “evolution” of the first system. Note that we
contrast “perturbation” with “evolution”.

5.3 Proof of Thm. 5.1.1

In this section we present the proof of Thm. 5.1.1. More precisely, in Subsec-
tion 5.3.1 we obtain all the topologically potential phase portraits belonging to the set
(AB) (we have 110 topologically distinct phase portraits) and we prove that 39 of them
are impossible. In Subsec. 5.3.2 we show the realization of each one of the remaining 71
phase portraits.
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5.3.1 The topologically potential phase portraits

The main goal of this subsection is to obtain all the topologically potential phase
portraits from the set (AB).

We already know that in the set (AB), the unstable objects of codimension two∗

belong to the set of saddle–nodes
{

sn(2)+
(0

2

)
SN
}

. Considering all the different ways of
obtaining phase portraits belonging to the set (AB) of codimension two∗, we have to
consider all the possible ways of coalescing specific singular points in both sets (A) and
(B). However, as the sets (AB) and (BA) are the same (i.e. their elements are obtained
independently of the order of the evolution in the elements of the sets (A) or (B)), it is
necessary to consider only all the possible ways of obtaining an infinite saddle–node of
type

(0
2

)
SN in each element from the set (A) (phase portraits possessing a finite saddle–

node sn(2)). Anyway, in order to make things clear, in page 295 we discuss briefly how do
we should perform if we start by considering the set (B).

In order to obtain phase portraits from the set (AB) by starting our study from
the set (A), we have to consider Thm. 5.2.7 and also Lemma 3.25 from Artés, Llibre and
Rezende (2018) (regarding phase portraits from the set (B)) which we state as follows.

Lemma 5.3.1. Suppose that a polynomial vector field X of codimension one∗ has an
infinite saddle–node p of multiplicity two with ρ0 = (∂P/∂x+∂Q/∂y)p 6= 0 and first eigen-
value equal to zero.

(a) Any perturbation of X in a sufficiently small neighborhood of this point will produce
a structurally stable system (with one infinite saddle and one infinite node, or with
no singular points in the neighborhood) or a system topologically equivalent to X .

(b) Both possibilities of structurally stable system (with one saddle and one node at
infinity, or with no singular points in the neighborhood) are realizable.

Here we consider all 69 realizable structurally unstable quadratic vector fields of
codimension one∗ from the set (A). In order to obtain a phase portrait of codimension
two∗ belonging to the set (AB) starting from a phase portrait of codimension one∗ of
the set (A), we keep the existing finite saddle–node and using Lemma 5.3.1 we build an
infinite saddle–node of type

(0
2

)
SN by the coalescence of an infinite saddle with an infinite

node. On the other hand, from the phase portraits of codimension two∗ from the set
(AB), one can obtain phase portraits of codimension one∗ belonging to the set (A) after
perturbation of the infinite saddle–node

(0
2

)
SN into an infinite saddle and an infinite node,

or into complex singularities.

In what follows we denote by U2
AB,k, where U2

AB stands for structurally unstable
quadratic vector field of codimension two∗ from the set (AB) and k ∈ {1, . . . ,71}. The
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impossible phase portraits will be denoted by U2,I
AB, j, where U2,I

AB stands for Impossible of
codimension two∗ from the set (AB) and j ∈N. We need to enumerate also the impossible
phase portraits, not for the completeness of this classification, but for the future studies in
which someone will study codimension three∗ families. Just in the same way as impossible
codimension one∗ phase portraits are a crucial tool for the study of our families.

Note that phase portraits U1
A,1 to U1

A,13 cannot have a phase portrait possessing
an infinite saddle–node of type

(0
2

)
SN as an evolution, since each one of them has only

one infinite singularity. Analogously, phase portraits U1
A,14 to U1

A,18 cannot have a phase
portrait possessing an infinite saddle–node of type

(0
2

)
SN as an evolution, since each one

of them has three infinite singularities (which are nodes).

Phase portrait U1
A,19 has phase portraits U2

AB,1 and U2
AB,2 as evolution (see Fig. 115,

where the arrows starting from the phase portrait U1
A,19 and pointing towards the phase

portraits U2
AB,1 and U2

AB,2 indicate that these last two phase portraits are evolution of
the phase portrait U1

A,19). After bifurcation we get phase portrait U1
A,1, in both cases, by

making the infinite saddle–node
(0

2

)
SN disappears (split into two complex singularities). In

Fig. 115 we present the corresponding unfoldings on the right–hand side of the codimension
two∗ phase portraits.

Figure 115 – Unstable systems U2
AB,1 and U2

AB,2

Note that U1
A,19 possesses two pairs of infinite nodes and only one pair of infinite

saddles, so from U1
A,19 there are only two ways of obtaining a phase portrait possessing an

infinite saddle–node of type
(0

2

)
SN, and these cases are represented exactly by the phase

portraits U2
AB,1 and U2

AB,2 from Fig. 115. From now on, we will always omit the proof of
the nonexistence of other cases apart from those ones that we discuss by words or by
presenting in figures, since the argument of nonexistence is in general quite simple.

Before we continue with the study of the remaining codimension one∗ phase por-
traits, we highlight that it is very important to have the “structure” of all the figures
very well understood, since the proofs of Thm. 5.1.1 and Thm. 5.1.2 require and are done
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based on several figures. So, in this paragraph we discuss about it. In the next cases, when
from a codimension one∗ phase portrait we have more than one codimension two∗ phase
portraits which are evolution of the codimension one∗ phase portrait, we will present fig-
ures with the same “structure” of Fig. 115. More precisely, all the arrows that appear
starting from an unstable phase portrait of codimension one∗ will have the same meaning
as explained for Fig. 115, i.e., they will point towards the phase portraits of codimension
two∗ which are evolution of the respective codimension one∗ phase portrait. Moreover, we
will present the corresponding unfoldings on the right–hand side of the codimension two∗

phase portraits. On the other hand, when from a codimension one∗ phase portrait we have
only one codimension two∗ phase portrait which is an evolution of the codimension one∗

phase portrait, we will present figures like Fig. 121, for instance, where on the left–hand
side we have a codimension one∗ phase portrait, on the center we have the correspond-
ing codimension two∗ phase portrait and on the right–hand side we have the respective
unfolding of the codimension two∗ phase portrait.

Phase portrait U1
A,20 has phase portraits U2

AB,3 and U2
AB,4 as evolution (see Fig. 116).

After bifurcation we get phase portrait U1
A,1, in both cases, by making the infinite saddle–

node
(0

2

)
SN disappears.

Figure 116 – Unstable systems U2
AB,3 and U2

AB,4

Phase portrait U1
A,21 has phase portraits U2

AB,5 and U2
AB,6 as evolution (see Fig. 117).

After bifurcation we get phase portrait U1
A,1, in both cases, by making the infinite saddle–

node
(0

2

)
SN disappears.

Phase portrait U1
A,22 has phase portraits U2

AB,7 and U2
AB,8 as evolution (see Fig. 118).

After bifurcation we get phase portrait U1
A,2, in both cases, by making the infinite saddle–

node
(0

2

)
SN disappears.

Phase portrait U1
A,23 has phase portraits U2

AB,9 and U2
AB,10 as evolution (see Fig. 119).

After bifurcation we get phase portrait U1
A,3, in both cases, by making the infinite saddle–

node
(0

2

)
SN disappears.
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Figure 117 – Unstable systems U2
AB,5 and U2

AB,6

Figure 118 – Unstable systems U2
AB,7 and U2

AB,8

Figure 119 – Unstable systems U2
AB,9 and U2

AB,10

Phase portrait U1
A,24 has phase portraits U2

AB,11 and U2
AB,12 as evolution (see Fig. 120).

After bifurcation we get phase portrait U1
A,4, in both cases, by making the infinite saddle–

node
(0

2

)
SN disappears.

Phase portrait U1
A,25 has phase portrait U2

AB,13 as an evolution (see Fig. 121). Af-



274
Chapter 5. Structurally unstable quadratic vector fields of codimension two: families

possessing a finite saddle–node and an infinite saddle–node

Figure 120 – Unstable systems U2
AB,11 and U2

AB,12

ter bifurcation we get phase portrait U1
A,5, by making the infinite saddle–node

(0
2

)
SN

disappears. Moreover, U1
A,25 has the impossible phase portrait U2,I

AB,1 as an evolution. By
Thm. 5.2.10 such a phase portrait is impossible because by splitting the original finite
saddle–node into a saddle and a node we obtain the impossible phase portrait U1,I

B,107 of
codimension one∗, see Fig. 122. We observe that, in the set (A), U2,I

AB,1 unfolds in U1
A,5.

Figure 121 – Unstable system U2
AB,13

Figure 122 – Impossible unstable phase portrait U2,I
AB,1

Phase portrait U1
A,26 has phase portrait U2

AB,14 as an evolution (see Fig. 123). Af-
ter bifurcation we get phase portrait U1

A,5, by making the infinite saddle–node
(0

2

)
SN

disappears. Moreover, U1
A,26 has the impossible phase portrait U2,I

AB,2 as an evolution. By
Thm. 5.2.10 such a phase portrait is impossible because by splitting the original finite
saddle–node into a saddle and a node we obtain the impossible phase portrait U1,I

B,107 of
codimension one∗, see Fig. 124. We observe that, in the set (A), U2,I

AB,2 unfolds in U1
A,5.

Phase portrait U1
A,27 has phase portrait U2

AB,15 as an evolution (see Fig. 125). Af-
ter bifurcation we get phase portrait U1

A,2, by making the infinite saddle–node
(0

2

)
SN
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Figure 123 – Unstable system U2
AB,14

Figure 124 – Impossible unstable phase portrait U2,I
AB,2

disappears. Moreover, U1
A,27 has the impossible phase portrait U2,I

AB,3 as an evolution. By
Thm. 5.2.10 such a phase portrait is impossible because by splitting the original finite
saddle–node into a saddle and a node we obtain the impossible phase portrait U1,I

B,108 of
codimension one∗, see Fig. 126. We observe that, in the set (A), U2,I

AB,3 unfolds in U1
A,2.

Figure 125 – Unstable system U2
AB,15

Figure 126 – Impossible unstable phase portrait U2,I
AB,3

Phase portrait U1
A,28 has phase portrait U2

AB,16 as an evolution (see Fig. 127). Af-
ter bifurcation we get phase portrait U1

A,3, by making the infinite saddle–node
(0

2

)
SN

disappears. Moreover, U1
A,28 has the impossible phase portrait U2,I

AB,4 as an evolution. By
Thm. 5.2.10 such a phase portrait is impossible because by splitting the original finite
saddle–node into a saddle and a node we obtain the impossible phase portrait U1,I

B,108 of
codimension one∗, see Fig. 128. We observe that, in the set (A), U2,I

AB,4 unfolds in U1
A,3.
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Figure 127 – Unstable system U2
AB,16

Figure 128 – Impossible unstable phase portrait U2,I
AB,4

Phase portrait U1
A,29 has phase portrait U2

AB,17 as an evolution (see Fig. 129). Af-
ter bifurcation we get phase portrait U1

A,5, by making the infinite saddle–node
(0

2

)
SN

disappears. Moreover, U1
A,29 has the impossible phase portrait U2,I

AB,5 as an evolution. By
Thm. 5.2.10 such a phase portrait is impossible because by splitting the original finite
saddle–node into a saddle and a node we obtain the impossible phase portrait U1,I

B,109 of
codimension one∗, see Fig. 130. We observe that, in the set (A), U2,I

AB,5 unfolds in U1
A,5.

Figure 129 – Unstable system U2
AB,17

Figure 130 – Impossible unstable phase portrait U2,I
AB,5

Phase portrait U1
A,30 has phase portrait U2

AB,18 as an evolution (see Fig. 131). Af-
ter bifurcation we get phase portrait U1

A,5, by making the infinite saddle–node
(0

2

)
SN

disappears. Moreover, U1
A,30 has the impossible phase portrait U2,I

AB,6 as an evolution. By
Thm. 5.2.10 such a phase portrait is impossible because by splitting the original finite



5.3. Proof of Thm. 5.1.1 277

saddle–node into a saddle and a node we obtain the impossible phase portrait U1,I
B,109 of

codimension one∗, see Fig. 132. We observe that, in the set (A), U2,I
AB,6 unfolds in U1

A,5.

Figure 131 – Unstable system U2
AB,18

Figure 132 – Impossible unstable phase portrait U2,I
AB,6

Phase portrait U1
A,31 has phase portrait U2

AB,19 as an evolution (see Fig. 133). Af-
ter bifurcation we get phase portrait U1

A,2, by making the infinite saddle–node
(0

2

)
SN

disappears. Moreover, U1
A,31 has the impossible phase portrait U2,I

AB,7 as an evolution. By
Thm. 5.2.10 such a phase portrait is impossible because by splitting the original finite
saddle–node into a saddle and a node we obtain the impossible phase portrait U1,I

B,110 of
codimension one∗, see Fig. 134. We observe that, in the set (A), U2,I

AB,7 unfolds in U1
A,2.

Figure 133 – Unstable system U2
AB,19

Figure 134 – Impossible unstable phase portrait U2,I
AB,7

Phase portrait U1
A,32 has phase portrait U2

AB,20 as an evolution (see Fig. 135). Af-
ter bifurcation we get phase portrait U1

A,3, by making the infinite saddle–node
(0

2

)
SN
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disappears. Moreover, U1
A,32 has the impossible phase portrait U2,I

AB,8 as an evolution. By
Thm. 5.2.10 such a phase portrait is impossible because by splitting the original finite
saddle–node into a saddle and a node we obtain the impossible phase portrait U1,I

B,110 of
codimension one∗, see Fig. 136. We observe that, in the set (A), U2,I

AB,8 unfolds in U1
A,3.

Figure 135 – Unstable system U2
AB,20

Figure 136 – Impossible unstable phase portrait U2,I
AB,8

Phase portrait U1
A,33 has phase portrait U2

AB,21 as an evolution (see Fig. 137). Af-
ter bifurcation we get phase portrait U1

A,4, by making the infinite saddle–node
(0

2

)
SN

disappears. Moreover, U1
A,33 has the impossible phase portrait U2,I

AB,9 as an evolution. By
Thm. 5.2.10 such a phase portrait is impossible because by splitting the original finite
saddle–node into a saddle and a node we obtain the impossible phase portrait U1,I

B,110 of
codimension one∗, see Fig. 138. We observe that, in the set (A), U2,I

AB,9 unfolds in U1
A,4.

Figure 137 – Unstable system U2
AB,21

Figure 138 – Impossible unstable phase portrait U2,I
AB,9
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Phase portrait U1
A,34 has phase portrait U2

AB,22 as an evolution (see Fig. 139). Af-
ter bifurcation we get phase portrait U1

A,5, by making the infinite saddle–node
(0

2

)
SN

disappears. Moreover, U1
A,34 has the impossible phase portrait U2,I

AB,10 as an evolution. By
Thm. 5.2.10 such a phase portrait is impossible because by splitting the original finite
saddle–node into a saddle and a node we obtain the impossible phase portrait U1,I

B,111 of
codimension one∗, see Fig. 140. We observe that, in the set (A), U2,I

AB,10 unfolds in U1
A,5.

Figure 139 – Unstable system U2
AB,22

Figure 140 – Impossible unstable phase portrait U2,I
AB,10

Phase portrait U1
A,35 has phase portrait U2

AB,23 as an evolution (see Fig. 141). Af-
ter bifurcation we get phase portrait U1

A,5, by making the infinite saddle–node
(0

2

)
SN

disappears. Moreover, U1
A,35 has the impossible phase portrait U2,I

AB,11 as an evolution. By
Thm. 5.2.10 such a phase portrait is impossible because by splitting the original finite
saddle–node into a saddle and a node we obtain the impossible phase portrait U1,I

B,111 of
codimension one∗, see Fig. 142. We observe that, in the set (A), U2,I

AB,11 unfolds in U1
A,5.

Figure 141 – Unstable system U2
AB,23

Phase portrait U1
A,36 has phase portraits U2

AB,24 and U2
AB,25 as evolution (see Fig. 143).

After bifurcation we get phase portrait U1
A,9, in both cases, by making the infinite saddle–

node
(0

2

)
SN disappears.
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Figure 142 – Impossible unstable phase portrait U2,I
AB,11

Figure 143 – Unstable systems U2
AB,24 and U2

AB,25

Phase portrait U1
A,37 has phase portraits U2

AB,26 and U2
AB,27 as evolution (see Fig. 144).

After bifurcation we get phase portrait U1
A,10, in both cases, by making the infinite saddle–

node
(0

2

)
SN disappears.

Figure 144 – Unstable systems U2
AB,26 and U2

AB,27

Phase portrait U1
A,38 has phase portraits U2

AB,28 and U2
AB,29 as evolution (see Fig. 145).

After bifurcation we get phase portrait U1
A,8, in both cases, by making the infinite saddle–

node
(0

2

)
SN disappears.

Phase portrait U1
A,39 has phase portrait U2

AB,30 as an evolution (see Fig. 146). Af-
ter bifurcation we get phase portrait U1

A,6, by making the infinite saddle–node
(0

2

)
SN

disappears. Moreover, U1
A,39 has the impossible phase portrait U2,I

AB,12 as an evolution. By



5.3. Proof of Thm. 5.1.1 281

Figure 145 – Unstable systems U2
AB,28 and U2

AB,29

Thm. 5.2.10 such a phase portrait is impossible because by splitting the original finite
saddle–node into a saddle and a node we obtain the impossible phase portrait U1,I

B,112 of
codimension one∗, see Fig. 147. We observe that, in the set (A), U2,I

AB,12 unfolds in U1
A,6.

Figure 146 – Unstable system U2
AB,30

Figure 147 – Impossible unstable phase portrait U2,I
AB,12

Phase portrait U1
A,40 has phase portrait U2

AB,31 as an evolution (see Fig. 148). Af-
ter bifurcation we get phase portrait U1

A,6, by making the infinite saddle–node
(0

2

)
SN

disappears. Moreover, U1
A,40 has the impossible phase portrait U2,I

AB,13 as an evolution. By
Thm. 5.2.10 such a phase portrait is impossible because by splitting the original finite
saddle–node into a saddle and a node we obtain the impossible phase portrait U1,I

B,113 of
codimension one∗, see Fig. 149. We observe that, in the set (A), U2,I

AB,13 unfolds in U1
A,6.

Phase portrait U1
A,41 has phase portrait U2

AB,32 as an evolution (see Fig. 150). Af-
ter bifurcation we get phase portrait U1

A,6, by making the infinite saddle–node
(0

2

)
SN

disappears. Moreover, U1
A,41 has the impossible phase portrait U2,I

AB,14 as an evolution. By
Thm. 5.2.10 such a phase portrait is impossible because by splitting the original finite
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Figure 148 – Unstable system U2
AB,31

Figure 149 – Impossible unstable phase portrait U2,I
AB,13

saddle–node into a saddle and a node we obtain the impossible phase portrait U1,I
B,113 of

codimension one∗, see Fig. 151. We observe that, in the set (A), U2,I
AB,14 unfolds in U1

A,6.

Figure 150 – Unstable system U2
AB,32

Figure 151 – Impossible unstable phase portrait U2,I
AB,14

Phase portrait U1
A,42 has phase portrait U2

AB,33 as an evolution (see Fig. 152). Af-
ter bifurcation we get phase portrait U1

A,9, by making the infinite saddle–node
(0

2

)
SN

disappears. Moreover, U1
A,42 has the impossible phase portrait U2,I

AB,15 as an evolution. By
Thm. 5.2.10 such a phase portrait is impossible because by splitting the original finite
saddle–node into a saddle and a node we obtain the impossible phase portrait U1,I

B,114 of
codimension one∗, see Fig. 153. We observe that, in the set (A), U2,I

AB,15 unfolds in U1
A,9.

Phase portrait U1
A,43 has phase portrait U2

AB,34 as an evolution (see Fig. 154). Af-
ter bifurcation we get phase portrait U1

A,10, by making the infinite saddle–node
(0

2

)
SN
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Figure 152 – Unstable system U2
AB,33

Figure 153 – Impossible unstable phase portrait U2,I
AB,15

disappears. Moreover, U1
A,43 has the impossible phase portrait U2,I

AB,16 as an evolution. By
Thm. 5.2.10 such a phase portrait is impossible because by splitting the original finite
saddle–node into a saddle and a node we obtain the impossible phase portrait U1,I

B,114 of
codimension one∗, see Fig. 155. We observe that, in the set (A), U2,I

AB,16 unfolds in U1
A,10.

Figure 154 – Unstable system U2
AB,34

Figure 155 – Impossible unstable phase portrait U2,I
AB,16

Phase portrait U1
A,44 has phase portrait U2

AB,35 as an evolution (see Fig. 156). Af-
ter bifurcation we get phase portrait U1

A,6, by making the infinite saddle–node
(0

2

)
SN

disappears. Moreover, U1
A,44 has the impossible phase portrait U2,I

AB,17 as an evolution. By
Thm. 5.2.10 such a phase portrait is impossible because by splitting the original finite
saddle–node into a saddle and a node we obtain the impossible phase portrait U1,I

B,115 of
codimension one∗, see Fig. 157. We observe that, in the set (A), U2,I

AB,17 unfolds in U1
A,6.
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Figure 156 – Unstable system U2
AB,35

Figure 157 – Impossible unstable phase portrait U2,I
AB,17

Phase portrait U1
A,45 has phase portrait U2

AB,36 as an evolution (see Fig. 158). Af-
ter bifurcation we get phase portrait U1

A,6, by making the infinite saddle–node
(0

2

)
SN

disappears. Moreover, U1
A,45 has the impossible phase portrait U2,I

AB,18 as an evolution. By
Thm. 5.2.10 such a phase portrait is impossible because by splitting the original finite
saddle–node into a saddle and a node we obtain the impossible phase portrait U1,I

B,116 of
codimension one∗, see Fig. 159. We observe that, in the set (A), U2,I

AB,18 unfolds in U1
A,6.

Figure 158 – Unstable system U2
AB,36

Figure 159 – Impossible unstable phase portrait U2,I
AB,18

Phase portrait U1
A,46 has phase portrait U2

AB,37 as an evolution (see Fig. 160). Af-
ter bifurcation we get phase portrait U1

A,6, by making the infinite saddle–node
(0

2

)
SN

disappears. Moreover, U1
A,46 has the impossible phase portrait U2,I

AB,19 as an evolution. By
Thm. 5.2.10 such a phase portrait is impossible because by splitting the original finite
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saddle–node into a saddle and a node we obtain the impossible phase portrait U1,I
B,116 of

codimension one∗, see Fig. 161. We observe that, in the set (A), U2,I
AB,19 unfolds in U1

A,6.

Figure 160 – Unstable system U2
AB,37

Figure 161 – Impossible unstable phase portrait U2,I
AB,19

Phase portrait U1
A,47 has phase portraits U2

AB,38 and U2
AB,39 as evolution (see Fig. 162).

After bifurcation we get phase portrait U1
A,7, in both cases, by making the infinite saddle–

node
(0

2

)
SN disappears.

Figure 162 – Unstable systems U2
AB,38 and U2

AB,39

Phase portrait U1
A,48 has phase portraits U2

AB,40 and U2
AB,41 as evolution (see Fig. 163).

After bifurcation we get phase portrait U1
A,7, in both cases, by making the infinite saddle–

node
(0

2

)
SN disappears.

Phase portrait U1
A,50 has phase portraits U2

AB,42 and U2
AB,43 as evolution (see Fig. 164).

After bifurcation we get phase portrait U1
A,7, in both cases, by making the infinite saddle–

node
(0

2

)
SN disappears.
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Figure 163 – Unstable systems U2
AB,40 and U2

AB,41

Figure 164 – Unstable systems U2
AB,42 and U2

AB,43

Phase portrait U1
A,51 has phase portraits U2

AB,44 and U2
AB,45 as evolution (see Fig. 165).

After bifurcation we get phase portrait U1
A,7, in both cases, by making the infinite saddle–

node
(0

2

)
SN disappears.

Figure 165 – Unstable systems U2
AB,44 and U2

AB,45

Phase portrait U1
A,52 has phase portraits U2

AB,46 and U2
AB,47 as evolution (see Fig. 166).
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After bifurcation we get phase portrait U1
A,7, in both cases, by making the infinite saddle–

node
(0

2

)
SN disappears.

Figure 166 – Unstable systems U2
AB,46 and U2

AB,47

Phase portrait U1
A,53 has phase portraits U2

AB,48 and U2
AB,49 as evolution (see Fig. 167).

After bifurcation we get phase portrait U1
A,7, in both cases, by making the infinite saddle–

node
(0

2

)
SN disappears.

Figure 167 – Unstable systems U2
AB,48 and U2

AB,49

Phase portrait U1
A,54 has phase portrait U2

AB,50 as an evolution (see Fig. 168). Af-
ter bifurcation we get phase portrait U1

A,6, by making the infinite saddle–node
(0

2

)
SN

disappears. Moreover, U1
A,54 has the impossible phase portrait U2,I

AB,20 as an evolution. By
Thm. 5.2.10 such a phase portrait is impossible because by splitting the original finite
saddle–node into a saddle and a node we obtain the impossible phase portrait U1,I

B,117 of
codimension one∗, see Fig. 169. We observe that, in the set (A), U2,I

AB,20 unfolds in U1
A,6.

Phase portrait U1
A,55 has phase portraits U2

AB,51 and U2
AB,52 as evolution (see Fig. 170).

After bifurcation we get phase portrait U1
A,7, in both cases, by making the infinite saddle–

node
(0

2

)
SN disappears.
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Figure 168 – Unstable system U2
AB,50

Figure 169 – Impossible unstable phase portrait U2,I
AB,20

Figure 170 – Unstable systems U2
AB,51 and U2

AB,52

Phase portrait U1
A,56 has phase portrait U2

AB,53 as an evolution (see Fig. 171). After
bifurcation we get phase portrait U1

A,11, modulo limit cycle, by making the infinite saddle–
node

(0
2

)
SN disappears. Moreover, U1

A,56 has the impossible phase portrait U2,I
AB,21 as an

evolution. By Thm. 5.2.10 such a phase portrait is impossible because by splitting the
original finite saddle–node into a saddle and a node we obtain the impossible phase
portrait U1,I

B,4 of codimension one∗, see Fig. 172. We observe that, in the set (A), U2,I
AB,21

also unfolds in an impossible phase portrait because after bifurcation we would get a
limit cycle surrounding more than one finite singular points, and this is not possible in
quadratic systems (see Lemma 3.14 from Artés, Llibre and Rezende (2018)).

Phase portrait U1
A,57 has phase portrait U2

AB,54 as an evolution (see Fig. 173). After
bifurcation we get phase portrait U1

A,12, modulo limit cycle, by making the infinite saddle–
node

(0
2

)
SN disappears. Moreover, U1

A,57 has the impossible phase portrait U2,I
AB,22 as an

evolution. By Thm. 5.2.10 such a phase portrait is impossible because by splitting the
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Figure 171 – Unstable system U2
AB,53

Figure 172 – Impossible unstable phase portrait U2,I
AB,21

original finite saddle–node into a saddle and a node we obtain the impossible phase
portrait U1,I

B,4 of codimension one∗, see Fig. 174. We observe that, in the set (A), U2,I
AB,22

also unfolds in an impossible phase portrait, as in U2,I
AB,21.

