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RESUMO

MARTINS, E. B. C. Teoria de obstrução, classes características e aplicações.
2022. 264 p. Dissertação (Mestrado em Ciências – Matemática) – Instituto de Ciências
Matemáticas e de Computação, Universidade de São Paulo, São Carlos – SP, 2022.

Este trabalho tem como objetivo estudar e demonstrar alguns dos principais resultados
da Teoria de Obstrução, assim como apresentar algumas possíveis aplicações. A demons-
tração de tais resultados depende do desenvolvimento de diversos pré-requisitos ao longo
do caminho, como as noções de homotopia livre e pontuada, H-grupos e H-cogrupos, gru-
pos de homotopia e fibrados localmente triviais. Esse desenvolvimento culmina com a
demonstração de que o problema de estender mapas e seções ao longo dos esqueletos de
um CW-complexo é controlado por um invariante cohomológico. Esse resultado é então
usado para construir as classes características associadas a um fibrado vetorial, e também
para definir a obstrução local de Euler em um ponto de um espaço singular.

Palavras-chave: Teoria de Obstrução, classes características, homotopia, fibrados, obs-
trução local de Euler.





ABSTRACT

MARTINS, E. B. C. Obstruction theory, characteristic classes and applications.
2022. 264 p. Dissertação (Mestrado em Ciências – Matemática) – Instituto de Ciências
Matemáticas e de Computação, Universidade de São Paulo, São Carlos – SP, 2022.

The goal of this work is to study and prove some of the main results of Obstruction Theory,
as well as to present some possible applications. The proof of these results depends on the
development of several prerequisites along the way, like the notions of free and pointed
homotopy, H-groups and H-cogroups, homotopy groups and locally trivial bundles. This
development culminates in the proof that the problem of extending maps and sections
over the skeletons of a CW-complex is controlled by a cohomological invariant. This result
is then used to construct the characteristic classes associated with a vector bundle, and
also to define the local Euler obstruction of a point in a singular space.

Keywords: Obstruction Theory, characteristic classes, homotopy, bundles, local Euler
obstruction.





LIST OF FIGURES

Figure 1 – The sphere is the reduced suspension of the circle. . . . . . . . . . . 97
Figure 2 – The reduced cylinder over the circle. . . . . . . . . . . . . . . . . . 103
Figure 3 – Construction of the reduced cone over the circle. . . . . . . . . . . . 118
Figure 4 – The disk as a quotient of the cylinder I. . . . . . . . . . . . . . . . 121
Figure 5 – The disk as a quotient of the cylinder II. . . . . . . . . . . . . . . . 123
Figure 6 – The H-comultiplication map of the circle. . . . . . . . . . . . . . . . 138
Figure 7 – Line segments on the Möbius strip. . . . . . . . . . . . . . . . . . . 184
Figure 8 – Topological circles on the Möbius strip. . . . . . . . . . . . . . . . . 184





LIST OF SYMBOLS

C(𝑎, 𝑏) — Set of morphisms from an object 𝑎 to an object 𝑏 in the category C

C(𝑎, 𝑔) : C(𝑎, 𝑥)→ C(𝑎, 𝑐) — Pushforward function along morphism 𝑔 : 𝑏→ 𝑐

C(𝑓, 𝑐) : C(𝑏, 𝑐)→ C(𝑎, 𝑐) — Pullback function along morphism 𝑓 : 𝑎→ 𝑏

𝑎× 𝑏 — Categorical product of the objects 𝑎 and 𝑏

(𝑓, 𝑔) : 𝑎→ 𝑏× 𝑐 — Morphism induced by 𝑓 : 𝑎→ 𝑏 and 𝑔 : 𝑎→ 𝑐

𝑓 × 𝑔 : 𝑎× 𝑏→ 𝑐× 𝑑 — Categorical product of morphisms 𝑓 : 𝑎→ 𝑐 and 𝑔 : 𝑏→ 𝑑

𝑎 ⊔ 𝑏 — Categorical coproduct of the objects 𝑎 and 𝑏

⟨𝑓, 𝑔⟩ : 𝑎 ⊔ 𝑏→ 𝑐 — Morphism induced by 𝑓 : 𝑎→ 𝑐 and 𝑔 : 𝑏→ 𝑐

𝑓 ⊔ 𝑔 : 𝑎 ⊔ 𝑏→ 𝑐 ⊔ 𝑑 — Categorical coproduct of morphisms 𝑓 : 𝑎→ 𝑐 and 𝑔 : 𝑏→ 𝑑

𝜃 : 𝐹 ⇒ 𝐺 — Natural transformation between functors 𝐹, 𝐺 : C→ D

Top — Category of spaces and maps

HoTop — Homotopy category

Top* — Category of pointed spaces and pointed maps

HoTop* — Pointed homotopy category

Grp — Category of groups and group homomorphisms

Ab — Category of abelian groups and group homomorphisms

Map(𝑋,𝑌 ) — Space of maps from 𝑋 to 𝑌 with the compact-open topology

Map*(𝑋,𝑌 ) — Space of pointed maps from (𝑋, 𝑥0) to (𝑌, 𝑦0) with the compact-open
topology

[𝑋,𝑌 ] — Set of homotopy classes of maps 𝑋 → 𝑌

𝑓 ≃ 𝑔 — The maps 𝑓 and 𝑔 are homotopic

[𝑋,𝑌 ]* — Set of pointed homotopy classes of pointed maps (𝑋, 𝑥0)→ (𝑌, 𝑦0)

𝑓 ≃* 𝑔 — The pointed maps 𝑓 and 𝑔 are pointed homotopic

𝐶𝑋 — Cone (resp. reduced cone) over a space 𝑋 (resp. a pointed space (𝑋, 𝑥0))

Σ𝑋 — Reduced suspension of a pointed space (𝑋, 𝑥0)



Ω𝑋 — Loop space of pointed space (𝑋, 𝑥0)

𝑋 o 𝐼 — Reduced cylinder over a pointed space (𝑋, 𝑥0)

𝑋 ∨ 𝑌 — Wedge sum of pointed spaces (𝑋, 𝑥0) and (𝑌, 𝑦0)

𝑋 ∧ 𝑌 — Smash product of pointed spaces (𝑋, 𝑥0) and (𝑌, 𝑦0)

𝜆𝑓 : 𝑋 → Map(𝑌, 𝑍) — Exponential adjoint of a map 𝑓 : 𝑋 × 𝑌 → 𝑍

𝜆*𝑓 : 𝑋 → Map*(𝑌, 𝑍) — Pointed exponential adjoint of a pointed map 𝑓 : (𝑋 ∧ 𝑌, *)→
(𝑍, 𝑧0)

𝑋 � 𝑌 — Some kind of inclusion or injection

𝑋 � 𝑌 — Some kind of quotient or surjection

𝜋0(𝑋) — Set of path-components of a space 𝑋

𝜋0(𝑋, 𝑥0) — Pointed set of path-components of space 𝑋 with distinguished element [𝑥0]

𝜋𝑛(𝑋, 𝑥0) — n-th homotopy group of pointed space (𝑋, 𝑥0)

𝑡𝛾 : 𝜋𝑛(𝑋, 𝑥0)→ 𝜋𝑛(𝑋, 𝑥1) — Transport map induced by path 𝛾 : 𝐼 → 𝑋 from 𝑥0 to 𝑥1

ct𝑋,𝑦 : 𝑋 → 𝑌 — Map of type 𝑋 → 𝑌 which is constant and equal to 𝑦 ∈ 𝑌 (sometimes
the domain 𝑋 is omitted)



CONTENTS

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
About the text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1 TOPOLOGICAL PRELIMINARIES . . . . . . . . . . . . . . . . 25
1.1 Spaces of maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.1.1 Convenient consequences . . . . . . . . . . . . . . . . . . . . . . . 34
1.2 CW-complexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
1.2.1 Some results on products . . . . . . . . . . . . . . . . . . . . . . . 49

2 BASIC NOTIONS OF HOMOTOPY THEORY . . . . . . . . . 55
2.1 Different notions of homotopy . . . . . . . . . . . . . . . . . . . . 55
2.2 The homotopy category . . . . . . . . . . . . . . . . . . . . . . . . 60
2.3 Contractions, null homotopies and extensions . . . . . . . . . . . 65

3 POINTED SPACES . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.1 The category of pointed spaces . . . . . . . . . . . . . . . . . . . 73
3.2 The return of the exponential adjunction . . . . . . . . . . . . . . 77
3.3 More on the smash product . . . . . . . . . . . . . . . . . . . . . 87
3.4 Reduced suspensions and loop spaces . . . . . . . . . . . . . . . . 91

4 POINTED HOMOTOPY . . . . . . . . . . . . . . . . . . . . . . 101
4.1 Different notions of pointed homotopy . . . . . . . . . . . . . . . 101
4.2 The pointed homotopy category . . . . . . . . . . . . . . . . . . . 107
4.3 Pointed contractions and pointed null homotopies . . . . . . . . 117

5 HOMOTOPY GROUPS . . . . . . . . . . . . . . . . . . . . . . . 125
5.1 H-cogroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
5.2 Homotopy groups . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
5.3 H-groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
5.4 Commutativity results . . . . . . . . . . . . . . . . . . . . . . . . . 152
5.5 Change of basepoint . . . . . . . . . . . . . . . . . . . . . . . . . . 160

6 LOCALLY TRIVIAL BUNDLES . . . . . . . . . . . . . . . . . . 167
6.1 First definitions and examples . . . . . . . . . . . . . . . . . . . . 168
6.1.1 Bundles from group actions . . . . . . . . . . . . . . . . . . . . . . 169



6.2 Feldbau’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
6.3 Lifting properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
6.4 A long exact sequence . . . . . . . . . . . . . . . . . . . . . . . . . 198
6.4.1 Some computations . . . . . . . . . . . . . . . . . . . . . . . . . . 210

7 OBSTRUCTION THEORY . . . . . . . . . . . . . . . . . . . . . 217
7.1 Extension-lifting problems . . . . . . . . . . . . . . . . . . . . . . . 217
7.2 Obstruction Theory for maps . . . . . . . . . . . . . . . . . . . . . 220
7.2.1 The obstruction cocycle . . . . . . . . . . . . . . . . . . . . . . . . 224
7.2.2 The difference cochain . . . . . . . . . . . . . . . . . . . . . . . . 227
7.2.3 The main extension result . . . . . . . . . . . . . . . . . . . . . . . 228
7.3 Obstruction Theory for sections . . . . . . . . . . . . . . . . . . . 231

8 SOME APPLICATIONS . . . . . . . . . . . . . . . . . . . . . . 235
8.1 Characteristic classes . . . . . . . . . . . . . . . . . . . . . . . . . 235
8.2 Local Euler obstruction . . . . . . . . . . . . . . . . . . . . . . . . 237

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

APPENDIX A GROUP AND COGROUP OBJECTS . . . . . . . 247
A.1 Definitions and examples . . . . . . . . . . . . . . . . . . . . . . . 247
A.2 Ordinary groups from (co)group objects . . . . . . . . . . . . . . 258



21

INTRODUCTION

The goal of this dissertation is to study and prove the main results of Obstruc-
tion Theory. Broadly speaking, Obstruction Theory is a subarea of Algebraic Topology
concerned with studying the following type of problem: suppose we are given space 𝐸, 𝐵
and 𝑋, a subspace 𝐴 ⊆ 𝑋, and maps 𝑓 : 𝐴 → 𝐸, 𝑔 : 𝑋 → 𝐵 and 𝑝 : 𝐸 → 𝐵 which fit
together in the commutative square below.

𝐴 𝐸

𝑋 𝐵

𝑓

𝑝

𝑔

Under what conditions can we find a diagonal map ℎ : 𝑋 → 𝐸 such that the resulting
diagram is still commutative?

𝐴 𝐸

𝑋 𝐵

𝑓

𝑝

𝑔

ℎ

If such a map ℎ exists, then the commutativity conditions imply the two following
equalities:

1. ℎ|𝐴 = 𝑓 ;

2. 𝑝 ∘ ℎ = 𝑔.

The first of these says that ℎ is an extension of 𝑓 , while the second says that ℎ is a lift of
𝑔 through 𝑝. Due to this, problems of this type are called extension-lifting problems.

There is no hope of solving a completely general extension-lifting problem, so in
this work we will restrict ourselves to two classes of problems:

1. We consider the extension-lifting problem posed by the square below.

𝐴 𝑋 × 𝑌

𝑋 𝑋

𝑓

𝑝1

id𝑋

The map 𝑓 : 𝐴 → 𝑋 × 𝑌 can simply be identified with a map 𝐴 → 𝑌 , and if
ℎ : 𝑋 → 𝑋 × 𝑌 solves the problem, then it can be identified with a map 𝑋 → 𝑌
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extending the given map 𝑓 . In other words, this particular instance of the extension-
lifting problem is concerned with extending a map from a subspace to the whole
space.

2. We consider the extension-lifting problem posed by the square below,

𝐴 𝐸

𝑋 𝑋

𝑠

𝑝

id𝑋

where 𝑝 : 𝐸 → 𝐵 is a locally trivial bundle. The commutativity condition means
that 𝑠 : 𝐴→ 𝐸 is a section of 𝑝 over 𝐴, and if there is a diagonal map 𝑆 : 𝑋 → 𝐸

solving the problem, then it will extend 𝑠 to the whole space 𝑋, and still be a
section of 𝑝. In other words, this particular extension-lifting problem is concerned
with extending partial sections of bundles to the whole space.

In both of these classes of problems, we will also assume that the pair (𝑋,𝐴) is a rel-
ative CW-complex. It is not surprising that this class of spaces is useful for Algebraic
Topology, since in some sense they carry two potential algebraic structures:

• the cells that are attached during the construction of the complex carry homo-
topical structure when mapped to other spaces;

• the way higher-dimensional cells intersect lower-dimensional cells carries (co)ho-
mological structure.

In the end, we will see that the possibility of solving these two classes of extension-
lifting problem is controlled by an algebraic invariant which involving both cohomological
and homotopical structures. This is one of the main results of Chapter 7.

Of course, in order to get there, we must develop a bunch of auxiliary theory. This
dissertation in particular is mainly concerned with developing the homotopical structure
necessary to understand the main results of Obstruction Theory. We start from the most
basic definitions of Homotopy Theory, and slowly develop more concepts until we are able
to define the homotopy groups, and also obtain some computational tools for studying
them.

In the end, after studying the obstruction-theoretic results, we briefly present two
possible applications of these ideas: one of them is a construction of the infamous char-
acteristic classes of vector bundles, and the other is the definition of the local Euler
obstruction at a point of a singular space, which is in some sense connected to the theory
of characteristic classes too, although in the substantially different context of singular
spaces.
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About the text

The development of ideas in the text is more or less linear, with each chapter
building up on the previous ones. It has a somewhat categorical flavor to it, with a fre-
quent use of categorical ideas like adjoint functors, natural transformations, pullbacks and
pushouts, group and cogroup objects, and so on. This categorical approach is especially
evident when we have to construct a map of some kind. In these cases, the actual defini-
tion of the map usually comes only after some “categorical preparation” which consists
of understanding how the objects in question are built: are they products? Coproducts?
Pushouts? Pullbacks? What are the morphisms coming into or out of these objects? I do
not think this is the most succinct approach, but it does help to have a sort of “organiza-
tional principle” for constructing maps, and in a few occasions it also helps us circumvent
some silly topological problems.

This text once contained a sizeable appendix on the basics of Category Theory,
which got eventually removed due to size limitations. Nonetheless, it still contains an
appendix on group and cogroup objects, two concepts which are not always included in
introductory discussions. As for the rest of the categorical concepts used, some of them
are briefly described and discussed in the text when they are first needed, and on these
occasions we also give pointers to easily accessible references on the subject. There is also
a list of symbols which also contains some of the categorical symbols that appear more
frequently in the text.

Now we give a brief overview of each of the chapters. See the individual introduc-
tions to each of them for more detailed overviews. The first chapter is of a preliminary
nature, being devoted to the study of some properties of the category spaces, as well as
to the introduction of an important class of spaces for us: the CW-complexes. The second
chapter is where we really start our study of Homotopy Theory, we introduce the basic no-
tions, discuss the “algebraic properties” of homotopy, and prove the basic, but important,
result connecting null homotopic maps on the sphere to extensions to the disk.

The third chapter is concerned with pointed spaces. In it, we study some properties
of the category of pointed spaces and pointed maps, and introduce important construc-
tions like the wedge sum, the smash product, the reduced suspension and the loop space.
Chapter 4 then uses some of these concepts to adapt the results of unpointed homotopy
theory to the pointed case.

In chapter 5 we finally define the homotopy groups of a pointed space using the
machinery of group and cogroup objects contained in the appendix. The application of
these concepts in Homotopy Theory is in the form of H-groups and H-cogroups, and their
construction occupies a good deal of the chapter.

Chapter 6 introduces locally trivial bundles. These maps will be important for us
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for two reasons: studying their sections is one of our goals in Obstruction Theory, and
they interact nicely with homotopy, which allows us to obtain computational results for
homotopy groups. This chapter contains both results and also several examples that will
reappear later on.

In chapter 7 we finally get to Obstruction Theory. We focus mainly on the extension
problem for maps, only mentioning the analogous results for the extension problem for
sections. Nonetheless, in both cases we stress the subtleties that naturally arise, and the
possible ways in which we can deal with them. Finally, the last chapter quickly describes
some possible applications of the results of Obstruction Theory. It is more concerned with
discussing the relevant ideas, containing almost no proofs.
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CHAPTER

1
TOPOLOGICAL PRELIMINARIES

This preliminary chapter describes some topological constructions and results that
will be used throughout most of the text. The first section describes the construction of a
space of maps Map(𝑋,𝑌 ) between any two topological spaces 𝑋 and 𝑌 by equipping the
set of maps Top(𝑋,𝑌 ) with the compact-open topology. The goal is to study the categor-
ical properties of this construction, in particular its functoriality and its relation with the
cartesian product via the exponential adjunction. We then exploit this relation to prove
some internalization results and also some results concerning products of quotient maps
which will be used often. The second section then describes the inductive construction of
CW-complexes via the notion of cell attachment. The approach used here is somewhat
categorical, cell attachments are defined via pushout diagrams, and a CW-complex is de-
fined as a colimit of a sequence of subspaces where each one is obtained from the previous
one by a cell attachment.

1.1 Spaces of maps

In this section we define a topology on the set Top(𝑋,𝑌 ) of maps between two
spaces, and prove that this topology satisfies many useful properties. In particular, we
prove that there is an adjunction between mapping spaces and products. This adjunction
will be used all throughout the text, especially for the study of Homotopy Theory.

1.1.1 Definition. Given space 𝑋 and 𝑌 , the compact-open topology on the set of
maps Top(𝑋,𝑌 ) is the topology having as sub-basis the subsets of the form

𝑆(𝐶, 𝑉 ) := {𝑓 ∈ Top(𝑋,𝑌 ) | 𝑓(𝐶) ⊆ 𝑉 },

where 𝐶 ⊆ 𝑋 is a compact subspace and 𝑉 ⊆ 𝑌 is an open subset. Whenever we consider
this topology on the set Top(𝑋,𝑌 ) we, denote the resulting space by Map(𝑋,𝑌 ).
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Intuitively, two points of Map(𝑋,𝑌 ), that is, two maps 𝑓, 𝑔 : 𝑋 → 𝑌 are closer
the more their values are closer along compact subspaces of the domain. This topology
shows up under different names in other places. For example, if 𝑌 is a metric space,
then the compact-open topology on Map(𝑋,𝑌 ) is usually called the topology of uniform
convergence on compact subspaces, because in this case a sequence (𝑓𝑛 : 𝑋 → 𝑌 )𝑛∈N

converges to a map 𝑓 if and only if, for every compact subspace 𝐶 ⊆ 𝑋, the sequence of
restrictions (𝑓𝑛|𝐶)𝑛∈N converges uniformly to 𝑓 |𝐶 .

The compact-open topology is certainly not the only topology we can define on the
set Top(𝑋,𝑌 ). For example, we could also define a topology by considering the sub-basic
sets defined as

𝑆({𝑥}, 𝑉 ) := {𝑓 : 𝑋 → 𝑌 | 𝑓(𝑥) ∈ 𝑉 },

where 𝑥 is any point of 𝑋, and 𝑉 is any open subset of 𝑌 . It turns out that, with this
topology, convergence of a sequence of maps (𝑓𝑛)𝑛∈N is the same as pointwise convergence.
At least in the context of metric spaces, this already tells us that this topology is not as
useful as the compact-open topology, since the notion of uniform convergence is far more
useful than pointwise convergence.

But how do we judge the usefulness of the compact-open topology on our purely
topological context? Taking into account the categorical approach we are taking in this
text, the usefulness of a certain construction is related to its categorical properties, like
the existence of maps (morphisms), functors and adjunctions relating this construction
to others. Thus, we devote the rest of the section to the study of the main categorical
properties satisfies by the compact-open topology.

The first collection of maps we can define are pushforwards and pullbacks. Recall
that, since Top is a locally small category, given spaces 𝑋, 𝑌 and 𝑍, and maps 𝑓 : 𝑋 → 𝑌

and 𝑔 : 𝑌 → 𝑍, we have the corresponding pushforward along 𝑔 function

Top(𝑋, 𝑔) : Top(𝑋,𝑌 )→ Top(𝑋,𝑍),

and also the corresponding pullback along 𝑓 function

Top(𝑔, 𝑍) : Top(𝑌, 𝑍)→ Top(𝑋,𝑍).

The next results show that using the compact-open topology we can “topologize”
these constructions.

1.1.2 Proposition. Let 𝑋, 𝑌 and 𝑍 be spaces.

1. If 𝑔 : 𝑌 → 𝑍 is a map, then the pushforward along 𝑔

Top(𝑋, 𝑔) : Map(𝑋,𝑌 )→ Map(𝑋,𝑍)

defines a continuous function.
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2. If 𝑓 : 𝑋 → 𝑌 is a map, then the pullback along 𝑓

Top(𝑓, 𝑍) : Map(𝑌, 𝑍)→ Map(𝑋,𝑍)

defines a continuous function.

Proof. 1. Given a sub-basic open set 𝑆(𝐶, 𝑉 ) ⊆ Map(𝑋,𝑍), a straightforward argument
shows that Map(𝑋, 𝑔)−1(𝑆(𝐶, 𝑉 )) = 𝑆(𝐶, 𝑔−1(𝑉 )), therefore Map(𝑋, 𝑓)−1(𝑆(𝐶, 𝑉 )) is an
open subset of Map(𝑋,𝑌 ).

2. Given a sub-basic open set 𝑆(𝐶, 𝑉 ) ⊆ Map(𝑋,𝑍), another straightforward ar-
gument shows that Map(𝑓, 𝑍)−1(𝑆(𝐶, 𝑉 )) = 𝑆(𝑓(𝐶), 𝑉 ), therefore Map(𝑓, 𝑍)−1(𝑆(𝐶, 𝑉 ))
is an open subset of Map(𝑌, 𝑍). �

From now on, whenever we want to regard the pushforward Top(𝑋, 𝑔) as a map,
and not just a mere function, we will use the notation Map(𝑋, 𝑔). Similarly, the pullback
map will be denoted by Map(𝑔, 𝑍).

Using the pushforward map we can define a functor Map(𝑋,−) : Top→ Top which
sends a space 𝑌 to the space of maps Map(𝑋,𝑌 ), and which sends a map 𝑔 : 𝑌 → 𝑍

to the induced pushforward map Map(𝑋, 𝑔) : Map(𝑋,𝑌 ) → Map(𝑋,𝑍). Similarly, we
also have the pullback functor Map(−, 𝑍) : Topop → Top which sends a space 𝑋 to
the space of maps Map(𝑋,𝑍), and which sends a map 𝑓 : 𝑋 → 𝑌 to the induced
pullback map Map(𝑓, 𝑍) : Map(𝑌, 𝑍) → Map(𝑋,𝑍). It is interesting to remark that
these functors “upgrade” the usual representable functors Top(𝑋,−) : Top → Top and
Top(−, 𝑍) : Topop → Top to the category of spaces. More precisely, if 𝑈 : Top → Set
denotes the forgetful functor sending a space to its underlying set, then we have the
commutative diagrams of functors below.

Top Top

Set

Map(𝑋,−)

Top(𝑋,−)
𝑈

Topop Top

Set

Map(−,𝑍)

Top(−,𝑍)
𝑈

Our next goal is to show that the functors − × 𝑌 and Map(𝑌,−) are adjoint to
one another under some topological conditions on 𝑌 .

Recall that a pair of opposite functors 𝐹 : C→ D and 𝐺 : D→ C, we say that 𝐹
is left adjoint to 𝐺, or that 𝐺 is right adjoint to 𝐹 , if there exists

• a natural transformation 𝜂 : idC ⇒ 𝐺 ∘ 𝐹 called the unit of the adjunction,

• a natural transformation 𝜀 : 𝐹 ∘𝐺⇒ idD called the counit of the adjunction,
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which satisfy the following commutativity conditions, called the triangle identities:

𝐹 𝐹

𝐹 ∘𝐺 ∘ 𝐹

id𝐹

𝐹𝜂 𝜀𝐹

𝐺 𝐺

𝐺 ∘ 𝐹 ∘𝐺

id𝐺

𝜂𝐺 𝐺𝜀
(1.1)

In the two diagrams above, the natural transformations 𝐹𝜂, 𝜀𝐹 , 𝜂𝐺 and 𝐺𝜀 are
called whiskerings. The component of the whiskering 𝐹𝜂 at an object 𝑐 ∈ C, for example,
is defined as

(𝐹𝜂)𝑐 := 𝐹 (𝜂𝑐) : 𝐹 (𝑐)→ 𝐹 (𝐺(𝐹 (𝑐))),

while the component at 𝑐 of 𝜀𝐹 is defined as

(𝜀𝐹 )𝑐 := 𝜀𝐹 (𝑐) : 𝐹 (𝐺(𝐹 (𝑐)))→ 𝐹 (𝑐).

The components of 𝜂𝐺 and 𝐺𝜀 at an object 𝑑 ∈ D are defined analogously. The commu-
tativity of the two triangles above is then equivalent to saying that, for any objects 𝑐 ∈ C
and 𝑑 ∈ D, we have the equations:⎧⎪⎨⎪⎩𝜀𝐹 (𝑐) ∘ 𝐹 (𝜂𝑐) = id𝐹 (𝑐);

𝐺(𝜀𝑑) ∘ 𝜂𝐺(𝑑) = id𝐺(𝑑).
(1.2)

We start by defining the unit transformations of the adjunction we would like to
obtain.

1.1.3 Lemma. Let 𝑌 be any topological spaces.

1. For any other space 𝑋, the function

𝜄𝑋 : 𝑋 → Map(𝑌,𝑋 × 𝑌 )

given by the formula
𝜄𝑋(𝑥) := (ct𝑌,𝑥, id𝑌 ) ∀𝑥 ∈ 𝑋

is continuous.

2. The collection of maps

{𝜄𝑋 : 𝑋 → Map(𝑌,𝑋 × 𝑌 )}𝑋∈Top

defines a natural transformation of functors

𝜄 : idTop ⇒ Map(𝑌,−× 𝑌 ).
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Proof. 1. Let 𝑉 ⊆ 𝑋 × 𝑌 be an open subset, 𝐶 ⊆ 𝑌 a compact subspace, and consider
the sub-basic open subset 𝑆(𝐶, 𝑉 ) ⊆ Map(𝑌,𝑋 × 𝑌 ). If 𝑥 ∈ 𝜄−1

𝑋 (𝑆(𝐶, 𝑉 )), then 𝜄𝑋(𝑥) =
(ct𝑌,𝑥, id𝑌 ) ∈ 𝑆(𝐶, 𝑉 ), which means that (ct𝑌,𝑥, id𝑌 )(𝐶) ⊆ 𝑉 . This means that the relation
(𝑥, 𝑦) ∈ 𝑉 holds for every 𝑦 ∈ 𝐶, or in other words, we have the inclusion {𝑥} × 𝐶 ⊆ 𝑉 .
Since 𝐶 is compact, it follows from the Tube Lemma that there exists a neighborhood 𝑈
of 𝑥 such that 𝑈 × 𝐶 ⊆ 𝑉 , so, for any 𝑥′ ∈ 𝑈 , the relation {𝑥′} × 𝐶 = [𝜄𝑋(𝑥′)](𝐶) ⊆ 𝑉

holds, therefore 𝑈 ⊆ 𝜄−1
𝑋 (𝑆(𝐶, 𝑉 )); proving the continuity of 𝜄𝑋 .

2. Let 𝐴 and 𝐵 be spaces, and consider a map 𝑓 : 𝐴 → 𝐵. We need to show the
commutativity of the square below,

𝐴 𝐵

Map(𝑌,𝐴× 𝑌 ) Map(𝑌,𝐵 × 𝑌 )

𝑓

𝜄𝐴 𝜄𝐵

Map(𝑌,𝑓×id𝑌 )

or in other words, that for any 𝑎 ∈ 𝐴 we have the equality

(𝑓 × id𝑌 ) ∘ (ct𝑌,𝑎, id𝑌 ) = (ct𝑌,𝑓(𝑎), id𝑌 ). (1.3)

This can be shown pretty easily directly. For any 𝑦 ∈ 𝑌 , unpacking the definitions
we have

((𝑓 × id𝑌 ) ∘ (ct𝑌,𝑎, id𝑌 ))(𝑦) = (𝑓 × id𝑌 )(𝑎, 𝑦)

= (𝑓(𝑎), 𝑦)

= (ct𝑌,𝑓(𝑎), id𝑌 )(𝑦).

We give a second proof showing how this equality also follows from the universal properties
defining the maps involved. Consider the canonical projections below

𝜋1 : 𝐴× 𝑌 → 𝐴,

𝜋2 : 𝐴× 𝑌 → 𝑌,

𝜋1 : 𝐵 × 𝑌 → 𝐵,

𝜋′
2 : 𝐵 × 𝑌 → 𝑌.

Since (𝑓 × id𝑌 ) ∘ (ct𝑌,𝑎, id𝑌 ) is a map into the product 𝐵×𝑌 , it is completely determined
by the projections 𝜋′

1 and 𝜋′
2, that is, we can prove the equality (1.3) by showing that

both sides coincide when composed with 𝜋′
1 and 𝜋′

2.

For the first projection, if we recall that 𝑓 × id𝑌 satisfies the equations

𝜋′
1 ∘ (𝑓 × id𝑌 ) = 𝑓 ∘ 𝜋1 and 𝜋′

2 ∘ (𝑓 × 𝑖𝑑𝑌 ) = id𝑌 ∘ 𝜋2 = 𝜋2,
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then we have the chain of equalities

𝜋′
1 ∘ (𝑓 × id𝑌 ) ∘ (ct𝑌,𝑎, id𝑌 ) = 𝑓 ∘ 𝜋1 ∘ (ct𝑌,𝑎)

= 𝑓 ∘ ct𝑌,𝑎
= ct𝑌,𝑓(𝑎).

Similarly, for the second projection we have the equalities

𝜋′
2 ∘ (𝑓 × id𝑌 ) ∘ (ct𝑌,𝑎, id𝑌 ) = 𝜋2 ∘ (ct𝑌,𝑎, id𝑌 )

= id𝑌 .

This ends the proof because by definition the induced map (ct𝑌,𝑓(𝑎), id𝑌 ) also satisfies the
equalities

𝜋′
1 ∘ (ct𝑌,𝑓(𝑎), id𝑌 ) = ct𝑌,𝑓(𝑎) and 𝜋2 ∘ (ct𝑌,𝑓(𝑎), id𝑌 ) = id𝑌 . �

Now we turn to the collection of maps that defines the counit of our soon-to-be
adjunction. It is at this point that we need to make additional assumptions on the spaces
involved.

1.1.4 Lemma. Let 𝑌 be a locally compact Hausdorff space.

1. For any other space 𝑍, the evaluation function

ev𝑌,𝑍 : Map(𝑌, 𝑍)× 𝑌 → 𝑍

defined by the formula

ev𝑌,𝑍(𝑓, 𝑧) := 𝑓(𝑧) ∀ (𝑓, 𝑧) ∈ Map(𝑌, 𝑍)× 𝑍

is continuous.

2. The collection of maps

{ev𝑌,𝑍 : Map(𝑌, 𝑍)× 𝑌 → 𝑍}𝑍∈Top

defines a natural transformation of functors

ev𝑌 : Map(𝑌,−)× 𝑌 ⇒ idTop.

Proof. 1. Let 𝑉 ⊆ 𝑍 be an open subset, and suppose (𝑓, 𝑦) ∈ ev−1
𝑌,𝑍(𝑉 ), which means

that 𝑓(𝑦) ∈ 𝑉 , or in other words, that 𝑦 ∈ 𝑓−1(𝑉 ). Since 𝑌 is locally compact Hausdorff
by hypothesis, we can find an open neighborhood 𝑈 of 𝑦 such that 𝑈 is a compact
subspace satisfying the condition 𝑈 ⊆ 𝑓−1(𝑉 ). The product 𝑆(𝑈, 𝑉 ) × 𝑈 then defines a
neighborhood of (𝑓, 𝑦) in Map(𝑌, 𝑍)×𝑌 , and, if (𝑔, 𝑦′) ∈ 𝑆(𝑈, 𝑉 )×𝑈 , then ev𝑌,𝑍(𝑔, 𝑦′) =
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𝑔(𝑦′) ∈ 𝑉 ; which shows that 𝑆(𝑈, 𝑉 )×𝑈 ⊆ ev−1
𝑌,𝑍(𝑉 ), therefore proving the continuity of

ev𝑌,𝑍 .

2. Let 𝐴 and 𝐵 be spaces, and consider a map 𝑔 : 𝐴 → 𝐵. We need to show the
commutativity of the square below.

Map(𝑌,𝐴)× 𝑌 Map(𝑌,𝐵)× 𝑌

𝐴 𝐵

Map(𝑌,𝑔)×id𝑌

ev𝑌,𝐴 ev𝑌,𝐵

𝑔

This follows by direct computation. For any pair (𝑓, 𝑦) ∈ Map(𝑌,𝐴) × 𝑌 we have the
following chain of equalities:

(ev𝑌,𝐵 ∘ (Map(𝑌, 𝑔)× id𝑌 ))(𝑓, 𝑦) = ev𝑌,𝐵(𝑔 ∘ 𝑓, 𝑦)

= (𝑔 ∘ 𝑓)(𝑦)

= 𝑔(𝑓(𝑦))

= 𝑔(ev𝑌,𝐴(𝑓, 𝑦))

= (𝑔 ∘ ev𝑌,𝐴)(𝑓, 𝑦). �

We have all the ingredients necessary for defining an adjunction between products
and spaces of maps.

1.1.5 Theorem (Exponential adjunction). If 𝑌 is a locally compact Hausdorff space,
then the product functor −× 𝑌 is left-adjoint to the pushforward functor Map(𝑌,−).

Proof. Our candidates for unit and counit transformations of the adjunction are the trans-
formations

𝜄 : idTop ⇒ Map(𝑌,−× 𝑌 ) and ev𝑌 : Map(𝑌,−)× 𝑌 ⇒ idTop

of Lemma 1.1.3 and Lemma 1.1.4, respectively.

We just need to show that these transformations satisfy the triangle identities. The
first of these identities says that the triangle below commutes for every space 𝑋 ∈ Top.

𝑋 × 𝑌 𝑋 × 𝑌

Map(𝑌,𝑋 × 𝑌 )× 𝑌

id𝑋×𝑌

𝜄𝑋×id𝑌
ev𝑌,𝑋×𝑌

This is just a matter of computation. Given any (𝑥, 𝑦) ∈ 𝑋 × 𝑌 , we have

(ev𝑌,𝑋×𝑌 ∘ (𝜄𝑋 × id𝑌 ))(𝑥, 𝑦) = ev𝑌,𝑋×𝑌 (𝜄𝑋(𝑥), 𝑦)

= ev𝑌,𝑋×𝑌 ((ct𝑌,𝑥, id𝑌 ), 𝑦)

= (ct𝑌,𝑋 , id𝑌 )(𝑦)

= (𝑥, 𝑦).



32 Chapter 1. Topological preliminaries

The second triangle identity, on the other hand, says that the triangle below com-
mutes for every space 𝑍 ∈ Top.

Map(𝑌, 𝑍) Map(𝑌, 𝑍)

Map(𝑌,Map(𝑌, 𝑍)× 𝑌 )

idMap(𝑌,𝑍)

𝜄Map(𝑌,𝑍) Map(𝑌,ev𝑌,𝑍)

Given any 𝑓 ∈ Map(𝑌, 𝑍) and any 𝑦 ∈ 𝑌 , we have

[(Map(𝑌, ev𝑌,𝑍) ∘ 𝜄Map(𝑌,𝑍))(𝑓)](𝑦) = [Map(𝑌, ev𝑌,𝑍)((ct𝑌,𝑓 , id𝑌 ))](𝑦)

= (ev𝑌,𝑍 ∘ (ct𝑌,𝑓 , id𝑌 ))(𝑦)

= ev𝑌,𝑍(𝑓, 𝑦)

= 𝑓(𝑦),

and since this holds for any 𝑦 ∈ 𝑌 , we have the equality of maps

(Map(𝑌, ev𝑌,𝑍) ∘ 𝜄Map(𝑌,𝑍))(𝑓) = 𝑓,

but this holds for every 𝑓 ∈ Map(𝑌, 𝑍), therefore we have the desired equality

Map(𝑌, ev𝑌,𝑍) ∘ 𝜄Map(𝑌,𝑍) = idMap(𝑌,𝑍). �

One important thing about categorical adjunctions in general is that they can also
be described by a certain natural bijection between sets of morphisms. More precisely, we
have the following result, whose proof can be found in either (RIEHL, 2017, Proposition
4.2.6) or (LEINSTER, 2014, Theorem 2.2.5).

1.1.6 Theorem. Let 𝐹 : C→ D and 𝐺 : D→ C be a pair of opposing functors between
locally small categories. The following are equivalent:

1. 𝐹 is left adjoint to 𝐺;

2. for each 𝑐 ∈ C and each 𝑑 ∈ D there exists a bijection

𝜆𝑐,𝑑 : D(𝐹 (𝑐), 𝑑)
∼=−→ C(𝑐,𝐺(𝑑))

which depends naturally on both 𝑐 and 𝑑.

Concretely, the bijection 𝜆𝑐,𝑑 assigns to each morphism 𝛼 : 𝐹 (𝑐)→ 𝑑 the composite
morphism

𝜆𝑐,𝑑(𝛼) := 𝐺(𝛼) ∘ 𝜂𝑐 : 𝑐→ 𝐺(𝑑)

as shown below.

𝐹 (𝑐) 𝑑𝛼  𝑐 𝐺(𝐹 (𝑐)) 𝐺(𝑑)𝜂𝑐

𝜆𝑐,𝑑(𝛼)

𝐺(𝛼)
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The inverse bijection 𝜆−1
𝑐,𝑑 has a dual description: it assigns to a morphism 𝛽 : 𝑐→

𝐺(𝑑) the composite morphism

𝜆−1
𝑐,𝑑(𝛽) := 𝜀𝑑 ∘ 𝐹 (𝛽) : 𝐹 (𝑐)→ 𝑑

as shown below.

𝑐 𝐺(𝑑)𝛽
 𝐹 (𝑐) 𝐹 (𝐺(𝑑)) 𝑑

𝐹 (𝛽)

𝜆−1
𝑐,𝑑

(𝛽)

𝜀𝑑

We can of course apply this alternative description to the exponential adjunction
between −× 𝑌 and Map(𝑌,−) described above. If 𝑌 is locally compact Hausdorff, then
for any two spaces 𝑋 and 𝑍 we have the bijection

𝜆𝑋,𝑍 : Top(𝑋 × 𝑌, 𝑍)
∼=−→ Top(𝑋,Map(𝑌, 𝑍))

which associates to every map 𝑓 : 𝑋 × 𝑌 → 𝑍 the corresponding map 𝜆𝑋,𝑍𝑓 : 𝑋 →
Map(𝑌, 𝑍) defined as the composition

𝜆𝑋,𝑍𝑓 := Map(𝑌, 𝑓) ∘ 𝜄𝑋

as shown in the diagram below.

𝑋 × 𝑌 𝑍
𝑓

 𝑋 Map(𝑌,𝑋 × 𝑌 ) Map(𝑌, 𝑍)𝜄𝑋

𝜆𝑋,𝑍𝑓

Map(𝑌,𝑓)

For any 𝑥 ∈ 𝑋, the value 𝜆𝑋,𝑍𝑓(𝑥) is itself a map of type 𝑌 → 𝑍. If we then evaluate
this map at a point 𝑦 ∈ 𝑌 , we see that

[𝜆𝑋,𝑍𝑓(𝑥)](𝑦) = [(Map(𝑌, 𝑓) ∘ 𝜄𝑋)(𝑥)](𝑦)

= [Map(𝑌, 𝑓)((ct𝑌,𝑥, id𝑌 ))](𝑦)

= (𝑓 ∘ (ct𝑌,𝑥, id𝑌 ))(𝑦)

= 𝑓(𝑥, 𝑦).

Throughout the text, we call the map 𝜆𝑋,𝑍𝑓 the exponential adjoint of 𝑓 , or
also the exponential transpose of 𝑓 . Sometimes we also say that 𝜆𝑋,𝑍𝑓 is obtained
from 𝑓 by currying the second variable.

We can also describe the inverse function

𝜆−1
𝑋,𝑍 : Top(𝑋,Map(𝑌, 𝑍))→ Top(𝑋 × 𝑌, 𝑍)

by using the counit and the adjunction together with the product functor:

𝜆−1
𝑋,𝑍𝑔 := ev𝑌,𝑍 ∘ (𝑔 × id𝑍)
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for every 𝑔 : 𝑋 → Map(𝑌, 𝑍), as shown below.

𝑋 Map(𝑌, 𝑍)𝑔
 𝑋 × 𝑌 Map(𝑌, 𝑍)× 𝑌 𝑍

𝑔×id𝑌

𝜆−1
𝑋,𝑍𝑔

ev𝑌,𝑍

A direct computation using the definitions shows that the formula

𝜆−1
𝑋,𝑍𝑔(𝑥, 𝑦) = [𝑔(𝑥)](𝑦)

holds for every 𝑔 : 𝑋 → Map(𝑌, 𝑍) and every (𝑥, 𝑦) ∈ 𝑋 × 𝑌 . We sometimes say that
𝜆−1
𝑋,𝑍𝑔 is obtained by uncurrying the map 𝑔.

1.1.7 Remark. In Category Theory, we say an object 𝑐 of a category C is exponentiable
if it satisfies the two following conditions:

1. the product 𝑎×𝑐 exists for every other object 𝑎 ∈ C, so that we can define a product
functor −× 𝑐 : C→ C;

2. the product functor −× 𝑎 has a right-adjoint functor 𝑅 : C→ C.

