• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Disertación de Maestría
DOI
10.11606/D.55.2017.tde-14122017-114529
Documento
Autor
Nombre completo
Daniela Paula Demuner
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Carlos, 2005
Director
Tribunal
Vidalon, Carlos Teobaldo Gutierrez (Presidente)
Tahzibi, Ali
Teixeira, Marco Antonio
Título en portugués
Resultados recentes relativos à conjectura fraca de Markus-Yamabe
Palabras clave en portugués
Não disponível
Resumen en portugués
C. Olech |28] provou que os problemas de estabilidade assintótica global de campos de vetores no Rn e injetividade global de aplicações do Rn nele próprio estão interrelacionados. Neste contexto, deparamo-nos com a Conjectura Fraca de Markus-Yamabe, cujo enunciado é o seguinte: Se F : Rn → Rn é uma aplicação de classe Cl tal que para todo ponto p ∈ Rn, todos os autovalores da derivada DF(p) têm parte real negativa, então F é uma aplicação injetiva. O objetivo deste trabalho é apresentar alguns resultados referentes a esta conjectura.
Título en inglés
Not available
Palabras clave en inglés
Not available
Resumen en inglés
It has been shown by C. Olech [28] that global asymptotic stability of vector fields of Rn and global injectivity of maps from Rn into itself are interrelated problems. In this context we have the Weak Markus-Yamabe Conjecture whose statement is as follows: If F : Rn → Rn be a C1 map such that for all p ∈ Rn, all the eigenvalues of the derivative DF(p) have negativo real part, then F is an injective map. In this work we present, some results related to this conjecture.
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
Fecha de Publicación
2017-12-14
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
CeTI-SC/STI
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2022. Todos los derechos reservados.