Figure 173 – Unstable system U2
AB,54

Figure 174 – Impossible unstable phase portrait U2,I
AB,22

Phase portrait U1
A,58 has phase portrait U2

AB,55 as an evolution (see Fig. 175). After
bifurcation we get phase portrait U1

A,12, by making the infinite saddle–node
(0

2

)
SN disap-

pears. Moreover, U1
A,58 has a second phase portrait as an evolution which is not presented

since it is topologically equivalent to U2
AB,55.

Phase portrait U1
A,59 has phase portraits U2

AB,56 and U2
AB,57 as evolution (see Fig. 176).

After bifurcation we get phase portrait U1
A,13, in both cases, by making the infinite saddle–

node
(0

2

)
SN disappears.
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Figure 175 – Unstable system U2
AB,55

Figure 176 – Unstable systems U2
AB,56 and U2

AB,57

Phase portrait U1
A,60 has phase portrait U2

AB,58 as an evolution (see Fig. 177). After
bifurcation we get phase portrait U1

A,11, by making the infinite saddle–node
(0

2

)
SN disap-

pears. Moreover, U1
A,60 has a second phase portrait as an evolution which is not presented

since it is topologically equivalent to U2
AB,58.

Figure 177 – Unstable system U2
AB,58

Phase portrait U1
A,61 has phase portraits U2

AB,59 and U2
AB,60 as evolution (see Fig. 178).

After bifurcation we get phase portraits U1
A,11 and U1

A,12, respectively, by making the infi-
nite saddle–node

(0
2

)
SN disappears.

Phase portrait U1
A,62 has phase portrait U2

AB,61 as an evolution (see Fig. 179). After
bifurcation we get phase portrait U1

A,13, by making the infinite saddle–node
(0

2

)
SN disap-

pears. Moreover, U1
A,62 has a second phase portrait as an evolution which is not presented

since it is topologically equivalent to U2
AB,61.

Phase portrait U1
A,63 has phase portrait U2

AB,62 as an evolution (see Fig. 180). After
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Figure 178 – Unstable systems U2
AB,59 and U2

AB,60

Figure 179 – Unstable system U2
AB,61

bifurcation we get phase portrait U1
A,11, modulo limit cycle, by making the infinite saddle–

node
(0

2

)
SN disappears. Moreover, U1

A,63 has the impossible phase portrait U2,I
AB,23 as an

evolution. By Thm. 5.2.10 such a phase portrait is impossible because by splitting the
original finite saddle–node into a saddle and a node we obtain the impossible phase
portrait U1,I

B,5 of codimension one∗, see Fig. 181. We observe that, in the set (A), U2,I
AB,23

also unfolds in an impossible phase portrait, as in U2,I
AB,21.

Figure 180 – Unstable system U2
AB,62

Figure 181 – Impossible unstable phase portrait U2,I
AB,23
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Phase portrait U1
A,64 has phase portrait U2

AB,63 as an evolution (see Fig. 182). After
bifurcation we get phase portrait U1

A,13, modulo limit cycle, by making the infinite saddle–
node

(0
2

)
SN disappears. Moreover, U1

A,64 has the impossible phase portrait U2,I
AB,24 as an

evolution. By Thm. 5.2.10 such a phase portrait is impossible because by splitting the
original finite saddle–node into a saddle and a node we obtain the impossible phase
portrait U1,I

B,5 of codimension one∗, see Fig. 183. We observe that, in the set (A), U2,I
AB,24

also unfolds in an impossible phase portrait, as in U2,I
AB,21.

Figure 182 – Unstable system U2
AB,63

Figure 183 – Impossible unstable phase portrait U2,I
AB,24

Phase portrait U1
A,65 has phase portrait U2

AB,64 as an evolution (see Fig. 184). Af-
ter bifurcation we get phase portrait U1

A,11, by making the infinite saddle–node
(0

2

)
SN

disappears. Moreover, U1
A,65 has the impossible phase portrait U2,I

AB,25 as an evolution. By
Thm. 5.2.10 such a phase portrait is impossible because by splitting the original finite
saddle–node into a saddle and a node we obtain the impossible phase portrait U1,I

B,6 of
codimension one∗, see Fig. 185. We observe that, in the set (A), U2,I

AB,25 also unfolds in an
impossible phase portrait, as in U2,I

AB,21.

Figure 184 – Unstable system U2
AB,64

Phase portrait U1
A,66 has phase portrait U2

AB,65 as an evolution (see Fig. 186). Af-
ter bifurcation we get phase portrait U1

A,12, by making the infinite saddle–node
(0

2

)
SN

disappears. Moreover, U1
A,66 has the impossible phase portrait U2,I

AB,26 as an evolution. By
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Figure 185 – Impossible unstable phase portrait U2,I
AB,25

Thm. 5.2.10 such a phase portrait is impossible because by splitting the original finite
saddle–node into a saddle and a node we obtain the impossible phase portrait U1,I

B,6 of
codimension one∗, see Fig. 187. We observe that, in the set (A), U2,I

AB,26 also unfolds in an
impossible phase portrait, as in U2,I

AB,21.

Figure 186 – Unstable system U2
AB,65

Figure 187 – Impossible unstable phase portrait U2,I
AB,26

Phase portrait U1
A,67 has phase portraits U2

AB,66 and U2
AB,67 as evolution (see Fig. 188).

After bifurcation we get phase portraits U1
A,11 and U1

A,13 (being this last one modulo limit
cycles), respectively, by making the infinite saddle–node

(0
2

)
SN disappears.

Phase portrait U1
A,68 has phase portraits U2

AB,68 and U2
AB,69 as evolution (see Fig. 189).

After bifurcation we get phase portraits U1
A,11 (modulo limit cycles) and U1

A,13, respectively,
by making the infinite saddle–node

(0
2

)
SN disappears.

Phase portrait U1
A,69 has phase portrait U2

AB,70 as an evolution (see Fig. 190). Af-
ter bifurcation we get phase portrait U1

A,11, by making the infinite saddle–node
(0

2

)
SN

disappears. Moreover, U1
A,69 has the impossible phase portrait U2,I

AB,27 as an evolution. By
Thm. 5.2.10 such a phase portrait is impossible because by splitting the original finite
saddle–node into a saddle and a node we obtain the impossible phase portrait U1,I

B,7 of
codimension one∗, see Fig. 191. We observe that, in the set (A), U2,I

AB,27 also unfolds in an
impossible phase portrait, as in U2,I

AB,21.
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Figure 188 – Unstable systems U2
AB,66 and U2

AB,67

Figure 189 – Unstable systems U2
AB,68 and U2

AB,69

Figure 190 – Unstable system U2
AB,70

Figure 191 – Impossible unstable phase portrait U2,I
AB,27

Phase portrait U1
A,70 has phase portrait U2

AB,71 as an evolution (see Fig. 192). Af-
ter bifurcation we get phase portrait U1

A,13, by making the infinite saddle–node
(0

2

)
SN
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disappears. Moreover, U1
A,70 has the impossible phase portrait U2,I

AB,28 as an evolution. By
Thm. 5.2.10 such a phase portrait is impossible because by splitting the original finite
saddle–node into a saddle and a node we obtain the impossible phase portrait U1,I

B,7 of
codimension one∗, see Fig. 193. We observe that, in the set (A), U2,I

AB,28 also unfolds in an
impossible phase portrait, as in U2,I

AB,21.

Figure 192 – Unstable system U2
AB,71

Figure 193 – Impossible unstable phase portrait U2,I
AB,28

Therefore, we have just finished obtaining all the 71 topologically potential phase
portraits of codimension two∗ from the set (AB) presented in Figs. 100 to 102.

Now we explain how one can obtain these 71 phase portraits by starting the
study from the set (B). We consider all the 40 realizable structurally unstable quadratic
vector fields of codimension one∗ from the set (B). In order to obtain a phase portrait of
codimension two∗ belonging to the set (AB) starting from a phase portrait of codimension
one∗ of the set (B), we keep the existing infinite saddle–node

(0
2

)
SN and by using Thm. 5.2.6

we build a finite saddle–node sn(2) by the coalescence of a finite saddle with a finite node.
On the other hand, from the phase portraits of codimension two∗ from the set (AB), there
exist two ways of obtaining phase portraits of codimension one∗ also belonging to the set
(B) after perturbation: splitting sn(2) into a saddle and a node, or moving it to complex
singularities (see Rmk. 5.3.2).

Remark 5.3.2. We recall that, in quadratic differential systems, the finite singular points
are zeroes of a polynomial of degree four. Supposing that we have a singular point of
multiplicity two, then the remaining singular points are zeroes of a quadratic polynomial.
Therefore, these other two points can be two simple singular points, a double point (a
saddle–node) or two complex conjugate singular points.

According to these facts, if a phase portrait does not possess finite singularities
(for instance, U1

B,1 and U1
B,2) or if it possesses only two finite antisaddles (as for instance
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U1
B,29 to U1

B,32), it is not possible to obtain a phase portrait from it which belongs to the
set (AB).

The main goal of this section is to obtain all the topologically potential phase
portraits from the set (AB) and then prove their realization or show that they are not
possible. So we have to be sure that no other phase portrait can be found if one does some
evolution in all elements of the set (B) in order to obtain a phase portrait belonging to the
set (AB). We point out that we have done this verification, i.e. we have also considered
each element from the set (B) and produced a coalescence (when it was possible) of a
finite saddle with a finite node and we also have obtained the 71 topologically potential
phase portraits of codimension two∗ from the set (AB) presented in Figs. 100 to 102. In
what follows we show the result (modulo limit cycles) of this study. We point out that we
will not give all the details of this study. We will not even mention anything about why
there are no more possible cases to be considered as evolution of a codimension one∗ phase
portrait, since we believe that this can be easily verified by the reader. Additionally, we
will present pictures only of the impossible phase portraits obtained in order to explain
their impossibility and we will not mention anything about phase portraits which are
topologically equivalent to phase portraits already obtained.

It is important to remark that the realizable phase portraits that we will obtain
from the set (B) to the set (AB) will coincide exactly with those ones previously found.
However, the non–realizable ones that we will find from (B) will be different from those
ones coming from (A). The reason is that the arguments used to prove the impossibility of
those coming from (A) were precisely that they would bifurcate in some impossible from
(B) and now, they will be those ones that bifurcate in some impossible from (A).

In Table 41 we present the study of phase portraits U1
B,3 to U1

B,11. In the first column
we present the corresponding phase portrait from the set (B), in the second column we
indicate its corresponding phase portrait belonging to the set (AB) i.e. after producing a
finite saddle–node sn(2), and in the third column we show the corresponding phase portrait
after we make this finite saddle–node sn(2) disappears.

Phase portrait U1
B,12 has phase portraits U2

AB,15 and U2
AB,16 as evolution. After

bifurcation we get phase portrait U1
B,3 (for both cases) by making the finite saddle–node

sn(2) disappears. Moreover, U1
B,12 has the impossible phase portrait U2,I

AB,29 as an evolution.
By Thm. 5.2.10 such a phase portrait is impossible because by splitting the original infinite
saddle–node

(0
2

)
SN into an infinite saddle and an infinite node we obtain the impossible

phase portrait U1,I
A,1 of codimension one∗, see Fig. 194. We point out that, in the set (B),

the corresponding unfolding of U2,I
AB,29 does not exist, since if such a phase portrait does

exist, it would be an evolution of the impossible phase portrait I9,1 (see Fig. 4.4 from
Artés, Llibre and Rezende (2018)), which contradicts Thm. 5.2.10.

In Table 42 we present the study of phase portraits U1
B,13 to U1

B,15. In the first
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Table 41 – Phase portraits from the set (AB) obtained from evolution of elements of the set (B)

phase portrait from phase portrait from phase portrait from
the set (B) the set (AB) the set (B)

U1
B,3 U2

AB,1 U1
B,1

U1
B,4 U2

AB,2 U1
B,2

U1
B,5 U2

AB,3 U1
B,1

U1
B,6 U2

AB,4 U1
B,2

U1
B,7 U2

AB,6 U1
B,2

U1
B,8 U2

AB,5 U1
B,1

U1
B,9

U2
AB,7

U1
B,8U2

AB,9
U2

AB,11

U1
B,10

U2
AB,8

U1
B,7U2

AB,10
U2

AB,12

U1
B,11

U2
AB,13 U1

B,4
U2

AB,14 U1
B,7

Figure 194 – Impossible unstable phase portrait U2,I
AB,29

column we present the corresponding phase portrait from the set (B), in the second
column we indicate its corresponding phase portrait belonging to the set (AB) i.e. after
producing a finite saddle–node sn(2), and in the third column we show the corresponding
phase portrait after we make this finite saddle–node sn(2) disappears.

Table 42 – Phase portraits from the set (AB) obtained from evolution of elements of the set (B)

phase portrait from phase portrait from phase portrait from
the set (B) the set (AB) the set (B)

U1
B,13

U2
AB,17 U1

B,6
U2

AB,18 U1
B,7

U1
B,14

U2
AB,19

U1
B,3U2

AB,20
U2

AB,21

U1
B,15

U2
AB,23 U1

B,3
U2

AB,22 U1
B,5
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Phase portrait U1
B,16 has phase portraits U2

AB,29, U2
AB,25, and U2

AB,26 as evolution.
After bifurcation we get phase portraits U1

B,5, U1
B,8 and U1

B,8 (being this last one modulo
limit cycle), respectively, by making the finite saddle–node sn(2) disappears. Moreover,
U1

B,16 has the impossible phase portrait U2,I
AB,30 as an evolution. By Thm. 5.2.10 such a

phase portrait is impossible because by splitting the original infinite saddle–node
(0

2

)
SN

into an infinite saddle and an infinite node we obtain the impossible phase portrait U1,I
A,103

of codimension one∗, see Fig. 195. We observe that, in the set (B), U2,I
AB,30 unfolds in U1

B,8

(modulo limit cycles).

Figure 195 – Impossible unstable phase portrait U2,I
AB,30

Phase portrait U1
B,17 has phase portraits U2

AB,28, U2
AB,24, and U2

AB,27 as evolution.
After bifurcation we get phase portraits U1

B,6, U1
B,7 and U1

B,7 (being this last one modulo
limit cycle), respectively, by making the finite saddle–node sn(2) disappears. Moreover,
U1

B,17 has the impossible phase portrait U2,I
AB,31 as an evolution. By Thm. 5.2.10 such a

phase portrait is impossible because by splitting the original infinite saddle–node
(0

2

)
SN

into an infinite saddle and an infinite node we obtain the impossible phase portrait U1,I
A,103

of codimension one∗, see Fig. 196. We observe that, in the set (B), U2,I
AB,31 unfolds in U1

B,7

(modulo limit cycles).

Figure 196 – Impossible unstable phase portrait U2,I
AB,31

Phase portrait U1
B,18 has phase portrait U2

AB,30 as an evolution and after bifurcation
we get phase portrait U1

B,7, by making the finite saddle–node sn(2) disappears. Moreover,
U1

B,18 has a second phase portrait as an evolution which is topologically equivalent U2
AB,30.

Phase portrait U1
B,19 has phase portraits U2

AB,32 and U2
AB,31 as evolution. After

bifurcation we get phase portraits U1
B,4 and U1

B,6, respective, by making the finite saddle–
node sn(2) disappears.

Phase portrait U1
B,20 has phase portraits U2

AB,33 and U2
AB,34 as evolution. After bifur-

cation we get phase portrait U1
B,3, in both cases (being one of them modulo limit cycles),
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by making the finite saddle–node sn(2) disappears. Moreover, U1
B,20 has the impossible

phase portraits U2,I
AB,32 and U2,I

AB,33 as evolution. By Thm. 5.2.10 such phase portraits are
impossible because by splitting the original infinite saddle–node

(0
2

)
SN into an infinite

saddle and an infinite node we obtain the impossible phase portraits U1,I
A,2 and U1,I

A,104,
respectively, of codimension one∗, see Fig. 197. We point out that, in the set (B), the
corresponding unfolding of U2,I

AB,32 does not exist (by the exactly same reason that we
have discussed in U2,I

AB,29) and the corresponding unfolding of U2,I
AB,33 is U1

B,3 (modulo limit
cycles).

Figure 197 – Impossible unstable phase portraits U2,I
AB,32 and U2,I

AB,33

Phase portrait U1
B,21 has phase portrait U2

AB,35 as an evolution and after bifurcation
we get phase portrait U1

B,6, by making the finite saddle–node sn(2) disappears. Moreover,
U1

B,21 has a second phase portrait as an evolution which is topologically equivalent U2
AB,35.

Phase portrait U1
B,22 has phase portraits U2

AB,36 and U2
AB,37 as evolution. After

bifurcation we get phase portraits U1
B,3 and U1

B,8, respective, by making the finite saddle–
node sn(2) disappears.

Phase portrait U1
B,23 has phase portraits U2

AB,39, U2
AB,40, and U2

AB,43 as evolution.
After bifurcation we get phase portraits U1

B,5 (for the two first cases) and U1
B,8 (for the

third case), by making the finite saddle–node sn(2) disappears. Moreover, U1
B,23 has the

impossible phase portrait U2,I
AB,34 as an evolution. By Thm. 5.2.10 such a phase portrait

is impossible because by splitting the original infinite saddle–node
(0

2

)
SN into an infinite

saddle and an infinite node we obtain the impossible phase portrait U1,I
A,49 of codimension

one∗, see Fig. 198. We observe that, in the set (B), U2,I
AB,34 unfolds in U1

B,8.

Phase portrait U1
B,24 has phase portraits U2

AB,38, U2
AB,41, and U2

AB,42 as evolution.
After bifurcation we get phase portraits U1

B,6 (for the two first cases) and U1
B,7 (for the

third case), by making the finite saddle–node sn(2) disappears. Moreover, U1
B,24 has the

impossible phase portrait U2,I
AB,35 as an evolution. By Thm. 5.2.10 such a phase portrait

is impossible because by splitting the original infinite saddle–node
(0

2

)
SN into an infinite
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Figure 198 – Impossible unstable phase portrait U2,I
AB,34

saddle and an infinite node we obtain the impossible phase portrait U1,I
A,49 of codimension

one∗, see Fig. 199. We observe that, in the set (B), U2,I
AB,35 unfolds in U1

B,7.

Figure 199 – Impossible unstable phase portrait U2,I
AB,35

Phase portrait U1
B,25 has phase portraits U2

AB,46, U2
AB,49, and U2

AB,44 as evolution.
After bifurcation we get phase portraits U1

B,3 (for the two first cases) and U1
B,8 (for the

third case), by making the finite saddle–node sn(2) disappears. Moreover, U1
B,25 has the

impossible phase portrait U2,I
AB,36 as an evolution. By Thm. 5.2.10 such a phase portrait

is impossible because by splitting the original infinite saddle–node
(0

2

)
SN into an infinite

saddle and an infinite node we obtain the impossible phase portrait U1,I
A,3 of codimension

one∗, see Fig. 200. We point out that, in the set (B), the corresponding unfolding of U2,I
AB,36

does not exist (by the exactly same reason that we have discussed in U2,I
AB,29).

Figure 200 – Impossible unstable phase portrait U2,I
AB,36

Phase portrait U1
B,26 has phase portraits U2

AB,47, U2
AB,48, and U2

AB,45 as evolution.
After bifurcation we get phase portraits U1

B,4 (for the two first cases) and U1
B,7 (for the

third case), by making the finite saddle–node sn(2) disappears. Moreover, U1
B,26 has the

impossible phase portrait U2,I
AB,37 as an evolution. By Thm. 5.2.10 such a phase portrait

is impossible because by splitting the original infinite saddle–node
(0

2

)
SN into an infinite

saddle and an infinite node we obtain the impossible phase portrait U1,I
A,3 of codimension
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one∗, see Fig. 201. We point out that, in the set (B), the corresponding unfolding of U2,I
AB,37

does not exist (by the exactly same reason that we have discussed in U2,I
AB,29).

Figure 201 – Impossible unstable phase portrait U2,I
AB,37

In Table 43 we present the study of phase portraits U1
B,27 to U1

B,35, modulo sym-
metries and limit cycles. In the first column we present the corresponding phase portrait
from the set (B), in the second column we indicate its corresponding phase portrait be-
longing to the set (AB) i.e. after producing a finite saddle–node sn(2), and in the third
column we show the corresponding phase portrait after we make this finite saddle–node
sn(2) disappears.

Table 43 – Phase portraits from the set (AB) obtained from evolution of elements of the set (B)

phase portrait from phase portrait from phase portrait from
the set (B) the set (AB) the set (B)

U1
B,27 U2

AB,50 U1
B,4

U1
B,28

U2
AB,51 U1

B,3
U2

AB,52 U1
B,4

U1
B,33

U2
AB,53 U1

B,29U2
AB,54

U1
B,34

U2
AB,55

U1
B,32

U2
AB,56

U2
AB,57

U2
AB,58

U1
B,35

U2
AB,61 U1

B,29
U2

AB,59 U1
B,32U2

AB,60

Phase portrait U1
B,36 has phase portraits U2

AB,62 and U2
AB,63 as evolution. After bi-

furcation we get phase portrait U1
B,29, for both cases (being one of them modulo limit

cycles), by making the finite saddle–node sn(2) disappears. Moreover, U1
B,36 has the im-

possible phase portrait U2,I
AB,38 as an evolution. By Thm. 5.2.10 such a phase portrait is

impossible because by splitting the original infinite saddle–node
(0

2

)
SN into an infinite

saddle and an infinite node we obtain the impossible phase portrait U1,I
A,105 of codimension

one∗, see Fig. 202. We observe that, in the set (B), U2,I
AB,38 unfolds in U1

B,29 (modulo limit
cycles).
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Figure 202 – Impossible unstable phase portrait U2,I
AB,38

Phase portrait U1
B,37 has phase portraits U2

AB,64 and U2
AB,65 as evolution. After

bifurcation we get phase portrait U1
B,31, for both cases, by making the finite saddle–node

sn(2) disappears.

Phase portrait U1
B,38 has phase portraits U2

AB,68 and U2
AB,67 as evolution. After

bifurcation we get phase portraits U1
B,29 and U1

B,30, respective, by making the finite saddle–
node sn(2) disappears.

Phase portrait U1
B,39 has phase portraits U2

AB,69 and U2
AB,66 as evolution. After

bifurcation we get phase portraits U1
B,29 and U1

B,31, respective, by making the finite saddle–
node sn(2) disappears.

Phase portrait U1
B,40 has phase portraits U2

AB,70 and U2
AB,71 as evolution. After bi-

furcation we get phase portrait U1
B,31, for both cases (being one of them modulo limit

cycles), by making the finite saddle–node sn(2) disappears. Moreover, U1
B,40 has the im-

possible phase portrait U2,I
AB,39 as an evolution. By Thm. 5.2.10 such a phase portrait is

impossible because by splitting the original infinite saddle–node
(0

2

)
SN into an infinite

saddle and an infinite node we obtain the impossible phase portrait U1,I
A,106 of codimension

one∗, see Fig. 203. We observe that, in the set (B), U2,I
AB,39 unfolds in U1

B,31 (modulo limit
cycles).

Figure 203 – Impossible unstable phase portrait U2,I
AB,39

5.3.2 The realization of the potential phase portraits

In the previous subsection we have produced all the topologically potential phase
portraits for structurally unstable quadratic systems of codimension two∗ belonging to
the set ∑

2
2(AB). And from them, we have discarded 33 which are not realizable due to

their respective unfoldings of codimension one∗ being impossible.
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In this subsection we aim to give specific examples for the remaining 71 differ-
ent topological classes of structurally unstable quadratic systems of codimension two∗

belonging to the set ∑
2
2(AB) and presented in Figs. 100 to 102.

In Artés, Kooij and Llibre (1998) the authors showed that for each structurally
stable phase portrait with limit cycles there exists a realizable structurally stable phase
portrait without limit cycles so that modulo limit cycles they are equivalent. On the
contrary, due to the large number of cases, in Artés, Llibre and Rezende (2018) the
authors did not follow the same procedure for the realizable structurally unstable phase
portraits of codimension one∗. Since this present study is directly derived from this second
study, here we have found examples of codimension two∗ phase portraits with no evident
limit cycles, but we have not proved the absence of the infinitesimal ones (i.e. the ones
born by Hopf-bifurcation).

In Artés, Rezende and Oliveira (2015) the authors classified, with respect to a
specific normal form, the set of all real quadratic polynomial differential systems with a
finite semi–elemental saddle–node sn(2) located at the origin of the plane and an infinite
saddle–node of type

(0
2

)
SN (obtained by the coalescence of an infinite saddle with an

infinite node) located in the bisector of first and third quadrants. In Artés, Mota and
Rezende (2021b) the authors show that phase portrait V171 from Artés, Rezende and
Oliveira (2015) is not topologically equivalent to V170 (i.e. the equivalence presented in
Table 65 from the mentioned paper is not correct) and in Artés, Mota and Rezende (2021b)
the authors present the correct V171.

Remark 5.3.3. The study of a bifurcation diagram of a certain family of quadratic
systems, produces not only the class of phase portraits looked for, but also all those of
their closure according to the normal form used. Even though the study is mainly algebraic,
often, also analytic and numerical tools are required. This makes that these studies may
be not complete and subject to the existence of possible “islands” which could contain
an undetected phase portrait. The border of that “island” could mean the connection of
two separatrices, and the interior contain a different phase portrait from the ones stated
in the theorem. In Artés, Rezende and Oliveira (2015) the authors studied a bifurcation
diagram in which the most generic phase portraits correspond to elements of the set (AB).
In Section 7 of that paper the authors said that the bifurcation diagram they obtained is
completely coherent, i.e. by taking any two points in the parameter space and joining them
by a continuous curve, along this curve the changes in phase portraits that occur when
crossing the different bifurcation surfaces they mentioned could be completely explained.
Nevertheless, at that moment, the authors could not be sure that the bifurcation diagram
was the complete bifurcation diagram for the family considered in their paper, due to the
possibility of “islands” inside the bifurcation diagram. The topological study that we do
here solves partially this problem, since we prove that all the realizable phase portraits of
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class (AB) do really exists, and no other topological possibility does. However, the possible
existence of “islands” in the bifurcation diagram still persists since they can be related
with double limit cycles, as discussed in Section 7 of Artés, Rezende and Oliveira (2015).

By using the phase portraits of generic regions of the bifurcation diagram from
Artés, Rezende and Oliveira (2015) plus the correct V171 presented in Artés, Mota and
Rezende (2021b) we realize all the 71 unstable systems of codimension two∗ of the set
(AB), i.e. we can give specific examples of all structurally unstable phase portraits from
the set (AB).

Consider systems

ẋ = gx2 +2hxy+(n−g−2h)y2,

ẏ = y+ `x2 +(2g+2h−2`−n)xy+(2h+ `+2(n−g−2h))y2,
(5.6)

where g, h, `, and n are real parameters and g 6= 0.

Normal form (5.6) is studied in Artés, Rezende and Oliveira (2015) and it describes
quadratic polynomial differential systems which have a finite semi–elemental saddle–node
sn(2) and an infinite saddle–node of type

(0
2

)
SN located in the endpoints of the bisector of

the first and third quadrants.

