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“Fazer pesquisa é como observar pássaros.
Estudar artigos é adentrar uma floresta em busca

de algum espécime novo, colorido e empolgante.
São horas desbravando as páginas de outros trabalhos

na esperança de encontrar uma frase, uma imagem,
alguma coisa que você ainda não sabe o que é.

E, de repente, você liga os pontos e ganha uma
resposta. Às vezes, é apenas um susto, apenas um
pardal que de um certo ângulo parecia um pássaro

novo. Mas às vezes, bem às vezes, é tudo
o que você precisa para o próximo passo.”

(Carla Silva)





RESUMO

PINHEIRO, C. M. S. Sistemas Integráveis e Funções Partição de Modelos de
Matrizes Aleatórias. 2022. 123 p. Dissertação (Mestrado em Ciências – Matemática)
– Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, São
Carlos – SP, 2022.

A Teoria de Matrizes Aleatórias é um tópico bem atual devido à sua ampla gama de
aplicações em diferentes áreas, como mecânica quântica, aprendizado de máquinas, sis-
temas dinâmicos, entre outros. O presente trabalho começa com algumas das aplicações
mais conhecidas. Em seguida, dá-se especial atenção à enumeração de mapas através
da esperança do traço de matrizes aleatórias em um Ensemble Gaussiano Unitário. Pos-
teriormente, desenvolve-se uma expansão assintótica da função partição, o que permite
contar mapas através da conexão entre a esperança do traço e a função partição. Tal
expansão é explorada em detalhes e os cálculos envolvendo um importante problema de
Riemann-Hilbert são explicitamente elaborados. Por fim, conexões entre matrizes aleató-
rias e sistemas integráveis são abordadas de dois modos diferentes. Quando a dimensão
das matrizes é fixa, a função partição de um modelo de matrizes aleatórias é uma função
tau da hierarquia KP, enquanto que no limite em que a dimensão vai para o infinito
recupera-se soluções de equações de Painlevé.

Palavras-chave: Sistemas Integráveis, Matrizes Aleatórias, Função Partição, Problemas
de Riemann-Hilbert, Equações de Painlevé.





ABSTRACT

PINHEIRO, C. M. S. Integrable Systems and Partition Functions of Random
Matrix Models. 2022. 123 p. Dissertação (Mestrado em Ciências – Matemática) –
Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, São
Carlos – SP, 2022.

Random Matrix Theory is a hot topic nowadays given its wide range of applications
in different areas, such as quantum mechanics, machine learning, dynamical systems,
among others. The present work begins reviewing some of the most famous applications.
Then, particular attention is given to the enumeration of maps through the expectation
of the trace of random matrices in a Gaussian Unitary Ensemble. Latter, an asymptotic
expansion of the partition function is developed, which allows one to count maps by
the connection between the expectation of the trace and the partition function. Such
expansion is explored in full details and the calculations involving an important Riemann-
Hilbert problem are explicitly worked out. At last, connections between random matrices
and integrable systems are explored in two different ways. When the dimension is fixed,
the partition function of a random matrix model is a tau-function of the KP hierarchy,
while in the limit where the dimension goes to infinity one recovers Painlevé solutions.

Keywords: Integrable Systems, Random Matrices, Partition Function, Riemann-Hilbert
Problems, Painlevé Equations.
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CHAPTER

1
INTRODUCTION

Random Matrix Theory made a modest debut in mathematical statistics in the
1930s, with the work of Hsu and Wishart. However, it only attracted considerable attention
after the discovery of a connection between nuclear physics and eigenvalues statistics by
Wigner in the 1950s.

Since then, a large number of applications in physics and mathematics were dis-
covered, what motivated the study of different aspects of such theory. Random matrices
appeared in the characterization of chaotic systems, in the studies on conductivity of
disordered metals, quantum gravity and string theory, on the theory of sound waves in
quartz crystals and in the distribution of values of Riemann zeta function, to mention
only a few (MEHTA, 2004).

The theory of the Painlevé equations has also born in the early 1900s, but only
attracted a substantial attention after the discovery of applications in physics in the
second half of the 20th century. In an attempt to classify all of the second order ordinary
differential equations with some special properties, Paul Painlevé elaborated a list of
equations that included the six so-called canonical Painlevé equations (Equations (5.2)-
(5.7)). Such objects came together with random matrices when, in the 1980s, studies on the
behaviour of eigenvalues led to unexpected connections to some integrable hierarchies of
Painlevé II and V (see (TRACY; WIDOM, 2002) and (JIMBO et al., 1980)). By integrable
hierarchies we mean a generalization of integrable systems, that is, systems with enough
conservated quantities. In the last decade solutions to the Painlevé XXXIV were also
found in the context of matrix models (ITS; KUIJLAARS; ÖSTENSSON, 2008).

In the 1960s the Feymann path integral developed as a tool for quantum field
theory gave rise to questions about the enumeration of the so-called Feymann diagrams.
A diagram is a particular case of a map, and the latter is defined as a graph embedded
to a compact surface with some special features. Later, the Feymann path integral was
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identified as a matrix integral, and the problem of map enumeration became a problem
of random matrix models (SCHWINGER, 1958).

The two latter topics we mentioned, namely integrable systems and map enumer-
ation, do not seem to be connected at all at the first sight. However, a great deal of this
text is devoted to explaining how they both relate to random matrices, the central object
of this dissertation.

The Chapter 2 is probably the most random of them all. It begins with the defini-
tion of probability, passes through random variables and end up defining a random matrix.
After defining one of the most important objects in this text, the linearity is thrown out
the window and we present briefly a set of applications not necessarily ordered by impor-
tance or date of discover. Despite that may be a little bit random, it has a noble purpose.
For those who find the concept of random matrices kind of abstract, it brings some light
on its connection with concrete problems in an attempt to motivate them. In the last sec-
tion we provide some tools for the reader interested in getting to know random matrices
better.

Chapter 3 is all about random matrices. We start with a section defining a Gaussian
measure in a space of hermitian matrices. Once the measure is built, we take the Gaussian
expectation of the trace of a matrix. In the following section we explore graphs and maps
and establish a relation between map enumeration and the expectation of the trace in a
random matrices ensemble.

The Chapter 4 is probably the most scary to the unwary. It is where one can find
the most technical calculations on this dissertation, and (or but) the deepest results. But
make no mistake: it is also the most linear one. It starts with the definition of a partition
function and a result about its asymptotic behaviour. In the following section we explain
why the partition function is important: because we can recover the expectation of the
trace of a random matrix from it. But, as one may recall from the previous chapter, this
quantity relates directly to the enumeration of maps. So, once we know the asymptotic
expansion for the partition function we can, with the help of the trace of a matrix, count
maps. The last sections are devoted to the proof of the asymptotic expansion claimed in
the first section.

The Chapter 5 starts with a brief introduction to integrable systems. Then, the
connection between random matrices and integrable hierarchies is explored in two different
ways. At first, we see how the partition function of a random matrix model relates to the
KP hierarchy. Then, in the following section we detail the behaviour of eigenvalues for
matrices of large dimension, which leads to some results involving Painlevé II and V. Then,
we have some final comments in Chapter 6 and some Python codes in the Appendix.

In case one gets lost between the lines of a proof or maybe gets distracted by a
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Figure 1 – Diagram of the connections between the main topics of the text.

Random
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Source: Elaborated by the author.

fascinating detail, the guide below might be helpful to get you back on track. Enjoy the
journey!

1.1 User guide
The section 2.1 is recommended to everyone. It is where, starting from the defi-

nition of random variables, we establish the concept of random matrices. Moreover, sec-
tion 2.8 brings an overview of the rest of the dissertation. After that, there are some
choices of paths depending on the topics in which the reader is most interested in.

• Applications trail:

If your main interest is in discovering some applications of Random Matrix
Theory, the first sections of Chapter 2 are a good option. The section 2.2 shows an
application of random matrices in neutron ressonance theory and the section 2.3
illustrate the Wigner semicircle law. The section 2.4 brings the Marchenko-Pastur
distribution and the section 2.5 presents an application of such distribution in Big
Data. Moreover, the section 2.6 introduces the concept of Point Process, culminat-
ing in the construction of Dyson brigdes in the subsection 2.6.2, which appears in
quantum chaos in the subsection 2.6.3.

• Connection between Random Matrices and Integrable Systems...

◦ ... through the partition function:
Start with some definitions in integrable systems theory in section 5.1.
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Then, explore the connection between partition functions and KP hierarchy in
section 5.2.

◦ ... through the limit kernel:
If you do not want to give a chance to the beauty of Riemann-Hilbert

Problems, start with point process in the section 2.6 and gap probability in
the subsection 2.7.1. Read briefly the definition of some important auxiliary
function in subsection 4.3.1. Accept Theorem 10 and Equations (4.67)-(4.68),
concerning to the formula for asymptotics of orthogonal polynomials. Then,
after the introduction to integrable systems in the section 5.1, see the develop-
ment of limit kernels in the section 5.3.

For a full experience, start with point process in the section 2.6 and
the subsection 2.7.1. Then, go to the asymptotics for orthogonal polynomials
in the section 4.3. Enjoy the details in the Riemann-Hilbert construction of
such asymptotics, and once you reach the final expression for the polynomials
in the subsection 4.3.6, go to the introduction to integrable systems in the
section 5.1 and, finally, to the section 5.3 of limit kernels.

• Connection between Random Matrices and Map Enumeration...

◦ ... purely:
The Chapter 3 is enough to provide an overview of the relation be-

tween the expectation of the trace in random matrix models and the enumer-
ation of g-maps.

◦ ... through the Partition Function:
After the contact with map enumeration in Chapter 3, explore the

introduction of Chapter 4 and the section 4.1.

◦ ... through the Partition Function and RHP:
For the ones brave enough to face (almost) all the technical details,

enjoy Chapter 3 and Chapter 4.
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CHAPTER

2
RANDOM MATRICES

The approach throughout the present chapter is rather superficial, as the focus
is on motivating our later work. Do not expect rigorous calculations nor proofs, but
a simple overview of the main applications developed in almost a century of Random
Matrix Theory.

2.1 Introduction

Probability is a common and natural concept in everyday life. You wake up, turn
on the television and hear about “the 50 percent chance of rain”, “the probabilities in
election” and “the chance to win the lottery”. Before commuting to work you try to do
some predictions about other probabilistic events. What is the chance that you are going
to be late because of traffic?

Nature is plenty of non-deterministic events, and the formal study of them gave
rise to the Probability Theory. The essential building blocks of probability theory are the
so called random variables, i.e., functions that assign to the result of a probabilistic event
a quantity which can be treated mathematically. But before going into more details about
random variables we need to define a probability space.

Given a probabilistic experiment, like roll dices or tosses of a coin, one can think
of the probability as the ratio between the frequency at which each possible result occurs
and the number of experiments. The set of all possible results is called sample space (Ω).
The subsets of Ω for which one can assign a probability are called events.

By means of Measure Theory, a probability is a finite and normalized measure in
the sigma-algebra of the events. Analogously to a measure space, we define a probability
space by a triple (Ω,A,P), where Ω is the sample space, A is the sigma-algebra of the
measurable events and P is the probability measure.
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The sigma-algebra A has the three following properties:

i. /0 ∈A, that is, the impossible event A = /0, is measurable;

ii. If A ∈A then Ac ∈A;

iii. If {Ai}∞
i=1 ∈A then ∪∞

i=1Ai ∈A.

It holds that A⊂℘(Ω) but the inverse inclusion usually does not hold. Now the
probability P is, mathematically, a function P : A 7→ [0,1] such that

i. P(A)≥ 0 for all A ∈A;

ii. P(Ω) = 1;

iii. For a sequence of mutually exclusive events {Ai}∞
i=1 it follows that

P(∪∞
i=1Ai) =

∞

∑
i=1

P(Ai).

For example, if a fair coin is tossed once the probability space is characterized by
Ω = {C,K}, A = { /0,{C},{K},Ω} and P[{C}] = 1

2 , where C corresponds to the event of
getting a head and K to the event of getting a tail.

A random variable is a numeric description of a probabilistic event. Some examples
are the number of heads in n tosses of a coin or the sum of the faces obtained when two
dice are rolled. Formally, a random variable in a probability space is a real function

X : Ω → R
w 7→ X(w),

(2.1)

such that for all x ∈ R
(X ≤ x) := {w ∈ Ω : X(w)≤ x} ∈A.

A quantity of interest when dealing with random variables is its distribution F :
R→ [0,1] defined by

F(x) := P({w ∈ Ω : X(w)≤ x}). (2.2)

The two most common types of random variables are the discrete ones, whose
range is a countable set, and the continuous ones, whose distribution function may be
expressed as

F(x) =
ˆ x

−∞
f (u)du, (2.3)

for some probability density function f . Some famous discrete distributions are the Bino-
mial, the Bernoulli and the Poisson distributions. The continuous ones include the Normal
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distribution N(m,σ) with mean m and standard deviation σ , whose probability density
function is given by

f (x) =
1√

2πσ2
exp
(
−(x−m)2

2σ2

)
. (2.4)

Instead of a single random variable, one could choose to work with a list of random
variables, which is known as a random vector. Moreover, one could deal with a “list of lists”
of random variables, which is called random matrix. So, for now on we refer to a random
matrix as a matrix whose entries are random variables. A natural question that arises is
about the behaviour of the eigenvalues of a random matrix. Recall that the eigenvalues
of a complex matrix M are the elements λ ∈ C for which

det(M−λ I) = 0.

Despite its simple formulation, the pertinence of such question is easily justified
by its relation to a wide range of applications, as illustrated by the next sections.

2.2 Neutron resonance
At a microscopic scale the interactions between atoms, electrons, photons and neu-

trons lead to important phenomena. Take, for example, the interaction between neutrons
and atoms.

Since neutrons have no charge and, consequently, no Coulomb interaction with the
atom’s electrosphere, they can reach the nucleus more easily than electrons and photons.
However, the occurrence of an effective interaction is a probabilistic event which depends
on two non-deterministic quantities, namely the energy levels of the atom and the energy
of the neutron.

We divide these interactions into fast reactions, in which a neutron is absorbed
and another is rejected with almost the same energy, and the slow reactions, in which
the interaction takes longer and the energy is distributed among more constituents of the
nucleus, giving rise to several effects. In the 1950s some physicists studied the relation
between the statistical behaviour of slow neutron resonances in nuclear interactions and
random matrices (MEHTA, 2004).

The dependence of the interaction on the energy of the incoming neutron gives rise
to a probability density called cross section. The cross section σn is usually decomposed
into functions known as partial cross sections as follows

σn = σa +σs +σ f +σp +σγ ,

where σa is the contribution due to neutron absorption by the nucleus, σs is the contribu-
tion of scattering events, σ f is the fission cross section, σp is the contribution of proton
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emission and σγ is the neutron radiative cross section. Each of such functions refers to one
of the most important interactions between a nucleus and a neutron (MUGHABGHAB;
GARBER, 1973).

The experimental data related to the dependence of the cross section on the energy
of the neutron reveals the presence of peaks of resonance due to the excited states. In
short, the kinetic energy of the neutron and the binding energy of the nucleus combine
and originate an excitation energy called energy of resonance, which is observed by the
presence of peaks. Due to the random character of these peaks, exact predictions cannot
be obtained.

As the energy of the neutron increases, the level distance decreases, resonance in
cross sections appears and all we can observe is a continuum. Although the states become
dense we still can evaluate some average properties like its distribution.

Recall that in Quantum Mechanics the energy levels of a system are the eigenval-
ues of the Hamiltonian (an Hermitian operator) in an infinite dimensional Hilbert space.
Usually we approximate the problem by a large but finite dimensional space, choose a
basis and solve the equation

HΨi = EiΨi,

where Ei are the energy levels and Ψi are the eigenfunctions (wave functions). Since the
entries of H are random variables, due to the random nature of the interactions and the
symmetry properties of the problem, Wigner proposed that the statistical distribution of
the energy levels is identical to the distribution of the eigenvalues of a random matrix
(MEHTA, 2004). In fact, the behaviour observed experimentally suggested a distribution
of levels given by

ρ(s)ds = cβ sβ e−αs2
ds,

where cβ is the normalization constant and the so-called Dyson index β ∈ {1,2,4} is
determined by nucleus symmetries. Such distribution is the same that appears for the
eigenvalues of random matrix ensembles. Later, Monte Carlo analysis carried out by Porter
and Rosenzweig (1960) corroborated Wigner hypothesis.

2.3 Semicircle law

In this section we explore one universality distribution law for eigenvalues.

We start with a random selfadjoint matrix M = (mi j)
n
i, j=1. One could take, for

example, mi j ∈ {1,−1} being independent and identically distributed entries. The main
question is how the eigenvalues behave as n→∞. With a normalization by 1√

n , the elements
of our space of matrices can be computed explicitly for n small. Some of the matrices
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obtained for n = 1,2 are listed below.

Dimension Matrices Eigenvalues Probability

n = 1 (1) +1 1/2

(−1) −1 1/2

n = 2
1√
2

(
1 1
1 1

)
0,
√

2 1/8

1√
2

(
1 −1
−1 1

)
0,
√

2 1/8

· · · · · · · · ·
1√
2

(
1 1
1 −1

)
1,−1 1/8

For each fixed n one can construct 2
n(n+1)

2 matrices satisfying the conditions above.
As the dimension of the matrices increases, the behaviour of the eigenvalues becomes more
regular, see Figures 2-4.

Figure 2 – Histogram for eigenvalues of two 20×20 random matrices with entries mi j ∈ {−1,1}.

Source: Elaborated by the author.

Figure 3 – Histogram for eigenvalues of two 200×200 random matrices with entries mi j ∈{−1,1}.

Source: Elaborated by the author.
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Figure 4 – Histogram for eigenvalues of two 2000× 2000 random matrices with entries mi j ∈
{−1,1}.

Source: Elaborated by the author.

The limit behaviour that one can observe in Figures 2, 3 and 4 turns out to be the
Wigner’s semicircle law (GINIBRE, 1965). That is, in the appropriate sense

{number of eigenvalues in [a,b]}
n

n→∞−→ 1
2π

ˆ b

a
χ[−2,2](x)

√
4− x2 dx. (2.5)

One of the most interesting properties of the Wigner semicircle distribution µW (x)dx=
1

2π χ[−2,2]
√

4− x2 dx is its universality. The convergence above holds in much more general
conditions. One could take {mi j}n

i, j=1 with independent and identically distributed entries
with any “reasonable” distribution and the distribution still converges to the semicircle
distribution (TAO; VU, 2010).

Figure 5 – The Semicircle Distribution.

Source: Elaborated by the author.

Take, for example, mi j ∈ {1,2,3,4,5,6} independent identically distributed entries.
The eigenvalues of a computational simulation of a 500× 500 matrix in such conditions
returns the distribution shown in Figure 6a. Notice that we have some eigenvalues near
80. Those are known as atypical eigenvalues.
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Figure 6 – Histogram of eigenvalues for a 500 × 500 random matrix with entries mi j ∈
{1,2,3,4,5,6}.

(a) With atypical eigenvalues. (b) Without atypical eigenvalues.

Source: Elaborated by the author.

Throwing away the atypical eigenvalues one obtains, once again, the semicircle
distribution except for a normalization factor, as shown in Figure 6b. An interesting fact
about the semicircle distribution is that its moments are well known by means of the
Catalan numbers.

Definition 1. The Catalan numbers are a sequence {Ck}k∈N defined by

Ck =
1

k+1

(
2k
k

)
. (2.6)

Some algebraic manipulation leads to the following result:

Theorem 1. The moments of the semicircle distribution are given by

1
2π

ˆ 2

−2
xn
√

4− x2 dx =

{
0, n odd,
Ck, n = 2k.

2.4 Marchenko Pastur Distribution
The first appearance of random matrices in statistics is due to Wishart (1928).

Let M be a rectangular matrix of dimension n× p, that is, M = (mi j)i, j for 1 ≤ i ≤ n and
1 ≤ j ≤ p. We also require that the rows Mi := (mi j)1≤ j≤p are independent identically
distributed random vectors with real entries and multivariate normal distribution,

N(0,V )(Mi) = ce−
1
2 trMiV−1MT

i

p

∏
j=1

dmi j,

where V is the covariance matrix and c > 0 is the normalization constant. This model
known as the Wishart random matrix model. The first studies on Wishart matrices con-
cerned the behaviour of the p× p correlation matrix X = (xi j)1≤i, j≤p given by

X := MT M.
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Notice that such matrix is symmetric, i.e., xi j = x ji. It was found that the joint
probability density of the p(p+1)/2 elements xi j for i ≤ j is given by the Wishart distri-
bution

ρ(X)dX =
(detX)

n−p−1
2

2
np
2 (detV )

n
2 Γ
(n

2

) e−
1
2 trV−1X dX , (2.7)

where dX =∏n
i=1 dxii ∏i< j dxi j. The dimension n of the matrix M is called degree of freedom.

Taking p = 1 we obtain the distribution in Figure 7.

Figure 7 – Wishart distribution.

Source: Elaborated by the author.

Later, Marchenko and Pastur (1967) studied what happens to the n×n matrix

Y :=
1
p

MMT ,

as n grows, if one takes the entries mi j as independent identically distributed random
variables with normal distribution N(0,σ2). They concluded that if the ratio n

p = u <

∞ is fixed then the eigenvalue distribution converges to a function proportional to the
Marchenko-Pastur distribution.

In fact, set

dµMP(y) :=
1

2πσ2

√
(u+− y)(y−u−)

uy
dy, (2.8)

the Marchenko Pastur distribution, where u± = σ2(1±
√

u)2. The limit distribution of
eigenvalues of the matrix Y is given by

dρ(y) =

{ (
1− 1

u

)
δ (y)dy+dµMP(y), u > 1,

dµMP(y), 0 ≤ u ≤ 1.
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Figure 8 – Marchenko Pastur distribution.

Source: Elaborated by the author.

2.5 Big data
An important subfield of artificial intelligence is the one of automatic data pro-

cessing, known as machine learning. Given a learning task and a set of data, the machine
learning can extract the important information without new instructions.

The construction of such algorithms deals with massive amounts of data. For
example, in order to train the machine into recognizing a car, lots of samples of car
images are used to “teach” the pattern. It is not an easy task, since the machine is not
able to “see” forms but just measure the distance of the values in each matrix entry
corresponding to a pixel.

Therefore, thanks to big data a machine can classify images, identify objects and
recognize faces and speeches. However, there are two problems with the big data approach.
At first, the access to data in certain areas is not enough to the training process. Moreover,
large samples of data come with a big computational cost.

In order to find more efficient approaches it is essential to understand the process
better. Since learning algorithms are non-linear, when dealing with large dimension data
unique challenges show up. For example, as the dimension of data grows the phenomenon
of concentration of distances appears, i.e., the distance between the input vectors becomes
indistinguishable, and since learning algorithms rely on geometric proximity of the data
the results become unpredictable (MAI, 2019).