Under these conditions, the value of 𝑅 on an object 𝑏 ∈ C is usually denoted as 𝑏𝑎, and a
similar notation is used for the value on morphisms.

This terminology allows us to restate Theorem 1.1.5 in the following way: every
locally compact Hausdorff space is exponentiable in the category Top.

1.1.1 Convenient consequences

In this subsection we use our previous results on the exponential result to deduce
some useful consequences. Most of the results have to do with topologizing some categori-
cal notions. We have already seen an example of this when we saw how the compact-open
topology allowed us to upgrade the representable functors Top(𝑋,−) and Top(−, 𝑌 ) to
the corresponding functors of spaces Map(𝑋,−) and Map(𝑌,−).

Most of the results of this section, however, involve upgrading bijections coming
from categorical constructions to homeomorphisms. The tool used for this is the Yoneda
Embedding, since it allows us to deduce “internal” isomorphisms from natural isomor-
phisms between functors.

Our first result of this type concerns understanding spaces of the form Map(𝑊,𝑋×
𝑌 ). Recall that general categorical products are defined as limits of particularly simple
diagrams. More precisely, two objects 𝑎 and 𝑏 of a (locally small) category have a product
if the functor C(−, 𝑎) × C(−, 𝑏) : Cop → Set is representable, and the product 𝑎 × 𝑏 is
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precisely a choice of representing object for this functor, so that for any object 𝑥 ∈ C we
have a natural bijection of sets of morphisms:

C(𝑥, 𝑎× 𝑏) ∼= C(𝑥, 𝑎)× C(𝑥, 𝑏).

In the category Top, this means that for any three spaces 𝑋, 𝐴 and 𝐵 we have a
bijection

Top(𝑋,𝐴×𝐵) ∼= Top(𝑋,𝐴)× Top(𝑋,𝐵)

which is natural in 𝑋. The compact-open topology gives us an internal version of the sets
of maps Top(𝑋,𝑌 ): the spaces of maps Map(𝑋,𝑌 ). It is then natural to wonder if the
bijection above can be upgraded to a homeomorphism

Map(𝑋,𝐴×𝐵) ∼= Map(𝑋,𝐴)×Map(𝑋,𝐵).

A general categorical tool to deduce “internal” isomorphisms from natural isomor-
phisms between functors is the infamous Yoneda Embedding which we now briefly recall.
Given a locally small category C, each object 𝑎 ∈ C gives rise to a functor C(𝑎,−) : C→ Set
by sending an object 𝑥 ∈ C to the set of morphisms C(𝑎, 𝑥), and by sending a morphism
𝜑 : 𝑥→ 𝑦 to the function C(𝑎, 𝜑) : C(𝑎, 𝑥)→ C(𝑎, 𝑦) - called the pushforward along 𝜑 -
defined as

C(𝑎, 𝜑)(𝑓) := 𝜑 ∘ 𝑓 ∀ 𝑓 ∈ C(𝑎, 𝑥). (1.4)

It is also possible to define a dual construction, i.e, a functor C(−, 𝑎) : Cop → Set
sending an object 𝑥 ∈ C to the set of morphisms C(𝑥, 𝑎), and sending a morphism 𝜓 :
𝑥→ 𝑦 to the function C(𝜓, 𝑎) : C(𝑦, 𝑎)→ C(𝑥, 𝑦) - called the pullback along 𝜓 - in the
opposite direction defined as

C(𝜓, 𝑎)(𝑔) := 𝑔 ∘ 𝜓 ∀ 𝑔 ∈ C(𝑦, 𝑎). (1.5)

These two constructions depend functorially on 𝑎. If 𝑏 is another object, and 𝜃 :
𝑎→ 𝑏 is a morphism in C, then on the hand we have a natural transformation

C(𝜃,−) : C(𝑏,−)⇒ C(𝑎,−),

called the pullback transformation, in the opposite direction whose component at an
object 𝑥 ∈ C is the pullback function

C(𝜃, 𝑥) : C(𝑥, 𝑏)→ C(𝑥, 𝑎);

while on the other we have a natural transformation

C(−, 𝜃) : C(−, 𝑎)⇒ C(−, 𝑏)
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called the pushforward transformation whose component at 𝑥 is the pushforward
function

C(𝑥, 𝜃) : C(𝑥, 𝑎)→ C(𝑥, 𝑏).

These two dual constructions give rise to two related functors:

1. The functor 𝒴 : C → [Cop, Set] sending an object 𝑎 ∈ C to the functor C(−, 𝑎) :
Cop → Set, and sending a morphism 𝜃 : 𝑎 → 𝑏 to the transformation C(−, 𝜃) :
C(−, 𝑎)⇒ C(−, 𝑏).

2. The functor 𝒴 : Cop → [C, Set] sending an object 𝑎 ∈ C to the functor C(𝑎,−) : C→
Set, and sending a morphism 𝜃 : 𝑎 → 𝑏 to the transformation C(𝜃,−) : C(𝑏,−) ⇒
C(𝑎,−).

The Yoneda Embedding says that these two functors are embeddings of categories
in a precise sense. See (RIEHL, 2017, Corollary 2.2.8) or (LEINSTER, 2014, Corollary
4.3.7) for proofs.

1.1.8 Theorem (Yoneda Embedding). Let C be a locally small category. The functor
𝒴 : C→ [Cop, Set] is full and faithful, that is, it satisfies the two following conditions:

1. For any two objects 𝑎, 𝑏 ∈ C, if the morphisms 𝜃, 𝜃′ : 𝑎 → 𝑏 are such that the
transformations C(−, 𝜃), C(−, 𝜃′) : C(−, 𝑎) ⇒ C(−, 𝑏) are equal, then 𝜃 and 𝜃′ are
themselves equal. In other words, 𝒴 induces an injection between sets of morphisms

C(𝑎, 𝑏)� [Cop, Set](C(−, 𝑎),C(−, 𝑏)).

2. For any two objects 𝑎, 𝑏 ∈ C, if 𝜆 : C(−, 𝑎) ⇒ C(−, 𝑏) is a natural transformation,
then there exists a morphism 𝜃 : 𝑎 → 𝑏 such that 𝜆 = C(−, 𝜃). In other words, 𝒴
induces a surjection between sets of morphisms

C(𝑎, 𝑏)� [Cop, Set](C(−, 𝑎),C(−, 𝑏)).

Similarly, the functor 𝒴 : Cop → [C, Set] is also full and faithful.

The main result underpinning the proof of the Yoneda Embedding is the also
famous Yoneda Lemma, which completely characterizes natural transformations of type
C(−, 𝑎) ⇒ 𝐹 . A proof of this result can be found in (RIEHL, 2017, Theorem 2.2.4) or
also in (LEINSTER, 2014, Theorem 4.2.1).

1.1.9 Theorem (Yoneda Lemma). Let C be a locally small category. For any object 𝑐 ∈ C
and any functor 𝐹 : C→ Set, there is a bijection

Ψ𝑐,𝐹 : [Cop, Set](C(−, 𝑐), 𝐹 )
∼=−→ 𝐹 (𝑐)
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defined as
Ψ𝑐,𝐹 (𝜃) := 𝜃𝑐(id𝑐) (1.6)

for every natural transformation 𝜃 : C(−, 𝑐)⇒ 𝐹 .

With these tools at our disposal, the comparison between Map(𝑋,𝐴 × 𝐵) and
Map(𝑋,𝐴) × Map(𝑋,𝐵) is just a matter of using the exponential adjunction and the
Yoneda Embedding.

1.1.10 Proposition. Let 𝐴 and 𝐵 be spaces. If 𝑋 is a locally compact Hausdorff space,
then there is a homeomorphism

Map(𝑋,𝐴×𝐵) ∼= Map(𝑋,𝐴)×Map(𝑋,𝐵).

Proof. It suffices to show that there is a natural isomorphism of functors

Top(−,Map(𝑋,𝐴×𝐵)) ∼= Top(−,Map(𝑋,𝐴)×Map(𝑋,𝐵)),

and then apply the Yoneda Embedding.

We begin by noting that, since 𝑋 is locally compact Hausdorff, the exponential
adjunction implies there is a natural isomorphism of functors

Top(−,Map(𝑋,𝐴×𝐵)) ∼= Top(−×𝑋,𝐴×𝐵).

As we remarked above, the definition of the product is such that there is a natural iso-
morphism

Top(−, 𝐴×𝐵) ∼= Top(−, 𝐴)× Top(−, 𝐵),

and then precomposing both sides with the product functor −×𝑋 : Top→ Top gives us
the natural isomorphism

Top(−×𝑋,𝐴×𝐵) ∼= Top(−×𝑋,𝐴)× Top(−×𝑋,𝐵).

Applying the exponential adjunction twice gives the natural isomorphism

Top(−×𝑋,𝐴)× Top(−×𝑋,𝐵) ∼= Top(−,Map(𝑋,𝐴))× Top(−,Map(𝑋,𝐵)),

and then using the universal property of the product again we get

Top(−,Map(𝑋,𝐴))× Top(−,Map(𝑋,𝐵)) ∼= Top(−Map(𝑋,𝐴)×Map(𝑋,𝐵)).

Following this chain of natural isomorphisms gives us the desired natural isomorphism of
functors

Top(−,Map(𝑋,𝐴×𝐵)) ∼= Top(−,Map(𝑋,𝐴)×Map(𝑋,𝐵)). �
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The proof above shows the existence of a homeomorphism, but it does not exhibit
one explicitly. If

𝜃 : Top(−,Map(𝑋,𝐴×𝐵)) ∼= Top(−,Map(𝑋,𝐴)×Map(𝑋,𝐵))

denotes the natural isomorphism we described, the proof of the Yoneda Embedding shows
that we can recover one direction of the homeomorphism

Map(𝑋,𝐴×𝐵)
∼=−→ Map(𝑋,𝐴)×Map(𝑋,𝐵)

by consider the map given by

𝜃Map(𝑋,𝐴×𝐵)(idMap(𝑋,𝐴×𝐵)) : Map(𝑋,𝐴×𝐵)→ Map(𝑋,𝐴)×Map(𝑋,𝐵).

Unpacking this expression shows that this homeomorphism is given by the map

(Map(𝑋, 𝜋1),Map(𝑋, 𝜋2)) : Map(𝑋,𝐴×𝐵)→ Map(𝑋,𝐴)×Map(𝑋,𝐵),

where 𝜋1 and 𝜋2 are the canonical projections out of 𝐴× 𝐵. In other words, this homeo-
morphism sends a map 𝑓 : 𝑋 → 𝐴×𝐵 to the pair of maps (𝜋1 ∘ 𝑓, 𝜋2 ∘ 𝑓).

We can also recover the inverse homeomorphism. In terms of the Yoneda Embed-
ding, it can be obtained by using the inverse natural isomorphism to the identity map of
Map(𝑋,𝐴)×Map(𝑋,𝐵), which results in a map

𝜃−1
Map(𝑋,𝐴)×Map(𝑋,𝐵)(idMap(𝑋,𝐴)×Map(𝑋,𝐵)) : Map(𝑋,𝐴)×Map(𝑋,𝐵)→ Map(𝑋,𝐴×𝐵)

Explicitly, this homeomorphism sends a pair of maps (𝑓 : 𝑋 → 𝐴, 𝑔 : 𝑋 → 𝐵) to the
map (𝑓, 𝑔) : 𝑋 → 𝐴×𝐵 induced by the universal property of the product.

There is also an internalization result for mapping spaces of the form Map(𝐴 ⊔
𝐵, 𝑌 ). Categorically, the 𝑎⊔ 𝑏 of two objects of a category C, if it exists, is a representing
object for the functor C(𝑎,−)× C(𝑏,−) : C→ Set. This means that, for any other object
𝑦 ∈ C, there is a natural bijection

C(𝑎 ⊔ 𝑏, 𝑦) ∼= C(𝑎, 𝑦)× C(𝑏, 𝑦).

The next result shows how this can be interpreted inside the category of spaces.

1.1.11 Proposition. If 𝐴 and 𝐵 are locally compact Hausdorff spaces, then for any other
space 𝑌 there is a homeomorphism

Map(𝐴 ⊔𝐵, 𝑌 ) ∼= Map(𝐴, 𝑌 )×Map(𝐵, 𝑌 ).

Proof. The strategy of proof is to use the Yoneda Embedding again. Since 𝐴 and 𝐵 are
locally compact Hausdorff, the same is true of the disjoint union 𝐴⊔𝐵, so we can use the
exponential adjunction to obtain the natural isomorphism

Top(−,Map(𝐴 ⊔𝐵, 𝑌 )) ∼= Top(−× (𝐴 ⊔𝐵), 𝑌 ).
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In Top, products distribute over coproducts naturally, that is, there is a natural isomor-
phism of functors

−× (𝐴 ⊔𝐵) ∼= (−× 𝐴) ⊔ (−×𝐵),

and this implies the isomorphism

Top(−× (𝐴 ⊔𝐵), 𝑍) ∼= Top((−× 𝐴) ⊔ (−×𝐵), 𝑌 ).

Here we have to be careful. The universal property of the coproduct gives us a
natural isomorphism

Top(𝐴 ⊔𝐵,−) ∼= Top(𝐴,−)× Top(𝐵,−)

for any two spaces 𝐴 and 𝐵. However, the situation at hand is different, because the
functor

Top((−× 𝐴) ⊔ (−×𝐵), 𝑌 )

has a fixed target space, but a varying coproduct as source. We know that, for each choice
of space 𝑊 ∈ Top, we have a bijection

Top((𝑊 × 𝐴) ⊔ (𝑊 ×𝐵), 𝑌 ) ∼= Top(𝑊 × 𝐴, 𝑌 )× Top(𝑊 ×𝐵, 𝑌 ),

and it is not unreasonable to expect this bijection to depend naturally on 𝑊 , so that we
end up with a natural isomorphism

Top((−× 𝐴) ⊔ (−×𝐵), 𝑌 ) ∼= Top(−× 𝐴, 𝑌 )× Top(−×𝐵, 𝑌 ).

This is indeed true, and it follows from a general categorical fact. Given a small
category J and a locally small category C, if every functor 𝐹 : J→ C has a colimit, then
the diagonal functor Δ : C→ CJ has a left adjoint colim : CJ → C which assigns to every
functor 𝐹 : J→ C its colimit colim𝐹 ∈ C. The adjointness relations means that, for every
object 𝑐 ∈ C, and every functor 𝐹 : J→ C, we have a bijection

C(colim𝐹, 𝑐) ∼= CJ(𝐹,Δ(𝑐))

which depends naturally on both the object 𝑐 and the functor 𝐹 . A proof of this fact be
found in either (RIEHL, 2017, section 4.5) or (LEINSTER, 2014, section 6.1).

Coproducts of spaces are colimits of functors of type 2 → Top, and since Top
admits all coproducts, for any three spaces 𝑊 , 𝑋 and 𝑌 we have a bijection

Top(𝑊 ⊔𝑋,𝑌 ) ∼= Top(𝑊,𝑌 )× Top(𝑋,𝑌 )

depending naturally on all the spaces. In particular, if we fix 𝑌 , and let 𝑊 and 𝑋 vary,
we get the natural isomorphism of two-variable functors

Top(− ⊔−, 𝑌 ) ∼= Top(−, 𝑌 )× Top(−, 𝑌 ),



40 Chapter 1. Topological preliminaries

and if we precompose this with the functor

(−× 𝐴,−×𝐵) : Top→ Top× Top

we obtain the desired natural isomorphism

Top((−× 𝐴) ⊔ (−×𝐵), 𝑌 ) ∼= Top(−× 𝐴, 𝑌 )× Top(−×𝐵, 𝑌 ).

Continuing, if we apply the exponential adjunction twice, we obtain

Top(−× 𝐴, 𝑌 )× Top(−×𝐵, 𝑌 ) ∼= Top(−,Map(𝐴, 𝑌 ))× Top(−,Map(𝐵, 𝑌 )),

and then using the universal property of the product once again we get

Top(−,Map(𝐴, 𝑌 ))× Top(−,Map(𝐵, 𝑌 )) ∼= Top(−,Map(𝐴, 𝑌 )×Map(𝐵, 𝑌 )).

If we go over the chain of natural isomorphisms, we see that at the end we obtained
the isomorphism

Top(−Map(𝐴 ⊔𝐵, 𝑌 )) ∼= Top(−,Map(𝐴, 𝑌 )×Map(𝐵, 𝑌 )),

which implies the desired homeomorphism. �

Similarly to what happened in the previous result, the proof given above does not
explicitly provide us with a homeomorphism

Map(𝐴 ⊔𝐵, 𝑌 ) ∼= Map(𝐴, 𝑌 )×Map(𝐵, 𝑌 ),

but it can be recovered by “running” the proof of the Yoneda Embedding. On the one
hand, we have the map

(Map(𝑗1, 𝑌 ),Map(𝑗2, 𝑌 )) : Map(𝐴 ⊔𝐵, 𝑌 )→ Map(𝐴, 𝑌 )×Map(𝐵, 𝑌 )

induced by the universal map of the product, where 𝑗1 and 𝑗2 are the canonical injections
into the disjoint union. Explicitly, this sends a map 𝑓 : 𝐴⊔𝐵 → 𝑌 to the pair (𝑓 ∘𝑗1, 𝑓 ∘𝑗2).
The map in the opposite direction

Map(𝐴, 𝑌 )×Map(𝐵, 𝑌 )→ Map(𝐴 ⊔𝐵, 𝑌 )

sends a pair of maps (𝑓 : 𝐴→ 𝑌, 𝑔 : 𝐵 → 𝑌 ) to the map ⟨𝑓, 𝑔⟩ : 𝐴 ⊔ 𝐵 → 𝑌 induced by
the universal property of the coproduct.

Another result which can be internalized under some topological conditions is the
exponential adjunction itself. We saw in Theorem 1.1.5 that, if 𝑌 is locally compact
Hausdorff, then for any two spaces 𝑋 and 𝑍 there is a natural bijection

Top(𝑋 × 𝑌, 𝑍) ∼= Top(𝑋,Map(𝑌, 𝑍)).

A natural question is: can we replace the sets of maps by spaces of maps an upgrade the
above bijection to a homeomorphism? The answer is yes, but we must be careful with the
required conditions.



1.1. Spaces of maps 41

1.1.12 Proposition. Let 𝑋 and 𝑌 be locally compact Hausdorff spaces. If 𝑍 is any other
space, there is a natural homeomorphism

Map(𝑋 × 𝑌, 𝑍) ∼= Map(𝑋,Map(𝑌, 𝑍)).

Proof. We use the Yoneda Embedding once again. Since 𝑋 is locally compact Hausdorff,
by the exponential adjunction we have the natural isomorphism

Top(−,Map(𝑋,Map(𝑌, 𝑍))) ∼= Top(−×𝑋,Map(𝑌, 𝑍)).

Similarly, we also have the natural isomorphism

Top(−,Map(𝑌, 𝑍)) ∼= Top(−× 𝑌, 𝑍),

and if we precompose this with the product functor − ×𝑋 : Top → Top, we obtain the
isomorphism

Top(−×𝑋,Map(𝑌, 𝑍)) ∼= Top((−×𝑋)× 𝑌, 𝑍).

At this point we have to deal with a small subtlety. The product operation on
spaces is associative up to homeomorphism, that is, given spaces 𝑊 , 𝑋 and 𝑍, there is
an associator homeomorphism

(𝑊 ×𝑋)× 𝑌 ∼= 𝑊 × (𝑋 × 𝑌 )

which is natural in all three variables. In particular, if we fix 𝑋 and 𝑌 , but let 𝑊 vary,
we obtain a natural isomorphism of functors

(−×𝑋)× 𝑌 ∼= −(𝑋 × 𝑌 ),

which implies the natural isomorphism

Top((−×𝑋)× 𝑌, 𝑍) ∼= Top(−× (𝑋 × 𝑌 ), 𝑍).

The property of being locally compact Hausdorff is preserved by products, therefore
𝑋 × 𝑌 is a locally compact Hausdorff space, and using the exponential adjunction one
more time gives us the isomorphism

Top(−× (𝑋 × 𝑌 ), 𝑍) ∼= Top(−,Map(𝑋 × 𝑌, 𝑍)).

Overall, this reasoning shows the existence of a natural isomorphism of functors

Top(−,Map(𝑋,Map(𝑌, 𝑍))) ∼= Top(−,Map(𝑋 × 𝑌, 𝑍)),

and the desired homeomorphism then follows from the Yoneda Embedding. �
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We end this section with results of a more point-set nature instead of internaliza-
tion results.

1.1.13 Proposition. Let 𝑋 and 𝑌 be spaces, and consider a quotient map 𝑝 : 𝑋 → 𝑌 .
If 𝑍 is a locally compact Hausdorff space, then the product 𝑝× id𝑍 : 𝑋 × 𝑍 → 𝑌 × 𝑍 is
still a quotient map.

Proof. Let 𝐴 be another space, and suppose 𝑓 : 𝑌 × 𝑍 → 𝐴 is a function such that the
composition 𝑓 ∘ (𝑝 × id𝑍) : 𝑋 × 𝑍 → 𝐴 is continuous. We claim that the exponential
adjoint function

𝜆𝑌,𝐴𝑓 : 𝑌 → Map(𝑍,𝐴)

is continuous. Indeed, from the naturality of the exponential adjunction applied to the
map 𝑝 : 𝑋 → 𝑌 , we know that the square below commutes.

Top(𝑌 × 𝑍,𝐴) Top(𝑋 × 𝑍,𝐴)

Top(𝑌,Map(𝑍,𝐴)) Top(𝑋,Map(𝑍,𝐴))

Top(𝑝×id𝑍 ,𝐴)

𝜆𝑌,𝐴 𝜆𝑋,𝐴

Top(𝑝,Map(𝑍,𝐴))

In particular, chasing 𝑓 ∈ Top(𝑌 × 𝑍,𝐴) around the squares yields the equation

𝜆𝑋,𝐴(𝑓 ∘ (𝑝× id𝑍)) = 𝜆𝑌,𝐴𝑓 ∘ 𝑝.

Since 𝑓 ∘ (𝑝× id𝑍) is continuous by hypothesis, so is its adjoint 𝜆𝑋,𝐴(𝑓 ∘ (𝑝× id𝑍)), and the
equality above then implies the continuity of the composition 𝜆𝑌,𝐴𝑓 ∘ 𝑝; but this implies
the continuity of 𝜆𝑌,𝐴𝑓 because 𝑝 is a quotient map by hypothesis.

Now, since 𝑍 is locally compact Hausdorff, we have a well-defined inverse expo-
nential transformation

𝜆−1
𝑌,𝐴 : Top(𝑌,Map(𝑍,𝐴))→ Top(𝑌 × 𝑍,𝐴),

and by applying it to the map 𝜆𝑌,𝐴𝑓 ∈ Top(𝑌,Map(𝑍,𝐴)) we deduce the continuity of 𝑓 ,
as required. �

1.1.14 Corollary. Let 𝑓 : 𝑊 → 𝑋 and 𝑔 : 𝑌 → 𝑍 be quotient maps. If 𝑋 and 𝑌 are
locally compact Hausdorff, then the product 𝑓 × 𝑔 : 𝑊 × 𝑌 → 𝑋 × 𝑍 is also a quotient
map.

Proof. Applying Proposition 1.1.13 twice we deduce that the maps 𝑓 × id𝑌 : 𝑊 × 𝑌 →
𝑋 × 𝑌 and id𝑋 × 𝑔 : 𝑋 × 𝑌 → 𝑋 × 𝑍 are both quotient maps. The result then follows
from the equality

𝑓 × 𝑔 = (id𝑋 × 𝑔) ∘ (𝑓 × id𝑌 )

and the fact that composition preserves quotient maps. �
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1.2 CW-complexes
In this section we define the notion of a CW-complex and mention some of its

properties that will be important later on.

The basic idea is that a CW-complex is a space obtained by repeatedly gluing
disks of increasing dimensions along their boundary spheres. In order to formalize this,
we first define what we mean by gluing disks.

1.2.1 Definition. We say that a pair (𝑋,𝐴), where 𝐴 ⊆ 𝑋 is a subspace, is an 𝑛-
cellular pair if there exists a collection of maps {Φ𝑒 : 𝐷𝑛 → 𝑋}𝑒∈ℰ satisfying the
following conditions:

1. Φ𝑒(𝑆𝑛−1) ⊆ 𝐴 for every 𝑒 ∈ ℰ ;

2. the diagram below is a pushout square.

⨆︀
𝑒∈ℰ

𝑆𝑛−1 𝐴

⨆︀
𝑒∈ℰ

𝐷𝑛 𝑋

⟨Φ𝑒|𝑆𝑛−1 ⟩𝑒∈ℰ

⟨Φ𝑒⟩𝑒∈ℰ

In the literature, it is common to say that 𝑋 is obtained from 𝐴 by attaching
𝑛-cells. In order to simplify the notation a bit, we denote the restricted maps Φ𝑒|𝑆𝑑(𝑒)−1

by 𝜙𝑒, and we follow this convention throughout: upper-case for maps on the disk and the
corresponding lower-case for its restriction to the boundary sphere. The maps Φ𝑒 : 𝐷𝑛 →
𝑋 are called the characteristic maps, while the restrictions 𝜙𝑒 : 𝑆𝑛−1 → 𝐴 are called
attaching maps.

We could consider pairs (𝑋,𝐴) where 𝑋 is obtained from 𝐴 by simultaneously
gluing disks of varying dimensions to the subspace, and many of the required results
would still hold. Since in the examples we will encounter the disks glued have all the same
dimension, we decided to work with the slightly less general notion of Definition 1.2.1.

The cellular pairs we have introduced are an auxiliary notion used to give an in-
ductive definition of CW-complexes, and thus many properties of CW-complexes actually
follow from analogous properties of cellular pairs. We will not need many deep topological
properties of cellular pairs and topological spaces, but some basic ones will be useful at
several points, so we leave them registered here for later referencing.

1.2.2 Proposition. Let (𝑋,𝐴) be an 𝑛-cellular pair, and let {Φ𝑒 : 𝐷𝑛 → 𝑋}𝑒∈ℰ be its
family of characteristic maps. The following properties hold:

1. 𝐴 is a closed subset of 𝑋;
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2. the map ⟨Φ𝑒⟩𝑒∈ℰ induces by restriction a homeomorphism 𝑋 ∖𝐴 ∼=
⨆︀
𝑒∈ℰ(𝐷𝑛 ∖𝑆𝑛−1);

3. if 𝐴 is Hausdorff, then so is 𝑋.

It follows from the second item that, for each 𝑒 ∈ ℰ , the restriction Φ𝑒|𝐷𝑛∖𝑆𝑛−1 :
𝐷𝑛 ∖ 𝑆𝑛−1 → 𝑋 is an open embedding, and its image Φ𝑒(𝐷𝑛 ∖ 𝑆𝑛−1) ⊆ 𝑋 is called an
open 𝑛-cell of (𝑋,𝐴). If 𝑒1, 𝑒2 ∈ ℰ are different indices, then the corresponding open
𝑛-cells Φ𝑒1(𝐷𝑛 ∖ 𝑆𝑛−1) and Φ𝑒2(𝐷𝑛 ∖ 𝑆𝑛−1) are disjoint, therefore the open 𝑛-cells of 𝑋
constitute a partition of 𝑋 ∖ 𝐴 into open subsets.

We now give some examples of cellular pairs that will be useful later.

1.2.3 Example. For every integer 𝑛 ≥ 0, the pair (𝐷𝑛, 𝑆𝑛−1) is 𝑛-cellular with a single
characteristic map given by the identity id𝐷𝑛 : 𝐷𝑛 → 𝐷𝑛, since the diagram below is
trivially a pushout.

𝑆𝑛−1 𝑆𝑛−1

𝐷𝑛 𝐷𝑛

id𝑆𝑛−1

id𝐷𝑛

1.2.4 Example. For any integer 𝑛 ≥ 1, regard 𝑆𝑛−1 as a subspace of 𝑆𝑛 via the embedding
at the equator 𝑖𝑛−1 : 𝑆𝑛−1 → 𝑆𝑛 defined as

𝑖𝑛−1(𝑥1, . . . , 𝑥𝑛) := (𝑥1, . . . , 𝑥𝑛, 0)

for every (𝑥1, . . . , 𝑥𝑛) ∈ 𝑆𝑛−1. We claim that the pair (𝑆𝑛, 𝑆𝑛−1) is 𝑛-cellular. Consider
the maps Φ+

𝑛 , Φ−
𝑛 : 𝐷𝑛 → 𝑆𝑛 defined as follows: given 𝑥 = (𝑥1, . . . , 𝑥𝑛) ∈ 𝐷𝑛

Φ+
𝑛 (𝑥) :=

(︂
𝑥1, . . . , 𝑥𝑛,

√︁
1− ‖𝑥‖2

)︂
,

Φ−
𝑛 (𝑥) :=

(︂
𝑥1, . . . , 𝑥𝑛,−

√︁
1− ‖𝑥‖2

)︂
.

Since the restrictions 𝜙+
𝑛 , 𝜙

−
𝑛 : 𝑆𝑛−1 → 𝑆𝑛 take values in the subspace 𝑆𝑛−1 (seen as the

image 𝑖𝑛−1(𝑆𝑛−1)), we have the commutative diagram below.

𝑆𝑛−1 ⊔ 𝑆𝑛−1 𝑆𝑛−1

𝐷𝑛 ⊔𝐷𝑛 𝑆𝑛

⟨𝜙+
𝑛 ,𝜙

−
𝑛 ⟩

⟨Φ+
𝑛 ,Φ−

𝑛 ⟩

(1.7)

The attaching maps Φ+
𝑛 and Φ−

𝑛 are embeddings whose images are the north and
south hemispheres of 𝑆𝑛, respectively, which intersect along the embedded 𝑆𝑛−1. If we
are given maps 𝑓 : 𝑆𝑛−1 → 𝑋 and 𝑔 : 𝐷𝑛 ⊔ 𝐷𝑛 satisfying the equality 𝑔|𝑆𝑛−1⊔𝑆𝑛−1 =
𝑓 ∘ ⟨𝜙+

𝑛 , 𝜙
−
𝑛 ⟩, we can define a map ℎ : 𝑆𝑛 → 𝑋 using the formula

ℎ(𝑥1, . . . , 𝑥𝑛+1) :=

⎧⎪⎨⎪⎩𝑔(𝑖1(𝑥1, . . . , 𝑥𝑛)), if 𝑥𝑛+1 ≥ 0,

𝑔(𝑖2(𝑥1, . . . , 𝑥𝑛)), if 𝑥𝑛+1 ≤ 0,
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where 𝑖1, 𝑖2 : 𝐷𝑛 → 𝐷𝑛 ⊔𝐷𝑛 are the canonical injections. This is well-defined, because if
𝑥𝑛+1 = 0, then (𝑥1, . . . , 𝑥𝑛) ∈ 𝑆𝑛−1, and using the commutativity condition of 𝑔, as well
as the equality 𝜙+ = 𝜙−, we see that

𝑔(𝑖1(𝑥1, . . . , 𝑥𝑛)) = 𝑓(𝜙+(𝑥1, . . . , 𝑥𝑛)) = 𝑓(𝜙−(𝑥1, . . . , 𝑥𝑛)) = 𝑔(𝑖2(𝑥1, . . . , 𝑥𝑛)).

It follows from the Pasting Lemma that ℎ is continuous, and by definition it satisfies the
equalities ℎ ∘ ⟨Φ+

𝑛 ,Φ−
𝑛 ⟩ = 𝑔 and ℎ|𝑆𝑛−1 = 𝑓 .

Now suppose ℎ′ : 𝑆𝑛 → 𝑋 is another map satisfying the equations ℎ∘⟨Φ+
𝑛 ,Φ−

𝑛 ⟩ = 𝑔

and ℎ′|𝑆𝑛−1 = 𝑓 . Given (𝑥1, . . . , 𝑥𝑛+1) ∈ 𝑆𝑛, if 𝑥𝑛+1 ≥ 0, then

(𝑥1, . . . , 𝑥𝑛+1) = Φ+
𝑛 (𝑥1, . . . , 𝑥𝑛) = ⟨Φ+

𝑛 ,Φ−
𝑛 ⟩(𝑖1(𝑥1, . . . , 𝑥𝑛)),

and from this it follows that

ℎ′(𝑥1, . . . , 𝑥𝑛+1) = ℎ′(⟨Φ+
𝑛 ,Φ−

𝑛 ⟩(𝑖1(𝑥1, . . . , 𝑥𝑛)))

= 𝑔(𝑖1(𝑥1, . . . , 𝑥𝑛))

= ℎ(𝑥1, . . . , 𝑥𝑛+1).

A similar reasoning shows that ℎ′(𝑥1, . . . , 𝑥𝑛+1) = ℎ(𝑥1, . . . , 𝑥𝑛+1) also holds if 𝑥𝑛+1 ≤ 0,
therefore ℎ and ℎ′ coincide; showing that (1.7) is a pushout diagram.

1.2.5 Example. Consider the quotient space 𝐷𝑛/𝑆𝑛−1 obtained by collapsing the bound-
ary sphere of the disk to a single point, and let 𝑝 : 𝐷𝑛 → 𝐷𝑛/𝑆𝑛−1 be the canonical
projection. We will show that there exists a homeomorphism 𝐷𝑛/𝑆𝑛−1 ∼= 𝑆𝑛.

The map 𝑞 : 𝑆𝑛−1 × 𝐼 → 𝐷𝑛 defined as

𝑞(𝑥, 𝑡) := (1− 𝑡) · 𝑥+ 𝑡 · *𝑆𝑛−1 ,

where *𝑆𝑛−1 := (1, 0, . . . , 0), is a quotient map (see Lemma 4.3.4). Let 𝑇 : 𝑆𝑛−1 × 𝐼 → 𝑆𝑛

be defined as

𝑇 (𝑥, 𝑡) :=

⎧⎪⎨⎪⎩Φ+
𝑛 ((2𝑡) · 𝑥+ (1− 2𝑡) · *𝑆𝑛−1), if 0 ≤ 𝑡 ≤ 1

2 ,

Φ−
𝑛 ((2− 2𝑡) · 𝑥+ (2𝑡− 1) · *𝑆𝑛−1), if 1

2 ≤ 𝑡 ≤ 1.

Notice that 𝑇 is well-defined since, for 𝑡 = 1
2 and for any 𝑥 ∈ 𝑆𝑛−1, we have on the one

hand
Φ+
𝑛

(︁(︁
2 · 1

2

)︁
· 𝑥+

(︁
1− 2 · 1

2

)︁
· *𝑆𝑛−1

)︁
= Φ+

𝑛 (𝑥),

while on the other

Φ−
𝑛

(︁(︁
2− 2 · 1

2

)︁
· 𝑥+

(︁
2 · 1

2 − 1
)︁
· *𝑆𝑛−1

)︁
= Φ−

𝑛 (𝑥),

and Φ+
𝑛 and Φ−

𝑛 agree on the points of 𝑆𝑛−1 ⊆ 𝐷𝑛. There is a strong geometric meaning
behind the definition of 𝑇 . The first expression stretches the lower half 𝑆𝑛−1×

[︁
0, 1

2

]︁
of the
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cylinder 𝑆𝑛−1× 𝐼 upwards to cover the whole cylinder, maps it to the disk via 𝑞, and then
uses this disk to cover the north hemisphere of 𝑆𝑛 via Φ+

𝑛 . Similarly, the second expression
stretches the upper half 𝑆𝑛−1 ×

[︁
1
2 , 1

]︁
of the cylinder downwards, maps it to the disk via

𝑞, and then uses this disk to cover the south hemisphere of 𝑆𝑛 using the map Φ−
𝑛 . In this

process, the central slice 𝑆𝑛−1 ×
{︁

1
2

}︁
is mapped precisely to the equator 𝑆𝑛−1 ⊆ 𝑆𝑛.

The only non-trivial fiber of the quotient map 𝑞 is 𝑞−1(*𝑆𝑛−1) = (𝑆𝑛−1 × {1}) ∪
({*𝑆𝑛−1} × 𝐼), and a direct computation shows that 𝑇 maps all points of this fiber to
*𝑆𝑛 , therefore 𝑇 induces a map 𝑇 : 𝐷𝑛 → 𝑆𝑛 such that 𝑇 (*𝑆𝑛−1) = *𝑆𝑛 . Now, since the
boundary sphere 𝑆𝑛−1 is the image 𝑞(𝑆𝑛−1 × {0}), and 𝑇 (𝑆𝑛−1 × {0}) ⊆ {*𝑆𝑛}, we have

𝑇 (𝑆𝑛−1) = 𝑇 (𝑞(𝑆𝑛−1 × {0})) = 𝑇 (𝑆𝑛−1 × {0}) ⊆ {*𝑆𝑛}.

This means that 𝑇 is constant and equal to *𝑆𝑛 on 𝑆𝑛−1, thus it can be further factored
through 𝑝 to define a map Θ : 𝐷𝑛/𝑆𝑛−1 → 𝑆𝑛 mapping [*𝑆𝑛−1 ] to *𝑆𝑛 .

𝑆𝑛−1 × 𝐼

𝐷𝑛

𝐷𝑛/𝑆𝑛−1 𝑆𝑛

𝑞

𝑇

𝑝
𝑇

Θ

Explicitly, Θ can be described as follows: given 𝑧 ∈ 𝐷𝑛, if (𝑥, 𝑡) ∈ 𝑆𝑛−1 × 𝐼 is such that
𝑧 = (1− 𝑡) · 𝑥+ 𝑡 · *𝑆𝑛−1 , with 𝑥 = (𝑥1, . . . , 𝑥𝑛), then

Θ([𝑧]) :=

⎧⎪⎨⎪⎩(2𝑡𝑥1 + 1− 2𝑡, . . . , 2𝑡𝑥𝑛,
√︁

1− ‖(2𝑡) · 𝑥+ (1− 2𝑡) · *𝑆𝑛−1‖2),

((2− 2𝑡)𝑥1 + 2𝑡− 1, . . . , (2− 2𝑡)𝑥𝑛,
√︁

1− ‖(2− 2𝑡) · 𝑥+ (2𝑡− 1) · *𝑆𝑛−1‖2),
(1.8)

where the first expression used for 0 ≤ 𝑡 ≤ 1
2 , and the second one for 1

2 ≤ 𝑡 ≤ 1.

Now we construct an inverse for the map Θ. We know from Example 1.2.4 that
the pair (𝑆𝑛, 𝑆𝑛−1) is 𝑛-cellular with characteristic maps Φ+

𝑛 , Φ−
𝑛 : 𝐷𝑛 → 𝑆𝑛. This means

that the square below is a pushout.

𝑆𝑛−1 𝐷𝑛

𝐷𝑛 𝑆𝑛

Φ+
𝑛

Φ−
𝑛

We will use the universal property of this pushout to induce a map 𝑆𝑛 → 𝐷𝑛/𝑆𝑛−1

using certain maps 𝐷𝑛 → 𝐷𝑛/𝑆𝑛−1. Consider first Ψ+ : 𝑆𝑛−1 × 𝐼 → 𝐷𝑛/𝑆𝑛−1 defined as

Ψ+(𝑥, 𝑡) := 𝑝
(︁
(1− 𝑡) ·

(︁
1
2 · 𝑥+ 1

2 · *𝑆𝑛−1

)︁
+ 𝑡 · *𝑆𝑛−1

)︁
∀ (𝑥, 𝑡) ∈ 𝑆𝑛−1 × 𝐼.
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A direct computation shows that

Ψ+(𝑞−1(*𝑆𝑛−1)) = Ψ+((𝑆𝑛−1 × {1}) ∪ ({*𝑆𝑛−1} × 𝐼)) ⊆ {[*𝑆𝑛−1 ]},

so Ψ+ descends to a map 𝜓+ : 𝐷𝑛 → 𝐷𝑛/𝑆𝑛−1.

𝑆𝑛−1 × 𝐼

𝐷𝑛 𝐷𝑛/𝑆𝑛−1

Ψ+
𝑞

𝜓+

Similarly, let Ψ− : 𝑆𝑛−1 × 𝐼 → 𝐷𝑛/𝑆𝑛−1 be defined as

Ψ−(𝑥, 𝑡) := 𝑝
(︁
(1− 𝑡) ·

(︁
1
2 · 𝑥+ 1

2 · *𝑆𝑛−1

)︁
+ 𝑡 · 𝑥

)︁
∀ (𝑥, 𝑡) ∈ 𝑆𝑛−1 × 𝐼.

This map also sends the whole fiber 𝑞−1(*𝑆𝑛−1) to [*𝑆𝑛−1 ], therefore it can be factored
through 𝑞 to define a map 𝜓− : 𝐷𝑛 → 𝐷𝑛/𝑆𝑛−1.

𝑆𝑛−1 × 𝐼

𝐷𝑛 𝐷𝑛/𝑆𝑛−1

Ψ−
𝑞

𝜓−

Notice that 𝜓+ and 𝜓− coincide on 𝑆𝑛−1, since, for any 𝑥 ∈ 𝑆𝑛−1, we have on the
one hand

𝜓+(𝑥) = 𝜓+(𝑞(𝑥, 0)) = Ψ+(𝑥, 0) = 𝑝
(︁

1
2 · 𝑥+ 1

2 · *𝑆𝑛−1

)︁
,

and on the other

𝜓−(𝑥) = 𝜓−(𝑞(𝑥, 0)) = Ψ−(𝑥, 0) = 𝑝
(︁

1
2 · 𝑥+ 1

2 · *𝑆𝑛−1

)︁
.

The universal property of the pushout then gives us a map Ψ : 𝑆𝑛 → 𝐷𝑛/𝑆𝑛−1 that fits
in the commutative diagram below.

𝑆𝑛−1 𝐷𝑛

𝐷𝑛 𝑆𝑛

𝐷𝑛/𝑆𝑛−1

Φ+
𝑛

𝜓+

Φ−
𝑛

𝜓−

Ψ

It is then a matter of direct computation to show that Θ and Ψ are inverse to
one another. Moreover, Θ maps the point [*𝑆𝑛−1 ] ∈ 𝐷𝑛/𝑆𝑛−1 to the corresponding point
*𝑆𝑛 = (1, 0, . . . , 0) ∈ 𝑆𝑛. In the language of pointed spaces of Chapter 3, Θ defines a
pointed homeomorphism (𝐷𝑛/𝑆𝑛−1, [*𝑆𝑛−1 ]) ∼= (𝑆𝑛, *𝑆𝑛).
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Equipped with such homeomorphism, we can modify the pushout square

𝑆𝑛−1 {pt}

𝐷𝑛 𝐷𝑛/𝑆𝑛−1

ct𝑆𝑛−1,pt

ct{pt},[*
𝑆𝑛−1 ]

𝑝

characterizing the quotient 𝐷𝑛/𝑆𝑛−1 to obtain the pushout square below,

𝑆𝑛−1 {*𝑆𝑛}

𝐷𝑛 𝑆𝑛

ct𝑆𝑛−1,*𝑆𝑛

Θ∘𝑝

which shows that the pair (𝑆𝑛, {*𝑆𝑛}) is 𝑛-cellular.

