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“Pure mathematics is, in its form,

the poetry of logical ideas.”

( Albert Einstein)





RESUMO

ROJAS GUTIERREZ, W. A. Algumas aplicações dos Jogos Topológicos. 2023. 66 p. Disserta-
ção (Mestrado em Ciências – Matemática) – Instituto de Ciências Matemáticas e de Computação,
Universidade de São Paulo, São Carlos – SP, 2023.

Neste artigo, analisaremos alguns jogos topológicos, desde jogos conhecidos como o jogo de
Banach ou o jogo de Choquet, até à definição de um novo, O jogo de Čech.
A maioria dos jogos aqui apresentados foram escolhidos pela sua relação total ou parcial com o
jogo de Čech. Uma vez que este último será especialmente importante para facilitar algumas
provas clássicas, bem como para apresentar novas propriedades de alguns espaços topológicos.

Palavras-chave: Espaço Čech-completo, Jogo do Čech, Espaços paracompactos.





ABSTRACT

ROJAS GUTIERREZ, W. A. Some applications of Topological Games. 2023. 66 p. Disserta-
ção (Mestrado em Ciências – Matemática) – Instituto de Ciências Matemáticas e de Computação,
Universidade de São Paulo, São Carlos – SP, 2023.

In this paper, we will look at some topological games, from well-known ones like Banach’s
game or Choquet’s game, to defining a new one, Čech’s game.
Most of the games presented here were chosen for their complete or partial relationship with
Čech’s game. Since the latter will be especially important to facilitate some classical proofs as
well as to present new properties of some topological spaces.

Keywords: Čech complete space, Čech’s game, Paracompact space.
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CHAPTER

1
INTRODUCTION

Topological games have been studied for almost 100 years, with the Banach-Mazur game
being the first to be described. In 1935 Stefan Banach started a notebook, called the Scottish
Book (MALDUIN, 1981), where the mathematicians residing in or visiting Lwów proposed
various mathematical problems (or conjectures) and also indicated their partial or complete
solutions. The original version of the Banach game said the following:

" Given a subset X of the unit interval J, he players alternately choose subintervals
J0,J1,J2 . . .⊂ J; where J0 ⊃ J1 ⊃ . . . Player I wins the play if, and only if, X

⋂
n<ω Jn ̸= /0."

Čech (CECH, 1937) showed that the Baire Density Theorem is valid for the absolute
Gδ spaces, later called Čech complete spaces. Choquet (CHOQUET, 1951) pointed out several
difficulties in generalizing completeness so that the Baire Density Theorem would still be valid.
In (CHOQUET, 1958) he introduced the siftable and strongly siftable spaces. The strongly
siftable spaces are related to game he introduced in (CHOQUET, 1969) called Choquet Game (
Ch(X) ).

In (PORADA, 1979), Porada introduced the following modification of the game Ch(X).
Given a subset Y of a topological space X , the play is again ⟨(x0,U0),V0,(x1,U1),V1 . . .⟩ , but Un

and Vn are open in X and xn ∈ Y . Player II wins the game if and only if /0 ̸=
⋂

Vn ⊂ Y . Denote
this game by P(X ,Y ).

In (TOPSOE, 1982), Topsoe strengthened the condition
⋂

n<ω Vn ̸= /0 the game Ch(X) as
follows: if F is a filter base of subsets of X such that for each n < ω there is an F ∈F with
F ⊂Vn then F clusters. We denote this game by SV (X). In Chapter 2, we will present the most
relevant definitions that will later be used to define the topological games.
In Chapter 3, we will look at the games described above as well as the ways in which they relate
to each other. We will present them divided into 2 groups; in the first place, we will see the
Banach, Choquet and Sequential games.And in the second group, we will see the Sieve and
Porada games, together with an original game that we will call the Čech game n honor of the
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space whose definition inspired its creation.
Finally, in Chapter 4, we will prove some properties of the studied games, such as the characteri-
zation of those spaces where Player I or Player II have a winning strategy.
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CHAPTER

2
PRELIMINARIES

In this chapter we will discuss the most important definitions that we will need throughout
the work.

2.1 Basic notions
We will start with the basic concepts that will be relevant.

Definition 2.1.1. A topological space (X ,τ) is Hausdorff if for every x,y ∈ X there are U,V ∈ τ

such that x ∈U , y ∈V and U ∩V = /0.

Definition 2.1.2. Let (X ,τ) be a topological space. Let A⊂ X . Then:

• A is Fσ if A is a countable union of closed sets.

• A is Gδ if A is a countable intersection of open sets.

Let Y be a Hausdorff compact space. Then it is clear that every Fσ subset is a σ -compact
subset, and vice versa.

Definition 2.1.3. A topological space X is called a Tychonoff space if it is a Hausdorff space
and its points can be separated from closed sets via (bounded) continuous real-valued functions.

Definition 2.1.4. A pair (Y,c) where Y is a compact Hausdorff space and c : X → Y is a
homeomorphic embedding of X in Y such that c(X) = Y , is called a compactification of X .

Although the definition given in 2.1.3 is the best known, in this work we will mainly
consider another equivalent definition described in the following theorem.

Theorem 2.1.5. A topological space X is Tychonoff if, and only if, X has a compactification.
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Proof.

The complete proof of this theorem can be found in (ENGELKING, 1989), Theorem 3.5.1

In (ENGELKING, 1989) There are interesting properties of compactifications, but we
will keep the following two:
• Let (Y,c1) and (Z,c2) are two compactifications of X . We say that Y ≤ Z if and only if there
is a function f : Z→ Y such that f ◦ c1 = c2. Let C (X) be the set of all compactifications of X .
Then (C (X),≤) is an ordered set.
• There is a largest element in (C (X),≤) which we will call βX , the Stone-Čech compactifcation.

From now on, all spaces are considered to be Tychonoff, unless otherwise specified.

Definition 2.1.6. Let (X ,≤) be a partially ordered set. A filter F in X is a subset of P(X) such
that:
1) F is non-empty.
2) For every x,y ∈F , there is a z ∈ X such that z≤ x and z≤ y.
3) If x ∈F and y ∈ X such that x≤ y, then y ∈F

A ultrafilter U is a maximal filter, that means there is no filter that contains it properly.

2.2 Complete sequence of open covers

The following definition will be fundamental when stating the Čech space and the
topological game of Čech.

Definition 2.2.1. A sequence (Cn)n∈ω of open covers is complete if for every ultrafilter u (in
P(X)) such that u∩Cn ̸= /0 for all n, it is true that

⋂
F∈u F ̸= /0.

Next we will see a way to distinguish compact sets by open complete sequences.

Proposition 2.2.2. Let (Cn)n∈ω be a complete sequence of open covers of X . Let K be a closed
subset. If for all n ∈ ω , K ⊂Cn for some Cn ∈ Cn, then K is compact.

Proof.

Let {Cn}n∈ω be a sequence of open sets such that K ⊂Cn.
Let {Ki}i∈I be a family of closed sets in K with a finite intersection property. Since K is closed
in X , then, for all i ∈ I, Ki is closed in X as well.
Let u be an ultrafilter containing {Ki}i∈I . Since u∩Cn for all n ∈ ω , then /0 ̸=

⋂
V∈uV ⊂

⋂
i∈I Ki.

Therefore, K is a compact subset of X .
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Now we will see some ways to obtain new complete sequences of open covers from
other complete sequences.

Proposition 2.2.3. Let (Cn)n∈ω be a complete sequence of open covers of X . Then:
• Let Rn be a refinement of Cn, then (Rn)n∈ω is a complete sequence of open covers.
• Let Fn be an open cover formed by finite unions of elements of Cn, then (Fn)n∈ω is a complete
sequence of open covers.

Proof.

The first result is obvious since for any ultrafilter u, if u∩Rn ̸= /0 then u∩Cn ̸= /0.
For the second result remember that if A∪B ∈ u then A ∈ u or B ∈ u. Therefore if u∩Fn ̸= /0
then u∩Cn ̸= /0.

With these two properties, we can state a generalization of Proposition 2.2.2.

Corollary 2.2.4. (FROLíK, 1961) Let (Cn)n∈ω be a complete sequence of open covers of X .
Let K be a closed subset. If for all n ∈ ω , K is covered by a finite subfamily of Cn, then K is
compact.

Let us also see that the characteristic of being a complete sequence of open covers is
inherited by operations between complete sequences of open covers.

Definition 2.2.5. Let A,B be open cover of (X ,τ). We define

A∧B = {V ∩W ; V ∈ A, W ∈ B}

and

AE = {V ∈ τ; ∃W ∈ A, V ⊂W}

Proposition 2.2.6. Let (Cn)n∈ω be a complete sequence of open covers of X . Then (C E
n )n∈ω

and (
∧n

i=0 Ci)n∈ω are complete sequences of open covers.

Proof.

By Proposition 2.2.3.

2.3 Čech-complete space

In this section we will see the definition and some properties of Čech-complete spaces,
which will serve us later for the definition of a topological game.

Definition 2.3.1. A Tychonoff space is Čech-complete if admits a complete sequence of open
covers.
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Next we will see equivalent formulation of the definition of Čech complete spaces. for
the first equivalence we will need to introduce the following new concept.

Definition 2.3.2. Let X be a topological space. Let A be an open cover. We say that F , a family
of subsets of X , contains sets of diameter less that A , if there are V ∈ F and A ∈A such that
V ⊂ A.

The following theorem can be found in (ENGELKING, 1989),

Theorem 2.3.3. A Tychonoff space is Čech-complete if and only if there is a countable family
{Ai}i∈ω of open covers of the space X which has the property that for any family F of closed
subsets of X that has the finite intersection property and contains sets of diameter less that Ai for
any i ∈ ω , has non-empty intersection.

Proof.

(⇒) Suppose that X admits a complete sequence {Cn}n∈ω . We will prove that {Cn}n∈ω verifies
the property. Let F be a family of closed sets that has the finite intersection property and contains
sets of diameter less that Ci for any i ∈ ω . Let u be an ultrafilter containing F .
Knowing that for each cover Ci there is an Fi ∈F such that Fi ⊂C for some element C ∈ Ci.
Then C ∈ u, therefore u∩Ci ̸= /0.

/0 ̸=
⋂

F∈u

F ⊂
⋂

F∈F
F =

⋂
F∈F

F

(⇐) Let {Ai}∞
i=1 be a family of open covers with the properties described. Let u be an ultrafilter

such that u∩Ai ̸= /0 for any Ai.
Let u be an ultrafilter containing {F ;F ∈ u}, over the family of closed subsets of X . Then u is a
family of closed subsets with the finite intersection property. And since for every Ai we have
that u∩Ai ̸= /0, there is a A ∈Ai with diameter less that u (A⊂ A ∈ u).

/0 ̸=
⋂

F∈u

F ⊂
⋂

F∈u

F

The following is one of the most important, and useful, equivalences to Čech complete
spaces that we will deal with in this work.

Theorem 2.3.4. A space X is Čech-complete if and only if βX/X is Fδ in βX .

Proof.
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⇒) Let {Ai}i∈ω be a complete sequence of open covers. Let Ai = {Ui,s}s∈Si . Let Vi,s be
an open subset of βX such that Ui,s = X ∩Vi,s. Clearly

X ⊂
⋂
i∈ω

⋃
s∈Si

Vi,s

Let x ∈
⋂

i∈ω

⋃
s∈Si

Vi,s. Let V be the family of open neighborhoods of x in βX . Then B =

{X ∩V ;V ∈ V } is a filter base in P(X). Let u be an ultrafilter containing B. Then for each Ai

there is a Vi,s such that x ∈Vi,s. Thus Ui,s = X ∩Vi,s ∈B ⊂ u. Therefore Ui,s ∈ Ai∩u.

Since u∩Ai ̸= /0 for all i ∈ ω , then⋂
F∈u

ClX(F) ̸= /0

Let y ∈ClX(F) for all F ∈ u, if y ̸= x, there is an open neighborhood V of x in βX , such that
y /∈ClβX(V ). Then y /∈ClX(V ∩X), this is a contradiction because V ∩X ∈ u.
Finally,

X =
⋂
i∈ω

⋃
s∈Si

Vi,s

Therefore X is Gδ in βX or, equivalently, βX/X is Fσ .

⇐) Since X is Gδ , there is {Gi}i∈ω , a family of open subsets of βX , such that X =
⋂

Gi.
Since X is Tychonoff, for each X ∈ X and each Gi there is an open subset Vx,i such that
x ∈Vx,i ⊂ClβX(Vx,i)⊂ Gi.
We define Ai = {X ∩Vx,i;x ∈ X} an open cover of X . Let A = {Ai}i∈ω . We will prove that A is
a complete sequence of open covers of X .

Let u be an ultrafilter in P(X) such that u∩Ai ̸= /0. Let v be an ultrafilter in P(βX)

containing u.
Since βX is Hausdorff compact and for each i ∈ ω there is Vxi,i ∈ v, then:

{z}=
⋂
F∈v

ClβX(F)⊂
⋂

ClβX(Vxi,i)⊂
⋂

Gi = X .

Therefore,
z ∈

⋂
F∈u

ClβX(ClX(F))

Let V be an open neighborhood of z in X . Then there is W open neighborhood of z in βX such
that W ∩X =V .
Thus, for any F ∈ u we have that W ∩ClX(F) ̸= /0. Then V ∩ClX(F) ̸= /0. Therefore z ∈ClX(F)

for any F ∈ u.

In conclusion, z ∈
⋂

F∈uClX(F).
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The Proposition 2.3.5 will be important in simplifying proofs of future propositions.

