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RESUMO

AMORIM, T. O problema da construção de grafos para o estudo de sincronias em redes.
2024. 85 p. Tese (Doutorado em Ciências – Matemática) – Instituto de Ciências Matemáticas e de
Computação, Universidade de São Paulo, São Carlos – SP, 2024.

Uma rede de células é um grafo dotado de uma relação de equivalência que preserva o conjunto de
entrada dos vértices que permite uma caracterização dos campos vetoriais admissíveis que regem
a dinâmica da rede de acordo com os tipos de acoplamento desse grafo. Neste contexto, esta
tese tem dois objetivos. O primeiro vai no sentido de responder ao problema inverso: para n ≥ 2,
qualquer mapa em Rn pode ser realizado como um campo vetorial admissível para algum grafo
com o número de vértices dependendo de (mas não necessariamente igual a) n. Dado um mapa,
apresentamos um procedimento para construir todos os grafos admissíveis não equivalentes,
para uma relação de equivalência apropriada. Também fornecemos um limite superior para o
número de tais grafos. Como consequência, subespaços invariantes sob o campo vetorial podem
ser investigados como o lugar geométrico dos estados de sincronia de um grafo admissível, no
sentido de que um grafo adequado pode ser escolhido para realizar acoplamentos com mais (ou
menos) sincronia do que outro grafo admissível para o mesmo campo vetorial. A abordagem
fornece, em particular, uma investigação sistemática da ocorrência de estados de quimera em
uma rede de osciladores idênticos de van der Pol. Como segundo objetivo, a partir do impacto dos
resultados de sincronização das redes de Kuramoto, introduzimos a classe generalizada de redes
Laplacianas, governadas por mapas cujo Jacobiano em qualquer ponto é uma matriz simétrica no
qual cada linha tem soma nula de suas entradas. Ao reconhecer esta matriz como um Laplaciano
com pesos do grafo associado, deduzimos estimativas ótimas de seus autovalores positivos, nulos
e negativos diretamente da topologia do grafo. Além disso, fornecemos uma caracterização dos
mapas que definem as redes Laplacianas. Por último, discutimos a estabilidade do equilíbrio
dentro de subespaços de sincronia para dois tipos de redes Laplacianas em um anel com alguns
acoplamentos extras.

Palavras-chave: rede, grafo, campo vetorial admissível, sincronia, simetria, matrix Laplaciana,
singularidade.





ABSTRACT

AMORIM, T. The graph representation problem for the investigation of synchronies in
networks. 2024. 85 p. Tese (Doutorado em Ciências – Matemática) – Instituto de Ci-
ências Matemáticas e de Computação, Universidade de São Paulo, São Carlos – SP, 2024.

A coupled cells network is a graph endowed with an input-equivalence relation on the set of
vertices that enables a characterization of the admissible vector fields that rules the network
dynamics according to the coupling types of that graph. In this context, this thesis has two targets.
The first one goes in the direction of answering an inverse problem: for n ≥ 2, any mapping
on Rn can be realized as an admissible vector field for some graph with the number of vertices
depending on (but not necessarily equal to) n. Given a mapping, we present a procedure to
construct all non-equivalent admissible graphs, up to an appropriate equivalence relation. We also
give an upper bound for the number of such graphs. As a consequence, invariant subspaces under
the vector field can be investigated as the locus of synchrony states supported by an admissible
graph, in the sense that a suitable graph can be chosen to realize couplings with more (or less)
synchrony than another graph admissible to the same vector field. The approach provides in
particular a systematic investigation of occurrence of chimera states in a network of van der Pol
identical oscillators. As a second target, from the impact of the results about synchronization
in Kuramoto networks, we introduce the generalized class of Laplacian networks, governed
by mappings whose Jacobian at any point is a symmetric matrix with row entries summing to
zero. By recognizing this matrix as a weighted Laplacian of the associated graph, we derive the
optimal estimates of its positive, null and negative eigenvalues directly from the graph topology.
Furthermore, we provide a characterization of the mappings that define Laplacian networks.
Lastly, we discuss stability of equilibria inside synchrony subspaces for two types of Laplacian
networks on a ring with some extra couplings.

Keywords: network, graph, admissible vector field, synchrony, symmetry, Laplacian matrix,
singularity.
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CHAPTER

1
INTRODUTION

Dynamical systems with special structures are very common in applications. The special
structure arises due to some characteristic of the phenomenon one is trying to model. Among the
most important classes of dynamical systems with special structures are the Hamiltonian systems,
where there is conservation of energy; the conservative systems, where there is preservation
of a smooth measure; the reversible systems, where there is invariance under time-reversion
and the equivariant systems, where there is invariance under a group of spatial symmetries. In
each of these classes there are a number of typical or generic behaviors which from the point of
view of general dynamical systems (i.e. without any special structure) are extremely non-generic.
Coupled cell networks are another class of dynamical systems with special structure that have
been motivated by applications in neuroscience and biology, for example. We go back to the
80’s to recall physical, biological, mechanical systems that have been interpreted in many ways
as coupled systems; for example, Josephson junction arrays (HADLEY; BEASLEY; WIESEN-
FELD, 1988), semiconductor coupled lasers or multimode solid state laser systems in (WANG;
WINFUL, 1988) and (BRACIKOWSKI; ROY, 1991), central pattern generators and symmetric
chains of weakly coupled oscillators in (KOPELL; ERMENTROUT, 1986), (KOPELL; ER-
MENTROUT, 1988) and (KOPELL; ERMENTROUT, 1990), sympatric speciation (STEWART;
ELMHIRST; COHEN, 2003), normal mode vibrations of a loaded string and linear motion
of a triatomic molecule (FOWLES; CASSIDAY et al., 1986), the classical n-body dynamics
(STEPHAN, 1987), among many others. It was around 2002 that the authors M. Golubitsky,
I. Stewart and collaborators ((GOLUBITSKY; NICOL; STEWART, 2004), (GOLUBITSKY;
STEWART, 2003), (GOLUBITSKY; STEWART; TÖRÖK, 2005), (STEWART; GOLUBITSKY;
PIVATO, 2003)) started to formulate the notion of a coupled cell network, a rich systematic
way to study coupled dynamics under a graph theory formalism (GOLUBITSKY; STEWART,
2003), establishing a general setting for simple graphs (no multiarrows or loops) (STEWART;
GOLUBITSKY; PIVATO, 2003) and for multigraphs (possible multiple arrows and loops) (GOL-
UBITSKY; STEWART; TÖRÖK, 2005). Under that formulation, a network graph is more than
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a finite set of vertices with a finite set of arrows, for there are distinct types of vertices and
arrows to be taken into consideration to represent abstractly a system of ordinary differential
equations (ODEs) equipped with interacting individual cells as canonical observables. Each
vertex represents an individual cell which is governed by an autonomous system of ODEs, and
the set of edges encodes couplings, so that a well defined ‘admissible’ vector field is assigned to
this network graph. One of the main features of these approaches is the possibility to formulate
and prove generic properties in the context of coupled cell networks.

A central matter is to know to what extent the rigidity of the network graph topology
constrains the investigation of the associated dynamics. It is well known that topologically
distinct network graphs can lead to the same set of admissible vector fields (see (GOLUBITSKY;
STEWART; TÖRÖK, 2005)). Hence, as naturally expected, this formalism is largely based
on different kinds of equivalence relations, as we briefly mention in what follows. One key
identification of the cells inside a network is the notion of ‘input isomorphism’ (STEWART;
GOLUBITSKY; PIVATO, 2003), under which two cells are equivalent if the dynamics of the
cells are governed by the same differential equations, up to a permutation of the variables.
Another identification is defined by the ‘balanced equivalence relation’ between cells, which
stratifies the set of cells in terms of equalities among cell variables representing a synchrony state
of the network. This is a major topic in the investigation of coupled dynamics, with a countless
number of works devoted to it. The authors in (AGUIAR; DIAS, 2014) present an algorithm that
generates the lattice of synchrony subspaces of a given network graph. We have implemented this
algorithm for Wolfram Mathematica language in Apendix A. Balanced equivalence relations are
also a strong reason for the setting of the multigraph formalism, that is, for graphs with multiple
arrows of same type connecting two vertices, since the associated quotient graphs – those that
encode the synchronies in the network – are generally multigraphs. Alongside these relations,
much attention has also been driven to relations between networks, namely the ‘automorphisms’
of a network graph (formalized in (ANTONELI; STEWART, 2006)) and the ‘ODE-equivalence’
between networks (see (DIAS; STEWART, 2005) and (STEWART; GOLUBITSKY; PIVATO,
2003) for example). Two nonisomorphic networks can have equivalent dynamical behavior, and
this is detected by ODE-equivalence.

The realization of admissible graphs for coupled vector fields

If we look at the usual way of modelling a coupled dynamics through an associated vector
field, relevant distinctions emerge in assigning a simple graph (one edge of a type connecting
two vertices), or a multigraph, that realizes it as its admissible vector field. It is expected that
this assignment is not unique – just take two distinct network graphs inside an ODE-equivalence
class, possibly one chosen to be a simple graph and the other to be a multigraph. However, a
more subtle case is equally possible, as it is shown with the elementary example below, also
illustrating that, although it may be simpler to deal with simple graphs, multiple arrows are
sometimes the appropriate way to model certain couplings. Consider the following differential
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equations on R3,

ẋ1 = x1 + x3
1

ẋ2 = x2 + x2
2x3

ẋ3 = x3 + x1x2x3.

(1.1)

These equations can model a 3-cell network represented by the simple directed graph of Fig. 1
(left), which is an inhomogeneous graph with cells with distinct valencies. However, the same
equations can also model a network represented by the multigraph of Fig.1 (right), which is a
regular graph, with all cells of same type and same input and all arrows of same type, which
therefore presents synchronies. In Section 4.3 we return to this example. Now, if, on one hand,
from a given graph and a predetermined set of cell domain there is a unique general form of an
admissible vector field, the inverse problem, on the other hand, is not uniquely solved, as the
example above shows. For this elementary example, the possible synchronous configurations for
both graphs coincide, namely total synchrony and total asynchrony, but this is not the case in
general, as we shall see in many examples here.

Figure 1 – An admissible nonregular simple graph (on the left) and an admissible regular multigraph (on
the right) for the system of equations (1.1).

In distinct areas of applied science, the possible distinct couplings that can be arranged
from a given vector field modeling an interacting dynamical system is a relevant problem to be
understood. The aim here is to discuss and solve this inverse problem in general. For a given
vector field, we construct non ODE-equivalent graphs that realize it as their admissible vector
field, which we shall call ‘admissible graphs’. This stepwise procedure is presented in the Section
4.1. This is an interesting question even when the vector field is already defined in terms of some
network structure.

In order for a vector field to be a candidate to model a coupled dynamics with nontrivial
coupling, the starting point is to choose the number of cells as well as the dimensions of the
cell variables. Next, we look at symmetries, namely invariance of its component functions under
permutations of (sets of) variables; for example, if the components of the vector field are invariant
under all the permutations of its variables, then there is only one resulting admissible graph,
which is a homogeneous graph. Symmetries are then related to the assignment of generating

functions to the components of the vector field and, as we shall see, this is closely related to
the number of distinct admissible graphs. We remark that there are special cases for which two
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distinct such choices may lead to network graphs whose synchronies can be related, in the sense
that one is deduced from the other (see Section 4.6).

As already mentioned above, isomorphic graphs and more generally ODE-equivalent
graphs must be identified in the search of distinct types of dynamics. Our procedure takes these
identifications into consideration, producing the complete list of non ODE-equivalent graphs that
can be realized from a given vector field. As our first main results we also give in Proposition 4.2
an upper bound for the number of elements in this list and we establish relationships between all
admissible graphs in the Theorems 4.3 and 4.7.

One particular motivation to carry out with this procedure relies on several approaches to
study ‘chimera’ states of a vector field (Section 4.6). We cite (ABRAMS; STROGATZ, 2006),
(KURAMOTO; BATTOGTOKH, 2002), (PANAGGIO; ABRAMS, 2015), (MARTENS et al.,
2013), (SIMO et al., 2021) for example, and (ZAKHAROVA, 2020) for a timely overview on
the subject. A chimera state is a peculiar partial synchronization pattern in networks, defined
as a spatio-temporal pattern in which a system of identical oscillators is split into coexisting re-
gions of coherent (phase and frequency locked) and incoherent (drifting) oscillation (ABRAMS;
STROGATZ, 2006). Hence, it is a state in which the whole set of cells is broken into a syn-
chronous part and an asynchronous part. This is a phenomenon in interacting populations of
intense research efforts in physical, biological, chemical and social systems (ACEBRÓN et al.,
2005). We notice that although a well-known phenomenon in non-identical coupled oscillators,
the coexistence of coherence and incoherence was observed by Kuramoto and Battogtokh for a
system of identical oscillators (KURAMOTO; BATTOGTOKH, 2002); we refer to (PANAGGIO;
ABRAMS, 2015) for a comprehensive list of references about this subject. In these works, the
research is carried out from a model given by a vector field, based on numerical or analytical
investigation of the set of the proposed equations. For example, the authors in (MARTENS et

al., 2013) carry out numerical simulations of a mechanical experiment with two subpopulations
of identical metronomes on two coupled swings with chimera states emerging robustly. In this
experiment, we observe that the modeling equations admit an invariance under the permutation
of the two subsets of metronomes that has not been taken into account apparently, and this might
reveal distinct chimera states. Our procedure is in particular a way to describe chimeras from the
possible synchronized states that appear from the graphs admissible from the given vector field.
In this setting, the analysis of robust attracting chimeras should correspond to the numerically
observed chimeras, and this is one of our interests for near future work. Section 4.6 is addressed
to expand on this topic in more detail with a concrete example.

Synchrony patterns in Laplacian networks

About fifty years ago Kuramoto introduced in (KURAMOTO, 1975) a system of ordinary
differential equations that has since gained recognition as the simple (or traditional) Kuramoto
model. It has been proposed as a straightforward and solvable framework to comprehend mutual
synchronization within a cluster of oscillators that are equally coupled to all other oscillators. Its
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significance is further underscored by its applications across various synchronization scenarios
in chemical (CZAJKOWSKI; BATISTA; VIANA, 2023), biological (VANDERMEER et al.,
2021), social systems and in neuroscience phenomena (NOVIKOV; BENDERSKAYA, 2014).
Since then, numerous related articles have emerged in the literature in distinct contexts of
investigation, varying from numerical analysis and stochastic methods (KOTWAL; JIANG;
ABRAMS, 2017) to criteria for the existence and stability of (clusters of) synchrony (BRONSKI;
CARTY; DEVILLE, 2021). In this thesis we introduce a more comprehensive framework for
this particular type of system of coupled identical individual systems, accounting for two distinct
aspects:

∙ the coupling may not necessarily be universally applied across all elements;

∙ the Jacobian of the network vector field is a general Laplacian matrix.

As we shall see, the second requires that being bidirected is a necessary condition for the
associated graphs. We remark that the second aspect appears naturally in gradient systems of
coupled cell networks with an extra S1-invariance condition on the vector field components;
see (MANOEL; ROBERTS, 2015), where critical points are investigated for cells coupled in a
ring. In fact, as our second main result we prove that vector fields with a Laplacian structure are
gradient; see Theorem 5.9.

Recall from algebraic graph theory that eigenvalues of a weighted graph Laplacian matrix
hold substantial information of the graph. For instance, it follows directly from the definition
that zero is an eigenvalue, associated with the eigenvector (1, . . . ,1). This condition is already
interesting from the point of view of the local dynamics, as it implies that there are no isolated
singularities. Furthermore, in the case of non-negative weights, it is well known that all the
eigenvalues are non-negative and the algebraic multiplicity of the zero eigenvalue is exactly the
number of connected components of the graph. This result has been extended in (BRONSKI;
DEVILLE, 2014) to the case of connected graphs allowing negative weights. Since it is expected
that the Jacobian matrix of the vector field has zero entries, recognizing this matrix as the graph
Laplacian naturally leads us to the inherent condition that the graph may be disconnected. With
the requirement to address this condition, we have interpreted the absence of an edge connecting
two vertices as the existence of an edge with zero weight to extend the result to disconnected
graphs; see Theorem 5.1. The result is the optimal estimate for the number of negative, null and
positive eigenvalues from the number of connected components of the subgraph determined by
positive weights and the subgraph determined by negative weights.