In Tables 44 and 45 we present one representative from each generic region of the
bifurcation diagram of Artés, Rezende and Oliveira (2015) (as described before) corre-
sponding to each phase portrait of codimension two∗ from the set (AB) and, therefore, we
conclude the proof of Thm. 5.1.1.
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Table 44 – Correspondence between codimension two∗ phase portraits of the set (AB) and phase
portraits from generic regions of the bifurcation diagram presented in Artés, Rezende
and Oliveira (2015). In the first column we present the codimension two∗ phase
portraits from the set (AB) obtained in this study, in the second column we show
the corresponding phase portraits from Artés, Rezende and Oliveira (2015) given by
normal form (5.6), and in the other columns we present the values of the parameters
g, h, `, and n of (5.6) which realizes such phase portrait (remember that the correct
phase portrait V171 is presented in Artés, Mota and Rezende (2021b))

Cod 2∗ Phase Portrait g h ` n
U2

AB,1 V23 1 0 1/2 10
U2

AB,2 V84 1 91/100 1 2304/625
U2

AB,3 V22 1 0 9/10 10
U2

AB,4 V85 1 22/25 1 2304/625
U2

AB,5 V20 1 0 18 10
U2

AB,6 V21 1 −2 1 10
U2

AB,7 V1 1 −21/5 18 10
U2

AB,8 V2 1 −5 10 10
U2

AB,9 V190 1 3/5 −33/10 −1
U2

AB,10 V191 1 3/5 −3 −1
U2

AB,11 V25 1 173/80 6 10
U2

AB,12 V31 1 112/25 6 30
U2

AB,13 V9 1 −5 11/10 10
U2

AB,14 V121 1 −9999/100000 4/25 81/100
U2

AB,15 V147 1 −6/5 5 −1
U2

AB,16 V66 1 5 −15 10
U2

AB,17 V7 1 −9/2 13/5 10
U2

AB,18 V136 1 −59999/100000 7/10 4/25
U2

AB,19 V64 1 11/5 −4 10
U2

AB,20 V145 1 −4/5 5 −1
U2

AB,21 V13 1 −5 1/2 10
U2

AB,22 V83 1 9201/10000 −15 2304/625
U2

AB,23 V10 1 −5 7/10 10
U2

AB,24 V141 1 −69/100 601/1000 9/100
U2

AB,25 V144 1 −7999/10000 6397/10000 1/25
U2

AB,26 V172 1 −1/10 −3 −1
U2

AB,27 V173 1 −7/100 −31/20 −1
U2

AB,28 V41 1 44773/10000 11/5 30
U2

AB,29 V69 1 11/5 6 10
U2

AB,30 V15 1 −21/5 3 10
U2

AB,31 V114 1 −211/2000 9549/50000 4/5
U2

AB,32 V109 1 −41/400 99999/100000 4/5
U2

AB,33 V154 1 −7/5 8/25 −1
U2

AB,34 V102 1 481/2000 −10 1
U2

AB,35 V129 1 −5499/10000 3/4 81/400
U2

AB,36 V108 1 −41/400 11/10 4/5
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Table 45 – Continuation of Table 44

Cod 2∗ Phase Portrait g h ` n
U2

AB,37 V78 1 9201/10000 −50 2304/625
U2

AB,38 V42 1 44777/10000 203/100 30
U2

AB,39 V71 1 223/100 6 10
U2

AB,40 V170 1 −9/50 −3 −1
U2

AB,41 V171 1 −3/40 −3/2 −1
U2

AB,42 V142 1 −69/100 6007/10000 9/100
U2

AB,43 V143 1 −7999/10000 27/50 1/25
U2

AB,44 V104 1 573/1250 −8 19/10
U2

AB,45 V123 1 −39/400 1/100 81/100
U2

AB,46 V155 1 −7/5 3/10 −1
U2

AB,47 V165 1 −1/5 −13/10 −1
U2

AB,48 V37 1 3 11/10 10
U2

AB,49 V44 1 22/5 2 10
U2

AB,50 V110 1 −41/400 9/10 4/5
U2

AB,51 V46 1 11/5 9/10 10
U2

AB,52 V49 1 23/5 9/10 10
U2

AB,53 V6 1 −5 3 10
U2

AB,54 V189 1 37/50 −147/100 −1
U2

AB,55 V61 1 4501/1000 −1 10
U2

AB,56 V53 1 6 −1/10000 10
U2

AB,57 V107 1 9/25 −1/2 41/25
U2

AB,58 V149 1 −11/10 3/2 −1
U2

AB,59 V62 1 3 −1 10
U2

AB,60 V198 1 −2/5 11/10 −1
U2

AB,61 V51 1 6 1/5 10
U2

AB,62 V138 1 −3/5 7/10 9/100
U2

AB,63 V177 1 3/100 −9/10 −1
U2

AB,64 V3 1 −5 6 10
U2

AB,65 V192 1 3/5 −123/50 −1
U2

AB,66 V122 1 −39/400 31/1000 81/100
U2

AB,67 V169 1 −1/5 −7/10 −1
U2

AB,68 V113 1 −39/400 1/10 81/100
U2

AB,69 V166 1 −1/5 −53/50 −1
U2

AB,70 V140 1 −69/100 63/100 9/100
U2

AB,71 V174 1 −41/1000 −133/100 −1
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5.4 Proof of Thm. 5.1.2

In this section we present the proof of Thm. 5.1.2. The procedure is the same as
used in the previous section. In Subsec. 5.4.1 we obtain all the topologically potential
phase portraits possessing the saddle–nodes sn(2) and

(1
1

)
SN (we have 45 phase portraits)

and we prove that five of them are impossible. In Subsec. 5.4.2 we show the realization of
each one of the remaining 40 phase portraits.

5.4.1 The topologically potential phase portraits

The main goal of this subsection is to obtain all the topologically potential phase
portraits from the set (AC).

As we said before, inside the set (AC), the unstable objects of codimension two∗

that we are considering in this study belong to the set of saddle–nodes
{

sn(2)+
(1

1

)
SN
}

.
Considering all the different ways of obtaining phase portraits belonging to the set (AC) of
codimension two∗, we have to consider all the possible ways of coalescing specific singular
points in both sets (A) and (C). However, as the sets (AC) and (CA) are the same (i.e.
their elements are obtained independently of the order of evolution in elements of the sets
(A) or (C)), it is necessary to consider only all the possible ways of obtaining an infinite
saddle–node of type

(1
1

)
SN in each element from the set (A) (phase portraits possessing a

finite saddle–node sn(2)). Anyway, in order to make things clear, in page 321 we discuss
briefly how we should perform if we start by considering the set (C).

In order to obtain phase portraits from the set (AC) by starting our study from
the set (A), we have to consider Thm. 5.2.8 and also Lemma 3.26 from Artés, Llibre and
Rezende (2018) (regarding phase portraits from the set (C)) which we state as follows.

Lemma 5.4.1. Assume that a codimension one∗ polynomial vector field X has an infinite
singular point p being a saddle–node of multiplicity two with ρ0 = (∂P/∂x+∂Q/∂y)p 6= 0
and second eigenvalue equal to zero.

(a) Any perturbation of X in a sufficiently small neighborhood of this point will produce
a structurally stable system (with one infinite saddle and one finite node, or vice
versa) or a system topologically equivalent to X .

(b) Both possibilities of structurally stable systems are realizable.

(c) If the saddle–node is the only unstable object in the region of definition and we
consider the perturbation which leaves a saddle and a node in a small neighborhood,
then the node is ω–limit or α–limit (depending on its stability) of at least one of
the separatrices of the saddle.
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(d) In the case that after bifurcation the node remains at infinity and the saddle moves
to the finite plane, then the separatrices of this new saddle have their α– and
ω–limits fixed according to next rule:

(1) The separatrix γ that corresponds to the one of the saddle–node different from
the infinity line must maintain the same α– or ω–limit set.

(2) The separatrix (belonging to the same eigenspace of γ) which appears after
bifurcation must go to the node that remains at infinity, and this will be the
only separatrix which can arrive to this node in this side of the infinity.

(3) The two separatrices which correspond to the infinite line in the unstable phase
portrait, and that now are two separatrices of the saddle drawn on the finite
plane, must end at the same infinite node where they ended before the bifurca-
tion (if a node was adjacent to the saddle–node) or in the same α– or ω–limit
point of the finite separatrix of the adjacent infinite saddle. In case that the
saddle–node is the only infinite singular point, then both separatrices go to the
symmetric point which will remain as a node.

Here we consider all 69 realizable structurally unstable quadratic vector fields of
codimension one∗ from the set (A). In order to obtain a phase portrait of codimension
two∗ belonging to the set (AC) starting from a phase portrait of codimension one∗ of
the set (A), we keep the existing finite saddle–node and using Lemma 5.4.1 we build an
infinite saddle–node of type

(1
1

)
SN by the coalescence of a finite node (respectively finite

saddle) with an infinite saddle (respectively infinite node). As we said in the Introduction,
we point out that the finite singularity that coalesces with an infinite singularity cannot
be the finite saddle–node since then what we would obtain at infinity would not be a
saddle–node of type

(1
1

)
SN but a multiplicity three singularity. Even though this is also a

codimension two∗ case and somehow can be considered inside the set (AC), we preferred to
consider it into the set (CC) where two possibilities will be needed to be studied: either two
finite singularities coalescing with different infinite singularities, or two finite singularities
coalescing with the same infinite singularity. On the other hand, from the phase portraits
of codimension two∗ from the set (AC), one can obtain phase portraits of codimension
one∗ also belonging to the set (A) after perturbation by splitting the infinite saddle–node(1

1

)
SN into a finite saddle (respectively finite node) and an infinite node (respectively

infinite saddle). More precisely, after bifurcation the point that has arrived to infinity
remains there with the same local behavior, and the one which was at infinity moves into
the real plane at the other side of the infinity line.

As in the previous section, in what follows we denote by U2
AC,k, where U2

AC stands
for structurally unstable quadratic vector field of codimension two∗ from the set (AC) and
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k ∈ {1, . . . ,40}. The impossible phase portraits will be denoted by U2,I
AC, j, where U2,I

AC stands
for Impossible of codimension two∗ from the set (AC) and j ∈ N.

We point out that in this study we do not present phase portraits which are
topologically equivalent to phase portraits already obtained. Additionally, as we explained
clearly about how we obtain an infinite saddle–node of type

(1
1

)
SN from a phase portrait

from the set (A), we will not mention anything about why we do not have no more
possibilities (of obtaining an infinite saddle–node of type

(1
1

)
SN) beyond those ones that

we will present.

Phase portrait U1
A,1 cannot have a phase portrait possessing an infinite saddle–

node of type
(1

1

)
SN as an evolution since it has only the finite saddle–node sn(2) and only

the infinite node.

Phase portrait U1
A,2 has phase portrait U2

AC,1 as an evolution (see Fig. 204). After
bifurcation we get phase portrait U1

A,11 by splitting the infinite saddle–node
(1

1

)
SN.

Figure 204 – Unstable system U2
AC,1

Phase portrait U1
A,3 has phase portrait U2

AC,2 as an evolution (see Fig. 205). After
bifurcation we get phase portrait U1

A,12 by splitting the infinite saddle–node
(1

1

)
SN.

Figure 205 – Unstable system U2
AC,2

Phase portrait U1
A,4 cannot have a phase portrait possessing an infinite saddle–node

of type
(1

1

)
SN as an evolution. In fact, such a phase portrait possesses only an infinite

node which receives four separatrices from finite singularities. Then by item (d)−(2) of
Lemma 5.4.1 the finite saddle cannot reach the infinite node. We point out that this same
situation happens in many other phase portraits, such as in U1

A,5 to U1
A,8. Because it is

quite simple to detect this phenomena, when we deal again with this situation we will
skip all the details.
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Phase portrait U1
A,9 has phase portrait U2

AC,3 as an evolution (see Fig. 206). After
bifurcation we get phase portrait U1

A,11 by splitting the infinite saddle–node
(1

1

)
SN.

Figure 206 – Unstable system U2
AC,3

Phase portrait U1
A,10 has phase portrait U2

AC,4 as an evolution (see Fig. 207). After
bifurcation we get phase portrait U1

A,13 by splitting the infinite saddle–node
(1

1

)
SN.

Figure 207 – Unstable system U2
AC,4

It is quite common that a given phase portrait of a certain codimension K be an
unfolding of topologically distinct phase portraits of codimension K + 1 (modulo limit
cycles). This situation appears in this study. In the first column of Table 46 we present
the phase portrait of the set (A), in the second column we indicate its corresponding phase
portrait belonging to the set (AC), and in the third column we show the corresponding
phase portrait after bifurcation. We point out that it is not necessary to present any
explanation for the phase portraits present in the first column, since their corresponding
elements from the third column already appeared and were explained before.

Table 46 – Phase portraits from the set (AC) obtained from evolution of some elements of the
set (A)

phase portrait from phase portrait from phase portrait from
the set (A) the set (AC) the set (A)

U1
A,11

U2
AC,1 U1

A,2
U2

AC,3 U1
A,9

U1
A,12 U2

AC,2 U1
A,3

U1
A,13 U2

AC,4 U1
A,10

Phase portrait U1
A,14 has phase portrait U2

AC,5 as an evolution (see Fig. 208). After
bifurcation we get phase portrait U1

A,55 by splitting the infinite saddle–node
(1

1

)
SN.
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Figure 208 – Unstable system U2
AC,5

Phase portrait U1
A,15 has phase portraits U2

AC,6 and U2
AC,7 as evolution (see Fig. 209).

After bifurcation we get phase portraits U1
A,32 and U1

A,53, respectively, by splitting the
infinite saddle–node

(1
1

)
SN.

Figure 209 – Unstable systems U2
AC,6 and U2

AC,7

Phase portrait U1
A,16 has phase portraits U2

AC,8, U2
AC,9, and U2

AC,10 as evolution (see
Fig. 210). After bifurcation we get phase portraits U1

A,33, U1
A,52, and U1

A,54, respectively,
by splitting the infinite saddle–node

(1
1

)
SN.

Phase portrait U1
A,17 has phase portraits U2

AC,11, U2
AC,12, and U2

AC,13 as evolution
(see Fig. 211). After bifurcation we get phase portraits U1

A,35, U1
A,41, and U1

A,42, respectively,
by splitting the infinite saddle–node

(1
1

)
SN.

Phase portrait U1
A,18 has phase portraits U2

AC,14, U2
AC,15, and U2

AC,16 as evolution
(see Fig. 212). After bifurcation we get phase portraits U1

A,25, U1
A,27, and U1

A,45, respectively,
by splitting the infinite saddle–node

(1
1

)
SN.

Phase portraits U1
A,19, U1

A,20, and U1
A,21 cannot have a phase portrait possessing an

infinite saddle–node of type
(1

1

)
SN as an evolution since each one of them has only the

finite saddle–node sn(2).

Phase portrait U1
A,22 has phase portrait U2

AC,17 as an evolution (see Fig. 213). After
bifurcation we get phase portrait U1

A,65 by splitting the infinite saddle–node
(1

1

)
SN.

Phase portrait U1
A,23 has phase portrait U2

AC,18 as an evolution (see Fig. 214). After
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Figure 210 – Unstable systems U2
AC,8, U2

AC,9, and U2
AC,10

Figure 211 – Unstable systems U2
AC,11, U2

AC,12, and U2
AC,13

bifurcation we get phase portrait U1
A,66 by splitting the infinite saddle–node

(1
1

)
SN.

Phase portrait U1
A,24 cannot have a phase portrait possessing an infinite saddle–

node of type
(1

1

)
SN as an evolution since the finite saddle cannot reach the infinite node

(by item (d)−(2) of Lemma 5.4.1) and the finite node cannot reach the infinite saddle
(because this elemental antisaddle is surrounded by the separatrices of the finite saddle).

Phase portrait U1
A,25 has three phase portraits as evolution.
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Figure 212 – Unstable systems U2
AC,14, U2

AC,15, and U2
AC,16

Figure 213 – Unstable system U2
AC,17

Figure 214 – Unstable system U2
AC,18

1. U2
AC,19, see Fig. 215, and after bifurcation we get phase portrait U1

A,56;

Figure 215 – Unstable system U2
AC,19

2. U2
AC,14, and its study was done when we spoke about U1

A,18;
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3. impossible phase portrait U2,I
AC,1. By Thm. 5.2.10 such a phase portrait is impossible

because by splitting the original finite saddle–node into a saddle and a node we
obtain the impossible phase portrait U1,I

C,8 of codimension one∗, see Fig. 216. We
point out that, in the set (A), the corresponding unfolding of U2,I

AC,1 does not exist,
since if such a phase portrait does exist, it would be an evolution of the impossible
phase portrait I12,3 (see Fig. 4.4 from Artés, Llibre and Rezende (2018)), which
contradicts Thm. 5.2.10.

Figure 216 – Impossible unstable phase portrait U2,I
AC,1

Phase portrait U1
A,26 has phase portrait U2

AC,20 as an evolution (see Fig. 217). After
bifurcation we get phase portrait U1

A,67 by splitting the infinite saddle–node
(1

1

)
SN.

Figure 217 – Unstable system U2
AC,20

Phase portrait U1
A,27 has phase portraits U2

AC,21 and U2
AC,22 as evolution (see Fig. 218).

After bifurcation we get phase portraits U1
A,56 and U1

A,60, respectively, by splitting the in-
finite saddle–node

(1
1

)
SN. Moreover, U1

A,27 also has U2
AC,15 as an evolution, and this last

one was mentioned before during the study of U1
A,18.

Phase portrait U1
A,28 has phase portraits U2

AC,23 and U2
AC,24 as evolution (see Fig. 219).

After bifurcation we get phase portraits U1
A,57 and U1

A,58, respectively, by splitting the in-
finite saddle–node

(1
1

)
SN.

Phase portrait U1
A,29 cannot have a phase portrait possessing an infinite saddle–

node of type
(1

1

)
SN as an evolution since the finite saddle cannot reach the infinite node

(by item (d)−(2) of Lemma 5.4.1), the finite node cannot reach the infinite saddle (because
this elemental antisaddle is surrounded by the separatrices of the finite saddle) and the
finite saddle–node cannot go to infinity (as we have discussed during the analysis of U1

A,1).

Phase portrait U1
A,30 has phase portrait U2

AC,25 as an evolution (see Fig. 220). After
bifurcation we get phase portrait U1

A,69 by splitting the infinite saddle–node
(1

1

)
SN.
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Figure 218 – Unstable systems U2
AC,21 and U2

AC,22

Figure 219 – Unstable systems U2
AC,23 and U2

AC,24

Figure 220 – Unstable system U2
AC,25

Phase portrait U1
A,31 has phase portrait U2

AC,26 as an evolution (see Fig. 221). After
bifurcation we get phase portrait U1

A,61 by splitting the infinite saddle–node
(1

1

)
SN.

Figure 221 – Unstable system U2
AC,26
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Phase portrait U1
A,32 has phase portrait U2

AC,27 as an evolution (see Fig. 222). After
bifurcation we get phase portrait U1

A,61 by splitting the infinite saddle–node
(1

1

)
SN. More-

over, U1
A,32 also has U2

AC,6 as an evolution, and this last one was mentioned before during
the study of U1

A,15.

Figure 222 – Unstable system U2
AC,27

Phase portrait U1
A,33 has phase portrait U2

AC,8 as an evolution and this last one was
mentioned before during the study of U1

A,16.

Phase portrait U1
A,34 cannot have a phase portrait possessing an infinite saddle–

node of type
(1

1

)
SN as an evolution, we can conclude this fact by using the same arguments

as used for U1
A,29.

Phase portrait U1
A,35 has phase portrait U2

AC,11 as an evolution and this last one
was mentioned before during the study of U1

A,17.

Phase portrait U1
A,36 has phase portrait U2

AC,28 as an evolution (see Fig. 223). After
bifurcation we get phase portrait U1

A,69 by splitting the infinite saddle–node
(1

1

)
SN.

Figure 223 – Unstable system U2
AC,28

Phase portrait U1
A,37 has phase portrait U2

AC,29 as an evolution (see Fig. 224). After
bifurcation we get phase portrait U1

A,70 by splitting the infinite saddle–node
(1

1

)
SN.

Figure 224 – Unstable system U2
AC,29
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Phase portrait U1
A,38 cannot have a phase portrait possessing an infinite saddle–

node of type
(1

1

)
SN as an evolution.

Phase portrait U1
A,39 has phase portrait U2

AC,30 as an evolution (see Fig. 225). After
bifurcation we get phase portrait U1

A,65 by splitting the infinite saddle–node
(1

1

)
SN.

Figure 225 – Unstable system U2
AC,30

Phase portrait U1
A,40 cannot have a phase portrait possessing an infinite saddle–

node of type
(1

1

)
SN as an evolution.

Phase portrait U1
A,41 has three phase portraits as evolution.

1. U2
AC,31, see Fig. 226, and after bifurcation we get phase portrait U1

A,63;

Figure 226 – Unstable system U2
AC,31

2. U2
AC,12, and its study was done when we spoke about U1

A,17;

3. impossible phase portrait U2,I
AC,2. By Thm. 5.2.10 such a phase portrait is impossible

because by splitting the original finite saddle–node into a saddle and a node we
obtain the impossible phase portrait U1,I

C,9 of codimension one∗, see Fig. 227. We
point out that, in the set (A), the corresponding unfolding of U2,I

AC,2 does not exist,
since if such a phase portrait does exist, it would be an evolution of the impossible
phase portrait I12,2 (see Fig. 4.4 from Artés, Llibre and Rezende (2018)), which
contradicts Thm. 5.2.10.

Phase portrait U1
A,42 has phase portraits U2

AC,32 and U2
AC,33 as evolution (see Fig. 228).

After bifurcation we get phase portraits U1
A,60 and U1

A,63, respectively, by splitting the in-
finite saddle–node

(1
1

)
SN. Moreover, U1

A,42 also has U2
AC,13 as an evolution, and this last

one was mentioned before during the study of U1
A,17.
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Figure 227 – Impossible unstable phase portrait U2,I
AC,2

Figure 228 – Unstable systems U2
AC,32 and U2

AC,33

Phase portrait U1
A,43 has phase portraits U2

AC,34 and U2
AC,35 as evolution (see Fig. 229).

After bifurcation we get phase portraits U1
A,59 and U1

A,64, respectively, by splitting the in-
finite saddle–node

(1
1

)
SN.

Figure 229 – Unstable systems U2
AC,34 and U2

AC,35

Phase portrait U1
A,44 cannot have a phase portrait possessing an infinite saddle–

node of type
(1

1

)
SN as an evolution.

Phase portrait U1
A,45 has phase portrait U2

AC,16 as an evolution and this last one
was mentioned before during the study of U1

A,18.

Phase portraits U1
A,46 to U1

A,48 and also U1
A,50 cannot have a phase portrait possess-
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ing an infinite saddle–node of type
(1

1

)
SN as an evolution.

Phase portrait U1
A,51 has phase portrait U2

AC,36 as an evolution (see Fig. 230). After
bifurcation we get phase portrait U1

A,67 by splitting the infinite saddle–node
(1

1

)
SN.

Figure 230 – Unstable system U2
AC,36

Phase portrait U1
A,52 has phase portrait U2

AC,37 as an evolution (see Fig. 231). Af-
ter bifurcation we get phase portrait U1

A,68, by splitting the infinite saddle–node
(1

1

)
SN.

Moreover, U1
A,52 also has U2

AC,9 as an evolution, and this last one was mentioned before
during the study of U1

A,16.

Figure 231 – Unstable system U2
AC,37

Phase portrait U1
A,53 has phase portrait U2

AC,7 as an evolution, and this last one
was mentioned before during the study of U1

A,15.

Phase portrait U1
A,54 has phase portrait U2

AC,38 as an evolution (see Fig. 232). Af-
ter bifurcation we get phase portrait U1

A,68, by splitting the infinite saddle–node
(1

1

)
SN.

Moreover, U1
A,54 also has U2

AC,10 as an evolution, and this last one was mentioned before
during the study of U1

A,16.

Figure 232 – Unstable system U2
AC,38

Phase portrait U1
A,55 has phase portraits U2

AC,39 and U2
AC,40 as evolution (see Fig. 233).

After bifurcation we get phase portraits U1
A,61 and U1

A,62, respectively, by splitting the infi-
nite saddle–node

(1
1

)
SN. Moreover, U1

A,55 also has U2
AC,5 as an evolution, and this last one

was mentioned before during the study of U1
A,14.
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Figure 233 – Unstable systems U2
AC,39 and U2

AC,40

Phase portrait U1
A,56 has phase portraits U2

AC,19 and U2
AC,21 as evolution. These two

phase portraits were obtained during the study of U1
A,25 and U1

A,27, respectively.

Phase portrait U1
A,57 has phase portrait U2

AC,23 as an evolution and this last one
was obtained during the study of U1

A,28.

Phase portrait U1
A,58 has phase portrait U2

AC,24 as an evolution and this last one
was obtained during the study of U1

A,28. Moreover, U1
A,58 has a second phase portrait as

an evolution which is topologically equivalent to U2
AC,24.

Phase portrait U1
A,59 has phase portrait U2

AC,34 as an evolution and this last one
was obtained during the study of U1

A,43. Moreover, U1
A,59 has the impossible phase portrait

U2,I
AC,3 as an evolution. By Thm. 5.2.10 such a phase portrait is impossible because by

splitting the obtained infinite saddle–node
(1

1

)
SN into a finite saddle and an infinite node

we obtain the impossible phase portrait U1,I
A,104 of codimension one∗, see Fig. 234. We

observe that, in the set (C), U2,I
AC,3 unfolds in U1

C,17 (modulo limit cycles).

Figure 234 – Impossible unstable phase portrait U2,I
AC,3

In the first column of Table 47 we present the remaining phase portraits of the
set (A), in the second column we indicate its corresponding phase portrait belonging to
the set (AC), and in the third column we show the corresponding phase portrait after
bifurcation. We point out that it is not necessary to present any explanation for the phase
portraits present in the first column, since their corresponding elements from the third
column already appeared and were explained before.
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Table 47 – Phase portraits from the set (AC) obtained from evolution of some elements of the
set (A)

phase portrait from phase portrait from phase portrait from
the set (A) the set (AC) the set (A)

U1
A,60

U2
AC,22 U1

A,27
U2

AC,32 U1
A,42

U1
A,61

U2
AC,26 U1

A,31
U2

AC,27 U1
A,32

U2
AC,39 U1

A,55
U1

A,62 U2
AC,40 U1

A,55

U1
A,63

U2
AC,31 U1

A,41
U2

AC,33 U1
A,42

U1
A,64 U2

AC,35 U1
A,43

U1
A,65

U2
AC,17 U1

A,22
U2

AC,30 U1
A,39

U1
A,66 U2

AC,18 U1
A,23

U1
A,67

U2
AC,20 U1

A,26
U2

AC,36 U1
A,51

U1
A,68

U2
AC,37 U1

A,52
U2

AC,38 U1
A,54

U1
A,69

U2
AC,25 U1

A,30
U2

AC,28 U1
A,36

U1
A,70 U2

AC,29 U1
A,37

Therefore, we have just finished obtaining all the 40 topologically potential phase
portraits of codimension two∗ from the set (AC) presented in Figs. 103 and 104.

Now we explain how one can obtain these 40 phase portraits by starting the study
from the set (C). We consider all 32 realizable structurally unstable quadratic vector fields
of codimension one∗ from the set (C). In order to obtain a phase portrait of codimension
two∗ belonging to the set (AC) starting from a phase portrait of codimension one∗ of the
set (C), we keep the existing infinite saddle–node

(1
1

)
SN and by using Thm. 5.2.6 we

build a finite saddle–node sn(2) by the coalescence of a finite node with a finite saddle. On
the other hand, from the phase portraits of codimension two∗ from the set (AC), there
exist two ways of obtaining phase portraits of codimension one∗ also belonging to the set
(C) after perturbation: splitting sn(2) into a saddle and a node, or moving it to complex
singularities (remember Rmk. 5.3.2).