The learning outcomes are random vectors which depend on the input data, and
this is the moment when the importance of random matrix theory shows up. Given the
distribution of the input vectors, the data sample can be interpreted as a random matrix
whose rows are given by such vectors.
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Therefore, the classical results for random matrices apply. For example, suppose
that both the number of vectors n and their length p grows at the same rate, i.e., n

p = u<∞.
If the input vectors possess multivariate normal distribution, then the density distribution
of eigenvalues of the covariance matrix converges to the Marchenko-Pastur distribution
(see section 2.4).

2.6 Point Process
A point process can be seen as a set of random points in R.

The term point process can refer either to the set of random points or to the
probability measure associated to such set. We call each enumerable subset of R with no
accumulation points that constitutes the point process a configuration. If

P(#X = n) = 1,

we call the process a n-point process. In particular, a stochastic process defined in Rn

induces a n-point process in R.

In this new formulation, the expectation of the random variable N(A), defined as
the number of points of the process belonging to a certain set A ⊂ R, is given by

E(N(A)) =
ˆ

A
ρ1(x)dx, (2.9)

where ρ1 is the one-point correlation function. Analogously, one can define a n-th corre-
lation function for a n-point process.

When the n-point process is induced by a joint probability density P in Rn, the
k-th correlation function is given by

ρk(x1, · · · ,xk) :=
n!

(n− k)!

ˆ
R
· · ·
ˆ
R

P(x1, · · · ,xn)dxk+1 · · ·dxn. (2.10)

2.6.1 Determinantal Point Process

Definition 2. A kernel is a Borel-measurable function K : X ×X → C such that

||K|| := sup
(x1,x2)∈X×X

|K(x1,x2)|< ∞.

A special case of point process occurs when the correlation function can be ex-
pressed as the determinant of a kernel,

ρn(x1, · · · ,xn) = det[K(xi,x j)]
n
i, j=1, (2.11)
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where K is the correlation kernel and the matrix is explicitly given by

[K(xi,x j)]
n
i, j=1 =


K(x1,x1) K(x1,x2) · · · K(x1,xn)

K(x2,x1) K(x2,x2) · · · K(x2,xn)
... ... . . . ...

K(xn,x1) K(xn,x2) · · · K(xn,xn)

 .

Definition 3. A sequence of polynomials {p j(x)}n
j=1, p j : R→R, deg p j = j and positive

leading coefficients is said to be a set of orthogonal polynomials with respect to the weight
w(x) if, for every 1 ≤ i, j ≤ n,

ˆ
R

pi(x)p j(x)w(x)dx = δi, j =

{
1, if i = j,

0, if i 6= j.

The orthogonal polynomials kernel, also known as Christoffel-Darboux kernel, is
given by

Kn(xi,x j) :=
√

w(xi)w(x j)
n−1

∑
k=0

pk(xi)pk(x j).

Now, let Hn denote the space of hermitian matrices of size n× n and define a
measure

dµ = f (M)dM,

where dM = ∏n
i=0 dReMii ∏i< j dReMi j dImMi j is a Lebesgue measure and f (M) is a density

function invariant by unitary transformations, that is, dµ defines an unitary ensemble
(see section 2.8). The eigenvalues under such ensemble constitute a determinantal point
process with a Christoffel-Darboux kernel. Moreover, the distribution on the space of
eigenvalues induced by the distribution over the space of matrices can be related to the
latter by the Weyl integration formula.

Theorem 2. Let f : Hn → C be a class function, that is, a function invariant by unitary
transformation. Then,ˆ

Hn

f (M)dM = cn

ˆ
Rn

f (λ1, · · · ,λn)∏
i< j

(λ j −λi)
2 dλ1 · · ·dλn, (2.12)

where
cn =

πn(n−1)/2

∏n
j=1 j!

(2.13)

For a proof of such result, see Anderson, Guionnet and Zeitouni (2010).

2.6.2 Dyson bridges
The problem of the non-intersecting Brownian bridges, also known as Dyson

bridges due to the works of Dyson (1962), deals with the construction of n Brown-
ian bridges Xi(t), starting at X1(0) = · · · = Xn(0) = a and such that for some T > 0,
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X1(T ) = · · · = Xn(T ) = b. Moreover, we require that their paths do not intersect for any
t ∈ (0,T ). Such construction can be obtained from random matrices.

We start with a result about the joint probability distribution of n bridges.

Theorem 3 ((KARLIN; MCGREGOR, 1959)). Take n independent copies X1(t),X2(t), · · · ,Xn(t)

of an unidimensional and continuous Markov process such that

X j(0) = a j,

where a1 < a2 < · · ·< an. Let pt(x,y) be the density of the probability and E1, · · · ,En Borel
sets with supE j < infE j+1 for j = 1, · · · ,n−1. Then,

ˆ
En

· · ·
ˆ

E1

det[pt(ai,x j)]i, j=1 dx1 · · ·dxn

is the probability that such paths do not intersect on the interval [0, t] and X j(t) ∈ E j.

We start adding the condition that for a T > 0,

X j(T ) = b j,

where b1 < · · · < bn. The non-intersection condition is now extended to the set [0,T ]. In
each time step t, the joint probability distribution of the n paths is given by

1
Zn

det[pt(ai,x j)]
n
i, j=1 det[pT−t(xi,b j)]

n
i, j=1,

where Zn is the normalization constant. Since we want Brownian bridges, the transition
density is Gaussian, and therefore is given by

pt(x1,x2) =
1√
2πt

e−
(x2−x1)

2

2t .

We take the limit ai → a, bi → b (for a more general case where not all bi converge
to the same point we refer to Adler et al. (2011)). But then we have a 0/0 limit and the
L’Hopital rule can be applied. Therefore, the first determinant becomes

det[pt(a,x j)]
n
i, j=1 = cdet[xi−1

j ]ni, j=1

n

∏
j=1

e−
(x2

j−2ax j)
2t ,

for some c > 0. Analogously,

det[pT−t(xi,b)]ni, j=1 = c′ det[xi−1
j ]ni, j=1

n

∏
j=1

e−
(x2

j−2bx j)
2(T−t) ,

for a constant c′ > 0. Thus, in the particular case where a = b = 0,

det[pt(a,x j)]
n
i, j=1 det[pT−t(xi,b)]ni, j=1 =C∏

i< j
(x j − xi)

2
n

∏
j=1

e−
T x2

j
2t(T−t) ,
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and by the Weyl integration formula, Equation 2.12, it is equivalent to the distribution
of eigenvalues induced by a probability measure over the space of hermitian matrices.
Our problem is then reduced to the evaluation of the eigenvalues of such matrices. The
algorithm is the following

1. Set 0 < t1 < · · ·< tn < 1 a partition of the interval [0,1].

2. Construct a matrix of dimension k.

3. Set the diagonal entries of the matrix to be random variables with Gaussian distri-
bution, mean µ = 0 and variance σ2 = 2ti(1− ti).

4. Set each non-diagonal entry to be X + iY where both X ,Y are random variables with
Gaussian distribution, mean µ = 0 and variance σ2 = ti(1− ti).

5. Evaluate the eigenvalues and save in a ordered list.

6. For each ti, repeat steps 2 to 5.

7. Obtain n lists of k elements each and the linear interpolation between the i-th
elements of the lists for each 1 ≤ i ≤ n converges to the Brownian bridges desired.

Figure 9 – A hundred non-intersecting Brownian bridges.

Source: Elaborated by the author.

2.6.3 Quantum chaos

The Brownian bridges appear naturally in some physical problems. The experi-
ments of Berry and Tabor (1977) were the first to corroborate with the idea that random
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matrices can describe the statistics of the energy levels in quantum chaos. The charac-
terization of quantum spectra by means of random matrices was conjectured by Bohigas,
Giannoni and Schmit (1984).

Start with a billiard game where a particle is constrained into a two-dimensional
shape. Suppose that the particle is free and, once it reaches the boundary, it is reflected
(see Figure 10). We also require our particle to be in the quantum regime.

Figure 10 – A particle in an ellipse.

Source: Elaborated by the author.

Figure 11 – Sinai’s billiard.

Source: Elaborated by the author.

Since the particle is in the quantum regime, its behaviour is described by the
eigenfunctions of the Schrödinger operator in dimension 2 (for a nice introduction into
the quantum mechanics universe, we recommend Griffiths (1994)).

To clarify some concepts, consider the simplest case of the Schrödinger operator.
Take a free particle in a box of length L and solve the Schrödinger equation

ψ̈(x) =−2mE
h̄2 ψ(x),

with Dirichlet condition ψ(0) = ψ(L) = 0. The eigenfunctions are given by trigonometric
functions. Notice that such solutions possess zeros (node points) as in Figure 12.

Figure 12 – The node points of the first eigenfunctions.

Source: Elaborated by the author.

When dealing with a two-dimensional problem we have a generalization of nodal
points called nodal lines. The nodal lines are the curves where some characteristic such as
velocity does not oscillate. The Uhlenbeck’s Theorem says that the nodal lines of a generic
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wave function do not intersect. Moreover, their relevant statistical characteristics can be
obtained from random matrix ensembles. In the particular case of a Sinai billiard (Fig-
ure 11), the nodal lines are described by non-intersecting Brownian paths (MONASTRA;
SMILANSKY; GNUTZMANN, 2003).

2.7 Some general results
This Section contains a list of general results that will be useful throughout the

present work.

2.7.1 Gap probability
In the context of point process the correlation function gives us the expectation

of the number of points belonging to a certain set. But one can be interested in the
probability that no point belongs to such set. This concept is known as gap probability.

Before going into the details of the formula of the gap probability, we prove a
general result for expectations in point processes.

Theorem 4. Given a determinantal point process with correlation kernel K and a mea-
surable function f defined on a Borel set A ⊂ R, one has

E

[
∏
x∈X

(1+ f (x))

]
= 1+

∞

∑
n=1

1
n!

ˆ
An

det[K(xi,x j) f (x j)]
n
i, j=1 dx1 · · ·dxn. (2.14)

The proof is quite simple. Denote by {xi}i∈I the set of points of the configuration
X . Recall that a configuration is enumerable, therefore I ⊂ N. We start expanding the
product ∏i∈I(1+ f (xi)). A direct calculation implies that

∏
i∈I

(1+ f (xi)) = 1+∑
i

f (xi)+
1
2! ∑

i 6= j
f (xi) f (x j)+

1
3! ∑

i 6= j 6=k
f (xi) f (x j) f (xk)+ · · ·

=
∞

∑
n=0

1
n! ∑

n

∏
j=1

f (x j),

where the inner sum is taken over all the sets of n distinct elements. Therefore,

E

[
∏
i∈I

(1+ f (xi))

]
= 1+

∞

∑
n=1

1
n!
E

[
∑

n

∏
j=1

f (x j)

]

= 1+
∞

∑
n=1

1
n!

ˆ
An

[
n

∏
j=1

f (x j)

]
ρn(x1, · · · ,xn)dx1 · · ·dxn

= 1+
∞

∑
n=1

1
n!

ˆ
An

[
n

∏
j=1

f (x j)

]
det[Kn(xi,x j)]

n
i, j=1 dx1 · · ·dxn

= 1+
∞

∑
n=1

1
n!

ˆ
An

det[Kn(xi,x j) f (x j)]
n
i, j=1 dx1 · · ·dxn,
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where the first equality follows from the linearity of the expectation, the second one follows
from Equation (2.10) and the third one comes from Equation (2.11). �

Now, the gap probability is equivalent to the special case where f (x) =−χA. There-
fore,

P(there is no point of X in A) = 1+
∞

∑
n=1

(−1)n

n!

ˆ
An

det[K(xi,x j)]
n
i, j=1 dx1 · · ·dxn. (2.15)

The right-hand side side of Equation (2.15) is known in functional analysis as a
Fredholm determinant and is denoted by

det[1−K]|An := 1+
∞

∑
n=1

(−1)n

n!

ˆ
An

det[K(xi,x j)]
n
i, j=1 dx1 · · ·dxn, (2.16)

is the generalization of the determinant of a finite dimentional linear operator (see (SI-
MON, 2005)).

2.7.2 Gaussian Measure
The general Gaussian measure on the real line R with mean µ and variance σ2

has a probability density function given by

ρ(x)dx =
1√

2πσ
e−

(x−µ)2

2σ2 dx. (2.17)

In order to construct a Gaussian measure in higher dimensions, say Rn, we need
another characterization.

Definition 4. A measure µ on Rn is a Gaussian measure if its characteristic function,
i.e., its Fourier transform, is given by

ϕ(t) =
ˆ
Rn

ei(t,x) dµ(x) = ei(m,t)− 1
2 (Ct,t),

where C = (ci j)
n
i, j=1 is a non-negative and non-degenerate matrix of quadratic form called

covariance matrix and m is the mean vector.

Taking the mean vector m = 0 one obtains that

ϕ(t) = e−
1
2 (Ct,t),

and, consequently, the Gaussian measure is given by

dµ(x) =
(detB)1/2

(2π)n/2 e−
1
2 (x,Bx) dx, (2.18)

where B = C−1 and x := (x1,x2, · · · ,xn). It means that in order to construct a Gaussian
measure over a space isomorphic to Rn, we just need to obtain the matrix B from a
non-degenerate quadratic form. Such construction will be useful in section 3.1, where we
construct a Gaussian measure over a space of matrices. Also notice that the expectation
with respect to this Gaussian measure is given by 〈xi〉= 0 and 〈xix j〉= ci j.
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2.7.3 Wick formula
The goal in this subsection is to present a formula that allows us to apply the

results 〈xi〉 = 0 and 〈xix j〉 = ci j from previous section to evaluate the expectation with
respect to the Gaussian measure of much more complicated products.

At first, notice that since 〈x〉 = 0 and any odd degree monomial can be reduced
by integration by parts to a monomial of degree 1, 〈xn〉 = 0 for all odd n. Wick formula
will allow us to deal with the monomials of even degree. We define the Wick couplings
as the possible pairings (p1,q1),(p2,q2), · · · ,(pk,qk) of the indices 1,2, · · · ,2k such that
p1 < p2 < · · ·< pk and p1 < q1, · · · , pk < qk.

Theorem 5 (Wick Theorem). Let { fi}2k
i=1 be a set of linear functions of x1, · · · ,xn, then

〈 f1 · · · fn〉= ∑〈 fp1 fq1〉〈 fp2 fq2〉 · · · 〈 fpk fqk〉

where the sum is over all the (2k−1)!! = (2k−1)×·· ·3×1 Wick couplings.

Example: To illustrate the use of such result, take the Gaussian standard measure on
the real line and apply Wick formula to 〈x4〉. In the notation of Theorem 5,

f1 = f2 = f3 = f4 = x.

Therefore,

〈 f1 f2 f3 f4〉= 〈 f1 f2〉〈 f3 f4〉+ 〈 f1 f3〉〈 f2 f4〉+ 〈 f1 f4〉〈 f2 f3〉

= 3〈x2〉〈x2〉= 3,

and we conclude that 〈x4〉= 3.

2.7.4 Heine formula
A classical result in Determinantal Point Process is the so-called Andréev identity.

Theorem 6 (Andréev identity). Given a measurable space (X ,µ) and fi,gi ∈ L2(X ,µ),
1 ≤ i, j ≤ n, we have

ˆ
X
· · ·
ˆ

X
det

1≤i, j≤n
( fi(x j)) det

1≤i, j≤n
(gi(x j))dµ(x1) · · ·dµ(xn) =

n! det
1≤i, j≤n

(ˆ
X

fi(x)g j(x)dµ(x)
)
.

A special case of Theorem 6 is when one has a positive Borel measure dµ on the
complex plane such that its absolute moments converge, i.e.,

ˆ
X
|z|i dµ(z)< ∞ for every i = 0,1,2, · · · .
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Thus, setting fi(z) = zi and gi(z) = z̄i, Andréev identity says that

det
0≤i, j≤n−1

(ˆ
X

ziz̄ j dµ(z)
)
=

1
n!

ˆ
X
· · ·
ˆ

X
∆(z)∆(z̄)dµ(z1) · · ·dµ(zn), (2.19)

where ∆(z) = ∏i< j(z j − zi). Equation (2.19) is known as Heine formula, and will be
useful in Chapter 5.

Proof of Theorem 6: The idea is to prove that Fubini Theorem and apply it to obtain
a proof by induction.

Laplace expansion allow us to write

det
1≤i, j≤n

( fi(x j)) =
n

∑
i=1

(−1)i+1 fi(x1) det
ℓ6=i,m 6=1

( fℓ(xm))

det
1≤i, j≤n

(gi(x j)) =
n

∑
i=1

(−1)i+1gi(x1) det
ℓ6=i,m 6=1

(gℓ(xm)).

Therefore,

I =
ˆ

X
· · ·
ˆ

X
| det

1≤i, j≤n
( fi(x j)) det

1≤i, j≤n
(gi(x j))|dµ(x1) · · ·dµ(xn)

=

ˆ
X
· · ·
ˆ

X

∣∣∣∣∣
(

n

∑
i=1

(−1)i+1 fi(x1) det
ℓ6=i,m 6=1

( fℓ(xm))

)(
n

∑
i=1

(−1)i+1gi(x1) det
ℓ6=i,m6=1

(gℓ(xm))

)∣∣∣∣∣×
dµ(x1) · · ·dµ(xn)

=

ˆ
X
· · ·
ˆ

X

∣∣∣∣∣ n

∑
i, j=1

(−1)i+ j+2 fi(x1)g j(x1) det
ℓ6=i,m 6=1

( fℓ(xm)) det
ℓ6= j,m6=1

(gℓ(xm))

∣∣∣∣∣dµ(x1) · · ·dµ(xn)

≤
ˆ

X
· · ·

n

∑
i, j=1

∣∣∣∣ det
ℓ6=i,m 6=1

( fℓ(xm)) det
ℓ6= j,m 6=1

(gℓ(xm))

∣∣∣∣(ˆ
X

∣∣ fi(x1)g j(x1)
∣∣dµ(x1)

)
· · ·dµ(xn).

But since fi,g j ∈ L2(X ,µ), by Hölder inequality the integral in parentheses con-
verges,

Ii j :=
ˆ

X

∣∣ fi(x1)g j(x1)
∣∣dµ(x1)≤

(ˆ
X
| fi(x1)|2 dµ(x1)

)1/2(ˆ
X

∣∣g j(x1)
∣∣2 dµ(x1)

)1/2

< ∞.

Therefore, we are left withˆ
X
· · ·

n

∑
i, j=1

Ii j

ˆ
X

∣∣∣∣ det
i2 6=i, j2 6=1

( fi2(x j2)) det
i2 6= j, j2 6=1

(gi2(x j2))

∣∣∣∣dµ(x2) · · ·dµ(xn),

where the indices ℓ,m were replaced by i2, j2 respectively. Such expression is analogous
to our initial equation, and therefore the Laplace expansion can be applied once again in
order to isolate the x2-dependent terms. Thus,

I ≤
ˆ

X
· · ·

n

∑
i, j=1

Ii j

ˆ
X

∣∣∣∣ det
i2 6=i, j2 6=1

( fi2(x j2)) det
i2 6= j, j2 6=1

(gi2(x j2))

∣∣∣∣dµ(x2) · · ·dµ(xn),
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and since

det
1≤i2, j2≤n,i2 6=i, j2 6=1

( fi2(x j2)) =
n

∑
i2=1,i2 6=i

(−1)i2+2 fi2(x2) det
ℓ6={i2,i},m 6={2,1}

( fℓ(xm))

det
1≤i2, j2≤n,i2 6= j, j2 6=1

(gi2(x j2)) =
n

∑
i2=1,i2 6=i

(−1)i2+2gi2(x2) det
ℓ6={i2,i},m 6={2,1}

(gℓ(xm)),

it follows that,

I ≤
ˆ

X
· · ·

n

∑
i, j=1

Ii j

ˆ
X

∣∣∣∣∣
(

n

∑
i2=1,i2 6=i

(−1)i2+2 fi2(x2) det
ℓ6={i2,i},m 6={2,1}

( fℓ(xm))

)
×(

n

∑
i2=1,i2 6=i

(−1)i2+2gi2(x2) det
ℓ6={i2,i},m6={2,1}

(gℓ(xm))

)∣∣∣∣∣dµ(x2) · · ·dµ(xn)

=

ˆ
X
· · ·
ˆ

X

n

∑
i, j=1

Ii j

ˆ
X

∣∣∣∣∣ n

∑
i2 6=i, j2 6= j

(−1)i2+ j2+2 fi2(x2)g j2(x2) det
ℓ6=i2,m 6=1

( fℓ(xm))×

det
ℓ6= j2,m 6=1

(gℓ(xm))

∣∣∣∣dµ(x2) · · ·dµ(xn)

≤
ˆ

X
· · ·
ˆ

X

n

∑
i, j=1

Ii j

n

∑
i2 6=i, j2 6= j

∣∣∣∣ det
ℓ6=i2,m6=1

( fℓ(xm)) det
ℓ6= j2,m 6=1

(gℓ(xm))

∣∣∣∣×(ˆ
X

∣∣ fi2(x2)g j2(x2)
∣∣dµ(x2)

)
dµ(x3) · · ·dµ(xn).

Since fi2 ,g j2 ∈ L2(X ,µ), Hölder inequality guarantees the convergence of the inte-
gral in parentheses. Setting

Ii2 j2 :=
ˆ

X

∣∣ fi2(x2)g j2(x2)
∣∣dµ(x2),

one obtains

I ≤
ˆ

X
· · ·
ˆ

X

n

∑
i, j=1

Ii j

n

∑
i2 6=i, j2 6= j

Ii2 j2

ˆ
X

∣∣∣∣ det
i3 6={i,i2}, j2 6={1,2}

( fi2(x j2))×

det
i2 6={ j, j2}, j2 6={1,2}

(gi2(x j2))

∣∣∣∣dµ(x3) · · ·dµ(xn).

Recursively, we obtain that

I ≤
n

∑
i, j=1

(
Ii j ∑

i2 6=i, j2 6= j

(
Ii2 j2 ∑

i3 6={i,i2}, j3 6={ j, j2}
Ii3 j3 · · · ∑

in 6={i,i2,··· ,in−1}, jn=n
Iin jn

)
· · ·

)
< ∞,

because it is a finite sum of products of finite terms. Moreover, the product of measurable
functions with same domain is mensurable. Therefore det1≤i, j≤n( fi(x j))det1≤i, j≤n(gi(x j))∈
L1(Xn,µ(x1)×·· ·µ(xn)) and the Fubini Theorem can be applied.
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Now, we proceed by induction. If n = 1,ˆ
X

det( f1(x1))det(g1(x1))dµ(x1) =

ˆ
X

f1(x1)g1(x1)dµ(x1)

= 1!det
(ˆ

X
f1(x1)g1(x1)dµ(x1)

)
.