In the study of local dynamics, specially in bifurcation theory, the starting point is the
analysis of existence and nature of equilibria and periodic orbits. An equilibrium is a critical
point of the vector field expected to lye on subspaces that are invariant under the dynamics.
In equivariant dynamics, these are fixed-point subspaces of subgroups of the symmetry group;
in coupled networks, these are synchrony subspaces determined from the associated graph.
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We now raise the issue regarding a connection between synchrony and symmetries of the
automorphism group of the network graph. Not all polysynchronous subspaces are robust; not
all robust polysynchronous (synchrony) subspaces are fixed-point subspaces of symmetries. In
fact, even for regular graphs, there are synchronies that do not come from symmetries of the
graph automorphisms, and this has been named exotic synchrony by the authors in (ANTONELI;
STEWART, 2006). We prove that, for homogeneous networks, all polysynchrony subspaces
are generically robust polysynchronous (Theorem 3.3). Furthermore, we present two classes of
regular graphs for which synchrony and symmetry coincide. One is the class of regular rings (any
number of cells) and the other is the class of the so-called Gn-graphs (5 ≤ n ≤ 9 and n = 11);
see Theorems 3.4 and 3.6. Gn is the graph of n cells connected by edges with nearest and next
nearest neighbors. Subsection 5.4.2 presents the study of singularities of a Kuramoto network
with coupling determined by the graph G6.

As the first step to extend the simple Kuramoto model, we characterize all vector fields
whose Jacobian at any point is a Laplacian matrix (Theorem 5.6). We also deduce that these
belong to a subset of gradient fields, namely those whose potential function operates on the
differences between variables. In particular, it follows that the dynamics is completely understood
from the study of critical points, from the LaSalle’s principle of invariance. The results on stability
of critical points then follows from an investigation of signs of the Laplacian matrix eigenvalues
that can be deduced from Theorem 5.1. Yet based on the additive nature of Kuramoto systems,
in Section 5.3 we impose an additive structure on the couplings. Under this condition, each
component of the mapping being odd is a necessary condition (Theorem 5.10); for the Kuramoto
network, this is the sine function. As an advantage, this structure provides a direct way to
associate an admissible graph to this mapping, in a unique way, from the steps given in Chapter
4. This, in turn, enables us to use graph topology tools to study synchronization.

The authors in (JADBABAIE; MOTEE; BARAHONA, 2004) show that for the simple
Kuramoto network the total synchrony is an asymptotically stable family of critical points. As
our third main result, here we show that this also holds for the generalized Laplacian additive
networks (Theorem 5.14). As mentioned above, the authors in (MANOEL; ROBERTS, 2015)
describe the critical points on synchrony subspaces for gradient networks of identical cells on
a ring with the additional condition of S1-invariance in the coupling function. We notice that
these turn out to be a particular case of Laplacian additive networks; for the details we refer to
(MANOEL; ROBERTS, 2015, Section 4). Here we present the complete list of critical points
and their stability estimates for two examples of Laplacian additive network. As a first example,
we consider a network with six identical cells with couplings determined by the regular network
graph G6, with the coupling function to be the sine function as in the traditional Kuramoto model
(Subsection 5.4.2). In the second example we consider a homogeneous network with six iden-
tical cells and two types of couplings, namely a combination of the sine and the identity functions.
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This thesis is organized as follows. Chapter 2 is dedicated to presenting the basic concepts
about coupled cell networks that we will need, and we present our first result (Proposition 2.4). In
Chapter 3, we start to talk about synchronization on admissible vector fields in which we present
conditions for an invariant subspace to be a synchrony subspace associated with the admissible
network graph (Theorem 3.3). In this chapter, we also present two classes of network graphs
without exotic balanced relations (Theorems 3.4 and 3.6). In Chapter 4, we describe a stepwise
process to produce optimized network graphs for fixed vector fields, showing several examples.
As our main results of this chapter, we classify them up to ODE-equivalence (Theorems 4.3 and
4.7). In Chapter 5, we present our study about the Laplacian map in which our main results are
Theorems 5.9 and 5.10, which deal with the characterization of Laplacian maps, and Theorem
5.14, which establishes sufficient conditions for the asymptotic stability of total synchronization.
We also present in Appendix A our lines of a code with the software Wolfram Mathematica that
implements the algorithm given in (AGUIAR; DIAS, 2014). The results in Chapter 4 appear in
(AMORIM; MANOEL, 2022, accepted in 14 November 2023 by Nonlinearity, IOP Publishing),
accepted in 14 November 2023 by Nonlinearity, IOP Publishing. The results in Chapters 3 and 5
appear in (AMORIM; MANOEL, 2023).
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CHAPTER

2
COUPLED CELL NETWORKS

In this chapter we present the basic definitions and results of coupled cell networks and
admissible maps that were introduced in (STEWART; GOLUBITSKY; PIVATO, 2003) for simple
graphs and in (GOLUBITSKY; STEWART; TÖRÖK, 2005) these ideas was generalized for
graphs with possible multi-arrows and loops (self-coupling). One of our results is also included
here (Proposition 2.4).

2.1 Coupled Cell Networks

Cells are individual dynamical systems represented by vertices of a graph whose interac-
tions are represented by the edges. A coupled cell network G , with possible multiple couplings
and self-couplings, consists of a finite set of cells C = {1, . . . ,n} with an equivalence relation ∼C ;
a finite set of arrows (or edges) E with an equivalence relation ∼E ; two maps H ,T : E → C ,
where, for e ∈ E , H (e) and T (e) are the head and the tail of e, with a compatibility condition,

e1,e2 ∈ E ,e1 ∼E e2 ⇒ H (e1)∼C H (e2), T (e1)∼C T (e2).

We shall also denote G = (C ,E ,∼C ,∼E ). From now on, we shall also refer to a coupled
cell network as a network graph. A self-coupling is an edge e such that H (e) = T (e) and
multiarrows are distinct edges e1,e2 such that H (e1) = H (e2) and T (e1) = T (e2). For a
network graph G with n cells, the order-n adjacency matrix of each type of edges ξ ∈ E /∼E

shall be denoted by Aξ

G where

(Aξ

G )i j = |(T −1( j)∩H −1(i)∩ξ )|. (2.1)

When it is clear from the context, we shall omit G from this notation. For c ∈ C , the input set of
c is

I(c) = {e ∈ E : H (e) = c}= H −1(c).
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The input equivalence relation c ∼I d between two cells c,d ∈ C is given by the existence of an
arrow-type preserving bijection

β : I(c)→ I(d),

that is, β (e)∼E e, for all e ∈ I(c). The set of the input isomorphisms β is denoted by B(c,d).
The union of all B(c,d) has a groupoid structure with respect to the composition. If c ∼I d and
I(c) is nonempty, then from the compatibility condition we have c ∼C d. Hence, if I(c) is empty,
then we require that c ∼I d implies c ∼C d.

Definition 2.1. A network graph G is homogeneous if all cells are I-equivalent, in which case

B(c,d) ̸= /0, for all c,d ∈ C ; and G is regular if it is homogeneous with one type of edge.

An isomorphism between two network graphs G1, G2 is given in the natural way: if there
exists a cell bijection γC : C1 → C2 and an arrow bijection γE : E1 → E2 such that

c ∼C1 d ⇔ γC (c)∼C2 γC (d)

e ∼E1 e′ ⇔ γE (e)∼E2 γE (e′)

T2(γE (e)) = γC (T1(e)),H2(γE (e)) = γC (H1(e)), ∀e ∈ E1.

Hence, G1 and G2 are isomorphic if, and only if, by a rearrangement of cells the adjacency
matrices of G1 and G2 are the same. We denote by Iso(G ) the set of isomorphisms of G into
itself (see Corollary 4.8).

Remark 2.2. In a simple network graph (no multiple arrows), each arrow e ∈ E can be identified
with the ordered pair (T (e),H (e)). In a network graph with no loops, for each arrow we have
T (e) ̸=H (e). Hence, in the simple graph formalism, E can be viewed as a subset of C ×C with
no elements of the form (c,c), c ∈ C and the input set of c ∈ C can be viewed as the subset of C

given by {d ∈C |(d,c)∈ E }. Let us just point out that in (STEWART; GOLUBITSKY; PIVATO,
2003) it is assumed that {(c,c) |c ∈ C } ⊂ E together with the condition that (c,c) ∼E (d,d′)

holds only if d′ = d and c ∼C d, aiming to have in hand the useful condition that c ∈ I(c).
However, for formal purposes, this should be avoided, because an internal edge (c,c) can not be
related to an external edge (d,d′), d ̸= d′.

2.2 Admissible vector fields

For each cell c ∈ C , let Pc denote its domain, or the so-called cell phase space, which is
a nontrivial finite-dimensional real vector space. We require

c ∼C d ⇒ Pc = Pd, (2.2)
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in which case we use the same coordinate system for Pc and Pd . The total phase space and the
coupled phase space of c ∈ C are, respectively,

P = ∏
c∈C

Pc , PI(c) = ∏
e∈I(c)

PT (e), (2.3)

the coordinate system of the later being y = (ye)e∈I(c). Consider now the map

πI(c) : P −→ PI(c)

x = (xc′)c′∈C ↦−→ πI(c)(x) = (xT (e))
,

which repeats each variable xc′ as many times as the number of edges from c′ to c in I(c) . In
particular, from (2.2) it follows that, if c ∼I d, then PI(c) = PI(d).

Finally, for any c ∈ C , the vertex group B(c,c) has a natural action on PI(c) as follows:
for each β ∈ B(c,c) we have the pullback map

β
* : PI(c) → PI(c)

defined by
β
*(y)e = yβ (e), ∀e ∈ I(c).

Similarly, for β ∈ B(c,d), we also define β * : PI(d) → PI(c). We can now recall the concept of
admissible vector field:

Definition 2.3. A vector field f : P → P is G -admissible if the following hold:

(a) Domain condition: For all c ∈ C , the component fc depends only on the internal phase

space; that is, there exists f̂c : Pc ×PI(c) → Pc such that

fc(x) = f̂c(xc,πI(c)(x)). (2.4)

(b) Pullback condition: For any pair c,d ∈ C and β ∈ B(c,d),

f̂d(xd,y) = f̂c(xd,β
*(y)) ∀(xd,y) ∈ Pd ×PI(d). (2.5)

We notice that when c = d the pullback condition means that f̂c is B(c,c)-invariant in
the y-variable. In this case, we write

f̂c(xc,y1
1, . . . ,y

1
|I(c)∩ξ1|

, . . . ,yr
1, . . . ,y

r
|I(c)∩ξr|), (2.6)

where over bar means invariance under the permutations of these variables.

We denote by F (G ;P) the set of smooth G -admissible vector fields on P, and by
L (G ;P) the set of linear G -admissible vector fields on P. We finish this subsection with the
following characterization, which is straightforward and shall be very useful in the sequel:

L (G ;Rn) =
{

diag(t1, . . . , tn)+ ∑
ξ∈E /∼E

diag(tξ

1 , . . . , t
ξ
n )A

ξ

G : i ∼I j ⇒ ti = t j, tξ

i = tξ

j
}
. (2.7)
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2.3 ODE-equivalence
Topologically distinct network graphs can determine the same space of smooth admissible

vector fields. This statement is precisely the notion of ODE-equivalence between network graphs
(see (DIAS; STEWART, 2005)). It turns out that verifying the ODE-equivalence can be reduced
to the linear level. In fact, as established in (DIAS; STEWART, 2005, Theorem 5.1, Corollary
7.7), two network graphs G1 and G2 of n cells are ODE-equivalent if, and only if, there exists an
input-preserving bijection γ : C1 → C2 such that

L (G1;Rn) = γ
T L (G2;Rn)γ. (2.8)

It is direct from (2.7) that if G1 and G2 are isomorphic, then they are ODE-equivalent.
Our first result claims that the converse holds for the homogeneous simple case:

Proposition 2.4. Let G1 and G2 be homogeneous simple network graphs. If G1 and G2 are

ODE-equivalent, then they are isomorphic.

Proof. Let γ : C1 → C2 be a bijection that realizes the ODE-equivalence (2.8). Since each graph
is simple, if a position of any of its adjacency matrix is 1, then the same position in all the other of
its adjacency matrices is zero. In particular, the adjacency matrices of a simple graph are linearly
independent. Hence, from (2.7), G1 and G2 have the same number of adjacency matrices. For
simplicity, suppose this number is 2 and let Ak

G1
and Ak

G2
, k = 1,2, be their adjacency matrices.

Let s1,s2 be such that

A1
G1

= s1(γT A1
G2

γ)+ s2(γT A2
G2

γ).

Now, let (i, j) be such that (A1
G1
)i j = 1. Without lost of generality, we can assume that

(γT A1
G2

γ)i j = 1 and (γT A2
G2

γ)i j = 0.

Hence,

A1
G1

= (γT A1
G2

γ)+ s2(γT A2
G2

γ). (2.9)

But (A2
G1
)i j = 0. It then follows that

A2
G1

= (γT A2
G2

γ),

and then s2 = 0 in (2.9). So the result follows.

The proposition above is very useful to deduce the complete list of distinct non equivalent
admissible graphs of a given vector field for the homogeneous simple case. See the case study of
Subsection 4.5.
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CHAPTER

3
SYNCHRONY AND SYMMETRY

Subspaces that remain unchanged under the dynamics hold significance. This chapter
focuses on synchrony patterns, as they constitute subspaces of dynamics invariance in the network
context and how they emerge from symmetry. Existence of symmetries and synchronies force
existence of invariant subspaces, because of their fixed-point sets and robustly polysynchronous
subspaces, respectively. These are related notions and we now turn to the issue of synchronies
with respect to symmetries of a network graph. The results in this Chapter appear in (AMORIM;
MANOEL, 2023).

We initiate by briefly revisiting the fundamental concepts.

In broad terms, synchrony is a natural concept in network dynamics related to a parti-
tion of the cells into subsets (often called clusters) such that all cells in the same cluster are
synchronous. In a network system, that is, a system of ordinary differential equations

ẋ = f (x), x ∈ P, (3.1)

where f ∈ F (G ;P) and P is as in (2.3), synchrony occurs when two or more cells of a solution
x(t) behave identically, that is, if c and d are any two of these cells, then

xc(t) = xd(t), ∀t ∈ D,

where D is a domain in R for which x(t) exists. The authors in (GOLUBITSKY; STEWART;
TÖRÖK, 2005; STEWART; GOLUBITSKY; PIVATO, 2003) characterize occurrence of syn-
chrony in a network dynamics from the graph architecture. This is given as follows.

Let ./ be an equivalence relation on C . Then

∙ ./ is said to be balanced if c ./ d implies that there exists β ∈ B(c,d) such that T (e) ./

T (β (e)), ∀e ∈ I(c);
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∙ ./ is robustly polysynchronous if for any choice of total phase space P we have f (∆./)⊆∆./,
for all f ∈ F (G ,P), where

∆./ = {x ∈ P |xc = xd ⇔ c ./ d}.

We notice that the first of the notions above is associated with the graph G , whereas the second is
related to the vector space F (G ,P), but it turns out that both notions are equivalent, as established
in (GOLUBITSKY; STEWART; TÖRÖK, 2005, Theorem 4.3). Moreover, the authors prove that
these are also equivalent to

Aξ

G (∆./)⊆ ∆./, ∀ξ ∈ E /∼E , when P = Rn, (3.2)

that is, synchrony subspaces of Rn are those left invariant under all adjacency matrices of G .