According to these facts, if a phase portrait possesses only a finite saddle–node, as
U1

C,1 for instance, it is not possible to obtain a phase portrait from it which belongs to the
set (AC). Moreover, in some cases when one makes the finite saddle–node disappears, it
is possible to find a phase portrait possessing a limit cycle, as happens for instance with
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phase portrait U1
C,3 (see Fig. 235). In such a figure we present the two potential phase

portraits which can be obtained by forming a finite saddle–node and then by making it
disappears. Indeed, phase portrait U1

C,3 has phase portraits U2
AC,3 and U2

AC,4 as evolution,
respectively, by the coalescence of the finite saddle with each one of the two finite nodes.
After bifurcation, by making the finite saddle–node disappears, U2

AC,3 generates U1
C,1 and

U2
AC,4 generates U1

C,1, being this last one with a limit cycle. However, as our classification
of phase portraits is always done modulo limit cycles we simply say that in this case U2

AC,4

generates U1
C,1. This situation also happens when we perform analogous studies of phase

portraits U1
C,20, U1

C,24, and U1
C,31, as we will see in the sequence.

Figure 235 – Unstable systems U2
AC,3 and U2

AC,4 from phase portrait U1
C,3

The main goal of this section is to obtain all the topologically potential phase
portraits from the set (AC) and then prove their realization or show that they are not
possible. So we have to be sure that no other phase portrait can be found if one does some
evolution in all elements of the set (C) in order to obtain a phase portrait belonging to the
set (AC). We point out that we have done this verification, i.e. we have also considered
each element from the set (C) and produced a coalescence (when it was possible) of a
finite node with a finite saddle and we also have obtained the 40 topologically potential
phase portraits of codimension two∗ from the set (AC) presented in Figs. 103 and 104.
Moreover, doing this verification we have not found the impossible phase portraits U2,I

AC,1

and U2,I
AC,2 (this was expected since the corresponding unfoldings of codimension one∗ are

impossible in the set (C)). In Table 48 we present the study of phase portraits U1
C,2 to

U1
C,19. In the first column of the mentioned table we present the phase portrait of the set

(C), in the second column we indicate its corresponding phase portrait belonging to the
set (AC) i.e. after producing a finite saddle–node sn(2), and in the third column we show
the corresponding phase portrait after we make this finite saddle–node sn(2) disappears.
Note that the sequence of indexes in the first column is not consecutive since in some
phase portraits from the set (C) it is not possible to produce a finite saddle–node sn(2)
and then it is not possible to obtain a phase portrait belonging to the set (AC).
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Table 48 – Phase portraits from the set (AC) obtained from evolution of elements of the set (C)

phase portrait from phase portrait from phase portrait from
the set (C) the set (AC) the set (C)

U1
C,2

U2
AC,1 U1

C,1U2
AC,2

U1
C,3

U2
AC,3 U1

C,1U2
AC,4

U1
C,5 U2

AC,14 U1
C,4

U1
C,6 U2

AC,15 U1
C,4

U1
C,7

U2
AC,6 U1

C,4U2
AC,8

U1
C,8 U2

AC,11 U1
C,4

U1
C,9 U2

AC,12 U1
C,4

U1
C,10 U2

AC,13 U1
C,4

U1
C,11 U2

AC,16 U1
C,4

U1
C,12

U2
AC,7 U1

C,4U2
AC,9

U1
C,13 U2

AC,10 U1
C,4

U1
C,14 U2

AC,5 U1
C,4

U1
C,18

U2
AC,21 U1

C,15U2
AC,23

U1
C,19 U2

AC,19 U1
C,15

Phase portrait U1
C,20 has phase portraits U2

AC,32 and U2
AC,34 as evolution. After

bifurcation we get phase portrait U1
C,17 for both cases (being one of them modulo limit

cycles), by making the finite saddle–node sn(2) disappears. Moreover, phase portrait U1
C,20

also has a phase portrait as an evolution which is topologically equivalent to impossible
phase portrait U2,I

AC,3, obtained before during the study of phase portrait U1,I
A,59. Again, by

Thm. 5.2.10 such a phase portrait is impossible because by splitting the original infinite
saddle–node

(1
1

)
SN into a finite saddle and an infinite node we obtain the impossible phase

portrait U1,I
A,104 of codimension one∗, see Fig. 236. Also, in the set (C), U2,I

AC,3 unfolds in
U1

C,17 (modulo limit cycles).

Figure 236 – Impossible unstable phase portrait U2,I
AC,3 (see again Fig. 234)

Phase portrait U1
C,21 has phase portraits U2

AC,22 and U2
AC,24 as evolution. After
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bifurcation we get phase portrait U1
C,17 for both cases, by making the finite saddle–node

sn(2) disappears.

Phase portrait U1
C,22 has phase portraits U2

AC,40 and U2
AC,39 as evolution. After

bifurcation we get phase portraits U1
C,15 and U1

C,17, respectively, by making the finite
saddle–node sn(2) disappears.

Phase portrait U1
C,23 has phase portraits U2

AC,26 and U2
AC,27 as evolution. After

bifurcation we get phase portrait U1
C,17 for both cases, by making the finite saddle–node

sn(2) disappears.

Phase portrait U1
C,24 has phase portraits U2

AC,33 and U2
AC,35 as evolution. After

bifurcation we get phase portrait U1
C,15 for both cases (being one of them modulo limit

cycles), by making the finite saddle–node sn(2) disappears. Moreover, phase portrait U1
C,24

also has the impossible phase portrait U2,I
AC,4 as an evolution. By Thm. 5.2.10 such a phase

portrait is impossible because by splitting the original infinite saddle–node
(1

1

)
SN into

a finite saddle and an infinite node we obtain the impossible phase portrait U1,I
A,104 of

codimension one∗, see Fig. 237. We observe that, in the set (C), U2,I
AC,4 unfolds in U1

C,15

(modulo limit cycles).

Figure 237 – Impossible unstable phase portrait U2,I
AC,4

In Table 49 we present the study of phase portraits U1
C,25 to U1

C,30 and we follow
the same pattern used in Table 48.

Table 49 – Phase portraits from the set (AC) obtained from evolution of elements of the set (C)

phase portrait from phase portrait from phase portrait from
the set (C) the set (AC) the set (C)

U1
C,25 U2

AC,31 U1
C,15

U1
C,26

U2
AC,17 U1

C,16U2
AC,18

U1
C,27 U2

AC,30 U1
C,16

U1
C,28 U2

AC,38 U1
C,15

U1
C,29 U2

AC,20 U1
C,16

U1
C,30

U2
AC,37 U1

C,15
U2

AC,36 U1
C,16
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Phase portrait U1
C,31 has phase portraits U2

AC,28 and U2
AC,29 as evolution. After

bifurcation we get phase portrait U1
C,16 for both cases (being one of them modulo limit

cycles), by making the finite saddle–node sn(2) disappears. Moreover, phase portrait U1
C,31

also has the impossible phase portrait U2,I
AC,5 as an evolution. By Thm. 5.2.10 such a phase

portrait is impossible because by splitting the original infinite saddle–node
(1

1

)
SN into

an infinite saddle and a finite node we obtain the impossible phase portrait U1,I
A,106 of

codimension one∗, see Fig. 238. We observe that, in the set (C), U2,I
AC,5 unfolds in U1

C,16

(modulo limit cycles).

Figure 238 – Impossible unstable phase portrait U2,I
AC,5

5.4.2 The realization of the potential phase portraits

In the previous subsection we have produced all the 42 topologically potential
phase portraits for structurally unstable quadratic systems of codimension two∗ belonging
to the set ∑

2
2(AC). And from them, we have already discarded two which are not realizable

due to their respective unfoldings of codimension one∗ being impossible.

In this subsection we aim to give specific examples for the 40 different topological
classes of structurally unstable quadratic systems of codimension two∗ belonging to the
set ∑

2
2(AC) and presented in Figs. 103 and 104. As in the previous section, we point out

that we have found examples with no signals of limit cycles, but we have not proved the
absence of infinitesimal ones.

In Chap. 4 we classified, with respect to a specific normal form, the set of all real
quadratic polynomial differential systems with a finite semi–elemental saddle–node sn(2)
located at the origin of the plane and an infinite saddle–node of type

(1
1

)
SN obtained by

the coalescence of a finite antisaddle (respectively finite saddle) with an infinite saddle
(respectively infinite node).

As we have discussed in the previous section, the study of bifurcation diagrams of a
certain family of quadratic systems, produces not only the class of phase portraits looked
for, but also all those of their closure according to the normal form used. Even though the
study is mainly algebraic, often, also analytic and numerical tools are required. This makes
that these studies may be not complete and subject to the existence of possible “islands”
which contain an undetected phase portrait. The border of that “island” could mean the
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connection of two separatrices, and the interior contain a different phase portrait from
the ones stated in the theorem. The topological study that we do here solves partially this
problem, since we prove that all the realizable phase portraits of class (AC) do really exists,
and no other topological possibility does. However, the possible existence of “islands” in
the bifurcation diagram still persists since they can be related with double limit cycles,
as we discussed in Sec. 4.4 of Chap. 4.

By using the phase portraits of generic regions of the bifurcation diagram presented
in Chap. 4 we realize all the 40 unstable systems of codimension two∗ of the set (AC), i.e.
we can give specific examples of all structurally unstable phase portraits from the set (AC).
In fact, consider systems (4.1), i.e.

ẋ = cx+ cy− cx2 +2hxy,

ẏ = ex+ ey− ex2 +2mxy,

where c, e, h and m are real parameters and eh− cm 6= 0. This normal form was studied
in Chap. 4 and it describes quadratic polynomial differential systems which have a finite
semi–elemental saddle–node sn(2), a finite elemental singularity and an infinite saddle–
node of type

(1
1

)
SN.

In Table 50 we present one representative from each generic region of the bifur-
cation diagram from Chap. 4 corresponding to each phase portrait of codimension two∗

from the set (AC) and, therefore, we conclude the proof of Thm. 5.1.2.

5.5 Graphics and limit cycles
Even though the goal of this chapter deals little with graphics and limit cycles,

there is no doubt that these are two of the most important elements in Qualitative Theory
of Ordinary Differential Equations.

Limit cycles are the most elusive phenomena in phase portraits. They may appear
either by a bifurcation of a weak focus (Hopf bifurcation), by a bifurcation of a graphic,
or by a bifurcation of a multiple limit cycle, and only the first case can be fully alge-
braically controlled. The other cases are generically nonalgebraic. In fact, weak foci can
be considered among graphics, since they can be seen as graphics reduced to a single
point.

Our goal to find all the topologically different phase portraits modulo limit cycles
bypasses this big problem, but it is not an irrelevant goal. Whenever the mathematical
community finally gets the complete set of phase portraits of quadratic systems (or what-
ever other family), the subset of the phase portraits modulo limit cycles will be the base
for such a classification. It is expected to obtain more than one thousand (maybe even
up to 2000) different phase portraits of quadratic systems modulo limit cycles. For quite



5.5. Graphics and limit cycles 327

Table 50 – Correspondence between codimension two∗ phase portraits of the set (AC) and phase
portraits from Figs. 15 and 16. In the first column we present the codimension two∗
phase portraits from the set (AC), in the second column we show the corresponding
phase portraits from Figs. 15 and 16, and in the other columns we present the values
of the parameters c, e, h, and m of (4.1) which realizes the phase portrait

Cod 2∗ Phase Portrait c e h m
U2

AC,1 V38 −10 30 1 4
U2

AC,2 V1 6 81/2 1 4
U2

AC,3 V33 −7 5/2 1 4
U2

AC,4 V53 2 47/50 1 37/100
U2

AC,5 V13 −1 −10 1 4
U2

AC,6 V4 7 15 1 4
U2

AC,7 V21 −9/4 −10 1 4
U2

AC,8 V92 −3 7/2 1 −6/5
U2

AC,9 V10 1/2 −11/2 1 4
U2

AC,10 V63 −2/5 1/50 1 −1/4
U2

AC,11 V95 −3 31/10 1 −6/5
U2

AC,12 V73 −19/10 17/20 1 −3/4
U2

AC,13 V8 3/2 −9/2 1 4
U2

AC,14 V93 −1 11/10 1 −6/5
U2

AC,15 V6 24/5 −4/5 1 4
U2

AC,16 V68 −3 2/5 1 −1/4
U2

AC,17 V39 −25 30 1 4
U2

AC,18 V3 45/2 98 1 4
U2

AC,19 V62 −1/40 1/50 1 −1/4
U2

AC,20 V80 −6/5 1207/1000 1 −1
U2

AC,21 V81 29/50 −3/5 1 −6/5
U2

AC,22 V36 −1 4 1 4
U2

AC,23 V23 −9/2 −17 1 4
U2

AC,24 V112 1/2 42 1 −10
U2

AC,25 V77 −5/4 629/500 1 −49/50
U2

AC,26 V90 −9/5 881/400 1 −6/5
U2

AC,27 V2 1 7 1 4
U2

AC,28 V35 −1747/50 30 1 4
U2

AC,29 V49 10 5156/625 1 51/100
U2

AC,30 V65 −23/50 1151/10000 1 −1/4
U2

AC,31 V59 −1/50 1/40 1 −1/4
U2

AC,32 V29 −3/2 1/2 1 4
U2

AC,33 V82 1341/2000 −3/5 1 −6/5
U2

AC,34 V102 1/100 31/10 1 −5/2
U2

AC,35 V26 −687/50 −17 1 4
U2

AC,36 V20 −21/10 −41/5 1 4
U2

AC,37 V51 10 151/20 1 3/4
U2

AC,38 V71 −1/10000 3/125 1 −1/4
U2

AC,39 V14 −3/2 −4 1 4
U2

AC,40 V55 1/100 1/100 1 −1/4
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many of them it will be trivial to determine that they will not have limit cycles (in the
case they do not have a finite antisaddle). But for all the others, it will be necessary to
determine exactly how many different phase portraits can be obtained from that skeleton
by adding limit cycles. Up to now and up to our knowledge, there are very few nontrivial
skeletons of phase portraits which could theoretically have limit cycles, and for which the
absence of limit cycles has been proved. To be more precise, we are only completely sure
of one of them, namely the structurally stable phase portrait S2

7,1. This phase portrait was
obtained in Artés, Kooij and Llibre (1998) and was conjectured by statistical tools to be
incompatible with limit cycles in Artés and Llibre (2003) and this conjecture was proved
in Artés, Llibre and Medrado (2007). Also in Artés and Llibre (2003) some other phase
portraits are conjectured (by statistical data) to be incompatible with limit cycles, but no
proof is available yet. Apart from these last ones, other candidates can be found in Class
I of Ye and Lo (1986). In that paper the authors produce three normal forms (denoted by
I, II and III) and they prove that any system with limit cycle can be transformed in an
element of them. The three classes have no intersection since they deal with the number
of finite singularities that have gone to infinity (≥ 2, 1 and 0, respectively). And in Ye and
Lo (1986) it is also proved that systems from Class I have at most one limit cycle. There
is still no conclusive study of phase portraits from Class I, but some phase portraits of
this class have already been found having one limit cycle and some others with no limit
cycle (see Coll (1987), Jia, Chen and Chen (2020), Reyn and Kooij (1997)). For the cases
with limit cycle, it is closed the fact that such phase portraits can have at most one limit
cycle, and if a conclusive study is done and results are confirmed, the cases with no limit
cycle would add to the phase portrait S2

7,1 as skeletons of phase portraits without limit
cycles. For all other skeletons of phase portraits found up to now, there is not a single
proof determining which is the maximum number of limit cycles that each one may have.
There are many other papers related to the maximum number of limit cycles, but they
are mostly linked to a certain normal form. Most of them simply prove that a specific
normal form may have just one limit cycle. But this does not imply that the skeletons
of phase portraits obtained in that normal form may have more limit cycles in the entire
classification.

Up to now, it is known that there are examples of phase portraits of quadratic
systems with four limit cycles distributed into two nests around two foci, more precisely,
three limit cycles in one nest and the fourth limit cycle in the other nest (see, for instance,
Songling (1981) where the author provided one of the first quadratic systems proved to
have 4 limit cycles). And even though it is conjectured that the effective maximum is
four with the distribution just mentioned, there is still no conclusive proof. The phase
portraits for which there are examples with four limit cycles belong to three skeletons
of phase portraits, namely, the structurally stables S2

4,1 and S2
11,2 from Artés, Kooij and

Llibre (1998), and the codimension one∗ U1
B,31 from Artés, Llibre and Rezende (2018).
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The proof that they may have at least four limit cycles appears in several papers since
they appear in classifications with a weak focus of order three, already having a limit
cycle around a strong focus.

But not even if the maximum bound was four, we would not be close to obtain
all the phase portraits of quadratic systems. Any of the three skeletons mentioned before
may have the topologically different configurations (0,0), (1,0), (2,0), (3,0), (1,1), (2,1),
and (3,1). That is, seven different configurations. But even that is not a criterion (that
is, multiply the number of skeletons by 7) to obtain a simple upper bound for the total
number of phase portraits. There are phase portraits like S2

5,1 from Artés, Kooij and
Llibre (1998) which has three finite antisaddles. One of them receives (or emits) a single
separatrix, the second one receives (or emits) exactly two separatrices, and the third one
receives (or emits) exactly three separatrices. So, the fact that a limit cycle could be
surrounding any of the three antisaddles would generate a topologically different phase
portrait. And in case there were two nests of limit cycles, and assuming that they could
have up to four limit cycles, the number of cases would increase up to 25 possibilities.
But from these 25 possibilities, up to now only six have been confirmed to exist. We are
collecting a large database and recording the maximum number of limit cycles found in
each one of the skeletons classified up to now.

With all these facts we want to remark that the topological classification of phase
portraits modulo limit cycles is important since it produces a complete set of skeletons
from which all the complete set of phase portraits must be located. For each particular
skeleton, it must be studied if it contains none, one, two or up to three antisaddles around
which the limit cycles may be located. If there is a complete collection of phase portraits
modulo limit cycles, and if an upper bound of limit cycles is found, it will give a quite
rough upper bound for the number of different phase portraits. But the real number will
need a deeper study case by case. Nowadays, the moment that we could have a complete
topological classification is quite far away. However, the topological classification modulo
limit cycles is within reach, although they are not easily reachable yet.

We now talk about graphics. Graphics are also very important because they can
become the bifurcation edge which leads to the birth of limit cycles. There has been a
lot of literature related to graphics, and one of the most relevant papers is the one from
Dumortier, Roussarie and Rousseau (1994) where the authors list a set of 121 different
graphics whose finite cyclicity needs to be proved in order to prove the finiteness part of
Hilbert 16th problem for quadratic systems. The graphics in this list can be of different
types. Many of them imply the connection of one (or more) couple of separatrices, finite or
infinite. Other graphics are formed simply because a separatrix arrives to the nodal part
of a saddle–node (finite or infinite) or an even more degenerate singularity in coexistence
with other properties of the phase portrait. Unfortunately, most of these graphics cannot
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be detected by means of algebraic tools. In many studies of families of systems where a
complete bifurcation is given in the parameter space, after all the algebraic bifurcations
are given, the use of continuity and coherence arguments allows the detection of some
other nonalgebraic bifurcations where these graphics appear.

Our methodical study of phase portraits of quadratic systems modulo limit cycles
started with codimension zero (structurally stable) (see Artés, Kooij and Llibre (1998))
and of course these phase portraits cannot have any graphic at all. The second step
was the classification of codimension–one phase portraits (modulo limit cycles), and in
that study we could start finding some graphics, but not too many. Precisely, we found
graphic (F1

2 ) from Dumortier, Roussarie and Rousseau (1994) in U1
A,37, U1

A,43, U1
A,64, and

U1
A,70. This graphic is formed simply by one finite saddle–node which sends its center

manifold (separatrix of zero eigenvalue) to its own nodal part. We also have graphic (I2
19)

from Dumortier, Roussarie and Rousseau (1994) in U1
B,29, U1

B,30 (twice), U1
B,33, U1

B,36, and
U1

B,38. This graphic is formed by one elemental infinite saddle which sends one of its sepa-
ratrices to the nodal part of an infinite adjacent saddle–node formed by the coalescence of
two infinite singularities. There are no graphics in the set (C) of codimension–one phase
portraits (modulo limit cycles, see page 47). Finally, in the set (D) (see again page 47) we
found the graphics (F1

1 ), (H1
1 ), and (I2

1 ) from Dumortier, Roussarie and Rousseau (1994).
The first one is just a loop of a finite elemental saddle, the second one is a separatrix
connection between opposite infinite elemental saddles, and the third one is a separa-
trix connection between adjacent infinite elemental saddles. The loop is present in U1

D,1,
U1

D,6, U1
D,7, U1

D,8, U1
D,9, U1

D,12, U1
D,19, U1

D,20, U1
D,22, U1

D,23, U1
D,30, U1

D,31, U1
D,32, U1

D,46, U1
D,47,

U1
D,48, U1

D,49, U1
D,50, U1

D,51, U1
D,52, U1

D,53, and U1
D,54. The second graphic appears in U1

D,10

and U1
D,11. And the third one can be seen in U1

D,28, U1
D,29, U1

D,37, U1
D,38, and U1

D,39. No
other graphic from these last five may appear, since all the remaining 116 imply higher
codimension.

Thus, in our current study of phase portraits of codimension two∗ with a finite
saddle–node and an infinite saddle–node, the only graphics that we can see will be those
ones which are inherited from the respective phase portraits of codimension one∗ already
having a graphic. No new graphic may appear from the consolidation of the two different
instabilities we mix here. In the studies of the sets (AD), (BD), and (CD) we will start
incorporating more graphics from Dumortier, Roussarie and Rousseau (1994), since we
will find, for example, saddle–nodes forming a loop instead of an elemental saddle. Also
the set (DD) will provide graphics with two separatrix connections. Anyway, the graphics
will appear in larger numbers when codimension three∗ is studied.

There is another important fact, related to stability and graphics, to comment
about the classification that we are working with. As we mentioned in the Introduction,
in Artés, Llibre and Rezende (2018) it is claimed that there are at least 204 structurally
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unstable phase portraits of codimension one∗ and at most 211. Two papers have found
two mistakes in that book and the newly proved numbers are 202 and 209, respectively.
The seven cases that have not been found correspond to cases which are conjectured as
impossible and some arguments are given to support that conjecture. We point out that
all the seven cases conjectured impossible contain a graphic, more precisely the polycycles
(F1

2 ) or (H1
1 ). These phase portraits consist in an skeleton of separatrices which depending

on the stability of the focus inside the polycycle (compared to other stabilities outside it)
may lead or not to a realizable phase portrait. That is, they lead to a phase portrait which
is already known to exist, or lead to a phase portrait which (up to our knowledge) never
appeared before in any paper. The normal techniques which have allowed us to prove the
impossibility of hundreds of phase portraits are useless in these seven cases. All we can say
about these seven phase portraits is that in case they exist, some perturbations from them
would produce phase portraits with a limit cycle that we have not found anywhere. Using
the tools of perturbations related to stability that we use in this chapter, we may claim
that if one of those phase portraits with a limit cycle could be proven impossible, then the
related unstable phase portrait with a polycycle would be also impossible. However, the
opposite is not true. If the phase portrait with a limit cycle does exist, it is not sure that
the related unstable phase portrait with a polycycle may exist. There is the possibility
that by means of a rotated vector field one could pass from one to the other, but it is not
guaranteed.

So, we see once more the importance of graphics and limit cycles in the classifica-
tion of phase portraits. The fact that we talk so little about limit cycles is simply because
we want to do the classification modulo limit cycles in order to have a good base upon
which we or others may add the limit cycles. And the fact that we talk so little about
graphics is because at the level of codimension that we are in this stage, there appear
very few of the 121 graphics described in Dumortier, Roussarie and Rousseau (1994).
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CHAPTER

6
GEOMETRIC ANALYSIS OF QUADRATIC

DIFFERENTIAL SYSTEMS WITH
INVARIANT ELLIPSES

In this chapter we use extensively the theory developed in Chap. 2 in order to
study quadratic systems possessing invariant ellipses.

6.1 Introduction and statement of the main results
As before, here we consider planar polynomial differential systems

dx/dt = p(x,y), dy/dt = q(x,y) (6.1)

where p,q ∈ R[x,y].

Lets us recall two important definitions.

Definition 6.1.1 (Darboux). An algebraic curve f (x,y) = 0, where f ∈ C[x,y], is an in-
variant curve of the planar polynomial system (6.1) if and only if there exists a polynomial
k(x,y) ∈ C[x,y] such that

p(x,y)
∂ f
∂x

+q(x,y)
∂ f
∂y

= k(x,y) f (x,y).

Definition 6.1.2 (Darboux). We call algebraic solution of a planar polynomial system
an invariant algebraic curve over C which is irreducible.

One of the main motivations for this chapter comes from integrability problems
related to the work of Darboux (see Darboux (1878)).

Theorem 6.1.3 (Darboux). Suppose that a polynomial system (6.1) has m invariant
algebraic curves fi(x,y) = 0, i ≤ m, with fi ∈ C[x,y] and with m > n(n+ 1)/2, where n is
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the degree of the system. Then there exist complex numbers λ1, . . . ,λm such that f λ1
1 . . . f λm

m

is a first integral of the system.

The condition in Darboux’s theorem is only sufficient for Darboux integrability
(integrability in terms of invariant algebraic curves) and it is not also necessary. Thus
the lower bound on the number of invariant curves sufficient for Darboux integrability
stated in the theorem of Darboux is larger than necessary. Darboux’s theory has been
improved by including for example the multiplicities of the curves (Llibre and Zhang
(2009)). Also, the number of invariant algebraic curves needed was reduced but by adding
some conditions, in particular the condition that any two of the curves be transversal. But
a deeper understanding about Darboux integrability is still lacking. Algebraic integrability,
which intervenes in the open problem stated by Poincaré in 1891 (see Poincaré (1891a)
and Poincaré (1891b)), and which means the existence of a rational first integral for the
system, is a particular case of Darboux integrability.

Theorem 6.1.4 (See Jouanolou (1979)). Suppose that a polynomial system (6.1), defined
by polynomials p(x,y), q(x,y) ∈C[x,y], has m invariant algebraic curves fi(x,y) = 0, i≤m,
with fi ∈ C[x,y] and with m ≥ n(n+1)/2+2, where n is the degree of the system. Then
the system has a rational first integral h(x,y)/g(x,y) where h(x,y),g(x,y) ∈ C[x,y].

To advance knowledge on algebraic or more generally Darboux integrability it is
necessary to have a large number of examples to analyze. In the literature, scattered iso-
lated examples were analyzed but a more systematic approach was still needed. Schlomiuk
and Vulpe initiated a systematic program to construct such a data base for quadratic dif-
ferential systems. Since the simplest case is of systems with invariant straight lines, their
first works involved only invariant lines for quadratic systems (see Schlomiuk and Vulpe
(2004), Schlomiuk and Vulpe (2008b), Schlomiuk and Vulpe (2008d), Schlomiuk and Vulpe
(2008c) and Schlomiuk and Vulpe (2010)). One of the next steps is to study classes of
quadratic systems with invariant conics. In this sense, in Oliveira et al. (2017) the authors
started these studies by considering the class QSH of non–degenerate quadratic differen-
tial systems having invariant hyperbolas. In this chapter we discuss the study of a class of
quadratic systems with an invariant conic, namely the class QSE of non–degenerate (i.e.
p and q are relatively prime) quadratic differential systems having an invariant ellipse.
Such systems could also have some invariant lines and in many cases the presence of these
invariant curves turns them into Darboux integrable systems. We always assume here
that systems (6.1) are non–degenerate because otherwise doing a time rescaling, they can
be reduced to linear or constant systems. Under this assumption all the systems in QSE
have a finite number of finite singularities.