Suppose it holds for n. By the previous calculation, one can apply Fubini. There-
fore, ˆ

X
· · ·
ˆ

X
det

1≤i, j≤n+1
( fi(x j)) det

1≤i, j≤n+1
(gi(x j))dµ(x1) · · ·dµ(xn+1)

=

ˆ
X
· · ·
ˆ

X

(
n+1

∑
i=1

(−1)i+n+1 fi(xn+1) det
ℓ6=i,m≤n

( fℓ(xm))

)(
n+1

∑
i=1

(−1)i+n+1gi(xn+1)×

det
ℓ6=i,m≤n

(gℓ(xm))

)
dµ(xn+1)dµ(x1) · · ·dµ(xn)

=
n+1

∑
i, j=1

(−1)i+ j+2n+2
ˆ

X
· · ·
(ˆ

X
fi(xn+1)g j(xn+1)dµ(xn+1)

)
det

ℓ6=i,m≤n
( fℓ(xm))×

det
ℓ6= j,m≤n

(gℓ(xm))dµ(x1) · · ·dµ(xn)

=
n+1

∑
i, j=1

(−1)i+ j+2n+2
(ˆ

X
fi(xn+1)g j(xn+1)dµ(xn+1)

)
n! det

ℓ6=i,m 6= j

(ˆ
X

fℓ(x)gm(x)dµ(x)
)

=n!
n+1

∑
i, j=1

(−1)i+ j+2n+2
(ˆ

X
fi(xn+1)g j(xn+1)dµ(xn+1)

)
det

ℓ6=i,m 6= j

(ˆ
X

fℓ(x)gm(x)dµ(x)
)
,

and since for each fixed j the sum over i is the Laplace expansion of the desired determi-
nant, one hasˆ

X
· · ·
ˆ

X
det

1≤i, j≤n+1
( fi(x j)) det

1≤i, j≤n+1
(gi(x j))dµ(x1) · · ·dµ(xn+1) =

(n+1)! det
1≤i, j≤n+1

(ˆ
X

fi(x)g j(x)dµ(x)
)
,

and the identity is proved. �

2.8 What comes next
We have shortly discussed several applications of random matrix theory and pre-

sented some important mathematical tools. But before we move forward, it is time to
present an overview of the next steps and introduce some important objects that we will
be handling for the rest of the dissertation.

We start with some definitions on unitary random matrix models. Given V :C→C
a polynomial function,

V (x) =
n

∑
j=1

a jx j, (2.20)
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one can define the operator V (H), where H is a square matrix, by

V (H) :=
n

∑
j=1

a jH j. (2.21)

Since the product of matrices is well-defined, also is V (H). A general unitary
ensemble consists of the space Hn of n×n hermitian matrices with a probability density

ρ(H)dH :=
1

Zρ
e− trV (H) dH, (2.22)

where the function V is called potential, and is chosen such that the integral
ˆ
Hn

e− trV (H) dH (2.23)

converges, and dH = ∏n
i=0 dhii ∏i< j dRehi j dImhi j. The explicit construction of such mea-

sure will be carried out in section 3.1.

In particular, if one takes V : C→ C as x 7→ 1
2x2, the Gaussian Unitary Ensemble

(GUE) is obtained, with probability density given by

ρ(H) =
2(n

2−n)/2

(2π)n/2 e−
1
2 tr(H2) . (2.24)

Throughout Chapter 3, the measure given by Equation (2.24) will play an impor-
tant role. In section 3.2 we define g-maps as graphs embedded in compact bidimensional
surfaces of genus g and relate the enumeration of g-maps to the expectation with respect
to the Gaussian measure (2.24) of the trace in a random matrix ensemble.

This matrix model is called unitary because the measure defined above is invariant
under unitary transformations. From linear algebra, every hermitian matrix is diagonal-
izable under conjugacy by some unitary matrix, that is, given any matrix H there exists
a unitary matrix U and a diagonal matrix D = diag(λ1, · · · ,λn) such that

H =UDU∗,

where the choice of U is not unique. Such aspect of the model also indicates that many
useful statistics on the matrices should actually be dependent only on the underlying
eigenvalues.

Notice that the diagonalization of H allows us to express the potential V (H) as
V (λ1, · · · ,λn). Therefore, the Weyl formula (2.12) tells us that for any unitarily invariant
function f : Hn → C,

1
Zρ

ˆ
Hn

f (H)e− trV (H) dH =
1
Zn

ˆ
Rn

f (λ1, · · · ,λn)∏
i< j

(λ j −λi)
2

n

∏
j=1

e−V (λ j) dλ1 · · ·dλn.
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This means that the probability measure over the space of matrices induces a joint
probability density on the space of eigenvalues given by

1
Zn

∏
i< j

(λ j −λi)
2

n

∏
j=1

e−V (λ j) . (2.25)

The new constant Zn, known as partition function, is the great protagonist of
Chapter 4 and relates to the previous Zρ via

Zρ = Zn
πn(n−1)/2

∏n
j=1 j!

.

It also plays a role in section 5.2, where we relate it to a celebrated integrable
hierarchy, namely the KP hierarchy.

In Chapter 4 we will see that the partition function Zn, for large n, admits an
asymptotic expansion in inverse powers of n, with coefficients that are connected with
the map enumeration problem from Chapter 3. In order to obtain such expansion, we
will explore the relation between the partition function and the correlation function for
a kernel of orthogonal polynomials. Then, such expansion is achieved after some work on
the asymptotics for orthogonal polynomials with respect to the weight of the measure
generated by Zn. We now elaborate a little more on this approach.

As we just explained, the probability density ρ(H) on the matrix space induces the
probability density (2.25) on the space of eigenvalues. Furthermore, one can show that the
eigenvalues form a determinantal point process with a kernel that can be chosen to be the
Christoffel-Darboux kernel. Recall from subsection 2.6.1 that such kernel is build through
a set of polynomials {p j(x)}n

j=1 with leading coefficients γn > 0, which are orthogonal with
respect to the weight

w(x) := e−V (x) .

The expectation of a function of the eigenvalues is then given in terms of the one
point function (see Equation (2.10))

ρ1(λ ) = Kn(λ ,λ ) (2.26)

=
e−V (λ )

n

n−1

∑
k=0

p2
j(λ ). (2.27)

But, taking the logarithm derivative of the partition function, one obtains the
expectation of the trace in a random matrix model, and since the expectation is evalu-
ated through the one point function, one obtains a relation between ρ1(λ ) and Zn (see
section 4.2).

Equation (2.27) has two important consequences. First of all, the asymptotic ex-
pansion claimed for the partition function can be achieved through the asymptotic ex-
pansion for a set of orthogonal polynomials. This asymptotic analysis takes most of this
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dissertation, and it is also the part that we devote the most mathematical energy to fill
out all the details in section 4.3. We take the route of the characterization of orthogonal
polynomials by means of a Riemann-Hilbert problem found by Fokas, Its and Kitaev in
1993 and improved by the asymptotic techniques developed by Deift and Zhou. In this
context, our major mathematical effort will be in explaining the Riemann-Hilbert method
in the context of orthogonal polynomials. Once the asymptotics for pn is obtained, the
asymptotics for the one point function is accomplished in details in section 4.4 and we
conclude the asymptotic expansion for the partition function.

Second, in virtue of (2.27) statistics of eigenvalues of large random matrices can
be studied through asymptotic formulas of Kn for large n. This means that all we need
to understand eigenvalues is reduced to orthogonal polynomials of large degree. This
conclusion leads us to the core of section 5.3, where we will see that given the right
normalization, the distribution of the eigenvalues converges weakly in probability to the
equilibrium measure defined in subsection 4.3.1. Moreover, in subsection 5.3.2 it is shown
that after rescaling the kernel, the behaviour of the eigenvalues near a edge point of the
support of the equilibrium measure is given by the Airy kernel

Ai(x)Ai′(y)−Ai′(x)Ai(y)
x− y

.

On the other hand, an analogous analysis in subsection 5.3.1 shows that the be-
haviour of the eigenvalues in the bulk of the support of the equilibrium measure after
rescaling is given by the Sine kernel

sin [π(x− y)]
π(x− y)

.

The gap probabilities resulting from the Airy kernel and the Sine kernel will lead
to connections with the Painlevé II and the Painlevé V, respectively. At last, we discuss
briefly a limiting kernel related to the PXXXIV, which brings us to another connection
with integrable systems and also motivates further work.

Finally, we bring an appendix with some Python codes developed throughout the
present work, in order to allow the reader to play a little with some famous distributions
and build the Dyson bridges presented in subsection 2.6.2.
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CHAPTER

3
MAP ENUMERATION

In the present chapter we explore the bridge between map enumeration and random
matrices in an attempt to justify our interest in evaluating the expectation of the trace in
a random matrix ensemble. Instead of rigorous proofs, we focus on examples and explore
the geometric intuition in order to clarify the main ideas behind such connections.

3.1 Space of Hermitian Matrices

Let Hn the space of the n×n random selfadjoint complex matrices, that is,

H =


h11 h12 · · · h1n

h21 h22 · · · h2n
... ... . . . ...

hn1 hn2 · · · hnn

=


h̄11 h̄21 · · · h̄n1

h̄12 h̄22 · · · h̄n2
... ... . . . ...

h̄1n h̄2n · · · h̄nn

= H†.

Therefore, the entries of the diagonal are real random variables and h̄i j = h ji for
every i 6= j. As a consequence, H can be identified with the n2 vector

(h11,h22, · · · ,hnn,Reh12, Imh12,Reh13, Imh13 · · ·),

and Hn is isomorphic to Rn2 . Such isomorphism suggests a natural Lebesgue measure in
Hn given by

dH =
n

∏
i=0

dxii ∏
i< j

dxi j dyi j, (3.1)

where xi j = Rehi j and yi j = Imhi j. We want to introduce a Gaussian density as in subsec-
tion 2.7.2. By Equation (2.18) all we need to do is to specify the correlation matrix C.
Let us introduce a non-degenerate quadratic form. Take tr(H2). An explicitly calculation
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shows that

tr(H2) = tr



n

∑
j=1

h1 jh j1 ∗ ∗ · · ·

∗
n

∑
j=1

h2 jh j2 ∗ · · ·

∗ ∗
n

∑
j=1

h3 jh j3 · · ·

... ... ... . . .


=

n

∑
i=1

n

∑
j=1

hi jh ji.

Since hi j may be expressed as hi j = xi j + iyi j, we have

tr(H2) =
n

∑
i, j=1

hi jh ji

= x2
11 + x2

22 + · · ·+ x2
nn +2x2

12 +2y2
12 + x2

13 +2y2
13 +2x2

23 +2y2
23 + · · ·

= (x11 x22 · · · xnn x12 y12 · · ·)B



x11

x22
...

xnn

x12
...


.

Therefore B is a diagonal matrix with n terms equal to 1 and the rest of the
diagonal entries equal to 2. Consequently the covariance matrix C = B−1 is also diagonal
with the first n terms equal to 1 and the rest of them equal to 1

2 . The first consequence is
that

〈hi jh ji〉= 〈x2
i j〉+ 〈y2

i j〉= 1, 〈hi jhkl〉= 0 for all (k, l) 6= (i, j). (3.2)

Taking the determinant of B we obtain the following formula for the Gaussian
measure:

dµ =
2(n

2−n)/2

(2π)n/2 e−
1
2 tr(H2) dH. (3.3)

3.1.1 Expectation of the trace
As an application of the Wick formula introduced in subsection 2.7.3 we evaluate

the expectation of the trace in the Gaussian Unitary Ensemble with respect to the measure
in Equation (3.3). Since the trace is a polynomial of the terms hi j, we can apply Wick
formula. Take Hr for r ∈ N. If r = 2k+1 then every Wick coupling has the form

〈hi1i2hi2i3〉 · · · 〈hi2k−1i2khi2ki2k+1〉〈hi2k+1i1〉,

and since 〈hi2k+1i1〉= 0, it follows that

〈tr(H2k+1)〉= 0.
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Now take H2k, k ∈ N. Then

〈tr(H2k)〉= ∑〈hi1i2hi2i3〉 · · · 〈hi2k−1i2khi2ki1〉, (3.4)

where the sum is taken over all the n2k combinations of indices.

Example: Take k = 2. Therefore r = 2k = 4. Then we have n4 products of the form

hi1i2hi2i3hi3i4hi4i1 . (3.5)

The application of the Wick formula returns (r − 1)!! = 3!! = 3 possible Wick
couplings, given by

〈hi1i2hi4i1〉〈hi2i3hi3i4〉

〈hi1i2hi3i4〉〈hi2i3hi4i1〉

〈hi1i2hi2i3〉〈hi3i4hi4i1〉.

Taking the first Wick coupling,

〈hi1i2hi4i1〉〈hi2i3hi3i4〉, (3.6)

the Equation (3.2) implies that

〈hi1i2hi4i1〉= 1 ⇔ i1 = i1, i2 = i4

〈hi2i3hi3i4〉= 1 ⇔ i3 = i3, i2 = i4.

Thus, the coupling contribution is n3 because we have three free indices {i1, i2, i3}
each one varying from 1 to n. Taking another Wick coupling

〈hi1i2hi3i4〉〈hi2i3hi4i1〉, (3.7)

we obtain

〈hi1i2hi3i4〉= 1 ⇔ i1 = i4, i2 = i3

〈hi2i3hi4i1〉= 1 ⇔ i3 = i4, i2 = i1.

Therefore, i1 = i2 = i3 = i4 and the contribution of this pair is n, since it has only
one free index. Finally, taking

〈hi1i2hi2i3〉〈hi3i4hi4i1〉, (3.8)

we have,

〈hi1i2hi2i3〉= 1 ⇔ i1 = i2, i3 = i1,

〈hi3i4hi4i1〉= 1 ⇔ i4 = i4, i3 = i1,
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and the contribution of this pair is n3, since the only restriction over its indices is i1 = i3.
Thus,

〈tr(H4)〉= 〈hi1i2hi4i1〉〈hi2i3hi3i4〉+ 〈hi1i2hi3i4〉〈hi2i3hi4i1〉+ 〈hi1i2hi2i3〉〈hi3i4hi4i1〉

= 2n3 +n.

One question that naturally arises is how much we can predict about the coeffi-
cients of the powers of n after evaluate 〈tr(H2k)〉. In order to answer this question we
first normalize our Hermitian matrix mapping hi j 7→ 1√

nhi j as in section 2.3. Then, the
following result holds

Theorem 7 (Wigner semicircle law for GUE (GINIBRE, 1965)). For all k ∈ N,

lim
n→∞

1
n

〈
tr
(

1√
n

H
)2k
〉

=
1

2π

ˆ 2

−2
x2k
√

4− x2 dx =Ck,

where Ck are the Catalan numbers defined in section 2.3.

From the linearity of the expectation it follows that〈
tr
(

1√
n

H
)2k
〉

=
1
nk 〈trH2k〉,

and by Theorem 7,
〈trH2k〉=Cknk+1 +O

(
nk
)
.

Thus, the major contribution in the expansion of 〈trH2k〉 in powers of n has a
Catalan number as its coefficient.

3.2 Map enumeration
A graph is a set of objects that might be related somehow. Graphically they are

often represented by a set of points, called vertices, connected by lines, called edges. The
edges represent the relation between the objects.

A graph is said to be labelled if their vertices are distinguishable. We say that a
graph is rooted if one of its nodes, called root, is labelled in a special way. When the graph
is directed, that is, its edges points towards some direction, one can think of the root as
a starting point. We usually denote the root by a point inside a square.

Figure 13 – Examples of graphs, including a rooted one.

Source: Elaborated by the author.
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Graphs are allowed to have loops and multiple edges, but usually we require them
to be connected. We also deal with a specific type of surface, namely a compact oriented
bidimensional manifold with no boundary and genus g ≥ 0. Up to homeomorphism such
surfaces are uniquely determined by their genus. In this context, a well-known topological
anecdote says that a donut and a cup are the same, since they have the same genus, i.e.,
the same number of “holes” (see Figure 14).

Figure 14 – A donut and a cup.

Source: Elaborated by the author.

Now we are able to define a g-map.

Definition 5. A g-map is a graph embedded to a compact bidimensional surface of genus
g such that the edges do not intersect. Moreover, if one cuts along the edges the sets
obtained are homeomorphic to open disks. This sets are called faces.

In Figure ?? and Figure ?? the sets of graph and surface define a 0-map, but the
Figure ?? is not a 1-map. It occurs because if one cuts along the edges of the last graph a
cylinder like surface is obtained. But such a surface can not be homeomorphic to a disk.

Figure 15 – Two examples and a counterexample of g-maps.

Source: Elaborated by the author.
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Figure 16 – A cube embedded to a sphere, a torus and a bi-torus.

Source: Elaborated by the author.

Since the same pair of graph and surface can generate different g-maps (see ??)
and a graph can be embedded to different surfaces (see Figure 16), one may ask what
additional information we need to determine uniquely a g-map. The following proposition
gives the answer.

Proposition 1 ((EDMONDS, 1960)). Any given cyclic order of edges of a graph around
each vertex (chosen arbitrarily and independently at each vertex) determines uniquely
the embedding of the graph into a surface.

Despite we do not present a formal proof, we give a geometric construction that
shows how to recover the map given a cyclic order of the edges around each vertex. Such
a construction also allow us to find all the possible g-maps given a graph.

At first, we represent an edge as a two-way street. The resulting object is called
ribbon graph. We choose the cyclic order to be counter-clockwise, that is, arriving to a
vertex by a street, the next edge to be travelled is the one on your right.

Figure 17 – A two-way street and a cyclic order around a vertex.

Source: Elaborated by the author.

The possible routes form a set of disjoint cycles, which corresponds to the faces
in the definition of a g-map. The boundary of these faces is oriented clockwise. Gluing
their sides such that the arrows glued point towards opposite directions, one recovers the
g-map.

Notice that if the degree of a vertex v is denoted by dv, the number of cyclic orders
allowed at each vertex is (dv − 1)! and therefore the total number of possible g-maps is
∏(dv −1)!, where the product is taken over all the vertices.
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Example: Let us start with the graph in Figure 18.

Figure 18 – A graph and its ribbon graph.
a

b

c

a

b

c
Source: Elaborated by the author.

Around the vertex a there is only one possible cyclic order. Around the vertex c

the same holds. Thus the different g-maps comes from the possible different cyclic orders
of the vertices around b. By the previous discussion, since b has degree 3, the number
of maps is (3−1)! = 2. In order to construct them, notice that the only choice concerns
to the step after the loop: coming from, say a, will it return for the vertex it came from
or will it go to c once the loop is done? The two possible choices of cyclic orders are
represented in Figure 19.

Figure 19 – Choices of cyclic order around vertex b.

Source: Elaborated by the author.

Each of these cyclic order defines uniquely a 0-map. Take, for example, the left one
on Figure 19. The black arrows define a pentagon like shape and the gray arrow define
a disk like shape. The only way we can glue these two surfaces around the graph is as
shown in Figure 20.

Figure 20 – The resulting g-map.

Source: Elaborated by the author.

Analogously, the cyclic order on the right side of Figure 19 generate the 0-map in
Figure 21.
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Figure 21 – The other g-map.

Source: Elaborated by the author.

3.2.1 One face map

One way to construct all the possible labelled g-maps from a connected graph with
k edges is by a construction called one face map. In order to construct an one face map
we start with a polygon of 2k labelled vertices. After splitting the indices into pairs we
glue the corresponding sides two by two and obtain a g-map.

Given the first index we have 2k − 1 options for its pair. After this step there
are 2k − 2 indices left. Given another index, we have 2k − 3 options for its pair, and
so on, giving us a total of (2k − 1)!! possible maps, where the double factorial means
(2k−1)!! = (2k−1)× (2k−3)×·· ·×3×1. The objects obtained constitute the set of the
connected labelled g-maps with k edges.

The genus of an one face map is the greater number g ∈ N such that the graph
can be embedded to a surface of genus g. Euler equation tell us that

χ =V −E +F = 2−2g, (3.9)

where χ is the Euler characteristic, V is the number of vertices, E is the number of edges
and F is the number of faces. Since we have F = 1 and E = k, the number of vertices is
given by

V = 1−2g+ k. (3.10)

We know that V ≥ 1, thus g ≤ k/2. So we can express the sum of all maps indexed
by genus as

[k/2]

∑
g=0

εg = (2k−1)!!.

Example: Take k = 2. Our polygon is the square in Figure 22



3.2. Map enumeration 55

Figure 22 – A square with labelled vertices.

1 2

4 3

a

b

c

d

Source: Elaborated by the author.

We have a total of (4− 1)!! = 3× 1 = 3 different maps, obtained by the pairings
(ab)(cd), (ad)(bc) and (ac)(bd). The last one has genus 1, while the others have genus 0.

Figure 23 – Labelled g-maps for a square.

2, 42

4

1
3

1, 3

Source: Elaborated by the author.

In Figure 23 one has, from the left to the right, the resulting labelled g-maps for
the pairs (ad)(bc), (ac)(bd) and (ac)(bd) respectively. Observe that the number of maps
with genus 0 equals C2 = 2, a Catalan number. It is not just a coincidence but a well-know
result that

ε0(k) =Ck =
1

k+1

(
2k
k

)
.

3.2.2 Back to Wick couplings

Back to the example in subsection 3.1.1 one can see that the one face map approach
provides a geometric interpretation for the Wick couplings. The set of Wick couplings
equals the number of labelled maps with k edges. Recall that the possible Wick couplings
in that example were given by

〈hi1i2hi4i1〉〈hi2i3hi3i4〉

〈hi1i2hi3i4〉〈hi2i3hi4i1〉

〈hi1i2hi2i3〉〈hi3i4hi4i1〉.

The set of indices {i1, i2, i3, i4} can be geometrically represented by the vertices of
a square, and the Wick couplings above correspond to the three maps in Figure 23.
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Let us build one more example. Take k = 4. Then the trace is

tr(H2k) = ∑hi1i2hi2i3hi3i4hi4i5hi5i6hi6i7hi7i8hi8i1 ,

where the sum is taken over the n8 possible products. Applying Wick formula we obtain

〈tr(H2k)〉= ∑〈hi1i2hi2i3〉〈hi3i4hi4i5〉〈hi5i6hi6i7〉〈hi7i8hi8i1〉,

where the sum is now over the 7!! = 105 possible Wick couplings. Take, for example, the
coupling given by

〈hi1i2hi4i5〉〈hi2i3hi5i6〉〈hi3i4hi8i1〉〈hi6i7hi7i8〉.

It corresponds to the pairing (i1i2, i4i5)(i2i3, i5i6)(i3i4, i8i1)(i6i7, i7i8) of the sides of
a octagon, where i jik stands by the edge connecting the vertices i j and ik. The geometric
representation of such a pairing is given in Figure 24.

Figure 24 – Graph representation for a Wick coupling.

i1

i2
i3

i4

i6

i7

i8

i1 = i5 = i3i5

i2 = i4 = i6 = i7

i7

Source: Elaborated by the author.

Therefore, the indices restrictions are given by

i7,

i2 = i4 = i6 = i8,

i1 = i5 = i3,

and the respective one face map is given by the Figure 25.

Figure 25 – One face map for the Wick coupling.

Source: Elaborated by the author.
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The relation between Wick couplings and one face maps is formalized by the
following result:

Theorem 8 ((ZVONKIN, 1997)). Given k ∈ N and

〈tr(H2k)〉=
ˆ
Hn

tr(H2k)dµ,

where dµ is the Gaussian measure on the space of Hermitian matrices. Then

〈tr(H2k)〉=
[k/2]

∑
g=0

εg(k)nk+1−2g (3.11)

where εg(k) is the number of labelled g-maps with k edges.