Definition 3.1. When ./ is balanced, ∆./ is called a synchrony subspace.

The practical way to express the resulting ./-classes of a synchrony pattern is coloring
vertices: cells in the same class have the same color and ‘receive from edges’ vertices of the
same color.

Remark 3.2. Based on (3.2), the authors in (AGUIAR; DIAS, 2014) develop, for a given
network graph, an algorithm whose output is the set of synchrony subspaces. This is done
through polydiagonal invariant subspaces from the eigenvectors of the Jordan decomposition of
the adjacency matrices. As they show, it suffices to implement the algorithm for the case of regular
graph, because all the lattice of synchrony subspaces can be associated with a regular network
through the notion they introduce of minimal synchrony subspaces that are sum-irreducible.
Following this approach, we have implemented this algorithm with a code using the software
Mathematica. The code has been useful to compute the synchrony patterns presented in this
work. This code is included here as Appendix A.

3.1 Synchronies from invariant subspaces
In this subsection we relate synchrony subspaces of a network graph G to invariant

subspaces under the dynamics of (3.1) for f ∈ F (G ;P).

Theorem 3.3. For any homogeneous network graph G on any phase space P, polydiagonal

subspaces of P that are invariant under an generic admissible vector field are synchrony

subspaces.

Proof. Based on (3.2) we assume, without loss of generality, that each cell phase space is one
dimensional, so P = Rn, where n is the number of cells. Since G is homogeneous, the Jacobian
of an admissible map f at any point of total synchrony ν = (t, . . . , t) ∈ Rn is

J f (ν) = a(ν)I + ∑
ξ∈E /∼E

bξ (ν)Aξ , (3.3)
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where Aξ are the adjacency matrices of G . Let Θ ⊂ Rn be polydiagonal such that f (Θ)⊂ Θ. As
ν ∈ Θ then J f (ν)[Θ]⊂ Θ, that imply

∑
ξ∈E /∼E

bξ (ν)Aξ [Θ]⊂ Θ.

If there are ν1,ν2, . . . ,ν |E /∼E
| such that

det[bi(ν j)] ̸= 0 (generic condition),

then Aξ [Θ]⊂ Θ,∀ξ ∈ E /∼E and (3.2) concludes the proof.

In Subsection 5.4.2 we investigate existence and nature of singularities inside synchrony
subspaces. For the ODE (5.15), it is straightforward that b(ν) = 1, for any ν ∈ Tn, so the singu-
larities we find are in fact all the possible equilibria inside invariant subspaces, by Theorem 3.3.

3.2 Synchrony and symmetry in regular networks
A symmetry of G , or an automorphism of G , is a isomorphism itself such that e ∼E γE (e)

The group Aut(G ) of all such automorphisms is the symmetry group of G . It is well known that
symmetries of a network graph determine synchronies, for every subgroup Σ < Aut(G ) defines a
balanced equivalence relation on G ((ANTONELI; STEWART, 2006, Proposition 3.3)):

c ./Σ d ⇔∃γ ∈ Σ : γC (c) = d.

This is the same as saying that the synchrony subspace ∆./Σ
is the fixed-point subspace of Σ,

Fix(Σ) = {x ∈ P : σx = x, ∀σ ∈ Σ}.

As it is also well known, the converse does not hold in general; that is, not all synchrony
subspaces are fixed-point subspaces. Such synchrony has been named an exotic synchrony after
(ANTONELI; STEWART, 2006). A balanced relation ./ is called exotic if there is no subgroup
Σ < Aut(G ) for which ./=./Σ.

Exotic patterns can appear in homogeneous graphs and even in the most simple cases of
regular graphs. The first example in the literature was presented in (GOLUBITSKY; NICOL;
STEWART, 2004), the regular graph G12 of twelve vertices with nearest and next nearest
neighbors. In Table 2 of chapter 4 we show seven homogeneous network graphs ]2−]8 presenting
exotics patterns.

There are however classes of network graphs for which all synchronies are determined
by the symmetries of G . For example, the regular network graph G6 of six cells with nearest
and next nearest neighbor coupling of Subsection 5.4.2, which falls in the set of graphs given in
Theorem 3.6. The next proposition states that this is also the case for the regular ring of n cells
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with nearest neighbor coupling, for which Aut(G ) = Dn. Although the result is not surprising,
the proof is not straightforward and, to our knowledge, it has not been found in the literature, so
it is included here.

Theorem 3.4. There are no exotic pattern of synchrony for the regular ring of n cells, with

nearest neighbor coupling, for n ≥ 3.

Proof. If ./ is a balanced equivalence relation, we prove that ./= ./Σ for some subgroup Σ <Dn.

The following is a necessary condition for the equivalence relation ./ to be balanced for
this network graph:

c ./ d ⇒


(c−1 ./ d −1, c+1 ./ d +1)

or
(c−1 ./ d +1, c+1 ./ d −1).

(3.4)

First, suppose that there are three consecutive ./-equivalent cells. By (3.4), all cells must be
./-equivalent, and so ./ = ./Dn .

We now suppose c ./ d such that

c−1 ./ d −1, c+1 ./ d +1. (3.5)

We need to identify ∆./ as a fixed-point subspace of a subgroup Σ < Dn, that is, find a rotation
multiple of 2π/n or a line reflection generating Σ.

We can assume that d − c > 0 is minimal with respect to (3.5). There is a sequence of
./-classes with length d − c that repeats inside the ring. In fact, by (3.4),

c ./ d, c+1 ./ d +1 ⇒ c+2 ./ d +2 ⇒ . . .⇒ c+(d − c) = d ./ d +(d − c).

Hence, d − c divides n and then a rotation of 2(d − c)π/n is a generator of Σ.

Finally, suppose that there are two cells c′ ./ d′ such that c < c′ < d′ < d and by minimal-
ity of d−c > 0 we have that c′−1 ./ d′+1, c′+1 ./ d′−1. The line reflection that takes c′ into
d′ also takes c′−1 into d′+1, c′+1 into d′−1 and so on. Then, this reflection is a generator of
Σ.

Remark 3.5. A study of a gradient network of identical oscillators on a ring is carried out in
(MANOEL; ROBERTS, 2015). We notice that in the description given in (MANOEL; ROBERTS,
2015, Table 1) a symmetry in one type of critical points in that table is missing. In fact, inside
their list of critical points with trivial isotropy, there is a subclass with nontrivial isotropy, namely
Z2 <Dn, which is supported by Theorem 3.4 above. Nonetheless, we point out that this does not
affect the list of all possible critical points presented in that table, which is in fact complete.

The following result gives another set of regular network graphs for which all synchronies
are symmetries:
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Theorem 3.6. There are no exotic pattern of synchrony for the network graph Gn, for 5 ≤ n ≤ 9
and n = 11.

Proof. This follows by an extensive use of the Mathematica code; see Remark 3.2.

The list of exotic patterns of G10 is given in (ANTONELI; STEWART, 2006, Section 7), which
we have confirmed with our code. The network graph G12 presents an exotic pattern, as already
mentioned above. Due to the computational complexity, we have not investigated existence of
exotic patterns in Gn for n ≥ 13 yet. Some attempts suggest that there may be a general procedure
to answer the question for bigger n and we intend to go in this direction as a near future work.
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CHAPTER

4
THE REALIZATION OF ADMISSIBLE

GRAPHS FOR COUPLED VECTOR FIELDS

As recalled in Chapter 2, based on the action of a groupoid of symmetries of a given
network graph, the authors in (GOLUBITSKY; STEWART; TÖRÖK, 2005) and (STEWART;
GOLUBITSKY; PIVATO, 2003) formulate in algebraic terms the class of admissible vector
fields on the total phase space that are ‘compatible’ with the labeled structure of a given graph.
In this section we follow that formulation to study the problem in the inverse direction. We
give the procedure to construct the network graphs associated with a given vector field, namely
the admissible graphs for this vector field. The results in this Chapter appear in (AMORIM;
MANOEL, 2022, accepted in 14 November 2023 by Nonlinearity, IOP Publishing).

Before that, we point out that permutations play a major role in the two directions. Let
us illustrate the two approaches together, with the elementary graphs of Fig. 2. The general
admissible vector field for the network graph on the left is of the form

ẋ1 = f (x1,x2,x3)

ẋ2 = g(x2,x1)

ẋ3 = h(x3,x1),

for any three-variable function f and two-variable functions g and h. But it should be reasonable
to go on with the analysis assuming an additional necessary condition, namely f non invariant
under the permutation of x2 and x3 (together with g and h distinct), in the same way that this
permutation invariance is a necessary condition for the above vector field to be admissible for
the network graph on the right (together with g = h). For the inverse problem, the possible
(and not possible) permutation invariances can be taken into account in the initial process of
constructing the graphs, soon after the choice of the number of vertices. In fact, this is the basis
for the stepwise procedure of Subsection 4.1 to produce admissible graphs, as well as ‘optimized’
admissible graphs as a final step. By an optimized admissible graph we mean a graph that indeed
depicts the permutation invariances of the components of this vector field with the least number
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of edge types. In the broad sense of admissibility, any vector field yields an admissible graph,
for we can take the complete graph with all edges in distinct classes for example. However, this
graph has no nontrivial symmetries and should not be of much interest if we are to model many
features of coupled dynamics such as synchronization.

Figure 2 – (a) A 3-cell graph with distinct couplings and (b) a 3-cell graph with identical couplings.

4.1 The stepwise procedure

For a given C1 vector field, this is a step-by-step procedure to give the complete list of
admissible graphs, up to ODE-equivalence. It is also an optimization method of choosing system-
atically input values from within an allowed set from the mapping components. The general idea
is: compare the components according to (2.5); by comparison, define the equivalence relation
∼C of vertices and also the equivalence relations ∼k of edges in four steps, k = 1,2,3,4. The
relation ∼C is established in step 1. For k = 2,3,4, the relation ∼k is constructed in the kth step
and its classes are obtained by joining classes of ∼k−1.

Let f ∈C1(Rn;Rn) be a given vector field.

Step 1. Choose the number of cells n0, C = {1, . . . ,n0}. The natural choice is n0 = n, in which
case each cell domain is Pc = R. If n0 < n, then this naturally involves other choices, namely of
the cell domains. From the definition of admissible vector field, the relation ∼C must indicate
the compatibility between cell domains; hence, the coarsest relation ∼0

C we can define on C is

c ∼0
C d ⇔ Pc = Pd,

for P1 × . . .×Pn0 = Rn, Pc ̸= {0},∀c ∈ C . Let ∼C be a refinement of or equal to ∼0
C on C , that

is,

c ∼C d =⇒ c ∼0
C d.

An edge from a vertex d to a vertex c in an admissible graph shall represent that ‘c
depends on d’. However, posing this condition may not be a simple task when we consider
multiarrows. The procedure is supported by the following two mappings:

For each c ∈ C , consider the canonical submersion

πc : Rn −→
n0

∏
d=1

(Pd)
mcd (4.1)

x ↦−→ (. . . ,

mcd times︷ ︸︸ ︷
xd, . . . ,xd, . . .), (4.2)
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which indicates how the variable xd repeats and the number mcd of this repetition. Also, for the
c-component of f , fc, we consider an associated generating function

f̂c : Pc ×
n0

∏
d=1

(Pd)
mcd → Pc (4.3)

such that
∂ f̂c

∂ye
̸≡ 0,

for any variable ye of f̂c, and

fc(x) = f̂c(xc,πc(x)),∀x ∈ P.

Thus, the number of arrows from d to c is mcd. The simplest choice is to consider, for every
c ∈ C , only the variables such that ∂ fc/∂xd ̸≡ 0 and each xd appearing once in πc. This yields
f̂c = fc, and the resulting graph is a simple graph.

With respect to the set E of edges, we now establish the equivalence relation ∼1. In this
step, we take all edges in distinct classes, that is, B1(c,c) is trivial and B1(c,d) is empty if c ̸= d

and, therefore, the equivariance condition is trivially satisfied. At this point we have the relations
∼C for cells and ∼1 for edges. Let G1 denote such network graph.

Step 2. For each c ∈ C , take the unique partition of I(c),

I(c) =
(
K1 := {e1

1(c), . . . ,e
1
s1
(c)}

)
∪̇ . . . ∪̇

(
Kr := {er

1(c), . . . ,e
r
sr
(c)}

)
, (4.4)

such that f̂c is invariant under all permutations of yer′
1
, . . . ,yer′

sr′
, for all r′ = 1, . . . ,r. Each Kr′ is

contained in a ∼C -class and it is maximal with respect to these proprieties. Consequently, r is
minimal. Hence, by this construction, fc is invariant under the group Ss1 × . . .×Ssr . From this,
we define the equivalent relation ∼2 on E ,

ei
k ∼2 e j

l ⇔ i = j.

In this way, B(c,c) = Ss1 × . . .×Ssr and B(c,d) is empty.

Step 3. Construct an input equivalence relation, for which we use again the notation ∼I , and an
equivalence relation ∼3 on E . Here the components of the vector field are compared. For distinct
c,d ∈ C , c ∼C d, consider the partitions as in (4.4) constructed in step 2,

I(c) = {e1
1(c), . . . ,e

1
s1
(c)}∪̇ . . . ∪̇{er

1(c), . . . ,e
r
sr
(c)},

I(d) = {e1
1(d), . . . ,e

1
q1
(d)}∪̇ . . . ∪̇{ep

1(d), . . . ,e
p
qp
(d)}.

If r = p, si = qi, ∀i = 1, . . .r, and

f̂c(xc,ye1
1(c)

, . . . ,ye1
s1
(c), . . . ,yer

1(c)
, . . . ,yer

sr (c)
) = f̂d(xc,ye1

1(c)
, . . . ,ye1

s1
(c), . . . ,yer

1(c)
, . . . ,yer

sr (c)
),(4.5)
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define the equivalence relation ∼3 on E ,

ei
k(c)∼3 e j

l (d) ⇔ i = j, (4.6)

which gives the input equivalence c ∼I d. On the other hand, if either r ̸= p or si ̸= qi for some i,
or if (4.5) is not satisfied, then c can not be input-equivalent to d.

Step 4. Construct ∼4. From the input equivalence relation obtained in step 3, if c ̸∼I d, then
e(c) ∼4 e′(d) has no effect from the point of view of the vector field, except that c ∼C d.
Therefore, edges can be attributed to the same ∼4-class as long as the input equivalence classes
are unchanged. This attribution provides further reduction on the number of classes of step 3.

Remark 4.1. (a) Each I-class Q determines uniquely the natural numbers r =: r(Q),s1, . . . ,sr in
(4.5).

(b) The relation (4.5) may not be uniquely satisfied. This is the case if for example a generating
function f̂c is setwise invariant: suppose that su = sv and

f̂c(. . . ,yeu
1
, . . . ,yeu

su
, . . . ,yev

1
, . . . ,yev

sv
, . . .) = f̂c(. . . ,yev

1
, . . . ,yev

sv
, . . . ,yeu

1
, . . . ,yeu

su
, . . .), (4.7)

for some 1 ≤ u,v ≤ r, that is, the two sets Ku and Kv can be interchanged in the component fc.
In this case, there are two possible choices in (4.5) and, therefore, two choices for (4.6). More
generally, for each I-class Q, there may exist c ∈ Q such that the collection {K1, . . . ,Kr} in (4.4)
can be partitioned into sets

{K1, . . . ,Ku1},{Ku1+1, . . . ,Ku1+u2}, . . . ,{Ku1+...+uv−1+1, . . . ,Ku1+...+uv}, (4.8)

where u1 + . . .+uv = r, such that f̂ is invariant by permutation among the sets Ku1+...+ut−1+1,

. . . ,Ku1+...+ut , for all t = 1, . . . ,v. In particular,

|Ku1+...+ut−1+1|= . . .= |Ku1+...+ut |, t = 1, . . . ,v. (4.9)

This remark also yields Proposition 4.2, which gives an upper bound for the number of admissible
graphs for a vector field.

