• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Thèse de Doctorat
DOI
10.11606/T.55.2017.tde-18042017-110611
Document
Auteur
Nom complet
Ginnara Mexia Souto
Adresse Mail
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Carlos, 2017
Directeur
Jury
Bonotto, Everaldo de Mello (Président)
Arita, Andréa Cristina Prokopczyk
Ebert, Marcelo Rempel
Fu, Ma To
Garrido, Tomás Caraballo
Titre en anglais
Qualitative properties of impulsive semidynamical systems
Mots-clés en anglais
Dissipativity
Dynamical systems
Impulses
Recurrence
Stability
Resumé en anglais
The theory of impulsive dynamical systems is an important tool to describe the evolution of systems where the continuous development of a process is interrupted by abrupt changes of state. This phenomenon is called impulse. In many natural phenomena, the real deterministic models are often described by systems which involve impulses. The aim of this work is to investigate topological properties of impulsive semidynamical systems. We establish necessary and sufficient conditions to obtain uniform and orbital stability via Lyapunov functions. We solve a problem of Jake Hale for impulsive systems where we obtain the existence of a maximal compact invariant set. Also, we obtain results about almost periodic motions and asymptotically almost periodic motions in the context of impulsive systems. Some asymptotic properties for impulsive systems and for their associated discrete systems are investigated. The new results presented in this text are in the papers [11], [15] and [16].
Titre en portugais
Propriedades qualitativas de sistemas semidinâmicos impulsivos
Mots-clés en portugais
Dissipatividade
Estabilidade
Impulsos
Recorrência
Sistemas dinâmicos
Resumé en portugais
A teoria de sistemas dinâmicos com impulsos é apropriada para descrever processos de evolução que sofrem variações de estado de curta duração e que podem ser consideradas instantâneas. Este fenômeno é chamado impulso. Para muitos fenômenos naturais, os modelos determinísticos mais realistas são frequentemente descritos por sistemas que envolvem impulsos. O objetivo deste trabalho é estudar propriedades topológicas para sistemas semidinâmicos impulsivos. Estabelecemos condições necessárias e suficientes para obtermos estabilidade uniforme e estabilidade orbital utilizando funções do tipo Lyapunov. Resolvemos um problema de Jack Hale para os sistemas impulsivos, onde obtemos a existência de um conjunto invariante compacto maximal. Além disso, obtemos resultados de movimentos quase periódicos e movimentos assintoticamente quase periódicos para sistemas impulsivos. Algumas propriedades assintóticas são estabelecidas para um sistema impulsivo e para seu sistema discreto associado. Os resultados novos apresentados neste trabalho estão presentes nos artigos [11], [15] e [16].
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
GinnaraMexiaSouto.pdf (1.25 Mbytes)
Date de Publication
2017-04-18
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
CeTI-SC/STI
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2021. Tous droits réservés.