The results of Theorem 8 can be extended to arbitrary products of matrices, lead-
ing to

〈
η

∏
j=1

(trH j)v j〉= ∑
g

ε ′gn2−2g+∑η
j=1( j/2−1)v j , (3.12)

where ε ′g equals the number of g-maps with v j j-valent vertices, where j = 1, · · · ,η . In fact,
for any j ∈ N we have

tr(H j) =
n

∑
i1,··· ,i j=1

mi1i2mi2i3 · · ·mi ji1

(tr(H j))v j = ∑mi11i21
mi21i31

· · ·mi j
1i11

mi12i22
mi22i32

· · ·mi j
v j i

1
v j
,

where the sum is over all the n jv j combinations. Thus,
η

∏
j=1

(tr(H j))v j =
η

∏
j=1

∑mi11i21
mi21i31

· · ·mi j
1i11

mi12i22
· · ·mi j

v j i
1
v j
,

and the resulting sum is over the n∑η
j=1 jv j combinations. We can apply the Wick formula to

the expectation of this new quantity. The contribution of each free index is n. The number
of free indices such that the coupling result is 1, given a genus g, equals the number of
faces F in the following geometric problem

〈
η

∏
j=1

(tr(H j))v j〉= ∑
g

#{g-map v j j-valent vertices}nF .

By Euler characteristic formula we have that the number of faces is given by

F = χ −V +E = 2−2g−V +E.

A simple calculation leads to

V =
η

∑
j=1

v j

E =
η

∑
j=1

jv j

2

⇒ nF = n2−2g+∑η
j=1(

j
2−1)v j ,

and, therefore, (3.12) holds.
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CHAPTER

4
THE PARTITION FUNCTION

In this chapter we start with a family of integrals Zn known as partition functions
in statistical mechanics. Our final goal is to relate the number of connected maps by genus
and the coefficients appearing in the asymptotic expansion of the logarithm of Zn.

Except for some classical results in equilibrium measures and conformal maps in
subsection 4.3.1, all of the remaining results are presented in full details.

Take the measure
ρ(H)dH :=

1
Zρ

e−n trV (H) dH, (4.1)

in the matrix space Hn. This is the same measure of section 2.8, except for a normalization
factor n. By the Weyl formula (2.12), Zρ = cnZn(t) where Zn(t) is the partition function
for this random matrix model. Take t = (t1, · · · , tm) and {t1, · · · , tm} real parameters and
define the potential V : R→ R as

V (λ ; t) =
1
2

λ 2 +
m

∑
k=1

tkλ k. (4.2)

Thus, V (H) =V (H; t) is defined by

V (H; t) =
1
2

M2 +
m

∑
k=1

tkMk. (4.3)

The partition function is given by

Zn(t) :=
ˆ
Rn

exp

{
−n2

[
1
n

n

∑
j=1

V (λ j; t)− 1
n2 ∑

j 6=l
log |λ j −λl|

]}
dλ , (4.4)

where the parameters {t1, · · · , tm} are such that the integral converges. Due to the loga-
rithm term in Equation (4.4), Zn(t) can be written as

Zn(t) =
ˆ
Rn

∏
j<l

(λ j −λl)
2 exp

{
−n

n

∑
j=1

V (λ j; t)

}
dλ . (4.5)
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The Weyl Theorem allows us to think about the partition function as the joint
probability density induced on the eigenvalues by an unitary ensemble.

As a consequence of this interpretation, asymptotic results for (4.4) provide infor-
mation concerning statistics of eigenvalues of random matrices. Moreover, Zn(t) can be
related to the expectation of the trace of a matrix. In order to illustrate how the rela-
tion between so different objects appears naturally when we differentiate Zn(t), take, for
instance, the case where ti = 0 ∀ i 6= 4 and t4 = t.

It allows us to relate Zn(t) to the counting of a specific type of map called diagram.
By definition, a diagram is a labelled 4-valent g-map. Set

Ẑn(t) :=
Zn(t)
Zn(0)

. (4.6)

By Weyl integration formula, Equation (2.12), one can express Ẑn(t) in terms of a
unitary ensemble for some matrix H with eigenvalues {λ j}n

j=1.

Ẑn(t) =
1

Zn(0)

ˆ
· · ·
ˆ

∏
j<l

(λ j −λl)
2 exp

{
−n

n

∑
j=1

(λ 2
j +λ 4

j t)

}
dλ

=
c0

Zn(0)

ˆ
· · ·
ˆ

exp
{
−n

2
tr(H2)−nt tr(H4)

}
dH,

where c0 > 0 is a real constant. Since by section 3.2 we know how to relate the number
of g-maps and the expectation of the trace of a matrix for a Gaussian Unitary Ensemble,
we change variables λ 7→ µ/

√
n in order to recover a Gaussian measure,

Ẑn(t) =
1
Z′

0

ˆ
· · ·
ˆ

exp
{
− t

n
tr(M4)

}
e−

1
2 tr(M2) dM

=
〈

exp
{
− t

n
tr(M4)

}〉
,

(4.7)

where {µi}n
i=1 are the eigenvalues of the new matrix M. Unfortunately the integral in

(4.7) is not one of explicit solution. Even if n = 1 we have convergence issues in any
neighbourhood of t = 0, because the expression diverges for negative values of t.

In order to simplify the calculations we begin by taking the Taylor series for the
exponential, which is given by

exp(x) =
∞

∑
k=0

xk

k!
. (4.8)

If we could exchange the sum and the integral, then

Ẑn(t) =

〈
∞

∑
k=0

(− t
n tr(H4))k

k!

〉
=

∞

∑
k=0

1
k!

(
−t
n

)k

〈(tr(H4))k〉. (4.9)

Since we know how the expected value of the trace relates to map enumeration by
Equation (3.11), if Equation (4.9) were to hold, one could relate the coefficients in the
asymptotic expansion of Ẑn to the number of g-maps with k 4-valent vertices.
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Fortunately, there exists a result that asserts the existence of a series expansion
for the logarithm of the partition function for a certain set of parameters. Define

T(T,γ) =

{
t ∈ R2m : |t| ≤ T, t2m > γ

2m−1

∑
j=1

|t j|

}
, (4.10)

where T > 0, γ > 0 are given constants. The following holds.

Theorem 9 ((ERCOLANI; MCLAUGHLIN, 2003)). There exist T > 0, γ > 0 such that
for every t ∈ T(T,γ) and n large enough the asymptotic expansion

log
(

Zn(t)
Zn(0)

)
∼ n2e0(t)+ e1(t)+

∞

∑
g=2

1
n2g−2 eg(t) (4.11)

is valid, where e j(t) is an analytic function of t for each j. Furthermore, the expansion
can be differentiated term-by-term.

Such expansion holds in the sense that if terms up to order n−2m are kept, the
error is bounded by kn−2m−2, where k is a constant which does not depends on t. Despite
an explicitly motivation was presented just for the quartic case, we are interested in the
proof of the general case. Such result is developed in the following sections.

4.1 Counting maps by partition function
Before going into the details of the proof, we explore the counting of g-maps in

terms of the coefficients in the expansion of the logarithm. In order to do so, assume
Theorem 9 holds, that is,

log
(

Zn(t)
Zn(0)

)
∼ n2e0(t)+ e1(t)+

∞

∑
g=2

1
n2g−2 eg(t).

Taking the exponential in each side, one obtains

Zn(t)
Zn(0)

∼ exp

{
n2e0(t)+ e1(t)+

∞

∑
g=2

1
n2g−2 eg(t)

}
. (4.12)

Differentiating the left side of (4.12) we find

∂ m

∂ tm1
1 · · ·∂ tmν

ν

Zn(t)
Zn(0)

∣∣∣∣∣
t=0

= (−1)mnmE

[
ν

∏
j=1

(trH j)m j

]
, (4.13)

where E denotes the expectation with respect to the probability measure given by Equa-
tion (4.6). The same change of variables of the previous section can be carried out in
order to recover the Gaussian measure. Take the map λ j 7→ µ j/

√
n, where {λ j}n

j=1 are
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the eigenvalues of a matrix H and {µ j}n
j=1 are eigenvalues of a new matrix M. Equation

(4.13) becomes

∂ m

∂ tm1
1 · · ·∂ tmν

ν

Zn(t)
Zn(0)

∣∣∣∣∣
t=0

= (−1)mnmn−∑ν
j=1 j/2

〈
ν

∏
j=1

(trM j)m j

〉
(4.14)

= (−1)m ∑
g

#{g−map with m j j-valent vertices}n2−2g (4.15)

=
∂ m

∂ tm1
1 · · ·∂ tmν

ν
exp

{
n2e0(t)+ e1(t)+

∞

∑
g=2

1
n2g−2 eg(t)

}∣∣∣∣∣
t=0

, (4.16)

where 〈.〉 is the expectation with respect to the Gaussian measure. The second equality
comes from Equation (3.12). Now, starting from (4.16), one can recover the enumeration
of maps by genus from the coefficients {e j(t)} j∈N.

For example, take mk = m. Thus

∂ m

∂ tm
k

exp

{
∞

∑
g=0

1
n2g−2 eg(t)

}∣∣∣∣∣
t=0

= (−1)m ∑
g=0

#{g−map with m k-valent vertices}n2−2g,

that is,

∂ m

∂ tm
k

{
∞

∑
g=0

1
n2g−2 eg(0)

}
= (−1)m ∑

g=0
#{g−map with m k-valent vertices}n2−2g.

If m = 1, we have

(−1)
∂

∂ tk
e0(0) = #{0−map with 1 k-valent vertex},

(−1)
∂

∂ tk
e1(0) = #{1−map with 1 k-valent vertex},

and so on. Therefore, the coefficients eg(t) encode information about the number of la-
belled connected g-maps.

4.2 The partition function and orthogonal polynomials
In order to develop the expansion in Theorem 9, we start with the asymptotics for

orthogonal polynomials with respect to the weight of the measure generated by Zn. Then,
we achieve the asymptotic expansion for the partition function by its relation with the
one point function depending on a parameter n. Recall from section 2.8 that

ρn(λ ) =
e−nV (λ )

n

n−1

∑
k=0

p2
j(λ ), (4.17)

where V is the same as in Equation (4.2).
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Now, taking the logarithm derivative of the partition function, one obtains

∂
∂ t j

log(Zn(t)) =
1

Zn(t)

ˆ
Rn

(
−n

n

∑
j=1

λ l
j

)
×

exp

{
−n2

[
1
n

n

∑
j=1

V (λ j; t)− 1
n2 ∑

j 6=l
log |λ j −λl|

]}
dλ

(4.18)

=−nE(trH l) (4.19)

=−n2
ˆ ∞

−∞
λ jρn(λ )dλ , (4.20)

where E is the expectation with respect to the measure defined by (4.4) and the last
equality follows from the relation between this expectation and the one-point function
(see Equation (2.9)).

By the Equation (4.17), we have

∂
∂ t j

log(Zn(t)) =−n
ˆ ∞

−∞
λ j e−nV (λ )

n−1

∑
j=0

p2
j(λ )dλ . (4.21)

Thus, the asymptotic expansion in Theorem 9 is obtained by the asymptotic be-
haviour of an integral of orthogonal polynomials, which we now study.

4.3 Asymptotics for orthogonal polynomials
The Riemann-Hilbert problem (RHP) approach developed by Fokas, Its and Kitaev

and improved by Deift and Zhou (1992) with the development of the non-linear steepest
descent method led to an asymptotic expansion for orthogonal polynomials (DEIFT et al.,
1999a).

In this section we replicate the asymptotic expansion of Deift et al. (1999a) in
detail.

We look for a 2×2 matrix Y (z) such that

i. Y (z) is analytic at every z ∈ C/R.

ii. Y has boundary values as z approaches s ∈ R

Y±(s) := lim
z→s

z on ±side of R
Y±(z)

related by

Y+(s) = Y−(s)

(
1 w(s)

0 1

)
, s ∈ R

where w(s) = e−nV (s).
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iii. As z → ∞,

Y (z)

(
z−n 0
0 zn

)
= I +O

(
1
z

)
.

The RHP for Y (z) possesses a unique solution, which is intimately related to the
orthogonal polynomials, as stated in the following result.

Theorem 10 ((FOKAS; ITS; KITAEV, 1992)). The matrix

Y (z) =

 πn(z)
ˆ
R

πn(s)w(s)ds
2πi(s− z)

−2πiγ2
n−1πn−1(z)

ˆ
R

−γ2
n−1πn−1(s)w(s)ds

s− z

 , (4.22)

where πn(z) is the n-th monic orthogonal polynomial with respect to the weight w(z), is
the unique solution to the Riemann-Hilbert problem stated previously for Y (z).

We present a proof of such result in order to illustrate some common techniques
in Riemann-Hilbert problems. First, we prove the uniqueness. Since Y (z) is analytic for
every z ∈C\R, so is detY (z). Moreover, the jump condition for the det as z → s ∈R is such
that

(detY (s))+ = det(Y+(s)) = det(Y−(s))det

(
1 w(s)

0 1

)
= det(Y−(s)) = (detY (s))−.

Thus, Morera’s Theorem implies that det is also analytic for every s ∈ R and,
consequently, detY (z) is an entire function. Moreover, analyticity implies continuity and,
therefore, the determinant is bounded on any compact set. Since det(Y (z))→ I as z → ∞,
by continuity we obtain that it is bounded on the whole complex plane. By Liouville
Theorem, any entire bounded function is constant. Consequently, det(Y (z)) = 1 for all
z ∈ C.

Notice that Y−1(z) may be expressed as

Y−1(z) =
1

detY (z)

(
Y22 Y12

−Y21 Y11

)
.

Since detY (z) = 1 and the entries of Y (z) are analytic for every z ∈C\R, it follows
that Y−1(z) is also analytic for every z ∈ C\R.

Now, suppose that we have another solution to the RHP, say Ỹ , and define W :=
ỸY−1. Then, W (z) is analytic for every z ∈ C\R. Moreover, W (z) satisfies the following
jump condition as z → s ∈ R:

W+(s) = (Ỹ (s)Y−1(s))+ = Ỹ−(s)

(
1 w(s)

0 1

)(
1 −w(s)

0 1

)
Y−1
− (s) =W−(s).
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Therefore, Morera’s Theorem allows us to conclude that W (z) is entire. But, since
W (z) is continuous, it follows that W (z) is bounded in any compact. Moreover, since
W (z) → I as z → ∞, it follows that W (z) is bounded in the whole complex plane and
Liouville Theorem implies that W = I. Therefore, the solution, if it exists, is unique.

Now, we look for a solution entrywise. The jump condition implies that

Y11,+(s) = Y11,−(s) (4.23)
Y21,+(s) = Y21,−(s) (4.24)
Y12,+(s) = Y12,−(s)+w(s)Y11(s), (4.25)
Y22,+(s) = Y22,−(s)+w(s)Y21(s), (4.26)

and the asymptotic condition gives us that

Y (z) =

(
zn +O(zn−1) O(z−n−1)

O(zn−1) z−n +O(z−n−1)

)
. (4.27)

By Equations (4.23) and (4.24) plus Morera’s Theorem, we know that Y11(z) and
Y21(z) are entire functions. Moreover, Equation (4.27) implies that Y11(z) is a monic poly-
nomial of degree n and Y21(z) is a polynomial of degree at most n−1.

On the other hand, Equations (4.25) and (4.26) give rise to linear RHP’s. Their
solution is expressed by the Plemelj formula for every z ∈ C\R,

Y12(z) =
1

2πi

ˆ ∞

−∞

w(s)Y11(s)
s− z

ds, (4.28)

Y22(z) =
1

2πi

ˆ ∞

−∞

w(s)Y21(s)
s− z

ds. (4.29)

The geometric series expansion for 1
s−z allows us to expand Equations (4.28) and

(4.29) as z → ∞ and obtain

Y12(z) =− 1
2πi

n−1

∑
j=0

1
z j+1

ˆ ∞

−∞
s jw(s)Y11(s)ds+O(z−n−1), (4.30)

Y22(z) =− 1
2πi

n−1

∑
j=0

1
z j+1

ˆ ∞

−∞
s jw(s)Y21(s)ds+O(z−n−1). (4.31)

Therefore, comparing the asymptotic condition (4.27) with (4.30), one obtain that
ˆ ∞

−∞
s jw(s)Y11(s)ds = 0, for j = 0, · · · ,n−1,

and since Y11(s) is a monic polynomial of degree n we conclude that Y11(s) is precisely the n-
th monic orthogonal polynomial with respect to the weigh w(s). Analogously, one obtains
that Y21(s) = cπn−1(z), where πn−1(z) is the (n−1)-th monic orthogonal polynomial with
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respect to the weigh w(s) and c = −2πiγ2
n−1 is a constant factor. Therefore, the solution

of the RHP for Y (z) is given by Equation (4.22). �

Once Theorem 10 is proved, one can obtain an explicitly n-dependent asymptotics
for the orthogonal polynomials through achieving an expansion for the solution Y (z) of
the above RHP. The algorithm to be followed starts with a sequence of transformations
in order to simplify the initial RHP, as described below.

• Y (z) 7→ M(z): the first transformation involves the so called equilibrium measure and
is intended to normalize the asymptotic condition of the initial RHP, that is, to
turn the asymptotic condition for the initial RHP into something of the form

I +O(z−1), as z → ∞;

• M(z) 7→ S(z): we open lenses around the support of the measure to turn the oscilla-
tory terms into exponential decaying ones;

• Then, a parametrix solution S(par) is constructed;

• S(z) is related to the error matrix R(z) with the help of S(par) and the so-called small
norm theory leads to the desired asymptotic behaviour.

The goal of the following sections is to provide this detailed analysis. We begin
with the definition of some important functions which will be crucial for the next steps.

4.3.1 Important objects
In this subsection we discuss several objects that we need. The focus is on intro-

ducing them and we do not provide proofs.

4.3.1.1 Equilibrium measure

Before our first transformation we must introduce an important object in approx-
imation theory, the so called equilibrium measure µV (see Saff and Totik (1997)) defined
as the unique minimizer of the operator

E =

ˆ
R2

log |x− y|−1 dµ(x)dµ(y)+
ˆ
R

V (x)dµ(x), (4.32)

over is the space of all probability measures on R. Under some assumptions on the poten-
tial V (x), the equilibrium measure uniquely exists and is supported on one single interval.

The set of available values for t in Theorem 9 appears in order to assure that
the measure is well-behaved in the sense that its support is a compact interval and its
density is a non-vanishing analytic function, which behaves at worst as a square root at
the end-points of the support.
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Theorem 11 ((DEIFT et al., 1999a)). There exists t0 > 0, γ0 > 0 real numbers such that
for every t ∈ T(t0,γ0) it follows that dµV = ψ̂(x)dx, where

ψ̂(x) =
χ[a,b](x)

2π
√
(b− x)(x−a)h(x), (4.33)

with h(x) a polynomial of degree 2m−2 given by

h(x) =
1

2πi

˛
Γ

V ′(s)√
(s−a)(b− s)

ds
s− x

(4.34)

where Γ is any contour that encloses a,b and x. Moreover, the endpoints of the support
are determined by the equations

ˆ b

a

V ′(s)√
(s−a)(b− s)

ds = 0, and
ˆ b

a

sV ′(s)√
(s−a)(b− s)

ds = 2π. (4.35)

From the characterization in Theorem 11 we have, for example, that t = 0 leads to
the Semicircle distribution (see section 2.3). In fact, if one takes t = 0 in Equation (4.2)
and perform the change of variables s 7→ y := 2s−a−b

b−a , the conditions in (4.35) become

ˆ 1

−1

(b−a)y+(b+a)

2
√

1− y2
dy = 0,

ˆ 1

−1

[(b−a)y+(b+a)]2

4
√

1− y2
dy = 2π.

By trigonometric substitution we obtain a+b = 0 and b−a = 4. Moreover, similar
calculations shows that h(x) = 1 and the density obtained is the Semicircle distribution.

Another characterization to the equilibrium measure is given by the Euler-Lagrange
equations: there exists a constant ℓ ∈ R such that (see Saff and Totik (1997))

2
ˆ

log |x− y|dµV (y)−V (x)− ℓ= 0 x ∈ supp(µV ), (4.36)

2
ˆ

log |x− y|dµV (y)−V (x)− ℓ≤ 0 x ∈ R. (4.37)

4.3.1.2 The g-function

In the solution of the RHP for Y (z), it will be required a g-function. The set of
conditions imposed over g(z) is called phase conditions.

i. g(z) is analytic at every z ∈ C\R.

ii. As z → ∞, g(z) = logz+O(1).
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iii. There exists a closed interval I ⊂ R such that g+(s)−g−(s) is purely imaginary for
s ∈ I and

g+(s)+g−(s)−Vn(s)− ℓ= 0 s ∈ I (4.38)

i
d

ds
(g+(s)−g−(s))> 0, s ∈ I (4.39)

g+(s)+g−(s)−Vn(s)− ℓ < 0 s ∈ R\I (4.40)
eg+(s)−g−(s) = 1 s ∈ R\I. (4.41)

Set
g(z) =

ˆ
log(z− x)dµ(x), z ∈ C\(−∞,b]. (4.42)

If µ is compactly supported in a single interval, then the phase conditions hold
if and only if the Euler-Lagrange Equations (4.36) and (4.37) are satisfied. That is, g(z)

given by Equation (4.42) solves phase conditions if and only if µ = µV , where µV is the
equilibrium measure defined in the previous section.

In fact, take µV the equilibrium measure. Then, for every s ∈ (a,b),

g+(s) = lim
ε→0

ˆ b

a
log(s+ iε − x)dµV (x)

= lim
ε→0

(ˆ s

a
log(

√
(s− x)2 + ε2)+ iarg(|s− x|+ iε)dµV (x) +

ˆ b

s
log(

√
(s− x)2 + ε2)+ iarg(−|s− x|+ iε)dµV (x)

)
.

It is straightforward that limε→0 log(
√
(s− x)2 + ε2)= log(|s−x|). Moreover, arg(|s−

x|+ iε) = θ such that

cosθ =
|s− x|√

(s− x)2 + ε2

sinθ =
ε√

(s− x)2 + ε2
.

Taking the limits sinθ ↓ 0 and cosθ ↑ 1 one concludes that θ = 0. Analogously,
arg(−|s− x|+ iε) = θ such that

cosθ =
−|s− x|√
(s− x)2 + ε2

sinθ =
ε√

(s− x)2 + ε2
,

and taking the limits sinθ ↓ 0 and cosθ ↓ −1 one obtains θ = π. Then,

g+(s) =
ˆ b

a
log(|s− x|)dµV (x)+

ˆ b

s
iπ dµV (x). (4.43)
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Proceeding analogously for g−(s) one obtains

g−(s) =
ˆ b

a
log(|s− x|)dµV (x)−

ˆ b

s
iπ dµV (x). (4.44)

Such characterization of g− and g+ implies (4.39). Moreover, Equations (4.43) and
(4.44) together with (4.36) and (4.37) imply (4.38) and (4.40). Furthermore, if s < a then
Img+ = π, Img− =−π and (4.41) holds. If s > b it is analogous.

Now suppose that the phase conditions hold. The characterization of g+ and g−
provided by Equations (4.43) and (4.44) together with (4.38) and (4.40) implies the Euler
Lagrange Equations (4.36) and (4.37). Therefore, dµ = dµV .