1.2.6 Definition. A pair (𝑋,𝐴), where 𝐴 ⊆ 𝑋 is a subspace, is called a relative CW-
complex if there exists a filtration

𝐴 = 𝑋−1 ⊆ 𝑋0 ⊆ 𝑋1 ⊆ · · · ⊆ 𝑋𝑛 ⊆ · · · ⊆ 𝑋

satisfying the following conditions:

1. 𝑋 = ⋃︀
𝑛≥−1 𝑋𝑛;

2. 𝑋 is the colimit of the subspaces 𝑋𝑛 for 𝑛 ≥ −1;

3. for every integer 𝑛 ≥ 0, (𝑋𝑛, 𝑋𝑛−1) is an 𝑛-cellular pair.

If 𝐴 = ∅, then we simply say that 𝑋 is a CW-complex.

The subspace 𝑋𝑛 appearing in the filtration above is called the 𝑛-skeleton of 𝑋.
Each 𝑛-skeleton is a closed subset of the next skeleton 𝑋𝑛+1 by virtue of Proposition 1.2.2.
This means that 𝐴 is closed in 𝑋0, but 𝑋0 is closed in 𝑋1, so 𝐴 is closed in 𝑋1 too.
Continuing inductively we see that 𝐴 is closed in all the skeletons, therefore 𝐴 is closed
in 𝑋 itself because the latter is the colimit of the skeletons. A similar argument inductive
argument shows that any skeleton 𝑋𝑘 is closed in 𝑋𝑛 for 𝑛 ≥ 𝑘, and the intersections
𝑋𝑘 ∩ 𝑋𝑗 are closed in 𝑋𝑗 for 𝑗 ≤ 𝑘 because 𝑋𝑘 is closed in 𝑋𝑘+1 and 𝑋𝑗 is a subspace
of 𝑋𝑗+1; therefore 𝑋𝑘 is also closed in 𝑋. This shows that all the skeletons of a (relative)
CW-complex are automatically closed.

The second property of Proposition 1.2.2 implies that each of the differences 𝑋𝑛 ∖
𝑋𝑛−1 is a disjoint union of open 𝑛-cells. More precisely, if {Φ𝑒 : 𝐷𝑛 → 𝑋𝑛−1}𝑒∈ℰ𝑛 are
the attachment maps used to build the 𝑛-skeleton, then we have a homeomorphism 𝑋𝑛 ∖
𝑋𝑛−1 ∼=

⨆︀
𝑒∈ℰ𝑛

𝐷𝑛 ∖ 𝑆𝑛−1 obtained by restricting ⟨Φ𝑒⟩𝑒∈ℰ𝑛 . It follows that the restriction
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Φ𝑒|𝐷𝑛∖𝑆𝑛−1 : 𝐷𝑛 ∖𝑆𝑛−1 → 𝑋𝑛 ∖𝑋𝑛−1 is an embedding and its image is open in 𝑋 for every
𝑛 ≥ 0. This allows us to partition 𝑋 ∖ 𝐴 into open cells of varying dimensions.

One interesting consequence of this decomposition is that a CW-complex is auto-
matically Hausdorff. Indeed, given two distinct points 𝑥1, 𝑥2 ∈ 𝑋, we can find an open
𝑛1-cell 𝑋𝑛1 such that 𝑥1 ∈ 𝑋𝑛1 , and an open 𝑛2-cell 𝑋𝑛2 such that 𝑥2 ∈ 𝑋𝑛2 . If these two
cells are different, then they separated the two points since they are disjoint and open in
𝑋. If 𝑋𝑛1 = 𝑋𝑛2 , since these cells are homeomorphic to the interior of a disk, which is
a Hausdorff space, we can separate the two points inside the cell, and this also separates
them in 𝑋 because again the cell is itself open in 𝑋.

1.2.1 Some results on products

In this subsection we briefly mention some results concerning products of absolute
and relative CW-complexes. We first show that the operation of attaching cells to a
subspace interacts nicely with products. The next example is the guiding principle this
result.

1.2.7 Example. We have seen in Example 1.2.3 that the disk 𝐷𝑛 can be obtained from
its boundary sphere 𝑆𝑛−1 by a single 𝑛-cell attachment. Given two disks 𝐷𝑚 and 𝐷𝑛,
can the cell attachments of each one be combined to describe the product 𝐷𝑚 × 𝐷𝑛 as
being obtained from a subspace by cell attachments? We will see that this is true, but the
subspace in question is not the most obvious choice of the product 𝑆𝑚−1 × 𝑆𝑛−1 of the
two boundary spheres.

Consider the spaces R𝑚 and R𝑛 equipped with their usual euclidean norms. We
then consider the corresponding maximum norm on the product R𝑚×R𝑛, which induces
a norm on R𝑚+𝑛 via the homeomorphism 𝛼 : R𝑚+𝑛 → R𝑚 × R𝑛 defined as

𝛼(𝑥1, . . . , 𝑥𝑚, 𝑦1, . . . , 𝑦𝑛) := ((𝑥1, . . . , 𝑥𝑚), (𝑦1, . . . , 𝑦𝑛)).

Explicitly, this norm, which we denote by ‖−‖𝑚,𝑛 is given by

‖(𝑥1, . . . , 𝑥𝑚, 𝑦1, . . . , 𝑦𝑛)‖𝑚,𝑛 := max{‖(𝑥1, . . . , 𝑥𝑚)‖, ‖(𝑦1, . . . , 𝑦𝑛)‖}.

Let 𝐷 denote the unit disk with respect to the norm ‖−‖𝑚,𝑛, and let 𝑆 := 𝜕𝐷 de-
note its boundary, which is the unit sphere with respect to the norm ‖−‖𝑚,𝑛. Recall that
all norms on R𝑚+𝑛 are equivalent, so there is a homeomorphism of pairs (R𝑚+𝑛, 𝑆𝑚+𝑛−1) ∼=
(𝐷,𝑆). If we use the simplified notation (𝑥, 𝑦) := (𝑥1, . . . , 𝑥𝑚, 𝑦1, . . . , 𝑦𝑛), then this home-
omorphism is given by the map 𝛽 : 𝐷𝑚+𝑛 → 𝐷 defined as

𝛽(𝑥, 𝑦) :=

⎧⎪⎪⎨⎪⎪⎩
0, if (𝑥, 𝑦) = 0,
‖(𝑥, 𝑦)‖
‖(𝑥, 𝑦)‖𝑚,𝑛

· (𝑥, 𝑦), otherwise.
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Geometrically, this first normalizes the point (𝑥, 𝑦) with respect to the norm ‖−‖𝑚,𝑛
sending it to the sphere 𝑆, and then moves it inside the disk 𝐷 by scaling it by ‖(𝑥, 𝑦)‖.
The inverse has a very similar description:

𝛽−1(𝑥, 𝑦) :=

⎧⎪⎪⎨⎪⎪⎩
0, if (𝑥, 𝑦) = 0,
‖(𝑥, 𝑦)‖𝑚,𝑛
‖(𝑥, 𝑦)‖ · (𝑥, 𝑦), otherwise.

Now, the homeomorphism 𝛼 : R𝑚+𝑛 → R𝑚 × R𝑛 restricts to a homeomorphism
between 𝐷 and 𝐷𝑚 ×𝐷𝑛. Notice that ‖(𝑥, 𝑦)‖𝑚,𝑛 = 1 if and only if ‖𝑥‖ = 1 or ‖𝑦‖ = 1,
therefore we have a homeomorphism of pairs

𝛼|𝐷 : (𝐷,𝑆)
∼=−→ (𝐷𝑚 ×𝐷𝑛, (𝐷𝑚 × 𝑆𝑛−1) ∪ (𝑆𝑚−1 ×𝐷𝑛)).

By composition, we then have a homeomorphism of pairs

Δ𝑚,𝑛 : (𝐷𝑚+𝑛, 𝑆𝑚+𝑛−1)→ (𝐷𝑚 ×𝐷𝑛, (𝐷𝑚 × 𝑆𝑛−1) ∪ (𝑆𝑚−1 ×𝐷𝑛))

as shown below.

(𝐷𝑚+𝑛, 𝑆𝑚+𝑛−1) (𝐷,𝑆) (𝐷𝑚 ×𝐷𝑛, (𝐷𝑚 × 𝑆𝑛−1) ∪ (𝑆𝑚−1 ×𝐷𝑛)).𝛽

Δ𝑚,𝑛

𝛼|𝐷

Since Δ𝑚,𝑛 is a homeomorphism, the square below is a pushout, showing that the
pair (𝐷𝑚 ×𝐷𝑛, (𝐷𝑚 × 𝑆𝑛−1) ∪ (𝑆𝑚−1 ×𝐷𝑛)) is (𝑚+ 𝑛)-cellular.

𝑆𝑚+𝑛−1 (𝐷𝑚 × 𝑆𝑛−1) ∪ (𝑆𝑚−1 ×𝐷𝑛)

𝐷𝑚+𝑛 𝐷𝑚 ×𝐷𝑛

𝛿𝑚,𝑛

Δ𝑚,𝑛

This example allows us to prove a more general result on products of cellular pairs
under some finiteness conditions.1

1.2.8 Proposition. If (𝑋,𝐴) a finite 𝑚-cellular pair, and (𝑌,𝐵) is a finite 𝑛-cellular pair,
with both 𝐴 and 𝐵 Hausdorff, then (𝑋×𝑌, (𝑋×𝐵)∪ (𝐴×𝑌 )) is a finite (𝑚+𝑛)-cellular
pair.

Proof. Let {Φ𝑖 : 𝐷𝑚 → 𝑋}𝑖∈𝐼 and {Ψ𝑗 : 𝐷𝑛 → 𝑋}𝑗∈𝐽 be the two finite families of
characteristic maps for the two cellular pairs. For each pair of indices (𝑖, 𝑗) ∈ 𝐼 × 𝐽 , let
Θ(𝑖,𝑗) : 𝐷𝑚+𝑛 → 𝑋 × 𝑌 be the composite map

Θ(𝑖,𝑗) := (Φ𝑖 ×Ψ𝑗) ∘Δ𝑚,𝑛,
1 On a personal remark, most versions of this statement that I could find in the literature were

formulated for relative CW-complexes, which is a bit stronger than what we will need, so I
decided to include a more or less complete proof of this simpler result.
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where Δ𝑚,𝑛 : 𝐷𝑚+𝑛 → 𝐷𝑚 ×𝐷𝑛 is the homeomorphism discussed in Example 1.2.7. We
would like to show that the diagram

⨆︀
(𝑖,𝑗)∈𝐼×𝐽

𝑆𝑚+𝑛−1 (𝑋 ×𝐵) ∪ (𝐴× 𝑌 )

⨆︀
(𝑖,𝑗)∈𝐼×𝐽

𝐷𝑚+𝑛 𝑋 × 𝑌

⟨𝜃(𝑖,𝑗)⟩

⟨Θ(𝑖,𝑗)⟩

is a pushout square. Since we already have the pushout square

⨆︀
(𝑖,𝑗)∈𝐼×𝐽

𝑆𝑚+𝑛−1 ⨆︀
(𝑖,𝑗)∈𝐼×𝐽

(𝐷𝑚 × 𝑆𝑛−1) ∪ (𝑆𝑚−1 ×𝐷𝑛)

⨆︀
(𝑖,𝑗)∈𝐼×𝐼

𝐷𝑚+𝑛 ⨆︀
(𝑖,𝑗)∈𝐼×𝐽

𝐷𝑚 ×𝐷𝑛

⨆︀
(𝑖,𝑗) 𝛿𝑚,𝑛

⨆︀
(𝑖,𝑗) Δ𝑚,𝑛

of Example 1.2.7, it suffices to show that the square below is also a pushout,

⨆︀
(𝑖,𝑗)∈𝐼×𝐽

(𝐷𝑚 × 𝑆𝑛−1) ∪ (𝑆𝑚−1 ×𝐷𝑛) (𝑋 ×𝐵) ∪ (𝐴× 𝑌 )

⨆︀
(𝑖,𝑗)∈𝐼×𝐽

𝐷𝑚 ×𝐷𝑛 𝑋 × 𝑌
⟨Φ𝑖×Ψ𝑗⟩

and then use the Pasting Law for pushouts.2

We now sketch the proof that the diagram above is really a pushout. According
to Proposition 1.2.2, the spaces 𝑋 and 𝑌 can be covered by the finite families of closed
subsets

{𝐴} ∪ {Φ𝑖(𝐷𝑚)}𝑖∈𝐼 and {𝐵} ∪ {Ψ𝑗(𝐷𝑛)}𝑗∈𝐽 ,

respectively. The product 𝑋×𝑌 can then be covered by the finite family of closed subsets

{(𝑋 ×𝐵) ∪ (𝐴× 𝑌 )} ∪ {Φ𝑖(𝐷𝑚)×Ψ𝑗(𝐷𝑛)}(𝑖,𝑗)∈𝐼×𝐽 .

Let 𝑍 be another space, and suppose we are given a map 𝑓 : (𝑋×𝐵)∪(𝐴×𝑌 )→ 𝑍

and a family of maps {𝑔(𝑖,𝑗) : 𝐷𝑚×𝐷𝑛 → 𝑍}(𝑖,𝑗)∈𝐼×𝐽 satisfying the following commutativity
condition: the equation

𝑓 ∘ (Φ𝑖 ×Ψ𝑗)|(𝐷𝑚×𝑆𝑛−1)∪(𝑆𝑚−1×𝐷𝑛) = 𝑔(𝑖,𝑗)|(𝐷𝑚×𝑆𝑛−1)∪(𝑆𝑚−1×𝐷𝑛) (1.9)

holds for every pair of indices (𝑖, 𝑗) ∈ 𝐼 × 𝐽 . Let ℎ : 𝑋 × 𝑌 → 𝑍 be the map defined as
follows: given (𝑥, 𝑦) ∈ 𝑋 ×𝑌 , if either 𝑥 ∈ 𝐴 or 𝑦 ∈ 𝐵 we set ℎ(𝑥, 𝑦) := 𝑓(𝑥, 𝑦); otherwise
2 See (NLAB, 2021, Proposition 3.3) for a proof of the dual result on pasting pullback diagrams.
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there is a unique (𝑖, 𝑗) ∈ 𝐼 × 𝐽 and a unique (𝑝, 𝑞) ∈ (𝐷𝑚 ∖𝑆𝑚−1)× (𝐷𝑛 ∖𝑆𝑛−1) such that
(𝑥, 𝑦) = (Φ𝑖(𝑝),Ψ𝑗(𝑦)), and we then set ℎ(𝑥, 𝑦) := 𝑔(𝑖,𝑗)(𝑝, 𝑞).

So far we have only defined ℎ as a function, we still need to verify its continuity, and
this is where the covering by closed sets comes in. The restriction of ℎ to (𝑋×𝐵)∪(𝐴×𝑌 )
coincides with 𝑓 , so its is continuous. Now, given a pair (𝑖, 𝑗) ∈ 𝐼 × 𝐽 , we claim that the
diagram below is commutative.

𝐷𝑚 ×𝐷𝑛 𝑍

Φ𝑖(𝐷𝑚)×Ψ𝑗(𝐷𝑛)

𝑔(𝑖,𝑗)

Φ𝑖×Ψ𝑗 ℎ|Φ𝑖(𝐷𝑚)×Ψ𝑗 (𝐷𝑛)
(1.10)

We split this in two cases:

1. If (𝑝, 𝑞) ∈ (𝐷𝑚 ∖𝑆𝑚−1)× (𝐷𝑛 ∖𝑆𝑛−1), then the equality ℎ(Φ𝑖(𝑝),Ψ𝑗(𝑞)) = 𝑔(𝑖,𝑗)(𝑝, 𝑞)
follows from the very definition of ℎ.

2. If either 𝑝 ∈ 𝑆𝑚−1, or 𝑞 ∈ 𝑆𝑛−1, then (Φ𝑖(𝑝),Ψ𝑗(𝑞)) ∈ (𝑋 × 𝐵) ∪ (𝐴 × 𝑌 ), then
combining the definition of ℎ with the commutativity condition of (1.9) we see that

ℎ(Φ𝑖(𝑝),Ψ𝑗(𝑞)) = 𝑓(Φ𝑖(𝑝),Ψ𝑗(𝑞)) = 𝑔(𝑖,𝑗)(𝑝, 𝑞).

Now, since 𝐴 and 𝐵 are Hausdorff by hypothesis, so are 𝑋 and 𝑌 according to
Proposition 1.2.2, and therefore so is the product 𝑋×𝑌 and its subspace Φ𝑖(𝐷𝑚)×Ψ𝑗(𝐷𝑛).
The map Φ𝑖 × Ψ𝑗 : 𝐷𝑚 × 𝐷𝑛 → Φ𝑖(𝐷𝑚) × Ψ𝑗(𝐷𝑛) is then a quotient map, and the
commutativity condition of (1.10) then implies the continuity of ℎ|Φ𝑖(𝐷𝑚)×Ψ𝑗(𝐷𝑛).

All of this argument so far has shown that ℎ is continuous when restricted to each
of the elements of the closed cover {(𝑋 × 𝐵) ∪ (𝐴 × 𝑌 )} ∪ {Φ𝑖(𝐷𝑚) × Ψ𝑗(𝐷𝑛)}(𝑖,𝑗)∈𝐼×𝐽 .
Since this cover has only finitely many elements, it follows from the Pasting Lemma that
ℎ is continuous, and by construction it satisfies the equalities ℎ|(𝑋×𝐵)∪(𝐴×𝑌 ) = 𝑓 , and
ℎ ∘ ⟨Φ𝑖 × Ψ𝑗⟩ = ⟨𝑔(𝑖,𝑗)⟩. Lastly, arguing by cases we see that, if ℎ′ : 𝑋 × 𝑌 → 𝑍 satisfies
these same two equalities, then we must have ℎ = ℎ′. �

1.2.9 Remark. It is important to notice that the finiteness conditions of Proposition 1.2.8
is only used at the very end to deduce the continuity of ℎ : 𝑋×𝑌 → 𝑍 from the continuity
of its restrictions to a certain cover by closed subsets. The finiteness condition is necessary
to use the Pasting Lemma, but the result still holds under weaker assumptions, and the
proof is essentially the same.

The idea behind this more general version is the following result from General
Topology: if {𝐶𝑖}𝑖∈𝐼 is a locally finite covering of a space 𝑋 by closed subsets, then a
subset 𝐴 ⊆ 𝑋 is closed if and only if the intersection 𝐴∩𝐶𝑖 is closed in 𝐶𝑖 for every 𝑖 ∈ 𝐼.
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It follows from the above result that a function ℎ : 𝑋 → 𝑌 is continuous if and
only if the restriction ℎ|𝐶𝑖

: 𝐶𝑖 → 𝑌 is continuous for every 𝑖 ∈ 𝐼. The proof we gave for
Proposition 1.2.8 still works if we replace the finiteness conditions on (𝑋,𝐴) and (𝑌,𝐵)
by the condition that at least one of them is locally finite, which means that each of its
vertices is contained only in a finite number of cells.
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CHAPTER

2
BASIC NOTIONS OF HOMOTOPY THEORY

In this chapter we begin our study of Homotopy Theory with some basic definitions
and results. In the first section, we define the classical notion of homotopy and prove its
main properties that are later used to define the homotopy category. This initial section
also contains an explanation of how the exponential law allows us to give two alternative
formulations of the notion of homotopy, one of which is always equivalent to the classical
one, and the other only under some topological conditions.

The second section introduces the infamous homotopy category. This is the cate-
gory where many of the important functors of Algebraic Topology are “naturally” defined.
We also show how some common functors of spaces like products and coproducts interact
with homotopies.

In the last section, we introduce the notions of contractible spaces and null homo-
topic maps, and then prove how these two are related. We then investigate a particular
instance of this relation and prove an important result which can be seen as one of the
cornerstones of Obstruction Theory.

2.1 Different notions of homotopy
This section defines the classical notion of homotopy and also gives alternative

equivalent definitions based on the exponential adjunction. The material of this section
is mostly based on the exposition contained in (ARKOWITZ, 2011).

2.1.1 Definition. Let 𝑋 and 𝑌 be spaces. Two maps 𝑓, 𝑔 : 𝑋 → 𝑌 are said to be
homotopic if there is a map 𝐻 : 𝑋 × 𝐼 → 𝑌 satisfying the following properties:

1. 𝐻(𝑥, 0) = 𝑓(𝑥) for every 𝑥 ∈ 𝑋;

2. 𝐻(𝑥, 1) = 𝑔(𝑥) for every 𝑥 ∈ 𝑋.
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The map 𝐻 is said to be a homotopy from 𝑓 to 𝑔. We use the notation 𝑓 ≃ 𝑔 to simply
say that two maps are homotopic, and, if we want to consider an explicit homotopy, we
either use the notation 𝐻 : 𝑓 ≃ 𝑔 or 𝐻 : 𝑓 ⇒ 𝑔.

2.1.2 Remark. The reader may wonder why we used the notation 𝑓 ⇒ 𝑔 for homotopies,
since we already use this for natural transformations. This is because there are similarities
between homotopies and natural transformations. We can transform a category using
functors just as we can transform a space using maps; but we can also transform a functor
between two categories using natural transformations just as we can transform a map
between two spaces using homotopies. In other words, in both the category Cat of all
(small) categories and the category Top of all topological spaces, there is a notion of
deformation between two morphisms with the same domain and codomain. This hints at
the fact that Cat and Top are not just categories, but in fact 2-categories, a notion which
is (sadly) beyond the scope of this text.

The definition of homotopy can also be rewritten diagrammatically. For any space
𝑋, let 𝑖𝑋,0 : 𝑋 → 𝑋 × 𝐼 be the map defined as 𝑖𝑋,0(𝑥) := (𝑥, 0) for every 𝑥 ∈ 𝑋. We also
have the analogously defined map 𝑖𝑋,1 : 𝑋 → 𝑋 × 𝐼 which maps 𝑋 to the top face of the
cylinder 𝑋 × 𝐼. Two maps 𝑓, 𝑔 : 𝑋 → 𝑌 are then homotopic if and only if there is a map
𝐻 : 𝑋 × 𝐼 → 𝑌 which makes the diagram below commute.

𝑋

𝑋 × 𝐼 𝑌

𝑋

𝑖𝑋,0
𝑓

𝐻

𝑖𝑋,1 𝑔

(2.1)

Geometrically, a homotopy from 𝑓 to 𝑔 deforms the image of 𝑓 into the image
of 𝑔 inside the space 𝑌 . This is a deformation that happens along a family of paths
parameterized by the points of 𝑋. The next result makes this idea precise and shows that
it in fact works both ways.

2.1.3 Proposition. Given any spaces 𝑋 and 𝑌 , two maps 𝑓, 𝑔 : 𝑋 → 𝑌 are homotopic
if and only if there is a map 𝐷 : 𝑋 → Map(𝐼, 𝑌 ) satisfying the following properties:

1. ev0,𝑌 ∘𝐷 = 𝑓 , that is, [𝐷(𝑥)](0) = 𝑓(𝑥) for every 𝑥 ∈ 𝑋.

2. ev1,𝑌 ∘𝐷 = 𝑔, that is, [𝐷(𝑥)](1) = 𝑔(𝑥) for every 𝑥 ∈ 𝑋.

In other words, 𝐷(𝑥) is a path in from 𝑓(𝑥) to 𝑔(𝑥) in 𝑌 , and these paths depend
continuously on 𝑥.
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Proof. Suppose 𝐻 : 𝑋 × 𝐼 → 𝑌 defines a homotopy from 𝑓 to 𝑔. Let 𝐷 := 𝜆𝐻 : 𝑋 →
Map(𝐼, 𝑌 ) be the exponential adjoint of 𝐻. For every 𝑥 ∈ 𝑋

ev0,𝑌 (𝐷(𝑥)) = [𝐷(𝑥)](0)

= [𝜆𝐻(𝑥)](0)

= 𝐻(𝑥, 0)

= 𝑓(𝑥),

thus ev0,𝑌 ∘𝐷 = 𝑓 , and by a completely analogous reasoning

ev1,𝑌 ∘𝐷 = 𝑔;

therefore 𝐷 satisfies the required conditions.

Conversely, suppose there exists a map 𝐷 : 𝑋 → Map(𝐼, 𝑌 ) satisfying the proper-
ties stated above. Since the unit interval 𝐼 is locally compact Hausdorff, by the exponential
adjunction there exists a map 𝐻 : 𝑋 × 𝐼 → 𝑌 such that 𝜆𝐻 = 𝐷. This map 𝐻 then
satisfies, for every 𝑥 ∈ 𝑋,

𝐻(𝑥, 0) = [𝜆𝐻(𝑥)](0)

= [𝐷(𝑥)](0)

= (ev0,𝑌 ∘𝐷)(𝑥)

= 𝑓(𝑥),

i.e., the equality 𝐻 ∘ 𝑖𝑋,0 = 𝑓 holds, and by an analogous argument so does the equality
𝐻 ∘ 𝑖𝑋,1 = 𝑔; proving that 𝐻 defines a homotopy 𝑓 ≃ 𝑔. �

The conditions satisfied by the map 𝐷 in Proposition 2.1.3 are equivalent to the
commutativity of the diagram below,

𝑌

𝑋 Map(𝐼, 𝑌 )

𝑌

𝐷

𝑓

𝑔

ev0,𝑌

ev1,𝑌

(2.2)

which is in some sense dual to diagram (2.1).

Although Proposition 2.1.3 is a rather simple results, sometimes thinking of a
homotopy as a parameterized family of paths instead of as a deformation defined on
a cylinder either helps us give a simpler proof of a result, or it gives an alternative
interpretation of a classical result. We illustrate this second advantage by proving that
homotopy gives rise to an equivalence relation.
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2.1.4 Proposition. Let 𝑋 and 𝑌 be arbitrary topological spaces. The homotopy relation
≃ between maps is an equivalence relation on the set Top(𝑋,𝑌 ).

Proof. We first show that ≃ is reflexive. Let 𝑓 : 𝑋 → 𝑌 be any map. The first projection
𝜋1 : 𝑋 × 𝐼 → 𝑋 induces by currying a map

𝐶 := 𝜆𝜋1 : 𝑋 → Map(𝐼,𝑋).

Geometrically, for any 𝑥 ∈ 𝑋, 𝐶(𝑥) is the constant path at 𝑥. Using 𝑓 we can also define
the pushforward map

Map(𝐼, 𝑓) : Map(𝐼,𝑋)→ Map(𝐼, 𝑌 ),

and then define 𝐷 : 𝑋 → Map(𝐼, 𝑌 ) as the composition shown below.

𝑋 Map(𝐼,𝑋) Map(𝐼, 𝑌 )𝐶

𝐷

Map(𝐼,𝑓)

Unwrapping the definitions we see that [𝐷(𝑥)](0) = [𝐷(𝑥)](1) = 𝑓(𝑥) for every 𝑥 ∈ 𝑋,
thus 𝐷(𝑥) defines a path from 𝑓(𝑥) to itself, which implies that 𝑓 ≃ 𝑓 by Proposition 2.1.3.

Now we prove that ≃ is symmetric. Given maps 𝑓, 𝑔 : 𝑋 → 𝑌 , suppose 𝑓 ≃ 𝑔, and
then let 𝐷 : 𝑋 → Map(𝐼, 𝑌 ) be a family of paths from 𝑓(𝑥) to 𝑔(𝑥) for every 𝑥 ∈ 𝑋. In
order to obtain a reverse homotopy 𝑔 ≃ 𝑓 , we want to reverse the paths 𝐷(𝑥) so that they
now start at 𝑔(𝑥) and 𝑓(𝑥). We can reverse all the paths simultaneously and continuously
by considering the reversal map 𝑟 : 𝐼 → 𝐼 defined as 𝑟(𝑡) := 1− 𝑡 for every 𝑡 ∈ 𝐼, forming
the pullback map

Map(𝑟, 𝑌 ) : Map(𝐼, 𝑌 )→ Map(𝐼, 𝑌 ),

and then defining a map 𝐷 : 𝑋 → Map(𝐼, 𝑌 ) by the composition

𝐷 := Map(𝑟, 𝑌 ) ∘𝐷.

For any 𝑥 ∈ 𝑋 we have

[𝐷(𝑥)](0) = [Map(𝑟, 𝑌 )(𝐷(𝑥))](0) = [𝐷(𝑥) ∘ 𝑟](0) = [𝐷(𝑥)](1) = 𝑔(𝑥),

and similarly, we also have

[𝐷(𝑥)](1) = [Map(𝑟, 𝑌 )(𝐷(𝑥))](1) = [𝐷(𝑥) ∘ 𝑟](1) = [𝐷(𝑥)](0) = 𝑓(𝑥);

therefore 𝐷 induces the desired homotopy 𝑓 ≃ 𝑔.

Lastly, we have to show the transitivity of ≃. Here, we just give the classical proof
using maps defined on cylinders. Consider three maps 𝑓, 𝑔, ℎ : 𝑋 → 𝑌 together with
homotopies 𝐻1 : 𝑓 ⇒ 𝑔 and 𝐻2 : 𝑔 ⇒ ℎ. Define 𝐻 : 𝑋 × 𝐼 → 𝑌 by the formula

𝐻(𝑥, 𝑡) :=

⎧⎪⎨⎪⎩𝐻1(𝑥, 2𝑡), if 0 ≤ 𝑡 ≤ 1
2

𝐻2(𝑥, 2𝑡− 1), if 1
2 ≤ 𝑡 ≤ 1,
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which is well-defined by the Pasting Lemma because at 𝑡 = 1
2 we have 𝐻1(𝑥, 1) = 𝑔(𝑥) =

𝐻2(𝑥, 0). We can verify directly that 𝐻(𝑥, 0) = 𝑓(𝑥) and 𝐻(𝑥, 1) = ℎ(𝑥) for every 𝑥 ∈ 𝑋,
therefore we have the relation 𝑓 ≃ ℎ. �

Of course, the proofs above are not better than the classical ones, and one might
even argue that they are more complicated. Nonetheless, they serve at least two purposes:

1. They illustrate the algebraic manipulation we can perform with tools like push-
forwards, pullbacks and adjunctions, which help us construct maps of a specified
type.

2. As we had already remarked before, these proofs can be seen as alternative to the
classical ones, and in fact, we can recover them by simply uncurrying. In the proof
of symmetry, for example, if we let 𝐻, 𝐻 : 𝑋 × 𝐼 → 𝑌 be the unique maps such
that 𝜆𝐻 = 𝐷 and 𝜆𝐻 = 𝐷, then we have the equalities

𝐻(𝑥, 𝑡) = [𝜆𝐻(𝑥)](𝑡) = [𝐷(𝑥)](𝑡) = [𝐷(𝑥)](1− 𝑡) = 𝐻(𝑥, 1− 𝑡),

and this is how we classically obtain a homotopy 𝐻 : 𝑔 ⇒ 𝑓 from a homotopy
𝐻 : 𝑓 ⇒ 𝑔.

We finish this section introducing yet another way of thinking about homotopies.
Given a map 𝐻 : 𝑋 × 𝐼 → 𝑌 , instead of currying with respect to the second variable to
obtain a map of type 𝑋 → Map(𝐼, 𝑌 ), we can curry with respect to the first variable to
obtain a map of type 𝐼 → Map(𝑋,𝑌 ), which we denote by 𝜆′𝐻 to differentiate from the
usual adjoint 𝜆𝐻 that we have used so far. This other adjoint 𝜆′𝐻 defines a path in the
space of maps Map(𝑋,𝑌 ). If 𝐻 is in fact a homotopy from 𝑓 to 𝑔, then we have

[𝜆′𝐻(0)](𝑥) = 𝐻(𝑥, 0) = 𝑓(𝑥),

so the path 𝜆′𝐻 starts at the map 𝑓 , and an analogous calculation shows that 𝜆′𝐻 ends
at 𝑔.

This means that a homotopy between two maps connects them by a path inside the
space Map(𝑋,𝑌 ). Sadly, this intuition does not work in the reverse direction in general,
because without additional hypothesis on 𝑋, the construction of this other exponential
adjoint 𝜆′ might not give rise to a bijection

Top(𝑋 × 𝐼, 𝑌 ) ∼= Top(𝐼,Map(𝑋,𝑌 )),

so a path 𝐼 → Map(𝑋,𝑌 ) from 𝑓 to 𝑔 might not correspond to a homotopy 𝑋 × 𝐼 → 𝑌

from 𝑓 to 𝑔.

There is a way to circumvent this difficulty. We admit to ourselves that the category
Top is too pathological to develop Homotopy Theory comfortably, and we work with a
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more well-behaved subcategory. One typical choice of such subcategory is the category
of compactly generated spaces. This class of spaces admits all the usual constructions of
Topology, that is, it admits all limits and colimits. Moreover, all objects of this category
are exponentiable, so any two compactly generated spaces 𝑋 and 𝑌 have a compactly
generated space of maps between them, and there is an exponential adjunction relating
products and spaces of maps that always works. This allows us to identify homotopies with
paths in the space of maps, something which is very useful for developing homotopy theory.
Notice, for example, that with this identification the fact that the homotopy relation is
an equivalence relation follows from the fact that the “connected by a path” relation is
an equivalence relation.1

2.2 The homotopy category

In the end of the previous section we showed that the homotopy relation is an
equivalence relation on the set of all maps between two spaces. We can therefore consider
the quotient by this relation.

2.2.1 Definition. Let 𝑋 and 𝑌 be spaces. The quotient set Top(𝑋,𝑌 )/ ≃ is denoted by
[𝑋,𝑌 ], and its elements are called homotopy classes of maps. If 𝑓 : 𝑋 → 𝑌 is a map,
its corresponding equivalence class in [𝑋,𝑌 ] is denoted by [𝑓 ].

2.2.2 Remark. It is important to stress that we are considering a quotient set. We could
in principle consider the quotient space Map(𝑋,𝑌 )/ ≃ equipped with the quotient topol-
ogy. This is an interesting idea and could lead to a topological version of the homotopy
groups for example, but sadly this quotient space is not well-behaved in general with
respect to the usual operations that we perform on homotopy classes.

We now investigate how the notion of homotopy interacts with composition of
maps. First we investigate the compatibility with composition on one side at a time.

2.2.3 Proposition. Let 𝑊 , 𝑋, 𝑌 and 𝑍 be spaces, and consider maps 𝛼 : 𝑊 → 𝑋,
𝑓, 𝑔 : 𝑋 → 𝑌 and 𝛽 : 𝑌 → 𝑍 as shown in the (not necessarily commutative) diagram
below.

𝑊 𝑋 𝑌 𝑍𝛼
𝑓

𝑔

𝛽

If 𝑓 ≃ 𝑔, then 𝑓 ∘ 𝛼 ≃ 𝑔 ∘ 𝛼 and 𝛽 ∘ 𝑓 ≃ 𝛽 ∘ 𝑔.
1 This text once contained a whole chapter dedicated to compactly generated spaces, as well as

explanations of how to develop classical Homotopy Theory inside this subcategory. However,
since we will not need very deep notions of Homotopy Theory, I eventually decided that
compactly generated spaces would not be very useful for the purposes of this text and removed
this chapter from the text.
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Proof. Let 𝐷 : 𝑋 → Map(𝐼, 𝑌 ) be the family of paths induced by a homotopy 𝐻 : 𝑓 ⇒ 𝑔.
The composite map

𝐷 ∘ 𝛼 : 𝑊 → Map(𝐼, 𝑌 )

satisfies
ev0,𝑌 ∘𝐷 ∘ 𝛼 = 𝑓 ∘ 𝛼

and similarly,
ev1,𝑌 ∘𝐷 ∘ 𝛼 = 𝑔 ∘ 𝛼,

therefore it induces a homotopy 𝑓 ∘ 𝛼 ≃ 𝑔 ∘ 𝛼.

For the second part, let 𝐻 ′ : 𝑋 × 𝐼 → 𝑍 be defined as the composition

𝐻 ′ ∘ 𝛽 ∘𝐻.

On the one hand 𝐻 ′ satisfies the equality

𝐻 ′ ∘ 𝑖𝑋,0 = 𝛽 ∘𝐻 ∘ 𝑖𝑋,0 = 𝛽 ∘ 𝑓,

and on the other it satisfies

𝐻 ′ ∘ 𝑖𝑋,1 = 𝛽 ∘𝐻 ∘ 𝑖𝑋,1 = 𝛽 ∘ 𝑔;

therefore 𝐻 ′ defines a homotopy 𝛽 ∘ 𝑓 ≃ 𝛽 ∘ 𝑔. �

Using Proposition 2.2.3 together with the transitivity of homotopy we prove that
homotopy is preserved by composition on both sides.

2.2.4 Corollary. Let 𝑋, 𝑌 and 𝑍 be spaces, and consider two pairs of maps 𝑓1, 𝑔1 : 𝑋 →
𝑌 and 𝑓2, 𝑔2 : 𝑌 → 𝑍 as in the (not necessarily commutative) diagram below.

𝑋 𝑌 𝑍
𝑓1

𝑔1

𝑓2

𝑔2

If 𝑓1 and 𝑔1 are homotopic, and 𝑓2 and 𝑔2 are homotopic, then the composite maps 𝑓2 ∘ 𝑓1

and 𝑔2 ∘ 𝑔1 are also homotopic.

Proof. We know from Proposition 2.2.3 that homotopies are preserved by pullbacks and
pushforward. If we pushforward the relation 𝑓1 ≃ 𝑔1 along 𝑓 we deduce that 𝑓2∘𝑓1 ≃ 𝑓2∘𝑔1,
while if we pullback the relation 𝑓2 ≃ 𝑔2 along 𝑔1 we deduce that 𝑓2 ≃ 𝑔1 ≃ 𝑔2 ∘ 𝑔1.
Transitivity of homotopy then implies the desired relation 𝑓2 ∘ 𝑓1 ≃ 𝑔2 ∘ 𝑔1. �

This result on the compatibility of homotopies with composition allows us to define
a composition operation on the level of homotopy classes. Given spaces 𝑋, 𝑌 and 𝑍, define
a composition [𝑌, 𝑍]× [𝑋,𝑌 ]→ [𝑋,𝑍] by the rule

[𝑔] ∘ [𝑓 ] := [𝑔 ∘ 𝑓 ]
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for any [𝑓 ] ∈ [𝑋,𝑌 ] and [𝑔] ∈ [𝑌, 𝑍]. This composition is independent of the actual
maps used to represent the homotopy classes by virtue of Corollary 2.2.4. Since this
composition of classes is defined in terms of the usual composition of maps, it satisfies the
usual conditions of associativity and existence of identities, where the identity of [𝑋,𝑋]
is given by [id𝑋 ].

2.2.5 Definition. We define a category HoTop whose objects are topological spaces, and
whose set of morphisms between two objects 𝑋 and 𝑌 is by definition the set of homotopy
classes of maps HoTop(𝑋,𝑌 ) := [𝑋,𝑌 ], with composition defined as above. This is called
the classical homotopy category.

Now that we have a category, we can specialize many concepts of Category Theory
to it, and of particular important is the specialization of the concept of isomorphism.

2.2.6 Definition. A map 𝑓 : 𝑋 → 𝑌 between topological spaces is said to be homotopy
equivalence if [𝑓 ] is an isomorphism in HoTop. In this case we either say that 𝑋 and 𝑌

are homotopy equivalent or that they are of the same homotopy type and denote
this by 𝑋 ≃ 𝑌 .

Unpacking the definition, if 𝑓 : 𝑋 → 𝑌 is a homotopy equivalence, then there
exists a map 𝑔 : 𝑌 → 𝑋 such that 𝑔 ∘ 𝑓 ≃ id𝑋 and 𝑓 ∘ 𝑔 ≃ id𝑌 . We say that the map 𝑔 is
a homotopy inverse of 𝑓 .

We now investigate how some common functors of topological spaces interact with
the notion of homotopy.

2.2.7 Proposition. Given spaces 𝑋, 𝑌1 and 𝑌2, and given maps 𝑓1, 𝑔1 : 𝑋 → 𝑌1 and
𝑓2, 𝑔2 : 𝑋 → 𝑌2, if 𝑓1 ≃ 𝑔1 and 𝑓2 ≃ 𝑔2, then the induced maps (𝑓1, 𝑓2), (𝑔1, 𝑔2) : 𝑋 →
𝑌1 × 𝑌2 are homotopic.

Proof. We prove this working with homotopies as maps out of a cylinder. Let 𝐻1 : 𝑋×𝐼 →
𝑌1 be a homotopy from 𝑓1 to 𝑔1, and let 𝐻2 : 𝑋 × 𝐼 → 𝑌2 be a homotopy from 𝑓2 to 𝑔2.
We have the induced map

𝐻 := (𝐻1, 𝐻2) : 𝑋 × 𝐼 → 𝑌1 × 𝑌2

which is described explicitly as

𝐻(𝑥, 𝑡) := (𝐻1(𝑥, 𝑡), 𝐻2(𝑥, 𝑡)) ∀ (𝑥, 𝑡) ∈ 𝑋 × 𝐼.

We wish to show that (𝐻1, 𝐻2) defines a homotopy (𝑓1, 𝑓2) ≃ (𝑔1, 𝑔2). The first
step is proving the equality

(𝐻1, 𝐻2) ∘ 𝑖𝑋,0 = (𝑓1, 𝑓2).
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If 𝜋′
1 : 𝑌1 × 𝑌2 → 𝑌1 and 𝜋′

2 : 𝑌1 × 𝑌2 → 𝑌2 denote the canonical projections, we have the
equalities

𝜋′
1 ∘ (𝐻1, 𝐻2) ∘ 𝑖𝑋,0 = 𝐻1 ∘ 𝑖𝑋,0

= 𝑓1,

and a similar computation shows that we also have the equality

𝜋′
2 ∘ (𝐻1, 𝐻2) ∘ 𝑖𝑋,1 = 𝑓2.

The universal property of the product then implies the equality

(𝐻1, 𝐻2) ∘ 𝑖𝑋,0 = (𝑓1, 𝑓2),

and an analogous reasoning shows that

(𝐻1, 𝐻2) ∘ 𝑖𝑋,1 = (𝑔1, 𝑔2);

therefore (𝐻1, 𝐻2) defines the desired homotopy. �

2.2.8 Corollary. The product functor × : Top× Top→ Top respects homotopies. More
precisely, for any spaces 𝑋1, 𝑋2, 𝑌1 and 𝑌2, and for any maps 𝑓1, 𝑔1 : 𝑋1 → 𝑌1 and
𝑓2, 𝑔2 : 𝑋2 → 𝑌2, if 𝑓1 ≃ 𝑔1 and 𝑓2 ≃ 𝑔2, then we also have a homotopy 𝑓1 × 𝑓2 ≃ 𝑔1 × 𝑔2

Proof. If 𝜋1 and 𝜋2 are the canonical projections out of the product, recall that the product
𝑓1× 𝑓2 is by definition the map induced by 𝑓1 ∘ 𝜋1 : 𝑋1×𝑋2 → 𝑌1 and 𝑓2 ∘ 𝜋2 : 𝑋2 → 𝑌2,
that is, we have an equality

𝑓1 × 𝑓2 = (𝑓1 ∘ 𝜋1, 𝑓2 ∘ 𝜋2),

and a similar one holds for the product 𝑔1 × 𝑔2.