(c) The graphs of step 4 are optimized graphs, in the sense that they contemplate all the permuta-
tion invariances of the components of the vector field with the least number of edge types.

(d) As expected, the groupoid of symmetries of the graphs obtained in step 4 may not comprise
all the symmetries in the components of f . In fact, these extra symmetries may lead to distinct
ODE-classes of admissible graphs (see Theorem 4.3).
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4.2 Example: a vector field on R4

Consider the vector field f on R4 whose components are

f1(x1,x2,x3,x4) = x1x2 + x3x4

f2(x1,x2,x3,x4) = x1x2x3x4

f3(x1,x2,x3,x4) = x3x4 + x1x2

f4(x1,x2,x3,x4) = x1x2x3x4.

(4.10)

As we shall see, this vector field admits admissible simple graphs with four, three and two cells.

4 cells. Step 1: The number of cells is the domain dimension. So C = {1,2,3,4}. Since for
all i, j = 1, . . .4 ∂ fi/∂x j is not identically zero, there must be an edge from any vertex to
any other vertex, so E = C ×C . The network graph G1 is then the simple complete graph
with 12 possibly distinct arrows. Step 2: Starting with f1, x1 is the distinguished variable, so
the unique permutation invariance is over the variables x3 and x4, so (3,1) ∼2 (4,1). For f2,
x2 is the distinguished variable and f2 is invariant under permutation over x1, x3 and x4, so
(1,2)∼2 (3,2)∼2 (4,2). Similar constructions hold for f3 and f4, respectively. Hence,

I(1) = {2}∪{3,4}, I(2) = {1,3,4}, I(3) = {4}∪{1,2}, I(4) = {1,2,3},

and the vertex groups are B(1,1), B(3,3) isomorphic to S1×S2 ≃ S2 and B(2,2),B(4,4) isomor-
phic to S3. The graph is G2 given in Fig. 3, with six ∼2-classes. Step 3: This is the correlation
among components and we have that 1 ∼2 3 ̸∼2 2 ∼2 4. It then follows that the new graph G3 is
given in Fig 4, with three ∼3-classes. Step 4: Up to input equivalence, ∼3 can be refined in two
distinct ways. In fact, 1 ∼I 3�I 2 ∼I 4, so the edges between vertices 1 and 2 (or 3 and 4) can be
taken in distinct edge classes (graph G 1

4 in Fig. 5) or in the same edge class (graph G 2
4 in Fig. 5).

Figure 3 – Admissible graph G2 for (4.10) with six ∼2-classes.

Figure 4 – Admissible graph G3 for (4.10) with three ∼3-classes.
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Figure 5 – Admissible graphs G 1
4 (left) and G 2

4 (right) for (4.10) with two ∼4-classes.

3 cells. Step 1: Choose the cell domains to be P1 =R2 with coordinates y1 = (x1,x2), and P2 =R,
P3 = R with coordinates y2 = x3, y3 = x4, respectively. So C = {1,2,3} and the C -classes are
{1} and {2,3}. Rewrite (4.10) as

g1(y1,y2,y3) = (x1x2 + x3x4,x1x2x3x4)

g2(y1,y2,y3) = x1x2 + x3x4

g3(y1,y2,y3) = x1x2x3x4.

In step 2, we obtain the graph of Fig. 6. Regarding the vertex groups, we have B(1,1)≃ S2. Also,
I(2) is formed by two arrows of different types, so these can not be permuted and the unique
bijection of B(2,2) is the identity. The same goes for I(3). Hence, B(2,2)≃ B(3,3)≃ {I}. Step
3 gives the three I-classes {1},{2},{3}. And moving to step 4, only one graph is deduced, by
(2,3)∼E (3,2); see Fig 7.

Figure 6 – An admissible graph G2 for (4.10) seen as a network of 3 cells.

Figure 7 – An admissible graph G4 for (4.10) seen as a network of 2 cells.

2 cells: In this case, we choose the cell phase spaces P1 = R2 with coordinate y1 = (x1,x2) and
P2 = R2 with coordinate y2 = (x3,x4) and rewrite (4.10) as

h1(y1,y2) = ( f1, f2) = (x1x2 + x3x4,x1x2x3x4)

h2(y1,y2) = ( f3, f4) = (x1x2 + x3x4,x1x2x3x4).
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Clearly the optimized admissible graph for this network is as in Fig. 8.

Figure 8 – An admissible graph G4 for (4.10) seen as a network of 2 cells.

4.3 Simple graph versus multigraph
In this section we finish the discussion of regarding the ODE given in (1.1) started in the

Introduction: we construct the possible network graphs using the procedure of Subsection 4.1 for
the vector field on R3 with components

f1(x1,x2,x3) = x1 + x3
1

f2(x1,x2,x3) = x2 + x2
2x3 (4.11)

f3(x1,x2,x3) = x3 + x1x2x3.

Simple graph. Step 1: we have that C = {1,2,3} with valencies 0,1,2 and it makes it consistent
to take 1 ̸∼I 2 ̸∼I 3 ̸∼I 1. Step 2: this leads easily to (1,3) ∼2 (2,3). The input and the edges
equivalences are unchanged in step 3. Step 4: this leads easily to (1,3) ∼4 (2,3) ∼4 (3,2),
producing an optimized simple graph; see Fig.1 (left).

Multigraph. The function f̂c : R4 → R,

f̂c(x,y1,y2,y3) = x+ y1y2y3

is a generating function of all components fc, c = 1,2,3, in (4.11),

f1(x1,x2,x3) = f̂ (x1,x1,x1,x1)

f2(x1,x2,x3) = f̂ (x2,x2,x2,x3) (4.12)

f3(x1,x2,x3) = f̂ (x3,x1,x2,x3).

Now it is straightforward to see that the resulting admissible graph is the regular multigraph of
Fig.1 (right).

4.4 Relation among admissible graphs
The central questions raised about the realization of admissible graphs of Section 4.1

regard the number of possible graphs as well as the relation among them, with respect to
isomorphism and ODE-equivalence. Here we present the results providing the answers.

We start with an example of two non-isomorphic but ODE-equivalent admissible graphs.
These are the 4-cell network graphs of Subsection 4.2 obtained in step 4 of the procedure. Let
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G 1
4 be the graph of Fig. 5 on the left. Its adjacency matrices are

A→
G1

=


0 0 1 1
1 0 1 1
1 1 0 0
1 1 1 0

 , A99K
G1

=


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 .
Hence,

L (G 1
4 ;Rn) =




t t99K t→ t→

s→ s s→ s→

t→ t→ t t99K

s→ s→ s→ s

 : t,s, t→,s→, t99K ∈ R

 .

Now let G 2
4 be the other graph in Fig. 5 (right). Its adjacency matrices are

A→
G2

=


0 0 1 1
0 0 0 0
1 1 0 0
0 0 0 0

 , A99K
G2

=


0 1 0 0
1 0 1 1
0 0 0 1
1 1 1 0

 .
Hence,

L (G 2
4 ;Rn) =




t t99K t→ t→

s99K s s99K s99K

t→ t→ t t99K

s99K s99K s99K s

 : t,s, t→, t99K,s99K ∈ R

 .

Therefore,
L (G 1

4 ;Rn) = L (G 2
4 ;Rn),

so G 1
4 and G 2

4 are ODE-equivalent. But they are clearly non isomorphic.

As we have already seen, step 4 refines the relations of step 3, when the quantity of
admissible graphs is attained:

Proposition 4.2. The number of possible distinct equivalence relations ∼3 (step 3) is given by

ϑ( f ) = ∏
Q∈C /∼I

(
v

∏
t=1

(ut!)(|Q|−1)

)
. (4.13)

Proof. We use the notation of Remark 4.1 (b). For each I-class Q, we have u1, . . . ,uv uniquely
determined. Based on the possible partitions of (4.8) which satisfy (4.9), it follows that, for
each c ∈ Q, we have v collections of edge sets (4.7) such that the sets in each collection can be
permuted in f̂c. Hence, once we choose c = c0 ∈ Q as a reference, for each d ∈ Q−{c0} the
equation (4.5) has

v

∏
t=1

ut!

ways to be satisfied.
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From a fixed choice of the associated generating functions, the next three results specify
how the resulting admissible graphs are related.

Theorem 4.3. For a given C1 vector field, the realization procedure of Subsection 4.1 yields

admissible graphs with the following relations:

(1) The network graph G1 = (C ,E ,∼C ,∼1) of step 1 and the network graphs G2 = (C ,E ,∼C

,∼2) of step 2 are unique up to an isomorphism;

(2) Each G4 = (C ,E ,∼C ,∼4) of step 4 may be non isomorphic to another network graph

obtained in this step, but it is ODE-equivalent to some G3 of step 3;

(3) The following inclusions hold:

L (G4;Rn0) = L (G3;Rn0)⊆ L (G2;Rn0)⊆ L (G1;Rn0).

Proof. We prove by remaking the four steps of the procedure from the adjacency matrix point
of view. For simplicity, the proof is carried out for the construction of simple graphs. For
multigraphs the proof is completely analogous adapting the notation of an edge which is not
identified with a pair of vertices and so adjacency matrices have integer entries instead of only 0
and 1.

In step 1, for a choice of C , there is a one-to-one correspondence between the edges in
E and adjacency matrices: each adjacency matrix Ai, j

1 corresponds to (i, j) ∈ E , with the ji-entry
equal to 1 and the others equal to zero. Such matrices are unique up to vertex labeling.

In step 2, for each c ∈ C consider the partition (4.4) of I(c). The adjacency matrices are,
for each r′ = 1, . . . ,r,

Ac,r′
2 = ∑

d∈Kr′

Ad,c
1 ,

so that the graph is unique up to an isomorphism.

In step 3, we construct the I-classes of cells. For each I-class Q, the adjacency matrices
are

AQ,r′
3 = ∑

c∈Q
Ac,r′

2 r′ = 1, . . . ,r.

As already registered in Remark 4.1 (b), such matrices depend on the ordination of variables in
each component; in addition, ϑ( f ) is the number of all possible ordinations, by Proposition 4.2;
so distinct choices may lead to isomorphic graphs.

At this point, it is already straightforward to see that the two inclusions in item (3) hold.
So we finally prove the statement in (2).

Without loss of generality, assume that the graph G3 has two I-classes R= {1, . . . ,m},S =

{m+1, . . . ,n0}. Since R∩S = /0, then the null rows of AR,r′
3 are non null rows in AS,s′

3 , and vice
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versa. The adjacency matrices of a graph G4 in step 4 are as follows:

AR,r′′
3 , r′′ = 1, . . . ,r and r′′ ̸= r′,

AS,s′′
3 , s′′ = 1, . . . ,s and s′′ ̸= s′,

B4 = AR,r′
3 +AS,s′

3 .

Thus, M ∈ L (G4,Rn0) if, and only if,

M = diag(
m times︷ ︸︸ ︷
t, . . . , t,

n0−m times︷ ︸︸ ︷
t̄, . . . , t̄ )+ ∑

r′′ ̸=r′
diag(tr′′ , . . . , tr′′ ,0, . . . ,0)AR,r′′

3 +

+ ∑
s′′ ̸=s′

diag(0, . . . ,0, ts′′, . . . , ts′′)AS,s′′
3

+diag(tr′, . . . , tr′, ts′, . . . , ts′)
(
AR,r′′

3 +AS,s′′
3
)

= diag(t, . . . , t, t̄, . . . , t̄)+∑
r′′

diag(tr′′, . . . , tr′′ ,0, . . . ,0)AR,r′′
3 +

+∑
s′′

diag(0, . . . ,0, ts′′ , . . . , ts′′)AS,s′′
3 , (4.14)

which is a general element of L (G3;Rn0). Therefore, L (G4;Rn0) = L (G3;Rn0). This equality
holds for any choice of the pair of indices r′,s′ as long as the I-classes are kept unchanged, so
this concludes the proof.

In the remaining of this section we discuss how the ϑ( f ) graphs of step 3 are related
according to the ODE-equivalence. We assume that the vector field is smooth and that the cells
of the resulting network graphs with, say, n cells, have the same dimension.

Without loss of generality, we assume that each cell phase space is one-dimensional. To
ease the exposition, we present the details for the simplest but sufficiently general case: For a
smooth vector field f : Rn → Rn, suppose that step 3 results in two input classes {1, . . . ,n0} and
{n0 +1, . . . ,n} with associated generating functions g and h,

g(y,y1, . . . ,yk,yk+1, . . . ,y2k,y2k+1, . . . ,yl) = g(y,yk+1, . . . ,y2k,y1, . . . ,yk,y2k+1, . . . ,yl)

h(y,y1, . . . ,yk′,yk′+1, . . . ,y2k′) = h(y,yk′+1, . . . ,y2k′,y1, . . . ,yk′).
(4.15)

We have ϑ( f ) = 2n0−12n−n0−1 = 2n−2 graphs, and let G be one of the graphs. Then G has five
adjacency matrices Ai

G , i = 1, . . . ,5, three of which (say for i = 1,2,3) having the last n−n0 null
rows and two (i = 4,5) having the first n0 null rows.

We now give a technical definition.

Definition 4.4. With the notation of Remark 4.1(b), let G be a network graph determined by the

partition (4.8). The network graph Ḡ is given by defining its E -classes as the unions

K1 ∪ . . .∪Ku1, Ku1+1 ∪ . . .∪Ku1+u2, . . . , Ku1+...+uv−1+1 ∪ . . .∪Ku1+...+uv ,

for each I-class Q and each c ∈ Q.
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For the case (4.15), Ḡ is the graph whose adjacency matrices are

A1
G +A2

G , A3
G , A4

G +A5
G .

Remark 4.5. The graph Ḡ does not depend on the particular choice of G , but only on the
associated generating functions.

Let γ : C → C be a bijection that preserves the input classes of G . The graph γG , whose
adjacency matrices are γAi

G γ−1, for i = 1, . . . ,5, is ODE-equivalent to G . However, it is not
necessarily true that γG is also an admissible graph for this vector field. So under what conditions
over γ is this an admissible graph? The following proposition gives a necessary condition:

Proposition 4.6. For generic generating functions and for G an admissible graph, if γG is an

admissible graph, then there exists γ ′ = (γC ,γE ) ∈ Aut(Ḡ ) such that γ = γC .

Proof. To ease exposition, we present the proof for the case in (4.15). For any a ∈ R, we take
ν = (a, . . . ,a) ∈Rn. Let us also denote by ν the vectors in Rl+1 and R2k′+1 with all entries equal
to a. By the permutation symmetries of g,h, we have that

∂g
∂y1

(ν) =
∂g

∂yk+1
(ν),

∂h
∂y1

(ν) =
∂h

∂yk′+1
(ν).

Since f is G -admissible, these imply that

D f (ν) = α +
∂g
∂y1

(ν)(A1
G +A2

G )+
∂g

∂y2k+1
(ν)A3

G +
∂h
∂y1

(ν)(A4
G +A5

G ),

where α is a diagonal matrix whose first n0 entries are equal to
∂g
∂y

(ν) and the last n−n0 entries

are equal to
∂h
∂y

(ν). Similarly, as f is γG -admissible, then

D f (ν) = α +
∂g
∂y1

(ν)γ(A1
G +A2

G )γ
−1 +

∂g
∂y2k+1

(ν)γA3
G γ

−1 +
∂h
∂y1

(ν)γ(A4
G +A5

G )γ
−1.

Comparing the null rows, the following equalities hold:

∂g
∂y1

(ν)(A1
G +A2

G )+
∂g

∂y2k+1
(ν)A3

G =
∂g
∂y1

(ν)γ(A1
G +A2

G )γ
−1 +

∂g
∂y2k+1

(ν)γA3
G γ

−1

∂h
∂y1

(ν)(A4
G +A5

G ) =
∂h
∂y1

(ν)γ(A4
G +A5

G )γ
−1

If there exist a1,a2,a3 such that

det

[
∂g
∂y1

(ν1)
∂g

∂y2k+1
(ν1)

∂g
∂y1

(ν2)
∂g

∂y2k+1
(ν2)

]
̸= 0 e

∂h
∂y1

(ν3) ̸= 0, (4.16)

(this is the generic condition on g,h), then

A1
G +A2

G = γ(A1
G +A2

G )γ
−1, A3

G = γA3
G γ

−1, A4
G +A5

G = γ(A4
G +A5

G )γ
−1.