4.3.1.3 Conformal maps

The construction of a local parametrix around the endpoints of the support of the
equilibrium measure involves a conformal map, i.e., an invertible analytic transform that
takes the original problem into a new one centered in the origin. We start defining a map
in a neighbourhood Uδ of b given by

f (z) =
(

3n
4

)2/3(
i
ˆ z

b
(b− y)1/2(y−a)1/2h(y)dy

)2/3

=

(
3n
4

)2/3

(−2g(z)+V (z)+ ℓ)2/3 .

If one defines ψ(z) as the analytic continuation of ψ̂(x) to C\((−∞,a]∪ [b,∞)) then
f (z) can be expressed as

f (z) =
(

3n
4

)2/3(
2πi
ˆ z

b
ψ(y)dy

)2/3

.

The measure ψ(z) vanishes as square-root, therefore its integral behaves like a 3
2

power and it follows that f (z) is analytic in z in a neighbourhood of b. Furthermore, there
exists a real constant c > 0 such that

f (z) = cn2/3[(z−b)+O((z−b)2)].

Analogously, one can define a conformal map f̃ in a neighbourhood Ũδ of a by

f̃ (z) =
(

3n
4

)2/3(
i
ˆ z

b
(b− y)1/2(y−a)1/2h(y)dy− i

ˆ a

b
(b− y)1/2(y−a)1/2h(y)dy

)2/3

=

(
3n
4

)2/3

(2g(a)−V (a)− ℓ− (2g(z)−V (z)− ℓ))2/3 .
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Near the endpoint a one has f̃ (z) = −cn2/3[(z− a) +O((z− a)2)] for some real
constant c > 0. The neighbourhoods where f and f̃ hold can be extended to overlapping
regions as in Figure 26.

Figure 26 – New domains of definition for f and f̃ .

a bz0

Source: Elaborated by the author.

Lemma 1 (Lemma 4.3, (ERCOLANI; MCLAUGHLIN, 2003)). There exists a unique z0

in (a,b) such that f (z0) = f̃ (z0). Moreover, there exist Tb and γb such that for t ∈ T(Tb,γb)

there exists a neighbourhood U of [z0,b] independent of n in which f is a conformal map.
An analogous result holds to f̃ (z).

The analytical issue in here is whether f (z) remains a conformal map from a fixed
neighbourhood of [z0,b] into its range. For analyticity notice that for t = 0

f (z)|t=0 =

(
3n
4

)2/3(ˆ z

2

√
s2 −4ds

)2/3

,

which is analytic for an open neighbourhood of (−2,2]. Since f depends analytically on
the parameter t, the existence of an open and connected set of values of t for which it
remains analytic follows.

4.3.2 First transformation: Y (z)→ M(z)

The standard procedure to normalize the asymptotic condition is to choose p(z) a
function and α a constant such that the transformation

Y (z) 7→ eασ3 Y (z)ep(z)σ3 =: M(z), (4.45)

leads to the desired asymptotic behaviour,

M(z) = I +O
(

1
z

)
, z → ∞.

Thus, α and p(z) are chosen in such a way that

eασ3

[
I +O

(
1
z

)](
zn 0
0 z−n

)
ep(z)σ3 = I +O

(
1
z

)
, z → ∞.

This condition is equivalent to

p(z) = n logz+o(logz), z → ∞. (4.46)



4.3. Asymptotics for orthogonal polynomials 71

We want to keep the domain of analyticity, i.e.,

p(z) is analytic at every z ∈ C\R. (4.47)

Moreover, we take this opportunity to turn the jump into an exponentially decaying
one. To do so, we impose that

e−p−(s)σ3

(
1 e−nV (s)

0 1

)
ep+(s)σ3 →

(
1 0
0 1

)
s → ∞.

One way to achieve this is to require the existence of a compact set I ⊂ R such
that for every s 6∈ I,

p+(s)+ p−(s)+nV (s)> 0. (4.48)

The jump matrix for s ∈ I is given by(
ep+(s)−p−(s) e−(p+(s)+p−(s)+nV (s))

0 e−(p+(s)−p−(s))

)
.

A simplification of the problem for s ∈ I is obtained by the technique of opening
of lenses, what can be done in the next step if an extra condition is imposed over p(z):
the jump matrix needs to be oscillatory. Therefore, for every s ∈ I we impose

Re(p+(s)− p−(s)) = 0, (4.49)

and, to deal with the 1,2-entry, we require that

p+(s)+ p−(s)+nV (s) = c, (4.50)

for some constant c. The conditions (4.46), (4.47), (4.48), (4.49) and (4.50) lead to the
choice

p(z) =−n
(

g(z)− ℓ

2

)
,

α =−n
ℓ

2
,

where g(z) is the g-function defined in subsection 4.3.1.2. We introduce the new informa-
tion into Equation (4.45) and obtain the first transformation

M(z) = e−n ℓ
2 σ3 Y (z)e−n(g(z)− ℓ

2 )σ3 , (4.51)

where σ3 is the Pauli matrix given by (
1 0
0 −1

)
.

The matrix M(z) is the unique solution for the new RHP
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i. M(z) is analytic at every z ∈ C\R.

ii. M has boundary values as z approaches R related by

M+(s) = M−(s)

(
e−n(g+(s)−g−(s)) en(g+(s)+g−(s)−V (s)−ℓ)

0 en(g+(s)−g−(s))

)
, s ∈ R.

iii. As z → ∞,
M(z) = I +O

(
1
z

)
.

4.3.3 Second transformation: M(z)→ S(z)

Some of the properties required in the construction of the g-function, allow us
to turn the oscillatory terms in the jump matrix into exponentially decaying terms for
s ∈ I := [a,b] by splitting the jump matrix as follows(

e−n(g+(s)−g−(s)) 1
0 en(g+(s)−g−(s))

)
= (4.52)(

1 0
en(g+(s)−g−(s)) 1

)(
0 1
−1 0

)(
1 0

e−n(g+(s)−g−(0)) 1

)
=: v−v0v+. (4.53)

Since g++ g−−V − ℓ = 0 in the support of the equilibrium measure, Equation
(4.33), it follows that g+−g− =−2g−+V + ℓ= 2g+−V − ℓ. Thus,

h(z) := g+(z)−g−(z)

possesses analytic continuation above and below [a,b]. The second phase condition in
subsection 4.3.1.2 plus the Cauchy-Riemann equations implies that

h(x,y) = u(x,y)+ iv(x,y),

v(x,y) = g+(x,y)−g−(x,y),

∂u
∂y

=−∂v
∂x

< 0,

and therefore Reh(z)> 0 above [a,b] and Reh(z)< 0 below [a,b]. Thus exp(g+−g−) and
exp(−[g+−g−]) decay exponentially in the lower and in the upper half-plane respectively
and we can open lenses around the interval [a,b]. Moreover, h(x) can be extended to
C\((−∞,a]∪ [b,∞)).

Take a lens-shaped region around [a,b] such that its contour contains the endpoints
of the interval. Define the new matrix S(z) as follows.

S(z) = M(z)×


I outside the lens-shaped region,

v−1
+ in the upper lens,

v− in the lower lens.

(4.54)
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The new RHP is given as follows

i. S(z) is analytic at every z ∈ C\Σs, where Σs is the contour in Figure 27.

ii. S has boundary values as z approaches s ∈ Σs related by

S+(s) = S−(s)×



v+ s ∈ Σ1

v0 s ∈ Σ2

v− s ∈ Σ3

vs s ∈ Σ4 ∪Σ5

where v+,v−,v0 are the same as in Equation (4.53) and

vs =

(
1 en(g+(s)+g−(s)−V (s)−ℓ)

0 1

)
.

iii. As z → ∞,

S(z) = I +O
(

1
z

)
.

iv. S(z) = O(1) as z → a,b.

Figure 27 – Contour of the RHP for S.

a b

Σ1

Σ2

Σ3

Σ4 Σ5

Source: Elaborated by the author.

On the one hand, we have a more complicated contour, but on the other hand,
all jump matrices go to the identity, except for the one in the support of the equilibrium
measure. Therefore, when n is large enough, the problem becomes close to a limiting RHP
whose solution is called Global Parametrix.

4.3.4 Global Parametrix

The only jump that does not goes to the identity when n grows, is the one over
the contour Σ2 = [a,b]. Therefore, the Global Parametrix must solve the following RHP

i. S(1)(z) is analytic at every z ∈ C\[a,b].
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ii. S(1) has boundary values as z approaches (a,b) related by

S(1)+ (s) = S(1)− (s)v0 = S(1)− (s)

(
0 1
−1 0

)
, s ∈ (a,b).

iii. As z → ∞,
S(1)(z) = I +O

(
1
z

)
.

iv. S(1) possesses at worst square-integrable singularities as z → a,b.

Since the jump matrix is now constant, the standard procedure is to diagonalize
such matrix, solve the new problem and perform an unitary transform back to the original
problem. Thus, take U0 such that

U0v0U−1
0 =

(
−i 0
0 i

)
.

The transformation

S(1)(z) 7→U0S(1)(z)U−1
0 =: N(z),

gives rise to the RHP below.

i. N(z) is analytic at every z ∈ C\[a,b].

ii. N has boundary values as z approaches (a,b) related by

N+(s) = N−(s)

(
−i 0
0 i

)
.

iii. As z → ∞,
N(z) = I +O

(
1
z

)
.

iv. N(z) possesses at worse square-integrable singularities as z → a,b.

Looking at the jump entrywise, one obtains for every s ∈ (a,b)

N11,+(s) = (−i)N11,−(s)

N21,+(s) = (−i)N21,−(s)

N12,+(s) = iN12,−(s)

N22,+(s) = iN22,−(s).

These are scalar RHP’s that we solve one by one. Taking the logarithm of the
1,1-entry,

log(N11,+(s)) = log(N11,−(s))+ log(−i),
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which is the jump for a scalar RHP whose solution is well-known by means of the Cauchy
transform as

log(N11(z)) =
1

2πi

ˆ b

a

log(−i)
s− z

ds

=−1
4

log
(

z−b
z−a

)
∴ N11(z) =

(
z−b
z−a

)−1/4

.

Proceeding analogously to the other entries, one obtains that

N(z) =

(
α(z)−1 0

0 α(z)

)
,

where
α(z) =

(z−b)1/4

(z−a)1/4 . (4.55)

Consequently,

S(1)(z) =
1
2

(
α(z)+α(z)−1 i(α(z)−1 −α(z))

i(α(z)−α(z)−1) α(z)+α(z)−1

)
. (4.56)

Notice that one could have chosen the transformation S(1)(z) 7→U−1
0 S(1)(z)U0, what

lead us to the conclusion that S(1)(z) = U−1
0 N(z)U0 = U0N−1(z)U−1

0 . Unfortunately, this
solution does not behave well in the neighbourhood of the endpoints of the support of the
equilibrium measure. Therefore, we must construct an explicit solution for small neigh-
bourhoods of a,b and estimate the difference between the approximated solution and the
original one.

4.3.5 Local Parametrix
Take Uδ ,Ũδ circles of ratio δ around b and a respectively. The local solutions P(z)

and P̃(z) need to match S(1)(z) in the boundary of Uδ and Ũδ , to satisfy the same jump
conditions and to be analytic in Uδ\ΣS and Ũδ\ΣS.

The conditions over the solution P(z) around b leads to the following RHP:

i. P(z) is analytic at every z ∈Uδ\(ΣS ∩Uδ );

ii. P has boundary values as z approaches s ∈ ΣS related by

P+(s) = P−(s)×



v+ s ∈ Σ1 ∩Uδ

v0 s ∈ Σ2 ∩Uδ

v− s ∈ Σ3 ∩Uδ

vs s ∈ Σ5 ∩Uδ
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where

vs =

(
1 en(g+(s)+g−(s)−V (s)−ℓ)

0 1

)
,

and Σi’s are the same of Figure 27.

iii. If |z−b|= δ ,
P(z) = [I +o(1)]S(1)(z).

iv. P(z) remains bounded as z → b.

At first, we turn the jump matrices into constant ones with the transformation

P(z) 7→ P(z)e−
2
3 f (z)3/2σ3 =: W (z),

where f (z) is the conformal map defined in subsection 4.3.1.3. The new RHP is given by

i. W (z) is analytic at every z ∈Uδ\(ΣS ∩Uδ );

ii. W has boundary values as z approaches s ∈ ΣS ∩Uδ related by

W+(s) =W−(s)×



(
1 0
1 1

)
s ∈ Σ1 ∩Uδ(

0 1
−1 0

)
s ∈ Σ2 ∩Uδ(

1 0
1 1

)
s ∈ Σ3 ∩Uδ(

1 1
0 1

)
s ∈ Σ5 ∩Uδ

.

iii. If |z−b|= δ ,
W (z) = [I +o(1)]S(1)(z)e−

2
3 f (z)3/2σ3 .

iv. W (z) remains bounded as z → b.

Choose the ratio δ > 0 such that f (z) is an analytic invertible function from Uδ

onto a neighbourhood V of zero. Notice that f maps the contour ΣS ∩Uδ into a new one,
say Σ′. The asymptotic condition for the RHP to W (z) suggests a solution by means of
the Airy function. Choose the new contour to be the union of the four rays in Figure 28
for some σ ∈ (π/3,π).
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Figure 28 – Transformation of the contour under the action of f .

Σ1

Σ2

Σ3

Σ5

b

Σ′
1

Σ′
2

Σ′
3

Σ′
5

0

δ
U V

f

Source: Elaborated by the author.

The contours Σ1 and Σ3 are still to be defined, and we choose them as the pre-
images of Σ′

1 and Σ′
3 under f (z), respectively. Notice that Σ′ = Σ′

5 ∪∪3
i=1Σ′

i delimits four
regions I′= {ζ ∈V : arg(ζ )∈ (0,σ)}, II′= {ζ ∈V : arg(ζ )∈ (σ ,π)}, III′= {ζ ∈V : arg(ζ )∈
(π,2π −σ)} and V I′ = {ζ ∈ V : arg(ζ ) ∈ (2π −σ ,2π)}. Naturally, the corresponding re-
gions I, II, III, IV in Uδ are the pre-images under f (z) of I′, II′, III′, IV ′ respectively. The
RHP in Uδ induces a new RHP in V in terms of the variable ζ := f (z) and it can be
extended to the whole plane and is given as follows.

i. L(ζ ) is analytic at every z ∈V\Σ′
S;

ii. L has boundary values as ζ approaches s ∈ Σ′
S related by

L+(ζ ) = L−(ζ )×



(
1 0
1 1

)
ζ ∈ Σ′

1 ∪Σ′
3(

0 1
−1 0

)
ζ ∈ Σ′

2(
1 1
0 1

)
ζ ∈ Σ′

5

.

iii. As ζ → ∞,
L(ζ ) = (I +o(1))ζ−σ3/4U0 e−

2
3 ζ 3/2σ3 .

iv. L(ζ ) remains bounded as ζ → 0.

Thus, the solution to W (z) has the form E(z)L( f (z)), where E is some pre-factor
to be determined later. The asymptotic condition on the RHP for L comes from the
behaviour of f (z) as z → b. In fact, previously we had that

W (z) = [I +o(1)]S(1)(z)e−
2
3 f (z)3/2σ3 .

But we know the explicit formula of S(1)(z),

W (z) = [I +o(1)]U−1
0

(( z−a
z−b

)−1/4 0

0
( z−a

z−b

)1/4

)
U0 e−

2
3 f (z)3/2σ3 .
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Since f (z) = cn(z−b)+O(z−b)2 as z → b for some constant c > 0, it follows that
changing variables z 7→ ζ = f (z)≈ cn(z−b),

L(ζ ) : =

(
L11 L12

L21 L22

)
= (I +o(1))ζ−σ3/4U0 e−

2
3 ζ 3/2σ3

=


ζ−1/4 e−

2
3 ζ 3/2

√
2

ζ−1/4 ie
2
3 ζ 3/2

√
2

ζ 1/4 ie−
2
3 ζ 3/2

√
2

ζ 1/4 e
2
3 ζ 3/2

√
2

 ,

as ζ → ∞. By the asymptotics for the Airy function,

Ai(z)≈ z−1/4 e−
2
3 z3/2

2
√

π

Ai′(z)≈−z1/4 e−
2
3 z3/2

2
√

π
, as z → ∞,

it follows that for ζ ∈ I′,(
L11 L12

L21 L22

)
=

( √
2π Ai(ζ ) −w2

√
2π Ai(w2ζ )

−i
√

2π Ai′(ζ ) iw
√

2π Ai′(w2ζ )

)
.

Multiplying by the jumps and using the connection formula

Ai(z)+wAi(wz)+w2 Ai(w2z) = 0,

we find that the solution to this new problem is given by

L(ζ ) =
√

2π ×



(
Ai(ζ ) −w2 Ai(w2ζ )

−iAi′(ζ ) iwAi′(w2ζ )

)
ζ ∈ I′,(

−wAi(wζ ) −w2 Ai(w2ζ )
iw2 Ai′(wζ ) iwAi′(w2ζ )

)
ζ ∈ II′,(

−w2 Ai(w2ζ ) wAi(wζ )
iwAi′(w2ζ ) −iw2 Ai′(wζ )

)
ζ ∈ III′,(

Ai(ζ ) wAi(wζ )
−iAi′(ζ ) −iw2 Ai′(wζ )

)
ζ ∈ IV ′,

(4.57)

where w = e
2
3 πi. The local RHP possesses one degree of freedom left, and we must explore

it in order to match the boundary condition. The pre-factor E(z) must be chosen such
that for every z ∈Uδ , we have P(z)(S(1)(z))−1 = (1+o(1)) as n → ∞. That is, as n → ∞,

E(z)L( f (z))e
2
3 f (z)3/2σ3 = (1+o(1))S(1)(z)

=⇒ E(z)(I +o(1))( f (z))−σ3/4U0 = (1+o(1))S(1)(z)

=⇒ E(z) = S(1)(z)U−1
0 ( f (z))σ3/4.
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But since S(1)(z) =U−1
0 N(z)U0, one has

E(z) =U−1
0 (α(z)−1 f (z))σ3/4, (4.58)

and the solution for z ∈Uδ is given by

P(z) =U−1
0 (α(z)−1 f (z))σ3/4L( f (z))e

2
3 f (z)3/2σ3 . (4.59)

A similar construction allows us to define P̃(z) for z ∈ Ũδ satisfying the following
RHP:

i. P̃(z) is analytic at every z ∈ Ũδ\(ΣS ∩Ũδ ).

ii. P̃ has boundary values as z approaches s ∈ ΣS ∩Ũδ related by

P̃+(s) = P̃−(s)×



v+ s ∈ Σ1 ∩Ũδ

v0 s ∈ Σ2 ∩Ũδ

v− s ∈ Σ3 ∩Ũδ

vs s ∈ Σ4 ∩Ũδ

,

where

vs =

(
1 en(g+(s)+g−(s)−V (s)−ℓ)

0 1

)
.

iii. If |z−a|= δ ,
P̃(z) = [I +o(1)]S(1)(z).

iv. P̃(z) remains bounded as z → a.

The solution is given by

P̃(z) = Ẽ(z)L̃( f̃ (z))e
2
3 f̃ 3/2σ3 , (4.60)

where L̃ is constructed by Airy functions, f̃ is the conformal map from subsection 4.3.1.3
and Ẽ is the new pre-factor.

4.3.6 One last transformation: S(z)→ R(z)

The parametrix solution S(par) is given by

S(par)(z) =


P(z) z ∈Uδ\Σs

P̃(z) z ∈ Ũδ\Σs

S(1)(z) z ∈ C\(Uδ ∪Ũδ ∪Σs)

.
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In order to quantify how close the parametrix is of the solution to the original
RHP, define the error matrix by

R(z) = S(z)(S(par))−1(z) =


S(z)(S(1))−1(z) z ∈ C\(ΣS ∪Uδ ∪Ũδ ),

S(z)P−1(z) z ∈Uδ\ΣS,

S(z)P̃−1(z) z ∈ Ũδ\ΣS.

(4.61)

Then, R(z) satisfies the following RHP

i. R(z) is analytic at every z ∈ C\ΣR, where ΣR = ∪6
i=1ΣR,i is the contour in Figure 29.

Notice that ΣR,5 = ∂Ũδ and ΣR,6 = ∂Uδ .

ii. R has boundary values as z approaches ΣR related by

R+(s) = R−(s)×



S(1)(s)

(
1 en(g+(s)+g−(s)−V (s)−ℓ)

0 1

)
(S(1))−1(s), s ∈ ΣR,1 ∪ΣR,4

S(1)(s)

(
1 0

e−n(g+(s)−g−(s)) 1

)
(S(1))−1(s), s ∈ ΣR,2

S(1)(s)

(
1 0

en(g+(s)−g−(s)) 1

)
(S(1))−1(s), s ∈ ΣR,3

P(s)(S(1))−1(s), s ∈ ΣR,6

P̃(s)(S(1))−1(s), s ∈ ΣR,5.

iii. As z → ∞,

R(z) =
[

I +O
(

1
z

)]
.

Figure 29 – Contour in the RHP for the error matrix.

ΣR,5
ΣR,3

ΣR,1 ΣR,4

a b
ΣR,6

ΣR,2

Source: Elaborated by the author.

In order to estimate the norm of the jump matrices we define

∆R,i = vR,i − I, i = 1,2, · · · ,6. (4.62)
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Thus,

∆R,1(z) = S(1)(z)

(
1 en(g+(z)+g−(z)−V (z)−ℓ)

0 1

)
(S(1))−1(z) = ∆R,4(z),

∆R,2(z) = S(1)(z)

(
1 0

e−n(g+(z)−g−(z)) 1

)
(S(1))−1(z),

∆R,3(z) = S(1)(z)

(
1 0

en(g+(z)−g−(z)) 1

)
(S(1))−1(z).

(4.63)

Since both S(1),(S(1))−1 are uniformly bounded outside a fixed neighbourhood of
the endpoints, the following estimate holds

||∆R,i||L∞(ΣR,i)∩L2(ΣR,i)
= O(e−cn), (4.64)

for c > 0 a real constant and i = 1,2,3,4. Here, given a matrix M = (mi j)
2
i, j=1, the L2-norm

is given by ||M||L2 := ∑ ||mi j||L2 and the L∞-norm is given by ||M||L∞ := ∑ ||mi j||L∞ .

Moreover, from the complete asymptotic expansion for Airy function, the jump
matrices vR,5 and vR,6 possess asymptotic expansions in powers of n given by

vR,5 = I +
∞

∑
k=1

va
k

nk ,

vR,6 = I +
∞

∑
k=1

vb
k

nk ,

where vb
k and va

k can be determined explicitly in terms of the coefficients of asymptotic
expansion of the Airy function. Such expansion leads to the following estimate

||∆R,i||L∞(ΣR,i)∩L2(ΣR,i)
= O

(
1
n

)
, (4.65)

for i = 5,6. It follows from (4.65) and (4.64) that R+ = R−(I +O(e−cn)) in both L2 and
L∞ norms, and by the small norm theorem

R(z) = I +O
(

1
n(|z|+1)

)
, as n → ∞.