The hypothesis 𝑓1 ≃ 𝑔1 implies 𝑓1 ∘ 𝜋1 ≃ 𝑔1 ∘ 𝜋1, and similarly, 𝑓2 ∘ 𝜋2 ≃ 𝑔2 ∘ 𝜋2.
Using the equalities of the previous paragraph together with the Proposition 2.2.7 we get

𝑓1 × 𝑓2 = (𝑓1 ∘ 𝜋1, 𝑓2 ∘ 𝜋2) ≃ (𝑔1 ∘ 𝜋1, 𝑔2 ∘ 𝜋2) = 𝑔1 × 𝑔2. �

We have dual results for coproducts too.

2.2.9 Proposition. Let 𝑋1, 𝑋2 and 𝑌 be spaces, and consider maps 𝑓1, 𝑔1 : 𝑋1 → 𝑌

and 𝑓2, 𝑔2 : 𝑋2 → 𝑌 . If 𝑓1 ≃ 𝑔1 and 𝑓2 ≃ 𝑔2, then the induced maps ⟨𝑓1, 𝑓2⟩, ⟨𝑔1, 𝑔2⟩ :
𝑋1 ⊔𝑋2 → 𝑌 are homotopic.

Proof. In this proof we regard homotopies as families of paths. Let 𝐷1 : 𝑋1 → Map(𝐼, 𝑌 )
and 𝐷2 : 𝑋2 → Map(𝐼, 𝑌 ) be the families of paths induced by the homotopies 𝑓1 ≃ 𝑔1

and 𝑓2 ≃ 𝑔2, respectively. The universal property of the coproduct then gives us the map

⟨𝐷1, 𝐷2⟩ : 𝑋1 ⊔𝑋2 → Map(𝐼, 𝑌 ).
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We need to check that the diagram below commutes.

𝑌

𝑋1 ⊔𝑋2 Map(𝐼, 𝑌 )

𝑌

⟨𝐷1,𝐷2⟩

𝑓1⊔𝑓2

𝑔1⊔𝑔2

ev0,𝑌

ev1,𝑌

If 𝑗1 and 𝑗2 are the canonical injections into 𝑋1⊔𝑋2, by the defining properties of ⟨𝐷1, 𝐷2⟩
we have

ev0,𝑌 ∘ ⟨𝐷1, 𝐷2⟩ ∘ 𝑗1 = ev0,𝑌 ∘𝐷1

= 𝑓1,

and similarly,
ev0,𝑌 ∘ ⟨𝐷1, 𝐷2⟩ ∘ 𝑗2 = 𝑓2.

These two equalities together imply

ev0,𝑌 ∘ ⟨𝐷1, 𝐷2⟩ = ⟨𝑓1, 𝑓2⟩,

and by a completely analogous reasoning we also have the equality

ev1,𝑌 ∘ ⟨𝐷1, 𝐷2⟩ = ⟨𝑔1, 𝑔2⟩;

showing that ⟨𝐷1, 𝐷2⟩ induces a homotopy ⟨𝑓1, 𝑓2⟩ ≃ ⟨𝑔1, 𝑔2⟩. �

2.2.10 Corollary. The coproduct functor ⊔ : Top × Top → Top respects homotopies.
More precisely, for any spaces 𝑋1, 𝑋2, 𝑌1 and 𝑌2, and for any maps 𝑓1, 𝑔1 : 𝑋1 → 𝑌1 and
𝑓2, 𝑔2 : 𝑋2 → 𝑌2, if 𝑓1 ≃ 𝑔1 and 𝑓2 ≃ 𝑔2, then we also have a homotopy 𝑓1 ⊔ 𝑓2 ≃ 𝑔1 ⊔ 𝑔2.

Proof. Let 𝑗′
1 and 𝑗′

2 be the canonical injections into 𝑌1 ⊔ 𝑌2. The coproduct 𝑓1 ⊔ 𝑓2 is the
universal map induced by the maps 𝑗′

1 ∘ 𝑓1 : 𝑋1 → 𝑌1 ⊔𝑌2 and 𝑗′
2 ∘ 𝑓2 : 𝑋2 → 𝑌1 ⊔𝑌2, that

is, we have an equality
𝑓1 ⊔ 𝑓2 = ⟨𝑗′

1 ∘ 𝑓1, 𝑗
′
2 ∘ 𝑓2⟩,

and there is also a similar description of the coproduct 𝑔1 ⊔ 𝑔2.

The hypothesis 𝑓1 ≃ 𝑔1 implies 𝑗′
1∘𝑓1 ≃ 𝑗′

1∘𝑔1, and similarly, 𝑗′
2∘𝑓2 ≃ 𝑗′

2∘𝑔2. Using
these relations, together with the equalities of the previous paragraph, and applying the
result of Proposition 2.2.9, we see that

𝑓1 ⊔ 𝑓2 = ⟨𝑗′
1 ∘ 𝑓1, 𝑗

′
2 ∘ 𝑓2⟩ ≃ ⟨𝑗′

1 ∘ 𝑔1, 𝑗
′
2 ∘ 𝑔2⟩ = 𝑔1 ⊔ 𝑔2. �
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Another important class of functor to consider is the one formed by the functors
which identify homotopic maps, or in other words, functors that transform homotopy
relations into equality relations. We will refer to these functors as homotopy functors.

The most important homotopy functors that we will deal with in this text are the
homotopy group functors, but there is a simpler example that we can talk about now.

2.2.11 Example (The path-components functor). Given any space 𝑋, we denote by
𝜋0(𝑋) its set of path-components. Given another space 𝑌 together with a map 𝑓 , if
𝑥1, 𝑥2 ∈ 𝑋 are two points which belong to the same path-component, then there is a
path 𝛾 : 𝐼 → 𝑋 from 𝑥1 to 𝑥2. Using 𝑓 we can define a path 𝑓 ∘ 𝛾 : 𝐼 → 𝑌 joining 𝑓(𝑥1)
to 𝑓(𝑥2), so these points belong to the same path-component of 𝑌 . This shows that we
have a well-defined function 𝜋0(𝑓) : 𝜋0(𝑋)→ 𝜋0(𝑌 ) given by 𝜋0(𝑓)([𝑥]) := [𝑓(𝑥)].

A straightforward calculation shows that this construction preserves identities and
composition, so it gives rise to a functor 𝜋0 : Top → Set called the path-components
functor.

We now show that 𝜋0 is a homotopy functor, that is, if 𝑓, 𝑔 : 𝑋 → 𝑌 are homotopic
maps, we must show that the induced functions coincide 𝜋0(𝑓), 𝜋0(𝑔) : 𝜋0(𝑋) → 𝜋0(𝑌 )
are equal. Let 𝐷 : 𝑋 → Map(𝐼, 𝑌 ) be the family of paths induced by a homotopy 𝑓 ≃ 𝑔.
For any point 𝑥 ∈ 𝑋, since 𝐷(𝑥) : 𝐼 → 𝑌 is a path from 𝑓(𝑥) to 𝑔(𝑥), these points belong
to the same path-component of 𝑌 , therefore we can write the equalities

𝜋0(𝑓)([𝑥]) = [𝑓(𝑥)] = [𝑔(𝑥)] = 𝜋0(𝑔)([𝑥]).

Since this holds for any point 𝑥 ∈ 𝑋, we deduce that 𝜋0(𝑓) = 𝜋0(𝑔).

The fact that 𝜋0 identifies homotopical maps means that it can be thought of as
a functor of homotopy types instead of a functor of spaces. More precisely, 𝜋0 induces a
functor 𝜋0 : HoTop → Set which sends a space 𝑋 to 𝜋0(𝑋) := 𝜋0(𝑋), and which sends
a homotopy class [𝑓 ] : 𝑋 → 𝑌 to the induced function 𝜋0([𝑓 ]) := 𝜋0(𝑓). In particular 𝜋0

transforms homotopy equivalences (isomorphisms in HoTop) into bijections (isomorphisms
in Set).

2.3 Contractions, null homotopies and extensions

In this section we are interested in maps which are homotopic to constant ones.
We first present a particular case of this notion and then generalize it and show how the
generalization relates to the particular one. Using this relation we prove an important
result that can be regarded as a first step towards Obstruction Theory.

We begin by introducing a convenient notation.
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2.3.1 Definition. Given two spaces 𝑋 and 𝑌 and a point 𝑦 ∈ 𝑌 , we denote by ct𝑋,𝑦 :
𝑋 → 𝑌 the constant map defined as ct𝑋,𝑦(𝑥) := 𝑦 for every 𝑥 ∈ 𝑋.

We use the rather verbose notation ct𝑋,𝑦 to avoid confusion when working with
multiple constant maps defined on different spaces. If the domain of the constant map
has a complicated notation (like a product of mapping spaces), then we usually drop it
from the notation.

2.3.2 Definition. A space 𝑋 is said to be contractible if there exists a point 𝑥0 ∈ 𝑋
such that id𝑋 ≃ ct𝑋,𝑥0 . A particular choice of homotopy 𝐻 : id𝑋 ⇒ ct𝑋,𝑥0 is called a
contraction of 𝑋.

Unpacking the definition, if 𝑋 is contractible, then there exists a point 𝑥0 ∈ 𝑋

and a map 𝐻 : 𝑋 × 𝐼 → 𝑋 such that 𝐻(𝑥, 0) = 𝑥 and 𝐻(𝑥, 0) = 𝑥0 for every 𝑥 ∈ 𝑋.
Geometrically, this means that, as time passes by, the map 𝐻 deforms the whole space 𝑋
to the single point 𝑥0, that is, the space is contracted to this point.

The next result shows that, from the point of view of homotopy theory, a con-
tractible space is indistinguishable from a point.

2.3.3 Proposition. A space is contractible if and only if it is homotopy equivalent to a
point.

Proof. Suppose 𝑋 is contractible, and let 𝐻 : id𝑋 ⇒ ct𝑋,𝑥0 be a contraction to a point
𝑥0 ∈ 𝑋. Let ct𝑋,pt : 𝑋 → {pt} be the unique map to the singleton space, and consider
also the map ct{pt},𝑥0 : {pt} → 𝑋 mapping pt to 𝑥0. These two maps are homotopy
inverses. On the one hand, the composition ct𝑋,pt ∘ct{pt},𝑥0 is already equal to the identity
of {pt}, and on the other hand, the composition ct{pt},𝑥0 ∘ ct𝑋,pt is equal to the constant
map ct𝑋,𝑥0 , which is homotopic to id𝑋 by hypothesis.

Conversely, suppose 𝑋 is homotopy equivalent to {pt}, and let 𝑓 : 𝑋 → {pt}
and 𝑔 : {pt} → 𝑋 be homotopy inverses. We claim that 𝑋 can be contracted to the
point 𝑥0 := 𝑔(pt). Indeed, since 𝑓 and 𝑔 are homotopy inverses, the composition 𝑔 ∘ 𝑓
is homotopic to the identity id𝑋 , but 𝑔 ∘ 𝑓 is equal to ct𝑋,𝑥0 , thus we have the desired
homotopy relation id𝑋 ≃ ct𝑋,𝑥0 . �

2.3.4 Corollary. Every contractible space is path-connected.

Proof. We give two different proofs of this simple result using different tools we have
developed so far. For the first proof, let 𝐻 : id𝑋 ⇒ ct𝑋,𝑥0 be a contraction of 𝑋, and let
𝐷 : 𝑋 → Map(𝐼,𝑋) be the adjoint family of paths induced by this contraction. For every
𝑥 ∈ 𝑋, 𝐷(𝑥) is a path from id𝑋(𝑥) = 𝑥 to ct𝑋,𝑥0(𝑥) = 𝑥0, so every point can be joined to
𝑥0 by a path, which means that 𝑋 is path-connected.
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Alternatively, Proposition 2.3.3 implies that we have a homotopy equivalence 𝑋 ≃
{pt}. Since the path-components functor 𝜋0 : Top→ Set of Example 2.2.11 is a homotopy
functor, we have a bijection 𝜋0(𝑋) ∼= 𝜋0({pt}). Since 𝜋0({pt}) has only one element, it
follows from the previous bijection that 𝜋0(𝑋) also has only one element, or in other words,
𝑋 has only one path-component, which means precisely that 𝑋 is path-connected. �

The concept of contraction can be generalized if we replace id𝑋 by an arbitrary
map.

2.3.5 Definition. A map 𝑓 : 𝑋 → 𝑌 between spaces is null homotopic if there exists
a point 𝑦 ∈ 𝑌 such that 𝑓 ≃ ct𝑋,𝑦. A particular choice of homotopy 𝐻 : 𝑓 ⇒ ct𝑋,𝑦𝑦 is
called a null homotopy.

Unpacking the definition, if 𝑓 : 𝑋 → 𝑌 is null homotopic, then there exists a point
𝑦 ∈ 𝑌 and a map 𝐻 : 𝑋 × 𝐼 → 𝑌 such that

1. 𝐻(𝑥, 0) = 𝑓(𝑥) for every 𝑥 ∈ 𝑋;

2. 𝐻(𝑥, 1) = 𝑦 for every 𝑥 ∈ 𝑋.

Notice then that a space 𝑋 is contractible precisely if id𝑋 : 𝑋 → 𝑋 is null
homotopic.

Thinking of 𝑋 × 𝐼 geometrically as a cylinder, the null homotopy 𝐻 glues the
lower face 𝑋 × {0} to the image of 𝑓 and collapses the upper face 𝑋 × {1} to a single
point which is then glued to the point 𝑦. This collapsing process suggests the following
construction.

2.3.6 Definition. Given a space 𝑋, its cone, denoted by 𝐶𝑋, is the quotient space

𝐶𝑋 := 𝑋 × 𝐼
𝑋 × {1} .

The point * ∈ 𝐶𝑋 obtained by collapsing the subspace 𝑋 × {1} is called the vertex of
the cone.

There is an important connection between the cone construction and null homo-
topic maps, but in order to understand this connection we first need a result on the
homotopical properties of cones.

2.3.7 Proposition. The cone 𝐶𝑋 of any space 𝑋 is contractible.



68 Chapter 2. Basic notions of Homotopy Theory

Proof. Since 𝐶𝑋 is obtained from 𝑋×𝐼 by collapsing the subspace 𝑋×{1}, the diagram
below is a pushout of spaces,

𝑋 × {1} {pt}

𝑋 × 𝐼 𝐶𝑋

ctpt

ct*

𝑞

where 𝑞 is the canonical projection, 𝑋 × {1}� 𝑋 × 𝐼 denotes an inclusion, and the two
other maps are the appropriate constant ones.

The exponential adjunction tells us that the functor −×𝐼 is a left adjoint, therefore
it preserves colimits, and since a pushout is a particular instance of a colimit, the square
below is still a pushout of spaces.

(𝑋 × {1})× 𝐼 {pt} × 𝐼

(𝑋 × 𝐼)× 𝐼 𝐶𝑋 × 𝐼

ctpt×id𝐼

ct*×id𝐼

𝑞×id𝐼

This is useful because we can exploit the universal property of the pushout to obtain a map
out of type 𝐶𝑋 × 𝐼 → 𝐶𝑋 out of simpler maps (𝑋 × 𝐼)× 𝐼 → 𝐶𝑋 and {pt}× 𝐼 → 𝐶𝑋.

Consider then the map 𝑇 : (𝑋 × 𝐼)× 𝐼 → 𝐶𝑋 defined as

𝑇 ((𝑥, 𝑠), 𝑡) := 𝑞(𝑥, (1− 𝑡)𝑠+ 𝑡)

for every ((𝑥, 𝑠), 𝑡) ∈ (𝑋 × 𝐼)× 𝐼. Given a point ((𝑥, 1), 𝑡) ∈ (𝑋 × {1})× 𝐼, we have

𝑇 ((𝑥, 1), 𝑡) = 𝑞(𝑥, 1− 𝑡+ 𝑡) = 𝑞(𝑥, 1) = *.

It follows that the “outer shell” of the diagram below commutes, and the universal property
of the pushout then gives us the map 𝐻 : 𝐶𝑋 × 𝐼 → 𝐶𝑋 depicted.

(𝑋 × {1})× 𝐼 {pt} × 𝐼

(𝑋 × 𝐼)× 𝐼 𝐶𝑋 × 𝐼

𝐶𝑋

ctpt×id𝐼

ct*×id𝐼

ct*

𝑞×id𝐼

𝑇

𝐻

Given any point 𝑞(𝑥, 𝑠) ∈ 𝐶𝑋, we have

𝐻(𝑞(𝑥, 𝑠), 0) = (𝐻 ∘ (𝑞 × id𝐼))((𝑥, 𝑠), 0)

= 𝑇 ((𝑥, 𝑠), 0)

= 𝑞(𝑥, (1− 0)𝑠+ 0)

= 𝑞(𝑥, 𝑠),
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therefore 𝐻 ∘ 𝑖𝐶𝑋,0 = id𝐶𝑋 . Now, for the final stage of 𝐻 we have

𝐻(𝑞(𝑥, 𝑠), 1) = (𝐻 ∘ (𝑞 × id𝐼))((𝑥, 𝑠), 1)

= 𝑇 ((𝑥, 𝑠), 1)

= 𝑞(𝑥, (1− 1)𝑠+ 1)

= 𝑞(𝑥, 1)

= *,

therefore 𝐻 ∘ 𝑖𝐶𝑋,1 = ct*. The map 𝐻 then defines a homotopy from id𝐶𝑋 to the constant
map ct* : 𝐶𝑋 → 𝐶𝑋, proving the contractibility of 𝐶𝑋. �

Using this we can prove an important theorem relating null homotopic maps and
cones.

2.3.8 Theorem. A map 𝑓 : 𝑋 → 𝑌 between spaces is null homotopic if, and only if,
there is a map 𝐹 : 𝐶𝑋 → 𝑌 such that 𝑓 = 𝐹 ∘ 𝑖.

𝐶𝑋

𝑋 𝑌

𝐹

𝑓

𝑖

Proof. Suppose first that a map 𝐹 : 𝐶𝑋 → 𝑌 satisfying the stated conditions exist. Using
Proposition 2.3.7 we know that id𝐶𝑋 ≃ ct𝐶𝑋,𝑣, where 𝑣 is the vertex of 𝐶𝑋, and since
homotopies are compatible with function composition, we have

𝑓 = 𝐹 ∘ 𝑖

= (𝐹 ∘ id𝐶𝑋) ∘ 𝑖

≃ (𝐹 ∘ ct𝐶𝑋,𝑣) ∘ 𝑖

= ct𝐶𝑋,𝐹 (𝑣) ∘ 𝑖

= ct𝑋,𝐹 (𝑣);

therefore 𝑓 is null homotopic.

Conversely, suppose 𝑓 is null homotopic and consider a null homotopy 𝐻 : 𝑓 ⇒
ct𝑋,𝑦 for some point 𝑦 ∈ 𝑌 . The map 𝐻 : 𝑋 × 𝐼 → 𝑌 sends any point of the form
(𝑥, 1) ∈ 𝑋 × 𝐼 to 𝑦, therefore it can be factored through the cone 𝐶𝑋 giving rise to a
map 𝐹 : 𝐶𝑋 → 𝑌 . This is desired map because

𝐹 ∘ 𝑖 = 𝐹 ∘ 𝑝 ∘ 𝑖𝑋,0
= 𝐻 ∘ 𝑖𝑋,0
= 𝑓. �
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We are especially interested in applying the result of Theorem 2.3.8 in the case
where 𝑋 = 𝑆𝑛, but for this we need to better understand the cone 𝐶𝑆𝑛. The next lemma
will help us with this.

2.3.9 Lemma. The map 𝑝 : 𝑆𝑛 × 𝐼 → 𝐷𝑛+1 given by 𝑝(𝑥, 𝑡) := (1 − 𝑡)𝑥 for every
(𝑥, 𝑡) ∈ 𝑆𝑛 × 𝐼 is a quotient map.

Proof. The product 𝑆𝑛 × 𝐼 is compact, and 𝐷𝑛+1 is a Hausdorff space, therefore 𝑝 is
a closed map. Moreover, 𝑝 is also surjective, since 0 = 𝑝(𝑥, 1) for any 𝑥 ∈ 𝑆𝑛, and, if
𝑦 ∈ 𝐷𝑛+1 ∖ {0}, then

𝑦 = ‖𝑦‖ 𝑦

‖𝑦‖
= (1− (1− ‖𝑦‖)) 𝑦

‖𝑦‖
= 𝑝

(︃
𝑦

‖𝑦‖
, 1− ‖𝑦‖

)︃
.

The result then follows from the fact that every closed and surjective map is a quotient
map. �

Using this we compare the cone over a sphere to another familiar space.

2.3.10 Lemma. For every 𝑛 ≥ 0 there is a homeomorphism 𝐶𝑆𝑛 ∼= 𝐷𝑛+1 which maps
the vertex of 𝐶𝑆𝑛 to the center of 𝐷𝑛+1.

Proof. Consider the map 𝛼 : 𝑆𝑛 × 𝐼 → 𝐷𝑛+1 defined as

𝛼(𝑥, 𝑡) := (1− 𝑡) · 𝑥.

This maps the subset 𝑆𝑛 × {1} to 0 - the center of the disk 𝐷𝑛+1 - therefore it can be
factored through the cone to define a map 𝛼 : 𝐶𝑆𝑛 → 𝐷𝑛+1. Explicitly, 𝛼([𝑥, 𝑡]) = (1−𝑡)𝑥
for every [𝑥, 𝑡] ∈ 𝐶𝑆𝑛.

We now construct an inverse to 𝛼. Consider the function 𝛽 : 𝐷𝑛+1 → 𝐶𝑆𝑛 defined
as follows:

𝛽(𝑥) :=

⎧⎪⎪⎨⎪⎪⎩
𝑣, 𝑥 = 0;[︃
𝑥

‖𝑥‖
, 1− ‖𝑥‖

]︃
, 𝑥 ̸= 0.

A direct calculation shows that 𝛽 is exactly the inverse of 𝛼, but we still need to show that
𝛽 is continuous. Consider then the composite map 𝛽∘𝑝 : 𝑆𝑛+1×𝐼, where 𝑝 : 𝑆𝑛×𝐼 → 𝐷𝑛+1

is the quotient map of Lemma 2.3.9. Another direct calculation shows that

(𝛽 ∘ 𝑝)(𝑥, 𝑡) =

⎧⎨⎩𝑣, (𝑥, 𝑡) ∈ 𝑆𝑛 × {1};

[𝑥, 𝑡], (𝑥, 𝑡) ∈ 𝑆𝑛 × 𝐼 ∖ 𝑆𝑛 × {1}.

But this means that the composition 𝛽 ∘ 𝑝 coincides with the canonical projection 𝑞 :
𝑆𝑛×𝐼 → 𝐶𝑆𝑛, so 𝛽 ∘𝑝 is continuous. The continuity of 𝛽 then follows from the continuity
of 𝛽 ∘ 𝑝 and from the fact that 𝑝 is a quotient map. �
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2.3.11 Corollary. Let 𝑋 be an arbitrary space. A map 𝑓 : 𝑆𝑛 → 𝑋 is null homotopic if,
and only if, it admits an extension 𝐹 : 𝐷𝑛+1 → 𝑋.

Proof. We know from Theorem 2.3.8 that 𝑓 is null homotopic if, and only if, there exists
a map 𝐺 : 𝐶𝑆𝑛 → 𝑋 factoring 𝑓 through the inclusion 𝑖 : 𝑆𝑛 → 𝐶𝑆𝑛. We claim
that this map 𝐺 exists if, and only if, there exists an extension 𝐹 : 𝐷𝑛+1 → 𝑋 of 𝑓 .
Indeed, if 𝛼 : 𝐶𝑆𝑛 → 𝐷𝑛+1 is the homeomorphism constructed in Lemma 2.3.10, then
given an extension 𝐹 : 𝐷𝑛+1 → 𝑋, the composition 𝐹 ∘ 𝛼 : 𝐶𝑆𝑛 → 𝑋 is the desired
factorization of 𝑓 trough 𝑖 : 𝑆𝑛 → 𝐶𝑆𝑛; and if we are given 𝐺 : 𝐶𝑆𝑛 → 𝑋 factoring 𝑓 ,
then 𝐹 ∘ 𝛼−1 : 𝐷𝑛+1 → 𝑋 is the desired extension of 𝑓 . �

This result can be regarded as the origin of Obstruction Theory. It basically says
that the topological question of the existence of an extension of a map of type 𝑆𝑛 → 𝑋 to
a map of type 𝐷𝑛+1 → 𝑋 depends on the homotopical properties of the map 𝑓 . This may
not seem like a very useful result because so far we have not yet developed techniques
allowing us to study the homotopical properties of maps, but over the course of the next
chapters we will see that these homotopical properties have an algebraic side that allows
us to better understand them.
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CHAPTER

3
POINTED SPACES

This chapter introduces the notion of a pointed space, which is the natural context
for the definition of the homotopy groups later on. The goal of the chapter is to understand
better the category Top* of pointed space and pointed maps, and also to adapt some results
and construction from unpointed spaces to the pointed context.

The first section contains the basic definitions and examples of pointed spaces and
pointed maps. In the second section, we introduce the space of pointed maps Map*(𝑋,𝑌 )
between two pointed spaces, and we prove a pointed version of the exponential adjunction.
In the course of this section we are naturally led to the smash product operation between
two pointed spaces. The third section contains further results of a categorical nature
concerning the smash product. We prove, in particular, that it satisfies some “algebraic”
properties similar to the ones satisfied by the usual cartesian product. In the final section,
we explicitly calculate some smash products, and in the process introduce the reduced
suspension and loop space constructions, which are related by an adjunction relation
known as Eckmann-Hilton Duality.

3.1 The category of pointed spaces

This first section is devoted to basic definitions and examples.

3.1.1 Definition. A pointed space is a pair (𝑋, *) where 𝑋 is a topological space and
* is a point of 𝑋 called the basepoint.

Of course any space can be seen as a pointed space if we arbitrarily choose one of
its points as basepoint, but without extra information there is no way to naturally make
such a choice. However, for some families of spaces, there are useful choices of basepoints
that are frequently made.
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3.1.2 Example. The 𝑛-dimensional sphere 𝑆𝑛 is often seen as a pointed space by choosing
the point (1, 0, . . . , 0) as basepoint.

3.1.3 Example. The unit interval 𝐼 is often regarded as a pointed space by choosing
either 0 or 1 as basepoint. When we need to consider 𝐼 as a pointed space, we always
make our choice of basepoint explicit.

3.1.4 Example. If 𝐺 is a topological group, there’s the pointed space (𝐺, 𝑒), where 𝑒 is
the identity element.

3.1.5 Example. Let (𝑋,𝐴) be a pair of spaces. A reasonable choice of basepoint for the
quotient 𝑋/𝐴 is the point to which the subspace 𝐴 is identified, that is, we consider the
pointed space (𝑋/𝐴, [𝑎]) where 𝑎 ∈ 𝐴 is arbitrary.

We now define a notion of transformation between pointed spaces.

3.1.6 Definition. Let (𝑋, 𝑥0) and (𝑌, 𝑦0) be pointed spaces. A map 𝑓 : 𝑋 → 𝑌 is
pointed if it satisfies 𝑓(𝑥0) = 𝑦0. We also say that 𝑓 preserves basepoints and write
𝑓 : (𝑋, 𝑥0)→ (𝑌, 𝑦0).

3.1.7 Example. If (𝑋, *) is any pointed space, then the identity map id𝑋 : 𝑋 → 𝑋 is
pointed.

3.1.8 Example. If 𝑖 : 𝑆𝑛 → 𝑆𝑛+1 is the embedding of 𝑆𝑛 as the equator of 𝑆𝑛+1, then 𝑖

is pointed map, where the spheres are pointed as in Example 3.1.2.

3.1.9 Example. Regard the circle 𝑆1 as the space of unitary complex numbers. The oper-
ation of multiplication of complex numbers defines a pointed map 𝑚 : (𝑆1× 𝑆1, (1, 1))→
(𝑆1, 1). More generally, if (𝐺, 𝑒) is a topological group, then its multiplication defines a
pointed map 𝑚 : (𝐺×𝐺, (𝑒, 𝑒))→ (𝐺, 𝑒).

We saw in Example 3.1.7 that, if (𝑋, *) is a pointed space, then the identity id𝑋
defines a pointed map (𝑋, *)→ (𝑋, *). Moreover, a straightforward argument shows that
the composition of two pointed maps is again pointed, and this composition is of course
associative. It follows that we have a category whose objects are pointed spaces and
whose morphisms are pointed maps. This category will be denoted by Top*. Following our
notational convention for collections of morphisms in a category, given two pointed spaces
(𝑋, 𝑥0) and (𝑌, 𝑦0), Top*((𝑋, 𝑥0), (𝑌, 𝑦0)) denotes the set of pointed maps from (𝑋, 𝑥0) to
(𝑌, 𝑦0). We sometimes omit the basepoints of 𝑋 and 𝑌 and write simply Top*(𝑋,𝑌 ), but
we always include the asterisk lest we forget about the poor basepoints.

3.1.10 Example. In a topological vector space 𝑋, since translation by a vector defines
a map 𝑋 → 𝑋, given two vectors 𝑥, 𝑥′ ∈ 𝑋, translation by 𝑥′− 𝑥 defines an isomorphism
(𝑋, 𝑥) ≃ (𝑋, 𝑥′) in Top*.
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3.1.11 Example. If 𝑋 is a disconnected space, and 𝑥, 𝑥′ ∈ 𝑋 are not in the same
connected component, then Top*((𝑋, 𝑥), (𝑋, 𝑥′)) = ∅. In particular, the pointed spaces
(𝑋, 𝑥) and (𝑋, 𝑥′) are not isomorphic.

We now discuss some properties of the category Top*.

3.1.12 Proposition. Let {pt} denote any singleton space. The pointed space ({pt}, pt)
is both an initial and terminal object of Top*.

Proof. Let (𝑋, 𝑥0) be a pointed space. Any map defined on {pt} → 𝑋 is continuous, and
if we ask for it to be pointed, then there is a unique one given by mapping * to 𝑥0; showing
that ({pt}, pt) is an initial object in Top*.

There is a single map from 𝑋 to {pt} given by the constant map ct𝑋,pt, and since
this map is pointed, it follows that there is a unique pointed map (𝑋, 𝑥0)→ ({𝑝𝑡}, pt), so
this pointed space is a terminal object in Top*. �

This is an interesting distinction of Top and Top*. While the former has distinct
initial and terminal objects, in the latter these two notions coincide.

Let us now analyze products in Top*. Given two pointed spaces (𝑋, 𝑥0) and (𝑌, 𝑦0),
the usual product 𝑋 × 𝑌 has a reasonable choice of basepoint: the ordered pair (𝑥0, 𝑦0)
combining the two basepoints. This is a good choice, because it turns the canonical pro-
jections 𝑝1 : 𝑋×𝑌 → 𝑋 and 𝑝2 : 𝑋×𝑌 → 𝑌 into pointed maps. Moreover, given another
pointed space (𝑍, 𝑧0) and pointed maps 𝑓 : (𝑍, 𝑧0) → (𝑋, 𝑥0) and 𝑔 : (𝑍, 𝑧0) → (𝑌, 𝑦0),
the usual induced map (𝑓, 𝑔) : 𝑍 → 𝑋 × 𝑌 is pointed, since

(𝑓, 𝑔)(𝑧0) = (𝑓(𝑧0), 𝑔(𝑧0)) = (𝑥0, 𝑦0).

This proves the next result stating that the pointed space (𝑋 × 𝑌, (𝑥0, 𝑦0)) behaves as it
should.

3.1.13 Proposition. The category Top* has all binary products. More precisely, given
two pointed spaces (𝑋, 𝑥0) and (𝑌, 𝑦0), the pointed space (𝑋 × 𝑌, (𝑥0, 𝑦0)) together with
the usual canonical projections defines a product of (𝑋, 𝑥0) and (𝑌, 𝑦0) in Top*.

Lastly, the situation with coproducts in Top* is more interesting and plays an
important role in the next sections. In Top, coproducts are given by disjoint unions. If we
try to do this in Top* we immediately run into a problem: given pointed spaces (𝑋, 𝑥0)
and (𝑌, 𝑦0), what is the right choice of basepoint for the disjoint union 𝑋 ⊔ 𝑌 ? The two
choices that first come to mind are to choose either 𝑥0 or 𝑦0 as basepoint. However, if we
choose 𝑥0, then the canonical injection 𝑖2 : 𝑌 → 𝑋⊔𝑌 does not preserve basepoints, while
if we choose 𝑦0, then an analogous problem occurs with the injection 𝑖1 : 𝑋 → 𝑋 ⊔ 𝑌 .
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The solution of this problem is not to choose one or the other, but to modify the space
𝑋 ⊔ 𝑌 in a way that allows us to make both choices at once.

3.1.14 Definition. Given two pointed spaces (𝑋, *𝑋) and (𝑌, *𝑌 ), their wedge sum is
the space defined as

𝑋 ∨ 𝑌 := (𝑋 ⊔ 𝑌 )/{𝑖1(*𝑋), 𝑖2(*𝑌 )},

where 𝑖1 and 𝑖2 are the canonical injections into the disjoint union. It becomes a pointed
space by defining its basepoint as

*𝑋∨𝑌 := [𝑖1(*𝑋)] = [𝑖2(*𝑌 )].

If 𝑞 : 𝑋 ⊔ 𝑌 → 𝑋 ∨ 𝑌 denotes the canonical projection, we define the maps
𝑗1 : 𝑋 → 𝑋 ∨ 𝑌 and 𝑗2 : 𝑌 → 𝑋 ∨ 𝑌 by the formulas 𝑗1 := 𝑞 ∘ 𝑖1 and 𝑗2 := 𝑞 ∘ 𝑖2.

𝑋

𝑋 ⊔ 𝑌 𝑋 ∨ 𝑌

𝑌

𝑖1

𝑗1

𝑞

𝑖2

𝑗2

Geometrically, the wedge sum glues the pointed spaces (𝑋, *𝑋) and (𝑌, *𝑌 ) by
their basepoints. This can also be stated categorically by saying that the wedge sum fits
into the pushout square below.

{pt} 𝑋

𝑌 𝑋 ∨ 𝑌

ct{pt},*𝑋

ct{pt},*𝑌
𝑗1

𝑗2

Indeed, if 𝑍 is another space, and 𝑓 : 𝑋 → 𝑍 and 𝑔 : 𝑌 → 𝑍 are maps satisfying
𝑓 ∘ ct{pt},*𝑋

= 𝑔 ∘ ct{pt},*𝑌
, which means that 𝑓(*𝑋) = 𝑔(*𝑌 ), then the induced map

⟨𝑓, 𝑔⟩ : 𝑋 ⊔ 𝑌 → 𝑍 satisfies ⟨𝑓, 𝑔⟩(𝑖1(*𝑋)) = ⟨𝑓, 𝑔, ⟩(𝑖2(*𝑌 )), so it factors through the
quotient to define a map ℎ : 𝑋 ∨ 𝑌 → 𝑍 which satisfies

ℎ ∘ 𝑗1 = ℎ ∘ 𝑞 ∘ 𝑖1 = ⟨𝑓, 𝑔, ⟩ ∘ 𝑖1 = 𝑓,

and also
ℎ ∘ 𝑗2 = ℎ ∘ 𝑞 ∘ 𝑖2 = ⟨𝑓, 𝑔⟩ ∘ 𝑖2 = 𝑔.

This property, however, only concerns the space 𝑋 ∨ 𝑌 , it does not involve the
choice of basepoint that we made. The next result characterizes the pointed space (𝑋 ∨
𝑌, *𝑋∨𝑌 ) by a universal property in Top*.
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3.1.15 Proposition. Let (𝑋, *𝑋) and (𝑌, *𝑌 ) be pointed spaces. The triple

((𝑋 ∨ 𝑌, *𝑋∨𝑌 ), 𝑗1, 𝑗2)

defines a coproduct for (𝑋, *𝑋) and (𝑌, *𝑌 ) in Top*.

Proof. Let (𝑍, *𝑍) be a pointed space, and let 𝑓 : (𝑋, *𝑋) → (𝑍, *𝑍) and 𝑔 : (𝑌, *𝑌 ) →
(𝑍, *𝑍) be pointed maps. The induced map ⟨𝑓, 𝑔⟩ : 𝑋 ⊔ 𝑌 → 𝑍 satisfies

⟨𝑓, 𝑔⟩(𝑗1(*𝑋)) = 𝑓(*𝑋) = *𝑍 ,

and also
⟨𝑓, 𝑔⟩(𝑗2(*𝑌 )) = 𝑔(*𝑌 ) = *𝑍 ,

so it factors through the quotient and defines a map ⟨𝑓, 𝑔⟩ : 𝑋 ∨𝑌 → 𝑍. This is a pointed
map because

⟨𝑓, 𝑔⟩(*𝑋∨𝑌 ) = ⟨𝑓, 𝑔, ⟩(𝑞(𝑗1(*𝑋))) = ⟨𝑓, 𝑔⟩(𝑗1(𝑥)) = *𝑍 .

It also factors 𝑓 and 𝑔 through 𝑗1 and 𝑗2 since

⟨𝑓, 𝑔, ⟩ ∘ 𝑗1 = ⟨𝑓, 𝑔, ⟩ ∘ 𝑞 ∘ 𝑖1 = ⟨𝑓, 𝑔⟩ ∘ 𝑖1 = 𝑓,

and, similarly, ⟨𝑓, 𝑔⟩ ∘ 𝑗2 = 𝑔.

Now, if ℎ : (𝑋 ∨ 𝑌, *𝑋∨𝑌 )→ (𝑍, *𝑍) is another pointed map satisfying ℎ ∘ 𝑗1 = 𝑓

and ℎ ∘ 𝑗2 = 𝑔, then the composition ℎ ∘ 𝑞 satisfies (ℎ ∘ 𝑞) ∘ 𝑖1 = 𝑓 and (ℎ ∘ 𝑞) ∘ 𝑖2 = 𝑔,
so ℎ ∘ 𝑞 = ⟨𝑓, 𝑔⟩ by the universal property of the coproduct in Top. This last equality
implies ℎ = ⟨𝑓, 𝑔⟩ because by the universal property of the quotient space, ⟨𝑓, 𝑔⟩ is the
only map that factors ⟨𝑓, 𝑔⟩ through the quotient map 𝑞. We conclude that the map ⟨𝑓, 𝑔⟩
we defined is the only one factoring 𝑓 and 𝑔 through 𝑗1 and 𝑗2. �

3.2 The return of the exponential adjunction
In Section 1.1 we learned that products and mapping spaces are related by an

adjunction. Formally, we proved two different versions of this result: the first one is a
natural bijection

Top(𝑋 × 𝑌, 𝑍) ∼= Top(𝑋,Map(𝑌, 𝑍)),

when 𝑌 is locally compact Hausdorff, and the second one is a homeomorphism

Map(𝑋 × 𝑌, 𝑍) ∼= Map(𝑋,Map(𝑌, 𝑍))

when both 𝑋 and 𝑌 are locally compact Hausdorff.

In the present section we would like to adapt these results to the category Top* of
pointed spaces. The first question we must answer in order to obtain this generalization is:
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what is the substitute for the space Map(𝑋,𝑌 ) in the pointed case? Since for any pointed
spaces (𝑋, 𝑥0) and (𝑌, 𝑦0) there is an inclusion Top*(𝑋,𝑌 ) ⊆ Top(𝑋,𝑌 ), it makes sense to
turn the set of pointed maps into a space by considering it as a subspace of Map(𝑋,𝑌 ).

3.2.1 Definition. Given pointed spaces (𝑋, 𝑥0) and (𝑌, 𝑦0), we define a topology on
the set of pointed maps Top*(𝑋,𝑌 ) by considering the subspace topology inherited from
Map(𝑋,𝑌 ), and we denote the resulting space of pointed maps by Map*(𝑋,𝑌 ). This
becomes a pointed space itself by choosing the constant map ct𝑋,𝑦0 : (𝑋, 𝑥0)→ (𝑌, 𝑦0) as
a basepoint.

The main functorial properties of Map*(𝑋,𝑌 ) are summarized in the next result.
They essentially follow from the analogous properties satisfied by Map(𝑋,𝑌 ).

3.2.2 Proposition. Let (𝑋, 𝑥0), (𝑌, 𝑦0) and (𝑍, 𝑧0) be pointed spaces, and let 𝑓 : 𝑋 → 𝑌

and 𝑔 : 𝑌 → 𝑍 be pointed maps.

1. The pushforward function along 𝑔

Top*(𝑋, 𝑔) : Top*(𝑋,𝑌 )→ Top*(𝑋,𝑍)

induces a pointed map

Map*(𝑋, 𝑔) : Map*(𝑋,𝑌 )→ Map*(𝑋,𝑍).

2. The pullback function along 𝑓

Top*(𝑓, 𝑍) : Top*(𝑌, 𝑍)→ Top*(𝑋,𝑍)

induces a pointed map

Map*(𝑓, 𝑍) : Map*(𝑌, 𝑍)→ Map*(𝑋,𝑍).

Proof. 1. We know the usual pushforward Map(𝑋, 𝑔) : Map(𝑋,𝑌 ) → Map(𝑋,𝑍) is
continuous, so by restriction we also have a map Map(𝑋, 𝑔)|Map*(𝑋,𝑌 ) : Map*(𝑋,𝑌 ) →
Map(𝑋,𝑍). Since this map takes values in the subspace Map*(𝑋,𝑍) ⊆ Map(𝑋,𝑍), we
may then regard this pushforward as a map of type Map*(𝑋,𝑌 ) → Map*(𝑋,𝑍). Lastly,
since for any 𝑥 ∈ 𝑋 we have the equality

[Map*(𝑋, 𝑔)(ct𝑋,𝑦0)](𝑥) = (𝑔 ∘ ct𝑋,𝑦0)(𝑥) = 𝑔(𝑦0) = 𝑧0,

it follows that Map*(𝑋, 𝑔)(ct𝑋,𝑦0) = ct𝑋,𝑧0 ; therefore Map*(𝑋, 𝑔) defines a pointed map.

2. The proof of this item is analogous to the proof of the previous one. �
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Now we turn our attention to adapting the exponential adjunction to the pointed
case. In an ideal world, the adjunction would work straight away, that is, a pointed map
𝑓 : 𝑋 × 𝑌 → 𝑍 would give rise to a pointed adjoint map 𝜆𝑓 : 𝑋 → Map*(𝑌, 𝑍), and
this rule would define a bijection under suitable topological conditions. The next example,
however, shatters our expectations about this ideal world.