Proposition 2.3.5. Let (X ,τ) be a Tychonoff space. Let {Vn}n∈ω ⊂ τ such that Vn+1 ⊂Vn for
each n ∈ ω . If any ultrafilter u containing {Vn}n∈ω verifies that

⋂
F∈u F ̸= /0. Then

⋂
n∈ω Vn is

compact and {Vn}n∈ω is an local basis for
⋂

Vn.

Proof.

Let {Wn}n∈ω be open sets in βX such that Wn∩X =Vn for each n ∈ ω . Then clβX(Wn)∩X =

clX(Vn).
Let y ∈

⋂
clβX(Wn). Then for each U open in βX such that y ∈U we have that U ∩Vn ̸= /0 for

all n ∈ ω . Let u be an ultrafilter containing all open sets in X of the form U ∩Vn for some n and
y ∈U . Then

⋂
F∈u clX(F) ̸= /0.. Since

⋂
F∈u clX(F)⊂

⋂
F∈u clβX(F)⊂

⋂
U∋y clβX(U) = {y} we

have that y ∈ X . Therefore
⋂

clβX(Wn)⊂ X .
Then

⋂
Vn =

⋂
clX(Vn) =

⋂
clβX(Wn)∩X = clβX(Wn) = K is compact.

Let U be an open set containing K. Suppose that Vn ∩Uc ̸= /0 for all n ∈ ω . Let u be an
ultrafilter containing {Vn∩Uc}. Then

⋂
F∈u clX(F)⊂

⋂
clx(Vn)∩Uc =K∩Uc = /0, contradiction.

Therefore there is an n ∈ ω such that Vn ⊂U .

The concept of a perfect function, together with the properties that we will see next, will
be crucial in the proof of the Theorem 4.2.9.

Definition 2.3.6. Let f : X −→ Y be a continuous function, f is perfect if:
a) f is closed.
b) f (X) = Y .
c) f−1(y) is a compact set for each y ∈ Y .

Proposition 2.3.7. Let X ,Y Tychonoff spaces. Let f : X −→ Y be a perfect function, then:
a) f (βX \X) = βY \Y , where f is the continuous extension of f .
b) If Y is Gδ in βY , then X is Gδ in βX .
c) If Y is paracompact, then X is paracompact.

Proof.

a) Since f (βX) is a compact and dense in βY , then βY \Y ⊂ f (βX \X). Now suppose there is
x ∈ βX \X such that f (x) = y ∈ Y . Since f−1(y) is a compact set and x /∈ f−1(y), there is an
open set V ⊂ X such that f−1(y)⊂V x /∈ clβX(V ).
Then x ∈ clβX(X \V ). Therefore y ∈ clβY f (X \V ) = clβY f (X \V ). Since f (X \V )⊂Y we have
that y∈ clY f (X \V ) = f (X \V ). Contradiction with f−1(y)⊂V. Therefore f (βX \X) = βY \Y .

b) Note that f (βX \X) = βY \Y implies X = f−1
(Y ). Let {Vn}n∈ω open sets in βY such

that
⋂

Vn = Y . Then X = f−1
(Y ) = f−1

(
⋂

Vn) =
⋂

f−1
(Vn). Therefor X is Gδ in βX .
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c) Let f : βX −→ βY . Define F : X −→ X ×Y as F(x) = (x, f (x)) = (x, f (x)). Then F

is injective, Let W be an open subset of X ×Y , such that F−1(W ) ̸= /0. For each (x, f (x)) ∈W

there is U ⊂ X and V ⊂ Y open sets such that (x, f (x)) ∈U×V ⊂W . Therefore F−1(U×V ) =

U ∩ f−1(V ) is an open subset of X . Then F is continuous.
Let U be an open subset of X . Then F(U) = f (U)×Y ∩ Im(F). Then F : X −→ Im(F) is open
bijective continuous map. Therefore X is homeomorphic to Im(F).
Let (x,y) ∈ βX ×Y , such that (x,y) /∈ Im(F). Since f (x) ̸= y there is U,V open subset of βY

such that U ∩V = /0, f (x) ∈U and y ∈ V . Therefore, f−1
(U)× (V ∩Y ) is an open subset of

βX×Y such that f−1
(U)× (V ∩Y )∩ Im(F) = /0. Hence, X is homeomorphic to a closed subset

of βX×Y . In addition, since Y is paracompact, βX×Y is paracompact and then X is too.

2.4 Topological Games

The last pillar that we need to see in order to continue is Topological Games. In this
text, we will not need an exhaustive definition of topological game. So we will settle for under-
standing the basic notion of how a topological game works. For this purpose, the notion given in
"Topological games: On the 50th anniversary of the Banach-Mazur game" will suffice.
In a topological game the players choose some objects related to the topological structure of a
space, such as points, closed subsets, open covers, etc., and moreover, the condition on a play to
be winning for a player may also involve topological notions such as closure, a convergence, etc.
(TELGARSKY, 1987)

Let us now consider the space R and two players called Player I and Player II. In each
round Player I choose a compact set in R, and Player II responds with an open containing the
compact set chosen by Player I. In this game, we will say that Player I wins the game if he can
"force" Player II to choose open sets that form a cover of R.

If in the first turn Player I choose the compact [−1,1] and Player II choose an open set
U1, such that [−1,1] ⊂U1. In the next turn Player I choose the compact [−2,2] and Player II
choose an open set U2. If we continue in this way, we can see that the open sets chosen by Player
II necessarily make up an open cover of R.

Notice that in this example, no matter what Player II decides to choose. In the end Player
II will always be "forced" to have a cover. This situation is described as Player I has a winning
strategy in the game and it is represented by I ↑ game(R).

The strategy described above is called a Markov’s strategy because only depends on
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the last play of the rival player and the current turn.

A more dominant strategy is known as stationary strategy and is characterized by the
fact that it only depends on the last play of the rival.

Definition 2.4.1. Let G1(X) and G2(X) be two topological games we will say that:
•G1(X) and G2(X) are equivalent if I ↑ G1(X)(resp. II ↑ G1(X)) implies I ↑ G2(X)(resp.
II ↑ G2(X)).
•G1(X) and G2(X) are dual if I ↑ G1(X)(resp. II ↑ G1(X)) implies II ↑ G2(X)(resp. I ↑ G2(X)).
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CHAPTER

3
GAMES AND RELATIONS BETWEEN GAMES

3.1 Sequential, Banach-Mazur and Choquet Games: propier-
ties and relations

In this section we will present the main topological games with which we will work, and
we will see the relationships they have among them.

3.1.1 Sequential Games

We will begin by describing a simple game, although important because it will allow us
to characterize completely metrizable spaces.
Let (X ,d) be a metric space. We define the Sequential Game G(X ,d) as follows:

•T 0 : Player I plays x0 ∈ X , Player II responds with ε0 > 0.

•T 1 : Player I plays x1 such that d(x0,x1)< ε0, Player II responds with ε1.

•T n : Player I plays xn such that d(xn−1,xn)< εn−1, Player II responds with εn.

Player II is declared winner if exists x ∈ X such that xn→ x. In other case, Player I is
declared winner.
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3.1.2 Banach-Mazur Game

The Banach-Mazur Game is considered the first topological game. Although initially it
was described to be played on the real line, here we will describe a modern version that allows
us to play it on any topological space.

Let (X ,τ) be a topological space. We define the Banach-Mazur Game BM(X) as follows:

•T 0 : Player I plays U0 ∈ τ and Player II responds with V0 ∈ τ , such that V0 ⊂U0.

•T n : Player I plays Un ∈ τ , with Un ⊂Vn−1 and Player II responds with Vn ∈ τ , such
that Vn ⊂Un.

Player II is declared winner if
⋂

Vn ̸= /0, in other case Player I is declared winner.

Let σ be a Player I’s strategy. A game p = ⟨U0,V0,U1,V1 . . .Un,Vn . . .⟩, where each
move of Player I is given by σ , is called a σ−game. Analogously with δ , a Player II’s strategy.

The Banach-Mazur game has various applications that we will see later.

3.1.3 Choquet Game

We will now see the Choquet game, described for the first time in (CHOQUET, 1969).
Let (X ,τ) be a topological space. We define Choquet Game Ch(X) as follows:

•T 0 : Player I plays (U0,x0) ∈ τ×X with x0 ∈U0 and Player II responds with V0 ∈ τ ,
such that x ∈V0 ⊂U0.

•T n : Player I plays (Un,xn) ∈ τ×X , with xn ∈Un ⊂Vn−1 and Player II responds with
Vn ∈ τ , such that xn ∈Vn ⊂Un.

Player II is declared winner if
⋂

Vn ̸= /0, in other case Player I is declared winner.

Although the Choquet game is very similar to the Banach-Mazur game, the fact that
Player I can limit Player II’s next move is enough to differentiate the two games.
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Clearly, just from the definitions, we can say that
•I ↑ BM(X) then I ↑Ch(X).
•II ↑Ch(X) then II ↑ BM(X).
To demonstrate the difference between the Banach game and the Choquet game we will see
an example of a space where I ↑Ch(X) but I ̸↑ BM(X). To this end we will assume a property
(proved in 4.1.1) that tells us that in every Baire space it is not possible to find a Player I’s
winning strategy for BM(X).

Example 3.1.1. Consider the Baire space

X = R2 \{(x,0) x /∈Q}

we will see that I ↑Ch(x):

Let Q= {qn,n ∈ ω}. We define Ln = {(x,y), |y|<
1
n
}\{(qk,0),k < n}.

It is clear that
⋂

Ln = /0.

Observation: Let A be an open set, if Q×{0}∩A ̸= /0 then Q×{0}∩A is infinite.

To begin to define a strategy σ for Player I we will set σ(⟨⟩) = (L0,(q0,0)). Let V0 be
a response of Player II. Since q0 ∈ Q×{0}∩V0 there is p ̸= q0 such that (p,0) ∈ V0. We set
σ(⟨V0⟩) = (L1∩V0,(p,0)).
In general, let Vn be the last play of Player II. There is (pn,0) ∈Vn such that pn /∈ {qk,k < n+1}.
Then we set σ(⟨V0,V1 . . .Vn⟩) = (Ln+1∩Vn,(pn,0)).
Then we have that Vn+1 ⊂ Ln+1 and therefore

⋂
Vn ⊂

⋂
Ln = /0.

3.1.4 Properties and relationships among games

Here we will present some properties of the games seen in this section, and we will
establish the relationships that exist among them.
To begin we will see the first part of the characterization of completely metrizable spaces, the
second part will be seen later in Proposition 4.2.7.

Theorem 3.1.2. If there is an equivalent complete metric to d then Player II has a winning
strategy in G(X ,d).

Proof. Let c be a complete metric on space X. Then Player II has a winning strategy in G(X ,c),

playing
1
2n on turn n.
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If c is equivalent to d, for any x ∈ X and n∈ω there is an εx,n > 0, such that Bd(x,εx,n)⊂

Bc(x,
1
2n ).

Let γ be a winning strategy for Player II in G(X ,c) mentioned above. We define σ to be
a strategy in G(X ,d) by doing the following:

In each turn n, Player I plays xn and Player II responds with σ(⟨x0,x1, . . .xn⟩) = εxn,n.

Since xn+1 ∈ Bd(xn,εxn,n)⊂ Bc(xn,
1
2n ), then {xn}n∈ω} is Cauchy in (X ,c). Therefore {xn}n∈ω}is

convergent in (X ,c) and convergent in (X ,d) because c and d are equivalent.

Theorem 3.1.3. In a metric space (X ,d), Sequential Game and Choquet Game are equivalent.

Proof.

I ↑Ch(X)⇒ I ↑ G(X ,d) :

Let σ be a Player I’s winning strategy in Ch(X). We will define a strategy δ for Player I

in G(X ,d) by doing the following:
δ (⟨⟩) = x0 where σ(⟨⟩) = (A0,x0). Let r0 be Player II’s response in G(X ,d). We set a p0 < r0

such that B0 = B(x0, p0) and B0 ⊂ A0.
If σ(⟨B0⟩) = (A1,x1) then we define δ (⟨r0⟩) = x1. Let r1 be Player II’s response in G(X ,d).
We set a p1 < r1 such that B1 = B(x1, p1) and B1 ⊂ A1. Let δ (⟨B0,B1⟩) = (A2,x2). We define
δ (⟨r0,r1⟩) = x2.

If we continue this process repeatedly we will obtain that δ (⟨r0, . . .rn⟩) = xn+1 where
σ(⟨B0, . . .Bn⟩) = (An+1,xn+1) with Bn = B(xn, pn) and pn < rn such that Bn ⊂ An.

Observation: We can choose {pn}n∈ω such that pn −→ 0.

It is clear that B(xn+1, pn+1) ⊂ B(xn, pn). Suppose that xn→ x. If there is an m ∈ ω such that
x /∈ Bm. Then (Bm+1)

C is an open set containing x such that x /∈ (Bm+1)
C for each n > m. This

contradicts the initial assumption xn→ x. Therefore x ∈ Bn for all n ∈ ω . Then x ∈
⋂

Bn ̸= /0,
contradiction with the winning strategy σ . Therefore {xn} is not convergent, that is, δ is a
winning strategy for Player I in G(X ,d).