The irreducible affine conics over the field R are the hyperbolas, ellipses and parabo-
las. One way to distinguish them is to consider their points at infinity (see Abhyankar
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(1988)). The term hyperbola is used for a real irreducible affine conic which has two real
points at infinity. This distinguishes it from the other two irreducible real conics: the
parabola has just one real point at infinity at which the multiplicity of intersection of the
conic with the line at infinity is two, and the ellipse which has two complex points at
infinity.

In the theory of Darboux the invariant algebraic curves are considered (and rightly
so) over the complex field C. We may extend the notion of hyperbola (parabola or ellipse)
for conics over C. A hyperbola (respectively parabola or ellipse) is an algebraic curve C

in C2, C : f (x,y) = 0 with f ∈ C[x,y], deg( f ) = 2 which is irreducible and which has two
real points at infinity (respectively one real point at infinity with intersection multiplicity
two, or two complex (non–real) points at infinity).

Remark 6.1.5. We draw attention to the fact that if we have a curve C : f (x,y) = 0
over C it could happen that multiplying the equation by a number λ ∈ C∗ = C\{0}, the
coefficients of the new equation become real. In this case, to the equation f (x,y) = 0 we
can associate two curves: one real {(x,y) ∈ R2|λ f (x,y) = 0} and one complex {(x,y) ∈
C2| f (x,y) = 0}. In particular, if f (x,y) ∈ R[x,y] then we could talk about two curves,
one in the real and the other in the complex plane. If the coefficients of an algebraic
curve C : f (x,y) = 0 cannot be made real by multiplication with a constant, then clearly
to the equation f (x,y) = 0 we can associate just one curve, namely the complex curve
{(x,y) ∈ C2| f (x,y) = 0}.

In this chapter (in fact, in the entire thesis) we consider real polynomial differential
equations. To each such system of equations there corresponds the complex system with
the same coefficients to which we can apply the theory of Darboux using complex invariant
algebraic curves. Some of these curves may turn out to be with real coefficients in which
case they also yield, as in the previous remark, invariant algebraic curves in R2 of the real
differential system. It is one way, but not the only way, in which the theory of Darboux
yields applications to real systems. It is by juggling both with complex and real systems
and their invariant complex or real algebraic curves that we get a full understanding of
the classification problem we consider here.

We suppose that a polynomial differential system has an algebraic solution f (x,y)=

0 where f (x,y)∈C[x,y] is of degree n, f (x,y) = a00+a10x+a01y+ · · ·+an0xn+an−1,1xn−1y+

· · ·+ a0nyn with â = (a00, . . . ,a0n) ∈ CN where N = (n + 1)(n + 2)/2. We note that the
equation λ f (x,y) = 0 where λ ∈ C∗ = C\{0} yields the same locus of complex points in
the plane as the locus induced by f (x,y) = 0. So, a curve of degree n defined by â can
be identified with a point [â] = [a00 : a10 : · · · : a0n] in PN−1(C). We say that a sequence of
curves fi(x,y) = 0 of degree n converges to a curve f (x,y) = 0 if and only if the sequence
of points [ai] = [ai00 : ai10 : · · · : ai0n] converges to [â] = [a00 : a10 : · · · : a0n] in the topology
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of PN−1(C).

On the class QS acts the group of real affine transformations and time rescaling
and because of this, modulo this group action quadratic systems ultimately depend on
five parameters. In particular, restricting this group action on QSE, modulo this action
the QSE is a union of one–dimensional, two–dimensional and three–dimensional families
of systems as it can be seen from the normal forms obtained in Oliveira et al. (2021) for
this class.

We observe that if we rescale the time t ′= λ t by a positive constant λ the geometry
of systems (6.1) does not change. So, for our purposes we can identify a system (6.1) of
degree n with a point [a00,a10, . . . ,a0n,b00, . . . ,b0n] in SN−1(R), with N = (n+1)(n+2).

We compactify the space of all the polynomial differential systems of degree n

on SN−1 with N = (n+ 1)(n+ 2) by multiplying the coefficients of each systems with
1/(∑(a2

i j +b2
i j))

1/2.

Definition 6.1.6. (1) We say that an invariant curve L : f (x,y) = 0, f ∈ C[x,y], for a
polynomial system (S) of degree n has multiplicity m if there exists a sequence of real
polynomial systems (Sk) of degree n converging to (S) in the topology of SN−1, N = (n+

1)(n+2), such that each (Sk) has m distinct invariant curves L1,k : f1,k(x,y) = 0, . . . ,Lm,k :
fm,k(x,y) = 0 over C, deg( f ) = deg( fi,k) = r, converging to L as k→∞, in the topology of
PR−1(C), with R = (r+1)(r+2)/2 and this does not occur for m+1.

(2) We say that the line at infinity L∞ : Z = 0 of a polynomial system (S) of degree
n has multiplicity m if there exists a sequence of real polynomial systems (Sk) of degree n

converging to (S) in the topology of SN−1, N = (n+1)(n+2), such that each (Sk) has m−1
distinct invariant lines L1,k : f1,k(x,y) = 0, . . . ,Lm−1,k : fm−1,k(x,y) = 0 over C, converging
to the line at infinity L∞ as k→ ∞, in the topology of P2(C) and this does not occur for
m.

Remark 6.1.7. (a) In order to describe the various kinds of multiplicities for infinite
singularities we use the concepts and notations introduced in Schlomiuk and Vulpe
(2004). Thus we denote by “(a,b)” the maximum number a (respectively b) of infinite
(respectively finite) singularities which can be obtained by perturbation of a multiple
infinite singularity.

(b) In the diagram of Fig. 242 we draw the multiple curves with bold lines and we place a
number without parentheses next to the curve which corresponds to its multiplicity
(see for example Config. E.24). However, there exist two configurations in which we
draw the invariant ellipse with thicker line (without a number next to it) in order
to indicate that it is a limit cycle (see Config. E.5 and Config. E.9).
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An important tool in this chapter is the notion of configuration of algebraic so-
lutions of a polynomial differential system. This notion appeared for the first time in
Schlomiuk and Vulpe (2004).

Definition 6.1.8. Consider a planar polynomial system which has a finite number of
algebraic solutions and a finite number of singularities, finite or infinite. By a configuration
of algebraic solutions of this system we mean the set of algebraic solutions over C of the
system, each one of these curves endowed with its own multiplicity and together with all
the real singularities of this system located on these curves, each one of these singularities
endowed with its own multiplicity.

We may have two distinct systems which may be non–equivalent modulo the action
of the group but which may have “the same configuration” of invariant ellipses and straight
lines. We need to say when two configurations are “the same” or equivalent.

Definition 6.1.9. Suppose we have two systems (S1) and (S2) in QSE with a finite
number of singularities, finite or infinite, a finite set of invariant ellipses Ei : ei(x,y) = 0,
i = 1, . . . ,k, of (S1) (respectively E ′i : e′i(x,y) = 0, i = 1, . . . ,k, of (S2)) and a finite set (which
could also be empty) of invariant straight lines L j : f j(x,y) = 0, j = 1,2, . . . ,k′, of (S1)

(respectively L ′
j : f ′j(x,y) = 0, j = 1,2, . . . ,k′, of (S2)). We say that the two configurations

C1 and C2 of ellipses and lines of these systems are equivalent if there is a one–to–one
correspondence φe between the ellipses of C1 and C2 and a one–to–one correspondence φl

between the lines of C1 and C2 such that:

(i) the correspondences conserve the multiplicities of the ellipses and lines and also
send a real invariant curve to a real invariant curve and a complex invariant curve to a
complex invariant curve;

(ii) for each ellipse E : e(x,y) = 0 of C1 (respectively each line L : f (x,y) = 0) we
have a one–to–one correspondence between the real singularities on E (respectively on
L ) and the real singularities on φe(E ) (respectively φl(L )) conserving their multiplicities
and their location;

(iii) furthermore, consider the total curves F : ∏Ei(X ,Y,X)∏Fj(X ,Y,Z)Z = 0 (re-
spectively F ′ : ∏E ′i(X ,Y,X)∏F ′j(X ,Y,Z)Z = 0 where Ei(X ,Y,X) = 0 and Fj(X ,Y,X) = 0
(respectively E ′i(X ,Y,X) = 0 and F ′j(X ,Y,X) = 0) are the projective completions of Ei and
L j (respectively E ′i and L ′

j ). Then, there is a correspondence ψ between the singularities
of the curves F and F ′ conserving their multiplicities as singularities of the total curves.

In the family QSE we also have cases where we have an infinite number of ellipses.
Thus, according to the theorem of Jouanolou (Thm. 6.1.4), we have a rational first integral.
In this case the multiplicity of an ellipse in the family is either considered to be undefined
or we may say that this multiplicity is infinite. Such situations occur either when we
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have (i) a finite number of singularities, finite or infinite, or (ii) an infinite number of
singularities which could only be at infinity (recall that the systems in QSE are non–
degenerate). In both cases however we show that we have a finite number of invariant
affine straight lines with finite multiplicities. In fact it was proved in Schlomiuk and
Vulpe (2008a) that all quadratic systems which have the line at infinity filled up with
singularities have invariant affine straight lines of total multiplicity three. Furthermore,
the multiplicities of singularities of the systems are finite in the case (i) and this is also
true in the case (ii) if we only take into consideration the affine lines. We therefore can
talk about the configuration of invariant affine lines associated to the system. Two such
configurations of invariant affine lines C1L and C2L associated to systems (S1) and (S2) are
said to be equivalent if and only if there is a one–to–one correspondence φl between the
lines of C1L and C2L such that:

(i) the correspondence conserves the multiplicities of lines and also sends a real invariant
line to a real invariant line and a complex invariant line to a complex invariant line;

(ii) for each line L : f (x,y) = 0 we have a one–to–one correspondence between the real
singularities on L and the real singularities on φl(L ) conserving their multiplicities
and their order on the lines.

We use this to extend Def. 6.1.9 to include these cases.

Definition 6.1.10. Suppose we have two systems (S1) and (S2) in QSE, each one with a
finite number of finite singularities and an infinite number of invariant ellipses. Suppose we
have a nonempty finite set of invariant affine straight lines L j : f j(x,y) = 0, j = 1,2, . . . ,k,
of (S1) (respectively L ′

j : f ′j(x,y) = 0, j = 1,2, . . . ,k, of (S2)). We now consider only the
two configurations C1L and C2L of invariant affine lines of (S1) and (S2) associated to the
systems, respectively. We say that the two configurations C1L and C2L are equivalent with
respect to the ellipses of the systems if and only if (i) they are equivalent as configurations
of invariant lines and in addition the following property (ii) is satisfied: we take any ellipse
E : e(x,y) = 0 of (S1) and any ellipse E ′ : e′(x,y) = 0 of (S2). Then, we must have a one–to–
one correspondence between the real singularities of system (S1) located on E and of real
singularities of system (S2) located on E ′, conserving their multiplicities and their location.
Furthermore, consider the curves F : ∏e(x,y)∏ f j(x,y)= 0 and F ′ : ∏e′(x,y)∏ f ′j(x,y)= 0.
Then we have a one–to–one correspondence between the singularities of the curve F with
those of the curve F ′ conserving their multiplicities as singularities of these curves.

It can be shown that this definition is independent of the choice of the two ellipses
E : e(x,y) = 0 of (S1) and E ′ : e′(x,y) = 0 of (S2).

Here we are interested in systems possessing an invariant ellipse. The conics
f (x,y) = 0 with f (x,y)∈R[x,y] are classified via the group action of real affine transforma-
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tion. The conics for which f (x,y) is an irreducible polynomial over C can be brought by
a real affine transformation to one of the following four forms: 1) x2+y2−1 = 0 (ellipses);
2) x2− y2− 1 = 0 (hyperbolas); 3) y− x2 = 0 (parabolas); 4) x2 + y2 + 1 = 0, these are
empty in R2 with points only in C2. Some authors call these conics complex ellipses (see
Cairó and Llibre (2002), for instance). These complex ellipses play a helpful role in our
classification problem.

Definition 6.1.11. By an ellipse we mean a conic f (x,y) = 0 with real coefficients which
can be brought by a real affine transformation to an equation x2+y2+a = 0 with a =−1
(a real ellipse) or a = 1 (a complex ellipse).

Remark 6.1.12. In the family QSE we can have cases of systems which possess simul-
taneously an infinite number of real ellipses as well as an infinite number of complex
ellipses. For such systems we present the respective configurations containing only real
ellipses (besides, of course, the corresponding invariant lines, if there are any).

In Oliveira et al. (2021) the authors provide necessary and sufficient affine invariant
conditions for a non–degenerate quadratic differential system to have at least one invariant
ellipse and these conditions are expressed in terms of the coefficients of the systems. In this
chapter we denote by QSE(η<0) the family of non–degenerate quadratic systems in QSE
possessing two complex singularities at infinity and by QSE(C2=0) the systems in QSE
possessing the line at infinity filled up with singularities. We classify these families of
systems, modulo the action of the group of real affine transformations and time rescaling,
according to their geometric properties encoded in the configurations of invariant ellipses
and/or invariant straight lines which these systems possess.

As we want this classification to be intrinsic, independent of the normal form
given to the systems, we use here geometric invariants and invariant polynomials for
the classification. For example, it is clear that the configuration of algebraic solutions
of a system in QSE is an affine invariant. The classification is done according to the
configurations of invariant ellipses and straight lines encountered in systems belonging to
QSE. We put in the same equivalence class systems which have equivalent configurations
of invariant ellipses and lines (in the sense of Def. 6.1.9 and 6.1.10). In particular the notion
of multiplicity in Def. 6.1.6 is invariant under the group action, i.e. if a quadratic system
S has an invariant curve L = 0 of multiplicity m, then each system S′ in the orbit of S

under the group action has a corresponding invariant line L ′ = 0 of the same multiplicity
m. To distinguish configurations of algebraic solutions we need some geometric invariants,
and we also use invariant polynomials both of which are introduced in our Sec. 6.2.

Main Theorem. Consider the class QSE of all non–degenerate quadratic differential
systems (6.1) possessing an invariant ellipse.
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(A) This family is classified according to the configurations of invariant ellipses and of
invariant straight lines of the systems, yielding 35 distinct such configurations, 30 of
which belong to the class QSE(η<0) and 5 to QSE(C2=0). This geometric classification
is described in Thm. 6.3.1.

(B) Using invariant polynomials, we obtain the bifurcation diagram in the space R12 of
the coefficients of systems in QS according to their configurations of invariant ellipses
and invariant straight lines (this diagram is presented in part (B) of Thm. 6.3.1).
Moreover, this diagram gives an algorithm to compute the configuration of a system
with an invariant ellipse for any quadratic differential system, presented in any
normal form.

This chapter is organized as follows: In Sec. 6.2 we define all the geometric and
algebraic invariants used along the chapter and we introduce the basic auxiliary results we
need for the proof of our theorems. In Sec. 6.3 we consider the class QSE(η<0) (respectively
QSE(C2=0)) of all non–degenerate quadratic differential systems (6.1) possessing exactly
one real singularity at infinity (respectively all non–degenerate quadratic differential sys-
tems (6.1) possessing an invariant ellipse and the line at infinity filled up with singularities)
and we classify this family according to the geometric configurations of invariant ellipses
and invariant straight lines which they possess. We also give their bifurcation diagram in
the 12–dimensional space R12 of the coefficients of quadratic systems, in terms of invari-
ant polynomials. In Sec. 6.4 we give some concluding comments, stressing the fact that
the bifurcation diagrams in R12 give us an algorithm to compute the configuration of a
system with an invariant ellipse for any system presented in any normal form.

6.2 Basic concepts and auxiliary results
In this section we define all the geometric invariants we use in the Main Theorem

and we state some auxiliary results. A quadratic system possessing an invariant ellipse
could also possesses invariant lines. We classify the systems possessing an invariant ellipse
in terms of their configurations of invariant ellipses and invariant lines. Each one of these
invariant curves has a multiplicity in the sense of Def. 6.1.6 (see also Christopher, Llibre
and Pereira (2007)). We encode this picture in the multiplicity divisor of invariant ellipses
and lines. For the definition of zero–cycles and divisors see Sec. 2.1.3.

We define the geometric invariants needed for distinguishing the configurations
given by the Main Theorem.

Definition 6.2.1. We denote the number of invariant ellipses by Nε , which assumes the
value 1 if the systems possess only one invariant ellipse or ∞ if they possess a family of
invariant ellipses (real or complex ones).
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Definition 6.2.2. 1. Suppose that a real quadratic system has a finite number of
invariant ellipses Ei : fi(x,y) = 0 and a finite number of invariant affine lines L j. We
denote the line at infinity L∞ : Z = 0. We assume that on the line at infinity we have
a finite number of singularities. The divisor of invariant ellipses and invariant lines
on the complex projective plane of the system is the following:

ICD = n1E1 + · · ·+nkEk +m1L1 + · · ·+mkLk +m∞L∞,

where n j (respectively mi) is the multiplicity of the ellipse E j (respectively of the
line Li), and m∞ is the multiplicity of L∞. We also mark the complex (non–real)
invariant ellipses (respectively lines) denoting them by E C

i (respectively L C
i ). We

denote by ILD the invariant lines divisor, i.e.

ILD = m∞L∞ +m1L1 + · · ·+mkLk.

2. The zero–cycle on the real projective plane, of real singularities of a system (6.1)
located on the configuration of invariant lines and invariant ellipses, is given by:

MS0C = l1U1 + · · ·+ lkUk +m1s1 + · · ·+mnsn,

where Ui (respectively s j) are all the real infinite (respectively finite) such singular-
ities of the system and li (respectively m j) are their corresponding multiplicities.

The zero–cycle on the real affine plane, of real singularities of a quadratic system
located on the configuration of invariant lines and invariant ellipses, is given by:

MSA f
0C = m1s1 + · · ·+mnsn,

where s j are all the real finite such singularities of the system and m j are their
corresponding multiplicities.

In case we have a real finite singularity located on invariant curves we denote it
by

j
sr, where j ∈ {e, l,el, ll, . . .}. Here e (respectively l,el, ll, . . .) means that the singular

point sr is located on an ellipse (respectively located on a line, on the intersection of an
ellipse and a line, on the intersection of two lines, etc.).

Here we indicate Sec. 2.2.5 for more definitions and results which play an important
role in the proof of the part (B) of the Main Theorem.

According to the definition of an invariant curve (see Defnition 6.1.1) a conic
Φ(x,y) = 0 must satisfy the identity

∂Φ

∂x
P(x,y)+

∂Φ

∂y
Q(x,y) = Φ(x,y)(Ux+V y+W ). (6.2)

for some polynomial K =Ux+V y+W ∈ C[x,y], called the cofactor of the invariant conic
Φ(x,y) = 0.
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Remark 6.2.3. The cofactor K has degree at most 1 because in the previous equation
we have

deg(K)+deg(Φ) =max{deg(P(x,y))+deg(Φ)−1,deg(Q(x,y))+deg(Φ)−1}≤ deg(Φ)+1,

since (6.1) is a quadratic system, the degree of the corresponding vector field is two, so
deg(K) ≤ 1 and, therefore, without loss of generality we can assume that the cofactor is
of the form K(x,y) =Ux+V y+W .

According to Oliveira et al. (2021) a conic which is not a parabola can be written
as

Φ(x,y)≡ p+qx+ ry+ sx2 +2vxy+uy2 = 0.

Remark 6.2.4. The identity (6.2) involves several types of parameters:

• the 12 coefficients of systems (6.1);

• the 6 coefficients the conic Φ;

• the 3 coefficients U,V,W of the cofactor K(x,y).

For a conic Φ(x,y) = 0 of the previous form the identity (6.2) yields 10 nonlinear equations
for determining the 9 unknown coefficients p, q, r, s, v, u, U , V , W as functions of the
coefficients of the systems:

Eq1 ≡ s(2g−U)+2lv = 0,

Eq2 ≡ 2v(g+2m−U)+ s(4h−V )+2lu = 0,

Eq3 ≡ 2v(2h+n−V )+u(4m−U)+2ks = 0,

Eq4 ≡ u(2n−V )+2kv = 0,

Eq5 ≡ q(g−U)+ s(2c−W )+2ev+ lr = 0,

Eq6 ≡ r(2m−U)+q(2h−V )+2v(c+ f −W )+2(ds+ eu) = 0,

Eq7 ≡ r(n−V )+u(2 f −W )+2dv+ kq = 0,

Eq8 ≡ q(c−W )+2(as+bv)+ er− pU = 0,

Eq9 ≡ r( f −W )+2(bu+av)+dq− pV = 0,

Eq10 ≡ aq+br− pW = 0.

(6.3)

The next result, based on the previous identities and proved in Oliveira et al. (2021),
gives us for non–degenerate quadratic systems (6.1) the necessary and sufficient conditions
for the existence of at least one invariant ellipse. The invariant polynomials which appear
in the next theorem and in the corresponding diagrams are presented later.

Theorem 6.2.5 (Oliveira et al. (2021)). Consider a non–degenerate quadratic system.
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(A) The conditions γ̂1 = γ̂2 = 0 and either η < 0 or C2 = 0 are necessary for this system
to possess at least one invariant ellipse. Assume that γ̂1 = γ̂2 = 0 holds.
(A1) If η < 0 and Ñ 6= 0, then the system could possesses at most one invariant

ellipse. Moreover, the necessary and sufficient conditions for the existence of
such an ellipse are given in the diagram of Fig. 239.

(A2) If η < 0 and Ñ = 0, then the system either has no invariant ellipse or it has
an infinite family of invariant ellipses. The necessary and sufficient conditions
for the existence of a family of invariant ellipses are given in the diagram of
Fig. 239.

(A3) If C2 = 0, then the system either has no invariant ellipse or it has an infinite
family of invariant ellipses. Moreover, the necessary and sufficient conditions
for the existence of a family of invariant ellipses are given in the diagram of
Fig. 241.

(B) A non–degenerate quadratic system possesses an algebraic limit cycle, which is an
ellipse, if and only if γ̂1 = γ̂2 = 0, η < 0, T3F < 0, β̂1β̂2 6= 0, and one of the following
sets of conditions is satisfied:

(B1) θ 6= 0, β̂3 6= 0, R̂1 < 0;

(B2) θ 6= 0, β̂3 = 0, γ̂3 = 0, R̂1 < 0;

(B3) θ = 0, γ̂6 = 0, R̂5 < 0.

(C) The diagrams of Fig. 239 and 241 actually contain the global “bifurcation” diagram
in the 12–dimensional space of parameters of non–degenerate systems which possess
at least one invariant ellipse. The corresponding conditions are given in terms of 37
invariant polynomials with respect to affine transformations and time rescaling.
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Figure 239 – Diagram of existence of invariant ellipse: the case η < 0
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Figure 240 – (Cont.) Diagram of existence of invariant ellipse: the case η < 0

Figure 241 – Diagram of existence of invariant ellipse: the case C2 = 0

Remark 6.2.6. An invariant ellipse is denoted by E r if it is real and by E c if it is complex.
In the case of an E r when the drawing is done with thicker line it means that this ellipse
is a limit cycle (see Rmk. 6.1.7 (b)).

The following result is included in Oliveira et al. (2021) as a corollary of Thm. 6.2.5.

Corollary 6.2.7 (Oliveira et al. (2021)). Consider a non–degenerate quadratic system
with the coefficients corresponding to a point ã ∈ R12. According to Oliveira et al. (2021)
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this system could possess an invariant ellipse only if the conditions γ̂1(ã) = γ̂2(ã) = 0
and either η(ã) < 0 or C2(ã,x,y) = 0 in the ring R[x,y] are satisfied. So we define the
following two affine invariant subsets in R12, which must contain all quadratic systems
(1) possessing an invariant ellipse:

B={ã ∈ R12∣∣ γ̂1(ã) = γ̂2(ã) = 0,η(ã)< 0};

C={ã ∈ R12∣∣ γ̂1(ã) = γ̂2(ã) = 0,C2(ã,x,y) = 0}.

Next, following the diagrams of Fig. 239 and Fig. 241 we split the invariant sets B and C

into affine invariant subsets Bi and C j (defined in the sequence):

B=
12⋃

i=1

Bi, Bi
⋂
i6= j

B j = /0; C=
2⋃

j=1

C j, C1
⋂

C2 = /0,

and we define the corresponding invariant subsets B̃i (i = 1,2, . . . ,12) and C̃ j ( j = 1,2):

(B1) : θ 6= 0, β̂1 6= 0, β̂2 6= 0, β̂3 6= 0; (B̃1) : R̂1 6= 0;
(B2) : θ 6= 0, β̂1 6= 0, β̂2 6= 0, β̂3 = 0, (B̃2) : γ̂3 = 0,R̂1 6= 0;
(B3) : θ 6= 0, β̂1 6= 0, β̂2 = 0, β̂5 6= 0, (B̃3) : R̂2 6= 0;
(B4) : θ 6= 0, β̂1 6= 0, β̂2 = 0, β̂5 = 0, (B̃4) : γ̂3 = 0,R̂2 6= 0;
(B5) : θ 6= 0, β̂1 = 0, β̂6 6= 0, β̂2 6= 0, (B̃5) : β̂ 2

7 + β̂ 2
8 6= 0, γ̂4 = 0,R̂3 6= 0;

(B6) : θ 6= 0, β̂1 = 0, β̂6 6= 0, β̂2 = 0, (B̃6) : γ̂5 = 0,R̂2 6= 0;
(B7) : θ 6= 0, β̂1 = 0, β̂6 = 0, β̂2 6= 0, (B̃7) : γ̂2

4 + γ̂2
8 = 0,R̂3 6= 0;

(B8) : θ 6= 0, β̂1 = 0, β̂6 = 0, β̂2 = 0, (B̃8) : γ̂2
4 + γ̂2

9 = 0,R̂4 6= 0;
(B9) : θ = 0, Ñ 6= 0, β̂1 6= 0, β̂2 6= 0, (B̃9) : γ̂6 = 0,R̂5 6= 0;
(B10) : θ = 0, Ñ 6= 0, β̂1 6= 0, β̂2 = 0, (B̃10) : γ̂6 = 0,R̂6 6= 0;
(B11) : θ = 0, Ñ 6= 0, β̂1 = 0, (B̃11) : γ̂2

6 + γ̂2
7 = 0,R̂3 6= 0;

(B12) : θ = 0, Ñ = 0, (B̃12) : β̂ 2
1 + γ̂2

5 = 0;
(C1) : C2 = 0,H10 6= 0, (C̃1) : N7 = 0;
(C2) : C2 = 0,H10 = 0, (C̃2) : H12 6= 0,H2 = 0.

Then according to the mentioned diagrams, a quadratic system, corresponding to
a point ã ∈ R12, possesses:

• an invariant ellipse which is unique if and only if ã ∈Bi∩B̃i (i = 1,2, . . . ,11); more-
over this ellipse is real (respectively complex) if the corresponding invariant poly-
nomial R̂s 6= 0, (s = 1, . . . ,6), which belongs to the set of polynomials defining B̃i

(i = 1,2, . . . ,11), is negative (respectively positive);
• an infinite number of invariant ellipses if and only if either ã ∈B12 ∩ B̃12 or ã ∈

C j∩ C̃ j ( j = 1,2). The ellipses could be real or/and complex.