3.2.3 Example. Regard 𝑆1 as the space of unitary complex numbers and consider the
pointed map 𝑚 : (𝑆1 × 𝑆1, (1, 1)) → (𝑆1, 1) given by multiplication. Let 𝜆𝑚 : 𝑆1 →
Map(𝑆1, 𝑆1) be the exponential adjoint. Can 𝜆𝑚 be seen as a pointed map (𝑆1, 1) →
(Map*(𝑆1, 𝑆1), ct𝑆1,1)? The short answer is no, and this is due to two reasons:

1. If 𝑧 ∈ 𝑆1 is such that 𝜆𝑚(𝑧) ∈ Map*(𝑆1, 𝑆1), then we must have

𝑧 = [𝜆𝑚(𝑧)](1) = 1.

This shows that the image of 𝜆𝑚 is not even contained in the subspace of pointed
maps.

2. For any 𝑧 ∈ 𝑆1 we have
[𝜆𝑚(1)](𝑧) = 1𝑧 = 𝑧,

therefore 𝜆𝑚(1) = id𝑆1 which is different from the constant map ct𝑆1,1; showing
that 𝜆𝑚 does not preserve basepoints.

In summary, the example above shows that the exponential adjunction can fail
miserably in the pointed case. Luckily, the two ways in which the example fails are the
only ones possible, and by examining how to avoid these problems we are naturally led to
a new construction which will let us take back the power of the exponential adjunction.

3.2.4 Lemma. Let (𝑋, 𝑥0), (𝑌, 𝑦0) and (𝑍, 𝑧0) be pointed spaces. Given a map 𝑓 : 𝑋 ×
𝑌 → 𝑍, its exponential adjoint 𝜆𝑓 : 𝑋 → Map(𝑌, 𝑍) defines a pointed map of type
(𝑋, 𝑥0)→ (Map(𝑌, 𝑍), ct𝑌,𝑧0) if and only if it satisfies the condition

𝑓(𝑋 × {𝑦0} ∪ {𝑥0} × 𝑌 ) ⊆ {𝑧0}.

Proof. The adjoint 𝜆𝑓 defines a pointed map of the required type if and only if it satisfies
the two following conditions:

1. 𝜆𝑓(𝑥) is a pointed map of type (𝑌, 𝑦0)→ (𝑍, 𝑧0) for every 𝑥 ∈ 𝑋, which means that
the equality

𝑓(𝑥, 𝑦0) = [𝜆𝑓(𝑥)](𝑦0) = 𝑧0

must hold for every 𝑥 ∈ 𝑋;
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2. 𝜆𝑓 preserves basepoints, that is, it must satisfy the condition 𝜆𝑓(𝑥0) = ct𝑌,𝑧0 , which
means that the equality

𝑓(𝑥0, 𝑦) = [𝜆𝑓(𝑥0)](𝑦) = ct𝑌,𝑧0 = 𝑧0

must hold for every 𝑦 ∈ 𝑌 .

These two conditions mean precisely that the inclusion 𝑓(𝑋 × {𝑦0} ∪ {𝑥0} × 𝑌 ) ⊆ {𝑧0}
must hold. �

This suggests that the natural domain for a pointed version of the exponential
adjunction is not the set of maps defined on the product 𝑋×𝑌 , but on a certain quotient
of it.

3.2.5 Definition. Given pointed spaces (𝑋, 𝑥0) and (𝑌, 𝑦0), their smash product is the
space defined by

𝑋 ∧ 𝑌 := 𝑋 × 𝑌
𝑋 × {𝑦0} ∪ {𝑥0} × 𝑌

.

It becomes a pointed space by choosing [𝑥0, 𝑦0] := 𝑞(𝑥0, 𝑦0) as its basepoint, where 𝑞 :
𝑋 × 𝑌 → 𝑋 ∧ 𝑌 denotes the canonical projection.

The construction of the smash product can also be performed on pairs of pointed
maps. Given pointed maps 𝑓 : (𝑋1, *𝑋1) → (𝑋2, *𝑋2) and 𝑔 : (𝑌1, *𝑌1 → (𝑌2, *𝑌2), if
𝑞1 : 𝑋1×𝑌1 → 𝑋1∧𝑌1 and 𝑞2 : 𝑋2×𝑌2 → 𝑋2∧𝑌2 denote the canonical projections, then
the composition

𝑞2 ∘ (𝑓 × 𝑔) : 𝑋1 × 𝑌1 → 𝑋2 ∧ 𝑌2

satisfies the condition

(𝑞2 ∘ (𝑓 × 𝑔))(𝑋1 × {𝑦1} ∪ {𝑥1} × 𝑌1) ⊆ {*𝑋2∧𝑌2},

therefore it can be factored through the projection 𝑞1 to define a map

𝑓 ∧ 𝑔 : 𝑋1 ∧ 𝑌1 → 𝑋2 ∧ 𝑌2

which we call the smash product of 𝑓 and 𝑔.

Notice that by construction the smash product 𝑓 ∧ 𝑔 is the only map from 𝑋1∧𝑌1

to 𝑋2 ∧ 𝑌2 making the square below commute.

𝑋1 × 𝑌1 𝑋2 × 𝑌2

𝑋1 ∧ 𝑌1 𝑋2 ∧ 𝑌2

𝑓×𝑔

𝑞1 𝑞2

𝑓∧𝑔
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From this commutativity we can obtain an explicit formula for 𝑓 ∧ 𝑔: given a point of
𝑋1 ∧ 𝑌1 of the form [𝑥1, 𝑦1] = 𝑞1(𝑥1, 𝑦1) for some point (𝑥1, 𝑦1) ∈ 𝑋1 × 𝑌1, we have

(𝑓∧𝑔)([𝑥1, 𝑦1]) = (𝑓∧𝑔)(𝑞(𝑥1, 𝑦1)) = 𝑞2((𝑓×𝑔)(𝑥1, 𝑦1)) = 𝑞2(𝑓(𝑥1), 𝑔(𝑦1)) = [𝑓(𝑥1), 𝑔(𝑦1)].

This also implies that 𝑓 ∧ 𝑔 is automatically a pointed map since

(𝑓 ∧ 𝑔)(*𝑋1∧𝑌1) = (𝑓 ∧ 𝑔)([*𝑋1 , *𝑌1 ]) = [𝑓(*𝑋1), 𝑔(*𝑌1)] = [*𝑋2 , *𝑌2 ] = *𝑋2∧𝑌2 .

As with most of the constructions we have considered so far, the smash product
is functorial.

3.2.6 Proposition. The construction of the smash product of pointed spaces and of
pointed maps defines a functor ∧ : Top* × Top* → Top*.

Proof. We first need to show that the smash product preserves identity maps, i.e., that
for any two pointed spaces (𝑋, 𝑥0) and (𝑌, 𝑦0) the equality

id𝑋 ∧ id𝑌 = id𝑋∧𝑌

holds. Recall that id𝑋∧ id𝑌 is the only map of its type that fits in the commutative square
below.

𝑋 × 𝑌 𝑋 × 𝑌

𝑋 ∧ 𝑌 𝑋 ∧ 𝑌

id𝑋×id𝑌

𝑞 𝑞

id𝑋∧id𝑌

Since the product × is itself functorial, the map id𝑋 × id𝑌 on the first line is equal to
id𝑋×𝑌 , and then it is clear that the square below also commutes,

𝑋 × 𝑌 𝑋 × 𝑌

𝑋 ∧ 𝑌 𝑋 ∧ 𝑌

id𝑋×𝑌

𝑞 𝑞

id𝑋∧𝑌

from which the desired equality follows.

Now we need to check the compatibility of the smash product with compositions.
Suppose we are given the following pointed spaces and maps

𝑓1 : (𝑋1, *𝑋1)→ (𝑋2, *𝑋2)

𝑓2 : (𝑋2, *𝑋2)→ (𝑋3, *𝑋3)

𝑔1 : (𝑌1, *𝑌1)→ (𝑌2, *𝑌2)

𝑔2 : (𝑌2, *𝑌2)→ (𝑌3, *𝑌3).

We need to prove the equality

(𝑓2 ∘ 𝑓1) ∧ (𝑔2 ∘ 𝑔1) = (𝑓2 ∧ 𝑔2) ∘ (𝑓1 ∧ 𝑔1),
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which is equivalent to proving the commutativity of the square below.

𝑋1 × 𝑌1 𝑋3 × 𝑌3

𝑋1 ∧ 𝑌1 𝑋3 ∧ 𝑌3

(𝑓2∘𝑓1)×(𝑔2∘𝑔1)

𝑞1 𝑞3

(𝑓2∧𝑔2)∘(𝑓1∧𝑔1)

Since the product × is itself a functor, we can rewrite the product on the first line as a
composition

(𝑓2 ∘ 𝑓1)× (𝑔2 ∘ 𝑔1) = (𝑓2 × 𝑔2) ∘ (𝑓1 × 𝑔1),

so that our goal now is to prove the equality

𝑞3 ∘ (𝑓2 × 𝑔2) ∘ (𝑓1 × 𝑔1) = (𝑓2 ∧ 𝑔2) ∘ (𝑓1 ∧ 𝑔1) ∘ 𝑞1.

This follows by simply combining the two commutative diagrams below coming from the
definitions of 𝑓1 ∧ 𝑔1 and 𝑓2 ∧ 𝑔2.

𝑋1 × 𝑌1 𝑋2 × 𝑌2 𝑋3 × 𝑌3

𝑋1 ∧ 𝑌1 𝑋2 ∧ 𝑌2 𝑋3 ∧ 𝑌3

𝑓1×𝑔1

𝑞1

𝑓2×𝑔2

𝑞2 𝑞3

𝑓1∧𝑔1 𝑓2∧𝑔2

�

As with any functor of two variables, we can fix any one of them to obtain a functor
of a single variable. In particular, for any pointed space (𝑌, 𝑦0) we have the functor −∧𝑌 :
Top* → Top* which sends a pointed space (𝑋, *𝑋) to the smash product (𝑋 ∧ 𝑌, *𝑋∧𝑌 ),
and which sends a pointed map 𝑓 : (𝑋1, *𝑋1) → (𝑋2, *𝑋2) to the smash product map
𝑓 ∧ id𝑌 : (𝑋1 ∧ 𝑌, *𝑋1∧𝑌 )→ (𝑋2 ∧ 𝑌, *𝑋2∧𝑌 ).

The result of Lemma 3.2.4 suggests that a pointed version of the exponential
adjunction should relate the pointed mapping space functor Map*(𝑌,−) with the smash
product functor − ∧ 𝑌 instead of the usual product functor − × 𝑌 . In order to do this,
we introduce a pointed version of the exponential adjoint of a map.

3.2.7 Definition. Let (𝑋, 𝑥0), (𝑌, 𝑦0) and (𝑍, 𝑧0) be pointed spaces, and let 𝑞 : 𝑋×𝑌 →
𝑋 ∧ 𝑌 be the canonical projection. Given a pointed map 𝑓 : (𝑋 ∧ 𝑌, *𝑋∧𝑌 )→ (𝑍, 𝑧0), the
pointed map

𝜆*
𝑋,𝑍𝑓 : (𝑋, 𝑥0)→ (Map*(𝑌, 𝑍), ct𝑌,𝑧0)

defined by the formula
𝜆*
𝑋,𝑍𝑓 := 𝜆𝑋,𝑍(𝑓 ∘ 𝑞) (3.1)

is called the pointed exponential adjoint of 𝑓 .

Since 𝑞 maps the subspace 𝑋×{𝑦0} ∪ {𝑥0}×𝑌 to the basepoint * of 𝑋∧𝑌 , and 𝑓
by hypothesis maps this basepoint to 𝑧0, the composition 𝑓 ∘𝑞 maps 𝑋×{𝑦0} ∪ {𝑥0}×𝑌



3.2. The return of the exponential adjunction 83

to 𝑧0, therefore 𝜆*
𝑋,𝑍𝑓 really defines a pointed map of type (𝑋, 𝑥0)→ (Map*(𝑌, 𝑍), ct𝑌,𝑧0)

according to Lemma 3.2.4.

Using the explicit formula for the unpointed exponential adjunction, we see that,
for any 𝑥 ∈ 𝑋, the pointed map 𝜆*

𝑋,𝑍𝑓(𝑥) : (𝑌, 𝑦0)→ (𝑍, 𝑧0) is given by the formula

[𝜆*
𝑋,𝑍𝑓(𝑥)](𝑦) = 𝑓([𝑥, 𝑦])1 (3.2)

for every 𝑦 ∈ 𝑌 .

3.2.8 Theorem (Pointed exponential adjunction). If (𝑌, 𝑦0) is a locally compact Haus-
dorff space, then the smash product functor −∧ 𝑌 is left adjoint to the pointed mapping
space functor Map*(𝑌,−).

Proof. We will show that the collection of functions

{𝜆*
𝑋,𝑍 : Top*(𝑋 ∧ 𝑌, 𝑍)→ Top*(𝑋,Map*(𝑌, 𝑍))}(𝑋,𝑥0),(𝑍,𝑧0)∈Top*

defines a natural isomorphism of functors (of two variables)

Top*(− ∧ 𝑌,−) ∼= Top*(−,Map*(𝑌,−)).

Suppose 𝑓, 𝑔 : (𝑋 ∧ 𝑌, *𝑋∧𝑌 ) → (𝑍, 𝑧0) are two maps such that 𝜆*
𝑋,𝑍𝑓 = 𝜆*

𝑋,𝑍𝑔.
This means that the equality 𝜆𝑋,𝑍(𝑓 ∘ 𝑞) = 𝜆𝑋,𝑍(𝑔 ∘ 𝑞) holds, but since 𝜆𝑋,𝑍 defines an
injection

𝜆𝑋,𝑍 : Top(𝑋 × 𝑌, 𝑍)→ Top(𝑋,Map(𝑌, 𝑍)),

we must also have the equality 𝑓 ∘ 𝑞 = 𝑔 ∘ 𝑞; therefore 𝑓 = 𝑔 because 𝑞 is a surjective map.

Now consider a pointed map 𝑔 : (𝑋, 𝑥0)→ (Map*(𝑌, 𝑍), ct𝑌,𝑧0). Since Map*(𝑌, 𝑍)
is by definition a subspace of Map(𝑌, 𝑍), we may also regard 𝑔 as a map of type 𝑋 →
Map(𝑌, 𝑍), and then, using the usual exponential adjunction, we can find a map 𝐹 :
𝑋 × 𝑌 → 𝑍 such that 𝜆𝑋,𝑍𝐹 = 𝑔. This means that, for any (𝑥, 𝑦) ∈ 𝑋 × 𝑌 , we have the
equality

𝐹 (𝑥, 𝑦) = [𝜆𝐹 (𝑥)](𝑦) = [𝑔(𝑥)](𝑦).

Using this formula we see that

𝐹 (𝑥, 𝑦0) = [𝑔(𝑥)](𝑦0) = 𝑧0,

because 𝑔(𝑥) ∈ Map*(𝑌, 𝑍), and also that

𝐹 (𝑥0, 𝑦) = [𝑔(𝑥0)](𝑦) = ct𝑌,𝑧0(𝑦) = 𝑧0,

1 Notice that the brackets on both sides of the equation have very different meanings. The
brackets on the left are merely for avoiding confusion, we could just as well write the left-
hand side as 𝜆*

𝑋,𝑍𝑓(𝑥)(𝑦). The brackets on the right-hand side are a way to denote an element
of the form 𝑞(𝑥, 𝑦) in the smash product.
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because 𝑔 is itself pointed. It follows that we can factor 𝐹 through the quotient map 𝑞 to
obtain a pointed map

𝑓 : (𝑋 ∧ 𝑌, *𝑋∧𝑌 )→ (𝑍, 𝑧0)

which satisfies
𝜆*
𝑋,𝑍𝑓 = 𝜆𝑋,𝑍(𝑓 ∘ 𝑞) = 𝜆𝑋,𝑍𝐹 = 𝑔;

proving the surjectivity of 𝜆*
𝑋,𝑍 .

We have shown that 𝜆*
𝑋,𝑍 is a bijection, so the only thing left is to show that it

depends naturally on both (𝑋, 𝑥0) and (𝑌, 𝑦0). Given two pointed maps 𝑓 : (𝑋 ′, 𝑥′
0) →

(𝑋, 𝑥0) and 𝑔 : (𝑍, 𝑧0)→ (𝑍 ′, 𝑧′
0), we must show the commutativity of the square below.

Top*(𝑋 ∧ 𝑌, 𝑍) Top*(𝑋 ′ ∧ 𝑌, 𝑍 ′)

Top*(𝑋,Map*(𝑌, 𝑍)) Top*(𝑋 ′,Map*(𝑌, 𝑍 ′))

Top*(𝑓∧id𝑌 ,𝑔)

𝜆*
𝑋,𝑍

𝜆*
𝑋′,𝑍′

Top*(𝑓,Map*(𝑌,𝑔))

Given 𝛼 ∈ Top*(𝑋 ∧ 𝑌, 𝑍), on the one hand we have

(𝜆*
𝑋′,𝑍′ ∘ Top*(𝑓 ∧ id𝑌 , 𝑔))(𝛼) = 𝜆*

𝑋′,𝑍′(𝑔 ∘ 𝛼 ∘ (𝑓 ∧ id𝑌 ))

= 𝜆𝑋′,𝑍′(𝑔 ∘ 𝛼 ∘ (𝑓 ∧ id𝑌 ) ∘ 𝑞′)

= 𝜆𝑋′,𝑍′(𝑔 ∘ 𝛼 ∘ 𝑞 ∘ (𝑓 × id𝑌 ))
(by the definition of 𝑓 ∧ id𝑌 )

= (𝜆𝑋′,𝑍′ ∘ Top(𝑓 × id𝑌 , 𝑔))(𝛼 ∘ 𝑞)

Now, on the other hand, we have

(Top*(𝑓,Map*(𝑌, 𝑔)) ∘ 𝜆*
𝑋,𝑍)(𝛼) = Top*(𝑓,Map*(𝑌, 𝑔))(𝜆𝑋,𝑍(𝛼 ∘ 𝑞))

= Map*(𝑌, 𝑔) ∘ 𝜆𝑋,𝑍(𝛼 ∘ 𝑞) ∘ 𝑓

= Map(𝑌, 𝑔) ∘ 𝜆𝑋,𝑍(𝛼 ∘ 𝑞) ∘ 𝑓

= (Top(𝑓,Map(𝑌, 𝑔)) ∘ 𝜆𝑋,𝑍)(𝛼 ∘ 𝑞).

Notice that, when passing from the second to the third line, we used the fact that
Map*(𝑌, 𝑔) is obtained by simply restricting Map(𝑌, 𝑔).

After these computations, we see that the naturality we are trying to prove is
equivalent to the equality

(𝜆𝑋′,𝑍′ ∘ Top(𝑓 × id𝑌 , 𝑔))(𝛼 ∘ 𝑞) = (Top(𝑓,Map(𝑌, 𝑔)) ∘ 𝜆𝑋,𝑍)(𝛼 ∘ 𝑞),

but this holds due to the naturality of the usual (unpointed) exponential adjunction. �

When we proved the unpointed exponential adjunction (Theorem 1.1.5), we used
the unit and counit transformations, but now for the pointed version we directly defined a



3.2. The return of the exponential adjunction 85

natural bijection between the two relevant sets of pointed maps. Notice also that directly
using the fact that the unpointed exponential transformations 𝜆𝑋,𝑍 are invertible allowed
us to show that the pointed exponential transformations 𝜆*

𝑋,𝑍 are also invertible without
actually exhibiting its inverse.

Nevertheless, it is useful to have the unit and counit transformations associated
with the pointed exponential adjunction, as well as the inverse of the exponential trans-
formations, and we now focus on constructing these objects.

Given a pointed space (𝑋, 𝑥0), the component of the unit transformation at (𝑋, 𝑥0)
- which we denote by 𝜄*𝑋 - is a pointed map of type (𝑋, 𝑥0)→ (Map*(𝑌,𝑋 ∧ 𝑌 ), ct𝑌,*𝑋∧𝑌

)
obtained by applying the pointed exponential transformation 𝜆*

𝑋,𝑋∧𝑌 to the identity map
of 𝑋 ∧ 𝑌 .

𝑋 ∧ 𝑌 𝑋 ∧ 𝑌id𝑋∧𝑌
𝜆*

𝑋,𝑍
 𝑋 Map*(𝑌,𝑋 ∧ 𝑌 )

𝜄*𝑋

Using equation (3.2), we see that, for any 𝑥 ∈ 𝑋, 𝜄*𝑋(𝑥) : (𝑌, 𝑦0) → (𝑋 ∧ 𝑌, *𝑋∧𝑌 ) is the
pointed map given by

[𝜄*𝑋(𝑥)](𝑦) := [𝑥, 𝑦] ∀ 𝑦 ∈ 𝑌. (3.3)

Now we describe the inverse to 𝜆*
𝑋,𝑍 . If 𝑔 : (𝑋, 𝑥0) → (Map*(𝑌, 𝑍), ct𝑌,𝑧0) is a

pointed map, since Map*(𝑌, 𝑍) is a subspace of Map(𝑌, 𝑍), we may regard 𝑔 also as a map
of type 𝑋 → Map(𝑌, 𝑍) and apply the inverse of the unpointed exponential adjunction
to obtain a map

𝜆−1
𝑋,𝑍𝑔 : 𝑋 × 𝑌 → 𝑍.

This map satisfies the following properties:

1. 𝜆−1
𝑋,𝑍𝑔(𝑥, 𝑦0) = [𝑔(𝑥)](𝑦0) = 𝑧0 for every 𝑥 ∈ 𝑋 because 𝑔(𝑥) is a pointed map;

2. 𝜆−1
𝑋,𝑍𝑔(𝑥0, 𝑦) = [𝑔(𝑥0)](𝑦) = ct𝑌,𝑧0(𝑦) = 𝑧0 for every 𝑦 ∈ 𝑌 because 𝑔 is itself pointed.

We can then factor 𝜆−1
𝑋,𝑍𝑔 through the quotient 𝑞 : 𝑋 × 𝑌 → 𝑋 ∧ 𝑌 to obtain a pointed

map
𝜆−1
𝑋,𝑍𝑔 : (𝑋 ∧ 𝑌, *𝑋∧𝑌 )→ (𝑍, 𝑧0).

This map is in fact the inverse (𝜆*
𝑋,𝑍)−1𝑔 we were looking for, since

𝜆*
𝑋,𝑍(𝜆−1

𝑋,𝑍𝑔) = 𝜆𝑋,𝑍(𝜆−1
𝑋,𝑍𝑔 ∘ 𝑞) (by Definition 3.2.7)

= 𝜆𝑋,𝑍(𝜆−1
𝑋,𝑍𝑔) (by the construction of 𝜆−1

𝑋,𝑍𝑔)

= 𝑔;

which implies the desired equality

(𝜆*
𝑋,𝑍)−1𝑔 = 𝜆−1

𝑋,𝑍𝑔.
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In summary, the inverse exponential transformation

(𝜆*
𝑋,𝑍)−1 : Top*(𝑋,Map*(𝑌, 𝑍))→ Top*(𝑋 ∧ 𝑌, 𝑍)

sends a pointed map 𝑔 : 𝑋 → Map*(𝑌, 𝑍) to the pointed map (𝜆*
𝑋,𝑍)−1𝑔 : 𝑋 ∧ 𝑌 → 𝑍

defined by the formula

(𝜆*
𝑋,𝑍)−1𝑔([𝑥, 𝑦]) := [𝑔(𝑥)](𝑦) ∀ [𝑥, 𝑦] ∈ 𝑋 ∧ 𝑌. (3.4)

With the inverse pointed exponential adjunction at our disposal, we can also de-
scribe the associated counit transformation. Recall that its component at the pointed
space (𝑍, 𝑧0) is the pointed map

ev*
𝑌,𝑍 : (Map*(𝑌, 𝑍) ∧ 𝑌, *Map*(𝑌,𝑍)∧𝑌 )→ (𝑍, 𝑧0)

obtained by applying the inverse pointed exponential transformation (𝜆*
𝑋,𝑍)−1 to the

identity map of Map*(𝑌, 𝑍).

Map*(𝑌, 𝑍) Map*(𝑌, 𝑍)
idMap*(𝑌,𝑍) (𝜆*

Map*(𝑌,𝑍),𝑍
)−1

 Map*(𝑌, 𝑍) ∧ 𝑌 𝑍
ev*

𝑌,𝑍

Using equation (3.4) we see that the counit ev*
𝑌,𝑍 is given explicitly by the formula

ev*
𝑌,𝑍([𝑓, 𝑦]) := 𝑓(𝑦) ∀[𝑓, 𝑦] ∈ Map*(𝑌, 𝑍) ∧ 𝑌, (3.5)

which justifies our choice of notation, since ev*
𝑌,𝑍 is essentially a pointed version of

the usual evaluation ev𝑌,𝑍 . In fact, using the construction of the inverse transformation
(𝜆*

Map*(𝑌,𝑍),𝑍)−1 given above, one can show that ev*
𝑌,𝑍 is obtained precisely by factoring the

evaluation map ev𝑌,𝑍 (suitably restricted to Map*(𝑌, 𝑍)× 𝑌 ⊆ Map(𝑌, 𝑍)× 𝑌 ) through
the quotient map defining the smash product Map*(𝑌, 𝑍) ∧ 𝑌 .

As with any unit and counit transformations associated with an adjunction, they
define natural transformations between certain functors. The result below simply records
this fact for the particular case of the unit and counit associated with the pointed expo-
nential adjunction we have described above.

3.2.9 Corollary. Let (𝑌, 𝑦0) be a locally compact Hausdorff pointed space.

1. The collection of pointed maps

{𝜄*𝑋 : (𝑋, 𝑥0)→ (Map*(𝑌,𝑋 ∧ 𝑌 ), ct𝑌,*𝑋∧𝑌
)}(𝑋,𝑥0)∈Top*

defines a natural transformation of functors 𝜄* : idTop* ⇒ Map*(𝑌,− ∧ 𝑌 ).

2. The collection of pointed maps

{ev*
𝑌,𝑍 : (Map*(𝑌, 𝑍) ∧ 𝑌, *Map*(𝑌,𝑍)∧𝑌 )→ (𝑍, 𝑧0)}(𝑍,𝑧0)∈Top*

defines a natural transformation of functors ev*
𝑌 : Map*(𝑌,−) ∧ 𝑌 ⇒ idTop* .
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3.3 More on the smash product
In the previous section we introduced the smash product of two pointed spaces in

order to obtain a pointed version of the exponential adjunction, but if we want to use
this adjunction, it would be good to know some properties satisfied by the smash product
construction, so the goal of this section is to prove some “algebraic” properties satisfied
by the smash product functor.

3.3.1 Proposition. Let (𝑋, 𝑥0), (𝑌, 𝑦0) and (𝑍, 𝑧0) be pointed spaces. The smash product
satisfies the following properties:

1. The 0-dimensional sphere (𝑆0,+1) is a unit for the smash product, that is, there
are pointed homeomorphisms

𝑆0 ∧𝑋 ∼= 𝑋 ∼= 𝑋 ∧ 𝑆0

which are natural in 𝑋.

2. The smash product is commutative, that is, there is a pointed homeomorphism

𝑋 ∧ 𝑌 ∼= 𝑌 ∧𝑋

which is natural in both 𝑋 and 𝑌 .

3. The smash product is associative under some topological conditions, that is, if 𝑋
and 𝑍 are locally compact and Hausdorff, then there is pointed homeomorphism

(𝑋 ∧ 𝑌 ) ∧ 𝑍 ∼= 𝑋 ∧ (𝑌 ∧ 𝑍)

which is natural in 𝑋, 𝑌 and 𝑍.

Proof. 1. The product 𝑆0 × 𝑋 is just the disjoint union {−1} × 𝑋 ∪ {+1} × 𝑋 of two
copies of 𝑋, so the function 𝐿𝑋 : 𝑆0 ×𝑋 → 𝑋 defined as

𝐿(𝑡, 𝑥) :=

⎧⎪⎨⎪⎩𝑥, if 𝑡 = −1;

𝑥0, if 𝑡 = +1,

is continuous by the universal property of the coproduct. The map 𝐿𝑋 sends the subset

𝑆0 × {𝑥0} ∪ {+1} ×𝑋 = {(−1, 𝑥0)} ∪ {+1} ×𝑋

to the basepoint 𝑥0 of 𝑋, so it induces a pointed map ℓ𝑋 : (𝑆0 ∧ 𝑋, *𝑆0∧𝑋) → (𝑋, 𝑥0).
This map is a homeomorphism, since its inverse ℓ−1

𝑋 : (𝑋, 𝑥0) → (𝑆0 ∧𝑋, *𝑆0∧𝑋) can be
defined explicitly as

ℓ−1
𝑋 (𝑥) := [−1, 𝑥] ∀𝑥 ∈ 𝑋.
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We still need to check the naturality statement. This means that, if𝑓 : (𝑋, 𝑥0)→
(𝑌, 𝑦0) is a pointed map, then the square below commutes.

𝑆0 ∧𝑋 𝑆0 ∧ 𝑌

𝑋 𝑌

id𝑆0 ∧𝑓

ℓ𝑋 ℓ𝑌

𝑓

This is just a matter of straightforward calculations, since for every 𝑥 ∈ 𝑋 we have

𝑓(ℓ𝑋([−1, 𝑥])) = 𝑓(𝑥) = ℓ𝑌 ([−1, 𝑓(𝑥)]) = ℓ𝑌 ((id𝑆0 ∧ 𝑓)([−1, 𝑥])),

and also

𝑓(ℓ𝑋([1, 𝑥])) = 𝑓(𝑥0) = 𝑦0 = ℓ𝑌 ([1, 𝑓(𝑥)]) = ℓ𝑌 ((id𝑆0 ∧ 𝑓)([1, 𝑥])).

The proof that 𝑆0 is also a right unit is very similar. We define 𝑅𝑋 : 𝑋 ×𝑆0 → 𝑋

by the formula

𝑅𝑋(𝑥, 𝑡) :=

⎧⎪⎨⎪⎩𝑥, if 𝑡 = −1;

𝑥0, if 𝑡 = +1.
Factoring this through the quotient defining the smash product we obtain a pointed map
𝑟𝑋 : (𝑋 ∧ 𝑆0, *𝑋∧𝑆0)→ (𝑋, 𝑥0). Like in the first case, this map is a homeomorphism that
depends naturally on (𝑋, 𝑥0).

2. Let 𝜏𝑋,𝑌 : 𝑋 × 𝑌 → 𝑌 × 𝑋 be the permutation map that swaps the two
coordinates. The composition 𝑞′ ∘ 𝜏𝑋,𝑌 : 𝑋 × 𝑌 → 𝑌 ∧𝑋, where 𝑞′ : 𝑌 ×𝑋 → 𝑌 ∧𝑋 is
the canonical projection, maps 𝑋 ×{𝑦0} ∪ {𝑥0}×𝑌 to the basepoint *𝑌 ∧𝑋 , so it induces
a pointed map 𝑠𝑋,𝑌 : (𝑋 ∧ 𝑌, *𝑋∧𝑌 ) → (𝑌 ∧𝑋, *𝑌 ∧𝑋) which can be described explicitly
as

𝑠𝑋,𝑌 ([𝑥, 𝑦]) := [𝑦, 𝑥] ∀ [𝑥, 𝑦] ∈ 𝑋 ∧ 𝑌.

If we do the same construction starting with the other permutation map 𝜏𝑌,𝑋 :
𝑌 × 𝑋 → 𝑋 × 𝑌 , then we obtain the analogous pointed map 𝑠𝑌,𝑋 : (𝑌 ∧ 𝑋, *𝑌 ∧𝑋) →
(𝑋 ∧ 𝑌, *𝑋∧𝑌 ) given explicitly by

𝑠𝑌,𝑋([𝑦, 𝑥]) := [𝑥, 𝑦] ∀ [𝑦, 𝑥] ∈ 𝑌 ∧𝑋.

A simple direct calculation then shows that 𝑠𝑋,𝑌 and 𝑠𝑌,𝑋 are inverse maps, therefore they
define pointed homeomorphisms.

Now let (𝑋 ′, 𝑥′
0) and (𝑌, 𝑦′

0) be two other pointed spaces, and consider pointed maps
𝑓 : 𝑋 → 𝑋 ′ and 𝑔 : 𝑌 → 𝑌 ′. We need to show that the square below is commutative.

𝑋 ∧ 𝑌 𝑋 ′ ∧ 𝑌 ′

𝑌 ∧𝑋 𝑌 ′ ∧𝑋 ′

𝑓∧𝑔

𝑟𝑋,𝑌 𝑟𝑋′,𝑌 ′

𝑔∧𝑓
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For any [𝑥, 𝑦] ∈ 𝑋 ∧ 𝑌 we have

𝑟𝑋′,𝑌 ′(𝑓 ∧ 𝑔([𝑥, 𝑦])) = 𝑟𝑋′,𝑌 ′([𝑓(𝑥), 𝑔(𝑦)])

= [𝑔(𝑦), 𝑓(𝑥)]

= 𝑔 ∧ 𝑓([𝑦, 𝑥])

= 𝑔 ∧ 𝑓(𝑟𝑋,𝑌 ([𝑥, 𝑦])).

3. This one is a bit more complicated. We first show the following auxiliary result:
if 𝑍 is locally compact Hausdorff, then the function 𝛼𝑋,𝑌,𝑍 : (𝑋 ∧ 𝑌 ) ∧ 𝑍 → 𝑋 ∧ (𝑌 ∧ 𝑍)
defined as

𝛼𝑋,𝑌,𝑍([[𝑥, 𝑦], 𝑧]) := [𝑥, [𝑦, 𝑧]]

for every [[𝑥, 𝑦], 𝑧] ∈ (𝑋 ∧ 𝑌 ) ∧ 𝑍 is a pointed map.

Consider first the associator homeomorphism

𝐴 : (𝑋 × 𝑌 )× 𝑍 → 𝑋 × (𝑌 × 𝑍)

defined as
𝐴((𝑥, 𝑦), 𝑧) := (𝑥, (𝑦, 𝑧)).

We may form the adjoint map

𝜆𝐴 : 𝑋 × 𝑌 → Map(𝑍,𝑋 × (𝑌 × 𝑍)).

If 𝑝 : 𝑋 × (𝑌 × 𝑍)→ 𝑋 ∧ (𝑌 ∧ 𝑍) denotes the projection given by (𝑥, (𝑦, 𝑧)) ↦→ [𝑥, [𝑦, 𝑧]],
we have the induced pushforward

Map(𝑍, 𝑝) : Map(𝑍,𝑋 × (𝑌 × 𝑍))→ Map(𝑍,𝑋 ∧ (𝑌 ∧ 𝑍)).

We claim that the composition

Map(𝑍, 𝑝) ∘ 𝜆𝐴 : 𝑋 × 𝑌 → Map(𝑍,𝑋 ∧ (𝑌 ∧ 𝑍))

maps the subspace 𝑋×{*𝑌 } ∪ {*𝑋}×𝑌 to the basepoint of Map(𝑍,𝑋 ∧ (𝑌 ∧𝑍)), which
is by definition the constant map ct𝑍,*𝑋∧(𝑌 ∧𝑍) . Given a point (𝑥, 𝑦) ∈ 𝑋 × 𝑌 , we have

(Map(𝑍, 𝑝) ∘ 𝜆𝐴)(𝑥, 𝑦) = 𝑝 ∘ 𝜆𝐴(𝑥, 𝑦),

therefore for any 𝑧 ∈ 𝑍 we have

[(Map(𝑍, 𝑝) ∘ 𝜆𝐴)(𝑥, 𝑦)](𝑧) = 𝑝([𝜆𝐴(𝑥, 𝑦)](𝑧))

= 𝑝(𝐴((𝑥, 𝑦), 𝑧))

= 𝑝(𝑥, (𝑦, 𝑧))

= [𝑥, [𝑦, 𝑧]].
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In particular, if 𝑥 = 𝑥0, then

[(Map(𝑍, 𝑝) ∘ 𝜆𝐴)(𝑥0, 𝑦)](𝑧) = [𝑥0, [𝑦, 𝑧]] = *𝑋∧(𝑌 ∧𝑍),

and if 𝑦 = 𝑦0, then

[(Map(𝑍, 𝑝) ∘ 𝜆𝐴)(𝑥, 𝑦0)](𝑧) = [𝑥, [𝑦0, 𝑧]] = [𝑥, *𝑌 ∧𝑍 ] = *𝑋∧(𝑌 ∧𝑍).

It follows by passing to the quotient that the composite Map(𝑍, 𝑝) ∘ 𝜆𝐴 induces a
pointed map

𝛽𝑋,𝑌,𝑍 : 𝑋 ∧ 𝑌 → Map*(𝑍,𝑋 ∧ (𝑌 ∧ 𝑍)),

and by Theorem 3.2.8 there exists a pointed map

𝛼𝑋,𝑌,𝑍 : (𝑋 ∧ 𝑌 ) ∧ 𝑍 → 𝑋 ∧ (𝑌 ∧ 𝑍)

such that 𝛽𝑋,𝑌,𝑍 = 𝜆*𝛼𝑋,𝑌,𝑍 . Using this relation we can deduce that 𝛼𝑋,𝑌,𝑍 is precisely
given by the formula

𝛼𝑋,𝑌,𝑍([𝑥, 𝑦], 𝑧]) = [𝑥, [𝑦, 𝑧]]

that we stated in the beginning.

We can construct the inverse map of 𝛼𝑋,𝑌,𝑍 by an analogous procedure with the
difference that we start with the inverse associator homeomorphism

𝐴−1 : 𝑋 × (𝑌 × 𝑍)→ (𝑋 × 𝑌 × 𝑍),

and use the fact that the functor 𝑋 ∧ − is also left adjoint to Map*(𝑋,−) due to 𝑋

being locally compact and Hausdorff. This is true because we have already proved that
the smash product is symmetric, therefore 𝑋 ∧ − is naturally isomorphic to − ∧𝑋.

There is, however, another way to obtain the inverse of 𝛼𝑋,𝑌,𝑍 using the construc-
tions we have described so far. The definition of the pointed map 𝛼𝑋,𝑌,𝑍 works for any
triple (𝑋,𝑌, 𝑍) of pointed spaces as long as 𝑍 - a.k.a. the third component of the triple
- is locally compact and Hausdorff. Since 𝑋 is also locally compact and Hausdorff by
hypothesis, applying the construction to the triple (𝑍, 𝑌,𝑋) gives us a pointed map

𝛼𝑍,𝑌,𝑋 : (𝑍 ∧ 𝑌 ) ∧𝑋 → 𝑍 ∧ (𝑌 ∧𝑋)

which is given explicitly by 𝛼𝑍,𝑌,𝑋([[𝑧, 𝑦], 𝑥]) = [𝑧, [𝑦, 𝑥]] for every [[𝑧, 𝑦], 𝑥] ∈ (𝑍 ∧ 𝑌 )∧𝑋.

Consider then the pointed map of type 𝑋 ∧ (𝑌 ∧ 𝑍) → (𝑋 ∧ 𝑌 ) ∧ 𝑍 defined by
the composition depicted below.

𝑋 ∧ (𝑌 ∧ 𝑍) (𝑌 ∧ 𝑍) ∧𝑋 (𝑍 ∧ 𝑌 ) ∧𝑋

(𝑋 ∧ 𝑌 ) ∧ 𝑍 𝑍 ∧ (𝑋 ∧ 𝑌 ) 𝑍 ∧ (𝑌 ∧𝑋)

𝑠𝑋,𝑌 ∧𝑍 𝑠𝑌,𝑍∧id𝑋

𝛼𝑍,𝑌,𝑋

𝑠𝑍,𝑋∧𝑌 id𝑍∧𝑠𝑌,𝑋
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If we start with an element [𝑥, [𝑦, 𝑧]] ∈ 𝑋 ∧ (𝑌 ∧𝑍) and chase it around this diagram, we
see that it gets mapped to [[𝑥, 𝑦], 𝑧].

[𝑥, [𝑦, 𝑧]] [[𝑦, 𝑧], 𝑥] [[𝑧, 𝑦], 𝑥]

[[𝑥, 𝑦], 𝑧] [𝑧, [𝑥, 𝑦]] [𝑧, [𝑦, 𝑥]]

In other words, this big composition defines a map which is precisely the inverse map of
𝛼𝑋,𝑌,𝑍 , proving therefore that we have a pointed homeomorphism

𝛼𝑋,𝑌,𝑍 : (𝑋 ∧ 𝑌 ) ∧ 𝑍 ∼= 𝑋 ∧ (𝑌 ∧ 𝑍).

The only thing left is showing that this homeomorphism depends naturally on its
three variables. Given three other pointed spaces (𝑋 ′, 𝑥′

0), (𝑌 ′, 𝑦′
0) and (𝑍 ′, 𝑧′

0) as well as
pointed maps 𝑓 : 𝑋 → 𝑋 ′, 𝑔 : 𝑌 → 𝑌 ′ and ℎ : 𝑍 → 𝑍 ′; we must show the commutativity
of the square depicted below.

(𝑋 ∧ 𝑌 ) ∧ 𝑍 (𝑋 ′ ∧ 𝑌 ′) ∧ 𝑍 ′

𝑋 ∧ (𝑌 ∧ 𝑍) 𝑋 ′ ∧ (𝑌 ′ ∧ 𝑍 ′)

(𝑓∧𝑔)∧ℎ

𝛼𝑋,𝑌,𝑍 𝛼𝑋′,𝑌 ′,𝑍′

𝑓∧(𝑔∧ℎ)

Again, a direct calculation using the definitions of the maps in question shows that both
of the compositions defined by the square above map an arbitrary element [[𝑥, 𝑦], 𝑧] ∈
(𝑋 ∧ 𝑌 ) ∧ 𝑍 to [𝑓(𝑥), [𝑔(𝑦), ℎ(𝑧)]] ∈ 𝑋 ′ ∧ (𝑌 ′ ∧ 𝑍 ′). �

3.4 Reduced suspensions and loop spaces

This section introduces two very important constructions of Homotopy Theory:
the reduced suspension and the loop space. There is an important duality between these
two constructions which is made possible by the pointed exponential adjunction and by a
comparison of the reduced suspension with a certain smash product. While we navigate
towards this duality, we use the algebraic properties of the smash product proved in the
previous section to compute some important explicit examples of smash products.

3.4.1 Definition. Let (𝑋, 𝑥0) be a pointed space. The quotient space

Σ𝑋 := 𝑋 × 𝐼
𝑋 × {0} ∪ 𝑋 × {1} ∪ {𝑥0} × 𝐼

is called the reduced suspension of 𝑋. We regard it as a pointed space by considering
the image of the subset 𝑋 × {0} ∪ 𝑋 × {1} ∪ {𝑥0} × 𝐼 under the canonical projection
to the quotient as basepoint.
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Geometrically, the reduced suspension Σ𝑋 is constructed by first forming a “double
cone” over 𝑋 by means of collapsing the top and bottom parts of the cylinder 𝑋× 𝐼, and
then collapsing the line segment on the surface of this cylinder that connects the two
vertices and passes through the basepoint of 𝑋.