Furthermore, R(z) is uniformly bounded and has a complete asymptotic expansion
in powers of n−1

R(z)∼ I +
∞

∑
k=1

Rk(z)
nk . (4.66)

Inserting (4.66) into the RHP for the error with jump on ∂Uδ ∪ ∂Ũδ denoted by
vd = va

d ∪ vb
d we obtain a different expression for R(z) in terms of a recursive set of linear
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RHPs. In fact,

R+(s) = R−(s)vd,

which implies,[
I +

∞

∑
j=1

n− jR j(s)

]
+

=

[
I +

∞

∑
j=1

n− jR j(s)

]
−

[
I +

∞

∑
j=1

n− jv j(s)

]
.

Collecting terms of order n− j we finally have

(R j)+ = (R j)−+ v j +
j−1

∑
i=1

(Ri)−v j−i,

and therefore the following result holds.

Theorem 12. The matrices in the right-hand side of Equation (4.66) can be obtained as
follows. If k = 1,

i. R1(z) is analytic at every z ∈ C\(ΣR,5 ∪ΣR,6), where ΣR,5 = ∂Ũδ and ΣR,6 = ∂Uδ .

ii. R1 has boundary values as z approaches s ∈ ΣR,5 ∪ΣR,6 related by

(R1(s))+− (R1(s))− = v1.

iii. As z → ∞,
R1(z) = O

(
1
z

)
.

If k > 1

i. Rk(z) is analytic at every z ∈ C\(ΣR,5 ∪ΣR,6), where ΣR,5 = ∂Ũδ and ΣR,6 = ∂Uδ .

ii. Rk has boundary values as z approaches s ∈ ΣR,5 ∪ΣR,6 related by

(Rk(s))+− (Rk(s))− = vk +
k−1

∑
j=1

(R j(s))−v j−i.

iii. As z → ∞,
Rk(z) = O

(
1
z

)
.

Each one of the problems stated in Theorem (12) possesses unique solution by
means of Cauchy transform. Combining the solutions for all the RHPs defined so far we
obtain the following formula for the initial problem on the upper half plane

Y (z) = en ℓ
2 σ3 R(z)T (z)en(g(z)− ℓ

2 )σ3 , (4.67)
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where

T (z) =



S(1)(z) for z ∈ A

P(z) for z ∈C1

P̃(z) for z ∈ C̃1

P(z)

(
1 0

e−n(g+(z)−g−(z)) 1

)
for z ∈C2

P̃(z)

(
1 0

e−n(g+(z)−g−(z)) 1

)
for z ∈ C̃2

S(1)(z)

(
1 0

e−n(g+(z)−g−(z)) 1

)
for z ∈ B1,

(4.68)

where R(z) is given by Equation (4.66), P(z) by Equation (4.59), P̃(z) by Equation (4.60)
and S(1)(z) by Equation (4.56). The regions in Equation (4.68) are the ones in Figure 30.

Figure 30 – Regions of definition of Y (z).

C̃1 B1

A

C1C2C̃2

a b
Source: Elaborated by the author.

Each term in Equation (4.67) depends analytically on t for t∈T(T,γ). Since p(z) =

p(z̄), it suffices to stablish the asymptotic expansion of the orthogonal polynomials in the
upper plane. Moreover, by analytic continuation the asymptotic expression developed in
the upper half plane extends naturally to the real line.

4.4 Asymptotic behaviour of the one-point function
The expression to be evaluated is

ˆ ∞

−∞
λ ℓρn(λ )dλ , (4.69)

where ρn stands for the one-point correlation function depending on a parameter n. In
order to obtain a complete asymptotic expansion for (4.69) we will work with a more
general expression. Let q(λ ) be any C∞ function that grows faster than any polynomial.
Then we will prove that

ˆ ∞

−∞
q(λ )ρn(λ )dλ (4.70)
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possesses asymptotic expansion in even powers of n. Recall that

ρn(z) =
e−nV (z)

−2πin
[Y ′

11(z)Y21(z)−Y11(z)Y ′
21(z)]. (4.71)

Notice that for x < a− δ and for x > b+ δ the expansion of the orthogonal poly-
nomials p(x) decays exponentially with x and is exponentially small in n. So it suffices to
evaluate

ˆ b+δ

a−δ
q(λ )ρn(λ )dλ , (4.72)

where δ is a real constant. Since we have different expressions for the asymptotics of the
orthogonal polynomials corresponding to the intervals (a−δ ,a), (a,a+δ ), (a+δ ,b−δ ),
(b−δ ,b) and (b−δ ,b+δ ), one needs to evaluate the integral over each interval separately.

A simplification of the problem is obtained by extending the local solutions in the
neighbourhoods Uδ and Ũδ of the endpoints to solutions covering the whole interval, as ob-
served by Ercolani and McLaughlin (2003). To do so, the conformal maps are extended as
detailed in Lemma 1. Keep the notation Uδ and Ũδ to the new neighbourhoods, which are
deformed ellipsis as in Figure 26. We introduce Ta,Tb,γa,γb such that for T < min{Ta,Tb}
and γ > max{γa,γb} the neighbourhoods of a,b in which the local solution holds have an
overlap.

In order to split the integral of ρn into an expression that holds for all z ∈ (z0 −
ε,b+ δ ) and another that holds for z ∈ (a− ε,z0 + δ ), set {χa,χb} a partition of unity
such that

i. χa,χb are smooth functions with range [0,1];

ii. supp χb ⊂ (z0 − ε,∞) and supp χa ⊂ (−∞,z0 + ε);

iii. for every z ∈ (z0 + ε,∞), χb = 1 and for every z ∈ (−∞,z0 − ε), χa = 1;

iv. and χa(z)+ χb(z) = 1 for every z ∈ R.

Let ρb
n and ρa

n be the corresponding expressions for ρn(z) in Uδ and Ũδ respectively.
Therefore, ρn is expressed as

ρn = χaρa
n +χbρb

n . (4.73)

The original integral (4.72) assumes the form
ˆ b+δ

a−δ
q(λ )ρn(λ )dλ =

ˆ z0+ε

a−δ
q(λ )χa(λ )ρa

n (λ )dλ +

ˆ b+δ

z0−ε
q(λ )χb(λ )ρb

n (λ )dλ . (4.74)

Due to the similarity of the two integrals on the right side, it suffices to develop
an asymptotic expansion for the last one. For the first one, it follows analogously.
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From Equations (4.71) and (4.67), in the neighbourhood of b it holds that

nρ(b)
n (z) =

(
f ′(z)

4 f (z)
− α ′(z)

α(z)

)
[2Ai( f (z))Ai′( f (z))]

+ f ′(z)[(Ai′( f (z)))2 − f (z)(Ai( f (z)))2]

+
ni
2

{
∑

j even ≥2
n− jã j(z)Ψ2

11( f (z))

√
f (z)

α(z)2

+ ∑
j even ≥2

n− jb̃ j(z)Ψ2
21( f (z))

α2√
f (z)

+ ∑
j odd ≥3

n− jc̃ j(z)Ψ11( f (z))Ψ21( f (z))

}
,

(4.75)

where Ψ(z) is the auxiliary matrix given by

Ψ(ζ ) =



(
Ai(ζ ) Ai(w2ζ )
Ai′(ζ ) w2 Ai′(w2ζ )

)
ζ ∈ C+(

Ai(ζ ) −w2 Ai(wζ )
Ai′(ζ ) −Ai′(wζ )

)
ζ ∈ C−

. (4.76)

Moreover, ã j, b̃ j, c̃ j are analytic on z and t in a fixed neighbourhood of [z0,b] and
t ∈ T(γb,Tb). An analogous relation holds for a neighbourhood of a.

From the previous analysis it suffices to show that
ˆ b+δ

z0−ε
q(λ )χb(λ )ρb

n (λ )dλ ∼
∞

∑
k=0

qkn−2k. (4.77)

Set
F0(ζ ) := [Ai′]2(ζ )−ζ Ai2(ζ ). (4.78)

Each of the terms in (4.75) gives rise to one of the four following types of integral

1
n

ˆ b+δ

z0−ε
g(z)F0( f (z)) f ′(z)dz, (4.79)

ˆ b+δ

z0−ε
g(z)Ai( f (z))Ai′( f (z))dz, (4.80)

n1/3
ˆ b+δ

z0−ε
g̃(z)Ai2( f (z))dz, (4.81)

n−1/3
ˆ b+δ

z0−ε
g̃(z)(Ai′( f (z)))2 dz, (4.82)

where g(z) is an infinitely differentiable function compactly supported within (z0 − ε,b+
δ ). Showing that (4.72) possesses an asymptotic expansion in even powers of n is now
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equivalent to prove that (4.80) possesses an expansion in odd powers of n and that (4.79),
(4.81), (4.82) posses expansions in even powers of n.

It is a piece of luck that the asymptotic expansion of one of the Equations (4.79)-
(4.82) implies the asymptotic expansion for the others. In fact, suppose that (4.80) pos-
sesses an expansion in odd powers of n. Integration by parts plus the assumption that
g(z) is compactly supported in (z0 − ε,b+δ ) implies that

2
ˆ b+δ

z0−ε
g(z)Ai( f (z))Ai′( f (z))dz =

g(z)Ai( f (z))
f ′(z)

∣∣∣b+δ

z0−ε
−
ˆ b+δ

z0−ε

(
g(z)
f ′(z)

)′
Ai2( f (z))dz,

=− 1
n2/3

ˆ b+δ

z0−ε

(
g(z)
ϕ ′

b(z)

)′
Ai2( f (z))dz

=−1
n

ˆ b+δ

z0−ε
n1/3

(
g(z)
ϕ ′

b(z)

)′
Ai2( f (z))dz,

where ϕb(z) is the n-independent function determined by f (z) = n2/3ϕb(z). Then (4.81)
possesses expansion in even powers. The same equation also provides a proof that the
expansion in even powers for (4.81) implies an expansion in odd powers of n for (4.80),
since [

g(z)
ϕ ′

b(z)

]′
,

is a new C∞ function of z compactly supported in (z0 − ε,b+δ ).

Suppose the required expansion holds for (4.81). Integration by parts shows that

n1/3
ˆ b+δ

z0−ε
g(z)Ai2( f (z))dz =

1
n

ˆ b+δ

z0−ε

(
g(z)
ϕ ′

b(z)

)′ 1
ϕ ′

b(z)
F0( f (z)) f ′(z)dz. (4.83)

Thus, (4.79) has asymptotic expansion in even powers of n. Analogously to the
previous case, the equality also proves that the expansion for (4.79) implies the expansion
for (4.81).

Finally, if (4.79) and (4.80) have expansions in even powers, an integration by
parts leads to

n−1/3
ˆ b+δ

z0−ε
g(z)[Ai′( f (z))]2( f (z))dz =− 2

3n

ˆ b+δ

z0−ε

[
g(z)
ϕ ′

b(z)

]′
Ai′( f (z))Ai′( f (z))dz

=− 1
3n

ˆ b+δ

z0−ε

[
g(z)
ϕ ′

b(z)

]′ ϕb(z)
ϕ ′

b(z)
F0( f (z)) f ′(z)dz,

and thus (4.82) has an expansion in even powers of n.

Consequently, it suffices to prove that (4.79) possesses an asymptotic expansion in
even powers of n. The proof relies on the existence of {Fi(ζ )}∞

i=0 and {Gi(ζ )}∞
i=0 sequences

of functions such that for every i ≥ 1

F ′
i (ζ ) = Fi−1(ζ ), (4.84)
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Gi(0) = Fi(0), Fi decays exponentially for positive values and Gi possesses an asymptotic
expansion for negative values with no constant term.

Since g is C∞, it can be differentiated as many times as we wish. So the trick is to
integrate by parts repeatedly always integrating the term related to Fi or Gi and taking
the derivative of the term related to g. The fact that f (b) = 0 and that g is compactly
supported on (z0−ε,b+δ ) assure us that the boundary terms in the integration by parts
always vanish and what is left is a new integral to be evaluated.

The asymptotic expansion of the Airy function implies that

F0(ζ ) =
√
−ζ (a0 +a1(−ζ )−3 +a2(−ζ )−6 + · · ·)

+
√
−ζ (b0(−ζ )−3 +b1(−ζ )−6 + · · ·)sin

(
4
3
(−ζ )3/2

)
+(c0(−ζ )−1 + c1(−ζ )−4 + · · ·)cos

(
4
3
(−ζ )3/2

)
,

as ζ →−∞ and that F0(ζ ) decays exponentially as ζ → ∞. Thus, F0(ζ )− (−ζ )1/2a0 → 0
when ζ →−∞, what suggests us an auxiliary function G1(ζ ) given by

G′
1(ζ ) = F0(ζ )− (−ζ )1/2a0. (4.85)

The asymptotic expansion of F0 implies that G1 possesses an asymptotic expansion
given by

G1(ζ ) = (a(1)0 (−ζ )−3/2 +a(1)1 (−ζ )−9/2 + · · ·)

+(b(1)0 (−ζ )−3/2 +b(1)1 (−ζ )−9/2 + · · ·)sin
(

4
3
(−ζ )3/2

)
+(c(1)0 (−ζ )−3 + c(1)1 (−ζ )−6 + · · ·)cos

(
4
3
(−ζ )3/2

)
.

(4.86)

Analogously we have well-behaved asymptotic expansions for

G′
2(ζ ) := G1(ζ ),

G′
3(ζ ) := G2(ζ ).

Straightforward calculations show that Fi, i = 1,2,3 defined by

F1(ζ ) := G1(ζ )−
2a0

3
(−ζ )3/2 (4.87)

F2(ζ ) := G2(ζ )+
22a0

5×3
(−ζ )3/2 (4.88)

F3(ζ ) := G3(ζ )−
23a0

7×5×3
(−ζ )3/2, (4.89)

satisfy (4.84). Notice that by construction f (b) = 0, f (z)< 0 if z < b, z ∈Uδ and f (z)> 0
if z > b, z ∈Uδ . Moreover Gi has a well-defined asymptotic expansion for negative values
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that tends to zero when ζ → −∞ and Fi has an exponential decay for positive values
that also goes to zero when ζ → ∞. Therefore we must split our integral once again in
such a way that we can express the integrand by means of Gi in the interval (z0 − ε,b)
and Fi in the interval (b,b+δ ). Thus, given the definitions and asymptotic expansions of
F1,F2,F3,G1,G2 and G3 we are able to perform the first integration by parts over (4.79)

1
n

ˆ b+δ

z0−ε
g(z)F0( f (z)) f ′(z)dz =

1
n

ˆ b+δ

z0−ε
g(z)(F0( f (z))−a0(− f (z))1/2 +a0(− f (z))1/2) f ′(z)dz

=
1
n

ˆ b

z0−ε
g(z)a0(− f (z))1/2 f ′(z)dz+

1
n

ˆ b

z0−ε
g(z)G′

1( f (z))×

f ′(z)dz+
1
n

ˆ b+δ

b
g(z)F0( f (z)) f ′(z)dz

=ê0 +A1,

where

ê0 =
1
n

ˆ b

z0−ε
g(z)a0(− f (z))1/2 f ′(z)dz, (4.90)

A1 =
1
n

ˆ b

z0−ε
g(z)G′

1( f (z)) f ′(z)dz+
1
n

ˆ b+δ

b
g(z)F0( f (z)) f ′(z)dz. (4.91)

A simple calculation shows that ê0 is independent of n since f (z) = n2/3ϕb(z):

ê0 =−1
n

ˆ b

z0−ε
g(z)a0

d
dz

(
2
3
(− f (z))3/2

)
dz,

=−a0

2

ˆ b

z0−ε
g(z)(b− z)1/2(z−a)1/2h(z)dz.

Now we deal with A1. Two more integrations by parts lead us to

A1 =−1
n

ˆ b

z0−ε

[
1

f ′(z)

(
g′(z)
f ′(z)

)′]′
G3( f (z))dz− 1

n

ˆ b+δ

b

[
1

f ′(z)

(
g′(z)
f ′(z)

)′]′
F3( f (z))dz.

(4.92)

The asymptotic behaviour of G3 suggests that we may sum and subtract a(3)0 (− f (z))1/2

from the first integrand. Therefore, we obtain

A1 =ê1n−2 +A2 (4.93)

ê1 =−n
ˆ b

z0−ε

[
1

f ′(z)

(
g′(z)
f ′(z)

)′]′
a(3)0 (− f (z))1/2 dz (4.94)

A2 =− 1
n

ˆ b

z0−ε

[
1

f ′(z)

(
g′(z)
f ′(z)

)′]′
(G3( f (z))−a(3)0 (− f (z))1/2)dz

− 1
n

ˆ b+δ

b

[
1

f ′(z)

(
g′(z)
f ′(z)

)′]′
F3( f (z)) f ′(z)dz.

(4.95)
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Notice that ê1 is n-independent. In fact,

ê1 =−n
ˆ b

z0−ε

[
1

n2/3ϕ ′
b(z)

(
g′(z)

n2/3ϕ ′
b(z)

)′]′
a(3)0 (−n2/3ϕb(z))1/2 dz

=−
ˆ b

z0−ε

[
1

ϕ ′
b(z)

(
g′(z)
ϕ ′

b(z)

)′]′
a(3)0 (−ϕb(z))1/2 dz.

The factor n−2 comes from f (z) and A2 is the sum of two integrals that can be
expressed by means of F3 and G3.

The inductive step proves that the existence and the asymptotic behaviour of Fi,Gi,
i ∈ {1,3m} implies the existence of G3m+1,G3m+2,G3m+3 such that

G3m+1(ζ ) =
ˆ ζ

−∞
(G3m(s)−a(3m)

0 (−s)1/2)ds (4.96)

G3m+2(ζ ) =
ˆ ζ

−∞
G3m+1(s)ds (4.97)

G3m+3(ζ ) =
ˆ ζ

−∞
G3m+2(s)−a(3m+2)

0 (−s)−1/2 ds−2a(3m+2)
0 (−ζ )1/2, (4.98)

and Gi possesses an asymptotic expansion that goes to zero when ζ →−∞. Furthermore,
set F3m+1,F3m+2,F3m+3 as

F3m+1 =

ˆ ζ

∞
F3m(s)ds, (4.99)

F3m+2 =

ˆ ζ

∞
F3m+1(s)ds (4.100)

F3m+3 =

ˆ ζ

∞
F3m+2(s)ds. (4.101)

By definition, F3m+1,F3m+2,F3m+3 satisfy (4.84) and decay exponentially for ζ → ∞.
Because of the recursive definitions of Gi,Fi it follows that

F3m+1 =G3m+1 −
2a(3m)

0
3

(−ζ )
3
2 +

24a(3m−3)
0

9×7×5×3
(−ζ )

9
2

+ · · ·+ (−1)3m+123m+1a0

∏3m+1
j=1 (2 j+1)

(−ζ )
6m+3

2 ,

(4.102)

F3m+2 =G3m+2 +
22a(3m)

0
5×3

(−ζ )5/2 +
25a(3m−3)

0
11×9×7×5×3

(−ζ )11/2

+ · · ·+ (−1)3m+223m+2a0

∏3m+2
j=1 (2 j+1)

(−ζ )(6m+5)/2,

(4.103)

F3m+3 =G3m+3 −
23a(3m)

0
7×5×3

(−ζ )
7
2 +

26a(3m−3)
0

13×11×9×7×5×3
(−ζ )

13
2

+ · · ·+ (−1)3m+323m+3a0

∏3m+3
j=1 (2 j+1)

(−ζ )
6m+7

2 .

(4.104)



90 Chapter 4. The partition function

Now, by inductive hypothesis suppose that after 3m integrations by parts we come
up with the expression

A = ê1n−2 + ê2n−4 + · · ·+ êmn−2m +Am+1, (4.105)

where êi, i = 1,2, · · · ,m, does not depend on n and Am+1 is the sum of integrals depending
on G3m and F3m. More precisely,

Am+1 =
(−1)m

n

ˆ b+δ

z0−ε

d
dz

(
( f ′)−1 d

dz

(
( f ′)−1 · · · d

dz

(
( f ′)−1g′

)
· · ·
))

×

(G3m( f (z))−a(3m)
0 (− f (z))1/2)dz+

(−1)m

n

ˆ b+δ

z0−ε

d
dz

(
( f ′)−1 d

dz

(
( f ′)−1 · · · d

dz

(
( f ′)−1g′

)
· · ·
))

F3m( f (z))dz.

(4.106)

In each nested set of derivatives the operator

d
dz

(
( f ′)−1.

)
, (4.107)

appears (3m−1) times. Integrating by parts three more times and applying the informa-
tion provided by Equations (4.98) and (4.101), it is straightforward to show that

Am+1 = êm+1n−2(m+1)+Am+2, (4.108)

where Am+2 is the sum of integrals depending on G3m+3,F3m+3.

So far, we have that for a smooth function g(z) compactly supported on (z0−ε,b+
δ ) the integral (4.79) has asymptotic expansion in even powers of n. Consequently, the
expansion desired for Equations (4.80)-(4.82) also holds. Then, an asymptotic expansion
in even powers of n is valid for the second integral in (4.74). For the integral in (a−δ ,z0+ε)
analogous calculations hold.

The only thing left to do is to show that the asymptotic expansion depends ana-
lytically on the parameter t. Remember that the coefficients in the expansion were of the
form

êi =

ˆ b

z0−ε
χ( j)

b (z)F(z, t)(−ϕb(z))1/2 dz, (4.109)

where F(z, t) gathers the terms which do not dependent on χb(z), χ( j)
b denotes the j-th

derivative and ϕb is the n-independent part of the conformal map. Notice that ϕb(z) is
analytic with branch cut emanating from b. By the definition of χb we can decompose the
integral into a sum

êi =

ˆ z0+ε

z0−ε
χ( j)

b (z)F(z, t)(−ϕb(z))1/2 dz+
ˆ b

z0+ε
F(z, t)(−ϕb(z))1/2 dz. (4.110)
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The first integral is analytic on t because the integrand is. For the second one, take
the branch cut starting on b, passing by z0 + ε . Thus, such integral is half the contour
integral encircling (z0+ε,b), since the integrand is analytic on t and posses a square-root
branch point.

In particular, ˆ ∞

−∞
λ ℓρn(λ )dλ (4.111)

possesses an asymptotic expansion in even powers of n such that the coefficients are
analytic on t.

4.5 Final comments
The technical details explored in previous sections can now be summarized into

simple steps in order to explain the proof of Theorem 9. We used the fact that our
partition function is a matrix model based one to connect it to a random matrix ensemble
and express it in terms of the so-called one point correlation function, as in Equation
(4.20). That is,

∂
∂ t j

log(Zn(t)) =−n2
ˆ ∞

−∞
λ jρn(λ )dλ .

The section 4.3 provided an expression for the one point function where the n-
dependence becomes explicit and section 4.4 built an expansion in even powers of n for
the integral of the correlation function.

All together, such results leads us to the conclusion that

∂
∂ t j

1
n2 log(Zn(t)) = ê0 +

1
n2 ê1 +

1
n4 ê2 + · · · .