I ↑ G(X ,d)⇒ I ↑Ch(X) :

Let δ be a winning strategy in G(X ,d). We will define a strategy σ in Ch(X):
σ(⟨⟩) = (B(x0,1),x0), where δ (⟨⟩) = x0, Let B0 be a response of Player II in Ch(X). Then there
is a r0 such that B(x0,r0)⊂ B0.
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Let σ(⟨B0⟩)= (B(x1, p1),x1) with x1 = δ (⟨r0⟩) and p1 < r0, thus σ(⟨B0, . . .Bn⟩)= (B(xn+1, pn+1),xn+1)

where xn+1 = δ (⟨r0 . . .rn⟩) and pn+1 < rn.
It is clear that B(xn+1, pn+1)⊂B(xn, pn), and since δ is a winning strategy, we have

⋂
B(xn, pn)=

/0. Therefore σ is winning strategy, because {xn})n ∈ ω can not be convergence.

II ↑Ch(X)⇒ II ↑ G(X ,d) :

Let σ be a winning strategy in Ch(X). Let δ be a strategy in G(X ,d), such that:
Let x0 be the first play of Player I in G(X ,d). We define A0 = (B(x0,1),x0), if σ(⟨A0⟩) = B0.
Then δ (⟨x0⟩) = r0 such that B(x0,r0)⊂ B0.

Let x1 be a response of Player I, let A1 = (B(x0,r0),x1) and B1 = σ(⟨A0,A1⟩). We define
δ (⟨x0,x1⟩) = r1 such that B(x1,r1)⊂ B1.

Similarly in turn n+1, if Player I choose xn+1 in G(X ,d), we define An+1 = (B(xn,rn),xn+1) and
let σ(⟨A0 . . .An+1⟩) = Bn+1. Therefore δ (⟨x0. . . .xn+1⟩) = rn+1 such that B(xn+1,rn+1)⊂ Bn+1.

Observation: We can choose {rn}n∈ω such that rn −→ 0.

Since σ is a winning strategy for Player II in Ch(X) we have that
⋂

B(xn,rn) ̸= /0. Then⋂
B(xn,rn) = {x}, that is, xn −→ x. Therefore δ is a winning strategy for Player II in G(X ,d).

II ↑ G(X ,d)⇒ II ↑Ch(X) :

Let δ be a winning strategy in G(X ,d). Let σ be a strategy in Ch(X), such that:
Let A0 = (A0,x0), and r0 = δ (⟨x0⟩). We define σ(⟨A0⟩) = B(x0, p0)⊂ A0 such that B(x0, p0)⊂
A0 with p0 < r0.

Let A1 =(A1,x1) be a response of Player I in Ch(X), and r1 = δ (⟨x0,x1⟩). We define σ(⟨A0,A1⟩)=
B(x1, p1) such that B(x1, p1)⊂ A1 with p1 < r1.

Similarly in turn n, if An is a play of Player I, and rn = δ (⟨x0, . . .xn⟩), then we define σ(⟨A0 . . .An⟩)=
B(xn, pn)⊂ An with pn < rn.

Since δ is a winning strategy for Player II in G(X ,d), then xn −→ x, and since {xk}k∈ω ⊂
B(xn, pn) for all n ∈ ω , then x ∈

⋂
B(xn, pn) and in addition to that, as

B(x0, p0)⊂ B(x0, p0)⊂ B(x1, p1)⊂ B(x1, p1)⊂ B(x2, p2) . . .

we have
⋂

B(xn, pn) =
⋂

B(xn, pn) ̸= /0. Therefore σ is a winning strategy for Player II in
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Ch(X).

To complement the example given in 2.4, we will see our first stationary strategy de-
scribed in this text.

Proposition 3.1.4. Let (X ,d) be a complete metric space. Player II has a stationary winning
strategy in Ch(X).

Proof. Let (Vn,xn) be the Player I’s last move. Let rn = max{r ∈ R, B(xn,2r) ⊂ Vn}n∈ω . We
define a δ strategy by doing the following: δ (⟨(Vn,xn)⟩) = B(xn,rn).
Let ⟨(V0,x0),B0,(V1,x1),B1 . . .⟩ be a δ -game. Since Bn = B(xn,rn) ⊂ Bn−1, rn → 0 and X is
complete, we have that

⋂
Bn ̸= /0. Therefore δ is a winning strategy.

Next we present an important property of the Choquet game that tells us that when Player
I wins, he wins in the "best way".

Proposition 3.1.5. Let (X ,d) be a metric space. If Player I has a winning strategy in Ch(X) then
Player I has a stationary winning strategy in Ch(X).

Proof. Let σ be a winning strategy for Player I. Without loss of generality we can assume that if
(Un,xn) is the last Player I’s play, then xn /∈Un+1 where (Un+1,xn+1) is the next Player I’s play
given by σ .

Let’s start by considering the following:

Let σ(⟨ ⟩) = (U0,x0). Then there is a least k0
0 ∈ ω such that B(x0,1/k0

0)⊂U0.
Let (U0k0

0
,x0k0

0
) = σ(⟨B(x0,1/k0)⟩). Then there is a least k0

1 ∈ ω such that x0k0
0
/∈ B(x0,1/k0

1).

Let (U0k0
1
,x0k0

1
) = σ(⟨B(x0,1/k0

1)⟩). Then there is a least k0
2 ∈ ω such that x0k0

1
/∈ B(x0,1/k0

2).

In this way we can define a sequence of natural numbers {k0
n}n∈ω , and {x0n1} where

n1 ∈ {k0
n}n∈ω .

For any k0
p ∈ {k0

n}n∈ω we have σ(⟨B(x0,1/k0
p)⟩) = (U0k0

p
,x0k0

p
). Then there are a least

k
0k0

p
0 ∈ ω such that B(x0k0

p
,1/k

0k0
p

0 )⊂U0k0
p
\B(x0,1/k0

p+1).

Let σ(⟨B(x0,1/k0
p),B(x0k0

p
,1/k

0k0
p

0 )⟩) = (U
0k0

pk
0k0

p
0

,x
0k0

pk
0k0

p
0

). Then there is a least k
0k0

p
1 ∈ ω such

that x
0k0

pk
0k0

p
0

/∈ B(x0k0
p,1/k

0k0
p

1 ).
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In this way we can define a sequence of natural numbers {k0k0
p

i }i∈ω , and {x0k0
pn2
} where

n2 ∈ {k
0k0

p
i }i∈ω .

In an analogous way we can continue constructing sequences {x0n1n2...np}.

In general, σ(⟨B(x0,1/n1) . . .B(xn1...np,1/np+1)⟩) = (Un1...np+1,xn1...np+1).

Let T ⊂ ω<ω , such that for any s ∈ T , xs is one of the points defined before. In what
follows, unless otherwise stated, when we mention the least, we will refer to the set T.

Note that for any s ∈ T , we have that xs⌢ks
n
→ xs when n→ ∞.

Now we will define a stationary winning strategy γ by doing the following:

γ(⟨ ⟩) = (U0,x0).
Let V be a play of Player II. Let n1n2 . . .np ∈ T be the least such that xn1n2...np−1 ∈V.

Case 0:
If x0 ∈V , We define γ(⟨V ⟩) = (U0n,x0n) where n is the least such that B(xn,1/n)⊂V .
With this definition it is obvious that such V can only be played on the turn 0 of Player II.

Case 1:
If x0a ∈V is the least.
Suppose that V was played in the turn 1. Then γ(⟨V ⟩) = (U0ab,x0ab) where b ∈ ω is the least
such that 0ab ∈ T and B(x0a,1/b)⊂V.

Suppose that there is a game where V was played in the turn 2. Let W be the Player II’s
turn 1 move in that game.

Note that W only contain a finite number of x0n, and B(x0a,1/b) just contain x0a. Then,
by definition of σ , x0a /∈U0ab. Since V ⊂U0ab, V cannot contain points x0n, contradiction.
With this definition, we can notice that any possible play V such that some x0n is their least, only
can be played in the turn 1.

Case 2:
If x0ab ∈V is the least.
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Suppose that V was played in the turn 2.
Then γ(⟨V ⟩) = (U0abc,x0abc) where c ∈ ω is the least such that 0abc ∈ T and B(x0ab,1/c)⊂V.

Analogously to the above, we have that V cannot be played on any turn other than turn 2.

As stated, the reader could understand that this strategy depends on the turn in which V
is played. The trick here lies in the fact that each possible move V can be played only in one turn.

In general, if x0n1n2...np is the least in V , then V only can be played in the turn p.

Now let’s check that strategy γ is winning:

T0: Player I plays (U0,x0), and Player II responds with V0. Let n1 ∈ ω the least such that
0n1 ∈ T and B(x0,1/n1)⊂V0.

T1: Player I plays (U0n1,x0,n1) and Player II responds with V1. Let x0a the least such that
x0a ∈V1. Clearly a = n1.
and let n2 ∈ ω the least such that 0n1n2 ∈ T and B(x0n1,1/n2)⊂V1.

...

Tp: Player I plays (U0n1...np,x0,n1...np) and Player II responds with Vp.

Therefore,
⋂

Vn =
⋂

∞
p=1U0n1...np = /0. In conclusion, γ is a winning strategy.

Observation: By definition of xs, note that:

•B(xs,1/n)∩B(xr,1/m) ̸= /0⇐⇒ B(xs,1/n)⊂ B(xr,1/m) or B(xr,1/m)⊂ B(xs,1/n).

•B(xr,1/kr
n)⊂ B(xs,1/ks

m)⇐⇒ (s = r and m≤ n) or (s⌢ks
n is a restriction of r)

3.2 Čech Game

Motivated by the definition 2.3.1, we will define this new game. This game and its
properties will be important tools in the remainder of this text.

Let (X ,τ)be a Tychonoff space. We define the game Č(X) as follows:
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•T 0 : Player I plays an open cover C0 of X and Player II responds with C0 ∈ C0.

•T n : Player I plays an open cover Cn of Cn−1 and Player II responds with Cn ∈ Cn.

Player I is declared winner if for every ultrafilter u such that u∩Cn ̸= /0 for n∈ω , verifies
that

⋂
F∈u F ̸= /0.

Now we will see the most basic relationship between the Čech spaces and the Čech
Game.

Theorem 3.2.1. Let X be a Čech-complete space. Then I ↑ Č(X)

Proof.

Let (Cn)n∈ω be a complete sequence.
We will define a winning strategy σ for Player I :
σ(⟨⟩) = A0 = C0;
σ(⟨C0⟩) = A1 = {C∩C0,C ∈ C1 e C∩C0 ̸= /0},
σ(⟨C0, . . .Cn⟩) = An+1 = {C∩Cn,C ∈ Cn+1 e C∩Cn+1 ̸= /0}.
Let be an ultrafilter u such that u∩An ̸= /0. Then there is a C ∈ Cn such that C∩Cn−1 ∈ u.
Therefore C ∈ u, that is, u∩Cn ̸= /0. Then, by definition of complete sequence, we have that⋂

F∈u F ̸= /0.

The following theorem gives us an important result that allows us to see the compactness
of the sets obtained in a Čech game.

Theorem 3.2.2. Let α be a Player I’s winning strategy in Č(X) such that for each n ∈ ω and
V ∈ β (⟨V0,V1 . . .Vn⟩) we have that V ⊂Vn.
If ⟨V0,V1 . . .⟩ is a complete run of Č(X). Then

⋂
Vn is compact and {Vn}n∈ω is an local basis for⋂

Vn.

Proof.

By 2.3.5 we can say that {V0,V1 . . .} fulfills the required.

The following proposition allow us to consider each Player I’s winning strategy as one
of the form described in 3.2.2.

Proposition 3.2.3. If I ↑Č(X). Then there is a Player I’s winning strategy β such that for each
n ∈ ω and V ∈ β (⟨V0,V1 . . .Vn⟩), V ⊂Vn.

Proof.

Let α be a Player I’s winning strategy. We define β (⟨⟩) = α(⟨⟩). Let V0 ∈ β (⟨⟩). Then we will
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define β (⟨V0⟩) as a refinement of α(⟨V0⟩) such that for each V ∈ β (⟨V0⟩) there is a W ∈ α(⟨V0⟩),
fixed for each V , such that V ⊂W .
Let V1 ∈ β (⟨V0⟩) and W1 ∈ α(⟨V0⟩) as previously chosen. We define β (⟨V0,V1⟩) as a refinement
of {V1∩S, S ∈ α(⟨V0,W1⟩)} such that for each V ∈ β (⟨V0,V1⟩) there is a W ∈ α(⟨V0,W1⟩), fixed
for each V , such that V ⊂V1∩W .
In general, let Vn ∈ β (⟨V0,V1 . . .Vn−1⟩) and Wn ∈ α(⟨V0,W1 . . .Wn−1⟩). We define β (⟨V0, . . .Vn⟩)
to be a refinement of {Vn∩S, S ∈ α(⟨V0, . . .Wn⟩)} such that for each V ∈ β (⟨V0 . . .Vn⟩) there is
a W ∈ α(⟨V0 . . .Wn⟩), fixed for each V , such that V ⊂Vn∩W .

Let u be an ultrafilter containing {V0,V1 . . .}. Since Vn ⊂Wn then {V0,W1 . . .} ⊂ u. There-
fore

⋂
F∈u F ̸= /0.

With the above, we can now see the relationship of Čech Game with Sequential Game.

Theorem 3.2.4. In a metric space (X ,d) the sequential game and the Čech game are dual.

Proof.

1)I ↑ Č(X)→ II ↑ G(X ,d).

Let δ be a winning strategy for Player I in Č(X).
Now we will define a winning strategy σ for Player II in G(X ,d).

δ (⟨⟩) = C0.
Let x0 be the first play of Player I. Then there is A0 ∈ C0 such that x0 ∈ A0, and there is r0 such
that B(x0,r0)⊂ A0. We define σ(⟨x0⟩) = r0.