We can not only suspend spaces, but also maps.

3.4.2 Definition. Let (𝑋, 𝑥0) and (𝑌, 𝑦0) be pointed maps. Denote by 𝑞𝑋 : 𝑋 × 𝐼 → Σ𝑋
and 𝑞𝑌 : 𝑌 × 𝐼 → Σ𝑌 the canonical projections. Given a pointed map 𝑓 : 𝑋 → 𝑌 , the
reduced suspension of 𝑓 is the unique pointed map Σ𝑓 : Σ𝑋 → Σ𝑌 that fits into the
commutative square below.

𝑋 × 𝐼 𝑌 × 𝐼

Σ𝑋 Σ𝑌

𝑓×id𝐼

𝑞𝑋 𝑞𝑌

Σ𝑓

This definition makes sense because the composite 𝑞𝑌 ∘ (𝑓 × id𝐼) : 𝑋 × 𝐼 → Σ𝑌
maps the subset 𝑋×{0} ∪ 𝑋×{1} ∪ {*𝑋}×𝐼 to the basepoint *Σ𝑌 , and Σ𝑓 is the unique
pointed map that factors this composition through the quotient 𝑞𝑋 . The commutativity
of the square means that Σ𝑓 has an explicit formula given by

Σ𝑓([𝑥, 𝑡]) = [𝑓(𝑥), 𝑡]

for all points [𝑥, 𝑡] ∈ Σ𝑋.

As with all constructions that we have introduced so far, the reduced suspension
gives rise to a functor Σ : Top* → Top* unsurprisingly called the reduced suspension
functor. This functoriality property can be proved in a manner similar to the proof of
the functoriality of the smash product (Proposition 3.2.6) by pasting together suitable
commutative diagrams, and using the already known functoriality of the product functor
−× 𝐼.

Our next goal is to show how reduced suspension can be regarded as a convenient
way to represent some smash products. The result is essentially a consequence of the next
simple lemma.

3.4.3 Lemma. There exists a pointed homeomorphism (𝐼/𝜕𝐼, *) ∼= (𝑆1, (1, 0)).

Proof. Consider the exponential map exp : 𝐼 → 𝑆1 defined by the formula

exp(𝑡) := (cos 2𝜋𝑡, sin 2𝜋𝑡) ∀ 𝑡 ∈ 𝐼.

This is a surjective map, and it only looses injectivity at the endpoints 0 and 1 of 𝐼,
which get both mapped to the basepoint of 𝑆1. If we then factor exp through the quotient
𝐼 → 𝐼/𝜕𝐼 we obtain the desired pointed homeomorphism. �
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Using this homeomorphism and the universal property of quotient spaces we can
interpret this result as saying that, in order to define a map of type 𝑆1 → 𝑌 , it suffices to
define a map of type 𝐼 → 𝑌 which sends the endpoints of the interval to the same point
in 𝑌 .

Using this homeomorphism we can express the reduced suspension construction in
terms of the smash product.

3.4.4 Proposition. The reduced suspension functor Σ is naturally isomorphic to the
smash product functor − ∧ 𝑆1.

Proof. Consider an arbitrary pointed space (𝑋, 𝑥0). If 𝑞 : 𝑋 × 𝑆1 → 𝑋 ∧ 𝑆1 denotes the
canonical projection, then the composite map

𝑞 ∘ (id𝑋 × exp) : 𝑋 × 𝐼 → 𝑆 ∧ 𝑆1

maps all points of the subspace 𝑋 ×{0} ∪ 𝑋 ×{1} ∪ {𝑥0}× 𝐼 ⊆ 𝑋 × 𝐼 to the basepoint
of 𝑋 ∧ 𝑆1, therefore it can be factored through the quotient 𝑝 : 𝑋 × 𝐼 → Σ𝑋 to yield a
pointed map

𝜃𝑋 : (Σ𝑋, *Σ𝑋)→ (𝑋 ∧ 𝑆1, *𝑋∧𝑆1)

like shown in the commutative square below.

𝑋 × 𝐼 𝑋 × 𝑆1

Σ𝑋 𝑋 ∧ 𝑆1

id𝑋×exp

𝑝 𝑞

𝜃𝑋

(3.6)

Explicitly, 𝜃𝑋 satisfies the equation

𝜃𝑋([𝑥, 𝑡]) = [𝑥, exp(𝑡)] = [𝑥, (cos(2𝜋𝑡), sin(2𝜋𝑡))] (3.7)

for every 𝑥 ∈ 𝑋 and every 𝑡 ∈ 𝐼.

We now construct an inverse to 𝜃𝑋 . The map exp : 𝐼 → 𝑆1 is closed, since its
domain is compact and its codomain is Hausdorff. Moreover, exp has compact fibers
because exp−1(𝑧) either consists of a single point when 𝑧 ̸= *𝑆1 , or it consists of the
points 0 and 1 when 𝑧 = *𝑆1 . It follows from these two properties that exp is a proper
map (see (BROWN, 2006, result 3.6.3)), and thus the product id𝑋 × exp defines a closed
map, but since this product is also surjective, it is in fact a quotient map.

Using the description of the fibers of exp given above, we see that the canonical
projection 𝑝 : 𝑋×𝐼 → Σ𝑋 is constant on the fibers of the quotient product map id𝑋×exp,
therefore it can be factored through it to define a map 𝑝 : 𝑋 × 𝑆1 → Σ𝑋 that fits in the
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commutative diagram below.

𝑋 × 𝐼 𝑋 × 𝑆1

Σ𝑋

id𝑋×exp

𝑝
𝑝

Explicitly, 𝑝 is described as follows: given a point (𝑥, 𝑧) ∈ 𝑋 × 𝑆1, if we write 𝑧 = exp(𝑡)
for some 𝑡 ∈ 𝐼, then

𝑝(𝑥, 𝑧) = [𝑥, 𝑡].

We see from this formula that 𝑝 satisfies the property

𝑝(𝑋 × {(1, 0)} ∪ {𝑥0} × 𝑆1) ⊆ {*Σ𝑋},

therefore it can be factored through the quotient 𝑞 : 𝑋×𝑆1 → 𝑋 ∧𝑆1 to define a pointed
map

𝜓𝑋 : (𝑋 ∧ 𝑆1, *𝑋∧𝑆1)→ (Σ𝑋, *Σ𝑋),

and we end up with the commutative diagram below.

𝑋 × 𝐼 𝑋 × 𝑆1

Σ𝑋 𝑋 ∧ 𝑆1

id𝑋×exp

𝑝 𝑝 𝑞

𝜓𝑋

(3.8)

Explicitly, the map 𝜓𝑋 defined like this satisfies the equation

𝜓𝑋([𝑥, exp(𝑡)]) = [𝑥, 𝑡] (3.9)

for every 𝑥 ∈ 𝑋 and every 𝑡 ∈ 𝐼.

Let us show that 𝜃𝑋 and 𝜓𝑋 are inverse maps. On the one hand we have

𝜓𝑋 ∘ 𝜃𝑋 ∘ 𝑝 = 𝜓𝑋 ∘ 𝑞 ∘ (id𝑋 × exp) (by (3.6))

= 𝑝, (by (3.8))

and since 𝑝 is surjective, it can be cancelled on both sides to yield the equality

𝜓𝑋 ∘ 𝜃𝑋 = idΣ𝑋 ;

and on the other hand

𝜃𝑋 ∘ 𝜓𝑋 ∘ 𝑞 ∘ (id𝑋 × exp) = 𝜃𝑋 ∘ 𝑝 ∘ (id𝑋 × exp)

= 𝜃𝑋 ∘ 𝑝

= 𝑞 ∘ (id𝑋 × exp),



3.4. Reduced suspensions and loop spaces 95

and by cancelling 𝑞 ∘ (id𝑋 × exp) on both sides we arrive at the equality

𝜃𝑋 ∘ 𝜓𝑋 = id𝑋∧𝑆1 .

This proves that 𝜃𝑋 defines a pointed homeomorphism Σ𝑋 ∼= 𝑋 ∧ 𝑆1 for every
pointed space (𝑋, 𝑥0). The only thing left is showing the naturality of this homeomorphism.
Given a pointed map 𝑓 : (𝑋, 𝑥0)→ (𝑌, 𝑦0), we need to prove the equality

𝜃𝑌 ∘ Σ𝑓 = (𝑓 ∧ id𝑆1) ∘ 𝜃𝑋 .

Let 𝑝𝑋 : 𝑋×𝐼 → Σ𝑋 and 𝑞𝑋 : 𝑋×𝑆1 → 𝑋 ∧𝑆1 denote the canonical projections,
with analogous notations 𝑝𝑌 and 𝑞𝑌 for the space (𝑌, 𝑦0). Recall that the maps Σ𝑓 and
𝑓 ∧ id𝑆1 are constructed in such a way as to fit in the commutative diagrams below.

𝑋 × 𝐼 𝑌 × 𝐼

Σ𝑋 Σ𝑌

𝑝𝑋

𝑓×id𝐼

𝑝𝑌

Σ𝑓

𝑋 × 𝑆1 𝑌 × 𝑆1

𝑋 ∧ 𝑆1 𝑌 ∧ 𝑆1

𝑓×id𝑆1

𝑞𝑋 𝑞𝑌

𝑓∧id𝑆1

Using these diagrams together with the defining properties of the homeomorphisms
𝜃𝑋 we see that

𝜃𝑌 ∘ Σ𝑓 ∘ 𝑝𝑋 = 𝜃𝑌 ∘ 𝑝𝑌 ∘ (𝑓 × id𝐼)

= 𝑞𝑌 ∘ (id𝑋 × exp) ∘ (𝑓 × id𝐼) (by (3.6))

= 𝑞𝑌 ∘ (𝑓 × exp) (by functoriality)

= 𝑞𝑌 ∘ (𝑓 × id𝑆1) ∘ (id𝑋 × exp)

= (𝑓 ∧ id𝑆1) ∘ 𝑞𝑋 ∘ (id𝑋 × exp)

= (𝑓 ∧ id𝑆1) ∘ 𝜃𝑋 ∘ 𝑝𝑋 , (by (3.6))

and then cancelling 𝑝𝑋 on both sides yields the desired equality. �

The interesting part about this comparison of the reduced suspension with the
smash product is that it allows a further comparison with a certain mapping space.

3.4.5 Definition. Let (𝑋, 𝑥0) be a pointed space. The mapping space

Ω𝑋 := Map*(𝑆1, 𝑋) (3.10)

is called the loop space of 𝑋. It is a pointed space whose basepoint is given by the
constant loop ct𝑆1,𝑥0 : 𝑆1 → 𝑋 at the basepoint of 𝑋.

The adjunction between smash products and mapping spaces gives us an adjunc-
tion between reduced suspension and loop spaces.
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3.4.6 Corollary (Eckmann-Hilton Duality). The reduced suspension functor Σ is left
adjoint to the loop space functor Ω, or in other words, for any pointed spaces (𝑋, 𝑥0) and
(𝑌, 𝑦0) there is a natural bijection

Top*(Σ𝑋,𝑌 ) ∼= Top*(𝑋,Ω𝑌 ).

Proof. In Proposition 3.4.4 we saw that the reduced suspension functor is naturally iso-
morphic to the smash product functor − ∧ 𝑆1 by means of the family of pointed homeo-
morphisms

{𝜓𝑋 : (𝑋 ∧ 𝑆1, *𝑋∧𝑆1)→ (Σ𝑋, *Σ𝑋)}(𝑋,𝑥0)∈Top*

It follows that the Set-valued functors

Top*(− ∧ 𝑆1,−), Top(Σ−,−) : Topop
* × Top* → Set

are naturally isomorphic too, with component bijections given by the pullbacks

Top*(𝜓𝑋 , 𝑌 ) : Top*(Σ𝑋,𝑌 )
∼=−→ Top*(𝑋 ∧ 𝑆1, 𝑌 ).

Combining this with the natural isomorphism

Top*(− ∧ 𝑆1,−) ∼= Top*(−,Map*(𝑆1,−)) = Top*(−,Ω−)

coming from the pointed exponential adjunction yields the desired natural isomorphism

Top*(Σ−,−) ∼= Top*(−,Ω−). �

We can make the component bijections of the adjunction above more explicit.
Given a pointed map 𝑓 : (Σ𝑋, *) → (𝑌, 𝑦0), its adjunct map ̃︀𝑓 : (𝑋, 𝑥0) → (Ω𝑌, ct𝑆1,𝑦0)
associates to each point 𝑥 ∈ 𝑋 the loop ̃︀𝑓(𝑥) : 𝑆1 → 𝑌 based at 𝑦0 which satisfies the
equation

[ ̃︀𝑓(𝑥)](exp(𝑡)) = 𝑓([𝑥, 𝑡]) (3.11)

for every 𝑡 ∈ 𝐼.

We finish the chapter with a description of the smash product of spheres. We
already know how to describe this if one of the factors is the 0-sphere 𝑆0, so we start
by understanding the smash product of a sphere with the circle, or in other words, the
reduced suspension of spheres.

3.4.7 Proposition. There is a pointed homeomorphism Σ𝑆𝑛 ∼= 𝑆𝑛+1 for every 𝑛 ∈ N.

Proof. The definition of the homeomorphism has to do with the geometric meaning of
the construction of the reduced suspension. When applying the canonical projection 𝑝 :
𝑋 × 𝐼 → Σ𝑋, for each 𝑥 ∈ 𝑋, the end points (𝑥, 0) and (𝑥, 1) of the line segment {𝑥}× 𝐼
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on the surface of the cylinder get identified, so this line segment gets transformed into a
circle. In other words, the reduced suspension Σ𝑋 is “foliated” by circles, but there is a
catch: since all points in the line {𝑥0} × 𝐼 get identified, not just the endpoints, this line
gets transformed into a point - the basepoint of the reduced suspension - which we may
regard as a degenerate circle. See Figure 1 for a visualization of this foliation by circles in
the case 𝑛 = 1.

Figure 1 – The sphere is the reduced suspension of the circle.

The idea is then to realize 𝑆𝑛+1 as also being “foliated” by a family of circles
parameterized by 𝑆𝑛, where the circle associated with *𝑆𝑛 is just the basepoint *𝑆𝑛+1 .
This is done as follows: each point 𝑥 ∈ 𝑆𝑛 gives rise to a point (𝑥, 0) on the equator of
𝑆𝑛+1, and the plane spanned by *𝑆𝑛+1 − (𝑥, 0) and (0, . . . , 0, 1) intersects 𝑆𝑛+1 along a
circle. This is the family of circles we will use to construct our homeomorphism.

Consider first the map 𝑐 : 𝑆𝑛 → R𝑛+2 defined as follows: given 𝑥 = (𝑥1, . . . , 𝑥𝑛+1) ∈
𝑆𝑛,

𝑐(𝑥) = 1
2 · (*𝑆𝑛+1 + (𝑥, 0)) = 1

2 · (1 + 𝑥1, 𝑥2, . . . , 𝑥𝑛+1, 0).

The circle we want to define has the form

𝑐(𝑥) + (‖*𝑆𝑛+1 − 𝑐(𝑥)‖ cos(2𝜋𝑡)) · 𝑢(𝑥) + (‖*𝑆𝑛+1 − 𝑐(𝑥)‖ sin(2𝜋𝑡)) · (0, . . . , 0, 1)

In this formula, 𝑢(𝑥) is a unit vector which together with (0, . . . , 0, 1) spans the plane
whose intersection with 𝑆𝑛+1 is the circle we are trying to parameterize. It is important
to remark that 𝑢(𝑥) must have unit norm, otherwise the expression above describes an
ellipse, and not a circle. The number ‖*𝑆𝑛+1 − 𝑐(𝑥)‖ appearing in the formula is exactly
the radius of the circle we are parameterizing.

We can define 𝑢 : 𝑆𝑛 → R𝑛+2 to be

𝑢(𝑥) = 1
‖*𝑆𝑛+1 − 𝑐(𝑥)‖ · (*𝑆

𝑛+1 − 𝑐(𝑥)).
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Having defined 𝑢(𝑥), the expression for the circle can be rewritten as

𝑐(𝑥) + cos(2𝜋𝑡) · (*𝑆𝑛+1 − 𝑐(𝑥)) + (‖*𝑆𝑛+1 − 𝑐(𝑥)‖ sin(2𝜋𝑡)) · (0, . . . , 0, 1).

Grouping together the first two terms, we are led to define 𝐹 : 𝑆𝑛 × 𝐼 → 𝑆𝑛+1 by
the formula

𝐹 (𝑥, 𝑡) :=
(︃

1 + cos(2𝜋𝑡)
2

)︃
· *𝑆𝑛+1 +

(︃
1− cos(2𝜋𝑡)

2

)︃
· (𝑥, 0)

+ (‖*𝑆𝑛+1 − 𝑐(𝑥)‖ sin(2𝜋𝑡)) · (0, . . . , 0, 1).

If 𝑥 = (𝑥1, . . . , 𝑥𝑛+1), taking into account that

‖*𝑆𝑛+1 − 𝑐(𝑥)‖ = 1
2‖*𝑆

𝑛+1 − (𝑥, 0)‖ = 1
2
√︁

(1− 𝑥1)2 + 𝑥2 + · · ·+ 𝑥2
𝑛+1 = 1

2
√

2− 2𝑥1,

we have a more explicit (and more terrifying) formula

𝐹 (𝑥, 𝑡) = 1
2 ·(1 + cos(2𝜋𝑡) + (1− cos(2𝜋𝑡))𝑥1, (1− cos(2𝜋𝑡))𝑥2, · · · , (1− cos(2𝜋𝑡))𝑥𝑛+1,

sin(2𝜋𝑡)
√

2− 2𝑥1
)︁
. (3.12)

These formulas show that 𝐹 (𝑥, 𝑡) = *𝑆𝑛 if either 𝑥 = *𝑆𝑛 or 𝑡 ∈ {0, 1}. This means
that 𝐹 induces a pointed map 𝑊 : (Σ𝑆𝑛, *Σ𝑆𝑛) → (𝑆𝑛+1, *𝑆𝑛+1), which is the desired
homeomorphism.

𝑆𝑛 × 𝐼

Σ𝑆𝑛 𝑆𝑛+1

𝑝 𝐹

𝑊

�

Before continuing, let us analyze the homeomorphism 𝑊 : Σ𝑆0 ∼= 𝑆1 constructed
above. Since 𝑆0 = {−1,+1}, the product 𝑆0 × 𝐼 consists of two disjoint copies {−1} × 𝐼
and {+1} × 𝐼 of the interval 𝐼. The projection 𝑝 : 𝑆0 × 𝐼 → Σ𝑆0 identifies one of the
copies {+1} × 𝐼, as well as the two endpoints (−1, 0) and (−1, 1) of the other copy. The
map 𝐹 : 𝑆0 × 𝐼 → 𝑆1 is particularly simple in this case:

𝐹 (𝑠, 𝑡) =

⎧⎪⎨⎪⎩*𝑆
1 , if 𝑠 = +1,

(cos(2𝜋𝑡), sin(2𝜋𝑡)), if 𝑠 = −1.

In other words, the composition 𝑊 ∘ 𝑝 : 𝑆0 × 𝐼 → 𝑆1 is constant on the copy {+1} × 𝐼
of the interval, and it is equal to the exponential exp : 𝐼 → 𝑆1 on the copy {−1} × 𝐼.

We are now able to describe the smash product of any two spheres.

3.4.8 Corollary. There is an isomorphism of pointed spaces 𝑆𝑚 ∧ 𝑆𝑛 ∼= 𝑆𝑚+𝑛 for any
𝑚,𝑛 ∈ N.
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Proof. We fix 𝑚 and perform an induction on 𝑛. For the base case 𝑛 = 0, the isomorphism
𝑆𝑚 ∧ 𝑆0 ∼= 𝑆𝑚 follows from the fact that 𝑆0 is a unit for the smash product according
to Proposition 3.3.1. If the isomorphism holds for 𝑛, using the associativity of the smash
product and Proposition 3.4.7, we have

𝑆𝑚 ∧ 𝑆𝑛+1 ∼= 𝑆𝑚 ∧ (𝑆𝑛 ∧ 𝑆1) ∼= (𝑆𝑚 ∧ 𝑆𝑛) ∧ 𝑆1 ∼= 𝑆𝑚+𝑛 ∧ 𝑆1 ∼= 𝑆𝑚+𝑛+1. �
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CHAPTER

4
POINTED HOMOTOPY

This chapter is devoted to developing the basic notions of pointed homotopy, which
is the version of homotopy well-adapted to the category Top* of pointed spaces. It follows
the same thread of ideas of Chapter 2. The first section introduces the notion of pointed
homotopy in different equivalent forms making use of the pointed exponential adjunction.
The next section then introduces the pointed version of the homotopy category, and
studies some of its properties, like how some functors of pointed spaces interact with
pointed homotopies. The last section adapts the results relating null homotopic maps and
contractible spaces to the context of pointed spaces. Overall, the structure of this chapter
is completely analogous to that of the second one.

4.1 Different notions of pointed homotopy

We first define a pointed homotopy as a map defined on a cylinder. It is an ordinary
homotopy satisfying an extra condition related to the basepoints.

4.1.1 Definition. Consider pointed spaces (𝑋, 𝑥0) and (𝑌, 𝑦0). We say that two pointed
maps 𝑓, 𝑔 : (𝑋, 𝑥0)→ (𝑌, 𝑦0) are pointed homotopic if there is a map 𝐻 : 𝑋 × 𝐼 → 𝑌

satisfying the following conditions:

(i) 𝐻(𝑥, 0) = 𝑓(𝑥) ∀𝑥 ∈ 𝑋;

(ii) 𝐻(𝑥, 1) = 𝑔(𝑥) ∀𝑥 ∈ 𝑋;

(iii) 𝐻(𝑥0, 𝑡) = 𝑦0 ∀ 𝑡 ∈ 𝐼.

The map 𝐻 is called a pointed homotopy from 𝑓 to 𝑔.
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Throughout the text we use the notation 𝑓 ≃* 𝑔 to denote that 𝑓 and 𝑔 are pointed
homotopic. Occasionally, we also use the notation 𝐻 : 𝑓 ⇒* 𝑔 in case we want to make
the pointed homotopy explicit.

In Chapter 2 we saw that a homotopy 𝐻 : 𝑋 × 𝐼 → 𝑌 can also be thought of as a
family of paths, that is, as a map of type 𝑋 → Map(𝐼, 𝑌 ), connecting the images of two
maps. We would like to do the same for pointed homotopies, since in particular this would
allow us to recycle many of the proofs we gave for results about unpointed homotopies.
This relation between homotopies and families of paths was obtained by means of the
exponential adjunction

Top(𝑋 × 𝐼, 𝑌 ) ∼= Top(𝑋,Map(𝐼, 𝑌 )).

In order to be able to describe a pointed homotopy as a certain family of paths, we
introduce a modified version of the usual cylinder 𝑋× 𝐼. The idea is that, since a pointed
homotopy 𝐻 : 𝑋 × 𝐼 → 𝑌 is constant along the subspace {𝑥0} × 𝐼, it makes sense to
collapse this subspace to a point, and regard the condition on 𝐻 as a pointed condition
on a map defined on the quotient.

4.1.2 Definition. Given a pointed space (𝑋, 𝑥0), the quotient space

𝑋 o 𝐼 := 𝑋 × 𝐼
{𝑥0} × 𝐼

is called the reduced cylinder over (𝑋, 𝑥0). It becomes a pointed space if we choose the
image of 𝑥0 × 𝐼 under the canonical projection 𝑞 : 𝑋 × 𝐼 → 𝑋 o 𝐼 as basepoint.

The usual cylinder 𝑋 × 𝐼 comes equipped with an inclusion 𝑖𝑋,0 : 𝑋 → 𝑋 × 𝐼

into the “lower face” of the cylinder. If we compose it with the canonical projection
𝑞 : 𝑋 × 𝐼 → 𝑋 o 𝐼, we obtain an analogous inclusion 𝑗𝑋,0 : 𝑋 → 𝑋o into the reduced
cylinder. Notice that

𝑗𝑋,0(𝑥0) = 𝑞(𝑖𝑋,0(𝑥0)) = 𝑞(𝑥0, 0) = *𝑋o𝐼 ,

so 𝑗𝑋,0 actually defines a pointed map (𝑋, 𝑥0) → (𝑋 o 𝐼, *𝑋o𝐼). See Figure 2 for a
representation of the reduced cylinder over the circle 𝑆1 along with the inclusions 𝑗𝑆1,0

and 𝑗𝑆1,1.

In the definition of an unpointed homotopy, the inclusions 𝑖𝑋,0, 𝑖𝑋,1 : 𝑋 → 𝑋 × 𝐼
allow us to specify the starting and ending points of a homotopy. More precisely, we saw
that, if 𝑓, 𝑔 : 𝑋 → 𝑌 are maps, then the data of a homotopy 𝐻 : 𝑓 ⇒ 𝑔 can be encoded



4.1. Different notions of pointed homotopy 103

Figure 2 – The reduced cylinder over the circle 𝑆1. The bottom and top blue circles are the
images of the inclusions 𝑗𝑆1,0 and 𝑗𝑆1,1 respectively.

in the diagram below.
𝑋

𝑋 × 𝐼 𝑌

𝑋

𝑖𝑋,0
𝑓

𝐻

𝑖𝑋,1 𝑔

If 𝑋, 𝑌 , 𝑓 and 𝑔 are pointed, then the commutativity of this diagram does not
guarantee that 𝐻 is a pointed homotopy, since it does not enforce any conditions on the
values of 𝐻(𝑥0, 𝑡) for 𝑡 ∈ 𝐼. The next result shows that by working with the reduced
cylinder we can give a similar diagrammatic description of a pointed homotopy with the
𝑗𝑋,0 and 𝑗𝑋,1 playing the roles of 𝑖𝑋,0 and 𝑖𝑋,1.

4.1.3 Proposition. Two pointed maps 𝑓, 𝑔 : (𝑋, 𝑥0)→ (𝑌, 𝑦0) are pointed homotopic if
and only if there exists a pointed map 𝐾 : (𝑋o𝐼, *)→ (𝑌, 𝑦0) that fits in the commutative
diagram below.

𝑋

𝑋 o 𝐼 𝑌

𝑋

𝑗𝑋,0
𝑓

𝐾

𝑗𝑋,1 𝑔

Proof. Suppose first that there exists a pointed map 𝐾 : (𝑋 o 𝐼, *)→ (𝑌, 𝑦0) as depicted
above. Let 𝐻 : 𝑋 × 𝐼 → 𝑌 be defined via the composition 𝐻 := 𝐾 ∘ 𝑞, where 𝑞 : 𝑋 × 𝐼 →
𝑋 o 𝐼 denotes the canonical projection.

We claim that 𝐻 defines a pointed homotopy 𝑓 ≃* 𝑔. Indeed, on the one hand we
have

𝐻 ∘ 𝑖𝑋,0 = 𝐾 ∘ 𝑞 ∘ 𝑖𝑋,0 = 𝐾 ∘ 𝑗𝑋,0 = 𝑓,
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while on the other
𝐻 ∘ 𝑖𝑋,1 = 𝐾 ∘ 𝑞 ∘ 𝑖𝑋,1 = 𝐾 ∘ 𝑗𝑋,1 = 𝑔,

so 𝐻 defines at least an unpointed homotopy from 𝑓 to 𝑔. In order to see that 𝐻 is actually
pointed, we just note that, for any 𝑡 ∈ 𝐼, there is an equality

𝐻(𝑥0, 𝑡) = 𝐾(𝑞(𝑥0, 𝑡)) = 𝐾(*) = 𝑦0.

Conversely, suppose 𝐻 : 𝑋 × 𝐼 → 𝑌 is a pointed homotopy starting at 𝑓 and
ending at 𝑔. Since by hypothesis 𝐻 maps the whole line segment {𝑥0}×𝐼 to the basepoint
𝑦0 of 𝑌 , it can be factored through the canonical projection 𝑞 to define a pointed map
𝐾 : (𝑋 o 𝐼, *)→ (𝑌, 𝑦0) as shown below.

𝑋 × 𝐼 𝑌

𝑋 o 𝐼

𝐻

𝑞
𝐾

This is the desired map, since on the one hand

𝐾 ∘ 𝑗𝑋,0 = 𝐾 ∘ 𝑞 ∘ 𝑖𝑋,0 = 𝐻 ∘ 𝑖𝑋,0 = 𝑓,

while on the other
𝐾 ∘ 𝑗𝑋,1 = 𝐾 ∘ 𝑞 ∘ 𝑖𝑋,1 = 𝐻 ∘ 𝑖𝑋,1 = 𝑔. �

Having described pointed homotopies in diagrammatic terms, we would now like to
obtain a description in terms of families of paths similar to Proposition 2.1.3 for unpointed
homotopies. In order to do this, we first prove that the reduced cylinder fits into a sort
of exponential adjunction relation.

The construction of the reduced cylinder can be easily made functorial. If 𝑓 :
(𝑋, 𝑥0) → (𝑌, 𝑦0) is a pointed map, then the product 𝑓 × id𝐼 : 𝑋 × 𝐼 → 𝑌 × 𝐼 maps
the line segment {𝑥0} × 𝐼 to the corresponding segment {𝑦0} × 𝐼, so the composition
𝑞𝑌 ∘ (𝑓 × id𝐼) : 𝑋 × 𝐼 → 𝑌 o 𝐼 is constant and equal to *𝑌 o𝐼 on {𝑥0} × 𝐼; therefore by
passing to the quotient we obtain a pointed map 𝑓 o id𝐼 : (𝑋 o 𝐼, *𝑋o𝐼)→ (𝑌 o 𝐼, *𝑌 o𝐼).

𝑋 × 𝐼 𝑌 × 𝐼

𝑋 o 𝐼 𝑌 o 𝐼

𝑓×id𝐼

𝑞𝑋 𝑞𝑌

𝑓oid𝐼

Using the functorial properties of − × 𝐼 it is straightforward to show that the
assignment (𝑋, 𝑥0) ↦→ (𝑋 o 𝐼, *𝑋o𝐼) and (𝑓 : (𝑋, 𝑥0) → (𝑌, 𝑦0)) ↦→ (𝑓 o id𝐼 : (𝑋 o
𝐼, *𝑋o𝐼)→ (𝑌 o 𝐼, *𝑌 o𝐼)) defines a functor −o 𝐼 : Top* → Top*.
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We will show that −o 𝐼 is a left adjoint functor just like −× 𝐼. The right adjoint
in this case is the space of paths functor Map(𝐼,−). Notice that, even without choosing a
particular basepoint for 𝐼, for any pointed space (𝑌, 𝑦0), the space of paths Map(𝐼, 𝑌 ) has
a natural basepoint: the constant path ct𝐼,𝑦0 : 𝐼 → 𝑌 . If 𝑔 : (𝑌, 𝑦0) → (𝑍, 𝑧0) is pointed,
then the pushforward Map(𝐼, 𝑔) : Map(𝐼, 𝑌 )→ Map(𝐼, 𝑍) sends the constant path ct𝐼,𝑦0

to the corresponding constant path 𝑔 ∘ct𝐼,𝑦0 = ct𝐼,𝑧0 , so we can regard it as a pointed map

Map(𝐼, 𝑔) : (Map(𝐼, 𝑌 ), ct𝐼,𝑦0)→ (Map(𝐼, 𝑍), ct𝐼,𝑧0).

We can then consider the space of paths functor Map(𝐼,−) : Top* → Top*.

The next result concerns the adjointness relation which is behind the two possible
descriptions of a pointed homotopy.

4.1.4 Proposition. The reduced cylinder functor −o 𝐼 : Top* → Top* is left adjoint to
the space of maps functor Map(𝐼,−) : Top* → Top*.

Sketch of proof. Given pointed spaces (𝑋, 𝑥0) and (𝑌, 𝑦0), let

𝜆* : Top*(𝑋 o 𝐼, 𝑌 )→ Top*(𝑋,Map(𝐼, 𝑌 ))

be the function defined in terms of the usual exponential adjunction as

𝜆*𝑓 := 𝜆(𝑓 ∘ 𝑞𝑋),

where 𝑞𝑋 : 𝑋 × 𝐼 → 𝑋 o 𝐼 denotes the canonical projection. Notice that 𝜆* really takes
values in Top*(𝑋,Map(𝐼, 𝑌 )) since for any 𝑓 ∈ Top*(𝑋 o 𝐼, 𝑌 ) we have the equality

[𝜆*𝑓(𝑥0)](𝑡) = [𝜆(𝑓 ∘ 𝑞)(𝑥0)](𝑡) = (𝑓 ∘ 𝑞)(𝑥0, 𝑡) = 𝑓(*𝑋o𝐼) = 𝑦0,

proving that 𝜆*𝑓(𝑥0) = ct𝐼,𝑦0 .

The injectivity of 𝜆* follows from the injectivity of the usual exponential adjunction,
because if 𝜆*𝑓 = 𝜆*𝑔, then 𝜆(𝑓 ∘ 𝑞𝑋) = 𝜆(𝑔 ∘ 𝑞𝑋), which implies 𝑓 ∘ 𝑞𝑋 = 𝑔 ∘ 𝑞𝑋 , and
therefore 𝑓 = 𝑔 due to the surjectivity of 𝑞𝑋 . The surjectivity of 𝜆* similarly follows
from the analogous property of the normal exponential adjunction. Given a pointed map
𝑔 : (𝑋, 𝑥0)→ (Map(𝐼, 𝑌 ), ct𝐼,𝑦0), if we forget for a moment that it is pointed, and regard
it simply as a map 𝑔 : 𝑋 → Map(𝐼, 𝑌 ), then by the usual exponential adjunction there is
a map 𝑓 : 𝑋 × 𝐼 → 𝑌 such that 𝜆𝑓 = 𝑔. Notice that, for any 𝑡 ∈ 𝐼, since 𝑔 is pointed we
have

𝑓(𝑥0, 𝑡) = [𝜆𝑓(𝑥0)](𝑡) = [𝑔(𝑥0)](𝑡) = ct𝐼,𝑦0(𝑡) = 𝑦0.

This means that 𝑓 is constant and equal 𝑦0 on the line segment {𝑥0} × 𝐼, thus it can be
factored through 𝑞𝑋 to define a pointed map 𝑓 : (𝑋 o 𝐼, *𝑋o𝐼)→ (𝑌, 𝑦0). Applying 𝜆* to
𝑓 we find that

𝜆*𝑓 = 𝜆(𝑓 ∘ 𝑞𝑋) = 𝜆𝑓 = 𝑔,
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proving that 𝜆* is a surjective function.

We have proved so far that 𝜆* defines a bijection of sets Top*(𝑋 o 𝐼, 𝑌 ) ∼=
Top*(𝑋,Map(𝐼, 𝑌 )). The naturality of this bijection follows from the naturality of the
usual exponential adjunction 𝜆. �

Equipped with this adjunction we can finally describe a pointed homotopy in terms
of a suitable family of paths.

4.1.5 Proposition. Two pointed maps 𝑓, 𝑔 : (𝑋, 𝑥0)→ (𝑌, 𝑦0) are pointed homotopic if
and only if there exists a pointed map 𝐷 : (𝑋, 𝑥0) → (Map(𝐼, 𝑌 ), ct𝐼,𝑦0) that fits in the
commutative diagram below.

𝑌

𝑋 Map(𝐼, 𝑌 )

𝑌

𝐷

𝑓

𝑔

ev0

ev1

Proof. Suppose first that 𝑓 and 𝑔 are pointed homotopic. According to Proposition 4.1.3,
this means that there exists a pointed map 𝐾 : (𝑋o𝐼, *)→ (𝑌, 𝑦0) such that 𝐾 ∘𝑗𝑋,0 = 𝑓

and 𝐾 ∘ 𝑗𝑋,1 = 𝑔.

Applying the adjunction of Proposition 4.1.4 we obtain the pointed map 𝐷 :=
𝜆*𝐾 : (𝑋, 𝑥0)→ (Map(𝐼, 𝑌 ), ct𝐼,𝑦0). For any 𝑥 ∈ 𝑋 we have

ev0(𝐷(𝑥)) = [𝐷(𝑥)](0)

= [𝜆*𝐾(𝑥)](0)

= [𝜆(𝐾 ∘ 𝑞𝑋)(𝑥)](0)

= 𝐾(𝑞𝑋(𝑥, 0))

= 𝐾(𝑞𝑋(𝑖𝑋,0(𝑥)))

= 𝐾(𝑗𝑋,0(𝑥))

= 𝑓(𝑥),

and a completely analogous reasoning shows that we also have ev1(𝐷(𝑥)) = 𝑔(𝑥) for every
𝑥 ∈ 𝑋; proving that 𝐷 satisfies the required commutativity conditions.

Conversely, given a pointed map 𝐷 : (𝑋, 𝑥0) → (Map(𝐼, 𝑌 ), ct𝐼,𝑦0) as in the dia-
gram, by applying Proposition 4.1.4 we obtain a pointed map 𝐾 : (𝑋 o 𝑌, *) → (𝑌, 𝑦0)
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such that 𝐷 = 𝜆*𝐾. For any 𝑥 ∈ 𝑋 we have the equalities

𝐾(𝑗𝑋,0(𝑥)) = (𝐾 ∘ 𝑞𝑋)(𝑥, 0)

= [𝜆(𝐾 ∘ 𝑞𝑋)(𝑥)](0)

= [𝜆*𝐾(𝑥)](0)

= [𝐷(𝑥)](0)

= ev0(𝐷(𝑥))

= 𝑓(𝑥);

therefore 𝐾 ∘ 𝑗𝑋,0 = 𝑓 . Analogously, we also have 𝐾 ∘ 𝑗𝑋,1 = 𝑔, thus 𝐾 defines a pointed
homotopy 𝑓 ≃* 𝑔 according to Proposition 4.1.3. �

4.2 The pointed homotopy category
In the previous section we introduced the concept of a pointed homotopy between

two pointed maps, and we then studied how it can be described in three equivalent ways:

1. as an ordinary homotopy satisfying an extra condition;

2. as a pointed map out of the reduced cylinder satisfying some conditions;

3. as a pointed family of paths satisfying some conditions.

In the present section, we introduce the analogue of the homotopy category HoTop
in the pointed case, and we exploit the three characterizations above to deduce some
useful properties of this category. This section is basically an adaptation of Section 2.2 to
the context of pointed spaces.

Given two pointed spaces (𝑋, 𝑥0) and (𝑌, 𝑦0), the notion of pointed homotopy intro-
duces a relation ≃* in the set Top*(𝑌, 𝑌 ) of pointed maps. It turns out that this relation is
in fact an equivalence relation. In order to prove this, we can think of homotopy as maps
of type 𝑋 × 𝐼 → 𝑌 , and then use the exact same formulas obtained in Proposition 2.1.4
taking care to check that they actually define pointed homotopies.

We can then form the quotient set

[𝑋,𝑌 ]* := Top*(𝑋,𝑌 )
≃*

whose elements are called pointed homotopy classes of maps. If 𝑓 : (𝑋, 𝑥0)→ (𝑌, 𝑦0)
is a pointed map, then its equivalence class in [𝑋,𝑌 ]* will be denoted by [𝑓 ]*.

The next step is to analyze how pointed homotopies interact with compositions of
pointed maps.
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4.2.1 Proposition. Let (𝑊,𝑤0), (𝑋, 𝑥0), (𝑌, 𝑌0) and (𝑍, 𝑧0) be pointed spaces, and con-
sider pointed maps 𝛼 : (𝑊,𝑤0)→ (𝑋, 𝑥0), 𝑓, 𝑔 : (𝑋, 𝑥0)→ (𝑌, 𝑦0) and 𝛽 : (𝑌, 𝑦0)→ (𝑍, 𝑧0)
as shown in the diagram below.

𝑊 𝑋 𝑌 𝑍𝛼
𝑓
𝑔

𝛽

If 𝑓 ≃* 𝑔, then 𝑓 ∘ 𝛼 ≃* 𝑔 ∘ 𝛼 and 𝛽 ∘ 𝑓 ≃* 𝛽 ∘ 𝑔.

Sketch of proof. We give a sketch of the proof to illustrate how the diagrammatic formu-
lations of homotopy allow us to essentially reuse the proofs of the unpointed case.

Let 𝐷 : (𝑋, 𝑥0)→ (Map(𝐼, 𝑌 ), ct𝐼,𝑦0) be the pointed family of paths associated to
the pointed homotopy 𝑓 ≃* 𝑔. The composite pointed map

𝐷 ∘ 𝛼 : (𝑊,𝑤0)→ (Map(𝐼, 𝑌 ), ct𝐼,𝑦0)

satisfies ev0,𝑌 ∘ 𝐷 ∘ 𝛼 = 𝑓 ∘ 𝛼 and ev1,𝑌 ∘ 𝐷 ∘ 𝛼 = 𝑔 ∘ 𝛼, therefore it induces a pointed
homotopy 𝑓 ∘ 𝛼 ≃* 𝑔 ∘ 𝛼.

Now for the other homotopy, we regard the homotopy 𝑓 ≃* 𝑔 as being given by a
pointed map 𝐾 : (𝑋o𝐼, *)→ (𝑌, 𝑦0) satisfying the equalities 𝐾∘𝑗𝑋,0 = 𝑓 and 𝐾∘𝑗𝑋,1 = 𝑔.
It is then a matter of simple computation to show that the composite pointed map

𝛽 ∘𝐾 : (𝑋 o 𝐼, *)→ (𝑍, 𝑧0)

satisfies the equalities 𝛽 ∘𝐾 ∘ 𝑗𝑋,0 = 𝛽 ∘𝑓 and 𝛽 ∘𝐾 ∘ 𝑗𝑋,1 = 𝛽 ∘𝑔, inducing thus a pointed
homotopy 𝛽 ∘ 𝑓 ≃* 𝛽 ∘ 𝑔. �

As in the unpointed case, this result implies that pointed homotopies are preserved
by compositions.

4.2.2 Corollary. Let (𝑋, 𝑥0), (𝑌, 𝑦0) and (𝑍, 𝑧0) be pointed spaces, and consider two
pairs of pointed maps 𝑓1, 𝑔1 : (𝑋, 𝑥0)→ (𝑌, 𝑦0) and 𝑓2, 𝑔2 : (𝑌, 𝑦0)→ (𝑍, 𝑧0) as shown in
the diagram below.

𝑋 𝑌 𝑍
𝑓1

𝑔1

𝑓2

𝑔2

If 𝑓1 ≃* 𝑔1 and 𝑓2 ≃* 𝑔2, then 𝑓2 ∘ 𝑓1 ≃* 𝑔2 ∘ 𝑔1.