But this means that γ is a bijection on the set of cells of G by an automorphism of Ḡ .
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Theorem 4.7. Let γ ′ = (γC ,γE ) ∈ Aut(Ḡ ).

(1) The vector field f is G -admissible and γC G -admissible if, and only if, the bijection γE

induces a bijection on the input sets (step 2) preserving them as partitions, that is,

γE (I(c)) = I(γC (c)), as partitions. (4.17)

(2) The condition (4.17) on γ ′ implies that f γC = γC f . The converse holds for the simple

graph case.

Proof. (1) If (4.17) holds, then it is direct from Definition 2.3 that f is γC G -admissible, since γC

preserves input sets. If (4.17) does not hold, then there exists c∈C such that γE (I(c)) ̸= I(γC (c));
by uniqueness of the partition of I(γC (c)), it follows that f is not γC G -admissible.

(2) For c ∈ {1, . . . ,n0}, we have that

( f γC )c(x1, . . . ,xn) = fc(xγ
−1
C (1), . . . ,xγ

−1
C (n)) = g(x

γ
−1
C (c),xγ

−1
E (I(c)))

and
(γC f )c(x1, . . . ,xn) = f

γ
−1
C (c)(x1, . . . ,xn) = g(x

γ
−1
C (c),xI(γ−1

C (c))),

so the equality f γC = γC f follows from (4.17). For the converse, suppose that f γC = γC f , so

g(x
γ
−1
C (c),xγ

−1
E (I(c))) = g(x

γ
−1
C (c),xI(γ−1

C (c))).

But (4.17) to fail would contradict the maximality of the parts of I(γ−1
C (c)) for simple graphs.

Corollary 4.8. Let G be an admissible simple graph of step 3 for f . Any admissible graph for f

and nonisomorphic to G is ODE-equivalent to G if, and only if, it is of the form σG , where σ

belongs to

Σ(G ) = {γ ∈ Aut(Ḡ ) |γ f = f γ}/Iso(G ).

Proof. This is direct from Theorem 4.7 (2).

The example of the next subsection illustrates that distinct choices of step 3 can lead to
isomorphic graphs or also to non ODE-equivalent graphs.

4.5 Example: a vector field on R6

The aim of this section is to show with an example that a vector field may admit invariant
polydiagonal subspaces that are not realized as a synchrony pattern of an admissible graph of
this vector field. Nevertheless, for this particular example of six cells we shall verify that the
polydiagonal invariant subspaces are generically realized as synchronies of the network graph Ḡ

presented above.
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We construct admissible simple graphs for vector fields f :R6 →R6 that govern systems
of the form

ẋ1 = g(x1,x5,x6,x2,x3)

ẋ2 = g(x2,x6,x1,x3,x4)

ẋ3 = g(x3,x1,x2,x4,x5)

ẋ4 = g(x4,x2,x3,x5,x6)

ẋ5 = g(x5,x3,x4,x6,x1)

ẋ6 = g(x6,x4,x5,x1,x2),

(4.18)

for g : R5 → R such that

g(y,y1,y2,y3,y4) = g(y,y3,y4,y1,y2). (4.19)

Notice that Ḡ in this case is the graph G6 of six cells with nearest and next nearest neighbor
coupling. The synchrony subspaces of G6 are given in Table 1.

Clearly, an optimized admissible simple graph for f with six cells is homogeneous with
two types of edges. From (4.19), there are ϑ( f ) = 26−1 = 32 ways to define the edge classes.
By investigation, it is easy to see that, up to isomorphism, there are eight types of admissible
simple graphs. By Proposition 2.4, these are all non ODE-equivalent. In Table 2 we present the
eight types of admissible graphs and, for each type representative G listed in the first column,
we give the possible synchrony subspaces. In addition, in the last column we present the number
|Σ(G )| of the ODE-equivalence class (see Corollary 4.8). Notice that these numbers sum up to
give ϑ( f ).

We finally discuss the data presented in Table 2 with respect to the invariant polydiagonal
subspaces under f . On one hand, each number in the second column corresponds to a subspace
that is obviously invariant under f , by the admissibility of the graphs. On the other hand, let Θ

be a polydiagonal subspace which is invariant under f ,

f (Θ)⊆ Θ. (4.20)

We proof that generically this is a synchrony subspace for some graph G in Table 2. Let A1

and A2 be the adjacency matrices of G . Since Θ is polydiagonal, it contains the diagonal. So let

ν ∈ Θ be in the diagonal. By (4.19), we have that
∂g
∂y1

(ν) =
∂g
∂y3

(ν), and then

D f (ν)(Θ) =
∂g
∂y

(ν)Θ+
∂g
∂y1

(ν)A1(Θ)+
∂g
∂y3

(ν)A2(Θ)

=
∂g
∂y

(ν)Θ+
∂g
∂y1

(ν)(A1 +A2)(Θ).

If ν satisfies the generic condition
∂g
∂y1

(ν) ̸= 0, then it follows directly from (4.20) that the

inclusion (A1 +A2)(Θ)⊆ Θ also holds. We now notice that A1 +A2 is the adjacency matrix of
the network graph G6. Therefore, Θ is generically induced by a synchrony pattern of G6. Now,
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G6 is not an admissible graph for (4.18), but each of its synchrony patterns (Table 1) falls into the
second column of Table 2 for some (maybe more than one) graph up to the action of Aut(G6).

For the network of the next section, the admissible graph is G6 and we also discuss about
invariant subspaces. We use a similar approach as above, but with an extra linear algebra property
provided for that particular case.

4.6 Coupled network of van der Pol identical oscillators

In this section we present the possible synchronous configurations in a specific network
of identical oscillators. In particular, we find the hybrid states of chimera, verifying that spatially
separated domains of synchronized and desynchronized behavior can arise in networks of
identical units with symmetric coupling topologies.

We consider a network of six second-order systems of van der Pol type identical oscil-
lators which are coupled in a non-local fashion with additional intensity-dependent frequency
(CHANDRASEKAR et al., 2014):

ẍi = b(1− x2
i )ẋi − (ω2

0 +α1x2
i +α2x4

i )xi + ε(
1
4
(

j=i+2

∑
j=i−2

ẋ j)− ẋi)+η(
1
4
(

j=i+2

∑
j=i−2

x j)− xi,

(4.21)
for i = 1, . . . ,6, where α1 and α2 are the so-called intensity parameters, ε and η are the coupling
strengths.

A network of several systems of van der Pol type identical oscillators was numerically
studied in (CHANDRASEKAR et al., 2014) for 500 oscillators. That work shows that from a
random initial condition the system can evolve to a situation where part of the oscillators are in
synchrony and the other part are in total incoherence of phases.

In 1665, Christiaan Huygens observed that two pendulum clocks always synchronized
after a certain time. The justification was that, for being stuck in the same wood, part of the
momentum of one pendulum traveled as vibrations in the wood to the other pendulum. Since
then, it was thought that a set of coupled oscillators either remained in total disorder or, after
a certain time, got in synchrony. However, as first observed by Kuramoto and Battogtokh
(KURAMOTO; BATTOGTOKH, 2002), for the coupling of identical oscillators there can be an
intermediate state between total synchrony (coherence) and total desynchrony (incoherence). In
this regime, part of the oscillators are synchronized and the other part are in total incoherence
of phases. This phenomenon, known as ‘chimera state’ after Abrams and Strogatz (ABRAMS;
STROGATZ, 2006), has since attracted attention and enormous interest in many fields of
applications. Experiments and numerical simulations have given evidences that this behaviour is
not only possible but also expected to be stable as the system evolves.
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We investigate synchronous states of (4.21), namely

xi(t) = x j(t),∀t ∈ R, (4.22)

for i, j in some subset of {1, . . . ,6}.

Notice that, in particular, ẋi(t) = ẋ j(t). Hence, if we rewrite (4.21) as the coupled
Hamiltonian system

ẋi = yi

ẏi = b(1− x2
i )yi − (ω2

0 +α1x2
i +α2x4

i )xi

+ ε(
1
4
(

j=i+2

∑
j=i−2

y j)− yi)+η(
1
4
(

j=i+2

∑
j=i−2

x j)− xi),

(4.23)

for i = 1, . . . ,6, then the synchronies of one are in one-to-one correspondence with the syn-
chronies of the other.

This is a vector field admissible for the regular network graph G6 with six cells on (R2)6

with nearest and next nearest neighbor identical coupling. Including the trivial totally synchronous
pattern, there are nine distinct patterns of synchrony, which have been computed from our
code (see Remark 3.2 and Apendix A). In Table 1 we present all the possible eight nontrivial
synchronies. In this particular case, each synchrony subspace is the fixed-point subspace of a
subgroup of the automorphism group Aut(G6) of the network graph, which is the octahedral
group O ≃

〈
D6,(14),(25)

〉
(see (GOLUBITSKY; NICOL; STEWART, 2004, Lemma 2.1),

where the authors present the automorphism groups Aut(GN), N ≥ 5).

Regarding the data of Table 1, contrarily to what is usual in the literature, we give all
the possible algebraic expressions (second column) of the corresponding diagram (first column),
which are obviously fixed-point subspaces of conjugate isotropies. Doing so, we link the data of
Tables 1 and 2: expressions (1) to (3) of ]1 in Table 1 appear in Table 2 ]6 but not in ]2; similarly,
the expressions (19) to (22) of ]6 in Table 1 appear in ]6 but only (21) appear in ]6 of Table 2,
and so on.

Chimera states can now be selected directy from Table 1, namely configurations ]1 to ]4.
For example, in case ]2 the cells 3 and 6 are two isolated desynchronized cells. From the point
of view of the applications, the detection of the possible robust attracting chimeras from this list
is a relevant issue, for these correspond to the numerically observed phenomena of the literature
mentioned in our introductory section. At the present, this investigation has been carried out.

By the condition in (3.2), all synchrony subspaces are polydiagonal invariant subspaces
under the vector field f defined by (4.23). We finish by investigating the converse. Let Θ be a
polydiagonal subspace which is invariant under the vector field f given in (4.23).

In particular, it is invariant under the linearization at the origin,

D f (0) = I6 ⊗

 0 1

−ω2
0 −

3η

4
b− 3ε

4

+AG6 ⊗

 0 0
η

4
ε

4

 ,
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which implies that AG6 ⊗

 0 0
η

4
ε

4

 [Θ] ⊂ Θ. Now, since any vector v ∈ Θ is of the form

v = (x1,y1, . . . ,x6,y6) with xi = x j and yi = y j for i, j in some subset of {1, . . . ,6}, and that

AG6 ⊗

 0 0
η

4
ε

4

 [v] = 1
4

AG6 ⊗ I2[(0,ηx1 + εy1, . . . ,0,ηx6 + εy6)] ∈ Θ,

it follows that Θ′ is an AG6-invariant subspace of R6, in the xi’s variables, defined by the same
equalities as for Θ.
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]
Diagram Algebraic expression

Symmetry of the pattern under
the standard representation of the
octahedral group

1
(1) {x1 = x4}
(2) {x2 = x5}
(3) {x3 = x6}

Reflection w.r.t. the plane
through the other four cells.

2
(4) {x1 = x2 = x4 = x5}
(5) {x1 = x3 = x4 = x6}
(6) {x2 = x3 = x5 = x6}

Rotation of π/2 w.r.t. an axis
through opposite cells.

3

(7) {x1 = x2,x4 = x5}
(8) {x1 = x3,x4 = x6}
(9) {x1 = x5,x2 = x4}
(10) {x1 = x6,x3 = x4}
(11) {x2 = x3,x5 = x6}
(12) {x2 = x6,x3 = x5}

Reflection to the plane through
opposite cells and opposite
edges.

4
(13) {x1 = x4,x2 = x5}
(14) {x1 = x4,x3 = x6}
(15) {x2 = x5,x3 = x6}

Rotation of π of the octahedron
w.r.t the line through opposite
cells.

5
(16) {x1 = x2 = x4 = x5,x3 = x6}
(17) {x1 = x3 = x4 = x6,x2 = x5}
(18) {x1 = x4,x2 = x3 = x5 = x6}

Rotation of π/2 w.r.t. an axis
through opposite cells and a re-
flection w.r.t. the perpendicular
plane.

6

(19) {x1 = x2 = x3,x4 = x5 = x6}
(20) {x1 = x2 = x6,x3 = x4 = x5}
(21) {x1 = x3 = x5,x2 = x4 = x6}
(22) {x1 = x5 = x6,x2 = x3 = x4}

Rotation of 2π/3 w.r.t. the line
that cuts the opposite faces.

7

(23) {x1 = x2,x3 = x6,x4 = x5}
(24) {x1 = x3,x2 = x5,x4 = x6}
(25) {x1 = x4,x2 = x3,x5 = x6}
(26) {x1 = x4,x2 = x6,x3 = x5}
(27) {x1 = x5,x2 = x4,x3 = x6}
(28) {x1 = x6,x2 = x5,x3 = x4}

Reflection w.r.t. two planes, one
through two opposite cells and
the other orthogonally through
four cells.

8 (29) {x1 = x4,x2 = x5,x3 = x6}

Rotation of π w.r.t. an axis
through opposite cells and a re-
flection w.r.t. the perpendicular
plane.

Table 1 – Synchrony patterns of the network graph G6 together with their symmetries.



54 Chapter 4. The realization of admissible graphs for coupled vector fields

] G
Synchrony patterns (number-
ing extracted from Table 1)

|Σ(G )|

1 16,17,18,21,29 1

2 2,16,17,18,21,29 6

3
2,3,6,12,15,16,17,18,21,
26,29

6

4 1,2,13,16,17,18,21,29 6

5 9,12,16,17,18,21,26,27,29 3

6
1,2,3,5,6,8,12,13,14,15,16,
17,18,21,23,24,26,29 3

7
3,9,16,17,18,21,27,29

6

8
1,2,3,13,14,15,16,17,18,21,
23,25,28,29 1

Table 2 – Admissible network graphs for (4.18) up to ODE-equivalence with their corresponding syn-
chrony patterns. The last column gives the number of admissible graphs nonisomorphic and
ODE-equivalent to the graph.
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CHAPTER

5
SYNCHRONY PATTERNS IN LAPLACIAN

NETWORKS

This chapter is devoted to the class of networks whose admissible maps are attached to
the associated graph not only through its architecture but also through the Laplacian matrix of
the graph. As mentioned in the Introduction, these generalize the traditional Kuramoto model.

In Section 5.1 we recall the graph Laplacian matrix and present a result from algebraic
graph theory for Laplacian matrices. Section 5.2 is dedicated to present the general algebraic
expression of an admissible map of a Laplacian network. Finally, the extra admissible additive
structure behind the Kuramoto networks is dealt with in Section 5.3. The results in this Chapter
appear in (AMORIM; MANOEL, 2023)

5.1 Graph Laplacian matrix

For a bidirected graph G with n vertices, recall that the Laplacian matrix is

L = D−A,

where D is the diagonal matrix of the valencies of the vertices and A is the adjacency matrix.
The ii-entry of D is the degree of the vertex i if G is unweighted, and ∑

n
j=1 wi j if G is a weighted

graph. A is, as usual, the sum of the adjacency matrices (2.1) for unweighted edge classes and
considering weights wi j instead of 1’s for weighted graphs.

It is direct from the definition that 0 is an eigenvalue of L with eigenvector (1, . . . ,1).
For weighted connected graphs with possibly negative weights, the authors in (BRONSKI;
DEVILLE, 2014, Theorem 2.10) give the best possible bounds on the numbers of positive,
negative and zero eigenvalues. The next result generalizes their result for disconnected graph,
which is used in the next sections.
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Let G+ (resp. G−) denote the subgraph with the same vertex set as G together with
the edges of positive (resp. negative) weights. Let n0,n− and n+ denote the numbers of zero,
negative and positive eigenvalues of the Laplacian L, and let c(G) denote the number of connected
components of G.

