Tesis Doctoral
DOI
https://doi.org/10.11606/T.55.2018.tde-15032018-104115
Documento
Autor
Nombre completo
José Hilário da Cruz
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Carlos, 1998
Director
Tribunal
Táboas, Plácido Zoega (Presidente)
Carvalho, Luiz Antonio Vieira de
Fichmann, Luiz
Garcia, Ronaldo Alves
Reis, José Geraldo dos
Título en portugués
Sobre um Problema de Perturbação Singular com Vários Retardamentos
Palabras clave en portugués
Não disponível
Resumen en portugués
Consideremos a classe de equações diferenciais-diferenças singularmente perturbadas εx(t) = Σlr=0 αr x (t-r), ε > 0 (1ε e seu limite formal quando ε → 0: 0 = Σlr=0 α r x (t-r). (10). Utilizando um método introduzido por Carvalho [5], exibimos soluções periódicas de (1ε) e (10) e definimos hipersuperfícies de bifurcação dessas soluções no espaço dos parâmetros (α0, α, ...αl). Visando estabelecer relações entre as dinâmicas definidas por (1ε) e (10), no caso / = 2, α0 = 1 provamos que a região de estabilidade de (1ε) no espaço (α1, α2) aproxima a região de estabilidade de (10), quando ε → 0, num sentido definido precisamente no Teorema 4.1.1.
Título en inglés
Not available
Palabras clave en inglés
Not available
Resumen en inglés
We consider the class of singularly perturbed.differential-difference equations ε x(t) = Σlr=0 αr x (t-r), ε > 0 (1ε) and its formal limit as ε → 0: 0 = Σlr=0 αr x (t-r). (10). Using a method due to Carvalho [5], we exhibit periodic solutions of (1ε) and (10) and define bifurcation hypersurfaces for these solutions in the parameter space (α0, α1,...αl). Aiming to establish relations between the dynamics of (1ε) and (10) in case / = 2, α0 = 1, we prove that the stability region of (1ε) in the space (α1, α2) approaches the stability region of (10), as ε → 0, in a precise sense given in Theorem 4.1.1.
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
Fecha de Publicación
2018-03-15