We point out that most of the invariants which appeared in these results are stated
in Sec. 2.2.5. Using the elements of the minimal polynomial basis given in such a section
we construct the affine invariant polynomials:
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γ̂1(ã) = A2
1(3A6 +2A7)−2A6(A8 +A12),

γ̂2(ã) = 9A2
1A2(23252A3 +23689A4)−1440A2A5(3A10 +13A11)

−1280A13(2A17 +A18 +23A19−4A20)−320A24(50A8 +3A10

+45A11−18A12)+120A1A6(6718A8 +4033A9 +3542A11

+2786A12)+30A1A15(14980A3−2029A4−48266A5)

−30A1A7(76626A2
1−15173A8 +11797A10 +16427A11−30153A12)

+8A2A7(75515A6−32954A7)+2A2A3(33057A8−98759A12)

−60480A2
1A24 +A2A4(68605A8−131816A9 +131073A10 +129953A11)

−2A2(141267A2
6−208741A5A12 +3200A2A13),

γ̂3(ã) = 843696A5A6A10 +A1(−27(689078A8 +419172A9−2907149A10

−2621619A11)A13−26(21057A3A23 +49005A4A23−166774A3A24

+115641A4A24)),

γ̂4(ã) =−488A3
2A4 +A2(12(4468A2

8 +32A2
9−915A2

10 +320A9A11−3898A10A11

−3331A2
11 +2A8(78A9 +199A10 +2433A11))+2A5(25488A18

−60259A19−16824A21)+779A4A21)+4(7380A10A31

−24(A10 +41A11)A33 +A8(33453A31 +19588A32−468A33−19120A34)

+96A9(−A33 +A34)+556A4A41−A5(27773A38 +41538A39

−2304A41 +5544A42)),

γ̂5(ã) = A22,

γ̂6(ã) = A1(64A3−541A4)A7 +86A8A13 +128A9A13−54A10A13

−128A3A22 +256A5A22 +101A3A24−27A4A24,

γ̂7(ã) = A2
[
2A3(A8−11A10)−18A2

7−9A4(2A9 +A10)+22A8A22 +26A10A22,

γ̂8(ã) = A6,

γ̂9(ã) = 12A2
1 +12A8 +5A10 +17A11,

β̂1(ã) = 3A2
1−2A8−2A12,

β̂2(ã) = 2A13,

β̂3(ã) = 8A3 +27A4−54A5,

β̂4(ã) = A4,

β̂5(ã) = 8A5−5A4,

β̂6(ã) = A3,

β̂7(ã) = 24A3 +11A4 +20A5,

β̂8(ã) = 41A8 +44A9 +32A10,
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R̂1(ã) = θA6
[
5A6(A10 +A11)−2A7(12A2

1 +A8 +A12)−2A1(A23−A24)

+2A5(A14 +A15)+A6(9A8 +7A12)
]
,

R̂2(ã) = β̂4β̂6(2A10−A8−A9),

R̂3(ã) = β̂2
[
A2(80A3−3A4−54A5)−80A22 +708A23−324A24

]
,

R̂4(ã) = T11,

R̂5(ã) = 12A2
1 +12A8 +5A10 +17A11,

R̂6(ã) = 2A10−A8−A9,

R̂7(ã) = 4A8−3A9,

ν1 =−A6
(
A1A2−2A15

)(
3A2

1−2A8−2A12
)
,

ν2 = A1(−461A2A4 +183A2A5−296A22 +122A24
)
+A4(467A14 +922A15

)
+2A6

(
553A8 +183A9−100A10−39A11 +144A12

)
+A7

(
5790A2

1−1531A8−140A9 +177A10 +947A11−2791A12
)
,

ν3 = A4
(
18A2

1−5A8 +A10 +3A11−9A12
)
,

Ñ(ã,x,y) = (D2
2 +T8−2T9)/9,

θ(ã) = 2A5−A4 ≡Discrim[Ñ,x]/(16y2),

F (ã) = A7,

T3(ã) = 8A15−4A1A2,

H2(ã,x,y) =
(
C1,−8Ĥ− Ñ

)(1)−2D1Ñ,

H9(ã) =−
[[

D̂, D̂)(2), D̂
)(1)

, D̂
)(3)

,

H10(ã) =
[[

D̂, Ñ)(2),D2
)(1)

,

H11(ã,x,y) =−32Ĥ
[(

C2, D̂)(2)+8
(
D̂,D2

)(1)]
+3
[(

C1,−8Ĥ− Ñ
)(1)−2D1Ñ

]2
,

H12(ã,x,y) =
(
D̂, D̂

)(2)
,

N7(ã) = 12D1
(
C0,D2

)(1)
+2D3

1 +9D1
(
C1,C2

)(2)
+36

[[
C0,C1

)(1)
,D2
)(1)

.

We remark that the last six invariant polynomials H2, H9 to H12, and N7 are
constructed in Schlomiuk and Vulpe (2008a), whereas F and T3 are defined in Vulpe
(2011).

6.3 Configurations of invariant ellipses for the classes
QSE(η<0) and QSE(C2=0)

Theorem 6.3.1. Consider the classes QSE(η<0) and QSE(C2=0) of all non–degenerate
quadratic differential systems (6.1) possessing one real and two complex singularities at
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infinity, and the quadratic differential systems possessing the line at infinity filled up with
singularities, respectively.

(A) These families are classified according to the configurations of invariant ellipses
and of invariant straight lines of the systems, yielding 30 distinct such configurations for
the class QSE(η<0) and 5 for the class QSE(C2=0). This geometric classification appears
in the diagrams of Fig. 242 and Fig. 244. More precisely:

(A1) For the class QSE(η<0), there exist exactly 3 configurations of systems possessing
an infinite number of ellipses. More precisely two of them contain only real ellipses
and the third one contains simultaneously an infinite number of real and an infinite
number of complex ellipses. The remaining 27 configurations possess exactly one
invariant ellipse, (real for 21 of them) or complex (for another 6).

(A2) For the class QSE(C2=0) all the 5 configurations of systems possess an infinite number
of ellipses (four of them with three simple invariant lines and one of them with a
triple invariant line). More precisely three of the configurations contain only real
ellipses, one contains only complex ones and the remaining configuration contains
simultaneously an infinite number of real and an infinite number of complex ellipses.

(B) The bifurcation diagrams for systems in QSE(η<0) and QSE(C2=0) done in
the coefficient space R12 in terms of invariant polynomials appear in the diagrams of
Fig. 245 to Fig. 248. In these diagrams we have necessary and sufficient conditions for the
realization of each one of the configurations.

Remark 6.3.2. We note that on the expressions of the divisors ICD and ILD as well of
the zero–cycles MS0C and MSA f

0C appearing in the diagrams of Fig. 242 and Fig. 244, we
can read their types help in this classification and furthermore they are affinely invariant.
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Figure 242 – Diagram of configurations with one invariant ellipse
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Figure 243 – (Cont.) Diagram of configurations with one invariant ellipse
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Figure 244 – Diagram of configurations with a family of invariant ellipses
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Figure 245 – Bifurcation diagram in R12 of the configurations: Case η < 0, θ 6= 0
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Figure 246 – (Cont.) Bifurcation diagram in R12 of the configurations: Case η < 0, θ 6= 0
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Figure 247 – Bifurcation diagram in R12 of the configurations: Case η < 0, θ = 0

Figure 248 – Bifurcation diagram in R12 of the configurations: Case C2 = 0

Proof of part (A). We prove part (A) under the assumption that part (B) is already
proved. Later we prove part (B).

We first need to make sure that the concepts introduced before gave us a sufficient
number of invariants under the action of the affine group and time rescaling so as to
be able to classify geometrically the classes QSE(η<0) and QSE(C2=0) according to their
configurations of their invariant ellipses and lines.

Fixing the values of Nε and using the types of the divisors ICD in the diagram
of Fig. 242 (respectively ILD in the diagram of Fig. 244) we split all the corresponding
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configurations in 8 (respectively in 5) groups. We observe that some groups have only
one configuration. For the groups which possess more than one configuration we use the
types of zero–cycles MS0C and MSA f

0C , correspondingly. This suffices for distinguishing all
the configurations.

As a result we obtain the 35 geometric configurations displayed in the diagrams
of Fig. 242 and Fig. 244. This proves statement (A) of this theorem.

Proof of part (B). According to Oliveira et al. (2021) a quadratic system could have an
invariant ellipse only if γ̂1 = γ̂2 = 0 and either η < 0 or C2 = 0. We examine the cases η < 0
and C2 = 0 separately.

6.3.1 The case η < 0

According to Lemma 2.2.14 a quadratic system with the condition η < 0 could be
brought via an affine transformation and time rescaling to the following canonical form:

ẋ =a+ cx+dy+gx2 +(h+1)xy,

ẏ =b+ ex+ f y− x2 +gxy+hy2,
(6.4)

with C2 = x(x2+y2), i.e. this system possesses at infinity one real and two complex infinity
singularities. Following the diagram of Fig. 239 (see also Oliveira et al. (2021)) we discuss
two subcases: θ 6= 0 and θ = 0.

6.3.1.1 The subcase θ 6= 0

We examine step by step each one of the possibilities presented in Cor. 6.2.7.

6.3.1.1.1 The possibility (B1): β̂1β̂2β̂3 6= 0.

As it was proved in Oliveira et al. (2021) in this case by an affine transformation
and time rescaling, systems (6.4) could be brought to the canonical form

ẋ = a+dy+gx2 +(h+1)xy,

ẏ =
ah
g
−dx− x2 +gxy+hy2, g 6= 0,

(6.5)

which possesses an invariant conic

Φ(x,y) =
a
g
+ x2 + y2 = 0. (6.6)

This conic is irreducible if and only if a 6= 0. For systems (6.5) we calculate

θ = (h+1)
[
g2 +(h−1)2]/2, β̂1 =−d2[g2 +(h−1)2][9g2 +(3h+1)2]/16,

β̂2 =−g
[
9g2 +(3h+1)2]/2, β̂3 = (3h−1)

[
9g2 +(3h+5)2]/2,
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and therefore we conclude that for systems (6.5) the condition θβ̂1β̂2β̂3R̂1 6= 0 is equivalent
to the condition

adg(h+1)(3h−1) 6= 0. (6.7)

We observe that

R̂1 = 3agd2(1+h)2[g2 +(h−1)2]4[9g2 +(3h+1)2]/128 ⇒ sign(ag) = sign(R̂1).

The case R̂1 < 0. Then ag < 0 and clearly the ellipse (6.6) is real.

Taking into account Lemma 2.2.17 we examine if systems (6.5) could possess at
least one invariant line. Calculations yield

B1 =−
a2

g2 (g
2 +h2)

[
g2 +(h−1)2]2[a(h+1)2 +d2g

]
, (6.8)

and we consider two subcases: B1 6= 0 and B1 = 0.

1) The subcase B1 6= 0. Then by Lemma 2.2.17 systems (6.5) could not possess
invariant lines. For these systems we calculate µ0 =−h

[
g2+(h+1)2] and we examine two

possibilities: µ0 6= 0 and µ0 = 0.

a) The possibility µ0 6= 0. Then by Lemma 2.2.13 systems (6.5) have finite singu-
larities of total multiplicity 4. We detect that two of these singularities are located on the
ellipse (6.6), more exactly such singularities are M1,2

(
x1,2,y1,2

)
with

x1,2 =−
d(h+1)±

√
Z1

g2 +(h+1)2 , y1,2 =
dg2∓ (h+1)

√
Z1

g
[
g2 +(h+1)2

] , Z1 =−g
[
a
[
g2 +(1+h)2]+d2g

]
.

(6.9)
Other two singularities of systems (6.5) are M3,4

(
x3,4,y3,4

)
(generically located outside the

ellipse) with

x3,4 =−
dg±

√
Z2

2g
, y3,4 =

dg±
√

Z2

2h
, Z2 = g(d2g+4ah). (6.10)

On the other hand for systems (6.5) we calculate

ν1 =−d4[g2 +(h−1)2]2[9g2 +(3h+1)2]Z1/256.

We observe that
sign(ν1) =−sign(Z1),

and this means that this invariant polynomial is responsible for what kind of singularities
are M1,2: are they real or complex, distinct or coinciding.

a.1) The case ν1 < 0. Then Z1 > 0 and we obtain that the singularities M1,2 located
on the invariant ellipse are real. We need to determine the conditions when at least one
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of the singularities M3,4 also lies on the ellipse. For this, considering (6.6), we calculate

Φ(x,y)|{x=x3,4, y=y3,4} =
d2g
(
g2 +h2)±d

(
g2 +h2)√g(4ah+d2g)+2ah

(
g2 +h2 +h

)
2gh2

≡Ω3,4(a,g,h).

It is clear that at least one of the singularities M3(x3,y3) or M4(x4,y4) belongs to the ellipse
(6.6) if and only if

Ω3Ω4 =
aZ3

g2h2 = 0, Z3 = d2g
(
g2 +h2)+a

(
g2 +h2 +h

)2
.

On the other hand for systems (6.5) we have

ν2 =−105d
[
9g2 +(3h+1)2]Z3,

and clearly by (6.7) the condition ν2 = 0 is equivalent to Z3 = 0. So we conclude that the
following remark is valid:

Remark 6.3.3. Assume that for systems (6.5) the conditions (6.7) and h 6= 0 (i.e. µ0 6= 0)
hold. Then at least one of the singularities M3,M4 belongs to the ellipse if and only if
ν2 = 0.

Next we examine two subcases: ν2 6= 0 and ν2 = 0.

α) The subcase ν2 6= 0. In this case we have Config. E.1 since another singularity
belongs to ellipse if and only if ν2 = 0 (example: a = 1,d =−1,g =−1,h =−2).

β ) The subcase ν2 = 0. In this case we have Z3 = 0, i.e. at least one of the two
other singular points also lies on the ellipse. Moreover g2+h2+h 6= 0 otherwise we obtain
a contradiction with the conditions stated at (6.7). So the condition Z3 = 0 implies a =

−
d2g
(
g2 +h2)

(g2 +h2 +h)2 . In this case two singularities coalesce, namely M4 ≡M2 and considering

the coordinates of Mi, i = 1,2,3,4, we obtain three singularities

(x1,y1) =

(
− d[h+(2+h)(g2 +h2)]

(g2 +h2 +h)[g2 +(h+1)2]
,

dg
(
g2 +h2−1

)
(g2 +h2 +h) [g2 +(h+1)2]

)

and

(x2,y2) =

(
− dh

g2 +h2 +h
,

dg
g2 +h2 +h

)
, (x3,y3) =

(
−

d
(
g2 +h2)

g2 +h2 +h
,

dg
(
g2 +h2)

h(g2 +h2 +h)

)
.

Therefore we have located on the ellipse a double singularity M2 and a simple singularity
M1. On the other hand we have

Φ(x,y)|{x=x3,y=y3} =
d2(g2 +h2)(g2 +h2−h)

h2(g2 +h+h2)
≡

d2(g2 +h2)Z′3
h2(g2 +h+h2)

.
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Thus we conclude that the singularity M3 belongs to the ellipse if and only if Z′3 = 0. Now
taking into consideration Prop. 2.2.21 (see Table 1), for systems (6.5) in this case we
calculate

D = 0, T =
12d6g2 (Z′3)2

−(g2 +h2 +h)4 (gy−hx− x)2(gx+hy)2 [gx
(
g2 +h2 +1

)
+hy

(
g2 +h2−1

)]2
,

and due to (6.7) the condition T= 0 is equivalent to Z′3 = 0, i.e. the invariant polynomial T
indicates if the third singularity belongs to the ellipse or not. We discuss two possibilities:

β .1) The possibility T 6= 0. In this case we obtain Config. E.2 (example: a= 5/9,d =

−1,g =−1,h =−2).

β .2) The possibility T= 0. In this case we have Z′3 = 0, i.e. g2+h2 = h. Substituting
this expression in the coordinates (x3,y3) we obtain that M3 coincides with M2. So we
deduce that we have one triple and one simple singularities located on the ellipse. As a
result we arrive at Config. E.3 (example: a =−1,d =−1,g = 4/17,h = 1/17).

a.2) The case ν1 = 0. In this case we have Z1 = 0 (see (6.9)), i.e. the two singularities
which belong to the ellipse coalesce. On the other hand the two singularities which are
located outside the ellipse remains outside the ellipse because the condition Z1 = 0 implies

a =− d2g
g2 +(h+1)2 and for this value of the parameter a we obtain Z3 =

d2g3

g2 +(h+1)2 6= 0.

In such a way we get Config. E.4 (example: a = 1/2,d =−1,g =−1,h =−2).

a.3) The case ν1 > 0. Then Z1 < 0, i.e. the two singularities which belong to the
ellipse are complex. We note that the condition Z1 < 0 implies Z3 6= 0, because if Z3 = 0
we found Z1 = d2g4(

g2+h2+h
)2 > 0. This leads to Config. E.5 (example: a = 1/4,d = −1,g =

−1,h =−2).

We claim that in this configuration the invariant ellipse is a limit cycle drown in
diagram in boldface (see Rmk. 6.1.7 (b)). Indeed taking into consideration Thm. 6.2.5
(see statement (B1)) we conclude that in the case under examination for the existence of
limit cycles the following conditions must be satisfied:

η < 0, θβ̂1β̂2β̂3 6= 0, γ̂1 = γ̂2 = 0, R̂1 < 0, T3F < 0. (6.11)

Clearly all the conditions are satisfied except the last one. So it remains to verify that
T3F < 0 is fulfilled, too. For systems (6.5) we calculate

T3F =− 1
8

d2g
[
(9g2 +(3h+1)2]2 (ag2 +ah2 +2ah+a+d2g

)
,

ν1 =
1

256
d4g
[
(g2 +(h−1)2]2 [(9g2 +(3h+1)2]2 (ag2 +ah2 +2ah+a+d2g

)
,

and evidently the condition ν1 > 0 implies T3F < 0. This completes the proof of our
claim.
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b) The possibility µ0 = 0. This condition implies h = 0 and the condition (6.7)
becomes adg 6= 0. In this case we obtain µ1 = dg(g2 + 1)x 6= 0. According to Lemma
2.2.13 we conclude that exactly one of the four finite singularities has gone to infinity
and coalesced with the real infinity singularity. So we obtain one real infinite singularity
of multiplicity two which is of type (1,1) (i.e. one finite and one infinity singularities
coalesced, see Rmk. 6.1.7).

For h = 0 considering the coordinates of M1,2
(
x1,2,y1,2

)
(see (6.9)) we obtain that

these two singularities remain located on the ellipse (6.6). On the other hand from (6.10)
it is not so difficult to determine that the singularity M3 has gone to infinity and a
straightforward calculation gives us the coordinates of the fourth singularity: M4

(
0,−a

d

)
.

Again we consider the value of ν1 and we examine three cases:

b.1) The case ν1 < 0. Then we have Z1 > 0 and this implies the existence of two
real distinct singularities located on the ellipse. On the other hand considering (6.6) we
have

Φ(x,y)|{x=x4,y=y4} =
a
(
d2 +ag

)
d2g

,

and since a 6= 0 the singularity M4 belongs to the ellipse if and only if d2 + ag = 0. Cal-
culating ν2 =−105dg3 (9g2 +1

)(
d2 +ag

)
we conclude that the singularity M4 belongs to

the ellipse if and only if ν2 = 0. So we discuss two subcases: ν2 6= 0 and ν2 = 0.

α) The subcase ν2 6= 0. Then the singularity M4 remains outside the ellipse and we
arrive at Config. E.6 (example: a = 5/8,d =−1,g =−1).

β ) The subcase ν2 = 0. This implies a=−d2

g
and we obtain that the singularity M4

coincides with M2. As a result we arrive at Config. E.7 (example: a =−1,d =−1,g = 1).

b.2) The case ν1 = 0. In this case we have Z1 = 0, i.e. a =− d2g
g2 +1

(see (6.9)) and
therefore the two singularities which belong to the ellipse coalesce. On the other hand we

calculate ν2 =−
105d3g3 (9g2 +1

)
g2 +1

6= 0 and this means that M4 remains outside the ellipse.

So we arrive at Config. E.8 (example: a = 1/2,d =−1,g =−1).

b.3) The case ν1 > 0. In this case we have Z1 < 0, i.e. the two singularities which be-
long to the ellipse are complex. On the other hand this fact implies that ν2 6= 0. Therefore
we have Config. E.9 (example: a = 1/4,d =−1,g =−1).

We claim that in this configuration the invariant ellipse is a limit cycle, too (see
Rmk. 6.1.7 (b)). For this it is sufficient to show that the conditions (6.11) are satisfied
in this particular case, when µ0 = 0 (i.e. h = 0). Indeed, for systems (6.5) with h = 0 we
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obtain
T3F =− 1

8
d2g
(
9g2 +1

)2 (
ag2 +a+d2g

)
,

ν1 =
1

256
d4g
(
g2 +1

)2 (
9g2 +1

)2 (
ag2 +a+d2g

)
and clearly the condition ν1 > 0 implies T3F < 0, i.e. our claim is proved.

2) The subcase B1 = 0. Considering the condition (6.7) we obtain that B1 = 0 (see

(6.8)) is equivalent to a =− d2g
(h+1)2 which implies the existence of the invariant line

L (x,y) = (h+1)x+d = 0.

On the other hand for this value of the parameter a we obtain

B2 =−
648d4 [g2 +(h−1)2]2 (g2 +h2)x4

(h+1)4 ,

which is nonzero due to condition (6.7). It follows from Lemma 2.2.17 and Lemma 2.2.16
that the conditions B1 = 0, B2 6= 0 and θ 6= 0 implies that there exists at most one simple
invariant straight line of systems (6.5). On the other hand for these systems we have
µ0 =−h

[
g2 +(h+1)2] and we examine two possibilities: µ0 6= 0 and µ0 = 0.

a) The possibility µ0 6= 0. Then the condition µ0 =−h
[
g2+(h+1)2] 6= 0 gives h 6= 0

and considering condition (6.7) by Lemma 2.2.13, systems (6.5) have finite singularities of
total multiplicity 4. Taking into account the coordinates of the singularities Mi, j(xi, j,yi, j)

(i = j = 1,2,3,4) mentioned before (see page 357) in this particular case these singularities
have the following real coordinates

(x1,y1) =

(
− d

h+1
,0
)
, (x2,y2) =

(
d
[
g2− (h+1)2]

(h+1) [g2 +(h+1)2]
,

2dg
g2 +(h+1)2

)
,

(x3,y3) =

(
− dh

h+1
,

dg
h+1

)
, (x4,y4) =

(
− d

h+1
,

dg
h(h+1)

)
.

(6.12)

We observe that due to a = − d2g
(h+1)2 the invariant ellipse for systems (6.5) be-

comes
Φ(x,y) = x2 + y2− d2

(h+1)2 .

As it was shown before, the singularities M1,2
(
x1,2,y1,2

)
are located on the ellipse

and the singularities M3,4
(
x3,4,y3,4

)
are generically located outside the ellipse. We also

determine that the singularities M1 and M4 are located on the invariant line. On the
other hand in generic case the singularities M2 and M3 could not belong to the line since
calculations yield

L (x2,y2) =
2dg2

g2 +(h+1)2 , L (x3,y3) = d(1−h).
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Due to the condition (6.7) we get L (x2,y2) 6= 0, i.e. the ellipse and the invariant line have
M1 as the unique common point at which a line is tangent to the ellipse.

Considering Rmk. 6.3.3 we conclude that one of the singularities M3 or M4 belongs
to the ellipse if and only if ν2 = 0. So, in what follows we discuss two cases: ν2 6= 0 and
ν2 = 0.

a.1) The case ν2 6= 0. Then according to Rmk. 6.3.3 neither the singularity M3

nor M4 could belong to the ellipse. On the other hand the singularity M4 is located on
the invariant line whereas the singularity M3 belongs to the invariant line if and only if
L (x3,y3) = d(1− h) = 0. Due to d 6= 0 we obtain the condition h = 1. We observe that
this condition is governed by the invariant polynomial D because for systems (6.5) in the

case a =− d2g
(h+1)2 we calculate

ν2 =
105d3g3 (g2 +h2−1

)[
9g2 +(3h+1)2]

(h+1)2 , D =−
192d8g6(h−1)2 (g2 +h2−1

)2

(h+1)8 ,

(6.13)
and due to the condition ν2 6= 0 we obtain that the condition D = 0 is equivalent to h = 1.
We examine two subcases: D 6= 0 and D = 0.

α) The subcase D 6= 0. Then h 6= 1, i.e. the singularity M3 remains outside the
invariant curves and this leads to Config. E.10 (example: d =−1,g = 1,h =−2).

β ) The subcase D = 0. In this case we have h = 1 and considering (6.10) we
obtain that M3 coalesces with M4 which is located on the invariant line and we arrive at
Config. E.11 (example: d = 1,g = 1,h = 1).

a.2) The case ν2 = 0. Due to (6.7), from (6.13) we obtain that the condition ν2 = 0
gives g2 +h2−1 = 0. This implies D = 0, and moreover we have h 6= 1 due to g 6= 0. We
observe that setting g2 = 1−h2 in the expressions of the coordinates of (x2,y2) from (6.12)
we obtain that (x2,y2) = (x3,y3). So on the ellipse we get a double singularity and this
leads to Config. E.12 (example: d =−1,g =

√
3/2,h =−1/2).

b) The possibility µ0 = 0. Then the condition µ0 = −h
[
g2 +(h+ 1)2] = 0 implies

h = 0 and we obtain µ1 = dg(g2 +1)x 6= 0. According to Lemma 2.2.13 we conclude that
exactly one of the four finite singularities has gone to infinity and coalesced with the real
infinite singularity. So we obtain one real infinite singularity of multiplicity two which is
of type (1,1) (see Rmk. 6.1.7). Considering the coordinates of the finite singularities given
in (6.12) we observe that M4 has gone to infinity along the invariant line L = 0 and the
remaining real finite singularities are

(x1,y1) = (−d,0), (x2,y2) =

(
d
(
g2−1

)
g2 +1

,
2dg

g2 +1

)
, (x3,y3) = (0,dg). (6.14)
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In order to determine the position of the singularity M3 we calculate

L (x3,y3) = d, Φ(x3,y3) = d2(g2−1).

Due to the condition (6.7) we obtain L (x3,y3) 6= 0, i.e. M3 could not belong to the invariant
line. On the other hand Φ(x3,y3) = 0 if and only if g2−1 = 0. We observe that systems
(6.5) in the case under examination (i.e. h = 0 and a =−d2g) become

ẋ =−d2g+dy+gx2 + xy, ẏ =−dx+gxy− x2. (6.15)

We determine that the condition g2 − 1 = 0 is equivalent to ν2 = 0 because for sys-
tems (6.15) we have

ν2 = 105d3g3 (9g2 +1
)(

g2−1
)
.

So we discuss two cases: ν2 6= 0 and ν2 = 0.

b.1) The case ν2 6= 0. In this case the singularity M3 remains outside the invariant
curves and this leads to Config. E.13 (example: d =−1,g =−2,h = 0).

b.2) The case ν2 = 0. This implies g = ±1. However we can consider g = 1 due
to the rescaling (x,y, t) 7→ (x,−y,−t) in systems (6.15) which changes the sign of the
parameter g. In this case considering (6.14) we obtain (x3,y3) = (x2,y2) and as a result we
get Config. E.14 (example: d =−1,g = 1,h = 0).

The case R̂1 > 0. This condition implies ag > 0 and clearly the ellipse (6.6) is com-
plex. On the other hand considering (6.8) we observe that for systems (6.5) the conditions
(6.7) and ag > 0 imply B1 6= 0. Then by Lemma 2.2.17 systems (6.5) could not possess
invariant lines.

