• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Dissertação de Mestrado
DOI
Documento
Autor
Nome completo
Monica Furkotter
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Carlos, 1983
Orientador
Banca examinadora
Rodrigues, Hildebrando Munhoz (Presidente)
Neves, Aloisio Jose Freiria
Oliveira, Jose Carlos Fernandes de
Título em português
SOLUÇÕES PERIÓDICAS DE EQUAÇÕES DE SEGUNDA ORDEM NÃO LINEARES E FORÇADAS
Palavras-chave em português
Não disponível
Resumo em português
Não disponível
Título em inglês
Not available
Palavras-chave em inglês
Not availble
Resumo em inglês
The author is concerned with the equation u +u = g(u, p) + μf(t), where p, μ are small parameters, f is an even, continuous π - periodic function, g is an odd smooth function of u, such that g(u,p) = O ( Ι pu Ι+ Ι u3 Ι), as p and u go to zero. The main results are that, under certain conditions, the small 2π - periodic solutions maintain some symmetry properties of the forcing function f(t), when μ≠O. Some other interesting results describe the variation of the number of such solutions as p and μ vary in à small neighbourhood of the origin. The author uses the approach of Alternative Problems.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2019-11-13
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
CeTI-SC/STI
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2022. Todos os direitos reservados.