Theorem 5.1. If G is a (possibly disconnected) graph, then

c(G+)− c(G) ≤ n+(L) ≤ n− c(G−)

c(G−)− c(G) ≤ n−(L) ≤ n− c(G+) (5.1)

c(G) ≤ n0(L) ≤ n+2c(G)− c(G+)− c(G−).

Proof. If G has k connected components, for i = 1, . . .k, let Gi denote the connected components
with ni vertices, so n1 + . . .+nk = n. Reorder the rows and columns of L if necessary to assume
that L is a block diagonal matrix

L = diag(L1, . . . ,Lk).

By the estimates in (BRONSKI; DEVILLE, 2014), for each i = 1, . . . ,k we have c(Gi+)−1 ≤
n+(Li)≤ ni − c(Gi−), so

c(G1+)+ . . .+ c(Gk+)− k ≤ n+(L1)+ . . .+n+(Lk)≤ (5.2)

≤ n1 + . . .+nk − (c(G1−)+ . . .+ c(Gk−)),

so the first estimate follows. The other inequalities follow similarly.

If the graph G is connected, then c(G) = 1 and (5.1) are the bounds given in (BRONSKI;
DEVILLE, 2014).

We notice that this result involves only topological information about the graph, namely
the connectivity of the graph and the sign information on the edge weights. In particular, it
follows that, for a graph with n vertices, the difference between the upper and lower bounds in
(5.1) is an integer that can vary between 0 and n−1.

5.2 Laplacian mappings
In this section we use the idea of inserting weights on an unweighted graph G to adapt

the algebraic graph theory for weighted graphs to the associated Laplacian network graph G .
Let us explain: for a given unweighted graph G, we associate an admissible coupled system
(3.1). For our case of interest, the Jacobian J f (x) of the governing vector field is, at any point x,
a Laplacian matrix. The idea is to look at it as a weighted Laplacian of G, considering G as a
weighted graph. Under this approach, we use Theorem 5.1.

We start with three definitions:
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Definition 5.2. A matrix L = (li j) of order n is a Laplacian matrix if it is symmetric with

lii =−∑ j ̸=i li j, for i = 1, . . . ,n.

Our interest here is to deduce an algebraic expression of a map f : P → P on a real vector
space P, so for simplicity we assume P = Rn.

Definition 5.3. A map f : Rn → Rn of class C1 is a Laplacian map if its Jacobian J f (x) at any

x ∈ Rn is a linear map whose matrix is a Laplacian matrix.

The set of Laplacian maps shall be denoted by LS(Rn).

It follows from the two definitions above that being bidirected is a necessary assumption
in this context. We have:

Definition 5.4. For a bidirected graph, an associated network G is a Laplacian network if the

admissible map is a Laplacian map.

For the main result, we need:

Lemma 5.5. If h : Rn → R is such that

n

∑
i=1

∂h
∂xi

(x) = 0. (5.3)

then

h(x1, . . . ,xn) = α(x1 − xn, . . . ,xn−1 − xn), (5.4)

for some α : Rn−1 → R.

Proof. Consider the change of coordinates ti = xi − xn, i = 1 . . . ,n−1, tn = xn. We then have

h(x1, . . . ,xn) = h(t1 + tn, . . . , tn−1 + tn, tn) = α̃(t1, . . . , tn).

But
∂ α̃

∂ tn
= ∑

i

∂h
∂xi

= 0.

Hence, α̃(t1, . . . , tn) = α(t1, . . . , tn−1), and the result follows.

We now present the characterization of the general form of a Laplacian mapping:

Theorem 5.6. f = ( f1, . . . , fn) ∈ LS(Rn) if, and only if,

fi(x1, . . . ,xn) =
∂g
∂ ti

(x1 − xn, . . . ,xn−1 − xn), i = 1, . . . ,n−1,

fn = − f1 − . . .− fn−1 + k.

for some g ∈C2(Rn−1) and some constant k ∈ R.
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Proof. From Lemma 5.5, we have

fi(x1, . . . ,xn) = αi(x1 − xn, . . . ,xn−1 − xn), i = 1, . . . ,n.

The Jacobian J f (x) is symmetric, so

∂αi

∂ t j
=

∂α j

∂ ti
, i, j = 1, . . . ,n−1, i ̸= j, (5.5)

∂αn

∂ ti
=−∂αi

∂ t1
− . . .− ∂αi

∂ tn−1
i = 1, . . . ,n−1, (5.6)

which imply that

∂αn

∂ ti
=−∂α1

∂ ti
− . . .− ∂αn−1

∂ ti
=

∂

∂ ti
(−α1 − . . .−αn−1), i = 1, . . . ,n−1. (5.7)

Hence, αn =−∑
n−1
i=1 αi + k, for some constant k.

Finally, given any function g : Rn−1 →R of class C2, we can take αi =
∂g
∂ ti

, i = 1, . . . ,n−

1. Conversely, any map α = (α1, . . . ,αn−1) of class C1 satisfying (5.5) is a gradient mapping. In
fact, just set

g(t1, . . . , tn−1) =
n−1

∑
i=1

∫ ti

0
αi(0, . . . ,0,s, ti+1, . . . , tn−1)ds.

The example below is a simple illustration of Theorem 5.6.

Example 1. For n = 3, consider g(y,z) =
y2z2

2
. The following are the coordinate functions of a

Laplacian mapping f : R3 → R3:

f1(x1,x2,x3) = (x1 − x3)(x2 − x3)
2

f2(x1,x2,x3) = (x1 − x3)
2(x2 − x3)

f3(x1,x2,x3) = −(x1 − x3)(x2 − x3)
2 − (x1 − x3)

2(x2 − x3).

The next two corollaries follow straightforwardly:

Corollary 5.7. The following linear isomorphism holds:

LS(Rn) ≃ (C2(Rn−1)/R)⊕R.

Corollary 5.8. If f = ( f1, . . . , fn) ∈ LS(Rn), then ∑
n
i=1 fi is constant.

We end with the characterization of the Laplacian maps, which is also direct from
Theorem 5.6:

Theorem 5.9. f = ( f1, . . . , fn) ∈ LS(Rn) if, and only if, f is a gradient map f = ∇ḡ, where

ḡ(x1, . . . ,xn) = g(x1 − xn, . . . ,xn−1 − xn)+ kxn.
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5.3 Laplacian networks with additive structure
Here we consider Laplacian admissible maps f ∈ LS(Rn) with the extra condition that

each component fc of cell c has an additive input structure, namely

fc(x) = ∑
d ̸=c

φcd(xc,xd). (5.8)

This structure provides the simplest way to associate an admissible graph following the
formalism from Chapter 4: for such a map, we consider the following coupling rule:

(a,b)∼E (c,d) ⇔ φba = φdc. (5.9)

Indeed, the optimized network graph is not unique if occurs something like Remark 4.13 (b). By
simplicity suppose that

fc = φ(xc,xd1)+φ(xc,xd2)+θ(xc,xd3)+θ(xc,xd4) =

= φ(xc,xd3)+φ(xc,xd4)+θ(xc,xd1)+θ(xc,xd2).

So taking the derivative of fc with respect to xd1 we obtain

∂θ

∂y
(x,y) =

∂φ

∂y
(x,y),

thus θ(x,y) = φ(x,y)+ k(x). Then we can replace φ by φ̄ = φ(x,y)+ k(x)
2 and θ by θ̄(x,y) =

θ(x,y)− k(x)
2 . In this case φ̄ = θ̄ .

We notice that, by Lemma 5.5,

fn(x1, . . . ,xn) = αn(x1 − xn, . . . ,xn−1 − xn) (5.10)

and from (5.8),

∂ 2αn

∂ ti∂ t j
=

∂ 2 fn

∂xi∂x j
= 0, i ̸= j < n. (5.11)

Hence, αn ‘splits the variables’ xi and x j, i ̸= j < n; more precisely,

fn(x1, . . . ,xn) = ∑
d<n

φnd(xn − xd).

By the same reasoning, the same condition holds for other components, and so

fc(x) = ∑
d ̸=c

φcd(xc − xd), ∀c = 1, . . . ,n.

Since the graph is bidirected, we have (a,b)∼E (b,a), and so φba = φab. Furthermore,
by the Laplacian condition,

φ
′
ab(xa − xb) =−∂ fa

∂xb
(x) =−∂ fb

∂xa
(x) = φ

′
ba(xb − xa).

Therefore,
φ
′
ab(xa − xb) = φ

′
ab(−(xa − xb)),

that is, all coupling functions must be odd. We have just proved:
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Theorem 5.10. Let G be a bidirected graph network. If f is a G -admissible map, then f ∈ LS(Rn)

has an additive structure if, and only if, each component of f is of the form

fc(x) = k[c]+ ∑
d∈I(c)

φ[(c,d)](xd − xc), (5.12)

where φ[(c,d)] is an odd function that depends only on the [(c,d)]-class of the edge (c,d) and k[c]
is a constant that depends only on the I-class [c] of c.

The two theorems above imply the following:

Corollary 5.11. Let G be a bidirected graph network. Let f be a G -admissible map. Then

f ∈ LS(Rn) has an additive structure if, and only if, f is a gradient mapping f =−∇g, where

g(x) = ∑
(c,d)∈E

ψ[(c,d)](xd − xc)+ ∑
c∈C

k[c]xc,

ψ[(c,d)] is an even function that depends only on the [(c,d)]-class of the edge (c,d) and k[c] is a

constant determined by the I-class of c.

The example below illustrates the theorem above. This is a nonhomogeneous network
graph with six cells, with two I-classes {1,2,4,5} and {3,6}, given in Fig. 9.

Figure 9 – A nonhomogeneous bidirected graph with six identical cells and two types of edges.

Example 2. For a bidirected graph with six identical cells and two types of edges as given in

Fig. 9, a Laplacian network G on R6 with additive structure is given by

ẋ = f (x),

where f = ( f1, . . . , f6) : R6 → R6,

f1(x) = κ +θ(x1 − x2)+θ(x1 − x5)+φ(x1 − x6)

f2(x) = κ +θ(x2 − x1)+θ(x2 − x4)+φ(x2 − x3)

f3(x) = `+φ(x3 − x2)+φ(x3 − x4)

f4(x) = κ +θ(x4 − x2)+θ(x4 − x3)+φ(x4 − x5)

f5(x) = κ +θ(x5 − x1)+θ(x5 − x4)+φ(x5 − x6)

f6(x) = `+φ(x6 − x1)+φ(x6 − x5),

for θ ,φ any odd functions of class C1 and κ, ` constant.
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5.4 Critical points on synchrony subspaces of additive
Laplacian networks

The starting point in the study of a dynamical behaviour of a system, or bifurcations with
variations of possible external parameters, is the analysis of existence and stability of equilibrium
points. Here we proceed in this direction.

In Subsection 5.4.1 we prove that, for any homogeneous additive Laplacian network,
Lyapunov stability holds generically for totally synchronyous critical points. In the last two
subsections we choose two examples to search for critical points with the remaining possible
synchrony.

The following result ensures that the investigation of trajectory stability in Laplacian
networks is based on the eigenvalues of the Jacobian evaluated at equilibrium points.

Lemma 5.12. Let f ∈ LS(Rn). The α-limit and ω-limit of any trajectory are equilibrium points.

Proof. From Theorem 5.9, f ∈ LS(Rn) is gradient, so the result follows from LaSalle’s invariance
principle (see for example (WIGGINS, 2003, Section 8.3)).

In Subsection 5.4.2 we consider the homogeneous Kuramoto network of six cells with
coupling G6 (identical edges connecting nearest and next nearest neighbors). We list the critical
points inside the remaining synchrony subspaces. For each case, we give the estimate for the
degree of linear instability through the range of the number of positive eigenvalues. We end with
Subsection 5.4.3 doing the same analysis for a homogeneous coupled network of six cells with
two types of couplings.

5.4.1 Total synchrony subspace

Let G be a connected homogeneous bidirected network graph with n cells. Let f be an
admissible vector field as in (5.12) . We search for critical points, so k = 0.

Suppose that there exists ε > 0 such that

αφ[(c,d)](α)> 0,∀α ∈ (−ε,ε),α ̸= 0. (5.13)

Notice that this holds if, in particular, φ ′
[(c,d)](0)> 0, for all (c,d) ∈ E , which can be the case if

the primitive of φ[(c,d)] has a local minimum at zero.

Let Ω be the biggest open hipercilinder around of the total synchrony subspace ∆ such
that x ∈ Ω implies that |xd − xc|< ε , for all (c,d) ∈ E . We then have the following:

Lemma 5.13. (i) Ω is a flow invariant set.

(ii) for x ∈ Ω, we have f (x) = 0 if, and only if, x ∈ ∆.
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Before proving this lemma, we state the following theorem, which is an immediate
consequence of this Lemma, since f is gradient (see Corollary 5.11).

Theorem 5.14. Let G be a connected homogeneous bidirected network graph. Let f be an

admissible vector field as in (5.12) such that (5.13) holds. The total synchrony subspace is

asymptotically stable on Ω in the sense of Lyapunov.

Proof of Lemma 5.13. (i) From Corollary 5.8, f (x) · (1, . . . ,1) = 0 for any x. Also, f is constant
along the lines parallel to ∆. So it suffices to show that Ω∩π is flow invariant, where π is the
hiperplane x · (1, . . . ,1) = 0. To see this, as Ω∩π is a hipersphere, we just need to show that
f (x) · x < 0 for all x ∈ Ω∩π∖{0}. In fact,

f (x) · x = ∑
c∈C

∑
d∈I(c)

xcφ[(c,d)](xd − xc)

= ∑
(c,d)∈E

(xc − xd)φ[(c,d)](xd − xc)≤ 0, (5.14)

where at least one portion is strictly less than zero. As G is connect, (5.14) also shows (ii).

We finally mention that if all the functions φ[(c,d)] are periodic with a comum period, we
can restrict the analysis of critical points on the n-torus.

5.4.2 Kuramoto network with G6 coupling

We consider the Kuramoto network system with six cells and coupling G6 (Fig. 10):

ẋi =
2

∑
j=−2

sin(xi− j − xi), i = 1, . . . ,6. (5.15)

Figure 10 – G6

We search for the critical points inside synchrony subspaces. It follows from Proposi-
tion 3.6 that these are all fixed-point subspaces of subgroups of the automorphism group Aut(G6),
which is the octahedral group. We consider the representation given by permutations,

Aut(G6) = ⟨D6,(14),(25)⟩
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(see (ANTONELI; STEWART, 2006, Lemma 2.1)).

The computation has been carried out starting with the smallest subgroups Σ of Aut(G6)

up to conjugacy, for these will have the largest fixed-point subspaces; and we then continue
refining from there. More precisely, we consider the diagram (5.16) with the lattice of fixed-point
subspaces, where the arrows represent the refinement by inclusion. The total synchrony has been
omitted in this diagram and, apart from it, this is the complete lattice up to conjugacy. Based on
this diagram, we start by considering the subgroups Σ such that Fix(Σ) correspond to patterns 1
and 3.

Pattern8
Fix⟨(14)(25)(36)⟩ //

Pattern4
Fix⟨(14)(25)⟩ //

Pattern1
Fix⟨(14)⟩

Pattern5
Fix⟨(1245)(36)⟩ //

OO

��

Pattern2
Fix⟨(1245)⟩

88OO

��
Pattern7

Fix⟨(12)(36)(45)⟩ //
Pattern3

Fix⟨(12)(45)⟩

Pattern6
Fix⟨(123)(456)⟩

77

(5.16)

Without loss of generality, for all cases we assume that a critical point x = (x1, . . . ,x6)

satisfies x1 = 0.