δ (⟨A0⟩) = C1.
Let x1 be a response of Player I. Then there are A1 ∈ C1 such that x1 ∈ A1 and r1 such that
B(x1,r1)⊂ A1∩B(x0,r0). We define σ(⟨x0,x1⟩) = r1.

δ (⟨A0 . . .An−1⟩) = Cn.
Let xn be a response of Player I. Then there are An ∈ Cn such that xn ∈ An and rn such that
B(xn,rn)⊂ An∩B(xn−1,rn−1). We define σ(⟨x0 . . .xn⟩) = rn.

Let u be an ultrafilter containing {B(xn,rn)}n∈ω . Then u∩Cn ̸= /0 for all n ∈ ω and
therefore

⋂
B(xn,rn) ̸= /0.
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We can assume that rn→ 0. Then there is y ∈ X such that
⋂

B(xn,rn) = {y}. Therefore
xn→ y.

2)II ↑ G(X ,d)→ I ↑ Č(X).

Let σ be a winning strategy for Player II in G(X ,d), without loss of generality we can
assume that every run verifies:
•rn→ 0, and
•B(xn+1,rn+1)⊂ B(xn,rn).

Now we will define a winning strategy δ for Player I in Č(X).

We define δ (⟨⟩) = C0 = {B(x,σ(⟨x⟩))}x∈X .

Let B0 = B(x0,σ(⟨x0⟩)) be a response of Player II.
We define δ (⟨B0⟩) = C1 = {B(x,σ(⟨x0,x⟩))}x∈B0 .

Let Bn−1 = B(xn−1,σ(⟨x0 . . .xn−1⟩)) be a response of Player II in turn n−1.
We define δ (⟨B0 . . .Bn−1⟩) = Cn = {B(x,σ(⟨x0 . . .xn−1,x⟩))}x∈Bn−1 .

Since xn→ y then
⋂

B(xn,rn) = {y}, where rn = σ(⟨x0 . . .xn⟩).

Let u be an ultrafilter such that u∩Cn ̸= /0, then Bn ∈ u for all n ∈ ω .

Let V be an open set such that y ∈ V . Then there are k and rn such that B(xn,rn) ⊂
B(y,k)⊂V . Therefore V ∈ u, that is u↘ y.

3)I ↑ G(X ,d)→ II ↑ Č(X).

Let σ be a winning strategy for Player I in G(X ,d).
Now we will define a strategy δ for Player II in Č(X):

σ(⟨⟩) = x0.
Let < C0 > be the first play of Player I. We define δ (⟨C0⟩) = A0 where x0 ∈ A0, and we choose
r0 > 0 such that B(x0,r0)⊂ A0.
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σ(⟨r0⟩) = x1.
Let <C1 > be a response of Player I. We define δ (⟨C0,C1⟩) = A1 where x1 ∈ A1, and we choose
r1 such that B(x1,r1)⊂ B(x0,r0)∩A1.

σ(⟨r0 . . .rn−1⟩) = xn.
Let < Cn > be a response of Player I. We define δ (⟨C0 . . .Cn⟩) = An where xn ∈ An and we
choose rn such that B(xn,rn)⊂ B(xn−1,rn−1)∩An.

If δ is not a winning strategy then there is a play < C0,A0,C1,A1 . . . > where Player I is
declared winner.
In that run, let u be an ultrafilter such that B(xn,rn) ∈ u for all n ∈ ω , we have that {y} =⋂

F∈u F ⊂
⋂

B(xn,rn).

We can assume that rn→ 0, and since
⋂

B(xn,rn) ̸= /0 then
⋂

B(xn,rn) = {y}. Therefore
xn→ y, contradiction.

4)II ↑ Č(X)→ I ↑ G(X ,d).

Let δ be a winning strategy for Player II in Č(X).

Lemma 3.2.5. Let V be an open set, and K = {C } be the family of open covers of V that verifies⋃
A∈C A =V for any C ∈ K.

There is a x ∈ V such that for all open set W with x ∈W ⊂ V , there is a C ∈ K such that
δ (⟨C0,C1 . . .C ⟩) =W .

Now we will define a strategy σ for Player I in G(X ,d):

From now on we will consider pn to be small enough for pn≤min{rn,
1
2n} and B(xn, pn)⊂

B(xn+1, pn+1).

We define σ(⟨⟩) = x0, where x0 is given by the above lemma with V = X .
Let r0 be a response of Player II. Then we choose C0 such that δ (⟨C0⟩) = B(x0, p0).

We define σ(⟨r0⟩) = x1, where x1 is given by the above lemma with V =V0 = B(x0, p0).
Let r1 be a response of Player II. Then we choose C1 open cover of V0 such that δ (⟨C0,C1⟩) =
B(x1, p1).
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We define σ(⟨rn−1⟩) = xn, where xn is given by the above lemma with V = Vn =

B(xn−1, pn−1).
Let rn be a response of Player II. Then we choose Cn open cover of Vn such that δ (⟨C0 . . .Cn⟩) =
B(xn, pn).

Since δ is a winning strategy there is an ultrafilter u, such that B(xn, pn) ∈ u and⋂
F∈u F = /0. Suppose that xn→ y. Then there are r > 0 and F ∈ u such that B(y,r)∩F = /0.

Since there is an n ∈ ω such that d(xn,y)< r/2 and pn < r/2, then B(xn, pn)⊂ B(y,r).
Therefore B(xn, pn),F ∈ u and B(xn, pn)∩F = /0, contradiction.

Proof of Lemma. 3.2.5 Case δ (⟨C ⟩):
Suppose it is not true. Then for every x ∈V there is Wx ⊂V , which is not a possible response for
any open cover of V .
Let C0 = {Wx}x∈V be an open cover of V . Then δ (⟨C0⟩) =Wx for some x ∈ X , contradiction.
In an analogous way we can prove the other cases with two or more covers.□

If together with the previous theorem we consider the theorem 3.1.3, we can affirm the
duality relationship between Choquet Game and Čech game in a metric space. In the following
proposition, we will try to generalize this relation to a Tychonoff space.

Proposition 3.2.6. Let (X ,τ) be a Tychonoff space, then:

◦ I ↑Ch(X)⇒ II ↑ Č(X).
◦ I ↑ Č(X)⇒ II ↑Ch(X).

Proof.

1) I ↑Ch(X)⇒ II ↑ Č(X).

Let σ be a winning strategy for Player I, we will define γ a strategy for Player II in Č(X)

by doing the following:
Let σ(⟨⟩) = (A0,x0) and let C0 be the first play of Player I in Č(X)1. Then there is a V0 ∈ C0

such that x0 ∈V0. We define γ(⟨C0⟩) =V0.

Let W0 be an open such that W0 ⊂ A0∩V0. Let σ(⟨W0⟩) = (A1,x1) and let C1 be open
cover of V0. Then there is a V1 ∈ C1 such that x1 ∈V1. We define γ(⟨C0,C1⟩) =V1.

Let σ(⟨W0 . . .Wn⟩) = (An+1,xn+1) and let Cn+1 be open cover of Vn. Then there is a
Vn+1 ∈ Cn+1 such that xn+1 ∈Vn+1. We define γ(⟨C0,Cn+1⟩) =Vn+1.
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Let u be an ultrafilter containing {Wn}n∈ω . Then since Wn ⊂Vn we have u∩Cn ̸= /0, in
addition

⋂
Wn ⊂

⋂
An = /0 because I ↑Ch(X).

Therefore
⋂

F∈u F = /0.

2) I ↑ Č(X)⇒ II ↑Ch(X).

Let σ be a winning strategy for Player I in Č(X), we will define γ a strategy for Player
II in Ch(X) by doing the following:

Let (V0,x0) be the first play of Player I then there is C0 ∈ σ(⟨⟩) such that x0 ∈C0. Since
X is a Tychonoff space, there is a open neighborhood K0 of x0 such that K0 ⊂C0∩V0. We define
γ(⟨(V0,x0)⟩) = K0.

Let (V1,x1) be the play of Player I in turn 1 then there is C1 ∈ σ(⟨C0⟩) such that x1 ∈C1.
Since X is a Tychonoff space, there is an open neighborhood K1 of x1 such that K1 ⊂C1∩V1.
We define γ(⟨(V0,x0)⟩) = K1.

In general, let (Vn,xn) be the play of Player I in turn n. Then there are Cn ∈σ(⟨C0 . . .Cn−1⟩)
such that xn ∈ Cn and an open neighborhood Kn of xn such that Kn ⊂ Cn ∩Vn. We define
γ(⟨(V0,x0) . . .(Vn,xn)⟩) = Kn.

Let u be an ultrafilter such that {Kn}n∈ω ⊂ u. Then Cn ∈ u∩Cn for any n. Since I ↑ Č(X)

then
⋂

Kn ̸= /0 and since Vn+1 ⊂ Kn ⊂ Vn for all n ∈ ω , then
⋂

Vn =
⋂

Kn ̸= /0. Therefore
II ↑Ch(X).

With the following example, we will confirm that the previous result in Proposition 3.2.6
is the best we can obtain to relate the Choquet and Čech games in a general way.

Example 3.2.7. Let X = {(m,n) : m,∈ ω} with all singletons except {(0,0)} open. Define a set
containing {(0,0)} to be open if and only if contains all but a finite number of points in all but
finitely many columns. Such space is called Arens-Fort space and was defined for the first time
in (ARENS, 1950). The Arens-Fort space is Tychonoff but it is not metrizable.
First we will check that II ↑Ch(X). We will define a stationary strategy σ , by doing the following:
σ(⟨(U,x)⟩) =U if x = (0,0) and σ(⟨(U,x)⟩) = {x} if x ̸= (0,0). Note that, if Player I chooses
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a open set with a point other than (0,0) then his next move can only be a singleton. Therefore,
Player II wins the game. In case that Player I choose an open set with (0,0) in each turn, clearly,
each move of Player II contains (0,0) and Player II wins the game again.
Now we will see that II ↑ Č(X). Let C0 be Player I’s first move. Define σ(⟨C0⟩) = C0 where
(0,0) ∈ C0. If Player I response with C1, then σ(⟨C0,C1⟩) = C1 where (0,0) ∈ C1 and so
on. We will consider the filter base B = {(x,y),y ∈ ω}x∈ω . Note that

⋂
F∈B F = /0, and B∪

{σ(⟨C0 . . .Cn⟩)}n∈ω have a finite intersection property. Therefore there is an ultrafilter u con-
taining it. Since

⋂
F∈u F ⊂

⋂
F∈B F = /0, we can say that Player II wins the game.

3.2.1 Sieve Game

Since we can’t get a complete relationship between Choquet Game and Čech Game, the
obvious question is: "what needs to be modified to achieve this relationship?". In (TOPSOE,
1982) we can find an answer to this question, in the form of the following game.

Let (X ,τ) be a topological space. We define the Sieve Game SV (X) as follows:

•T 0 : Player I plays (U0,x0) ∈ τ×X with x0 ∈U0 and Player II responds with V0 ∈ τ ,
such that x ∈V0 ⊂U0.

•T n : Player I plays (Un,xn) ∈ τ×X , with xn ∈Un ⊂Vn−1 and Player II responds with
Vn ∈ τ , such that xn ∈Vn ⊂Un.

Player II is declared winner if any ultrafilter u containing {Vn}n∈ω verifies that
⋂

F∈u F ̸=
/0.

Analogously we can define kSV (X) where Player I chooses compact subsets instead of points.

Definition 3.2.8. A space X is called sieve complete if II ↑ SV (X).

With this new game, we can now get what we were looking for. It is expressed in the following
theorem.

Theorem 3.2.9. SV(X) and Č(X) are dual games.

Proof.

1) I ↑ SV (X)→ II ↑ Č(X).
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Let δ be a Player I’s winning strategy for SV (X). We will define a Player II’s wining
strategy σ for Č(X) by doing the following:
Let δ (⟨⟩) = (V0,x0).
Let C0 be Player I’s first play then we set σ(⟨C0⟩) =C0 where x0 ∈C0.
Let δ (⟨V0∩C0⟩) = (V1,x1).
Let C1 be the Player I’s next play, then we set σ(⟨C0,C1⟩) =C1 where x1 ∈C1.
Let δ (⟨V0∩C0,V1∩C1 . . .Vn−1∩Cn−1⟩) = (Vn,xn).
Let Cn be the Player I’s last play, then we set σ(⟨C0 . . .Cn⟩) =Cn where xn ∈Cn.

Since I ↑ SV (X) there is an ultrafilter u containing {Vn}n∈ω such that
⋂

F∈u F = /0.
Since Vn+1 ∈ u, then Vn∩Cn ∈ u. Therefore Cn ∈ u. Since u∩Cn ̸= /0 and

⋂
F∈u F = /0 so II ↑ Č(X).

2) I ↑ Č(X)→ II ↑ SV (X).

Let σ be a Player I’s winning strategy for Č(X). We will define a Player II’s wining
strategy for SV (X).

Let C0 = σ(⟨⟩). Let (V0,x0) be Player I’s first play in SV (X). We fix a C0 ∈ C0 such that x0 ∈C0

and set δ (⟨(V0,x0)⟩) =V0∩C0.
Let C1 = σ(⟨C1⟩). Let, (V1,x1) be Player I’s next play. We fix a C1 ∈ C1 such that x1 ∈C1 and
set δ (⟨(V0,x0),(V1,x1)⟩) =V1∩C1.
Continuing on that way, let Cn = σ(⟨C1 . . .Cn⟩). Let, (Vn,xn) be Player I’s last play. We fix a
Cn ∈ Cn such that xn ∈Cn and set δ (⟨(V0,x0), . . .(Vn,xn)⟩) =Vn∩Cn.
Let u be an ultrafilter containing {Vn ∩Cn}n∈ω , then Cn ∈ u. Since Cn ∩ u ̸= /0 we have that⋂

F∈u F = /0.