Using this result we can define a composition of pointed homotopy classes. Given
pointed spaces (𝑋, 𝑥0), (𝑌, 𝑦0) and (𝑍, 𝑧0), we define a composition function

∘ : [𝑌, 𝑍]* × [𝑋,𝑌 ]* → [𝑋,𝑍]*

by the formula
[𝑔]* ∘ [𝑓 ]* := [𝑔 ∘ 𝑓 ]*
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for any pointed homotopy classes [𝑓 ]* ∈ [𝑋,𝑌 ]* and [𝑔]* ∈ [𝑌, 𝑍]*. This function is
well-defined precisely due to the compatibility of pointed homotopies with the usual com-
position of pointed maps.

This composition operation is associative by virtue of the associativity of the
usual composition of pointed maps. Moreover, for any pointed space (𝑋, 𝑥0)*, the pointed
homotopy class [id𝑋 ]* defines a unit for the composition operation of [𝑋,𝑋]*. We can
then consider the category whose objects are pointed spaces, and whose morphisms are
pointed homotopy classes with composition described as above. The category defined like
this is called the pointed homotopy category and is denoted as HoTop*.

Like in the unpointed case, we can specialize categorical notions to the category
HoTop*. For example, a pointed map 𝑓 : (𝑋, 𝑥0) → (𝑌, 𝑦0) is said to be a pointed
homotopy equivalence if its pointed homotopy class [𝑓 ]* defines an isomorphism in
HoTop*, that is, if there exists a pointed map 𝑔 : (𝑌, 𝑦0)→ (𝑋, 𝑥0) such that 𝑔 ∘ 𝑓 ≃* id𝑋
and 𝑓 ∘ 𝑔 ≃* id𝑌 . If this is the case, we also say that (𝑋, 𝑥0) and (𝑌, 𝑦0) are of the same
pointed homotopy type.

We now study some categorical properties of HoTop*. We are especially interested
in how some constructions made in Top* behave when interpreted in HoTop*.

First, recall that, given two pointed spaces (𝑋, 𝑥0) and (𝑌, 𝑦0), the usual cartesian
product 𝑋 × 𝑌 can be regarded as a pointed space by choosing (𝑥0, 𝑦0) as basepoint.
This is in fact a very nice choice, because the canonical projection 𝜋1 : 𝑋 × 𝑌 → 𝑋

and 𝜋2 : 𝑋 × 𝑌 → 𝑌 become pointed maps, and, given another pointed space (𝑊,𝑤0)
together with pointed maps 𝑓 : (𝑊,𝑤0) → (𝑋, 𝑥0) and 𝑔 : (𝑊,𝑤0) → (𝑌, 𝑦0), the usual
induced map (𝑓, 𝑔) : 𝑊 → 𝑋 × 𝑌 also becomes a pointed map. In summary, this choice
of basepoint on 𝑋 × 𝑌 ensures that the triple ((𝑋 × 𝑌, (𝑥0, 𝑦0)), 𝜋1, 𝜋2) defines a product
of (𝑋, 𝑥0) and (𝑌, 𝑦0) in the category Top*.

We saw in Proposition 2.2.7 that the formation of the induced map into a product
is compatible with homotopies, that is, two pairs of homotopic maps give rise to two
homotopic maps into the product. The next result shows that this is also true for pointed
homotopies.

4.2.3 Proposition. Given pointed spaces (𝑋, 𝑥0), (𝑌1, 𝑦1) and (𝑌2, 𝑦2), and given pointed
maps 𝑓1, 𝑔1 : (𝑋, 𝑥0) → (𝑌1, 𝑦1) and 𝑓2, 𝑔2 : (𝑋, 𝑥0) → (𝑌2, 𝑦2), if 𝑓1 ≃* 𝑔1 and 𝑓2 ≃* 𝑔2,
then the induced pointed maps (𝑓1, 𝑓2), (𝑔1, 𝑔2) : (𝑋, 𝑥0)→ (𝑌1 × 𝑌2, (𝑦1, 𝑦2)) are pointed
homotopic.

Proof. The proof is analogous to that of Proposition 2.2.7. Suppose that the pointed
homotopies 𝑓1 ≃* 𝑔1 and 𝑓2 ≃* 𝑔2 are given by pointed maps 𝐻1 : (𝑋 o 𝐼, *) → (𝑌1, 𝑦1)
and 𝐻2 : (𝑋 o 𝐼, *)→ (𝑌2, 𝑦2) respectively.
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The two homotopies together define a pointed map

(𝐻1, 𝐻2) : (𝑋 o 𝐼, *)→ (𝑌1 × 𝑌2, (𝑦2, 𝑦2)).

If 𝜋′
1 and 𝜋′

2 are the canonical projections out of 𝑌1×𝑌2, then computations analogous to
those of Proposition 2.2.7 show that

𝜋′
1 ∘ (𝐻1, 𝐻2) ∘ 𝑗𝑋,0 = 𝑓1 and𝜋2 ∘ (𝐻1, 𝐻2) ∘ 𝑗𝑋,0 = 𝑓2,

therefore the universal property of the product implies the equality (𝐻1, 𝐻2) ∘ 𝑗𝑋,0 =
(𝑓1, 𝑓2). A similar reasoning shows that we also have (𝐻1, 𝐻2) ∘ 𝑗𝑋,1 = (𝑔1, 𝑔2), thus
(𝐻1, 𝐻2) defines a pointed homotopy from (𝑓1, 𝑓2) to (𝑔1, 𝑔2). �

From this we obtain the pointed analogue of Corollary 2.2.8.

4.2.4 Corollary. The product functor × : Top* × Top* → Top* respects pointed ho-
motopies. More precisely, for any pointed spaces (𝑋1, 𝑥1), (𝑋2, 𝑥2), (𝑌1, 𝑦1) and (𝑌2, 𝑦2),
and for any pointed maps 𝑓1, 𝑔1 : (𝑋1, 𝑥1) → (𝑌1, 𝑦1) and 𝑓2, 𝑔2 : (𝑋2, 𝑥2) → (𝑌1, 𝑦2), if
𝑓1 ≃* 𝑔1 and 𝑓2 ≃* 𝑔2, then we also have pointed homotopy 𝑓1 × 𝑓2 ≃* 𝑔1 × 𝑔2.

Sketch of proof. The proof is the same as that of Corollary 2.2.8. If 𝜋1 and 𝜋2 are the
canonical projections out of 𝑋1 × 𝑋2, then the products 𝑓1 × 𝑓2 and 𝑔1 × 𝑔2 are the
induced maps

𝑓1 × 𝑓2 = (𝑓1 ∘ 𝜋1, 𝑓2 ∘ 𝜋2) and 𝑔1 × 𝑔2 = (𝑔1 ∘ 𝜋1, 𝑔2 ∘ 𝜋2)

into the product 𝑌1 × 𝑌2. We just need to use the compatibility of composition with
pointed homotopies and the result of Proposition 4.2.3. �

We saw in Proposition 2.2.9 and Corollary 2.2.10 that the coproduct in Top*,
that is, the disjoint union, also interacts nicely with homotopy. These results also have
analogues in the pointed case, but we must remember that the coproduct in Top* is given
by the wedge sum of Definition 3.1.14.

4.2.5 Proposition. Let (𝑋1, 𝑥1), (𝑋2, 𝑥2) and (𝑌, 𝑦0) be pointed space, and consider
pointed maps 𝑓1, 𝑔1 : (𝑋1, 𝑥1) → (𝑌, 𝑦0) and 𝑓2, 𝑔2 : (𝑋2, 𝑥2) → (𝑌, 𝑦0). If 𝑓1 ≃* 𝑔1 and
𝑓2 ≃* 𝑔2, then the induced pointed maps ⟨𝑓1, 𝑓2⟩, ⟨𝑔1, 𝑔2⟩ : (𝑋1 ∨ 𝑋2, *) → (𝑌, 𝑦0) are
pointed homotopic.

Proof. The proof is analogous to that of Proposition 2.2.9. Suppose that the pointed
homotopies 𝑓1 ≃* 𝑔1 and 𝑓2 ≃* 𝑔2 are given by pointed families of paths 𝐷1 : (𝑋1, 𝑥1)→
(Map(𝐼, 𝑌 ), ct𝐼,𝑦0) and 𝐷2 : (𝑋2, 𝑥2)→ (Map(𝐼, 𝑌 ), ct𝐼,𝑦0) respectively.
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These two maps together induce a pointed map

⟨𝐷1, 𝐷2⟩ : (𝑋1 ∨𝑋2, *)→ (Map(𝐼, 𝑌 ), ct𝐼,𝑦0),

since the wedge sum is a coproduct in Top*. If 𝑗1 and 𝑗2 are the canonical injections into
𝑋1 ∨𝑋2, then following the computations of Proposition 2.2.9 we see that

ev0,𝑌 ∘ ⟨𝐷1, 𝐷2⟩ ∘ 𝑗1 = 𝑓1 and ev0,𝑌 ∘ ⟨𝐷1, 𝐷2⟩ ∘ 𝑗2 = 𝑓2,

therefore the universal property of the coproduct implies the equality ev0,𝑌 ∘ ⟨𝐷1, 𝐷2⟩ =
⟨𝑓1, 𝑓2⟩. Similarly, we also have the equality ev1,𝑌 ∘ ⟨𝐷1, 𝐷2⟩ = ⟨𝑔1, 𝑔2⟩, thus the map
⟨𝐷1, 𝐷2⟩ induces a pointed homotopy ⟨𝑓1, 𝑓2⟩ ≃* ⟨𝑔1, 𝑔2⟩. �

We then obtain the analogue of Corollary 2.2.10 for the wedge sum of maps.

4.2.6 Corollary. The wedge sum functor ∨ : Top* × Top* → Top* respects pointed
homotopies. More precisely, given pointed spaces (𝑋1, 𝑥1), (𝑋2, 𝑥2), (𝑌1, 𝑦1) and (𝑌2, 𝑦2),
and given pointed maps 𝑓1, 𝑔1 : (𝑋1, 𝑥1) → (𝑌1, 𝑦1) and 𝑓2, 𝑔2 : (𝑋2, 𝑥2) → (𝑌2, 𝑦2), if
𝑓1 ≃* 𝑔1 and 𝑓2 ≃* 𝑔2, then we also have a pointed homotopy 𝑓1 ∨ 𝑓2 ≃* 𝑔1 ∨ 𝑔2.

Proof. Let 𝑗′
1 and 𝑗′

2 denote the canonical injections into 𝑌1 ∨ 𝑌2. The wedge sums 𝑓1 ∨ 𝑓2

and 𝑔1 ∨ 𝑔2 are then the induced maps

𝑓1 ∨ 𝑓2 = ⟨𝑗′
1 ∘ 𝑓1, 𝑗

′
2 ∘ 𝑓2⟩ and 𝑔1 ∨ 𝑔2 = ⟨𝑗′

1 ∘ 𝑔1, 𝑗
′
2 ∘ 𝑔2⟩,

therefore the result follows by combining the compatibility of composition with pointed
maps and the result of Proposition 4.2.5. �

These results on the compatibility of products and wedge sums with homotopies
can be reinterpreted as saying that these functors descend to functors defined on the
homotopy category.

4.2.7 Corollary. Let (𝑋, 𝑥0) and (𝑌, 𝑦0) be pointed spaces.

1. The triple ((𝑋 × 𝑌, (𝑥0, 𝑦0)), [𝜋1]*, [𝜋2]*) defines a product for (𝑋, 𝑥0) and (𝑌, 𝑦0) in
HoTop*, where 𝜋1 and 𝜋2 are the canonical projections out of 𝑋 × 𝑌 .

2. The triple ((𝑋 ∨ 𝑌, *), [𝑗1]*, [𝑗2]*) defines a coproduct for (𝑋, 𝑥0) and (𝑌, 𝑦0) in
HoTop*, where 𝑗1 and 𝑗2 are the canonical injections into 𝑋 ∨ 𝑌 .

Proof. 1. Given another pointed space (𝑊,𝑤0) equipped with two pointed homotopy
classes [𝑓 ]* : (𝑊,𝑤0) → (𝑋, 𝑥0) and [𝑔]* : (𝑊,𝑤0) → (𝑌, 𝑦0), we need to show that
these two morphisms can be factored through the product 𝑋 × 𝑌 , that is, we need to
show that there exists a unique pointed homotopy class [ℎ]* : (𝑊,𝑤0)→ (𝑋 × 𝑌, (𝑥0, 𝑦0))
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satisfying the conditions [𝜋1]* ∘ [ℎ]* = [𝑓 ]* and [𝜋2]* ∘ [ℎ]* = [𝑔]*. Thinking in terms of
the representing pointed maps instead of the pointed homotopy classes, we need to show
that there exists a pointed map ℎ : (𝑊,𝑤0)→ (𝑋×𝑌, (𝑥0, 𝑦0)) satisfying the homotopical
conditions 𝜋1 ∘ℎ ≃* 𝑓 and 𝜋2 ∘ℎ ≃* 𝑔, and moreover, we also need to show that any other
pointed map satisfying these two conditions is in fact pointed homotopic to ℎ.

We claim that ℎ := (𝑓, 𝑔) is the desired map. Since the equalities 𝜋1 ∘ (𝑓, 𝑔) = 𝑓

and 𝜋2 ∘ (𝑓, 𝑔) = 𝑔 hold strictly, they also hold up to pointed homotopy, so (𝑓, 𝑔) satisfies
the two required homotopical conditions. Now, if ℎ′ : (𝑊,𝑤0) → (𝑋 × 𝑌, (𝑥0, 𝑦0)) also
satisfies 𝜋1 ∘ℎ′ ≃* 𝑓 and 𝜋2 ∘ℎ′ ≃* 𝑔, then by Proposition 4.2.3 we know that the induced
map (𝜋1 ∘ ℎ′, 𝜋2 ∘ ℎ′) is pointed homotopic to (𝑓, 𝑔), but (𝜋1 ∘ ℎ′, 𝜋2 ∘ ℎ′) is precisely the
map ℎ′.

2. The proof is similar to that of the previous item. Working directly with pointed
maps, we need to show that, given a pointed space (𝑍, 𝑧0) and pointed maps 𝑓 : (𝑋, 𝑥0)→
(𝑍, 𝑧0) and 𝑔 : (𝑌, 𝑦0)→ (𝑍, 𝑧0), there exists a pointed map ℎ : (𝑋 ∨ 𝑌, *)→ (𝑍, 𝑧0) such
that ℎ ∘ 𝑗1 ≃* 𝑓 , ℎ ∘ 𝑗2 ≃* 𝑔, and any other pointed map satisfying these two conditions
must be pointed homotopic to ℎ.

We claim that ℎ := ⟨𝑓, 𝑔⟩ : (𝑋 ∨ 𝑌, *)→ (𝑍, 𝑧0) is the desired map. It satisfies the
equations ⟨𝑓, 𝑔⟩ ∘ 𝑗1 = 𝑓 and ⟨𝑓, 𝑔⟩ ∘ 𝑗2 = 𝑔, thus it satisfies the two required homotopical
conditions. If ℎ′ : (𝑋 ∨ 𝑌, *) → (𝑍, 𝑧0) also satisfies ℎ′ ∘ 𝑗1 ≃* 𝑓 and ℎ′ ∘ 𝑗2 ≃* 𝑔, then
according to Proposition 4.2.5 the induced map ⟨ℎ′ ∘ 𝑗1, ℎ

′ ∘ 𝑗2⟩ is pointed homotopic to
⟨𝑓, 𝑔⟩, but ⟨ℎ′ ∘ 𝑗1, ℎ

′ ∘ 𝑗2⟩ is equal to the map ℎ′ itself. �

In the case of pointed spaces, there is yet another construction whose interaction
with pointed homotopies is worth studying: the smash product. Since the smash product
of two maps is obtained by factoring a certain map through a quotient map, it is useful
to have a slightly more general result about factoring two homotopic maps through a
quotient.

4.2.8 Proposition. Let 𝑋 and 𝑌 be spaces, and consider subspaces 𝐴 ⊆ 𝑋 and 𝐵 ⊆ 𝑌 .
Denote by 𝑞𝐴 : 𝑋 → 𝑋/𝐴 and 𝑞𝐵 : 𝑌 → 𝑌/𝐵 the quotient maps obtained by collapsing
the subspaces to a single point. Given two maps 𝑓, 𝑔 : 𝑋 → 𝑌 such that 𝑓(𝐴) ⊆ 𝐵

and 𝑔(𝐴) ⊆ 𝐵, let 𝑓, 𝑔 : (𝑋/𝐴, *𝑋/𝐴) → (𝑌/𝐵, *𝑌/𝐵) be the pointed maps obtained by
factoring 𝑞𝐵 ∘ 𝑓 and 𝑞𝐵 ∘ 𝑔 through 𝑞𝐴 as shown in the diagrams below.

𝑋 𝑌

𝑋/𝐴 𝑌/𝐵

𝑓

𝑞𝐴 𝑞𝐵

𝑓

𝑋 𝑌

𝑋/𝐴 𝑌/𝐵

𝑔

𝑞𝐴 𝑞𝐵

𝑔

Suppose there is a homotopy 𝐻 : 𝑓 ⇒ 𝑔 with the added property that, for any



4.2. The pointed homotopy category 113

𝑥 ∈ 𝐴 and 𝑡 ∈ 𝐼, the relation 𝐻(𝑥, 𝑡) ∈ 𝐵 holds. Then the two induced maps 𝑓 and 𝑔 are
pointed homotopic.

Proof. By definition of the quotient space 𝑋/𝐴, the diagram below is a pushout square
in Top,

𝐴 𝑋

{pt} 𝑋/𝐴

ct𝐴,pt 𝑞𝐴

ct{pt},*𝑋/𝐴

with the first horizontal map being the inclusion map. Since the functor − × 𝐼 is a left
adjoint, because 𝐼 is locally compact Hausdorff, the diagram below is also a pushout
square.

𝐴× 𝐼 𝑋 × 𝐼

{pt} × 𝐼 𝑋/𝐴× 𝐼

ct𝐴,pt×id𝐼 𝑞𝐴×id𝐼

ct{pt},*𝑋/𝐴
×id𝐼

If we take into account that there is a homeomorphism {pt}× 𝐼, then we can modify the
diagram above to obtain the pushout square below.

𝐴× 𝐼 𝑋 × 𝐼

𝐼 𝑋/𝐴× 𝐼

𝜋2 𝑞𝐴×id𝐼

(ct𝐼,*𝑋/𝐴
,id𝐼)

The goal of this setup is to give us a universal property that we can use to map out
of the cylinder 𝑋/𝐴×𝐼. Consider the maps 𝑞𝐵 ∘𝐻 : 𝑋×𝐼 → 𝑌/𝐵 and ct𝐼,*𝑌/𝐵

: 𝐼 → 𝑌/𝐵.
For any (𝑎, 𝑡) ∈ 𝐴× 𝐼, we have

𝑞𝐵(𝐻(𝑎, 𝑡)) = *𝑌/𝐵 = ct𝐼,*𝑌/𝐵
(𝜋2(𝑎, 𝑡)),

since 𝐻 maps 𝐴×𝐼 → 𝐵, and 𝑞𝐵 maps 𝐵 to {*𝑌/𝐵}. It follows from the universal property
of the pushout that there is an induced map 𝐻 : 𝑋/𝐴 × 𝐼 → 𝑌/𝐵 making the diagram
below commute.

𝐴× 𝐼 𝑋 × 𝐼

𝐼 𝑋/𝐴× 𝐼

𝑌/𝐵

𝜋2 𝑞𝐴×id𝐼 𝑞𝐵∘𝐻

(ct𝐼,*𝑋/𝐴
,id𝐼)

ct𝐼,*𝑌/𝐵

𝐻

We claim that 𝐻 is the desired pointed homotopy. First notice that, for any 𝑡 ∈ 𝐼,
by a simple computation we have the equality

𝑖𝑋/𝐴,𝑡 ∘ 𝑞𝐴 = (𝑞𝐴 × id𝐼) ∘ 𝑖𝑋,𝑡.
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Using this we obtain the following chain of equalities:

𝐻 ∘ 𝑖𝑋/𝐴,0 ∘ 𝑞𝐴 = 𝐻 ∘ (𝑞𝐴 × id𝐼) ∘ 𝑖𝑋,0
= 𝑞𝐵 ∘𝐻 ∘ 𝑖𝑋,0
= 𝑞𝐵 ∘ 𝑓

= 𝑓 ∘ 𝑞𝐴,

and by cancelling the projection 𝑞𝐴 we deduce that

𝐻 ∘ 𝑖𝑋/𝐴,0 = 𝑓.

By an analogous reasoning we can also show the equality

𝐻 ∘ 𝑖𝑋/𝐴,1 = 𝑔,

therefore 𝐻 defines at least a homotopy 𝑓 ≃ 𝑔. This homotopy is in fact pointed because,
for any 𝑡 ∈ 𝐼, by the commutativity of the diagram above we see that

𝐻(*𝑋/𝐴, 𝑡) = (𝐻 ∘ (ct𝐼,*𝑋/𝐴,id𝐼
))(𝑡)

= ct𝐼,*𝑌/𝐵
(𝑡)

= *𝑌/𝐵. �

4.2.9 Remark. In Proposition 4.2.8 we considered pairs (𝑋,𝐴), and maps 𝑓 : (𝑋,𝐴)→
(𝑌,𝐵) satisfying the condition 𝑓(𝐴) ⊆ 𝐵, which are called maps of pairs. There is a
category Top2 whose objects are pairs, and whose morphisms are maps of pairs. Every
pair (𝑋,𝐴) gives rise to the pointed quotient (𝑋/𝐴, *𝑋/𝐴), and if 𝑓 : (𝑋,𝐴)→ (𝑌,𝐵) is a
map of pairs, we have the induced pointed map 𝑓 : (𝑋/𝐴, *𝑋/𝐴)→ (𝑌/𝐵, *𝑌/𝐵), and this
gives us a functor 𝑄 : Top2 → Top*.

The category Top2 has its own notion of homotopy: two maps of pairs 𝑓, 𝑔 :
(𝑋,𝐴)→ (𝑌,𝐵) are said to be homotopic if there is an ordinary homotopy 𝐻 : 𝑋×𝐼 → 𝑌

from 𝑓 to 𝑔 satisfying the additional condition 𝐻(𝐴× 𝐼) ⊆ 𝐵. This notion of homotopy
satisfies properties analogous to those satisfied by ordinary or pointed homotopies, and
we can then define the homotopy category of pairs HoTop2.

Using this language of pairs, Proposition 4.2.8 can be rephrased as saying that the
functor 𝑄 turns homotopies of pairs into pointed homotopies, and therefore it induces a
quotient functor Ho(𝑄) : HoTop2 → HoTop*.

4.2.10 Corollary. Let (𝑋1, 𝑥1), (𝑋2, 𝑦2), (𝑌1, 𝑦1) and (𝑌2, 𝑦2) be pointed spaces, and
consider pointed maps 𝑓1, 𝑔1 : (𝑋1, 𝑥1) → (𝑌1, 𝑦1) and 𝑓2, 𝑔2 : (𝑋2, 𝑥2) → (𝑌2, 𝑦2). If
𝑓1 ≃* 𝑔1 and 𝑓2 ≃* 𝑔2, then we also have a pointed homotopy 𝑓1 ∧ 𝑓2 ≃* 𝑔1 ∧ 𝑔2.
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Proof. Following the terminology of Proposition 4.2.8, the product maps 𝑓1×𝑓2 and 𝑔1×𝑔2

both map the subspace 𝑋1×{𝑥2} ∪ {𝑥1}×𝑋2 to the subspace 𝑌1×{𝑦2} ∪ {𝑦1}× 𝑌2. If
𝑞 : 𝑋1 ×𝑋2 → 𝑋1 ∧𝑋2 and 𝑞′ : 𝑌1 × 𝑌2 → 𝑌1 ∧ 𝑌2 denote the canonical projections, then
the smash products 𝑓1∧𝑓2 and 𝑔1∧𝑔2 are defined by factoring the composites 𝑞′ ∘ (𝑓1×𝑓2)
and 𝑞′ ∘ (𝑔1 × 𝑔2), respectively, through 𝑞.

𝑋1 ×𝑋2 𝑌1 × 𝑌2

𝑋1 ∧𝑋2 𝑌1 ∧ 𝑌2

𝑓1×𝑓2

𝑞 𝑞′

𝑓1∧𝑓2

𝑋1 ×𝑋2 𝑌1 × 𝑌2

𝑋1 ∧𝑋2 𝑌1 ∧ 𝑌2

𝑔1×𝑔2

𝑞 𝑞′

𝑔1∧𝑔2

We already know from Proposition 4.2.3 that the hypothesis 𝑓1 ≃* 𝑔1 and 𝑓2 ≃* 𝑔2

imply that 𝑓1 × 𝑓2 ≃* 𝑔1 × ℎ2. More precisely, if 𝐻1 : 𝑓1 ⇒* 𝑔1 and 𝐻2 : 𝑓2 ⇒* 𝑔2 are
pointed homotopies, then 𝐻 : (𝑋1 ×𝑋2)× 𝐼 → 𝑌1 × 𝑌2 given by the formula

𝐻((𝑥, 𝑥′), 𝑡) := (𝐻1(𝑥, 𝑡), 𝐻2(𝑥′, 𝑡))

defines a pointed homotopy from 𝑓1 × 𝑓2 to 𝑔1 × 𝑔2. Notice that, for any 𝑡 ∈ 𝐼, if 𝑥 ∈ 𝑋1,
then

𝐻((𝑥, 𝑥2), 𝑡) = (𝐻1(𝑥, 𝑡), 𝐻2(𝑥2, 𝑡)) = (𝐻1(𝑥, 𝑡), 𝑦2) ∈ 𝑌1 × {𝑦2},

while if 𝑥′ ∈ 𝑋2, then

𝐻((𝑥1, 𝑥
′), 𝑡) = (𝐻1(𝑥1, 𝑡), 𝐻2(𝑥′, 𝑡)) = (𝑦1, 𝐻2(𝑥′, 𝑡)) ∈ {𝑦1} × 𝑌2.

This show that, at every instant 𝑡 ∈ 𝐼, the homotopy 𝐻 maps the subspace 𝑋1 × {𝑥2} ∪
{𝑥1}×𝑋2 into the subspace 𝑌1×{𝑦2} ∪{𝑦1}×𝑌2, therefore Proposition 4.2.8 implies the
existence of a pointed homotopy 𝑓1 ∧ 𝑓2 ≃* 𝑓2 ∧ 𝑔2. �

We end this section by studying the compatibility with pointed homotopies of two
other closely related functors: the pushforward and pullback functors. These results also
hold in the unpointed case, but we decided to only prove them in the pointed cases since
this is the only context in which we will need them.

4.2.11 Proposition. Consider pointed spaces (𝑋, 𝑥0), (𝑌, 𝑦0) and (𝑍, 𝑧0).

1. If the pointed maps 𝛼, 𝛽 : (𝑋, 𝑥0)→ (𝑌, 𝑦0) are pointed homotopic, and 𝑌 is locally
compact Hausdorff, then the pullback maps

Map*(𝛼,𝑍), Map*(𝛽, 𝑍) : (Map*(𝑌, 𝑍), ct𝑌,𝑧0)→ (Map*(𝑋,𝑍), ct𝑋,𝑧0)

are pointed homotopic.
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2. If the pointed maps 𝛼, 𝛽 : (𝑌, 𝑦0)→ (𝑍, 𝑧0) are pointed homotopic, and 𝑋 is locally
compact Hausdorff, then the pushforward maps

Map*(𝑋,𝛼), Map*(𝑋, 𝛽) : (Map*(𝑋,𝑌 ), ct𝑋,𝑦0)→ (Map*(𝑋,𝑍), ct𝑋,𝑧0)

are pointed homotopic.

Proof. 1. Let 𝐻 : 𝑋 × 𝐼 → 𝑌 be a pointed homotopy from 𝛼 to 𝛽. Consider the map
Φ : (Map*(𝑌, 𝑍)× 𝐼)×𝑋 → 𝑍 defined by the formula

Φ((𝑓, 𝑡), 𝑥) := 𝑓(𝐻(𝑥, 𝑡)).

Notice that part of the definition of Φ involves the evaluation map Map*(𝑌, 𝑍)× 𝑌 → 𝑍,
so we need the local compactness and Hausdorff properties on 𝑌 to ensure its continuity.
Direct computations show that Φ satisfies the following properties:

(i) Φ((𝑓, 0), 𝑥) = [Map*(𝛼,𝑍)(𝑓)](𝑥) for every 𝑓 ∈ Map*(𝑌, 𝑍) and every 𝑥 ∈ 𝑋;

(ii) Φ((𝑓, 1), 𝑥) = [Map*(𝛽, 𝑍)(𝑓)](𝑥) for every 𝑓 ∈ Map*(𝑌, 𝑍) and every 𝑥 ∈ 𝑋;

(iii) Φ((𝑓, 𝑡), 𝑥0) = 𝑧0 for every 𝑓 ∈ Map*(𝑌, 𝑍) and every 𝑡 ∈ 𝐼;

(iv) Φ((ct𝑌,𝑧0 , 𝑡), 𝑥) = ct𝑋,𝑧0(𝑥) for every 𝑡 ∈ 𝑋 and every 𝑥 ∈ 𝑋.

We then let

←−
𝐻 := 𝜆Φ : Map*(𝑌, 𝑍)× 𝐼 → Map*(𝑋,𝑍)

be the usual exponential adjoint of Φ. Conditions (iii) above guarantees that
←−
𝐻 really

takes values in Map*(𝑋,𝑍) and not just in Map(𝑋,𝑍). We then notice that conditions (i)
and (ii) above imply that

←−
𝐻 defines a homotopy from Map*(𝛼,𝑍) and Map*(𝛽, 𝑍), while

condition (iv) implies that this homotopy is in fact pointed.

2. The proof is similar to that of the previous item. Let 𝐻 : 𝑌 × 𝐼 → 𝑍 be a
pointed homotopy from 𝛼 to 𝛽. Consider the map

Ψ : (Map*(𝑋, 𝑌 )× 𝐼)×𝑋 → 𝑍

defined by the formula
Ψ((𝑓, 𝑡), 𝑥) := 𝐻(𝑓(𝑥), 𝑡)

for every (𝑓, 𝑡) ∈ Map*(𝑋,𝑌 )×𝐼 and every 𝑥 ∈ 𝑋. Notice that, since part of the definition
of Ψ involves evaluating the map 𝑓 ∈ Map*(𝑋,𝑌 ) on the point 𝑥 ∈ 𝑋, we need the local
compactness and Hausdorff conditions on 𝑋 to ensure its continuity. Direct computations
show that Ψ satisfies the following properties:
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(i) Ψ((𝑓, 0), 𝑥) = [Map*(𝑋,𝛼)(𝑓)](𝑥) for every 𝑓 ∈ Map*(𝑋,𝑌 ) and every 𝑥 ∈ 𝑋;

(ii) Ψ((𝑓, 1), 𝑥) = [Map*(𝑋, 𝛽)(𝑓)](𝑥) for every 𝑓 ∈ Map*(𝑋,𝑌 ) and every 𝑥 ∈ 𝑋;

(iii) Ψ((𝑓, 𝑡), 𝑥0) = 𝑧0 for every 𝑓 ∈ Map*(𝑋,𝑌 ) and every 𝑡 ∈ 𝐼;

(iv) Ψ((ct𝑋,𝑦0 , 𝑡), 𝑥) = ct𝑋,𝑧0(𝑥) for every 𝑡 ∈ 𝐼 and every 𝑥 ∈ 𝑋.

We then let

−→
𝐻 := 𝜆Ψ : Map*(𝑋,𝑌 )× 𝐼 → Map*(𝑋,𝑍)

be the usual exponential adjunct, which in this case really takes values in Map*(𝑋,𝑍) by
virtue of property (iii) above. We then notice that properties (i) and (ii) imply that

−→
𝐻

defines a homotopy from Map*(𝑋,𝛼) to Map*(𝑋, 𝛽), while property (iv) implies that this
homotopy is in fact pointed. �

4.3 Pointed contractions and pointed null homotopies

This last section is an adaptation of Section 2.3 to the context of pointed spaces.
We define the notions of pointed contractibility and pointed null homotopy, and we then
show that these two concepts are related to one another by proving that a pointed map is
pointed null homotopic if and only if it can be extended to a pointed contractible space.
This proof requires adapting the construction of the cone over a space to the category
of pointed spaces. After proving the mentioned equivalence, we apply it to the study of
extending pointed maps from the 𝑛-sphere to the (𝑛+ 1)-disk.

A pointed space (𝑋, 𝑥0) is said to be pointed contractible if its identity map id𝑋
is pointed homotopic to the constant map ct𝑋,𝑥0 from 𝑋 to its basepoint, and a particular
choice of pointed homotopy 𝐻 : id𝑋 ⇒* ct𝑋,𝑥0 is then called a pointed contraction.
At first, this might seem equivalent to contractibility, because if 𝑋 is contractible, then
for any point 𝑥 ∈ 𝑋 we can find a homotopy id𝑋 ≃ ct𝑋,𝑥, so in particular we can find a
homotopy id𝑋 ≃ ct𝑋,𝑥0 . Notice, however, that there is no guarantee that this homotopy
is pointed, and this is the crucial difference. While a contractible space can be shrunk
to any particular basepoint, in a pointed contractible space the chosen basepoint cannot
move during the shrinking process. Similar to the unpointed case, the notion of pointed
contractibility can also be stated in terms of pointed homotopy types: a pointed space
(𝑋, 𝑥0) is pointed contractible if and only if it is pointed homotopy equivalent to the
singleton space ({pt}, pt).

The notion of null homotopic map also has a straightforward generalization to the
pointed case. A pointed map 𝑓 : (𝑋, 𝑥0) → (𝑌, 𝑦0) is pointed null homotopic if it is
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pointed homotopic to the constant map ct𝑋,𝑦0 . In this case, a choice of pointed homotopy
𝐻 : 𝑓 ⇒* ct𝑋,𝑦0 is called a pointed null homotopy for 𝑓 .

In the unpointed case, we saw that a map 𝑓 : 𝑋 → 𝑌 was null homotopic if
and only it could be factored through a contractible space, namely the cone 𝐶𝑋 over 𝑋.
We would like to obtain an analogous result relating pointed null homotopic maps and
pointed contractible spaces, and in order to do this we need to adapt the construction of
the cone to the pointed category.

Throughout the rest of the chapter, we will denote by 𝐼1 the pointed space (𝐼, 1).

4.3.1 Definition. Given a pointed space (𝑋, 𝑥0), the pointed space defined as the smash
product

𝐶𝑋 := 𝑋 ∧ 𝐼1

is called the reduced cone over 𝑋.

Explicitly, the reduced cone 𝐶𝑋 is the quotient space

𝐶𝑋 = 𝑋 × 𝐼
𝑋 × {1} ∪ {𝑥0} × 𝐼

.

The construction of the reduced cone over 𝑋 can be seen as a two-step process: first we
construct the usual (unreduced) cone over 𝑋 by collapsing the subset 𝑋 × {1} ⊆ 𝑋 × 𝐼,
and then, if we identify 𝑋 with the basis of the cone, we further collapse the line segment
joining 𝑥0 to the vertex of the cone. See Figure 3 for a visualization of this construction
when 𝑋 = 𝑆1.

(a) Cylinder over 𝑆1 (b) Unreduced cone over 𝑆1 (c) Reduced cone over 𝑆1

Figure 3 – Construction of the reduced cone over the circle.

Composing the usual inclusion 𝑖𝑋,0 : 𝑋 → 𝑋 × 𝐼 with the canonical projection
𝑝 : 𝑋 × 𝐼 → 𝐶𝑋 gives us a map

𝑖𝐶𝑋 := 𝑝 ∘ 𝑖𝑋,0 : 𝑋 → 𝐶𝑋,

and since the image of 𝑖𝑋,0 is contained in the subspace which is collapsed to the basepoint
of * of 𝐶𝑋 by 𝑝, 𝑖𝐶𝑋 actually defines a pointed map (𝑋, 𝑥0)→ (𝐶𝑋, *).

We want to show that, just like the usual cone allows us to relate null homotopic
maps to contractible spaces, the reduced cone allows us to relate pointed null homotopic
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maps to pointed contractible spaces. In the unpointed case, in order to establish this
connection we first had to prove the contractibility of the cone itself in Proposition 2.3.7,
so we first adapt this result to the pointed case.

4.3.2 Proposition. The reduced cone over any pointed space (𝑋, 𝑥0) is pointed con-
tractible.

Proof. We need to show the existence of a pointed homotopy id𝐶𝑋 ≃* ct𝐶𝑋,*. The trick to
make this easier is to notice that both of these maps can be obtained by factoring through
the quotient 𝑝 : 𝑋 × 𝐼1 → 𝐶𝑋. More precisely, id𝐶𝑋 and ct𝐶𝑋,*𝐶𝑋

can be obtained by
factoring the composites 𝑝 ∘ id𝑋×𝐼 and 𝑝 ∘ (id𝑋 × ct𝐼,1), respectively, through the quotient
map 𝑝, so that we have the two commutative squares below.

𝑋 × 𝐼1 𝑋 × 𝐼1

𝐶𝑋 𝐶𝑋

id𝑋×𝐼1

𝑝 𝑝

id𝐶𝑋

𝑋 × 𝐼1 𝑋 × 𝐼1

𝐶𝑋 𝐶𝑋

id𝑋×ct𝐼,1

𝑝 𝑝

ct𝐶𝑋,*

We can then try to use Proposition 4.2.8 to obtain the desired pointed homotopy.

Consider the map 𝐻 : (𝑋 × 𝐼1)× 𝐼 → 𝑋 × 𝐼1 defined by the formula

𝐻((𝑥, 𝑠), 𝑡) := (𝑥, (1− 𝑡)𝑠+ 𝑡)

for every (𝑥, 𝑠) ∈ 𝑋 × 𝐼1 and every 𝑡 ∈ 𝐼. Straightforward computations show that 𝐻
satisfies the following properties:

1. 𝐻((𝑥, 𝑠), 0) = id𝑋×𝐼(𝑥, 𝑠) for every (𝑥, 𝑠) ∈ 𝑋 × 𝐼1;

2. 𝐻((𝑥, 𝑠), 1) = (id𝑋 × ct𝐼,1)(𝑥, 𝑠) for every (𝑥, 𝑠) ∈ 𝑋 × 𝐼1,

which means that 𝐻 defines a homotopy id𝑋×𝐼 ≃ id𝑋 × ct𝐼,1. Moreover, for any 𝑡 ∈ 𝐼, if
𝑥 ∈ 𝑋, then

𝐻((𝑥, 1), 𝑡) = (𝑥, 1) ∈ 𝑋 × {1} ∪ {𝑥0} × 𝐼,

and if 𝑠 ∈ 𝐼, then

𝐻((𝑥0, 𝑠), 𝑡) = (𝑥0, (1− 𝑡)𝑠+ 𝑡) ∈ 𝑋 × {1} ∪ {𝑥0} × 𝐼.

This means that not only does 𝐻 define a homotopy from id𝑋×𝐼1 to id𝑋×ct𝐼,1, but
also that, for every “instant” 𝑡 ∈ 𝐼, this homotopy maps the subspace 𝑋×{1} ∪{𝑥0}× 𝐼
to itself. It then follows from Proposition 4.2.8 that there is an induced pointed homotopy
id𝐶𝑋 ≃* ct𝐶𝑋,*. �

Now we are able to adapt Theorem 2.3.8 to the context of pointed spaces.
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4.3.3 Theorem. A pointed map 𝑓 : (𝑋, 𝑥0) → (𝑌, 𝑦0) is pointed null homotopic if and
only there exists a pointed map 𝐹 : (𝐶𝑋, *)→ (𝑌, 𝑦0) satisfying the equation 𝐹 ∘ 𝑖𝐶𝑋 = 𝑓 .

𝐶𝑋 𝑌

𝑋

𝐹

𝑖𝐶𝑋
𝑓

In other words, 𝑓 is pointed null homotopic if and only if it can be extended to the reduced
cone.

Proof. Suppose first that the extension 𝐹 : (𝐶𝑋, *) → (𝑌, 𝑦0) exists. Using that 𝐶𝑋 is
contractible, and that pointed homotopies are compatible with composition we see that

𝑓 = 𝐹 ∘ 𝑖𝐶𝑋 = 𝐹 ∘ id𝐶𝑋 ∘ 𝑖𝐶𝑋 ≃* 𝐹 ∘ ct𝐶𝑋,* ∘ 𝑖𝐶𝑋 = ct𝑋,𝑦0 ,

which means that 𝑓 is pointed null homotopic.

Conversely, suppose 𝑓 is pointed null homotopic, and let 𝐻 : 𝑓 ⇒* ct𝑋,𝑦0 be a
pointed null homotopy regarded as a usual homotopy 𝐻 : 𝑋 × 𝐼 → 𝑌 mapping the whole
line segment {𝑥0}× 𝐼 to 𝑦0. This homotopy then maps the subspace 𝑋 ×{1} ∪ {𝑥0}× 𝐼
to the basepoint 𝑦0 of 𝑌 , therefore it can be factored through 𝑝 to define a pointed map
𝐹 : (𝐶𝑋, *)→ (𝑌, 𝑦0).

𝑋 × 𝐼 𝑌

𝐶𝑋

𝐻

𝑝
𝐹

This map 𝐹 is the extension we are looking for since

𝐹 ∘ 𝑖𝐶𝑋 = 𝐹 ∘ 𝑝 ∘ 𝑖𝑋,0 = 𝐻 ∘ 𝑖𝑋,0 = 𝑓. �

Like in the unpointed case, the reduced cone 𝐶𝑆𝑛 over the 𝑛-sphere can be com-
pared with the (𝑛+ 1)-disk. In order to do this, we introduce an auxiliary map from the
cylinder to the disk which “interacts” nicely with the basepoint of 𝐷𝑛+1.

4.3.4 Lemma. For every 𝑛 ≥ 0, the map 𝜋 : 𝑆𝑛 × 𝐼 → 𝐷𝑛+1 given by the formula

𝜋(𝑥, 𝑡) := (1− 𝑡) · 𝑥+ 𝑡 · *𝑆𝑛 ,

where *𝑆𝑛 = (1, 0, . . . , 0) is the basepoint of the 𝑛-sphere, is a quotient map.

Proof. The map 𝜋 can be interpreted geometrically as follows: for each 𝑥 ∈ 𝑆𝑛, if we let 𝑡
vary in 𝐼, then 𝜋 transforms the segment from (𝑥, 0) to (𝑥, 1) on the surface of the cylinder
into the segment from 𝑥 to *𝑆𝑛 on the disk like shown in Figure 4.