For Σ = ⟨(14)⟩, we search for critical points of the form (0,a,b,0,c,d) for a,b,c,d ∈ R
mod 2π:

2sin(−a)+ sin(b−a)+ sin(d −a) = 0

2sin(−b)+ sin(a−b)+ sin(c−b) = 0

2sin(−c)+ sin(b− c)+ sin(d − c) = 0

2sin(−d)+ sin(a−d)+ sin(c−d) = 0,

which can be rewritten as

2

[
sina

sinc

]
= (sinb+ sind)

[
cosa

cosc

]
− (cosb+ cosd)

[
sina

sinc

]
(5.17)

2

[
sinb

sind

]
= (sina+ sinc)

[
cosb

cosd

]
− (cosa+ cosc)

[
sinb

sind

]
(5.18)

Case 1: If (sina,sinc),(cosa,cosc) are linearly independent, then (5.17) implies that cosb+

cosd = −2, and so b = d = π . Using that in (5.18), we get sina = −sinc, and so c = −a or
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a = c+π . These give the following two families of critical points:

(0,a,π,0,−a,π), (0,a,π,0,a+π,π).

If (sinb,sind),(cosb,cosd) are linearly independent, then analogously we get the other two
families

(0,π,b,0,π,−b), (0,π,b,0,π,b+π).

Case 2: If both pairs of the previous case are linearly dependent, then each pair form a matrix
with zero determinant, and so sin(c−a) = 0 and sin(d −b) = 0. Hence, c = a or c = a+π and
b = d or b = d +π .

∙ If c = a and d = b, then sina = sin(b−a) and sinb = sin(a−b). So the critical points are

(0,π,0,0,π,0), (0,
4π

3
,
2π

3
,0,

4π

3
,
2π

3
,0).

∙ If c = a and d = b+π , then the critical points are

(0,0,π,0,0,0), (0,π,b,0,π,b+π).

For Σ= ⟨(12)(45)⟩, we search for critical points of the form (0,0,a,b,b,c), for a,b,c∈R
mod 2π:

2sin(−a)+2sin(b−a) = 0

sin(−b)+ sin(a−b)+ sin(c−b) = 0

2sin(−c)+2sin(b− c) = 0.

These give the following two families of critical points:

(0,0,a,π,π,−a), (0,0,a,π,π,a+π).

In Table 1 we listed the eight patterns of synchrony of G6 that are distinct from the total
synchrony pattern. Here we follow that order to present in Table 1 the compilation of all (families
of) equilibrium points inside the corresponding synchrony pattern.

We then apply Theorem 5.1 to the Jacobian matrix J f (x), at every critical point x, thought
of as a weighted Laplacian of the graph. We refer to the beginning of Subsection 5.2 for the
explanation.

For the critical point x = (0,0,π/2,π,π,3π/2), the Jacobian is

J f (x) =



0 +1 0 0 −1 0
+1 0 0 −1 0 0

0 0 0 0 0 0
0 −1 0 0 +1 0

−1 0 0 +1 0 0
0 0 0 0 0 0


.
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Thought of as a graph Laplacian, the graph is as given in Fig. 11. We then have c(G) = 3,
c(G+) = 4, c(G−) = 4, which gives 1 ≤ n+ ≤ 2. This is one of the possible cases of pattern
number 3 of Table 1.

Figure 11 – The disconnected graph obtained from G6 by assigning J f (x) as the weighted Laplacian, for
x = (0,0,π/2,π,π,3π/2).

It follows that for all cases in Table 1 we have n+ ≥ 1. Therefore, all equilibria are
unstable, and asymptotic stability occurs only for the total synchrony subspace in the sense of
Lyapunov as given in the previous subsection.

5.4.3 A homogeneous network G̃6 with two types of couplings

The aim of this example is to illustrate that there are stable equilibria from a ‘modification’
of G6. We consider a network system with six cells and coupling defined from the graph G̃6

given in Fig. 12. The symmetry group of this graph is

Aut(G̃6) = Z1
2 ×Z2

2 ×Z3,

whereZ1
2 = ⟨(15)(24)⟩ andZ2

2 = ⟨(12)(36)(45)⟩, which are not conjugate, andZ3 = ⟨(156)(234)⟩.

We choose the coupling functions φ(θ) = sinθ , which is represented by the continuous
arrow type in Fig. 12, and ψ(θ) = θ , represented by the dashed arrow type, so the network
system is

ẋ1 = sin(x2 − x1)+ sin(x3 − x1)+ x5 + x6 −2x1

ẋ2 = sin(x1 − x2)+ sin(x6 − x2)+ x3 + x4 −2x2

ẋ3 = sin(x1 − x3)+ sin(x5 − x3)+ x2 + x4 −2x3

ẋ4 = sin(x5 − x4)+ sin(x6 − x4)+ x2 + x3 −2x4

ẋ5 = sin(x3 − x5)+ sin(x4 − x5)+ x1 + x6 −2x5

ẋ6 = sin(x2 − x6)+ sin(x4 − x6)+ x1 + x5 −2x6

By direct investigation from the output of our code (Remark 3.2), there are no exotic
synchrony patterns in this network graph.

The analysis follows analogously as in the previous subsection, so we shall just present a
summary with the results. The diagram in (5.19) is the lattice of non-trivial synchrony subspace
up to conjugacy.
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Figure 12 – A homogeneous G̃6

Fix⟨(156)(234)⟩ // Fix⟨(15)(24)⟩

Fix⟨(12)(36)(45),(15)(24)⟩ //

44

**

Fix⟨(12)(36)(45)⟩

Fix⟨(14)(25)(36)⟩

(5.19)

For Σ = ⟨(15)(24)⟩, we search for critical points of the form (0,a,b,a,0,c), for a,b,c,∈
R:

sin(−a)+ sin(c−a)+(b−a) = 0

2(a−b)+2sin(−b) = 0

−2c+ sin(a− c) = 0,

which imply that
sinb+b = a = c+ arcsinc,

Since t ↦→ sin(t)+ t is injective, then c = sinb. Together with the first equality, this gives sina =

−2sinb, and so sin(b+ sinb)+2sinb = 0. Hence, b = kπ,k ∈ Z, and also a = b. Therefore, the
critical points are

(0,kπ,kπ,kπ,0,0), k ∈ Z.

For Σ= ⟨(14)(25)(36)⟩, we search for critical points of the form (0,a,b,0,a,b), a,b∈R:

sina+ sinb+a+b = 0

sin(b−a)+ sin(−a)−2b+a = 0,

which imply that sina+a = sin(−b)−b, and then a =−b. Together with the second equality,
this gives sin(2a)+2a = sin(−a)−a, and then a = b = 0. This gives the total synchrony, which
has already been considered.

For Σ= ⟨(12)(36)(45)⟩, we search for critical points of the form (a,a,0,b,b,0), a,b∈R:

b = 2a+ sina

a = 2b+ sinb,
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which also imply a = b = 0. It follows from the computation of n+ and n− by Theorem 5.1 that
(0,kπ,kπ,kπ,0,0) is a one paramenter family of stable equilibria for k even and unstable if k is
odd.
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] Critical point c(G+) c(G−) c(G) n+(L)
representative

1 - - - - -
2 (0,0,π,0,0,0) 2 2 1 1 ≤ n+ ≤ 4

3
(0,0,α,π,π,−α)
(0,0,α,π,π,α + π)
α ̸= 0,π,±π

2

2 1 1 1 ≤ n+ ≤ 5

3
(0,0,±π

2 ,π,π,∓
π

2 )
(0,0,±π

2 ,π,π,±
π

2 +π)
4 4 3 1 ≤ n+ ≤ 2

4
(0,π,α,0,π,−α)
(0,π,α,0,π,α + π)
α ̸= 0,π,±π

2

2 1 1 1 ≤ n+ ≤ 5

4
(0,π,±π

2 ,0,π,∓
π

2 )
(0,π,±π

2 ,0,π,±
π

2 +π)
6 3 3 3 ≤ n+ ≤ 3

4 (0,π,π,0,π,0) 2 2 1 1 ≤ n+ ≤ 4
5 (0,π,0,0,π,0) 3 1 1 2 ≤ n+ ≤ 5
6 (0,0,0,π,π,π) 2 1 1 1 ≤ n+ ≤ 5
7 (0,0,0,π,π,0) 2 1 1 1 ≤ n+ ≤ 5
8 (0, 4π

3 , 2π

3 ,0, 4π

3 , 2π

3 ) 6 1 1 5 ≤ n+ ≤ 5
Table 3 – The first column indicate the synchrony patterns extracted from Table 1; the corresponding

class of critical points is given in the second column by a representative up to the symmetries
of Aut(G6); the last column gives the number n+ of positive eigenvalues of the Jacobian at the
corresponding critical point; the remaining three columns are the data used to apply Theorem 5.1.
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CHAPTER

6
FUTURE RESEARCH

∙ One possible next step of this research is to try to obtain similar results of (JADBABAIE;
MOTEE; BARAHONA, 2004; BRONSKI; CARTY; DEVILLE, 2021) for Laplacian maps
plus a vector of non-identical natural frequencies. The idea is look for conditions on the
natural frequencies for the existence of critical points and then study their stabilities.

∙ In Theorem 3.3 we give sufficient condition for a polydiagonal invariant subspace to be a
synchrony subspace of an admissible graph. We guess that it is possible to find necessary
conditions for this.

∙ We also want to find an example of a Laplacian mapping that displays analytically a
stable chimera state. It was done numerically for Kuramoto model in (KOTWAL; JIANG;
ABRAMS, 2017).

∙ As Corollary 5.11 shows, a Laplacian mapping is gradient. We intend to study Hamiltonian
systems ẋ = J∇g, where J is the standard anti-symmetric orthogonal matrix and g is as in
Corollary 5.11. We believe that there may be a closer relation between admissible graphs
in the two context possibly given by the role of matrix J connection to two algebraic form
of vector field.
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APPENDIX

A
ALGORITHM TO LIST SYNCHRONY

SUBSPACES FOR BIDIRECTED REGULAR
NETWORKS

Here we explain our implementation of algorithm presented in (AGUIAR; DIAS, 2014),
but first we present briefly the theoretical basis for this algorithm.

Given a network graph G with n cell, by (3.2) a synchrony subspace is a subspace of Rn

invariant under all adjacency matrix. So the idea is search for polydiagonal subspaces that is
invariant under each one of adjacency matrices, and then select these ones is common for all
matrices. See (AGUIAR; DIAS, 2014, Theorem 4.2).

Now suppose that G is regular with only one matrix A. Our work is list all invariant
subspaces that satisfy equalities of the type xi = x j, so we have to look at sets of eigenvectors
and take note of equalities that they satisfy. By (AGUIAR; DIAS, 2014, Theorem 5.13) a
polydiagonal subspace is a synchrony subspace if admit a base of eigenvectors. Then we get
together the eigenvectors that satisfy the same set of equalities and if these vectors form a base
of subspace defined by this set of equalities, then we have a synchrony subspace.

If A is not symmetric, that is, G is not bidirected, perhaps we need to consider generalized
eigenvector and treat them apart getting more complexity to steps of algorithm. Few of our
examples needed this part, in these cases we did it manually. So we have implemented the
algorithm just to regular bidirected connected network graph and the unique initial data is the
symmetric adjacency matrix.

Throughout the process the code produce a list of elements having five entries: The first
one is a set of equalities of form xi = x j, the second one is the dimension of subspace defined by
these equations, the third one is the number of equations, the fourth one is a set of eigenvectors
that satisfy this equations and the last one is the dimension of subspace generated by these
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vectors. As the vector (1,1, . . . ,1) is even a eigenvector of A, once all rows of A has the same
sum, and it satisfies any set of equalities we omit this data in the code. Then if a element of
this list has the fifth entry equal to do second entry minus 1, this element indicate a synchrony
subspace.

Our code is divided into four parts:

Part 1: Computes the eigenvalues and for each them gives a set of linearly independent eigenvector
and take note the equalities satisfied by that.

Part 2: The rows of matrix MBar is the difference between rows of matrix of eigenvectors. By
(AGUIAR; DIAS, 2014, Lemma 6.1) if we want eigenvector that satisfy, for example,
x1 = x3 = x7, we need do compute the kernel of submatrix of MBar formed by difference
of rows 1, 3 and 7 of matrix of eigenvectors computed in the part 1. So for each eigenvalue,
this part computes the kernel of all submatrices of MBar and create elements with five
entries as mentioned above.

Part 3: Gets together the eigenvectors that satisfy the same set of equalities and then select the
synchrony subspaces.

Part 4: Turns the final list into a better layout.

The part 1 of code:

AdjMatrix = (* PUT HERE THE THE ADJACENCY MATRIX*);
n = Length[AdjMatrix];
valencia = Sum[AdjMatrix[[1, j]], {j, 1, n}];
eigenvalues = Complement[Union[Eigenvalues[AdjMatrix]], {valencia}]
lengtheigenvalues = Length[eigenvalues];
eigenvectors =

Table[Transpose[
NullSpace[AdjMatrix - eigenvalues[[ev]]*IdentityMatrix[n]]], {ev,
1, lengtheigenvalues}];

listaux1a = Subsets[Range[n], {2}];
sizelistaux1a = Length[listaux1a];
g1 = If[eigenvectors[[ev, #1]] == eigenvectors[[ev, #2]] ,

Subscript[x, #1] == Subscript[x, #2], Null] &;
gg1 = Apply[g1, {listaux1a[[#, 1]], listaux1a[[#, 2]]}] &;
g2 = If[eigenvectors[[ev, #1]] == eigenvectors[[ev, #2]], {#1, #2},

Null] &;
gg2 = Apply[g2, {listaux1a[[#, 1]], listaux1a[[#, 2]]}] &;
listcondition =
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Table[Complement[Array[gg2, sizelistaux1a], {Null}], {ev, 1,
lengtheigenvalues}];

Conditioninicial =
Table[Complement[Array[gg1, sizelistaux1a], {Null}], {ev, 1,

lengtheigenvalues}];
sizelistcondition =

Table[Length[listcondition[[ev]]], {ev, 1, lengtheigenvalues}] ;
g3 = listcondition[[ev, #, 1]] &;
g4 = listcondition[[ev, #, 2]] &;
list1 = Table[

Union[Complement[Array[g3, sizelistcondition[[ev]]],
Array[g4, sizelistcondition[[ev]]]],

Complement[Range[n],
Union[Array[g3, sizelistcondition[[ev]]],
Array[g4, sizelistcondition[[ev]]]]]], {ev, 1,

lengtheigenvalues}];

The part 2 of code:

M1 = Table[
eigenvectors[[ev, list1[[ev]]]], {ev, 1, lengtheigenvalues}] ;

sizelist1 = Table[Length[list1[[ev]]], {ev, 1, lengtheigenvalues}] ;
list2 = Table[

Subsets[Range[sizelist1[[ev]]], {2}], {ev, 1,
lengtheigenvalues}] ;

sizelist2 = Table[Length[list2[[ev]]], {ev, 1, lengtheigenvalues}] ;
f12 = M1[[ev, #1]] - M1[[ev, #2]] &;
f13 = Apply[f12, {list2[[ev, #1, 1];
], list2[[ev, #1, 2]]}] &;
Mbar = Table[

Simplify[Array[f13, {sizelist2[[ev]]}]], {ev, 1,
lengtheigenvalues}] ;

Table[MatrixForm[Mbar[[ev]]], {ev, 1, lengtheigenvalues}] ;
nullspacef0 = NullSpace[{Mbar[[ev, #]]}] &;
nullspacelist0 =

Table[Array[nullspacef0, sizelist2[[ev]]], {ev, 1,
lengtheigenvalues}] ;

listfinalf0 =
If[sizelist2[[ev]] ==

1, {}, {Union[
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Conditioninicial[[
ev]], {Subscript[x, list1[[ev, list2[[ev, #, 1]]]]] ==
Subscript[x, list1[[ev, list2[[ev, #, 2]]]]]}],

n - If[Length[Conditioninicial[[ev]]] == 0, 1,
Length[Reduce[

Union[Conditioninicial[[
ev]], {Subscript[x, list1[[ev, list2[[ev, #, 1]]]]] ==
Subscript[x, list1[[ev, list2[[ev, #, 2]]]]]}]]]],