3) II ↑ SV (X)→ I ↑ Č(X).

Let δ be a Player II’s winning strategy for SV (X). We will define a Player I’s wining
strategy σ for Č(X).

We set σ(⟨⟩) = {δ (⟨(X ,x0)⟩)}x0∈X . Let C0 the Player II’s response.
We set σ(⟨C0⟩) = {δ (⟨(C0,x1)⟩)}x1∈C0 . Let C1 the Player II’s response.
In general, if Cn was a Player II’s last response, we set σ(⟨C0 . . .Cn⟩)= {δ (⟨(Cn,xn+1)⟩)}xn+1∈Cn .
Let ⟨C0,C0,C1,C1 . . .⟩ be a σ -game.
Let u be an ultrafilter such that u∩C0 ̸= /0 then there are {xn}n∈ω such that ⟨(X ,x0),C0,(C0,x1) . . .⟩
is a δ -game. As Cn ∈ u for each n ∈ ω then

⋂
F∈u F ̸= /0.

4) II ↑ Č(X)→ I ↑ SV (X).
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Let σ be a Player II’s winning strategy for Č(X). We will define a Player I’s wining
strategy δ for SV (X).

By Lemma 3.2.5 there is a x0 such that for any open neighborhood V0 of x0 there is an
open cover C0 of X such that σ(⟨C0⟩) =V0.
We set δ (⟨⟩) = (X ,x0). Let V0 be Player II’ response. Let C0 be a open cover of X such that
σ(⟨C0⟩) =V0.
Again by Lemma 3.2.5, there is a x1 such that for any open neighborhood V1 ⊂V0 of x0 there is
a open cover C1 of V0 such that σ(⟨C0,C1⟩) =V1.
We set δ (⟨V0⟩) = (V0,x1). Let V1 be Player II’s response. Let C1 be a open cover of V0 such that
σ(⟨C0,C1⟩) =V1.

In this way we have a δ -game ⟨(X ,x0),V0,(V0,x1),V1 . . .⟩ and a σ−game ⟨C0,V0,C1,V1 . . .⟩.
Since II ↑ Č(X) there is an ultrafilter u such that u∩C0 ̸= /0 and

⋂
F∈u F = /0. As u∩C0 ̸= /0 so

{Vn}n∈ω ⊂ u. Therefore I ↑ SV (X).

Additionally, we will now see that SV (X) and kSV (x), although very similar, are not the
same game. Which is demonstrated with the following 2 results.

Theorem 3.2.10. The following conditions are equivalent:
i)II ↑ SV (X).
ii)II ↑ kSV (X)

Proof.

Since a singleton is a compact set, it is clear that II ↑ kSV (X) implies II ↑ SV (X).
Let σ be a Player II’s wining strategy in SV (X).
We will define a Player II’s strategy γ in KSV (X) by doing the following:
Let (V0,K0) the first play of Player I.
Then {σ(⟨(V0,x0)⟩)}x0∈K0 is a open cover of K0. Therefore we can set a finite subcover {σ(⟨(V i

0,x
i
0)⟩)}i=n

i=0.
Let γ(⟨(V0,K0)⟩ be the union of the open sets in that subcover.
Let (V1,K1) the next play of Player I.
Each x1 ∈K1 is contained in one or more open sets of the previous subcover. Then {σ(⟨(V i

0,x
i
0),(V1,x1∩

V i
0)⟩)}, where x1 ∈V i

0∩K1, is a open cover of K1. Therefore we can set a finite subcover. Now
we define γ(⟨(V0,K0),(V1,K1)⟩ to be the union of the open sets in the last subcover.
Analogously, we can continue defining Player II’s responses.

Note that because of the way we chose Player II’s response we have a infinite tree with
finite branching where every finite branch is a partial game of SV (X), every infinite branch is a
complete game of SV (X) and the nth Player II’s response is the union of open sets in the nth
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tree level.

Let u be an ultrafilter containing every Player II’s response in a game of KSV (X). Then u

contain at least one open set in every tree level. Therefore we have a infinite sub-tree included in
the ultrafilter. Hence u contain a infinite branch. Since II ↑ SV (X) we have that

⋂
F∈u F ̸= /0.

Example 3.2.11. Let X be a Bernstein subset of [0,1]. Then I ↑ kSV (X) but I ̸↑ SV (X). A full
proof of this result can be found in (TELGARSKY, 1984).

3.2.2 Porada Game

The Porada game is another way of generalizing the Choquet game in a way that allows
us to complete the relationship between Choquet Game and Čech Game.
In this text we will mainly consider the Čech and Sieve games, however, we will verify that both
generalization options are equivalent.
Let (X ,τ) be a topological space and Y ⊂ X . We define the Porada Game P(X ,Y ) as follows:

•T 0 : Player I plays (U0,x0) ∈ τ×Y with x0 ∈U0 and Player II responds with V0 ∈ τ ,
such that x ∈V0 ⊂U0.

•T n : Player I plays (Un,xn) ∈ τ×Y , with xn ∈Un ⊂Vn−1 and Player II responds with
Vn ∈ τ , such that xn ∈Vn ⊂Un.

Player II is declared winner if /0 ̸=
⋂

Vn ⊂ Y .

Analogously we can define kP(X ,Y ) where Player I chooses compact sets instead of
points.
If X is a Tychonoff space, then we define P(X) := P(βX ,X).

Theorem 3.2.12. Let X be a Tychonoff space. Then SV (X) and P(X) are equivalent.

Proof. I ↑ SV (X)⇒ I ↑ P(X))
For every U , open set in X , set U∗ an open set in βX such that U∗∩X =U .
Let σ be a Player I’s winning strategy for SV (X). We will define a Player I’s strategy γ for P(X)

by doing the following:
Let σ(⟨⟩) = (U0,x0) be Player I’s first play. We set γ(⟨⟩) = (W0,x0) where W0 =U∗0 .
Let V0 be Player II’s response. If σ(⟨V0 ∩ X⟩) = (U1,x1), then we set W1 ∋ x1 such that
W1 ⊂U∗1 ∩V0. We define γ(⟨V0⟩) = (W1,x1).
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Analogously, we define γ(⟨V0,V1 . . .Vn⟩) = (Wn+1,xn+1) where σ(⟨V0∩X ,V1∩X . . .Vn∩X⟩) =
(Un+1,xn+1) and Wn+1 ⊂U∗n+1∩Vn.

Note that Vn+1 ⊂Vn for all n ∈ ω . Therefore K =
⋂

Vn is a non empty compact subset of
βX .
Now suppose K ⊂ X . Then K is compact in X . Since σ is a Player I’s winning strategy there is
an ultrafilter u = {F}F∈u in X containing {Vn∩X}n∈ω such that

⋂
F∈uClX(F) = /0.

Since Clx(Vn∩X)⊂V n∩X we have that
⋂

Clx(Vn∩X)⊂
⋂

V n∩X =K. Let x∈K\
⋂

Clx(Vn∩X).
There is an n ∈ ω such that x /∈Clx(Vn∩X). As X is Tychonoff, there is an open neighborhood
W of x such that W ∩ (Vn∩X) = /0. Since x ∈V n, we have that (W ∗∩Vn)∩X ̸= /0, contradiction.
Therefore

⋂
Clx(Vn∩X) = K.

Then
⋂

F∈uClX(F) =
⋂

F∈u(ClX(F)∩K). Suppose there are an F ∈ u such that ClX(F)∩K = /0.
Since F∩Vn ̸= /0 we have {F∩Vn}n∈ω is a family of non empty compact sets with the finite inter-
section property. Therefore

⋂
(V n∩F) = F ∩K = F ∩ (X ∩K) =ClX(F)∩K ̸= /0, contradiction.

Therefore ClX(F)∩K ̸= /0 for all F ∈ u. Hence {ClX(F)∩K}F∈u is a family of compact sets
with finite intersection property. Then

⋂
F∈uClX(F)∩K ̸= /0, this contradicts Player I’s winning

strategy in SV (X). Finally, we can state that K ̸⊂ X , that is, γ is a Player I’s winning strategy in
P(X).
I ↑ P(X)⇒ I ↑ SV (X))
Let γ be a Player I’s winning strategy for P(X). We will define σ , a Player I’s strategy, by doing
the following:
Let γ(⟨⟩) = (U0,x0). We set σ(⟨⟩) = (U0∩X ,x0).
let V0 be Player II’s response. We set an open set W0 containing x0 such that W 0 ⊂V ∗0 ∩U0. Then
σ(⟨V0⟩) = (U1∩X ,x1) where γ(⟨W0⟩) = (U1,x1).
In general, if Vn is Player II’s last response then σ(⟨V0 . . .Vn⟩) = (Un+1 ∩ X ,xn+1) where
γ(⟨W0 . . .Wn⟩) = (Un+1,xn+1).

Since γ is a Player I’s winning strategy for P(X) we have that
⋂

Wn =
⋂

W n = K is a
non empty compact subset of βX such that K ̸⊂ X .
Let x∈K \X . Let us consider a family of open sets in X formed by the intersection of X and open
neighborhoods of x in βX . That family have the finite intersection property. Therefore, there is
an ultrafilter v containing such family. Since x ∈ K ⊂Wn ⊂V ∗n we have that Vn =V ∗n ∩X ∈ v.
Let u be an ultrafilter in βX containing v. It is clear that u contains all the open neighborhoods of
x in βX . Since u is an ultrafilter in βX , a compact Hausdorff space, we have that

⋂
F∈u F = {x}.

Suppose that
⋂

F∈vClX(F) ̸= /0. Let y ∈
⋂

F∈vClX(F). There are Vx and Vy disjoint open neigh-
borhoods in βX of x and y respectively. Therefore y ∈ClX(Vx∩X) and (Vy∩X)∩ (Vx∩X) = /0,
contradiction.
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In conclusion, there is an ultrafilter v containing {Vn}n∈ω such that
⋂

F∈vClX(F) = /0,
that is, σ is a Player I’s winning strategy for SV (X).

II ↑ SV (X)⇒ II ↑ P(X))
Let σ be a Player II’s winning strategy for SV (X). We will define γ , a Player II’s strategy for
P(X), by doing the following:

Let (V0,x0) be Player I’s first play. Let σ(⟨(V0∩X ,x0)⟩) =U0. We set γ(⟨(V0,x0)⟩) =W0

such that x0 ∈W0 ⊂W0 ⊂U∗0 ∩V0.
Let (V1,x1) be Player I’s response. Since V1 ⊂W0 ⊂U∗0 we have V1∩X ⊂U∗0 ∩X = U0. Let
σ(⟨(V0∩X ,x0),(V1∩X ,x1⟩) =U1. We set γ(⟨(V0,x0),(V1,x1)⟩) =W1 such that x1 ∈W1 ⊂W1 ⊂
U∗1 ∩V1.
In general, let (Vn,xn) be Playe I’s last response. Let σ(⟨(V0∩X ,x0) . . .(Vn∩X ,xn)⟩) =Un. We
set γ((V0,x0) . . .(Vn,xn)⟩) =Wn such that xn ∈Wn ⊂Wn ⊂U∗n ∩Vn.
Let K =

⋂
Wn =

⋂
W n. Then K is a non empty compact set. Suppose K \X ̸= /0. Let y∈K \X . Let

u be an ultafilter in X containing all open set of the form V ∩X where V is an open neighborhood
in βX of y.Since any ultrafilter in βX containing u clusters in {y}, we have that

⋂
F∈uClX(F) = /0.

This contradicts the fact that II ↑ SV (X). Therefore K ⊂ X , that is, γ is a winning strategy.

II ↑ P(X)⇒ II ↑ SV (X))
Let γ be a Player II’s winning strategy for P(X). We will define σ , a Player II’s strategy for
SV (X), by doing the following:

Let (V0,x0) be Player I’s first play. Let γ(⟨(V ∗0 ,x0)⟩) =U0. We set σ(⟨(V0,x0)⟩) =U0∩X .
Let (V1,x1) be Player I’s response. We set W1, an open neighborhood of x1 in βX , such that
W 1 ⊂V ∗1 ∩U0. Let γ(⟨(V ∗0 ,x0),(W1,x1)⟩) =U1. We define σ(⟨(V0,x0),(V1,x1)⟩) =U1∩X .
In general, let (Vn,xn) be Player I’s last response. We set Wn, an open neighborhood of xn in βX ,
such that W n⊂V ∗n ∩Un−1. Let γ(⟨(V ∗0 ,x0) . . .(Wn,xn)⟩)=Un. We define σ(⟨(V0,x0) . . .(Vn,xn)⟩)=
Un∩X .
Let K =

⋂
Un =

⋂
Un. Since II ↑ P(X) we have that K is a non empty compact subset of X . Let

u be an ultrafilter in X containing {Un∩X}n. As
⋂

ClX(Un∩X)⊂
⋂

Un = K.
Suppose that K \

⋂
ClX(Un∩X) ̸= /0. Let y ∈ K \

⋂
ClX(Un∩X). Then there is a ClX(Un∩X)

such that y /∈ClX(Un∩X). Since X is a Tychonoff space, let Vy be an open neighborhood of y

such that Vy∩ClX(Un∩X) = /0. Then Vy∩Un = /0. Since y ∈ K ⊂Un, we have that V ∗y ∩Un ̸= /0
contradiction. Therefore K =

⋂
ClX(Un∩X).