Now, since it is uniformly valid for all t ∈T(T,γ), one can integrate and obtain the
asymptotic expansion for the logarithm of the partition function. Therefore, Theorem 9
is proved and all the calculations in section 4.1 are legitimate.
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CHAPTER

5
INTEGRABLE SYSTEMS IN MATRIX

MODELS

In this chapter, we explore some connections between random matrix models and
integrable systems. At first, we present a short discussion on the definition of integrable
systems. Then, we construct the bridge between the two theories by different approaches.
When n is fixed, we explore the partition function in order to reach the KP-hierarchy, and
for n → ∞ we recover some solutions to a Painlevé equation through the point process
described by the eigenvalues of random matrices. The first connection will be dealt with
briefly, while the second one will be discussed in detail with the help of the asymptotics
obtained in section 4.3.

5.1 Integrable systems

A system is a common concept in physics, and refers to the mathematical model
that gives the approximate behaviour of a physical object.

Take, for instance, the one dimensional harmonic oscillator. If one needs to describe
the position x(t) of a mass m in the endpoint of a spring with constant k > 0 starting in
the point x0 with velocity 0, Newton’s equations say that x(t) must solve

m
d 2x(t)

d 2t
=−kx(t)

x(0) = x0

x′(0) = 0.

That is, our problem reduces to an ordinary differential equation (ODE), which is
easily solved by means of trigonometric functions.
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This famous problem possesses a remarkable characteristic: it is integrable. But
what does integrable mean in the context of dynamical systems? In order to bring some
light into this concept, we start with a classical system and adopt the Hamiltonian for-
malism. The state of the system at a given time is then specified by a point (qi, pi) in
the phase space, where qi stands for i-th coordinate of the position and pi stands for i-th
coordinate of the momentum (pi = mx′′i ). The information of the system is then encoded
by a function H(qi, pi) called Hamiltonian, and the motion equations are first order ODEs

dqi

dt
=

∂H
∂ pi

dpi

dt
=−∂H

∂qi
.

Given a function f (q, p) in the phase space,

d f
dt

=
n

∑
i=1

∂ f
∂qi

dqi

dt
+

∂ f
∂ pi

dpi

dt

=
n

∑
i=1

∂ f
∂qi

∂H
∂ pi

− ∂ f
∂ pi

∂H
∂qi

=: {H, f},

where {., .} denote the Poisson bracket,

{ f ,g} :=
n

∑
i=1

∂ f
∂ pi

∂g
∂qi

− ∂g
∂ pi

∂ f
∂qi

. (5.1)

Thus, a function is conserved under time evolution if and only if {H, f} = 0. A
system on a phase space of dimension 2n is said to be (Liouville) integrable if there exist
n independent functions fi on phase space in involution, that is,

{ fi, f j}= 0.

When such condition is satisfied, Liouville Theorem (see Babelon, Bernard and
Talon (2003)) implies that the system has a solution expressed in terms of a finite numbers
of integrals (a solution by the quadrature method).

Back to the harmonic oscillator, its Hamiltonian is given by

H(q, p) =
p2

2m
+

kq2

2m
,

where q := x and p := mv. Since the phase space is bidimensional and the energy E := H

is conserved, the system is integrable.

In 1965, Zabusky and Kruskal (1965) notice that the solitons, modelled by the so-
lutions to the KdV equation, suffer no distortion under collision, what suggests a strong
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stability of the system. It marks the beginning of the modern theory of integrable systems.
A huge breakthrough came with the development of an important tool for the non-linear
ODEs when Gardner et al. (1967) started their work on the scattering - inverse scatter-
ing method, also known as Riemann-Hilbert method. Some years latter, Deift and Zhou
(1992) improved the technique with the development of the non-linear steepest descent
method. The Riemann-Hilbert method provided the construction of an infinity hierarchy
of recursive relations. Since at a finite dimension it implies that the system is Liouville
integrable, such hierarchies became known as integrable hierarchies.

It was the beginning of the modern theory of integrable systems, which include
equations such as the Painlevé transcendents, mKdV, Sine-Gordon, dNLS, KP and so on.
An important tool in this context are the so-called τ-functions, which provide solutions
to all the equations of a hierarchy and are usually expressed as a determinant of a matrix
whose entries are elementary functions.

In the present work some important hierarchies are the Painlevé ones. The history
of Painlevé equations begin in the early years 1900’s, when the french mathematician Paul
Painlevé classified all the second order non-linear ODEs of the form

uxx(x) = F(x,u,ux),

where F(x) is a rational function and the ODE possesses the Painlevé Property, that
is, the only movable singularities are poles. The sixty equations obtained by Painlevé
and Gambier were summarized by Ince (1944). It is noteworthy that the fifth Painlevé
equation was independently discovered by Fuchs. Each of such equations either possesses
a closed form to its solution or is solvable by quadrature or can be reduced to one of the
following six canonical Painlevé equations:

i. Painlevé I:
u′′ = 6u2 + x, (5.2)

ii. Painlevé II:
u′′ = 2u3 + xu+α, (5.3)

iii. Painlevé III:
u′′ =

1
xu

[x(u′)2 −uu′+βu+αu3 + γxu4 +δx], (5.4)

iv. Painlevé IV:

u′′ =
1
u

[
1
2
(u′)2 +2(x2 −α)u2 +4xu3 +

3
2

u4 +β
]
, (5.5)

v. Painlevé V:

u′′ =
(

1
u−1

+
1
xu

)
(u′)2 − u′− γu

x
+

(u−1)2

x2

(
αu+

β
u

)
+δ

u(u+1)
u−1

, (5.6)
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vi. Painlevé VI:

u′′ =
1
2

(
1

u− x
+

1
u−1

+
1
u

)
(u′)2 −

(
1
x
+

1
x−1

+
1

u− x

)
u′+

u(u−1)(u− x)
x2(x−1)2

(
δ

x(x−1)
(u− x)2 + γ

x−1
(u−1)2 +β

x
u2 +α

)
,

(5.7)

where α,β ,γ and δ are complex parameters.

5.2 Partition Function and KP Hierarchy
The Kadomtsev-Petviashvili (KP) hierarchy is defined by an infinite set of evolu-

tion equations and their compatibility conditions. One approach to construct such hierar-
chy is through any pseudo-differential operator

L= ∂ +
∞

∑
k=1

αk∂−k, (5.8)

where αk = αk(x,t) and t = (t1, t2, · · ·) are the KP flow-parameters or the KP times.

Definition 6. Consider the infinite set of equations in the Lax form of the KP equations

∂L
∂ tk

=[Dk,L], k = 1,2,3, · · · , (5.9)

Dk :=(Lk)+ = ∂ k +
k

∑
j=2

wk, j∂ k− j, (5.10)

where (.)+ means that we only take the terms of non-negative order in ∂ and wk, j is
a polynomial in α j and its derivatives. Then the KP hierarchy arises from the set of
infinite compatibility conditions given by

∂Dk

∂ tℓ
− ∂Dℓ

∂ tk
+[Dk,Dℓ] = 0. (5.11)

For instance, taking k = 2 we have

D2 =(L2)+

=

[(
∂ +

∞

∑
k=1

αk∂−k

)(
∂ +

∞

∑
k=1

αk∂−k

)]
+

=

∂ 2 +2α1 +2
∞

∑
k=2

αk∂−k+1 +
∞

∑
k=1

∂αk∂−k +

(
∞

∑
k=1

αk∂−k

)2

+

=∂ 2 +2α1.
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Proceeding analogously we conclude that the first Di’s are given by

D1 = ∂ ,

D2 = ∂ 2 +2α1,

D3 = ∂ 3 +3α1∂ +3α ′
1 +3α2,

and so on. Setting α1 = u, α2 = v, t2 = y and t3 = t the pair D2,D3 originates two equations:

3uxy +6vy −2ut = uxxx +6vxx −3uux

uy = uxx +4vx.

Eliminating v, one obtains the KP equation

3uyy = (4ut −uxxx −6uux)x, (5.12)

that names the entire hierarchy.

The operator L can be conjugated by another pseudodifferential operator W known
as dressing operator, such that

L=W∂W−1. (5.13)

An important result states that the Wronskian determinant constructed by the
dressing operator is a τ-function of solutions to the KP-hierarchy. In fact, take {xi(t)}n

i=1

linearly independent functions satisfying

∂xi

∂ t j
=

∂ jxi

∂ t j
1

, (5.14)

where i = 1, · · · ,n and j = 1,2, · · · . We assume the following result.

Theorem 13 (Theorem 3.8.2, (HARNAD; BALOGH, 2021)). The Wronskian determi-
nant

τ(t) := det



x1 x2 · · · xn
∂x1

∂ t1

∂x2

∂ t1
· · · ∂xn

∂ t1... ... . . . ...
∂x1

∂ tn−1

∂x2

∂ tn−1
· · · ∂xn

∂ tn−1


, (5.15)

is a τ-function for the KP-hierarchy.

Take Hn the space of Hermitian matrices n× n, just as in section 2.8. The par-
tition function of the matrix model determined by a measure dν = ρ(H)dH, where
dH = ∏n

i=1 dhii ∏i< j dRehi j dImhi j, is given by

Zρ =

ˆ
Hn

ρ(H)dH, (5.16)
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that is, the partition function is the quantity that normalizes the measure. If ρ is invariant
by unitary transformation, the Weyl formula (2.12) still holds and Zρ can be expressed
in terms of the eigenvalues of the matrix H. Taking

ρ(H) = e− tr(V (H)),

we have

Zρ =

ˆ
Hn

e− tr(V (H)) dH

= cn

ˆ
Rn

∆(λ )2 e−∑i V (λi) dλ

=: cnZn(V ).

The term Zn(V ) may be recognized as the partition function from Chapter 4. Take
the potential V (λ , t) :=V (λ ; t1, t2, · · ·) = λ 2

2 −∑∞
k=1 tkλ k. Therefore,

Zn(V, t) := Zn(V (λ , t)) =
ˆ
Rn

∆(λ )2
n

∏
i=1

e−V (λi,t) dλ .

The Heine formula (see subsection 2.7.4) implies that

Zn(V, t) = n!det(Mn(t)),

where Mn(t) is the n×n matrix of moments, that is,

Mn(t) :=


m0(t) m1(t) · · · mn−1(t)
m1(t) m2(t) · · · mn(t)

... ... . . . ...
mn−1(t) mn(t) · · · m2n−2(t)

 , mk(t) :=
ˆ
R

xk e−V (x,t) dx.

But notice that {mk(t)}2n−2
i=0 satisfy the relation (5.14), that is,

∂mk(t)
∂ t j

=
∂

∂ t j

ˆ
R

xk e−
x2
2 +∑∞

k=1 tkxk
dx

=

ˆ
R

xk+ j e−
x2
2 +∑∞

k=1 tkxk
dx

=
∂ jmk(t)

∂ t j
1

.

Thus, the partition function may be expressed as

Zn(V, t) = n!det

(
∂ jmk(t)

∂ t j
1

)
0≤k, j≤n−1

,

and by Theorem 13,
Zn(V, t)
Zn(V,0)

= det

(
∂ jmk(t)

∂ t j
1

)
0≤k, j≤n−1

,

is a τ-function of the KP hierarchy.
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5.3 Limit kernels
Another situation where the relation between integrable hierarchies and random

matrix models naturally shows up is when dealing with the behaviour of the eigenvalues
as the dimension of the matrix grows.

The Gaussian measure on the space of matrices induces a probability measure over
the space of eigenvalues whose law depends on the ensemble. For the Gaussian Unitary
Ensemble (GUE), Weyl formula (2.12) tells us that the induced density has the form

cn e−
1
2 ∑n

i=1 λ 2
i ∏

j<k
|λ j −λk|2.

In another ensembles, the general law has the form

cn e−
α
2 ∑n

i=1 λ 2
i ∏

j<k
|λ j −λk|β ,

where α is some constant and β is the so-called Dyson index. When dealing with the
space of real symmetric matrices, i.e., the Gaussian Orthogonal Ensemble (GOE), we
have β = 1. In the space of complex hermitian matrices, i. e., in the Gaussian Unitary
Ensemble, we have β = 2 and, at last, for the quartenionic hermitian matrices where the
Gaussian measure defines the Gaussian Symplectic Ensemble (GSE), we have β = 4.

Our main interest is in the Unitary ensemble. From section 2.6, we know that
given a Gaussian ensemble, the eigenvalues behave like a determinantal point process
with a Christoffel-Darboux kernel. Therefore, if anyone wonders about the distribution of
eigenvalues as the dimension goes to infinity, the answer is in the limit behaviour of such
kernel.

Recall the definition of the Christoffel-Darboux kernel

Kn(x,y) =
√

e−nV (x)
√

e−nV (y)
n−1

∑
k=0

pk(x)pk(y).

The Christoffel-Darboux formula for orthogonal polynomials (SZEGö, 1939) states
that

n−1

∑
k=0

pk(x)pk(y) =
γn−1

γn

pn(x)pn−1(y)− pn(y)pn−1(x)
x− y

. (5.17)

Moreover, we know that

Y11(z) =
pn(z)

γn

Y12(z) =−2πiγn−1 pn−1(z),
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where Y (z) is the solution to the Riemann-Hilbert problem in section 4.3. Therefore,

Kn(x,y) =
√

e−nV (x)
√

e−nV (y) γn−1

γn

pn(x)pn−1(y)− pn(y)pn−1(x)
x− y

=
√

e−nV (x)
√

e−nV (y)Y11(x)Y12(y)−Y11(y)Y12(x)
(x− y)(−2πi)

=

√
e−nV (x)

√
e−nV (y)

2πi(x− y)
[Y11(y)Y12(x)−Y11(x)Y12(y)],

and the kernel can be written as

Kn(x,y) =

√
e−nV (x)

√
e−nV (y)

2πi(x− y)

(
0 1

)
Y−1(y)Y (x)

(
1
0

)
. (5.18)

The global/macroscopic limit for the kernel is given by the equilibrium measure
for the potential V . In fact, from (5.18) we have

Kn(x,y) =

√
e−nV (x)

√
e−nV (y)

2πi(x− y)

(
0 1

)
e−n(g+(y)− ℓ

2 )σ3 T−1
+ (y)R−1(y)

×R(x)T+(x)en(g+(x)− ℓ
2 )σ3

(
1
0

)
.

(5.19)

Define

ξ (z) : =−2πi
ˆ z

b
ψ̂(y)dy, (5.20)

where ψ̂(x) is the density of the equilibrium measure µV (x) from subsection 4.3.1.1. There-
fore, by the definition of the g-function (see subsection 4.3.1.2) one has

ξ (z) = g+(z)−g−(z), z ∈ (a,b), (5.21)

and the kernel can be expressed as

Kn(x,y) =
1

2πi(x− y)

(
0 en ξ (y)

2

)
T−1
+ (y)R−1(y)R(x)T+(x)

(
en ξ (x)

2

0

)
.

Letting y → x and applying L’Hopital rule, leads to

lim
n→∞

1
n

Kn(x,x) = ψ̂(x).

In short, the following result holds.

Theorem 14 (Theorem 6.96, (DEIFT, 1999)). The unique Borel measure

dµV (x) := ψ̂(x)dx
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minimizing the operator

E =

ˆ
R2

log |x− y|−1 dµ(x)dµ(y)+
ˆ
R

V (x)dµ(x), (5.22)

over the space of all probability measures on R, is such that

lim
n→∞

1
n

Kn(x,x) = ψ̂(x). (5.23)

The Gaussian case of Theorem 14 was proved by Ginibre (1965) and is the Semi-
circle law (see section 2.3).

The so-called local limit is a little more involved. Since the expression for the
orthogonal polynomials changes in different regions of the complex plane, the behaviour
of the kernel depends on the location of x,y as well.

5.3.1 Bulk limit

To determine the distribution of eigenvalues near x∗ ∈ R, we need to center and
rescale the correlation kernel. Suppose there exists a fixed δ > 0 such that x,y,x∗ ∈ (a−
δ ,b−δ ). Moreover, choose the ratio of the local parametrix domain to be δ

2 , i.e., P(z) is the
parametrix for z ∈Uδ/2 given by Equation (4.59) and P̃(z) is the parametrix for z ∈ Ũδ/2

given by Equation (4.60). The behaviour of the orthogonal polynomials in (a−δ ,b−δ ) is
given by the limit of the solution in region B1 (see Figure 30) when z ↓R. From Equations
(4.67) and (4.68) we have

Y+(z) = en ℓ
2 σ3 R(z)T (z)en(g+(z)− ℓ

2 )σ3

= en ℓ
2 σ3 R(z)S(1)(z)v+ en(g+(z)− ℓ

2 )σ3 .

Therefore,

Y−1(y)Y (x) =e−n(g+(y)− ℓ
2 )σ3 v−1

+ (S(1)(y))−1R−1(y)×

R(x)S(1)(x)v+ en(g+(x)− ℓ
2 )σ3 ,

which implies that

e−nV (y)
2 e−nV (x)

2

(
0 1

)
Y−1(y)Y (x)

(
1
0

)
=
(

0 1
)

e−nV (y)
2 e−n(g+(y)− ℓ

2 )σ3 v−1
+ (S(1)(y))−1

×R−1(y)R(x)S(1)(x)v+ en(g+(x)− ℓ
2 )σ3

(
1
0

)
e−nV (x)

2 .
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In terms of the function ξ (z) defined by Equation (5.20),(
0 1

)
e−nV (y)

2 e−n(g+(y)− ℓ
2 )σ3 v−1

+ =
(

0 1
)

e−nV (y)
2 e−n(g+(y)− ℓ

2 )σ3

(
1 0

−e−nξ (y) 1

)
=
(
−en(g+(y)− ℓ

2−
V (y)

2 −ξ (y)) en(g+(y)− ℓ
2−

V (y)
2

)
=
(
−e−n ξ (y)

2 en ξ (y)
2

)
.

Analogously,

v+ en(g+(x)− ℓ
2 )σ3

(
1
0

)
e−nV (x)

2 =

(
1 0

e−nξ (x) 1

)
en(g+(x)− ℓ

2 )σ3

(
1
0

)
e−nV (x)

2

=

(
en ξ (x)

2

e−n ξ (x)
2

)
.

At last, we need to evaluate

(S(1)(y))−1R−1(y)R(x)S(1)(x). (5.24)

Because of Equation (4.66), that is,

R(z)∼ I +
∞

∑
k=1

Rk

nk ,

we have that

R−1(y)R(x) =

(
1+ 1

n(R1,11(x)+R1,22(y)) 1
n(R1,12(x)−R1,12(y))

1
n(R1,21(x)−R1,21(y)) 1+ 1

n(R1,11(y)+R1,22(x))

)
+O

(
1
n2

)
Due to the symmetry of the jump matrices in the problem summarized by Theo-

rem 12, it follows that R1,11(z) =−R1,22(z) and R1,12(z) = R1,21(z). Therefore, it suffices to
estimate two terms. Define B = ∂Uδ/2 ∪∂Ũδ/2. Then,

R1,21(x)−R1,12(y) =
1

2πi

ˆ
B

[
V12(s)
s− x

− V12(s)
s− y

]
ds

=⇒ |R1,21(x)−R1,12(y)| ≤
1

2π

ˆ
B

∣∣∣∣V12(s)(x− y)
(s− x)(s− y)

∣∣∣∣ |ds|

=
|x− y|

2π

ˆ
B

∣∣∣∣ V12(s)
(s− x)(s− y)

∣∣∣∣ |ds|

≤ |x− y|
2π

4|B|
δ 2 max

s∈B
|V12(s)|

= |x− y|C1,

where C1 is independent of x,y. Analogously,

|R1,11(x)+R1,22(y)|=
∣∣∣∣ 1
2πi

ˆ
B

[
V11(s)
s− x

− V11(s)
s− y

]
ds
∣∣∣∣

≤ |x− y|C2.
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Thus, R−1(y)R(x) = I +O
( x−y

n

)
. By the expression for S(1)(z) in Equation (4.56),

it is straightforward that Equation (5.24) equals to

1
2

(
α(y)α−1(x)+α(x)α−1(y) −i(α(x)α−1(y)−α(y)α−1(x))

i(α(x)α−1(y)−α(y)α−1(x)) α(y)α−1(x)+α(x)α−1(y)

)
+O

(
1
n

)
.

where α(z) is the same as in Equation (4.55). By the Taylor expansion for the binomial
function, we obtain

α(y)α−1(x) =
(

y−b
y−a

)1/4(x−a
x−b

)1/4

=

(
1+(y− x)

(b−a)
(y−a)(x−b)

)1/4

= 1+O(x− y),

α(x)α−1(y) =
(

1+(x− y)
(b−a)

(x−a)(y−b)

)1/4

= 1+O(x− y),

and, consequently,

(S(1)(y))−1R−1(y)R(x)S(1)(x) = I +O(x− y).

Therefore, by Equation (5.18) the Kernel can be expressed as

Kn(x,y) =
(e

n
2 (ξ (y)−ξ (x))−e−

n
2 (ξ (y)−ξ (x))+O(x− y))

2πi(x− y)

=
sin( n

2i(ξ (y)−ξ (x)))
π(x− y)

+O(x− y).

Now we perform a rescaling and a centralization to obtain the limit kernel. Start
taking x 7→ x∗+ x

nψ̂(x∗) and y 7→ x∗+ y
nψ̂(x∗) , where ψ̂(z) is the density of the equilibrium

measure. The kernel is then given by

Kn

(
x∗+ x

nψ̂(x∗) ,x
∗+ y

nψ̂(x∗)

)
nψ̂(x∗)

=
sin
{

n
2i

[
ξ
(

x∗+ y
nψ̂(x∗)

)
−ξ

(
x∗+ x

nρV (x∗)

)]}
π(x− y)

+O
(

x− y
n

)
Taking the integral formula for ξ (z) (Equation (5.20)), some algebraic manipula-

tions lead to
n
2i

[
ξ
(

x∗+
y

nψ̂(x∗)

)
−ξ

(
x∗+

x
nψ̂(x∗)

)]
=

n
2i

[
−2πi

ˆ x∗+ y
nψ̂(x∗)

b
ψ̂(s)ds+

2πi
ˆ x∗+ x

nψ̂(x∗)

b
ψ̂(s)ds

]

=−π

[
n
ˆ x∗+ y

nψ̂(x∗)

x∗+ x
nψ̂(x∗)

ψ̂(s)ds

]

=−π
[

1
ψ̂(x∗)

ˆ y

x
ψ̂
(

x∗+
t

nψ̂(x∗)

)
dt
]
,
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and since by the Dominated Convergence Theorem

lim
n→∞

1
ψ̂(x∗)

ˆ y

x
ψ̂
(

x∗+
t

nψ̂(x∗)

)
dt =

1
ψ̂(x∗)

ˆ y

x
ψ̂(x∗)dt

= y− x,

it follows that the rescaled kernel converges, as n → ∞, to
sin [π(x− y)]

π(x− y)
. (5.25)

In short, we just verified the following result.

