• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Master's Dissertation
DOI
https://doi.org/10.11606/D.55.2006.tde-14092006-153550
Document
Author
Full name
Michelle Fernanda Pierri Mariano
Institute/School/College
Knowledge Area
Date of Defense
Published
São Carlos, 2006
Supervisor
Committee
Táboas, Plácido Zoega (President)
Godoy, Sandra Maria Semensato de
Neves, Aloisio Jose Freiria
 
Title in Portuguese
Teoria de semigrupos e controlabilidade de sistemas neutros
Keywords in Portuguese
Controlabilidade
Semigrupos
Abstract in Portuguese
Neste trabalho de dissertação de mestrado, fazemos algumas observações a respeito de dois¶ artigos de pesquisa recentes, os quais estabelecem resultados falsos sobre existência de soluções controlabilidade exata de sistemas de controle abstratos do tipo neutro modelados na forma¶8<:¶ d ¶ dt ¶(x(t) + G(t, xt)) = Ax(t) + F(t, xt) + Cu(t), t 2 I = (0, a],¶ x0 = ',¶ (4)¶ onde A é o gerador infinitesimal de um C0-semigrupo de operadores lineares definidos sobre um espaço de Banach X; a função xt representa a história do estado no tempo t; C : U ! X ´e um¶ perador linear limitado, U é um espaço de Banach e F,G são funções apropriadas.¶ Motivados pelo anterior, neste trabalho estudamos a existência de soluções fracas para o sistema ¶ abstrato 8<:¶ d¶ dt¶ [(I − B)x(t)] = Ax(t) + F(t, x(t)), t 2 I = (0, a],¶ x(0) = x0 2 X,¶ (5)¶ onde B : X ! X é um operador linear limitado. Além do anterior, introduzimos e estudamos a “¶ controlabilidade [D(A)]-aproximada " para o sistema de controle¶ 8<:¶ d¶ dt¶ [(I − B)x(t)] = Ax(t) + Cu(t) + f(t, x(t)), t 2 I = (0, a],¶ x(0) = x0 2 X.¶ (6)¶. Observamos que nossos comentários relacionados com a controlabilidade exata de sistemas¶ neutros, foram publicados recentemente em journal Computers & Mathematics with Applications,¶ veja [12] para detalhes. Também mencionamos que no pre-print [16] são resumidos nossos resultados¶ relacionados a existência de soluções fracas de (5) e a controlabilidade do sistema de controle (6).
 
Title in English
Semigroup theory and controllability of neutral systems
Keywords in English
Controllability
Semigroups
Abstract in English
In this work, we report two technical errors in some recent papers treating on existence and¶ xact controllability of solutions for a class of partial neutral functional differential control systems¶ described in the abstract form¶ 8<:¶ d¶ dt¶ (x(t) + G(t, xt)) = Ax(t) + F(t, xt) + Cu(t), t 2 I = (0, a],¶ x0 = '.¶ (1)¶ In this system A is the infinitesimal generator of an C0-semigroup of bounded linear operators¶ defined on a Banach space X; the functions xt are the histories, C : U ! X is a bounded operator,¶ U is a Banach space and and F,G are appropriate functions.¶ Additionally, by using some simple perturbation criterion, we discuss the existence of mild¶ solution for the system¶ 8<:¶ d¶ dt¶ [x(t) + Bx(t)] = Ax(t) + f(t, x(t)), t 2 I = [0, a],¶ x(0) = x0 2 X,¶ (2)¶ where B is a bounded linear operator. We also introduce the concept of approximate [D(A)]-¶ controlability and establish conditions under which the associated control system¶ 8<:¶ d¶ dt¶ [x(t) + Bx(t)] = Ax(t) + Cu(t) + f(t, x(t)), t 2 I = [0, a],¶ x(0) = x0 2 X,¶ (3)¶ is approximate [D(A)]- controllable.¶ We mention that our observation on exact controllability of abstract neutral system was recently¶ published in journal Computers & Mathematics with Applications, see [12] for details. We also note,¶ that the pre-print [16] contain some new results concerning existence of solutions and controllability¶ for the systems (2) and (3) respectively.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Miteseversao3.pdf (578.33 Kbytes)
means that the file can only be accessed inside the Unversity of São Paulo.
Publishing Date
2006-09-15
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors.
CeTI-SC/STI
© 2001-2024. Digital Library of Theses and Dissertations of USP.