Then
⋂

F∈uClX(F) =
⋂

F∈u(ClX(F)∩K) ̸= /0. That is, σ is a winning strategy.
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CHAPTER

4
APPLICATIONS OF TOPOLOGICAL GAMES

In this chapter, we will see some properties of topological games that will allow us to
characterize some spaces as Baire spaces. We will also see properties that allow us to identify
some spaces where Player I or Player II has a winning strategy.

4.1 On the Banach-Mazur Game and the Choquet Game

We begin with the already mentioned result, a characterization of Baire spaces through
the use of the Banach game. This result can be found in (OXTOBY, 1957).

Proposition 4.1.1. Let (X ,τ) be a topological space. X is not a Baire space if, and only if,
I ↑ BM(X).

Proof.

⇒) Since X is not a Baire space, there is a family {An;n ∈ ω} of dense open sets, such
that A =

⋂
An is not dense.

We will define a strategy δ by doing the following:
We define δ (⟨⟩) = (U,x0) where A∩U = /0 and x0 ∈ A0∩U .
Let V0 be a response of Player II in turn n. We define δ (⟨V0⟩) = (A1∩V0,x1).
Let Vn be a response of Player II in turn n. We define δ (⟨V0, . . .Vn⟩) = (An+1∩V0,xn+1).

Since Vn ⊂U ∩An, then
⋂

Vn ⊂U ∩
⋂

An =U ∩A = /0, therefore I ↑Ch(X).

⇐) Let σ be a Player I’s winning strategy. Let σ(⟨⟩) =V0.
There is a family V0, of subsets of V0, such that {σ(⟨V ⟩);V ∈ V0} is a maximal pairwise disjoint
family. Note that

⋃
V0 is an open dense subset of V0.
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Analogously, for each W ∈ V0 there is a family V W , of subsets of W , such that {σ(⟨W,V ⟩);V ∈
V W} is a maximal pairwise disjoint family. We set V1 as an union of all families V W . Note that⋃

V1 is an open dense subset of V0.
This way we can define a collection {Vn}n∈ω of pairwise disjoint open sets, such that

⋃
Vn is an

open dense subset of V0.
Suppose that

⋂
n∈ω

⋃
Vn ̸= /0. Let x ∈

⋃
Vn ̸= /0 for all n ∈ ω . Since Vn is pairwise disjoint,

there is an only Vn ∈ Vn such that x ∈ Vn. In addition, there is only one W0 ⊂ V0, such that
σ(⟨V0,W0⟩) =V1. In general there is an only one Wn⊂Vn such that σ(⟨V0,W0 . . .Vn,Wn⟩) =Vn+1.
Since I ↑ BM(X), then

⋂
Vn = /0, contradiction. Therefore,

⋂
n∈ω

⋃
Vn = /0. Hence, V0 is not a

Baire space, therefore, neither is X .

Lemma 4.1.2. Let X be a Tychonoff space. Let Y be a dense subspace of X . Let {Vn}n∈ω be a
decreasing sequence of open sets in X and define Wn =Vn|Y . If

⋂
Wn = K is compact in X and

{Wn}n∈ω is a local base of neighborhoods of K in Y , then
⋂

Vn = K and {Vn}n∈ω is a local base
of neighborhoods of K in X .

Proof.

Suppose there is y ∈
⋂

Vn such that y /∈ K. Then there are disjoint open sets A,B such that y ∈ A

and K ⊂ B. Therefore there is a Wn ⊂ B|Y and y ∈Vn∩A.
Therefore Vk∩A is a non empty open set. Since Y is dense in X , then /0 ̸=Vn∩A∩Y =Vn|Y ∩A|Y =

Wn∩A|Y ⊂ B|Y ∩A|Y = /0, contradiction.
Let V be a neighborhood of K in X . Since K is a compact set and X is a Tychonoff space, we can
consider that V is a closed neighborhood. There is a Wn ⊂V |Y . Suppose that Vn ̸⊂V . Since V ∩Vn

is open in X and Y is dense in X , there is a y ∈ (Vn∩V c)|Y =Wn∩V c|Y = /0, contradiction.

The next property to discuss asks us for something more than a winning strategy but also
requires that the strategy to be stationary. This property is mentioned in (REVALSKI, 2004), but
here we present a different proof of this result.

Proposition 4.1.3. Let X be a Tychonoff space. Then the following assertions are equivalent:
i) The space X contains a dense Čech-complete subspace.
ii) Player II has a complete (stationary) winning strategy in BM(X).

Proof.

i⇒ ii) Let Y be a dense Čech-complete subspace of X .
Since Y is a regular space and by Proposition 2.2.6, there is {Cn}n∈ω , a complete sequence of
open covers, with the following properties:
1) C0 = {Y}.
2) For each V ∈ Cn there is W ∈ Cn−1 such that V ⊂W .
3) For each U ∈ τ \{ /0} and for every n ∈ ω there is Vn ∈ Cn, such that Vn ⊂U .
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For each open set U ̸= /0 we define

λ (U) = sup{n ∈ ω; U ⊂V for some V ∈ Cn}n∈ω

Note that if V ⊂W then λ (V )≥ λ (W ).

Now we will define a stationary strategy δ for Player II.
Let V be a non empty open set. If λ (V ) = ∞ then we set σ(⟨V ⟩) =W such that W ⊂V .
If λ (V )< ∞. We set σ(⟨V ⟩) =W such that W ∈ Cλ (U)+1 and W ⊂V .
A σ -game have only two possibilities, or every Vn played by Player I is such that λ (Vn)< ∞ or
there is an m ∈ ω such that λ (Vn) = ∞ for all n≥ m.
In both cases, let ⟨V0,W0,V1,W1 . . .⟩ be a σ -game. Note that {Wn}n∈ω is a family with the finite
intersection property and W n ⊂Wn+1. Then

⋂
n∈ω Wn is a closed set contained in some open

set of each cover Cn. By definition of complete sequence of open covers and by Proposition
2.2.2,

⋂
n∈ω Wn is a non empty compact set. And since W n ⊂Wn+1, {Wn}n∈ω is a local base of

neighborhoods of
⋂

Wn.
In this way we prove that in every Čech-complete space Y , Player II has a complete stationary
winning strategy in BM(Y ).

For any V open set in Y we can set an open set V ′ in X , such that V ′∩Y =V . Now we
can define a strategy σ ′ for Player II by doing the following: σ ′(⟨W ⟩) = σ(⟨W ∩Y ⟩)′ and by
Lemma 4.1.2, σ ′ is a complete stationary strategy for Player II in BM(X).

ii⇒ i) Let σ be a Player II’s winning strategy for BM(X).
Let F0 = {σ(V ), V ∈ τ}. Let C0 ⊂ F0 be a maximal collection of pairwise disjoint sets.
Then

⋃
V∈C0

V is dense in X .
For every V ∈ C0 we set a maximal collection of pairwise disjoint of the form {σ(W ), W ⊂V}.
Let C1 be the union of all collections define above. Then

⋃
V∈C1

V is dense in X .
Analogously, we can define a sequence {Cn}n∈ω of collection of pairwise disjoint open sets such
that

⋃
V∈Cn

V is dense in X . Note that, for any n ∈ ω ,
⋃

V∈Cn+1
V ⊂

⋃
V∈Cn

V .

Let

Y =
⋂

n∈ω

⋃
V∈Cn

V

Since II ↑ BM(X), by Proposition 4.1.1, X is a Baire space. Therefore Y is dense in X .

For all n ∈ ω , we define C ∗n = {V ∩Y, V ∈ Cn}n∈ω . Note that {C ∗n }n∈ω is a countable
collection of open covers of Y .
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Let u be an ultrafilter in Y such that u∩C ∗n ̸= /0 for all n ∈ ω .
Let σ(⟨V0⟩)∩Y in u∩C ∗0 . Then there is a σ(⟨V1⟩)∩Y in u∩C ∗1 such that V1 ⊂ σ(⟨V0⟩). In this
way we have a sequence {σ(⟨Vn⟩)∩Y}n∈ω such that Vn+1 ⊂ σ(⟨Vn⟩).

Since σ is a complete winning strategy and ⟨V0,σ(V0),V1,σ(V1),V2 . . .⟩ is a σ -game, we
have that

⋂
σ(⟨Vn⟩) = K is a compact. Note that σ(⟨Vn⟩)⊂

⋃
V∈Cn

V . Therefore K ⊂ Y .

Let u be an ultrafilter in βY containing u. Then u↘ x. Suppose that x /∈ K. Then there is
a σ(⟨Vn⟩) such that x /∈ σ(⟨Vn⟩), contradiction.

In conclusion, for any ultrafilter u such that u∩C ∗n ̸= /0 for all n ∈ ω , there is x ∈⋂
V∈uV ̸= /0. Therefore Y is Čech-complete.

In the above result, if in addition to requiring a stationary winning strategy, we add
a condition to the target set, we can get a fully metrizable dense subset, instead of just Čech
complete, as indicated by the following result.

Proposition 4.1.4. Let X be a Tychonff space. Then the following assertions are equivalent:
i) The space X contains a dense, completely metrizable subspace.
ii) Player II has a complete stationary winning strategy σ in the game BM(X) such that for every
σ -game p, the target set T (p) is a singleton.

Proof.

i⇒ ii) Let (Y,d) be a dense and complete subspace of X .
By Corollary 4.2.8 and Proposition 3.1.4 Player II has a stationary winning strategy in Ch(Y ).
Let δ be such strategy.
Note that the open sets played by Player II following the strategy described in Proposition 3.1.4
form a complete sequence.
Let τ be the topology of X . Let f : τ → Y be a function such that f (U) ∈U and U |Y =V |Y −→
f (U) = f (V ).
For each V ∈ τ|Y we set an V ∗ ∈ τ such that V =V ∗|Y .
Let σ be a Player II’s strategy for BM(X) defined by σ(⟨V ⟩) =V ∩δ (⟨(V |Y , f (V ))⟩)∗.
Let p = ⟨U0,V0 ,U1,V1 . . .⟩ be a σ−game.
Since δ is a winning strategy in Ch(Y ) and δ (⟨(Un|Y , f (Un))⟩) ⊂ σ(⟨Un⟩) = Vn, we have that⋂

Vn ̸= /0.

According to Lemma 4.1.2, since
⋂

δ (⟨(Un|Y , f (Un))⟩) = {x} we have that T (p) =⋂
σ(⟨Un⟩) = {x}. And {σ(⟨Un⟩)}n∈ω is a local base for x ∈ X .
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ii⇒ i) Similarly to the previous proposition we have a Čech-complete dense subset Y .
Note that every x ∈ Y is a target set for some σ -game (unique).
Now we define a metric in Y by doing the following:

d : Y ×Y → R

d(x,y) =

0 x = y
1
n x ̸= y

Where n≥ 1 is the least such that x and y are in different sets of Cn.
Obviously d(x,y) = d(y,x). Let x,y,z ∈ Y such that d(x,y) = 1/a. Note that z can not be in the
same set of x and y at same time. Therefore d(x,z)≥ 1/a or d(y,z)≥ 1/a. Either way we have
that d(x,y)≤ d(x,z)+d(y,z).

Since each Vn∩Y belongs to a local base of neighborhoods of some x ∈ Y , we have that
τ|Y = τd .

Then (Y,τd) is a metric Čech-complete space and by Corollary 4.2.8, Y is completely
metrizable.

Next we will see a characterization of those spaces where Player I has an advantage in
the Choquet Game.

Proposition 4.1.5. Let X be a metric space. I ↑Ch(X) if, and only if, X contains a copy Y of is
Q. such that Y is a Gδ set.

Proof.

(⇒) Let σ be a stationary winning strategy for Player I.
With the same points xs described in Proposition 3.1.5. We will considered {ks

n}n∈ω the sequence
of natural numbers defined above such that xs⌢ks

n
→ xs.

Now we define a family of open sets by doing the following:

An =
⋃
s∈T

B(xs,1/ks
n)

Let z ∈
⋂

An. Suppose that z ̸= xs for all s ∈ T .
Since z ̸= x0, there is a k0

n such that z /∈ B(x0,1/k0
n). Then there is an n1 such that z∈ B(x0n1 ,k

0n1
0 ).

Since z ̸= x0n1 , there is a k0n1
n such that z /∈ B(x0n1 ,1/k0n1

n ). Then there is an n2 such that
z ∈ B(x0n1n2,k

0n1n2
0 ).

Therefore, there is a sequence {ni}i∈ω∗ such that 0n1 . . .np ∈ T and z ∈ B(x0n1...np,1/np+1) for
all p ∈ ω∗.
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Since there is a game such that in the turn 0 Player II plays B(x0,1/n1) and in the turn p,
Player II plays B(x0n1...np,1/np+1), we have that

z ∈
⋂

p∈ω∗
B(x0n1...np,1/np+1) = /0(contradiction)

Therefore, ⋂
An = {xs, s ∈ T}

Then {xs, s ∈ T} is Gδ , countable and without isolate point. Therefore, by Sierpinski Theorem,
is homeomorphic to Q.

(⇐) To simplify the writing we will consider Q⊂ X . Let Q=
⋂

Vn, where Vn is open in
X .
Let Un =Vn \{qk,k < n}. We define σ to be a strategy for Player I by doing the following:
σ(⟨⟩) = (U0,q0).
If Player II chooses V0, then σ(⟨V0⟩) = (U1∩V0, p0). In general, σ(⟨V0 . . .Vn⟩) = (Un+1∩Vn, pn).
Clearly,

⋂
Vn ⊂

⋂
U0 = /0. Therefore, σ is a winning strategy.