Theorem 15 ((PASTUR; SHCHERBINA, 1997)). Let V be a real analytic potential for
which the equilibrium measure dµV satisfies the conditions from Theorem 11 and x∗ ∈ R
such that ψ̂(x∗)> 0, where ψ̂ is the density of dµV . Then, uniformly for x and y in compact
subsets of R, it holds that

lim
n→∞

Kn

(
x∗+ x

nψ̂(x∗) ,x
∗+ y

nψ̂(x∗)

)
nψ̂(x∗)

=
sin [π(x− y)]

π(x− y)
. (5.26)

It is noteworthy to say that the Gaussian case V (x) = x2

2 of Theorem 15 was
discovered earlier by Forrester (1993). The general case enunciated above was first studied
by Pastur and Shcherbina (1997) and rediscovered with the RHP approach by Deift et al.
(1999b).

5.3.2 Limit kernel at endpoints
Take the formula for Y (z) in the neighbourhood Uδ of b. Proceeding analogously

as in the previous section,

e−nV (y)
2 e−nV (x)

2

(
0 1

)
Y−1(y)Y (x)

(
1
0

)
=
(
−e−n ξ (y)

2 en ξ (y)
2

)
(P(y))−1×

R−1(y)R(x)P(x)

(
en ξ (x)

2

e−n ξ (x)
2

)
.

We already know that R−1(y)R(x) = I +O
( x−y

n

)
. Writing the conformal map f (z)

in terms of the auxiliary function ξ (z), the local parametrix takes the form

P(z) = E(z)L( f (z))e−n ξ (z)
2 σ3 .

Therefore,

e−nV (y)
2 e−nV (x)

2

(
0 1

)
Y−1(y)Y (x)

(
1
0

)
=
(
−1 1

)
L−1( f (y))E−1(y)×

R−1(y)R(x)E(x)L( f (x))

(
1
1

)
.
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It follows from the explicit formula for E(z) (Equation (4.58)) that

E−1(y)R−1(y)R(x)E(x) = [ f−1/4(y)α(y)α−1(x) f 1/4(x)]σ3 +O
(

x− y
n

)
.

Moreover, since the equilibrium measure vanishes as a square-root at b, there exists
a constant c > 0 such that as z → b,

ψ̂(z) =
c
π
(b− z)1/2(1+o(1)).

Therefore, from the integral representation for f (z),

f (z) =
(

3n
2

)2/3(
−2πi

ˆ z

b
ψ̂(s)ds

)2/3

,

it follows that

f (y) =
(

3n
2

)2/3(
−2πi

ˆ y

b

c
π
(b− s)1/2(1+o(1))ds

)2/3

=

(
3n
2

)2/3(4ic
3

)2/3

[(b− y)3/2 +o(b− y)3/2]2/3

=

(
3n
2

)2/3(4ic
3

)2/3

(b− y)[1+o(1)]2/3

f−1/4(y)α(y)α−1(x) f 1/4(x) = (b− y)−1/4
(

y−b
y−a

)1/4(x−a
x−b

)1/4

(b− x)1/4
[

1+o(1)
1+o(1)

]1/6

=

(
x−a
y−a

)1/4

(1+o(1))

=

[
1+

x− y
y−a

]1/4

(1+o(1)) = 1+O(x− y).

Thus, Equation (5.18) becomes

Kn(x,y) =
1

2πi(x− y)

(
−1 1

)
L−1
+ ( f (y))(I +O(x− y))L+( f (x))

(
1
1

)
,

where the n-dependence of Kn comes from the n-dependence of the conformal map f .

We rescale and centralize the kernel taking x 7→ b+ x
(cn)2/3 =: xn and y 7→ b+ y

(cn)2/3 =:
yn. Therefore, as n→∞, a straightforward calculation implies that f (xn)→ x and f (yn)→ y.
Thus,

1
(cn)3/2 Kn(xn,yn) =

1
2πi(x− y)

(
−1 1

)
L−1
+ ( f (yn))(I +O(n−2/3))L+( f (xn))

(
1
1

)
.
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Now, by the definition of L( f (z)) in the sector II (see Equation (4.57) and Fig-
ure 28), we have

L+(z) =

(
−wAi(wz)

√
2π −w2 Ai(w2z)

√
2π

iw2 Ai′(wz)
√

2π iwAi′(w2z)
√

2π

)

L−1
+ (z) =

1
detL+(z)

(
iwAi′(w2z)

√
2π w2 Ai(w2z)

√
2π

−iw2 Ai′(wz)
√

2π −wAi(wz)
√

2π

)
,

where detL+(z) = 2πi(wAi(w2z)Ai′(wz)−w2 Ai′(w2z)Ai(wz) = 1, by the Wronskian rela-
tions for the solutions to the Airy equation. Moreover, since Ai(z)+wAi(wz)+w2 Ai(w2z)=

0, the rescaled kernel becomes

1
(cn)3/2 Kn(xn,yn) =

1
(x− y)

(Ai( f (xn))Ai′( f (yn))−Ai( f (yn))Ai′( f (xn)))+O
(

x− y
n2/3

)
.

Therefore, the limit kernel is given by

lim
n→∞

1
(cn)2/3 Kn(xn,yn) =

Ai(x)Ai′(y)−Ai′(x)Ai(y)
x− y

, (5.27)

and we just verified the following Theorem:

Theorem 16 ((DEIFT; GIOEV, 2007)). Let V be a real analytic potential for which the
equilibrium measure dµV satisfies the conditions from Theorem 11 and let b be the right
edge point of the support of dµV , such that for some constant c > 0

ψ̂(x) =
c
π
(b− x)1/2(1+o(1)) as x ↑ b.

Then, uniformly for x and y in compact subsets of R, it holds that

lim
n→∞

1
(cn)2/3 Kn(xn,yn) =

Ai(x)Ai′(y)−Ai′(x)Ai(y)
x− y

. (5.28)

The Gaussian case of Theorem 16 is due to Forrester (1993). For the general case,
the relevant asymptotic estimates of orthogonal polynomials were fully developed by Deift
et al. (1999b), but the formal statement as above only came in Deift and Gioev (2007).

5.3.3 Largest eigenvalue
Let λ max be the largest eigenvalue. Given a constant t, the probability that λ max ≤ t

is a Gap Probability (see subsection 2.7.1), since

P(λ max ≤ t) = P(there is no eigenvalue in (t,∞)).

We know from section 5.3 that given the right normalization, the distribution of
the eigenvalues converges weakly in probability to the equilibrium measure. For instance,
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we know that the distribution of the normalized eigenvalues of a matrix whose entries are
independent identically distributed random variables converges to the Wigner semicircle
law. That is, as n → ∞ the distribution of eigenvalues of H/

√
n goes to 1

2π
√

4− x2χ[−2,2].
Consequently, λ max

√
n → 2 almost surely.

In the general case, the normalized largest eigenvalue goes to the endpoint b.
Following the approach for λ in a neighbourhood of b, we rescale and centralize the
normalized eigenvalue as follows,

λ 7→ (λ −b)(cn)2/3.

Now look at the distribution function

Fn(t) : = P
[
(λ max −b)(cn)2/3 ≤ t

]
= P

[
λ max ≤ t

(cn)2/3 +b
]
.

Figure 31 – Tracy-Widom function.1

Source: Elaborated by the author.

From Theorem 4, the distribution function is a Fredholm determinant,

Fn(t) = det[I −K(n)
(t,∞)

],

and as n → ∞, in virtue of Theorem 16 it is natural to expect that Fn(x)→ F(x) where

F(t) = det[I −A(t,∞)],

= 1−
ˆ ∞

t
A(x1,x2)dx+

1
2!

ˆ ∞

t

ˆ ∞

t
det[A(xi,x j)]

2
i, j=1 dx1 dx2 + · · · ,

1 In Figure 31, at the left one has the distribution of 2000 matrices of dimension n = 100
and at the right, the distribution of 3000 matrices of dimension n = 100 plus the plot of
the Tracy-Widom function. The Tracy-Widom trace comes from the MIT licensed package
obtained from https://github.com/yymao/TracyWidom/. Such package generates the plot
for the Tracy-Widom function using the interpolation tables available on Borot and Nadal
(2012).
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where A(t,∞) is the Airy kernel. The function F(t) is called Tracy-Widom distribution.
Despite it can not be expressed in a closed form it can be related to an integrable system.

Theorem 17 ((TRACY; WIDOM, 2002)). The function F(t) is given by

F(t) = exp
(
−
ˆ ∞

t
(s− t)u2(s)ds

)
, (5.29)

where u(s) is a solution to the Painlevé II equation

u′′(x) = 2u(x)3 + xu(x).

In particular, u(s) in equation (5.29) is the so-called Hasting-Mcleod solution and

u(s)→ Ai(s),

as s → ∞.

Now consider the bulk limit. Let x∗ in the bulk and s > 0. Take a enumeration
of the normalized eigenvalues {λk}n

k=1. Once again consider the centralized and rescaled
eigenvalues

λk 7→ nψ̂(x∗)(λk − x∗).

Thus,

λk 6∈
(

x∗− s
2nψ̂(x∗)

,x∗+
s

2nψ̂(x∗)

)
, where 1 ≤ k ≤ n,

is equivalent to

nψ̂(x∗)(λk − x∗) 6∈
(
− s

2
,

s
2

)
, where 1 ≤ k ≤ n.

Define the function

Hn(s) : = P
[
nψ̂(x∗)(λk − x∗) 6∈

(
− s

2
,

s
2

)
, where 1 ≤ k ≤ n

]
.

Since it is a gap probability and the limit kernel in the support of the measure is
the sine kernel, in virtue of Theorem 15 it is natural to expect that Hn(s)→ H(s) where

H(s) = det[I −S(− s
2 ,

s
2 )
], (5.30)

= 1−
ˆ s

2

− s
2

S(x1,x2)dx+
1
2!

ˆ s
2

− s
2

ˆ s
2

− s
2

det[S(xi,x j)]
2
i, j=1 dx1 dx2 + · · · , (5.31)

where S(− s
2 ,

s
2 )

is the Sine kernel. Despite H(s) has no closed form, it can be expressed as
a solution to the Painlevé V.
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Theorem 18 ((JIMBO et al., 1980)). For every s > 0,

H(s) = exp
(ˆ s

0

σ(t)
t

dt
)
, (5.32)

where σ(t) satisfies the σ -form of Painlevé V equation

(tσ ′′)2 +4(tσ ′−σ)(tσ ′−σ +(σ ′)2) = 0,

with the following expansion around t = 0

σ(t) =− t
π
− t2

π2 −
t3

π3 +O(t4).

5.3.4 Conclusion
Different measures over a space of matrices may lead to connections to different

integrable systems/hierarchies. In the present work we took specifically the Gaussian
measure, and ended up finding the sine kernel, the Airy kernel and the Tracy-Widom
distribution.

It is a noteworthy fact that the limit kernel at the endpoints of the measure does
not depend on its exact form, rather on some general properties about its behaviour. In
our specific case, the important point was that the equilibrium measure vanishes as a
square-root at the endpoints, what leads us to a Airy kernel (DEIFT; GIOEV, 2007).

If the equilibrium measure vanishes as z−1/2 we end up with a Bessel kernel
(TRACY; WIDOM, 1994). When the measure vanishes as z3/2 we have the pure grav-
ity case and the limit kernel is related to the Painlevé I equation, and so on (BERGERE;
EYNARD, 2009).

For instance, Its, Kuijlaars and Östensson (2008) found out that the measure

p(M)dM =
1

Zn,N
|detM|2α e−N trV (M) dM.

where N > 0,α > −1/2, defined over the space of hermitian matrices of dimension n, i.
e., Hn, gives rise to an Unitary ensemble. Moreover, when n,N → ∞, n/N → 1, the global
eigenvalue regime is determined by the equilibrium measure and the one-parameter family
of limiting kernels at the endpoint of the support, say

Kedge
α (x,y;s),

is expressed as
Kedge

α (x,y;s) =
u2(x;s)u1(y;s)−u1(x;s)u2(y;s)

2πi(x− y)
,

where u1,u2 are related to special solutions to the Painlevé XXXIV (ITS; KUIJLAARS;
ÖSTENSSON, 2008).
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CHAPTER

6
FINAL COMMENTS

The first Chapter brought plenty of applications, some of them quite old, such as
the Wigner Semicircle law, some of them very modern, such as quantum chaos and big
data. All of them justify the interest in the behaviour of eigenvalues in random matrix
ensembles. Moreover, we discussed how a measure over a space of matrices induces a
distribution over the space of eigenvalues, and how the point process theory can be applied
to stablish formally such connection.

Latter, we chose one among the possible applications, namely the enumeration
of g-maps, to motivate the calculations in the following sections. After presenting some
results about the relation between the trace of matrices in random ensembles and the
enumeration of maps, we explored the details of a well-known Riemann-Hilbert problem,
namely the one related to orthogonal polynomials. The asymptotic information obtained
through such calculations were applied in order to achieve an asymptotic expansion to the
partition function and, consequently, to obtain a way to count maps by the coefficients in
the partition function expansion.

Moreover, we also discussed briefly about how the partition function of random
matrix models relates to the KP hierarchy, illustrating a connection between random
matrices and integrable systems when the dimension is fixed. Then, we explored the
relation that arises between random matrix ensembles and integrable systems when the
dimension of the matrices goes to infinity.

Through the calculations in section 5.3, we concluded that in order to understand
the behaviour of the eigenvalues one must understand the limit of the kernel that de-
scribes the point process associated to the eigenvalues. In such context we saw some limit
behaviours in details, what led us to solutions to Painléve II and V, while in the last
Section we discussed briefly about an Ensemble that leads to a kernel whose behaviour is
expressed in terms of the Painlevé XXXIV. Therefore, we have a reason to be interested
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in the behaviour of the solutions to such equation. Thus, in further works, we aim at a
better asymptotic characterization to the solutions of Painlevé XXXIV.

It is important to notice that, despite no original calculations were presented, a
lot of techniques which will be essential in the future were fully explored throughout
the dissertation. All the work in understanding and replicating the calculations originally
developed by Deift, Zhou, McLaughlin and others in the context of Riemann-Hilbert
problems will be applied in the development of an asymptotic analysis to the Painlevé
XXXIV in the next steps of our academic journey.
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APPENDIX

A
SOME PYTHON CODES

For the ones who have enjoyed the journey, we have some good news. You may
have finished the reading, but the fun is not over yet!

Some figures along the text were generated through Python codes. In this Appendix
we invite the reader to play a little bit with matrices eigenvalues through the codes behind
such figures. The comments in the codes are intended to make it possible to have fun with
random matrices even for the ones who are not very fond of programming.

We start with Section 2.3 where we saw how the eigenvalues of a normalized matrix
with entries {−1,1} are distributed in a semicircle shape when the dimension of the matrix
grows. The Python code to generate images similar to the Figures 3 and 4 is as follows.

Source code 1 – Empirical Semicircle distribution.

1: % First of all, we need some packages , namely 'random' to build
random variables , 'numpy' to construct matrices and 'matplotlib
.pyplot' to generate images.

2: import random
3: import numpy
4: import matplotlib.pyplot as plt
5:
6: %Then, set a variable 'k' to be the dimension of the matrix.
7: k = 1000
8:
9: %Now we create a list where the eigenvalues will be stored.

10: List = []
11:
12: %It is time to construct the matrix.
13: w, h = k, k
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14: Mat = [[0 for x in range(w)] for y in range(h)]
15:
16: for x in range(w):
17: for y in range(h):
18: if x == y:
19: Mat[x][y] = (1/(k**(1/2)))*random.choice([-1,1])
20: if x<y:
21: Mat[x][y] =(1/(k**(1/2)))*random.choice([-1,1])
22: Mat[y][x] = Mat[x][y]
23:
24: % We evaluate its eigenvalues and save them in the list initiated

before.
25: val, vet = numpy.linalg.eigh(Mat)
26: List.append(val)
27:
28: % At last, choose the number of bins and plot the histogram.
29: plt.hist(List, density=True, bins=40, color='purple', rwidth=1)
30: plt.show()

One can experiment other choices of random entries. For example, take complex
random variables with normal distribution.

Source code 2 – Empirical Semicircle distribution for hermitian matrices.

1: % Just change the random variables in the construction of the
matrix by complex normal ones

2: if x == y:
3: Mat[x][y] = random.normalvariate(0,1)/((k)**(1/2))
4: if x<y:
5: Mat[x][y] = complex(random.normalvariate(0,((1/2)**(1/2)))

, random.normalvariate(0,((1/2)**(1/2))))/((k)**(1/2))
6: Mat[y][x] = Mat[x][y].conjugate()

The package random offers even more options to explore. One can choose vari-
ables with uniform (random.uniform(a,b)), exponential (random.expovariate(lambda)) or
gamma distribution (random.gammavariate(a,b)) and see what happens.

Although less exciting than the previous code, the semicircle distribution plot
allows comparisons between the empirical result with the limit distribution.

Source code 3 – Semicircle law.
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1: % In order to invoke the constant pi, one needs the package 'math
'.

2: import math
3: import numpy as np
4: import matplotlib.pyplot as plt
5:
6: %We determine the interval in the real axis for which we want to

evaluate the semicircle distribution and plot the image.
7: x= np.linspace(-2,2,200)
8: y=((4-x**2)**(1/2))/(2*math.pi)
9:

10: plt.plot(x, y, color='purple')
11: plt.show()

Latter, in Section 2.6.2, we constructed the so-called “Dyson bridges”, i.e, non-
intersecting Brownian bridges. We also suggested an algorithm that now we implement
in Python to generate images such as Figure 9.

Source code 4 – A simple code for non-intersecting Brownian bridges.

1: % Once again , we need some packages to build random variables ,
construct matrices and generate images , respectively.

2: import random
3: import numpy
4: import matplotlib.pyplot as plt
5:
6: %Set k to be the number of matrices and n the number of steps

desired.
7: k, n = 1, 1
8:
9: % We initiate a matrix setting every entry as zero. It is where we

store the eigenvalues of each matrix.
10: List = [[0 for i in range(n)] for j in range(k)]
11:
12: % Now, it is time to construct each matrix and evaluate its

eigenvalues , as in the algorithm of Chapter 1.
13: for i in range(n):
14:
15: w, h = k, k
16: Matrix = [[0 for x in range(w)] for y in range(h)]
17:
18: for x in range(w):
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19: for y in range(h):
20: if x == y:
21: Matrix[x][y] = (1/(k**(1/2)))*random.normalvariate

(0,(2*(i/n)*(1-i/n))**(1/2))
22: if x<y:
23: Matrix[x][y] = (1/(k**(1/2)))*complex(random.

normalvariate(0,(((i/n)*(1-i/n))**(1/2))), random.normalvariate
(0,(((i/n)*(1-i/n))**(1/2))))

24: Matrix[y][x] = Matrix[x][y].conjugate()
25: val, vet = numpy.linalg.eigh(Matrix)
26:
27: %Once we have the eigenvalues , we ordenate them.
28: Alist = sorted(val)
29:
30: %Now, save the eigenvalues of the n-th matrix in the n-th row of

the first matrix we built.
31: for j in range(k):
32: List[j][i] = Alist[j]
33:
34: % To construct the bridges , we set the endpoints as zero.
35: NewList = [[0 for i in range(n+1)] for j in range(k)]
36: for j in range(k):
37: for i in range(n+1):
38: if i in range(n):
39: NewList[j][i] = List[j][i]
40: else:
41: NewList[j][i] = 0
42:
43: %Well-done. Just plot your brownian bridges and have fun

increasing the number of steps and/or bridges and observing
what happens.

44: for a in range(k):
45: plt.plot(NewList[a])
46: plt.show()

Some interesting behaviour appears in the Dyson bridges plot as the number of
paths increase. Let a small number of steps, say n = 10, and let k be 50, then 500 and, at
last, 1000. How do the paths behave? What happens to the largest eigenvalue? And the
smallest?

Increasing the number of steps also leads to interesting results, but be careful. The
number of steps is the dimension of a matrix for which you must evaluate the eigenvalues.
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And since it is a non-linear process, the computational cost increases drastically as n

grows.

And what about to watch the “particles” which describe non-intersecting Brownian
bridge trajectories running in real time? In order to do so, all we need is a Python package
able to animate figures. Bellow we exemplify how to animate each bridge.

Source code 5 – Animated non-intersecting Brownian bridges.

1: % We need one auxiliary package to animate the plot.
2: from matplotlib.animation import FuncAnimation
3:
4: %Here the construction of the matrices is exactly the same as in

the previous code. However , after the construction of the
object 'NewList', instead of 'plt.plot(NewList[a])' we animate
each path as follows.

5: fig, ax = plt.subplots()
6:
7: %First we initiate the bridge and the animation.
8: xdata, bridge1 = [], []
9: path1 = plt.plot([], [], animated=True)

10:
11: %Then, we initiate the animation.
12: def init():
13: ax.set_xlim(0,n)
14: ax.set_ylim(-1.7,1.7)
15: path1.set_data(xdata, bridge1)
16:
17: return path1,
18:
19: %Now, we update the frame for each time step.
20: def update(frame):
21: xdata.append(frame)
22: bridge1.append(NewList[0][frame])
23: path1.set_data(xdata, bridge1)
24:
25: return path1,
26:
27: animation = FuncAnimation(fig, update, frames=f, init_func=init,

blit=True, interval=100, repeat=False)
28:
29: animation.save('1bridge.gif')
30: plt.show()
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At last, we present the distribution of the largest eigenvalue in the unitary en-
semble. In order to compare the empirical distribution and the Tracy-Widom distri-
bution, we suggest installing the Tracy-Widom package (<https://github.com/yymao/
TracyWidom/>).

Source code 6 – Empirical Tracy-Widom distribution.

1: % Notice that now we call the function TracyWidom.
2: import numpy
3: import random
4: import matplotlib.pyplot as plt
5: from TracyWidom import TracyWidom
6:
7: %Let n be the number of matrices and k their dimension. Also,

create a list to store the eigenvalues.
8: k, n = 500, 2000
9: List = []

10:
11: %Now we create each matrix , evaluate its eigenvalues , ordenate

them and pick only the largest one, saving it in the list
created before.

12: for i in range(n):
13:
14: w, h = k, k
15: Mat = [[0 for x in range(w)] for y in range(h)]
16:
17: for x in range(w):
18: for y in range(h):
19: if x == y:
20: Mat[x][y] = random.normalvariate(0,1)/((k)

**(1/2))
21: if x<y:
22: Mat[x][y] = complex(random.normalvariate

(0,((1/2)**(1/2))), random.normalvariate(0,((1/2)**(1/2))))/((k
)**(1/2))

23: Mat[y][x] = Mat[x][y].conjugate()
24: val, vet = numpy.linalg.eigh(Mat)
25: A_list = sorted(val)
26: List.append((k**(2/3))*(val[k-1]-2))
27:
28: % Once the list of largest eigenvalues is done, just plot the

https://github.com/yymao/TracyWidom/
https://github.com/yymao/TracyWidom/
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histogram.
29: plt.hist(List, density=True, bins=40, color='violet', rwidth=1)
30:
31: %To compare with the Tracy-Widom function , call its distribution

and choose beta=2.
32: s = numpy.linspace(-5,3)
33: tw1 = TracyWidom(beta=2) # allowed beta values are 1, 2, and 4
34: pdf = tw1.pdf(s)
35:
36: plt.plot(s,pdf, color ='black')
37: plt.show()

The code results in images such as Figure 31.
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