For these systems we calculate µ0 =−h
[
g2+(h+1)2] and we examine two subcases:

µ0 6= 0 and µ0 = 0.

1) The subcase µ0 6= 0. Then by Lemma 2.2.13, systems (6.5) have finite singular-
ities of total multiplicity 4 and their coordinates are given in (6.9). We observe that the
condition ag > 0 implies Z1 < 0, i.e. the singularities M1,2

(
x1,2,y1,2

)
are complex and as it

was proved before they belong to the complex ellipse.

On the other hand the condition ag > 0 implies

Z3 = d2g
(
g2 +h2)+a

(
g2 +h2 +h

)2 6= 0.

This fact implies that the singularities M3,4
(
x3,4,y3,4

)
remain outside the complex ellipse.

Therefore the unique possible configuration is Config. E.15 (example: a =−1,d =−1,g =

−1,h =−2).

2) The subcase µ0 = 0. This condition implies h = 0. In this case we obtain µ1 =

dg(g2 + 1)x 6= 0 and by Lemma 2.2.13 only one finite singularity coalesced with the real
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infinite singularity which has multiplicity (1,1) (see Rmk. 6.1.7). Therefore we arrive at
Config. E.16 (example: a =−1,d =−1,g =−1).

Thus, we have all the configurations indicated in the diagram of Fig. 245 in the
block corresponding to the possibility (B1).

6.3.1.1.2 The possibility (B2): β̂1β̂2 6= 0, β̂3 = 0.

According to Oliveira et al. (2021) in this case by an affine transformation and
time rescaling systems (6.4) could be brought to the canonical form (6.5) with h = 1/3,
i.e. we get a subfamily of (6.5) which was investigated in the previous subsection. As it
was shown, for h 6= 1/3 systems (6.5) possess 16 configurations Config. E.1 – Config. E.16.
Moreover it is necessary to highlight that the value h = 1/3 is not a bifurcation value for
distinguishing these configurations.

It remains to find out which conditions defining each one of the configurations are
compatible in this case. We claim that the configurations (i) Config. E.6 – Config. E.9,
Config. E.13, Config. E.14, Config. E.16 and (ii) Config. E.11, could not be realizable for
systems (6.5) with h = 1/3.

Indeed, for each one of the configuration from the group (i) condition µ0 = 0 is
necessary. However, for h = 1/3 we have µ0 =−

(
9g2 +16

)
/27 6= 0, i.e. the configurations

from the group (i) could not be realized for h = 1/3.

Secondly, as it was shown in the previous subsection, a system (6.5) possesses the
configuration Config. E.11 if and only if the following conditions hold:

B1 = 0, µ0 6= 0, ν2 6= 0, D = 0.

However, in the case h = 1/3 the condition B1 = 0 yields a = −
(
9d2g

)
/16 and then we

calculate

ν2 =
105d3g3 (9g2−8

)(
9g2 +4

)
16

, D =−
−27d8g6 (9g2−8

)2

256
.

Evidently, the condition ν2 6= 0 implies D 6= 0, and this completes the proof of our claim.

Therefore in this case (i.e. for h = 1/3) we have Config. E.1 (example: a = 1,d =

−1,g = −1), Config. E.2 (example: a = 90/169,d = −1,g = −1), Config. E.3 (example:
a =
√

2/4,d = −1,g = −
√

2/3), Config. E.4 (example: a = 9/25,d = −1,g = −1), Con-
fig. E.5 (example: a = 1/4,d = −1,g = −1), Config. E.10 (example: a = −1,d = −1,g =

1/2), Config. E.12 (example: a = −1,d = −1,g = 2
√

2/3) and Config. E.15 (example:
a =−1,d =−1,g =−1).

Next we discuss the existence of limit cycle for this subfamily of systems (6.5)
defined by h = 1/3. We observe that due to β̂3 = 0 the conditions (6.11) are not satisfied.
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On the other hand according to Thm. 6.2.5, statement (B2) we have the following necessary
and sufficient conditions for existence of limit cycles:

η < 0, θβ̂1β̂2 6= 0, β̂3 = γ̂1 = γ̂2 = γ̂3 = 0, R̂1 < 0, T3F < 0. (6.16)

Since for the configuration Config. E.5 the conditions R̂1 < 0 and ν1 > 0 hold, considering
Rmk. 6.2.7 we deduce that so far for systems (6.5) with h= 1/3 all the previous conditions
with the exception of T3F < 0 are fulfilled. We now calculate

T3F =− 1
72

d2g
(
9g2 +4

)2 (
9ag2 +16a+9d2g

)
,

ν1 =
d4g
(
9g2 +4

)4 (9ag2 +16a+9d2g
)

186624
,

and evidently the condition ν1 > 0 implies T3F < 0. So the conditions (6.16) are satisfied
and the ellipse from Config. E.5 is a limit cycle.

It is not too difficult to determine that for the remaining configurations (i.e. ex-
cluding the configurations of the groups (i) and (ii) defined before) all the corresponding
conditions are compatible and this is confirmed by the examples presented before.

Thus, for all the realizable configurations for systems (6.5) with h = 1/3 we obtain
the conditions presented in the diagram of Fig. 245 in the block corresponding to the
possibility (B2).

6.3.1.1.3 The possibility (B3): β̂1 6= 0, β̂2 = 0, β̂5 6= 0.

As it was proved in Oliveira et al. (2021), in this case by an affine transformation
and time rescaling systems (6.4) could be brought to the canonical form

ẋ = dy+(h+1)xy, ẏ = b−dx− x2 +hy2, (6.17)

which possesses an invariant conic

Φ(x,y) =
b
h
+ x2 + y2 = 0, h 6= 0. (6.18)

This conic is irreducible if and only if b 6= 0. For systems (6.17) we calculate

θ = (h+1)(h−1)2/2, β̂1 =−d2(h−1)2(3h+1)2/16,

β̂5 =−2(h+1)(3h−1), R̂2 = bh(h+1)2(h−1)2(3h+1)4/8,

and therefore we conclude that for systems (6.17) the condition θβ̂1β̂5R̂2 6= 0 is equivalent
to the condition

bdh(h−1)(h+1)(3h−1)(3h+1) 6= 0. (6.19)

On the other hand we have

R̂2 = bh(h+1)2(h−1)2(3h+1)4/8 ⇒ sign(bh) = sign(R̂2).
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The case R̂2 < 0. Then bh < 0 and clearly the ellipse (6.18) is real.

We observe that systems (6.17) possess the invariant line

L (x,y) = (h+1)x+d = 0. (6.20)

Then by Lemma 2.2.17 the condition B1 = 0 is satisfied. Moreover, since θ 6= 0, by Lemmas
2.2.17 and 2.2.16 systems (6.17) could possess another invariant straight line only if B2 = 0.
We calculate

B2 =−648b2(h−1)4x4,

and due to condition (6.19) we have B2 6= 0. So systems (6.17) possess exactly one invariant
straight line L (x,y) = 0.

For these systems we calculate µ0 = −h(h+ 1)2 and due to condition (6.19) we
have µ0 6= 0. Considering Lemma 2.2.13, systems (6.17) have finite singularities of total
multiplicity 4. We observe that two of these singularities are located on the ellipse (6.18) as
well as on the invariant line (6.20). More precisely these are the singularities M1,2

(
x1,2,y1,2

)
with

x1,2 =−
d

h+1
, y1,2 =±

√
Z′1

h+1
, Z′1 =−

[
d2 +

b
h
(h+1)2

]
. (6.21)

Other two singularities of systems (6.17) are M3,4
(
x3,4,y3,4

)
(generically located outside

both invariant curves) with

x3,4 =
−d±

√
Z′2

2
, y3,4 = 0, Z′2 = 4b+d2. (6.22)

On the other hand for systems (6.17) we calculate

ν3 =−2h2(h+1)2(3h+1)2Z′1.

We observe that
sign(ν3) =−sign(Z′1),

and this means that the invariant polynomial ν3 determines if the singularities M1,2 are
either real or complex, distinct or coinciding.

1) The subcase ν3 < 0. Then Z′1 > 0 and the singularities M1,2 are real. We need to
determine the conditions when at least one of the singularities M3,4 located outside the
invariant curves coincides with one of their points. In this sense considering (6.18) and
(6.20) we calculate

Φ(x,y)|{x=x3,4, y=y3,4} =
2bh+2b+d2h∓dh

√
Z′2

2h
≡Ω

′
3,4(b,d,h),

L (x,y)|{x=x3,4, y=y3,4} =
d(1−h)± (h+1)

√
Z′2

2
≡L ′

3,4(b,d,h).
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It is clear that at least one of the singularities M3(x3,y3) or M4(x4,y4) belongs to the ellipse
(6.18) or to the line (6.20) if and only if the conditions

Ω
′
3Ω
′
4 =

b
[
b(h+1)2 +d2h

]
h2 =

−bZ′1
h2 = 0 or L ′

3L
′

4 =−
[
d2h+b(h+1)2]= Z′1 = 0,

(6.23)
are satisfied, respectively.

We observe that the conditions Z′1 6= 0 and (6.19) imply Ω′3Ω′4L
′

3L
′

4 6= 0. There-
fore none of the points M3,4 could belong to the ellipse or to the line. So we arrive at
Config. E.17 (example: b =−1,d =−1,h = 1/4).

2) The subcase ν3 = 0. Then Z′1 = 0 which implies b =− d2h
(h+1)2 and therefore the

singularities M1 and M2 coalesce. It is clear that in this case the invariant line and the
ellipse have a unique common point at which they are tangent and this point is a double
singularity. However according to (6.23) in this case we have Ω′3Ω′4 = 0 and L ′

3L
′

4 = 0, and
this imply that the singularity M3 also belongs to both curves. More exactly we obtain
M3 = M2 = M1 which leads to a triple singularity. On the other hand due to the condition
(6.19) we obtain

Φ(x,y)|{x=x4, y=y4} =
d2(h−1)

h+1
6= 0, L (x,y)|{x=x4, y=y4} = d(1−h) 6= 0,

i.e. the singularity M4 remains outside both invariant curves. So the only possible config-
uration is Config. E.18 (example: b = 2,d =−1,h =−2).

3) The subcase ν3 > 0. Then Z′1 < 0 and this implies that the singularities M1

and M2 located at the intersections of the invariant ellipse with the invariant line are
complex. On the other hand we observe that due to conditions (6.19) and (6.23) we have
Ω′3Ω′4L

′
3L

′
4 6= 0 and therefore none of the points M3,4 could belong to the ellipse or to the

line. It is not difficult to convince ourselves that in the case under examination we obtain
Config. E.19 (example: b =−1/8,d =−1,h = 1/4).

We claim that in this configuration the invariant ellipse is not a limit cycle. Indeed
since for systems (6.17) we have T3F = 0, by Thm. 6.2.5 (see statement (B)) we conclude
that our claim is valid.

The case R̂2 > 0. Then bh > 0 and in this case the ellipse (6.18) is complex. Ac-
cording to (6.21) the condition bh > 0 implies Z′1 < 0, i.e. evidently the singularities M1,2

located on the ellipse also are complex. Therefore we arrive at Config. E.20 (example:
b = 1,d =−1,h = 1/6).

Thus we have all the configurations indicated in the diagram of Fig. 245 in the
block corresponding to the possibility (B3).
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6.3.1.1.4 The possibility (B4): β̂1 6= 0, β̂2 = β̂5 = 0.

According to Oliveira et al. (2021) in this case by an affine transformation and
time rescaling systems (6.4) could be brought to the canonical form (6.17) with h = 1/3,
i.e. we get a subfamily of (6.17) which was investigated in the previous subsection. As it
was shown, for h 6= 1/3 systems (6.17) possess four configurations, namely Config. E.17,
Config. E.18, Config. E.19 and Config. E.20. Moreover it is necessary to point out that the
value h = 1/3 is not a bifurcation value for the corresponding configurations.

It is not too difficult to determine that all the configurations are realizable in
the case h = 1/3, too. In fact, for Config. E.17 we take b = −11/16 and d = −1, for
Config. E.18 we put b = −3/16 and d = −1, for Config. E.19 we write b = −3/32 and
d =−1 and finally for Config. E.20 we consider b = 1 and d =−1.

So we obtain the condition presented in the diagram of Fig. 245 in the block
corresponding to the possibility (B4).

6.3.1.1.5 The possibility (B5) : β̂1 = 0, β̂6 6= 0, β̂2 6= 0.

As it was proved in Oliveira et al. (2021) in this case by an affine transformation
and time rescaling systems (6.4) could be brought to the canonical form

ẋ = a+gx2 +(h+1)xy, ẏ =
ah
g
− x2 +gxy+hy2, (6.24)

which possesses an invariant conic (of the elliptic type)

Φ(x,y) =
a
g
+ x2 + y2 = 0, g 6= 0. (6.25)

This conic is irreducible if and only if a 6= 0. For systems (6.24) we calculate

θ =
1
2
(h+1)

[
g2 +(h−1)2] , β̂6 = (3h+1)

[
9g2 +(3h+1)2]/8,

β̂2 =−g
[
g2 +(3h+1)2]/2, R̂3 = 160ag

(
g2 +h2)[g2 +(3h+1)2] ,

and therefore we conclude that for systems (6.24) the condition θβ̂2β̂6R̂3 6= 0 is equivalent
to the condition

ag(h+1)(3h+1) 6= 0. (6.26)

Taking into account Lemma 2.2.17 we examine if systems (6.24) could possess at
least one invariant line. Calculations yield

B1 =−
a3(h+1)2 [g2 +(h−1)2]2 (g2 +h2)

g2 ,

and due to condition (6.26) we obtain B1 6= 0. In this case by Lemma 2.2.17 we can
conclude that systems (6.24) could not possess invariant lines.
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On the other hand we have

R̂3 = 160ag
(
g2 +h2)[g2 +(3h+1)2] ⇒ sign(ag) = sign(R̂3).

The case R̂3 < 0. Then ag < 0 and clearly the ellipse (6.25) is real.

For systems (6.24) we calculate µ0 = −h
[
g2 +(h+ 1)2] and we examine two sub-

cases: µ0 6= 0 and µ0 = 0.

1) The subcase µ0 6= 0. Then by Lemma 2.2.13 the systems have finite singularities
of total multiplicity 4. We detect that two of these singularities are located on the ellipse
(6.25), more exactly such singularities are M1,2

(
x1,2,y1,2

)
with

x1,2 =±
√

Z1

g2 +(h+1)2 , y1,2 =±
(h+1)

√
Z1

g
[
g2 +(h+1)2

] , Z1 =−ag
[
g2 +(h+1)2]. (6.27)

Other two singularities of systems (6.24) are M3,4
(
x3,4,y3,4

)
(generically located outside

the ellipse) with

x3,4 =±
√

Z2

g
, y3,4 =∓

√
Z2

h
, Z2 = agh. (6.28)

Since sign(R̂3) =−sign(Z1), the condition R̂3 < 0 implies Z1 > 0. In this case we
have two real distinct singularities on the ellipse, namely M1,2.

We need to determine the conditions when at least one of the singularities M3,4

located outside the ellipse coincide with its points. In this order considering (6.25) we
calculate

Φ(x,y)|{x=x3,4, y=y3,4} =
aZ3

gh
, Z3 = g2 +h(h+1).

It is clear that at least one of the singularities M3(x3,y3) or M4(x4,y4) belongs to the ellipse
(6.25) if and only if Z3 = 0.

On the other hand for systems (6.24) we have

D =
768a4h

[
g2 +(h+1)2]Z4

3
g4 ,

and clearly due to the conditions (6.26) and µ0 6= 0 the condition D = 0 is equivalent to
Z3 = 0.

a) The possibility D 6= 0. Then Z3 6= 0 and the singularities M3,4 remain outside
the ellipse and we have Config. E.1 (example: a = 1,g =−3/2,h =−2).

b) The possibility D = 0. Then Z3 = 0, i.e. g2 + h(h + 1) = 0. In order to use
this relation, due to h 6= 0 we apply the following parametrization: g = g1h and then
h =−1/(g2

1 +1). Considering the coordinates (6.27) and (6.28) we obtain

x1,2 =±
√

ag1

g1
, y1,2 =∓

√
ag1 ; x3,4 =∓

√
ag1

g1
, y3,4 =±

√
ag1,
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and we observe that M3 coincides with M2 and M4 coincides with M1. As a result we arrive
at Config. E.21 (example: a =−1,g = 1/4,h =−(2+

√
3)/4).

2) The subcase µ0 = 0. In this subcase we get h = 0 and this implies µ1 = 0 and
µ2 = ag

(
g2 +1

)
x2 6= 0 due to the condition (6.26). Therefore by Lemma 2.2.13 exactly

two finite singularities have gone to infinity. More exactly according to the factorization of
µ2 by the same lemma we deduce that both points coalesced with the infinite singularity
[0 : 1 : 0]. So we obtain a triple singularity at infinity of the type (1,2) (see Rmk. 6.1.7),
and this leads to Config. E.22 (example: a = 1,g =−1).

The case R̂3 > 0. This condition implies ag > 0 and clearly the ellipse (6.25) is
complex. For systems (6.24) we have µ0 =−h

[
g2+(h+1)2] and we examine two subcases:

µ0 6= 0 and µ0 = 0.

1) The subcase µ0 6= 0. Then by Lemma 2.2.13, systems (6.24) have finite singu-
larities of total multiplicity 4 and their coordinates are given in (6.27). We observe that
the condition ag > 0 implies Z1 < 0, i.e. the singularities M1,2

(
x1,2,y1,2

)
are complex and

as it was proved before they belong to a complex ellipse.

It is not to difficult to determine that the condition Z3 = 0 in this case implies
h < 0 and due to ag > 0 we obtain that the singularities M3,4 are also complex. Moreover
the condition Z3 = 0 forces them to coalesce with the two complex singularities on the
ellipse. Therefore on the complex ellipse we get two double complex singularities. This is
however irrelevant in view of the definition of a configuration (see Def. 6.1.8).

Thus we conclude that in both cases Z3 6= 0 and Z3 = 0 we arrive at the same
configuration, namely Config. E.15 (examples: a =−1,g =−3/2,h =−2 and a =−1,g =

−249/512,h =−(256+
√

3535)/512, respectively).

2) The subcase µ0 = 0. In this case we have h = 0 and as it was shown in the case
R̂3 < 0 we get at infinity a triple singularity of the type (1,2) (see Rmk. 6.1.7), and this
leads to Config. E.23 (example: a =−1,g =−1).

In this way we have all the configurations indicated in the diagram of Fig. 245 in
the block corresponding to the possibility (B5).

6.3.1.1.6 The possibility (B6) : β̂1 = 0, β̂6 6= 0, β̂2 = 0.

As it was proved in Oliveira et al. (2021) in this case by an affine transformation
and time rescaling systems (6.4) could be brought to the canonical form

ẋ = (h+1)xy, ẏ = b− x2 +hy2, (6.29)
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which possesses an invariant conic (of the elliptic type)

Φ(x,y) =
b
h
+ x2 + y2 = 0, h 6= 0. (6.30)

This conic is irreducible if and only if b 6= 0. For systems (6.29) we calculate

θ = (h+1)(h−1)2/2, β̂6 = (3h+1)3/8, R̂2 = bh(3h+1)4 (h2−1
)2
/8,

and therefore we conclude that for systems (6.29) the condition θβ̂6R̂2 6= 0 is equivalent
to the condition

bh(h+1)(h−1)(3h+1) 6= 0. (6.31)

On the other hand we have
sign(bh) = sign(R̂2).

The case R̂2 < 0. This condition implies bh < 0 and clearly the ellipse (6.30) is real.

Taking into account Lemma 2.2.17 we examine if systems (6.29) could possess
at least one invariant line. Calculations yield B1 = 0 and B2 =−648b2(h−1)4x4 which is
nonzero due to condition (6.31). It follows from Lemma 2.2.17 and Lemma 2.2.16 that the
conditions B1 = 0, B2 6= 0 and θ 6= 0 imply that there exists exactly one simple invariant
straight line of systems (6.29), namely

L (x,y) = x = 0. (6.32)

Moreover for these systems we have µ0 = −h(h+ 1)2 which is nonzero due to condition
(6.31). Therefore in this case the coordinates of the finite singularities for systems (6.29)
could be obtained from the coordinates described in (6.21) and (6.22) setting d = 0:

x1,2 = 0, y1,2 =±
√

Z1, Z1 =−
b
h
,

x3,4 =±
√

Z2, y3,4 = 0, Z2 = b.
(6.33)

We observe that the singularities M1,2 belong to the ellipse as well as to the invariant line,
and the singularities M3,4 are generically located outside both invariant curves.

Since sign(R̂2) =−sign(Z1), the condition R̂2 < 0 implies Z1 > 0. In this case the
singularities M1,2 are real and distinct.

We need to determine the conditions when at least one of the singularities M3,4, in
general located outside the invariant curves, lies on these curves. In this order considering
(6.30), (6.32) and (6.33) we calculate

Φ(x,y)|{x=x3,4, y=y3,4} =
b(h+1)

h
≡Ω, L (x,y)|{x=x3,4, y=y3,4} =±

√
b≡L3,4.

It is clear that at least one of the singularities M3 or M4 belongs to the ellipse (6.30) and
the invariant line (6.32) if and only if Ω = 0 or L3L4 = 0, respectively. Due to conditions
(6.31) none of these conditions could hold. As a result we arrive at Config. E.17 (example:
b = 1,h =−2).
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The case R̂2 > 0. This condition implies bh > 0 and clearly the ellipse (6.30) is
complex. According to (6.33) the condition bh > 0 implies Z1 < 0, i.e. evidently the sin-
gularities M1,2 located on the ellipse are also complex. Thus we arrive at Config. E.20
(example: b = 1,h = 1/2).

So we have all the configurations indicated in the diagram of Fig. 245 in the block
corresponding to the possibility (B6).

6.3.1.1.7 The possibility (B7) : β̂1 = β̂6 = 0, β̂2 6= 0.

As it was proved in Oliveira et al. (2021) in this case by an affine transformation
and time rescaling systems (6.4) could be brought to the canonical form

ẋ = a+gx2 +
2xy
3

, ẏ =− a
3g
− x2− y2

3
+gxy, (6.34)

which possesses an invariant conic (of the elliptic type)

Φ(x,y) =
a
g
+ x2 + y2 = 0, g 6= 0. (6.35)

This conic is irreducible if and only if a 6= 0. For systems (6.34) we calculate

θ =
(
9g2 +16

)
/27, β̂2 =−g3/2, R̂3 = 160ag3 (9g2 +1

)
/9,

and therefore we conclude that for systems (6.34) the condition θβ̂2R̂3 6= 0 is equivalent
to the condition ag 6= 0. Moreover we clearly have sign(ag) = sign(R̂3).

On the other hand for systems (6.34) we calculate

B1 =−
4a3 (9g2 +1

)(
9g2 +16

)2

6561g2 6= 0,

due to ag 6= 0. Therefore by Lemma 2.2.17 we conclude that systems (6.34) could not
possess invariant lines.

The case R̂3 < 0. Then ag < 0 and clearly the ellipse (6.35) is real.

For systems (6.34) we calculate µ0 =
(
9g2 +4

)
/27 6= 0. Then by Lemma 2.2.13 the

systems have finite singularities of total multiplicity 4. We detect that two of these singu-
larities are located on the ellipse (6.35), more exactly such singularities are M1,2

(
x1,2,y1,2

)
with

x1,2 =±
3
√

Z1

9g2 +4
, y1,2 =±

2
√

Z1

g
(
9g2 +4

) , Z1 =−ag
(
9g2 +4

)
. (6.36)

Other two singularities of systems (6.34) are M3,4
(
x3,4,y3,4

)
(generically located outside

the ellipse) with

x3,4 =±
√
−3ag
3g

, y3,4 =±
√
−3ag. (6.37)
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Since sign(R̂3) =−sign(Z1), the condition R̂3 < 0 implies Z1 > 0. In this case we
have two real distinct singularities on the ellipse, namely M1,2.

We need to determine the conditions when at least one of the singularities M3,4,
in general located outside the ellipse, lies on the ellipse. In this order considering (6.35)
we calculate

Φ(x,y)|{x=x3,4, y=y3,4} = aZ3, Z3 =−
9g2−2

3g
.

It is clear that at least one of the singularities M3(x3,y3) or M4(x4,y4) belongs to the ellipse
(6.35) if and only if Z3 = 0. We observe that the invariant polynomial D is responsible for
this condition because for systems (6.34) we have

D =−
256a4 (9g2 +4

)
Z4

3
59049g4 , ag 6= 0.

1) The subcase D 6= 0. Then Z3 6= 0 and the singularities M3,4 remain outside the
ellipse and we have Config. E.1 (example: a =−1,g = 1/4).

2) The subcase D= 0. Then Z3 = 0, i.e. 9g2−2= 0. In this case we have g=±
√

2/3.
Without loss of generality we can assume g =

√
2/3 since the rescaling (x,y, t)→ (−x,y, t)

simultaneously change the signs of the parameters a and g of systems (6.34). So g =
√

2/3
and for the coordinates of the singularities M1,2 and M3,4 of these systems we have

x1,2 =±
√
−a

4
√

2
= x3,4, y1,2 =±

4√2
√
−a = y3,4.

So we obtain that the singularity M3 (respectively M4) coalesces with M1 (respectively
M2). As a result we have two double singularities located on the ellipse which leads to
Config. E.21 (example: a =−75,g =

√
2/3).

The case R̂3 > 0. This condition implies ag > 0 and clearly the ellipse (6.35) is com-
plex. Since for systems (6.34) we have µ0 6= 0, by Lemma 2.2.13 these systems have finite
singularities of total multiplicity 4 and their coordinates are given in (6.36) and (6.37).
We observe that the condition ag > 0 implies Z1 < 0, i.e. the singularities M1,2

(
x1,2,y1,2

)
are complex and as it was proved before they belong to the complex ellipse.

It is not to difficult to determine that the singularities M3,4 are also complex.
Moreover the condition D= 0 forces them to coalesce with the two complex singularities on
the ellipse as we discussed in the case R̂3 < 0. So we get two double complex singularities
located on the complex ellipse.

Thus considering Def. 6.1.8 we conclude that in both cases, i.e. D 6= 0 and D = 0,
we arrive at the same configuration, namely Config. E.15 (examples: a =−1,g =−1 and
a = 27,g =

√
2/3, respectively).

Therefore we have all the configurations indicated in the diagram of Fig. 245 in
the block corresponding to the possibility (B7).
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6.3.1.1.8 The possibility (B8) : β̂1 = β̂6 = β̂2 = 0.

As it was proved in Oliveira et al. (2021) in this case by an affine transformation
and time rescaling, systems (6.4) could be brought to the canonical form

ẋ = 2xy/3, ẏ = b− x2− y2/3, (6.38)

which possesses an invariant conic

Φ(x,y) =−3b+ x2 + y2 = 0. (6.39)

This conic is irreducible if and only if b 6= 0. For systems (6.38) we calculate

θ = 16/27, R̂4 =−32b
(
3x2 + y2)/9,

and therefore we conclude that for systems (6.38) the condition R̂4 6= 0 is equivalent to
the condition b 6= 0. On the other hand we have sign(b) =−sign(R̂4).

The case R̂4 < 0. This condition implies b > 0 and clearly the ellipse (6.39) is real.