To conclude this section, we will see another application that allows us to characterize
some spaces where II ↑Ch(X). Before seeing such a result, it is necessary to establish some
definitions.

Definition 4.1.6. We will say that a Tychonoff space X has a Base of countable order if there is
a base B for X such that any sequence {Bn}n∈ω of different members of B with Bn+1 ⊂ Bn is
a local base for each point of

⋂
Bn. A base of countable order is monotonically complete if for

each sequence {Bn}n∈ω ⊂B such that Bn+1 ⊂ Bn then
⋂

Bn ̸= /0.

Definition 4.1.7. Let (X ,τ) be a Tychonoff space. A collection U ⊂ τ \{ /0} is a regular filter

base if for any U,V ∈U there is W ∈U such that W ⊂U ∩V . X is called subcompact if it has a
base B⊂ τ \{ /0} such that every regular filter base U ⊂ B has non empty intersection. Such base
B is called subcompact base.

We will also consider an equivalent definition of bases of countable order, given in
(WORRELL; WICKE, 1965).

Proposition 4.1.8. Let (X ,τ) be a Tychonoff space. Then X has a base of countable order if
, and only if, there is a sequence Bn of bases for X such that whenever the sets Bn ∈Bn has⋂

Bn ̸= /0, then {Bn}n∈ω is a local base for each point of
⋂

Bn.

In (GRUENHAGE, 1984) we find another equivalence that will be useful in the proof of
the theorem that we mentioned before.
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Proposition 4.1.9. A Tychonoff space (X ,τ) has a monotonically complete base of countable
order if and only if there is a tree (T,⊏) with levels T0.T1,T2 . . . and a function G : T → τ \{ /0}
such that:
a) G(Tn) is a cover of X for each n.
b) If t ∈ Tn, then G(t) =

⋃
{G(p); p ∈ Tn+1, p ⊏ t}.

c) If t0, t1, t2 is a branch of T then S =
⋂

G(tn) is non empty and {G(tn)} is a local base for each
point of S.

With the above we are ready to prove the following result.

Theorem 4.1.10. Let (X ,τ) be a Tychonoff space with a base of countable order, then:
a) X has a base of countable order monotonically complete.
b)X is subcompact.
c)Player II have a (stationary) winning strategy in Ch(X).
are equivalent.

Proof.
a)⇒ b)

Let B be a base of countable order monotonically complete for X . Let U ⊂B be a regular filter
base. We will suppose that U does not have a minimal element (with respect to set inclusion).
Because if U has a minimal element, then there is nothing to prove. Let {Bn}n∈ω ⊂U such that
Bn+1 ⊂ Bn. Since {Bn}n∈ω ⊂B and X is a Tychonoff space, then

⋂
Bn = {x}. If x /∈ B ∈U there

is B′ ∈U such that x /∈ B′. Therefore there is Bn such that Bn∩B′ = /0, this contradicts the fact
that U is a filter base.
b)⇒ c)

Let B be a subcompact base. Let (U,x) be a pair with x ∈ U ∈ τ . We define a Player II’s
stationary strategy σ by doing the following: σ(⟨U,x⟩)⊂U such that x ∈ σ(⟨U,x⟩)⊂U . Let
(⟨(U0,x0),(U1,x1),(U2,x2), . . .⟩) be a game played with such strategy. Note that {σ(⟨Un,xm⟩)}
is a regular filter base containing in B. Therefore

⋂
Un ̸= /0.

c)⇒ a)

Since X has a Base of Countable Order, there is a sequence {Bn}n∈ω as described in Proposition
4.1.8. Let σ be a winning strategy for Player II in Ch(X). We will define C0 = {(V0,x0);x0 ∈
V0 ∈ B0}. Let

C1 = {(V0,x0,V1,x1);(V0,x0) ∈C0,x1 ∈V1 ∈ B1,V1 ⊂ σ(⟨(V0,x0)⟩}

and, in general Cn = {(V0,x0 . . .Vn,xn);(V0,x0 . . .Vn−1,xn−1)∈Cn−1,xn ∈Vn ∈Bn,Vn ∈σ(⟨(V0,x0) . . .(Vn1,xn−1)⟩)}.
Now define T =

⋃
Cn. Let t = (V0,x0, . . .Vn,xn) and p = (W0,y0, . . .Wm,ym) ∈ T . We define the

relationship ⊏ in T by doing the following: t ⊏ p if and only if m≥ n and Vi =Wi, xi = yi for
each i≤ n.
Note that T is a tree and Cn are its levels. We define G : T→ τ \{ /0} such that G(V0,x0,V1,x1 . . .Vn,xn)=
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σ(⟨(V0,x0), . . .(Vn,xn)⟩).
Now we will see that this tree T with the function G meet the conditions given in Proposition
4.1.9.
Then G(Cn) is a cover of X for each n and G(t) =

⋃
{G(p); p ∈Cn+1, p ⊏ t}. Finally, let {ti}i∈ω

be a branch of T . Then there are {(Vi,xi)}i∈ω such that ti = (V0,x0,V1,x1 . . .Vi,xi). Therefore
G(ti) = σ(⟨(V0,x0),(V1,x1) . . .(Vi,xi)⟩). Since σ is a winning strategy we have that

⋂
G(ti) ̸= /0.

Let x ∈
⋂

G(ti). Since x ∈Vi ∈Bi for each i and
⋂

Vi =
⋂

G(ti) ̸= /0, then {Vi}i∈ω is a local base
of x. In addition, since Vi+1 ⊂ G(ti)⊂Vi we can say that G(ti) is a local base of x as well.

In the following diagrams, we will see a summary of the most important results obtained
related to the Choquet game in metric spaces.

f in, I ↑ Č(X) f in, X is completely metrizable

f inΓ, f in,

II ↑ G(X ,d) f in, II ↑Ch(X) f in, Player II has a stationary winning strategy in Ch(X)

f in, f in, f in, f in,

(
Γ

)
f in, f in,

4.2.7

3.1.3 4.1.10

3.2.4 3.1.2

Figure 1

f in, II ↑ Č(X) f in, X contains a copy of Q that is Gδ

f inΓ, f in,

I ↑ G(X ,d) f in, I ↑Ch(X) f in, Player I has a stationary winning strategy in Ch(X)

f in, f in, f in, f in,

(
Γ

)
f in, f in,

3.2.4
4.1.5

3.1.53.1.3

Figure 2
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4.2 On the Čech Game
In this section we will see various results related to the Čech game.

Before starting to see these results, it is necessary to know some subcategories of paracompact
spaces.

Definition 4.2.1. A space X is hereditary paracompact if every subset of X is paracompact.

Definition 4.2.2. A space X is ultraparacompact if every open cover admits an open refinement
made by mutually disjoint open sets.

With the established definitions, we can prove the first proposition that allows us to go
from Player I having an advantage in Čech Game to space being Čech complete.

Proposition 4.2.3. Let X be a Tychonoff space. If βX is hereditary paracompact and I ↑ Č(X)

then X is Čech-complete.

Proof.

Let O = {Wk}k∈I be a family of open sets in X . For any k ∈ I, there is a W̃k open set in βX

such that W̃k|X = Wk. We fix {Ṽp}p∈J , a locally finite refinement of {W̃k}k∈I , and we define
O∗ = {Ṽp|X}p∈J . Therefore O∗ is a locally finite refinement of O .

Let α be a winning strategy for Player I. We will define another winning strategy σ by
doing the following:

We define σ(⟨⟩) = α(⟨⟩)∗.

If V0 ∈ σ(⟨⟩), there is a W0 ∈ α(⟨⟩) such that V0 ⊂W0. Let δ (⟨V0⟩) = {W ∩V0,W ∈
σ(⟨W0⟩)}. Then we define σ(⟨V0⟩) = δ (⟨V0⟩)∗.

If Vn+1 ∈ σ(⟨V0 . . .Vn⟩), there is a Wn+1 ∈ α(⟨W0 . . .Wn⟩) such that Vn+1 ⊂ Wk. Let
δ (⟨V0, . . .Vn⟩)= {W ∩Vn+1,W ∈σ(⟨W0 . . .Wn⟩)}. Then we define σ(⟨V0 . . .Vn+1⟩)= δ (⟨V0 . . .Vn+1⟩)∗.

Now we are going to show that σ is a winning strategy:
Let u be an ultrafilter such that u∩σ(⟨V1 . . .Vn⟩) ̸= /0 for all n ∈ ω . Then Vn ∈ u and Vn ⊂Wn.
Then u∩α(⟨W1 . . .Wn⟩) ̸= /0 therefore

⋂
F∈u F ̸= /0.

If σ(⟨V0 . . .Vn⟩) = {Ai}i∈I , define σ̃(⟨V0 . . .Vn⟩) = {Ãi}i∈I a locally finite family of open
sets in βX such that Ãi|X = Ai.

Now we define a family of open sets in βX containing X by doing the following:
C̃0 = σ̃(⟨⟩).
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C̃1 =
⋃

V0∈σ(⟨⟩) σ̃(⟨V0⟩).
C̃2 =

⋃
V0∈σ(⟨⟩)

⋃
V1∈σ(⟨V0⟩) σ̃(⟨V0,V1⟩)

....
C̃n =

⋃
V0∈σ(⟨⟩)

⋃
V1∈σ(⟨V0⟩)

⋃
V2∈σ(⟨V0,V1⟩) . . .

⋃
Vn−1

σ̃(⟨V0, . . .Vn−1⟩).

Now we are going to see that:

⋂
n∈ω

(
⋃

C̃n) = X

We already know that X ⊂
⋂

n∈ω(
⋃

C̃n).

Let y ∈
⋂

n∈ω(
⋃

C̃n).

We are going to consider F an ultrafilter in X containing all restriction neighborhoods of
y in βX at X .

Since C̃0 is locally finite, there are only a finite {Ṽk}k=1...n such that y ∈ Ṽk.

Now we will prove that there are only finitely many elements of C̃1 that contain y.

1◦ Let W ∈ C̃1 be such that y ∈W There is m such that W ∈ σ̃(⟨Vm⟩) then y ∈W ⊂ Ṽm,
therefore Ṽm ∈ {Ṽk}k=1...n.

2◦ Let

Ak = {W ∈ σ̃(⟨Vk⟩);y ∈W}

Since for k = 1 . . .n we have that σ̃(⟨Vk⟩) is locally finite, then Ak is finite.

3◦

{W ∈ C̃1;y ∈W}=
⋃

k=1...n

{W ∈ σ̃(⟨Vk⟩);y ∈W}=
⋃

k=1...n

Ak is finite.

Analogously we have that for every n ∈ ω , there are only finitely many elements of C̃n

that contain y.

Therefore, we have a family of open sets that contain y. That family is an infinite tree
with finite branching, and by König’s lemma there is an infinite branch Ṽ0 ⊃ Ṽ1 ⊃ Ṽ2 . . . where
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Ṽn+1 ∈ σ̃(⟨V1 . . .Vn⟩).

Now it is clear that Vn ∈ F for all n ∈ ω , and since σ is a winning strategy therefore⋂
f∈F clX f ̸= /0.

If y /∈ X , for every x ∈ X there is an open neighborhood of y in βX , Vx, such that
x /∈ clβXVx, and therefore x /∈ clX(Vx|X) ∈ F , this is

⋂
f∈F clX f = /0, contradiction.

Before presenting the following proposition, we will see a property of ultraparacompact
spaces that will be useful in the proof.

Lemma 4.2.4. Let X be an ultraparacompact space, if {Vi}i∈I is an open cover made by mutually
disjoint sets. For any i ∈ I every open cover of Vi has an open refinement made by mutually
disjoint sets.

Proof.

Let {A j} j∈J an open cover of V0 =
⋃

j∈J A j. Then {A j} j∈J ∪{Vi}i∈I\{0} is an open cover of X .
Then there is a refinement {Wp} made by mutually disjoint sets. Let R = {Wp;Wp∩V0 ̸= /0}, R

is a cover of V0 made by mutually disjoint sets, and therefore is an open refinement of {A j} j∈J

made by mutually disjoint sets.

Similarly, we can prove that every open cover cover of V1 ∈R, admits an open refinement
made by mutually disjoint sets.

In general every clopen set of an ultraparacompact space is ultraparacompact itself.

With this we are ready to present and prove the following proposition.

Proposition 4.2.5. If the space X is ultraparacompact and I ↑ Č(X) then X is Čech-complete.

Proof.

Let σ∗ be a winning strategy for Player I. We will define a winning strategy σ where every
response is an open cover made by mutually disjoint sets.

Since σ∗(⟨⟩) is an open cover of X , there is a refinement made by disjoint sets. We set
that refinement and defined as σ(⟨⟩).
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For all V ∈ σ(⟨⟩), we fix WV ∈ σ∗(⟨⟩) such that V ⊂WV .
Let V0 ∈ σ(⟨⟩). Since σ∗(⟨WV0⟩) generates an open cover of V0 and since V0 is ultraparacompact
by Lemma 4.2.4 there is a refinement made by mutually disjoint sets. We fix that refinement and
define it as σ(⟨V0⟩).

In general, for any Vn+1 ∈ σ(⟨V0 . . .Vn⟩) we fix Wn+1 ∈ σ∗(⟨w0 . . .Wn+1⟩) such that
Vn+1 ⊂Wn+1. Since σ∗(⟨W0 . . .Wn+1⟩) generates an open cover of Vn+1 and since Vn is ultra-
paracompact by Lemma4.2.4 there is a refinement made by mutually disjoint sets. We set that
refinement as σ(⟨V0 . . .Vn+1⟩).