Length[Union[
Conditioninicial[[
ev]], {Subscript[x, list1[[ev, list2[[ev, #, 1]]]]] ==
Subscript[x, list1[[ev, list2[[ev, #, 2]]]]]}]],

Table[Simplify[
Sum[nullspacelist0[[ev, #, j, k]]*

eigenvectors[[ev, All, k]], {k, 1,
Length[eigenvectors[[ev, 1]]]}]], {j, 1,

Length[nullspacelist0[[ev, #]]]}],
Length[eigenvectors[[ev, 1]]] - 1}] &;

listfinal0 =
Table[Array[listfinalf0, sizelist2[[ev]]], {ev, 1,

lengtheigenvalues}] ;
listfinal00 =

Table[{{Conditioninicial[[ev]], sizelist1[[ev]],
sizelistcondition[[ev]],
Table[eigenvectors[[ev, All, i]], {i, 1,

Length[eigenvectors[[ev, 1]]]}],
Length[eigenvectors[[ev, 1]]]}}, {ev, 1, lengtheigenvalues}];
Subscript[listaux, 1] =

Table[Subsets[Range[sizelist2[[ev]]], {2}], {ev, 1,
lengtheigenvalues}];

Subscript[sizelistaux, 1] =
Table[Length[Subscript[listaux, 1][[ev]]], {ev, 1,

lengtheigenvalues}];
Subscript[testRankf, 1] =

MatrixRank[Mbar[[ev, Subscript[listaux, 1][[ev, #]]]]] & ;
Subscript[testRanklist, 1] =

Table[Array[Subscript[testRankf, 1],
Subscript[sizelistaux, 1][[ev]]], {ev, 1, lengtheigenvalues}] ;

Subscript[testRanklista, 1] =
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Table[Union[
Flatten[Table[

Flatten[Position[Subscript[testRanklist, 1][[ev]], j], 1], {j,
1, Length[eigenvectors[[ev, 1]]] - 1}] 1]], {ev, 1,

lengtheigenvalues}] ;
Subscript[sizetestRanklista, 1] =

Table[Length[Subscript[testRanklista, 1][[ev]]], {ev, 1,
lengtheigenvalues}];

Subscript[nullspacef, 1] =
NullSpace[

Mbar[[ev,
Subscript[listaux, 1][[ev,
Subscript[testRanklista, 1][[ev, #]]]]]]] &;

Subscript[nullspacelist, 1] =
Table[If[Subscript[testRanklista, 1][[ev]] == {}, {},

Array[Subscript[nullspacef, 1],
Subscript[sizetestRanklista, 1][[ev]]]], {ev, 1,

lengtheigenvalues}];
Subscript[newlistcondition, 1] =

Table[If[Subscript[testRanklista, 1][[ev]] == {}, {},
Table[Union[

Conditioninicial[[
ev]], {Subscript[x,
list1[[ev,
list2[[ev,
Subscript[listaux, 1][[ev,
Subscript[testRanklista, 1][[ev, j]], 1]], 1]]]]] ==

Subscript[x,
list1[[ev,
list2[[ev,
Subscript[listaux, 1][[ev,
Subscript[testRanklista, 1][[ev, j]], 1]], 2]]]]],

Subscript[x,
list1[[ev,
list2[[ev,
Subscript[listaux, 1][[ev,
Subscript[testRanklista, 1][[ev, j]], 2]], 1]]]]] ==

Subscript[x,
list1[[ev,
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list2[[ev,
Subscript[listaux, 1][[ev,
Subscript[testRanklista, 1][[ev, j]], 2]], 2]]]]]}], {j, 1,

Subscript[sizetestRanklista, 1][[ev]]}]], {ev, 1,
lengtheigenvalues}];

Subscript[listfinalf,
1] = {Subscript[newlistcondition, 1][[ev, #]],

n - Length[Reduce[Subscript[newlistcondition, 1][[ev, #]]]],
Length[Subscript[newlistcondition, 1][[ev, #]]],
Table[Simplify[

Sum[Subscript[nullspacelist, 1][[ev, #, j, k]]*
eigenvectors[[ev, All, k]], {k, 1,
Length[eigenvectors[[ev, 1]]]}]], {j, 1,

Length[Subscript[nullspacelist, 1][[ev, #]]]}],
Length[Subscript[nullspacelist, 1][[ev, #]]]} &;

Subscript[listfinal, 1] =
Table[If[Subscript[testRanklista, 1][[ev]] == {}, {},

Array[Subscript[listfinalf, 1],
Subscript[sizetestRanklista, 1][[ev]]]], {ev, 1,

lengtheigenvalues}];
j = 2; While[

Union[Subscript[testRanklistaa, j]] != {{}} \[Or] j <= Max[sizelist2],
{Subscript[listauxha, j] =

If[j == 2,
Table[If[Subscript[testRanklista, 1][[ev]] == {}, {},

Table[Subscript[listaux, 1][[ev,
Subscript[testRanklista, 1][[ev, l]]]], {l, 1,
Length[Subscript[testRanklista, 1][[ev]]]}]], {ev, 1,

lengtheigenvalues}],
Table[If[Subscript[testRanklistaa, j - 1][[ev]] == {}, {},

Table[Subscript[listauxa, j - 1][[ev,
Subscript[testRanklistaa, j - 1][[ev, l]]]], {l, 1,
Length[Subscript[testRanklistaa, j - 1][[ev]]]}]], {ev, 1,

lengtheigenvalues}]],
Subscript[hfa, j][l_] =
Union[Subscript[listauxha, j][[ev, l]], {#}] &,

Subscript[listauxa, j] =
Table[Union[

Cases[Flatten[
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Table[Array[Subscript[hfa, j][l], sizelist2[[ev]]], {l, 1,
Length[Subscript[listauxha, j][[ev]]]}], 1],

Table[_, j + 1]]], {ev, 1, lengtheigenvalues}],
Subscript[sizelistauxa, j] =
Table[Length[Subscript[listauxa, j][[ev]]], {ev, 1,

lengtheigenvalues}],
Subscript[testRankfa, j] =
MatrixRank[Mbar[[ev, Subscript[listauxa, j][[ev, #]]]]] &,

Subscript[testRanklista, j] =
Table[Array[Subscript[testRankfa, j],

Subscript[sizelistauxa, j][[ev]]], {ev, 1, lengtheigenvalues}],
Subscript[testRanklistaa, j] =
Table[Union[

Flatten[Table[
Flatten[Position[Subscript[testRanklista, j][[ev]], l],
1], {l, 1, Length[eigenvectors[[ev, 1]]] - 1}] 1]], {ev, 1,

lengtheigenvalues}] ,
Subscript[sizetestRanklista, j] =
Table[Length[Subscript[testRanklistaa, j][[ev]]], {ev, 1,

lengtheigenvalues}] ,
Subscript[nullspacefa, j] =
NullSpace[

Mbar[[ev,
Subscript[listauxa, j][[ev,
Subscript[testRanklistaa, j][[ev, #]]]]]]] &,

Subscript[nullspacelista, j] =
Table[If[Subscript[sizetestRanklista, j][[ev]] == 0, {},

Array[Subscript[nullspacefa, j],
Subscript[sizetestRanklista, j][[ev]]]], {ev, 1,

lengtheigenvalues}] ,
Subscript[newlistconditiona, j] =
Table[If[Subscript[sizetestRanklista, j][[ev]] == 0, {},

Table[Flatten[{Union[

Conditioninicial[[
ev]], {Table[
Subscript[x,
list1[[ev,
list2[[ev,
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Subscript[listauxa, j][[ev,
Subscript[testRanklistaa, j][[ev, l]], k]], 1]]]]] ==

Subscript[x,
list1[[ev,
list2[[ev,
Subscript[listauxa, j][[ev,
Subscript[testRanklistaa, j][[ev, l]], k]], 2]]]]], {k,

1, j + 1}]}]}], {l, 1,
Subscript[sizetestRanklista, j][[ev]]}]], {ev, 1,

lengtheigenvalues}],
Subscript[listfinalfa,
j] = {Subscript[newlistconditiona, j][[ev, #]],

n - Length[Reduce[Subscript[newlistconditiona, j][[ev, #]]]],
Length[Subscript[newlistconditiona, j][[ev, #]]],

Table[Simplify[
Sum[Subscript[nullspacelista, j][[ev, #, l, k]]*

eigenvectors[[ev, All, k]], {k, 1,
Length[eigenvectors[[ev, 1]]]}]], {l, 1,

Length[Subscript[nullspacelista, j][[ev, #]]]}],
Length[Subscript[nullspacelista, j][[ev, #]]]} &,
Subscript[listfinala, j] =

Table[If[Subscript[sizetestRanklista, j][[ev]] == 0, {},
Array[Subscript[listfinalfa, j],
Subscript[sizetestRanklista, j][[ev]]]], {ev, 1,

lengtheigenvalues}]}; j++];
AAA = Union[

Flatten[Table[Flatten[Subscript[listfinala, l], 1], {l, 2, j - 1}],
1]];
listFinal1 =

Complement[
Union[Flatten[Subscript[listfinal, 1], 1], AAA,
Flatten[listfinal0, 1], Flatten[listfinal00, 1]], {{}}]
listvariables = Table[Subscript[x, l], {l, 1, n}];

listallequalities =
Flatten[Table[

Subscript[x, l] == Subscript[x, k], {l, 1, n - 1}, {k, l + 1, n}],
1];

sizelistallequalities = Length[listallequalities];
funccompletingequations[l_] =
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If[Reduce[listFinal1[[l, 1]], listvariables] ==
Reduce[Union[listFinal1[[l, 1]], {listallequalities[[#]]}],
listvariables], listallequalities[[#]], Null, Null] &;

completingequations =
Table[Complement[

Array[funccompletingequations[l],
sizelistallequalities], {Null}], {l, 1, Length[listFinal1]}];

list2f = {completingequations[[#]], listFinal1[[#, 2]],
Length[completingequations[[#]]], listFinal1[[#, 4]],

listFinal1[[#, 5]]} &;
listFinal2 = SortBy[Union[Array[list2f, Length[listFinal1]]], First];
sizelistFinal1 = Length[listFinal1]
sizelistFinal2 = Length[listFinal2]
balancedrelationinicial =

Union[Flatten[
Table[Cases[listFinal2, {_, l, _, _, l - 1}], {l, 2, n}], 1]] ;

AAAA = Complement[listFinal2, balancedrelationinicial];
M = Max[Table[AAAA[[l, 3]], {l, 1, Length[AAAA]}]];

The part 3 of code:

jj = -1; While[
jj < M - 1, {Subscript[ll, jj] =

If[jj == -1, {}, Subscript[newlist, jj - 1]],
Subscript[sizell, jj] = Length[Subscript[ll, jj]],
Subscript[complement, jj][

l_] = {Complement[
Subscript[ll, jj][[l, 1]], {Subscript[ll, jj][[l, 1, #]]}],

n - Length[
Reduce[Complement[

Subscript[ll, jj][[l, 1]], {Subscript[ll, jj][[l, 1, #]]}]]],
Subscript[ll, jj][[l, 3]] - 1, Subscript[ll, jj][[l, 4]],

Subscript[ll, jj][[l, 5]]} &,
Subscript[ll1, jj] =
Union[Flatten[

Table[Array[Subscript[complement, jj][i], M - jj], {i, 1,
Subscript[sizell, jj]}], 1],

Cases[listFinal2, {_, _, M - jj - 1, _, _}]],
Subscript[ll2, jj] =
Union[Flatten[
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Union[Table[
Cases[listFinal2, {_, _, l, _, _}], {l,
Range[M - jj - 1, sizelistallequalities]}]], 1]],

Subscript[sizell1, jj] = Length[Subscript[ll1, jj]],
Subscript[sizell2, jj] = Length[Subscript[ll2, jj]],
Subscript[ffg, jj][l_] =
If[Reduce[Subscript[ll2, jj][[#, 1]], listvariables] ==

Reduce[Union[Subscript[ll2, jj][[#, 1]],
Subscript[ll1, jj][[l, 1]]], listvariables], #, Null,

Null] &,
Subscript[g2a, jj] =
Table[Complement[

Array[Subscript[ffg, jj][l], Subscript[sizell2,
jj]], {Null}], {l, 1, Subscript[sizell1, jj]}],

Subscript[aaf, jj] =
Union[Flatten[

Table[Subscript[ll2, jj][[Subscript[g2a, jj][[#, i]], 4]], {i,
1, Length[Subscript[g2a, jj][[#]]]}], 1]] &,

Subscript[aa, jj] =
Array[Subscript[aaf, jj], Subscript[sizell1, jj]],

Subscript[newlistf,
jj] = {Subscript[ll1, jj][[#, 1]],

n - If[jj == M - 2, 1,
Length[Reduce[Subscript[ll1, jj][[#, 1]]]]], M - jj - 1,

Subscript[aa, jj][[#]], MatrixRank[Subscript[aa, jj][[#]]]} &,
Subscript[newlist, jj] =
Union[Array[Subscript[newlistf, jj], Subscript[sizell1, jj]]],

Print[Length[Subscript[newlist, jj]]]}; jj++];
newlistT =

Union[Flatten[Table[Subscript[newlist, l], {l, -1, M - 2}], 1]];
balancedrelationfinal =

Union[Flatten[
Table[Cases[newlistT, {_, l, _, _, l - 1}], {l, 2, n}], 1]] ;

balancedrelationA =
Union[balancedrelationinicial, balancedrelationfinal];

sizebalancedrelationA = Length[balancedrelationA];

The part 4 of code:

funccompletingequations2[l_] =



85

If[Reduce[balancedrelationA[[l, 1]], listvariables] ==
Reduce[Union[

balancedrelationA[[l, 1]], {listallequalities[[#]]}],
listvariables], listallequalities[[#]], Null, Null] &;

completingequations2 =
Table[Complement[

Array[funccompletingequations2[l],
sizelistallequalities], {Null}], {l, 1,

Length[balancedrelationA]}];
list2f2 = {completingequations2[[#]], balancedrelationA[[#, 2]],
Length[completingequations2[[#]]], balancedrelationA[[#, 4]],

balancedrelationA[[#, 5]]} &;
list22 = SortBy[Array[list2f2, Length[balancedrelationA]], First];
BB = Union[

Flatten[Table[Cases[list22, {_, i, _, _, _}], {i, 2, n - 2}], 1]];
BB1 = Table[BB[[i, 1]], {i, 1, Length[BB]}];
BB2 = Table[

Table[{BB1[[k, i, 1]], BB1[[k, i, 2]]}, {i, 1,
Length[BB1[[k]]]}], {k, 1, Length[BB1]}];

rBB1 = Table[Reduce[BB1[[k]], listvariables], {k, 1, Length[BB1]}];
f2[k_] = rBB1[[k, #, 2]] &;
h2 = Table[

Union[Array[f2[k], Length[rBB1[[k]]]]], {k, 1, Length[BB1]}];
V = Cases[finallistbalanced, {_, n - 1, _, _, _}];
newBB2 =

Union[Table[{{V[[k, 1]][[1]][[1]], V[[k, 1]][[1]][[2]]}}, {k, 1,
Length[V]}],

Table[Table[
Union[Flatten[Cases[BB2[[k]], {h2[[k, i]], _}], 1]], {i, 1,
Length[h2[[k]]]}], {k, 1, Length[BB1]}]];

S[k_, l_] = newBB2[[k, l, #]] &;
newBB3 =

Table[ Table[
Array[S[k, l], {Length[newBB2[[k, l]]]}, 1, Equal], {l, 1,
Length[newBB2[[k]]]}], {k, 1, Length[newBB2]}];

MatrixForm[SortBy[newBB3, Length]]
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