We observe that systems (6.38) possess the invariant line x = 0. Then by Lemma
2.2.17 the condition B1 = 0 is satisfied. Moreover by this lemma systems (6.38) could not
possess another invariant line because B2 = −2048b2x4 6= 0 due to the condition b 6= 0.
So systems (6.38) possess exactly one invariant line x = 0. For these systems we have
µ0 = 4/27 6= 0.

On the other hand in this case the coordinates of the finite singularities for systems
(6.38) could be obtained from the coordinates described in (6.33) setting h =−1/3:

x1,2 = 0, y1,2 =±
√

3b ; x3,4 =±
√

b , y3,4 = 0. (6.40)

We detect that the singularities M1,2 belong to the ellipse as well as to the invariant line
x = 0. Since b > 0 all four singularities are real and M3,4 are located outside the invariant
curves. As a result we arrive at Config. E.17 (example: b = 1).

The case R̂4 > 0. This condition implies b < 0 and clearly the ellipse (6.39) is
complex. According to (6.40) the condition b< 0 implies that the singularities M1,2 located
on the ellipse also are complex. Thus we arrive at Config. E.20 (example: b =−1).

Then we have all the configurations indicated in the diagram of Fig. 245 in the
block corresponding to the possibility (B8).

6.3.1.2 The subcase θ = 0

We examine step by step each one of the possibilities presented in Cor. 6.2.7 and
corresponding to this case.
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6.3.1.2.1 The possibility (B9) : Ñ 6= 0, β̂1 6= 0, β̂2 6= 0.

As it was proved in Oliveira et al. (2021) in this case by an affine transformation
and time rescaling systems (6.4) could be brought to the canonical form

ẋ = a+dy+gx2,

ẏ =−a
g
−dx− x2 +gxy− y2, g 6= 0,

(6.41)

which possesses an invariant conic

Φ(x,y) =
a
g
+ x2 + y2 = 0. (6.42)

This conic is irreducible if and only if a 6= 0. For systems (6.41) we calculate

Ñ =
(
g2 +4

)
x2, β̂1 =−d2 (g2 +4

)(
9g2 +4

)
/16,

β̂2 =−g
(
g2 +4

)
/2, R̂5 = 12ag

(
g2 +4

)
,

and therefore we conclude that for systems (6.41) the condition Ñβ̂1β̂2R̂5 6= 0 is equivalent
to the condition adg 6= 0. On the other hand we observe that sign(ag) = sign(R̂5).

Taking into account Lemma 2.2.17 we calculate

B1 =−
a2d2 (g2 +1

)(
g2 +4

)2

g
6= 0,

due to condition adg 6= 0, and we conclude that systems (6.41) could not possess invariant
lines.

The case R̂5 < 0. Then ag < 0 and clearly the ellipse (6.42) is real.

For systems (6.41) we calculate µ0 = g2 6= 0 and therefore by Lemma 2.2.13 the
systems have finite singularities of total multiplicity 4.

We detect that two of these singularities are located on the ellipse (6.42), more
exactly the singularities M1,2

(
x1,2,y1,2

)
, with

x1,2 =±
√

Z1

g
, y1,2 =

d
g
, Z1 =−(ag+d2). (6.43)

Other two singularities of systems (6.41) are M3,4
(
x3,4,y3,4

)
(generically located

outside the ellipse), with

x3,4 =−
dg±

√
Z2

2g
, y3,4 =−

1
2
(
dg±

√
Z2
)
, Z2 = g

(
d2g−4a

)
. (6.44)

On the other hand for systems (6.41) we calculate

ν1 =−d4g2 (g2 +4
)2 (

9g2 +4
)2

Z1/256.
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We observe that
sign(ν1) =−sign(Z1),

and this means that the singularities M1,2 are real (respectively complex or coinciding) if
ν1 < 0 (respectively ν1 > 0 or ν1 = 0).

1) The subcase ν1 < 0. Then the singularities M1,2 located on the invariant ellipse
are real. We need to determine the conditions when at least one of the singularities M3,4

located outside the ellipse lies on the ellipse. For this, considering (6.42) and (6.44), we
calculate

Φ(x,y)|{x=x3,4, y=y3,4} =
d2 (g3 +g

)
−2ag2±d

(
g2 +1

)√
g(d2g−4a)

2g
≡Ω3,4(a,d,g).

It is clear that at least one of the singularities M3(x3,y3) or M4(x4,y4) belongs to the ellipse
(6.42) if and only if

Ω3Ω4 =
aZ3

g
= 0, Z3 = ag3 +d2 (g2 +1

)
.

On the other hand for systems (6.41) we have

ν2 =−105dg
(
9g2 +4

)
Z3,

and clearly since adg 6= 0 the condition ν2 = 0 is equivalent to Z3 = 0.

Next we examine two possibilities: ν2 6= 0 and ν2 = 0.

a) The possibility ν2 6= 0. In this case we have Config. E.1 since other singularities
could belong to ellipse if and only if ν2 = 0 (example: a = 5/4,d = 1,g =−1).

b) The possibility ν2 = 0. In this case we have Z3 = 0 and since g 6= 0 this condition

gives a =−
d2 (g2 +1

)
g3 . Therefore we obtain the following coordinates of the singularities

Mi, i = 1,2,3,4:

(x1,y1) =

(
d
g2 ,

d
g

)
, (x2,y2) =

(
− d

g2 ,
d
g

)
,

(x3,y3) =

(
−

d
(
g2 +1

)
g2 ,−

d
(
g2 +1

)
g

)
, (x4,y4) =

(
d
g2 ,

d
g

)
.

As we can observe, the singularity M4 coalesced with M1. Therefore on the ellipse we have
a double singularity M1 and a simple singularity M2. On the other hand we have

Φ(x,y)|{x=x3,y=y3} =
d2 (g4 +3g2 +2

)
g2 6= 0,

due to d 6= 0. Hence the singularity M3 remains outside the ellipse and we arrive at
Config. E.2 (example: a =−1,d =

√
2/2,g = 1).
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2) The subcase ν1 = 0. In this case we have Z1 = 0, i.e. a =−d2g and this implies
Z3 = d2 6= 0. Therefore the two singularities which belong to the ellipse coalesce, whereas
other two singularities remain outside the ellipse. In this way we get Config. E.4 (example:
a = 1,d = 1,g =−1).

3) The subcase ν1 > 0. Then we have Z1 < 0, i.e. the two singularities which belong
to the ellipse are complex. We note that the condition Z1 < 0 implies Z3 6= 0, because if
Z3 = 0 we found Z1 = d2/g2 > 0. This leads to Config. E.5 (example: a= 1/2,d = 1,g=−1).

We claim that in this configuration the invariant ellipse is a limit cycle. Indeed,
taking into consideration Thm. 6.2.5 (see statement (B3)) we conclude that in the case
under examination, for the existence of limit cycles the following conditions must be
satisfied:

η < 0, θ = γ̂1 = γ̂2 = γ̂6 = 0, β̂1β̂2 6= 0, R̂5 < 0, T3F < 0.

Clearly all the conditions are satisfied except the last one. So it remains to verify that
T3F < 0 is fulfilled, too. For systems (6.41) we calculate

ν1 =
1

256
d4g2 (g2 +4

)2 (
9g2 +4

)2 (
ag+d2) , T3F =− 1

8
d2g2 (9g2 +4

)2 (
ag+d2) ,

and evidently the condition ν1 > 0 implies T3F < 0. This completes the proof of our
claim.

The case R̂5 > 0. This condition implies ag > 0 and clearly the ellipse (6.42) is
complex.

As we discuss on the case R̂5 < 0 for these systems we have µ0 6= 0. Then by Lemma
2.2.13, systems (6.41) have finite singularities of total multiplicity 4 and the coordinates
are given in (6.43) and (6.44). We observe that the condition ag > 0 implies Z1 < 0, i.e.
the singularities M1,2

(
x1,2,y1,2

)
are complex and as it was proved before they belong to

the complex ellipse.

On the other hand the condition ag > 0 yields Z3 = ag3+d2 (g2 +1
)
6= 0. This fact

implies that the singularities M3,4
(
x3,4,y3,4

)
remain outside the complex ellipse. Therefore

the unique possible configuration is Config. E.15, detected before (example: a = −1,d =

1,g =−1).

Thus, we have all the configurations indicated in the diagram of Fig. 247 in the
block corresponding to the possibility (B9).

6.3.1.2.2 The possibility (B10) : Ñ 6= 0, β̂1 6= 0, β̂2 = 0.

As it was proved in Oliveira et al. (2021) in this case by an affine transformation
and time rescaling systems (6.4) could be brought to the two–parameter family of systems



378 Chapter 6. Geometric analysis of quadratic differential systems with invariant ellipses

ẋ = dy, ẏ = b−dx− x2− y2, d 6= 0, (6.45)

which is a subfamily of (6.17) defined by the condition h = −1. Clearly these systems
possess the same invariant ellipse (6.18) which in this particular case takes the form

Φ(x,y) =−b+ x2 + y2 = 0. (6.46)

This conic is irreducible if and only if b 6= 0.

We claim that the infinite invariant line Z = 0 for systems (6.45) is of multiplicity
2. Indeed considering Lemma 2.2.19 for these systems we calculate:

gcd(E1,E2) = dZ,

and by Lemma 2.2.19, statement (3), the line Z = 0 is a double one. This completes the
proof of our claim.

For systems (6.45) we calculate

Ñ = 16bd2x2, β̂1 =−d2, R̂6 =−4b,

and therefore we conclude that for these systems the condition Ñβ̂1R̂6 6= 0 is equivalent
to the condition bd 6= 0. On the other hand we have sign(b) =−sign(R̂6).

The case R̂6 < 0. Then b > 0 and clearly the ellipse (6.46) is real.

Considering Lemma 2.2.17 we examine if systems (6.45) could possess at least
one invariant affine line. Calculations yield B1 = 0, however we claim that this condition
is implied by the existence of the double line at the infinity. Indeed, the coefficients of
systems (6.45) could be perturbed with a small parameter 0 < ε � 1 as follows:

ẋ = (d + εx)y, ẏ = b−dx− x2− y2.

Evidently, these systems possess the invariant line d+εx = 0 and hence by Lemma 2.2.17
we have B1 = 0 (this could also be checked directly).

On the other hand, by Lemma 2.2.17, systems (6.45) could not possess any finite
invariant lines because B2 =−10368b2x4 6= 0, due to condition bd 6= 0.

For these systems we calculate µ0 = µ1 = 0 and µ2 = d2(x2+y2) 6= 0. According to
Lemma 2.2.13, two finite singularities coalesced with infinite singularities, namely with
the complex singularities [±i : 1 : 0].

Therefore on the line Z = 0 we get two double complex infinite singularities. This
is however irrelevant in view of the definition of a configuration (see Def. 6.1.8). So the
unique real singularity at infinity is of multiplicity one.
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On the other hand, by Lemma 2.2.13, systems (6.45) have finite singularities of
total multiplicity 2. We detect that these singularities are located outside the ellipse (6.46)
and their coordinates are M1,2

(
x1,2,y1,2

)
, with

x1,2 =−
d±
√

4b+d2

2
, y1,2 = 0.

For these singularities we calculate

Φ(x,y)|{x=x1,2, y=y1,2} =
d(d±

√
4b+d2)

2
≡Ω1,2(b,d), Ω1Ω2 =−bd2 6= 0.

We conclude that neither M1 nor M2 could belong to the ellipse. As a result we arrive at
Config. E.24 (example: b = 1,d =−1).

The case R̂6 > 0. Then b < 0 and clearly the ellipse (6.46) is complex. Since none
of the singularities M1,2 could be on the ellipse, we obtain Config. E.25 (example: b =

−1,d =−1).

So we have all the configurations indicated in the diagram of Fig. 247 in the block
corresponding to the possibility (B10).

6.3.1.2.3 The possibility (B11) : Ñ 6= 0, β̂1 = 0.

As it was proved in Oliveira et al. (2021) in this case by an affine transformation
and time rescaling, systems (6.4) could be brought to the canonical form (6.5) with h=−1
and d = 0. So we consider the following systems

ẋ = a+gx2, ẏ =−a
g
− x2 +gxy− y2, g 6= 0, (6.47)

which possess the invariant ellipse (6.6), i.e.

Φ(x,y) =
a
g
+ x2 + y2 = 0, (6.48)

which is irreducible if and only if a 6= 0.

We observe that systems (6.47) possess the invariant lines L1,2(x,y) = a+gx2 = 0,
i.e.

L1(x,y) = x−
√
−ag
g

= 0, L2(x,y) = x+
√
−ag
g

= 0. (6.49)

Then by Lemma 2.2.17 the condition B1 = 0 is satisfied. Moreover by this lemma,
systems (6.47) could possess an invariant line in another direction only if B2 = 0. However,
for these systems we have

B2 =−
648a2 (g2 +1

)(
g2 +4

)2 x4

g2 6= 0.
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So we conclude that systems (6.47) possess exactly two invariant lines (6.49), which are
distinct due to ag 6= 0 and they could be real or complex, depending on sign(ag).

For systems (6.47) we calculate

Ñ =
(
g2 +4

)
x2, R̂3 = 160ag

(
g2 +1

)(
g2 +4

)
,

and therefore we conclude that sign(ag) = sign(R̂3).

The case R̂3 < 0. Then ag < 0 which implies that the ellipse (6.48) as well as the
invariant lines (6.49) are real.

For systems (6.47) we calculate µ0 = g2 6= 0 due to the condition g 6= 0. Then by
Lemma 2.2.13 the mentioned systems have finite singularities of total multiplicity 4.

We detect that two of these singularities are located on the ellipse (6.48), more
exactly such singularities are M1,2

(
x1,2,y1,2

)
, with

x1,2 =±
√
−ag
g

, y1,2 = 0.

Other two singularities of systems (6.47) are M3,4
(
x3,4,y3,4

)
(generically located

outside the ellipse), with

x3,4 =±
√
−ag
g

, y3,4 =±
√
−ag. (6.50)

We also detect that the singularities M1,3 (respectively M2,4) belong to the line
L1(x,y) = 0 (respectively L2(x,y) = 0).

For the singularities M3,4 we calculate

Φ(x,y)|{x=x3,4, y=y3,4} =−ag 6= 0,

and we conclude that neither M3(x3,y3) nor M4(x4,y4) belong to the ellipse (6.48). Accord-
ing to (6.50) we observe that y3 > 0 and y4 < 0, which leads to Config. E.26 (example:
a = 1,g =−1).

The case R̂3 > 0. Then ag > 0 and this implies that the ellipse (6.48) as well as the
invariant lines (6.49) and the four singularities of systems (6.47) are complex. Therefore
we obtain Config. E.27 (example: a =−1,g =−1).

Therefore we have all the configurations indicated in the diagram of Fig. 247 in
the block corresponding to the possibility (B11).
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6.3.1.2.4 The possibility (B12) : Ñ = 0.

As it was proved in Oliveira et al. (2021) in this case by an affine transformation
and time rescaling systems (6.4) could be brought to the systems

ẋ = 2xy, ẏ = b− x2 + y2, (6.51)

which possess the family of invariant ellipses

Φ(x,y) = b+qx+ x2 + y2 = 0, q ∈ R, (6.52)

depending on the parameter q and having the corresponding determinant ∆ = (4b−q2)/4.
So for any fixed value of the parameter q, the ellipses from the family (6.52) are irreducible
if and only if ∆ 6= 0.

Since for systems (6.51) we have B1 = B2 = B3 = 0, by Lemma 2.2.17 these systems
could possess invariant lines in three different directions. We verify that these systems
indeed possess the following five invariant lines:

L1(x,y) = x = 0, L2,4(x,y) = (x− iy)2−b = 0, L3,5(x,y) = (x+ iy)2−b = 0. (6.53)

Since µ0 = −4 6= 0 systems (6.51) possess finite singularities of total multiplicity
four and their coordinates are

x1,2 = 0, y1,2 =±
√
−b, x3,4 =±

√
b, y3,4 = 0.

We observe that if b 6= 0 systems (6.51) have two real and two complex singularities.
Moreover we have that the real singularities are located on the real invariant line L1(x,y)=

0 if b < 0 (namely M1,2) and outside this invariant line if b > 0 (in this case the real
singularities are M3 and M4). In the case b = 0 all four singularities coincide and we have
one real singularity of multiplicity four.

On the other hand for systems (6.51) we calculate R̂7 = 32b, which implies sign(b)=
sign(R̂7). It is clear that if R̂7 ≤ 0 the invariant ellipses from the family (6.52) are real
and if R̂7 > 0 they could be real or complex, depending on the parameter q in (6.52). So,
if R̂7 < 0 we arrive at Config. E.28 (example: b =−75,q ∈ R) and if R̂7 = 0 the complex
invariant lines (6.53) become double and we obtain Config. E.29 (example: b = 0,q 6= 0).
In the case R̂7 > 0 we observe that for any fixed value of parameter b, any ellipse from
the family (6.52) is invariant for systems (6.51). In other words, for any b > 0 we have
that such systems possess simultaneously an infinite number of real ellipses as well as an
infinite number of complex ellipses. Therefore, taking into consideration Rmk. 6.1.12 we
arrive at Config. E.30 (example: b = 1/8, |q|>

√
2/2).

Thus, we have all the configurations indicated in the diagram of Fig. 247 in the
block corresponding to the possibility (B12).
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6.3.2 The case C2 = 0

According to Lemma 2.2.14 a quadratic system with the condition C2 = 0 could be
brought via an affine transformation and time rescaling to the following canonical form:

ẋ = a+ cx+dy+ x2, ẏ = b+ ex+ f y+ xy,

with C2 ≡ 0, i.e. the line at infinity of this system is filled up with singularities. Follow-
ing Oliveira et al. (2021) (see the diagram of Fig. 239) and Cor. 6.2.7 we discuss two
possibilities.

6.3.2.1 The possibility (C1) : H10 6= 0.

As it was proved in Oliveira et al. (2021) in this case we have the systems

ẋ = a+ y+ x2, ẏ = xy, (6.54)

which possess the family of invariant ellipses

Φ(x,y) = a+2y+ x2 +m2y2 = 0, m 6= 0. (6.55)

We observe that for any fixed value of the parameter a, the ellipses from the family
(6.55) are irreducible if and only if ∆ = am2−1 6= 0.

Since for systems (6.54) we have B1 = B2 = B3 = 0, by Lemma 2.2.17 these systems
could possess invariant lines in three different directions. We verify that these systems
indeed possess the following three invariant lines:

L1(x,y) = y = 0, L2,3(x,y) = y±
√
−ax+a = 0.

It is clear that the invariant lines L2(x,y) and L3(x,y) are real, coinciding or complex if
a < 0, a = 0 or a > 0, respectively.

Since µ0 = 0 and µ1 = x 6= 0, Lemma 2.2.13 tells us that there exist exactly three
finite singularities. Their coordinates are given by

x1,2 =±
√
−a, y1,2 = 0, x3 = 0, y3 =−a.

For each fixed value of the parameter a we observe that if a < 0 (respectively a > 0) the
singularities M1,2 are real (respectively complex) and they verify the equalities

Φ(x1,y1) = L1(x1,y1) = L2(x1,y1) = 0, Φ(x2,y2) = L1(x2,y2) = L3(x2,y2) = 0,

respectively. Moreover we detect that the singularity M3 belongs to the invariant lines
L2(x,y) and L3(x,y) and this singularity belongs to the irreducible invariant ellipse
Φ(x,y) = 0 if and only if a = 0. In such a case (i.e. when a = 0) all three singularities
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coincide (as well the three invariant lines L1, L2 and L3) and we have one real singular-
ity of multiplicity three located on a triple invariant line.

On the other hand for systems (6.54) we calculate H9 = 2304a3, which implies
sign(a) = sign(H9). It is clear that if H9 ≤ 0 then the irreducible conics from the family
(6.55) are real and if H9 > 0 they could be real or complex, depending on the parameter m in
(6.55). So, if H9 < 0 we arrive at Config. E.31 (example: a =−75,m∈R\{0}) and if H9 = 0
we obtain Config. E.32 (example: a = 0,m ∈ R\{0}). In the case H9 > 0, as we discussed
before, for any fixed value of the parameter a, systems (6.54) possess simultaneously an
infinite number of real ellipses as well as an infinite number of complex ellipses. Then,
based on Rmk. 6.1.12 we obtain Config. E.33 (example: a = 1/2, |m|<

√
2).

Thus, we have all the configurations indicated in the diagram of Fig. 248 in the
block corresponding to the possibility (C1).

6.3.2.2 The possibility (C2) : H10 = 0.

As it was proved in Oliveira et al. (2021) in this case we have the systems

ẋ = a+ x2, ẏ = xy, a 6= 0, (6.56)

which possess the family of invariant ellipses

Φ(x,y) = a+ x2 +m2y2 = 0, m ∈ R\{0}. (6.57)

Since for this family of ellipses we have ∆ = am2 6= 0 due to am 6= 0, we deduce that
the family (6.57) cannot contain any reducible conic.

For systems (6.56) we calculate B1 = B2 = B3 = 0 and hence, by Lemma 2.2.17,
these systems could possess invariant lines in three different directions. We verify that
these systems possess the following three invariant lines:

L1(x,y) = y = 0, L2,3(x,y) = x∓
√
−a = 0.

It is clear that the invariant lines L2(x,y) and L3(x,y) are real if a < 0 and complex if
a > 0.

Since µ0 = µ1 = 0 and µ2 = ax2 6= 0, Lemma 2.2.13 tells us that there exist exactly
two finite singularities. Their coordinates are

x1,2 =±
√
−a, y1,2 = 0.

We observe that if a < 0 (respectively a > 0) the singularities M1,2 are real (respectively
complex) and they are located on each one of the invariant ellipse of the family Φ(x,y) = 0
from (6.57). Moreover we observe that

L1(x1,y1) = L2(x1,y1) = 0, L1(x2,y2) = L3(x2,y2) = 0.
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On the other hand for systems (6.56) we calculate H11 = −192ax4, which implies
sign(a) = −sign(H11). So, we arrive at Config. E.34 if H11 < 0 (example: a = 27,m ∈ R)
and Config. E.35 if H11 > 0 (example: a =−75,m ∈ R).

Thus, we have all the configurations indicated in the diagram of Fig. 248 in the
block corresponding to the possibility (C2).

Since all the affine invariant subsets in R12 defined in Cor. 6.2.7 are examined, we
conclude that Thm. 6.3.1 is proved.

6.4 Concluding comments

Now we present some conclusions about the 35 configurations obtained and their
realization. The diagrams of Figs. 245, 247 and 248 give an algorithm to compute for any
system possessing an invariant ellipse, presented in any normal form, its configuration.
Moreover the diagrams of Figs. 245, 247 and 248 are the bifurcation diagrams of the
configurations of such systems, done in the 12–parameter space of the coefficients of these
systems.

6.4.1 Concluding comments for η < 0

According to Thm. 6.3.1, each non–degenerate quadratic system in the class
QSE(η<0) possesses either exactly one invariant ellipse or a family of invariant ellipses.
This class yields 30 distinct configurations which can be split into the following cases
according to their geometry:

α1) Fourteen configurations with exactly one ellipse and no invariant lines other
that a line at infinity, which is simple. Among these we only have three cases where the
ellipse is complex. The configurations are split into subsets by the total multiplicity of the
real singularities located on them, whose maximum is 5 in the case of real ellipses and 3
in the case of complex ellipses.

We point out that in this class we have the only two configurations with limit
cycles occurring in the family QSE. In both configurations we only have one real singular
point located on the configuration, on the line of infinity. The two configurations whit the
ellipse as a limit cycle are distinguished by the multiplicity of this singularity which could
be one or two.

α2) Eleven configurations with exactly one ellipse and invariant lines of total mul-
tiplicity 2, including the line at infinity. Among these we only have two configurations
with complex ellipses, distinguished by the number of invariant lines, which could be 2 or
1. The remaining configurations are distinguished by the number of invariant lines (1 or
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2) and by the geometry of the positions of the invariant lines with respect to the ellipses
as well as the multiplicities of the real singularities located on the configurations.

α3) Two configurations of systems possessing exactly one invariant ellipse (real or
complex) and three simple invariant lines, including the line at infinity, the two affine
lines being real or complex.

α4) Three configurations, each one of them possessing an infinite family of invariant
ellipses. Two of them possess only real ellipses (Config. E.28 and Config. E.29) and one of
them (Config. E.30) possesses simultaneously an infinity of real ellipses and an infinity of
complex ellipses (according to Rmk. 6.1.12 we only placed the real ellipses on the drawing
of this configuration). All three configurations possess invariant lines of total multiplicity
6, including the line at infinity and they are distinguished by the number of singular
points located on the real invariant lines of the configurations.

6.4.2 Concluding comments for C2 = 0

According to Thm. 6.3.1, each non–degenerate quadratic system in the class
QSE(C2=0) possesses an infinite family of invariant ellipses and in addition its line at
infinity is filled up with singularities. This class yields five distinct configurations which
can be split into the following cases according to their geometry:

β1) Three configurations possessing an infinity of real ellipses (Config. E.31, Con-
fig. E.33 and Config. E.35), have affine invariant lines (real) of total multiplicity 3. These
configurations are distinguished by the number of singular points located on these invari-
ant lines.

β2) One configuration (Config. E.34) has an infinity of only complex ellipses and
three invariant lines two of them complex parallel lines.

β3) One configuration (Config. E.33) possesses simultaneously an infinity of real
ellipses and an infinity of complex ellipses (according to Rmk. 6.1.12 we only placed the
real ellipses on the drawing of this configuration). This configuration also possesses three
invariant lines, two of them complex intersecting at a real singular point.
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CONCLUSION

In this thesis we have seen some applications of the Invariant Theory in the study
of quadratic differential systems on the plane. By using this tool we could perform a
complete study of the bifurcation diagram corresponding to the class QsnSN11 of all
quadratic systems possessing a finite saddle–node sn(2) located at the origin of the plane
and an infinite saddle–node of type

(1
1

)
SN. This class is divided into families QsnSN11(A)

and QsnSN11(B), as described in Chap. 3 and 4, respectively.

With the study of the bifurcation diagram of family QsnSN11(B) we could obtain
all the representatives for the phase portraits from the set (AC), as we have described in
Chap. 5. In addition, we have proved that all the generic phase portraits obtained in the
bifurcation diagram described in Artés, Rezende and Oliveira (2015) are indeed all the
representatives for the phase portraits from the set (AB).

The study of the bifurcation diagram of family QsnSN11(A) will be very useful
in a near future when someone performs the classification of all the phase portraits of
codimension three, modulo limit cycles. Moreover, with this study we had the possibility
of starting the analysis of a higher dimension bifurcation diagram, for future studies it is
important to have clear ideas about how we work in such levels of dimensions.

The study presented in the final chapter, also done with help of the Invariant
Theory, is very interesting in the sense of classification of quadratic systems with invariant
conics. Also, this study is closely related to the problem of classification of phase portraits,
since the knowledge of algebraic invariant curves can help us to draw phase portraits. In a
near future we intend to continue collaborating with Professor Nicolae Vulpe and Professor
Dana Schlomiuk in the study of quadratic systems with invariant parabolas.

Therefore, with this thesis we have contributed a little bit to the classification of
quadratic systems.

In conclusion, in order to continue contributing to the classification of quadratic
systems, in a near future we intent to continue studying other families of quadratic systems
of codimension two and higher. Additionally, we intend to contribute in the study of the
integrability of quadratic systems possessing invariant ellipses and invariant parabolas, as
it was done in Oliveira, Schlomiuk and Travaglini (2021), where the authors studied the
integrability of quadratic systems possessing invariant hyperbolas.
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