Now we will define a family of open covers of X.
C0 = σ(⟨⟩).
C1 =

⋃
V0∈C0

σ(⟨V0⟩).
C2 =

⋃
V0∈C0

⋃
V1∈σ(⟨V0⟩)σ(⟨V0,V1⟩)

....
Cn =

⋃
V0∈C0

⋃
V1∈σ(⟨V0⟩)

⋃
V2∈σ(⟨V0,V1⟩) . . .

⋃
Vn−1

σ(⟨V0, . . .Vn−1⟩).

Let u be an ultrafilter such that u∩Cn ̸= /0 for all n ∈ ω .
Let {V0}= u∩C0 (V0 is unique because the other elements are disjoint of it.)
Let {V1}= u∩C1. Then V1 ∈ σ(⟨V0⟩) because the other responses only have open sets disjoint
of V0.
Analogously if {Vn}= u∩Cn then Vn ∈ σ(⟨V1 . . .Vn−1⟩).

Therefore there is a play [σ(⟨⟩),V0,σ(⟨V0 >,V1,σ(⟨V0,V1⟩) . . .], therefore, since I ↑ Č(X) we
have that

⋂
F∈u F ̸= /0.

With the following result, we will finish those that, by adding conditions, allow us to
affirm that a space is Čech complete.

Proposition 4.2.6. Let X be a Tychonoff space where I ↑ Č(X). If for every compact K ∈ βX \X

there is a compact K̃ ∈ βX \X , such that K ⊂ K̃ and K̃ is a Gδ set, then X is a Čech-complete
space.

Proof.

LetC be a collection of compact subsets of βX \X , and let K be a collection of Gδ compact
subsets of βX \X .
For each K ∈ C let us set a K̃ in K .
For each K̃ let us set VK = {Vn(K)}n∈ω such that

⋂
Vn(K) = K̃.
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Since I ↑ Č(X), then I ↑CO(βX \X).(COSTA, 2019)

If in CO(βX \X) we add a restriction for Player II, Player I still wins the game.
Restriction: if Player I chooses K, Player II can response only with elements of VK .

Playing with that restriction, let a winning strategy δ for Player I in CO(βX \X). We
define:
A0 = {δ (⟨⟩)}= {K},
A1 = {δ (⟨Vm1(K)⟩)}m1∈ω = {Km1}m1∈ω ,
A2 = {δ (⟨Vm1(K),Vm2(K

m1)⟩)⟩)}m1,m2∈ω = {Km1m2}m1,m2∈ω , and in general
An = {δ (⟨Vm1(K),Vm2(K

m1),Vm3(K
m1m2) . . .Vmn(K

m1...mn−1)⟩)}mi∈ω .

Let A =
⋃

An. Then A is countable.

Let us suppose there is y ∈ βX \X such that y /∈
⋃

K∈A K̃. Then for any K ∈ A there is
a p ∈ ω such that y /∈Vp(K). Then Player II can respond every choose Kn of Player I with the
open set Vpn(Kn) which does not contain y and consequently Player II wins the game, that is a
contradiction with I ↑CO(βX \X).

In conclusion, βX \X =
⋃

K∈A K̃, hence, βX \X is σ−compact and by Proposition 2.1.2
and Theorem 2.3.4, X is Čech-complete.

With what has been developed so far, we are able to demonstrate the reciprocal of
Proposition 3.1.2.

Proposition 4.2.7. Let (X ,d) be a metric space. If I ↑ Č(X) then X is completely metrizable.

Proof.

Let Y be the completion of X . We will prove that X is a Gδ subset of Y . That will ensure what
we are looking for.
Since Y is a metric space, Y is a hereditary paracompact.
Analogously at Proposition 4.2.3, we can define a cover of X by opens in Y and prove that
intersection of those open is X . We thus prove what we want.

Corollary 4.2.8. Let (X ,d) be a metric space. Then:

•X is completely metrizable.
•I ↑Č(X).
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•II ↑ G(X ,d).
•II ↑Ch(X).

are equivalent.

Before presenting the last theorem of this text, which allows us to characterize those
spaces where Player I always wins the Čech game, we are going to make some observations that
will be useful when carrying out the demonstration.

Observations:
• Note that for an arbitrary winning strategy, every move from Player I can be sorted in well
order.
• If (in each Player I’s response) we remove the elements that are contained in the union of the
previous ones, we can ensure that what we are still left with is a winning strategy.

Taking these observations into account, we can establish a winning strategy for Player I
with the following characteristics.
Let α be Player I’s winning strategy such that:
i) Every Player I respond’s is well ordered.
ii) Let {Wi}i∈I be a Player I’s respond, then for each i ∈ I, Wi ̸⊂

⋃
j<iWj.

With all these considerations, we are now ready to prove the following characterization
mentioned in (TELGARSKY, 1983), and that we will prove here using the properties of Čech
game that we have described throughout this text.

Theorem 4.2.9. The following conditions are equivalent:
i)X is a Sieve complete space.
ii)X is an open image of a (paracompact) Čech complete space.

Proof. i)⇒ ii)

Since X is sieve complete, then I ↑Č(X). Now we will define a family {Cn}n∈ω , of covers of X ,
as follows:
C0 = α(⟨⟩).
C1 =

⋃
V0∈α(⟨⟩)α(⟨V0⟩).

C2 =
⋃

V0∈α(⟨⟩)
⋃

V1∈α(⟨V0⟩)α(⟨V0,V1⟩).
Cn =

⋃
V0∈α(⟨⟩) · · ·

⋃
Vn−1∈α(⟨V0...Vn−2⟩)α(⟨V0 . . .Vn−1⟩).

For each V0 ∈ C0 we can associate with each element W of α(⟨V0⟩), an ordered pair
(V0,W ).
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For each α(⟨V0,V1⟩) we can associate each W ∈ α(⟨V0,V1⟩) with (V0,V1,W ). We can continue
analogously with each Cn.
Now, we can see Cn as a subset of τn+1.
Since C0 = α(⟨⟩) and every α(⟨V0⟩) are well ordered, we can induce a well order in C1 by doing
the following: (V1,W1)<1 (V2,W2) if V1 <0 V2 or V1 =V2 and W1 <V1 W2.
Analogously, we can define a well order in every Cn.
Now, for each n, we will remove from Cn all elements that meet the condition V ⊂

⋃
W<nV W .

Let E denote the set of all sequences {(V0,x),(V1,x),(V2,x) . . .} such that:
(i) Vn ∈ Cn.
(ii) (V0,V1,V2 . . .) is a run of Č(X).
(iii) x ∈

⋂
n∈ω Vn.

Let us define D(n,V,U) to be a subset of E such that:

D(n,V,U) = {{(V0,x),(V1,x),(V2,x) . . .} ∈ E ,x ∈U ⊂V =Vn}

Note that, if n′ > n and D(n,V,U)∩D(n′,V ′,U ′) ̸= /0, then

D(n,V,U)∩D(n′,V ′,U ′) = D(n′,V ′,U ∩U ′)

Let us define D to be the collection of all D(n,V,U). Let Ψ be the collection of all arbitrary
unions of elements of D . Then Ψ is a topology in E .

i) (E ,Ψ) is a Hausdorff space.
Let x′ = {(V0,x),(V1,x),(V2,x) . . .} and y′ = {(V ′0,y),(V ′1,y),(V ′2,y) . . .} be different points of E .
If there is an n such that V ′m =Vm for m < n and V ′n =Vn. Then D(n,Vn,Vn) contains x′ but not y′

and D(n,V ′n,V
′
n) contains y′ but not x′.

If V ′n = Vn for all n. Then x ̸= y, therefore exists disjoint open sets Vx,Vy, such that x ∈ Vx and
y ∈Vy. Then D(0,V0,V0∩Vx) contains x′ but not y′ and D(0,V0,V∩Vy) contains y′ but not x′.

Let F : (E ,Ψ)−→ (X ,τ) defined by F({(V0,x),(V1,x),(V2,x) . . .}) = x.

ii) F is an open continuous map.
Let D(n,V,U) ∈ D . Then y ∈ F(D(n,V,U)) if, and only if, there is a W ∈ Cn+1 such that
y ∈W ∩U ⊂V . Therefore, F(D(n,V,U)) =U ∩

⋃
{W ∈ Cn+1,W ⊂V} ∈ τ .

Let V ∈ τ , F−1(V ) =
⋃
{D(n,Vn,Vn∩V )} ∈Ψ.

Let us define an equivalence relation ≃ in E such that

{(V0,x),(V1,x),(V2,x) . . .} ≃ {(W0,y),(W1,y),(W2,y) . . .}←→Vn =Wn ∀n
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In E / ≃, let V = [{(V0,x),(V1,x),(V2,x) . . .}]. We define a metric d by doing the following:
d(V ,W ) = 1/(n+1) where Vi =Wi for i < n and Vn ̸=Wn. Clearly d is a complete metric.

Finally we will see that π : (E ,ψ) −→ (E / ≃,d) is a perfect continuous map and by
Proposition 2.3.7 we can conclude the proof.

i)π is continuous.
Let V = [{(V0,x),(V1,x),(V2,x) . . .}]. Let B(V ,1/(n + 1)) be an open ball in E / ≃. Then
{(W0,y),(W1,y),(W2,y), . . .} ∈ π−1(B(V ,1/(n+1))) if, and only if, Wi =Vi for i≤ n. Therefore,
{(W0,y),(W1,y),(W2,y), . . .} ∈ D(n,Vn,Vn) = π−1(B(V ,1/(n+1))).

ii) π is closed.
Let C be a closed in (E ,ψ). Let V = [{(V0,x),(V1,x),(V2,x) . . .}] /∈ π(C). Then for each y∈

⋂
Vn,

there is ny such that [{(V0,x),(V1,x),(V2,x) . . .} ∈ D(ny,Vny,Uy) and D(ny,Vny ,Uy)∩C = /0.
Since {Uy}y∈

⋂
Vn is an open cover of

⋂
Vn and

⋂
Vn is a compact set, there is a finite subcover

{Uy}y∈F . Additionally, since {Vn}n∈ω is a local basis for
⋂

Vn, there is p≥ ny ∀y ∈ F , such that
Vp ⊂

⋃
y∈F Uy.

Now, suppose that B(V ,1/(p+1))∩π(C) ̸= /0. Then there is a {(W0,a),(W1,a) . . .} ∈C, such
that Wi =Vi for i≤ p. Since a∈Wp =Vp, we have that a∈Uy for some y∈F . Then {(W0,a),(W1,a) . . .}∈
D(ny,Vny,Uy) for some y ∈ F , contradiction. Therefore, B(V ,1/(p+ 1))∩π(C) = /0. That is,
π(C)c is open in E /≃.

iii)π−1(V ) is a compact set.
Let V = [{(V0,x),(V1,x), . . .}]. Then π−1(V )= {{(V0,x),(V1,x), . . .},x∈

⋂
n∈ω Vn}. Let {D(ni,Vni,Ui)}i∈I

be an open cover of π−1(V ). Then {Ui}i∈I is an open cover of
⋂

n∈ω Vn. Therefore, there is a
finite open subcover {Ui}i∈F .
Let z∈

⋂
Vn. Since z∈Ui, for some i∈ F , then {(V0,z),(V1,z) . . .} ∈D(ni,Vni,Ui). In conclusion,

{D(ni,Vni,Ui)}i∈F is a finite subcover of π−1(V ).

ii)⇒ i)

Let X be a Tychonoff space. Let Y be a Čech complete space and let f : Y −→ X be an open
continuous function. Since Y is Čech complete, by Theorems 3.2.1 and 3.2.9, we have that
II ↑ SV (Y ). Let γ be Player II’s winning strategy in SV (Y ).
We will define a Player II’s strategy σ in SV (X) by doing the following:
Let (U0,x0) be Player I’s first move in SV (X). We set y0 ∈ f−1({x0}). We define σ(⟨(U0,x0)⟩) =
f (V0) where V0 = γ(⟨( f−1(U0),y0)⟩).
Let (U1,x1) be Player I’s response. We set y1 ∈ f−1({x1}). We define σ(⟨(U0,x0),(U1,x1)⟩) =
f (V1) where V1 = γ(⟨( f−1(U0),y0),( f−1(U1)∩V0,y0)⟩).
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Analogously, in the turn n, let (Un,xn) be Player I’s move. We set yn ∈ f−1({xn}) and define
σ(⟨(U0,x0),(U1,x1) . . .(Un,xn)⟩)= f (Vn) where Vn = γ(⟨( f−1(U0),y0) . . .( f−1(Un)∩Vn−1,yn)⟩).
Let u be an ultrafilter in X containing { f (Vn)}n∈ω . Then F = { f−1(W ),W ∈ u} is a filter base in
Y . Let x∈W ∩ f (Vn) where W ∈ u. There is y∈Vn such that f (y)= x∈W . Therefore y∈ f−1(W ).
Then {Vn}n∈ω ∪F is a filter base in Y . Since II ↑ SV (Y ) then {Vn}n∈ω ∪F clusters. Therefore
F clusters as well.
Since

⋂
ClY ( f−1(W )) ̸= /0 we have that /0 ̸=

⋂
f−1(ClX(W )) = f−1(

⋂
ClX(W )). Therefore,⋂

W∈uClX(W ) ̸= /0. Then II ↑ SV (X).
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