We want to show that 𝜋 is a surjective map. Notice first that the basepoint *𝑆𝑛

surely belongs to the image of 𝜋 because *𝑆𝑛 = 𝜋(𝑥, 1) for any 𝑥 ∈ 𝑆𝑛. Now, if 𝑝 ∈ 𝐷𝑛+1
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Figure 4 – Each colored line segment on the cylinder is mapped to the segment of the same color
on the disk.

is different from *𝑆𝑛 , consider the ray emanating from *𝑆𝑛 and passing through 𝑝, which
is given by the curve 𝛾 : [0,+∞)→ R𝑛+1 defined as

𝛾(𝑡) := (1− 𝑡) · *𝑆𝑛 + 𝑡 · 𝑝.

Using this curve define 𝑑 : [0,+∞)→ [0,+∞) as

𝑑(𝑡) := ‖𝛾(𝑡)‖2 = ⟨𝛾(𝑡), 𝛾(𝑡)⟩,

which can be written explicitly as

𝑑(𝑡) = ‖𝑝− *𝑆𝑛‖2𝑡2 + 2(⟨𝑝, *𝑆𝑛⟩ − 1)𝑡+ 1.

At 𝑡 = 1 we have
𝑑(𝑡) = ‖𝛾(1)‖2 = ‖𝑝‖2 ≤ 1

because ‖𝑝‖ ≤ 1. Moreover, since 𝑑 is a quadratic polynomial with positive leading co-
efficient, lim𝑡→+∞ 𝑑(𝑡) = +∞, and so by the Intermediate Value Theorem we can find a
number ̂︀𝑡 > 0 such that 𝑑(̂︀𝑡) = 1. This means that the point 𝑥𝑝 := 𝛾(̂︀𝑡) belongs to the
sphere 𝑆𝑛.

We claim that the number ̂︀𝑡 so defined satisfies the inequality ̂︀𝑡 ≥ 1. In order to
show this, we consider the number 𝑡min of [0,+∞) which minimizes 𝑑(𝑡). This point is
given explicitly by the formula

𝑡min = 1− ⟨𝑝, *𝑆𝑛⟩
‖𝑝− *𝑆𝑛‖2 .

We claim that the inequality 𝑡min < ̂︀𝑡 holds. One way to see this is to note that,
since the graph of 𝑑(𝑡) is symmetric with respect to the vertical line 𝑡 = 𝑡min, and 𝑑(0) =
𝑑(𝑇 ) = 1, we actually have an equality

𝑡min = 𝑇

2 ,
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and this implies the desired inequality.

We will use this to prove that the inequality ̂︀𝑡 ≥ 1 holds. We split the proof into
two cases.

1. If 𝑡min ≥ 1, then by transitivity we immediately conclude that ̂︀𝑡 ≥ 1 also holds.

2. If 𝑡min < 1, and we also suppose that ̂︀𝑡 < 1, then ̂︀𝑡 must lie on the open interval
(𝑡min, 1), but since 𝑑 is strictly increasing on this interval, we would have 𝑑(̂︀𝑡) < 𝑑(1),
which is another contradiction since 𝑑(̂︀𝑡) = 1 and 𝑑(1) = ‖𝑝‖2 ≤ 1.

Having obtained ̂︀𝑡 as above, we define

𝑡𝑝 := 1− 1̂︀𝑡 ,
and notice that 𝑡𝑝 ∈ 𝐼 due to the fact that ̂︀𝑡 ≥ 1. These choices of 𝑥𝑝 ∈ 𝑆𝑛 and 𝑡𝑝 ∈ 𝐼
satisfy

𝜋(𝑥𝑝, 𝑡𝑝) = (1− 𝑡𝑝) · 𝑥𝑝 + 𝑡𝑝 · *𝑆𝑛

= 1̂︀𝑡 · 𝑥𝑝 +
(︂

1− 1̂︀𝑡
)︂
· *𝑆𝑛

= 1̂︀𝑡 · ((1− ̂︀𝑡) · *𝑆𝑛 + ̂︀𝑡 · 𝑝) +
(︂

1− 1̂︀𝑡
)︂
· *𝑆𝑛

= 1̂︀𝑡 · *𝑆𝑛 − *𝑆𝑛 + 𝑝+ *𝑆𝑛 − 1̂︀𝑡 · *𝑆𝑛

= 𝑝;

showing at last that 𝑝 belongs to the image of 𝜋.

So far we have shown that 𝜋 is a surjective map, but since 𝑆𝑛 × 𝐼 is a compact
space, and 𝐷𝑛+1 is a Hausdorff space, 𝜋 is also a closed map. The result then follows from
the fact that every surjective and closed map is a quotient map. �

Another way to visualize the map 𝜋 defined above is to study its restriction to the
“horizontal slices” 𝑆𝑛×{𝑡} that make up the cylinder 𝑆𝑛× 𝐼. Given any 𝑥 ∈ 𝑆𝑛, we have

‖𝜋(𝑥, 𝑡)− 𝑡 · *𝑆𝑛‖ = ‖(1− 𝑡) · 𝑥+ 𝑡 · *𝑆𝑛 − 𝑡 · *𝑆𝑛‖

= ‖(1− 𝑡) · 𝑥‖

= |1− 𝑡|‖𝑥‖

= 1− 𝑡.

This means that the sphere 𝑆𝑛×{𝑡} is mapped to a sphere of radius 1− 𝑡 centered at the
point 𝑡 · *𝑆𝑛 like shown in Figure 5
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Figure 5 – Each colored circle on the cylinder is mapped to the circle of the same color on the
disk.

4.3.5 Proposition. For every 𝑛 ≥ 0, there is a pointed homeomorphism

(𝐶𝑆𝑛, *) ∼= (𝐷𝑛+1, *𝑆𝑛).

Proof. Let 𝑝 : 𝑆𝑛 × 𝐼1 → 𝐶𝑆𝑛 = 𝑆𝑛 ∧ 𝐼1 be the canonical projection, and consider the
map 𝜋 : 𝑆𝑛 × 𝐼 → 𝐷𝑛+1 of Lemma 4.3.4. A direct calculation shows that

𝜋(𝑆𝑛 × {1} ∪ {*𝑛𝑆} × 𝐼) ⊆ {*𝑆𝑛},

so by factoring 𝜋 through 𝑝 we obtain a pointed map 𝜋 : (𝐶𝑆𝑛, *)→ (𝐷𝑛+1, *𝑆𝑛).

𝑆𝑛 × 𝐼

𝐶𝑆𝑛 𝐷𝑛+1

𝑝 𝜋

𝜋

Given a point 𝑥 ∈ 𝐷𝑛+1, if 𝑥 ̸= *𝑆𝑛 , then the fiber 𝜋−1(𝑥) consists of a single
point, and if 𝑥 = *𝑆𝑛 , then 𝜋−1(*𝑆𝑛) = 𝑆𝑛×{1} ∪ {*𝑆𝑛}× 𝐼. It follows that 𝑝 is constant
on the fibers of 𝜋, therefore it can be factored through this quotient to define a map
𝑝 : 𝐷𝑛+1 → 𝐶𝑆𝑛.

𝑆𝑛 × 𝐼

𝐶𝑆𝑛 𝐷𝑛+1

𝑝 𝜋

𝑝

Notice that 𝑝(*𝑆𝑛) = 𝑝(𝜋(*𝑆𝑛 , 1)) = 𝑝(*𝑆𝑛 , 1) = *, thus 𝑝 actually defines a pointed map

𝑝 : (𝐷𝑛+1, *𝑆𝑛)→ (𝐶𝑆𝑛, *).

We now show that 𝜋 and 𝑝 are inverse maps. On the one hand,

𝑝 ∘ 𝜋 ∘ 𝑝 = 𝑝 ∘ 𝜋 = 𝑝,
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and by cancelling 𝑝 we obtain 𝑝 ∘ 𝜋 = id𝐶𝑆𝑛 ; while on the other

𝜋 ∘ 𝑝 ∘ 𝜋 = 𝜋 ∘ 𝑝 = 𝜋,

and then by cancelling 𝜋 we obtain the other equality 𝜋 ∘ 𝑝 = id𝐷𝑛+1 . �

This allows us to obtain a pointed version of Corollary 2.3.11.

4.3.6 Corollary. For every 𝑛 ≥ 0, a pointed map 𝑓 : (𝑆𝑛, *𝑆𝑛)→ (𝑋, 𝑥0) is pointed null
homotopic if and only if it can be extended to the disk, that is, if and only if there exists
a map 𝐹 : (𝐷𝑛+1, *𝑆𝑛)→ (𝑋, 𝑥0) satisfying 𝐹 |𝑆𝑛 = 𝑓 .

Proof. If a map 𝐹 like above exists, then the fact that (𝐷𝑛+1, *𝑆𝑛) is contractible together
with the relation 𝐹 |𝑆𝑛 = 𝑓 imply that 𝑓 is pointed null homotopic.

Conversely, if 𝑓 is pointed null homotopic, then by Theorem 4.3.3 there exists a
pointed map 𝐺 : (𝐶𝑆𝑛, *) → (𝑋, 𝑥0) such that 𝐺 ∘ 𝑖𝐶𝑋 = 𝑓 . Let 𝑝 : (𝐷𝑛+1, *𝑆𝑛) →
(𝐶𝑆𝑛, *𝐶𝑆𝑛) be the pointed homeomorphism of Proposition 4.3.5, and define

𝐹 := 𝐺 ∘ 𝑝 : (𝐷𝑛+1, *𝑆𝑛)→ (𝑋, 𝑥0).

As we remarked above, the inclusion 𝑖 : 𝑆𝑛 →˓ 𝐷𝑛+1 coincides with the composition
𝜋 ∘ 𝑖𝑆𝑛,0 of the inclusion 𝑖𝑆𝑛,0 : 𝑆𝑛 → 𝑆𝑛 × 𝐼 with the quotient map 𝜋 : 𝑆𝑛 × 𝐼 → 𝐷𝑛+1.
Using this we see that

𝐹 |𝑆𝑛 = 𝐹 ∘ 𝑖

= 𝐺 ∘ 𝑝 ∘ 𝜋 ∘ 𝑖𝑆𝑛,0

= 𝐺 ∘ 𝑝 ∘ 𝑖𝑆𝑛,0

= 𝐺 ∘ 𝑖𝐶𝑋
= 𝑓,

therefore 𝐹 is an extension of 𝑓 . �
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CHAPTER

5
HOMOTOPY GROUPS

In this chapter we finally introduce the homotopy groups of a pointed space. The
approach is somewhat categorical, with homotopy groups being obtained via cogroup
objects in the pointed homotopy category HoTop*. These cogroup objects are called 𝐻-
cogroups, and the first section is devoted to the study of their properties, and also the
construction of important families of examples. The second section then makes use of
the categorical machinery of cogroup objects to define the homotopy groups of a pointed
space, and also deduce some of its basic properties like functoriality with respect to pointed
maps.

The third section dualizes the concepts of the first one by introducing H-groups.
The main goal of this section is to construct a family of examples of H-groups. In the
fourth section, the concepts of H-cogroup and H-group come together and allows us to
deduce some interesting basic properties of the higher homotopy groups. The Eckmann-
Hilton Duality plays a particularly important role here. Lastly, the fifth section analyzes
the dependence of the homotopy groups on the chosen basepoints by introducing the
transport maps along paths. We also define the concept of 𝑛-simple space which will be
crucial in our study of Obstruction Theory.

5.1 H-cogroups

In this first section we introduce the notion of H-cogroups. We first study their
general properties, and then later we give concrete example which will be useful later for
defining the homotopy groups and for proving some of their basic properties.

We begin by introducing H-cogroups.

5.1.1 Definition. An H-cogroup consists of a pointed space (𝑋, 𝑥0) together with the
following data:
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• A pointed map 𝜇 : (𝑋, 𝑥0)→ (𝑋 ∨𝑋, *𝑋∨𝑋) called the H-comultiplication;

• A pointed map 𝜈 : (𝑋, 𝑥0)→ (𝑋, 𝑥0) called the H-co-inversion.

These maps are required to satisfy the following “commutativity up to homotopy” condi-
tions:

1. ⟨id𝑋 , ct𝑋,𝑥0⟩ ∘ 𝜇 ≃* id𝑋 ≃ ⟨ct𝑋,𝑥0 , id𝑋⟩ ∘ 𝜇;

2. ⟨id𝑋 , 𝜈⟩ ∘ 𝜇 ≃* ct𝑋,𝑥0 ≃* ⟨𝜈, id𝑋⟩ ∘ 𝜇;

3. (id𝑋 ∨ 𝜇) ∘ 𝜇 ≃* 𝐴 ∘ (𝜇 ∨ id𝑋) ∘ 𝜇, where 𝛼 denotes the associator homeomorphism

𝐴 : (𝑋 ∨𝑋) ∨𝑋
∼=−→ 𝑋 ∨ (𝑋 ∨𝑋)

The next theorem gives us a whole family of H-cogroups. Its proof is rather long,
but we give plenty of details. It is essentially a more refined version of the proof that the
concatenation product on loops satisfies the group axioms.

5.1.2 Theorem. If (𝑋, 𝑥0) is any pointed space, then its reduced suspension (Σ𝑋, *Σ𝑋)
admits an H-cogroup structure.

Proof. Throughout the proof, we use the notation

𝑗1, 𝑗2 : Σ𝑋 → Σ𝑋 ∨ Σ𝑋

to denote the canonical injections.

Let 𝑑 : 𝑋 × 𝐼 → Σ𝑋 ∨ Σ𝑋 be defined as

𝑑(𝑥, 𝑠) :=

⎧⎪⎨⎪⎩𝑗1([𝑥, 2𝑠]), if 0 ≤ 𝑡 ≤ 1
2

𝑗2([𝑥, 2𝑠− 1]), if 1
2 ≤ 𝑡 ≤ 1,

where [𝑥, 𝑡] denotes the image of (𝑥, 𝑠) ∈ 𝑋×𝐼 under the canonical projection 𝑞 : 𝑋×𝐼 →
Σ𝑋. This is well-defined because setting 𝑠 = 1

2 in the first line of the definition give us
𝑗1([𝑥, 1]) = 𝑗1(*Σ𝑋) while the second line gives us 𝑗2([𝑥, 0]) = 𝑗2(*Σ𝑋), and these two
define the same point of Σ𝑋 ∨ Σ𝑋.

Given any 𝑥 ∈ 𝑋, for 𝑠 = 0 we have

𝑑(𝑥, 0) = 𝑗1([𝑥, 2 · 0]) = 𝑗1([𝑥, 0]) = 𝑗1(*Σ𝑋) = *Σ𝑋∨Σ𝑋 ,

while for 𝑠 = 1 we have

𝑑(𝑥, 1) = 𝑗2([𝑥, 2 · 1− 1]) = 𝑗2([𝑥, 1]) = 𝑗2(*Σ𝑋) = *Σ𝑋∨Σ𝑋 .
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Moreover, for any 𝑠 ∈ 𝐼, if 𝑠 ≤ 1
2 we have

𝑑(𝑥0, 𝑠) = 𝑗1([𝑥0, 2𝑠]) = 𝑗1(*Σ𝑋) = *Σ𝑋∨Σ𝑋 ,

while if 𝑠 ≥ 1
2 we have

𝑑(𝑥0, 𝑠) = 𝑗2([𝑥0, 2𝑠− 1]) = 𝑗2(*Σ𝑋) = *Σ𝑋∨Σ𝑋 .

This means that 𝑑 satisfies the relation

𝑑(𝑋 × {0} ∪ 𝑋 × {1} ∪ {𝑥0} × 𝐼) ⊆ {*Σ𝑋∨Σ𝑋},

therefore we can factor it through the canonical projection 𝑞 : 𝑋 × 𝐼 → Σ𝑋 to obtain the
pointed map

𝜇 : (Σ𝑋, *Σ𝑋)→ (Σ𝑋 ∨ Σ𝑋, *Σ𝑋∨Σ𝑋).

Explicitly, 𝜇 is described by the formula

𝜇([𝑥, 𝑠]) =

⎧⎪⎨⎪⎩𝑗1([𝑥, 2𝑠]), if 0 ≤ 𝑠 ≤ 1
2

𝑗2([𝑥, 2𝑠− 1]), if 1
2 ≤ 𝑠 ≤ 1.

Let us begin by proving that the basepoint *Σ𝑋 acts as a counit up to homotopy
for 𝜇, which means that we must construct pointed homotopies

⟨idΣ𝑋 , ctΣ𝑋,*Σ𝑋
⟩ ∘ 𝜇 ≃* idΣ𝑋 ≃* ⟨ctΣ𝑋,*Σ𝑋

, idΣ𝑋⟩ ∘ 𝜇.

Using the definition of 𝜇, as well as the relation between the induced map ⟨idΣ𝑋 , ctΣ𝑋,*Σ𝑋
⟩

and the canonical injections 𝑗1 and 𝑗2, we obtain the following formula:

(⟨idΣ𝑋 , ctΣ𝑋,*Σ𝑋
⟩ ∘ 𝜇)([𝑥, 𝑠]) =

⎧⎪⎨⎪⎩[𝑥, 2𝑠], if 0 ≤ 𝑠 ≤ 1
2

*Σ𝑋 , if 1
2 ≤ 𝑠 ≤ 1.

(5.1)

The important thing to notice in this equation is that, for a fixed 𝑥 ∈ 𝑋, when we vary
𝑠 ∈ 𝐼, the only thing varying in the image of [𝑥, 𝑠] is the “second component”: in the
first line it goes from 0 to 1, and then in the second line it remains constant at 1, since
*Σ𝑋 = [𝑥, 1]. More precisely, if we define a map 𝛼 : 𝐼 → 𝐼 by the formula

𝛼(𝑠) :=

⎧⎪⎨⎪⎩2𝑠, if 0 ≤ 𝑠 ≤ 1
2

1, if 1
2 ≤ 𝑠 ≤ 1,

then it fits into the commutative diagram below.

𝑋 × 𝐼 𝑋 × 𝐼

Σ𝑋 Σ𝑋

id𝑋×𝛼

𝑞 𝑞

⟨idΣ𝑋 ,ctΣ𝑋,*Σ𝑋
⟩∘𝜇

It seems reasonable to expect that the homotopical properties of 𝛼 affect the homotopical
properties of the bottom map, and the next lemma makes this relation precise.
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5.1.3 Lemma (Reparameterization I). Consider a pointed space (𝑋, 𝑥0) and a pointed
map 𝑓 : (Σ𝑋, *Σ𝑋) → (Σ𝑋, *Σ𝑋). Suppose there exists a map 𝛼 : 𝐼 → 𝐼 that fits into a
commutative diagram like the one below.

𝑋 × 𝐼 𝑋 × 𝐼

Σ𝑋 Σ𝑋.

id𝑋×𝛼

𝑞 𝑞

𝑓

1. If 𝛼(0) = 0 and 𝛼(1) = 1, then 𝑓 ≃* idΣ𝑋 .

2. If 𝛼(0) = 𝛼(1) = 0, or 𝛼(0) = 𝛼(1) = 1, then 𝑓 ≃* ctΣ𝑋,*Σ𝑋
.

Proof of the Lemma. 1. The conditions on 𝛼 ensure that the product id𝑋 ×𝛼 can be seen
as a map of pairs

id𝑋 × 𝛼 : (𝑋 × 𝐼, 𝐴)→ (𝑋 × 𝐼, 𝐴),

where, in order to simplify the notation, we have denoted by 𝐴 the subspace

𝑋 × {0, 1} ∪ {𝑥0} × 𝐼 ⊆ 𝑋 × 𝐼

which gets collapsed to a point in the construction of the reduced suspension. Following
the notation of Proposition 4.2.8, the commutativity hypothesis implies that 𝑓 is the map
id𝑋 × 𝛼 obtained by factoring the composition 𝑞 ∘ (id𝑋 × 𝛼) through the quotient 𝑞.

Consider the map 𝐻 : (𝑋 × 𝐼)× 𝐼 → 𝑋 × 𝐼 defined by the formula

𝐻((𝑥, 𝑠), 𝑡) := (𝑥, (1− 𝑡)𝛼(𝑠) + 𝑡𝑠)

for all ((𝑥, 𝑠), 𝑡) ∈ (𝑋 × 𝐼) × 𝐼. By direct computation we see that the map 𝐻 satisfies
the following properties:

1. 𝐻((𝑥, 𝑠), 0) = (𝑥, 𝛼(𝑠)) = (id𝑋 × 𝛼)(𝑥, 𝑠) for all (𝑥, 𝑠) ∈ 𝑋 × 𝐼;

2. 𝐻((𝑥, 𝑠), 1) = (𝑥, 𝑠) = id𝑋×𝐼(𝑥, 𝑠) for all (𝑥, 𝑠) ∈ 𝑋 × 𝐼;

3. 𝐻((𝑥, 0), 𝑡) = (𝑥, 0) ∈ 𝐴 for all 𝑥 ∈ 𝑋 and all 𝑡 ∈ 𝐼;

4. 𝐻((𝑥, 1), 𝑡) = (𝑥, 1) ∈ 𝐴 for all 𝑥 ∈ 𝑋 and all 𝑡 ∈ 𝐼;

5. 𝐻((𝑥0, 𝑠), 𝑡) = (𝑥0, (1− 𝑡)𝛼(𝑠) + 𝑡𝑠) ∈ 𝐴 for all 𝑠, 𝑡 ∈ 𝐼.

The first of the two properties above say that 𝐻 defines a homotopy id𝑋 × 𝛼 ≃
id𝑋×𝐼 , while the last three properties say that this homotopy is such that, for any fixed
𝑡 ∈ 𝐼, the intermediary map 𝑋 × 𝐼 → 𝑋 × 𝐼 defined by the homotopy maps the subspace
𝐴 to itself. Proposition 4.2.8 then implies that passing to the quotient gives us a pointed
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homotopy id𝑋 × 𝛼 ≃* id𝑋×𝐼 , but we have already remarked that id𝑋 × 𝛼 = 𝑓 , and it is
clear that id𝑋×𝐼 = idΣ𝑋 , so the result follows.

2. The proof of this item is very similar to that of the previous one. We now
consider the map 𝐻 : (𝑋 × 𝐼)× 𝐼 → 𝑋 × 𝐼 defined as

𝐻((𝑥, 𝑠), 𝑡) := (𝑥, (1− 𝑠)𝛼(𝑠) + 𝑡𝑝),

where 𝑝 := 𝛼(0) = 𝛼(1) is equal to either 0 or 1 according to the hypothesis in the
statement of the result. By direct computations we can show that 𝐻 defines a homotopy
id𝑋 × 𝛼 ≃ id𝑋 × ct𝐼,𝑝, and moreover, for any fixed 𝑡 ∈ 𝐼, the intermediary map 𝑋 × 𝐼 →
𝑋 × 𝐼 induced by this homotopy maps the subspace 𝐴 to itself. Using Proposition 4.2.8
again gives us a pointed homotopy id𝑋 × 𝛼 = 𝑓 ≃* id𝑋 × ct𝐼,𝑝, but since 𝑝 ∈ {0, 1}, the
induced map id𝑋 × ct𝐼,𝑝 is equal to the constant map ctΣ𝑋,*Σ𝑋

, so the result follows. �

With the use of this Lemma, the rest of the proof is straightforward. As we had
already remarked, from equation (5.1) we see that the map 𝛼 : 𝐼 → 𝐼 defined as

𝛼(𝑠) :=

⎧⎪⎨⎪⎩2𝑠, if 0 ≤ 𝑠 ≤ 1
2

1, if 1
2 ≤ 𝑠 ≤ 1

satisfies 𝑞 ∘ (id𝑥×𝛼) = ⟨idΣ𝑋 , ctΣ𝑋,*Σ𝑋
⟩ ∘𝜇 ∘ 𝑞, and since 𝛼(0) = 0 and 𝛼(1) = 1, it follows

from Lemma 5.1.3 that
⟨idΣ𝑋 , ctΣ𝑋,*Σ𝑋

⟩ ∘ 𝜇 ≃* idΣ𝑋 .

The other composition is proved similarly. We have the formula

(⟨ctΣ𝑋,*Σ𝑋
, idΣ𝑋⟩ ∘ 𝜇)([𝑥, 𝑠]) =

⎧⎪⎨⎪⎩*Σ𝑋 , if 0 ≤ 𝑠 ≤ 1
2

[𝑥, 2𝑡− 1], if 1
2 ≤ 𝑠 ≤ 1,

(5.2)

so the map 𝛼 : 𝐼 → 𝐼 defined as

𝛼(𝑠) :=

⎧⎪⎨⎪⎩0, if 0 ≤ 𝑠 ≤ 1
2

2𝑠− 1, if 1
2 ≤ 𝑠 ≤ 1

(5.3)

is such that
𝑞 ∘ (id𝑋 × 𝛼) = ⟨ctΣ𝑋,*Σ𝑋

, idΣ𝑋⟩ ∘ 𝜇 ∘ 𝑞;

and Lemma 5.1.3 then implies

⟨ctΣ𝑋,*Σ𝑋
, idΣ𝑋⟩ ∘ 𝜇 ≃* idΣ𝑋 .

Now we have to prove the coassociativity up to homotopy of 𝜇, thus we need to
construct a pointed homotopy

(idΣ𝑋 ∨ 𝜇) ∘ 𝜇 ≃* 𝐴 ∘ (𝜇 ∨ idΣ𝑋) ∘ 𝜇,



130 Chapter 5. Homotopy groups

where 𝐴 : (Σ𝑋∨Σ𝑋)∨Σ𝑋 → Σ𝑋∨(Σ𝑋∨Σ𝑋) is the associator homeomorphism defined
as in Remark A.1.10. Following the notation of said Remark, if we recall that idΣ𝑋 ∨ 𝜇
by definition satisfies the equalities

(idΣ𝑋 ∨ 𝜇) ∘ 𝑗1 = 𝐽 ′
1 and (idΣ𝑋 ∨ 𝜇) ∘ 𝑗2 = 𝐽 ′

2 ∘ 𝜇,

we obtain the formula

((idΣ𝑋 ∨ 𝜇) ∘ 𝜇)([𝑥, 𝑠]) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝐽 ′

1([𝑥, 2𝑠]), if 0 ≤ 𝑠 ≤ 1
2

𝐽 ′
2(𝑗1([𝑥, 4𝑠− 2])), if 1

2 ≤ 𝑠 ≤ 3
4

𝐽 ′
2(𝑗2([𝑥, 4𝑠− 3])), if 3

4 ≤ 𝑠 ≤ 1.

(5.4)

Now, for the other composition, the wedge sum 𝜇∨ idΣ𝑋 : Σ𝑋 ∨Σ𝑋 → (Σ𝑋 ∨Σ𝑋)∨Σ𝑋
satisfies by definition the equalities

(𝜇 ∨ idΣ𝑋) ∘ 𝑗1 = 𝐽1 ∘ 𝜇 and (𝜇 ∨ idΣ𝑋) ∘ 𝑗2 = 𝐽2.

Using these we obtain the equality

((𝜇 ∨ idΣ𝑋) ∘ 𝜇)([𝑥, 𝑠]) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝐽1(𝑗1([𝑥, 4𝑠])), if 0 ≤ 𝑠 ≤ 1

4

𝐽1(𝑗2([𝑥, 4𝑠− 1])), if 1
4 ≤ 𝑠 ≤ 1

2

𝐽2([𝑥, 2𝑡− 1]), if 1
2 ≤ 𝑠 ≤ 1.

We recall also that, according to Remark A.1.10, the associator 𝐴 by definition satisfies
the conditions

𝐴 ∘ 𝐽1 = ⟨𝐽 ′
1, 𝐽

′
2 ∘ 𝑗1⟩ and 𝐴 ∘ 𝐽2 = 𝐽 ′

2 ∘ 𝑗2,

from which we deduce the formula

(𝐴 ∘ (𝜇 ∨ idΣ𝑋) ∘ 𝜇)([𝑥, 𝑠]) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝐽 ′

1([𝑥, 4𝑠]), if 0 ≤ 𝑠 ≤ 1
4

𝐽 ′
2(𝑗1([𝑥, 4𝑠− 1])), if 1

4 ≤ 𝑠 ≤ 1
2

𝐽 ′
2(𝑗2([𝑥, 2𝑠− 1])), if 1

2 ≤ 𝑠 ≤ 1.

(5.5)

We want to use Lemma 5.1.3 to compared (5.4) and (5.5). Define 𝛼 : 𝐼 → 𝐼 by the
formula

𝛼(𝑠) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
2𝑠, if 0 ≤ 𝑠 ≤ 1

4

𝑠+ 1
4 , if 1

4 ≤ 𝑠 ≤ 1
2

1
2𝑠+ 1

2 , if 1
2 ≤ 𝑠 ≤ 1,

and consider the product map id𝑋 × 𝛼 : 𝑋 × 𝐼 → 𝑋 × 𝐼. A direct verification shows that
the composite

𝑞 ∘ (id𝑋 × 𝛼) : 𝑋 × 𝐼 → Σ𝑋
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is such that

(𝑞 ∘ (id𝑋 × 𝛼))(𝑋 × {0} ∪ 𝑋 × {1} ∪ {𝑥0} × 𝐼) ⊆ {*Σ𝑋},

therefore it can be factored through the quotient to give a pointed map

𝛽 : (Σ𝑋, *Σ𝑋)→ (Σ𝑋, *Σ𝑋).

The map 𝛼 is hand-crafted to ensure that the induced map 𝛽 satisfies the equation

(idΣ𝑋 ∨ 𝜇) ∘ 𝜇 ∘ 𝛽 = 𝐴 ∘ (𝜇 ∨ idΣ𝑋) ∘ 𝜇.

Since 𝛼(0) = 0 and 𝛼(1) = 1, Lemma 5.1.3 implies 𝛽 ≃* idΣ𝑋 , therefore

𝐴 ∘ (𝜇 ∨ idΣ𝑋) ∘ 𝜇 = (idΣ𝑋 ∨ 𝜇) ∘ 𝜇 ∘ 𝛽

≃* (idΣ𝑋 ∨ 𝜇) ∘ 𝜇 ∘ idΣ𝑋

= (idΣ𝑋 ∨ 𝜇) ∘ 𝜇.

We still have to define an H-co-inversion map. Let 𝑟 : 𝐼 → 𝐼 be defined as 𝑟(𝑠) :=
1− 𝑠 for every 𝑠𝑖𝑛𝐼, and consider the product id𝑋 × 𝑟 : 𝑋 × 𝐼 → 𝑋 × 𝐼. The composition
𝑞 ∘ (id𝑋 × 𝑟) : 𝑋 × 𝐼 → Σ𝑋 satisfies

(𝑞 ∘ (id𝑋 × 𝑟))(𝑋 × {0} ∪ 𝑋 × {1} ∪ {𝑥0} × 𝐼) ⊆ {*Σ𝑋},

thus it induces a pointed map

𝜈 : (Σ𝑋, *Σ𝑋)→ (Σ𝑋, *Σ𝑋)

as shown in the diagram below.

𝑋 × 𝐼 𝑋 × 𝐼

Σ𝑋 Σ𝑋

id𝑋×𝑟

𝑞 𝑞

𝜈

The only thing left is showing that 𝜈 really behaves as an H-co-inversion, that is,
we need to construct pointed homotopies

⟨𝜈, idΣ𝑋⟩ ∘ 𝜇 ≃* ctΣ𝑋,*Σ𝑋
≃* ⟨idΣ𝑋 , 𝜈⟩.

On the one hand we have the formula

(⟨𝜈, idΣ𝑋⟩ ∘ 𝜇)([𝑥, 𝑠]) =

⎧⎪⎨⎪⎩[𝑥, 1− 2𝑠], if 0 ≤ 𝑠 ≤ 1
2

[𝑥, 2𝑠− 1], if 1
2 ≤ 𝑠 ≤ 1.

(5.6)
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The map 𝛼 : 𝐼 → 𝐼 given by

𝛼(𝑠) :=

⎧⎪⎨⎪⎩1− 2𝑠, if 0 ≤ 𝑠 ≤ 1
2

2𝑠− 1, if 1
2 ≤ 𝑠 ≤ 1

is such that
𝑞 ∘ (id𝑋 × 𝛼) = ⟨𝜈, idΣ𝑋⟩ ∘ 𝜇 ∘ 𝑞,

so Lemma 5.1.3 implies the desired homotopy

⟨𝜈, idΣ𝑋⟩ ∘ 𝜇 ≃* ctΣ𝑋,*Σ𝑋
.

On the other hand, we also have the formula

(⟨idΣ𝑋 , 𝜈⟩ ∘ 𝜇)([𝑥, 𝑠]) =

⎧⎪⎨⎪⎩[𝑥, 2𝑠], if 0 ≤ 𝑠 ≤ 1
2

[𝑥, 2− 2𝑠], if 1
2 ≤ 𝑠 ≤ 1.

(5.7)

In this case, we consider the map 𝛼 : 𝐼 → 𝐼 defined as

𝛼(𝑠) :=

⎧⎪⎨⎪⎩2𝑠, if 0 ≤ 𝑠 ≤ 1
2

2− 2𝑠, if 1
2 ≤ 𝑠 ≤ 1,

which satisfies the equation

𝑞 ∘ (id𝑋 × 𝛼) = ⟨idΣ𝑋 , 𝜈⟩ ∘ 𝜇 ∘ 𝑞,

and use Lemma 5.1.3 one last time to conclude that

⟨idΣ𝑋 , 𝜈⟩ ∘ 𝜇 ≃* ctΣ𝑋,*Σ𝑋
. �

Now that we have a “recipe” for obtaining H-cogroups, we can apply it to some
particular examples. The simplest pointed space there is the singleton space ({pt}, pt).
The previous theorem implies the reduced suspension (Σ{pt}, *Σ{pt}) admits an H-cogroup
structure, but this structure is in fact rather trivial. Indeed, since there is a pointed
homeomorphism

Σ{pt} ∼= {pt},

the H-comultiplication 𝜇Σ{pt} of Σ{pt} corresponds to an H-comultiplication

𝜇{pt} : {pt} → {pt} ∨ {pt},

and if we take into account the existence of a pointed homeomorphism

{pt} ∨ {pt} ∼= {pt},

then this H-comultiplication corresponds simply to the identity map of {pt}. Similarly,
the H-co-inversion 𝜈Σ{pt} : Σ{pt} → Σ{pt} corresponds to a map {pt} → {pt} which is
necessarily the identity map of the singleton space.
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The next simplest pointed space is the 0-dimensional sphere 𝑆0 = {−1, 1}. In
this case, we already have a non-trivial and extremely important example of H-cogroup
structure on the suspension. First, we make precise the way in which we can “transport” H-
cogroup structures along pointed homeomorphisms. In fact, since an H-cogroup structure
is something homotopical in nature, this transport procedure can actually be done along
the weaker notion of a pointed homotopy equivalence.

5.1.4 Proposition (Transport of H-cogroup structure). Let ((𝑋, 𝑥0), 𝜇, 𝜈) be an H-
cogroup. If (𝑌, 𝑦0) is another pointed space, and ℎ : (𝑌, 𝑦0)→ (𝑋, 𝑥0) is a pointed homo-
topy equivalence, then (𝑌, 𝑦0) admits a structure of H-cogroup such that ℎ becomes an
H-cogroup morphism.

Proof. Let ℎ−1 : (𝑋, 𝑥0)→ (𝑌, 𝑦0) be any homotopy inverse to ℎ. Define a map 𝜇𝑌 : 𝑌 →
𝑌 ∨ 𝑌 by the diagram below.

𝑌 𝑋 𝑋 ∨𝑋 𝑌 ∨ 𝑌ℎ

𝜇𝑌

𝜇 ℎ−1∨ℎ−1

We must check that 𝑦0 is a counit up to homotopy for 𝜇𝑌 , which means that we
must construct homotopies

⟨id𝑌 , ct𝑌,𝑦0⟩ ∘ 𝜇𝑌 ≃* id𝑌 ≃* ⟨ct𝑌,𝑦0 , id𝑌 ⟩ ∘ 𝜇𝑌 .

The idea is to somehow relate the maps above with the corresponding ones for 𝑋, and
then use the homotopical properties of 𝜇.

The way to relate the structure of 𝑋 and 𝑌 is to write the “obvious” diagrams
and check that they commute (sometimes only up to homotopy). In this first part, we
check the commutativity in details, but for the later parts, in order to avoid excessive
repetition, we just give an outline of the proof.

We claim that the diagram below commutes up to homotopy.

𝑌 𝑋

𝑌 ∨ 𝑌 𝑋 ∨𝑋

𝑌 𝑋

ℎ

𝜇𝑌 𝜇

ℎ∨ℎ

⟨id𝑌 ,ct𝑌,𝑦0 ⟩ ⟨id𝑋 ,ct𝑋,𝑥0 ⟩

ℎ

For the top square, unpacking the definition of 𝜇𝑌 we get

(ℎ ∨ ℎ) ∘ 𝜇𝑌 = (ℎ ∨ ℎ) ∘ (ℎ−1 ∨ ℎ−1) ∘ 𝜇 ∘ ℎ,
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and if we use the functoriality of the wedge sum, as well as the fact that it preserves
pointed homotopies, we obtain

(ℎ ∨ ℎ) ∘ (ℎ−1 ∨ ℎ−1) ∘ 𝜇 ∘ ℎ = ((ℎ ∘ ℎ−1) ∨ (ℎ ∘ ℎ−1)) ∘ 𝜇 ∘ ℎ

≃* (id𝑋 ∨ id𝑋) ∘ 𝜇 ∘ ℎ

= id𝑋∨𝑋 ∘ 𝜇 ∘ ℎ

= 𝜇 ∘ ℎ;

showing the commutativity up to homotopy of the first square.

The bottom square actually commutes strictly, not only up to homotopy. Indeed,
if 𝑗𝑋1 , 𝑗𝑋2 : 𝑋 → 𝑋 ∨𝑋 and 𝑗𝑌1 , 𝑗𝑌2 : 𝑌 → 𝑌 ∨ 𝑌 are the canonical injections, on the one
hand we have

⟨id𝑋 , ct𝑋,𝑥0⟩ ∘ (ℎ ∨ ℎ) ∘ 𝑗𝑌1 = ⟨id𝑋 , ct𝑋,𝑥0⟩𝑗𝑋1 ∘ ℎ

= id𝑋 ∘ ℎ

= ℎ,

while on the other we have

ℎ ∘ ⟨id𝑌 , ct𝑌,𝑦0⟩ ∘ 𝑗𝑌1 = ℎ ∘ id𝑌 = ℎ

showing that there is an equality

⟨id𝑋 , ct𝑋,𝑥0⟩ ∘ (ℎ ∨ ℎ) ∘ 𝑗𝑌1 = ℎ ∘ ⟨id𝑌 , ct𝑌,𝑦0⟩ ∘ 𝑗𝑌1 .

An analogous argument shows that there is also an equality

⟨id𝑋 , ct𝑋,𝑥0⟩ ∘ (ℎ ∨ ℎ) ∘ 𝑗𝑌2 = ℎ ∘ ⟨id𝑌 , ct𝑌,𝑦0⟩ ∘ 𝑗𝑌2 .

Combining these two with the universal property of the coproduct then gives us the
desired equality

⟨id𝑋 , ct𝑋,𝑥0⟩ ∘ (ℎ ∨ ℎ) = ℎ ∘ ⟨id𝑌 , ct𝑌,𝑦0⟩.

Now that we know that the mentioned diagram commutes up to homotopy, we
can also state the homotopy

ℎ ∘ (⟨id𝑌 , ct𝑌,𝑦0⟩ ∘ 𝜇𝑌 ) ≃* (⟨id𝑋 , ct𝑋,𝑥0⟩ ∘ 𝜇) ∘ ℎ,

but since 𝑥0 is a counit up to homotopy for 𝜇, we also have the homotopy

⟨id𝑋 , ct𝑋,𝑥0⟩ ∘ 𝜇 ≃* id𝑋 ,

and substituting this into the previous one gives us

ℎ ∘ (⟨id𝑌 , ct𝑌,𝑦0⟩ ∘ 𝜇𝑌 ) ≃* id𝑋 ∘ ℎ = ℎ.
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Finally, composing both sides of this equality with ℎ−1 gives us the desired pointed ho-
motopy

⟨id𝑌 , ct𝑌,𝑦0⟩ ∘ 𝜇𝑌 ≃* id𝑌 .

The proof that there exists a pointed homotopy

⟨ct𝑌,𝑦0 , id𝑌 ⟩ ∘ 𝜇𝑌 ≃* id𝑌

is completely analogous. We just write the corresponding diagram relating ⟨ct𝑌,𝑦0 , id𝑌 ⟩∘𝜇𝑌
with ⟨ct𝑋,𝑥0 , id𝑋⟩ ∘ 𝜇, which commutes up to homotopy by an analogous argument, and
then use the same reasoning as above to deduce the required pointed homotopy.

Now we prove that 𝜇𝑌 is also coassociative up to homotopy. We denote the associ-
ators of 𝑋 and 𝑌 by 𝐴𝑋 and 𝐴𝑌 respectively. We must show that there exists a pointed
homotopy

𝐴𝑌 ∘ (𝜇𝑌 ∨ id𝑌 ) ∘ 𝜇𝑌 ≃* (id𝑌 ∨ 𝜇𝑌 ) ∘ 𝜇𝑌 .

The trick again is to use the “obvious” homotopy commutative diagram to relate both
sides of the expression above in terms of the corresponding expressions for 𝑋.

First we rewrite the composition on the left-hand side using the homotopy com-
mutative diagram below.

𝑌 𝑋

𝑌 ∨ 𝑌 𝑋 ∨𝑋

(𝑌 ∨ 𝑌 ) ∨ 𝑌 (𝑋 ∨𝑋) ∨𝑋

𝑌 ∨ (𝑌 ∨ 𝑌 ) 𝑋 ∨ (𝑋 ∨𝑋)

ℎ

𝜇𝑌 𝜇

ℎ∨ℎ

𝜇𝑌 ∨id𝑌 𝜇∨id𝑋

(ℎ∨ℎ)∨ℎ

𝐴𝑌 𝐴𝑋

ℎ∨(ℎ∨ℎ)

The top and middle rectangles commute up to homotopy due to the definition of 𝜇𝑌 , the
functoriality of the wedge and its compatibility with pointed homotopies. The bottom
rectangle actually commutes strictly (not just up to homotopy) as a consequence of the
naturality of the associator homeomorphism applied to the pointed map ℎ : (𝑌, 𝑦0) →
(𝑋, 𝑥0).

This commutativity up to homotopy allows us to write

(ℎ ∨ (ℎ ∨ ℎ)) ∘ (𝐴𝑌 ∘ (𝜇𝑌 ∨ id𝑌 ) ∘ 𝜇𝑌 ) ≃* (𝐴𝑋 ∘ (𝜇 ∨ id𝑋) ∘ 𝜇) ∘ ℎ,

but if we recall that we have the pointed homotopy

𝐴𝑋 ∘ (𝜇 ∨ id𝑋) ∘ 𝜇 ≃* (id𝑋 ∨ 𝜇) ∘ 𝜇,
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then the previous expression can be rewritten as

(ℎ ∨ (ℎ ∨ ℎ)) ∘ (𝐴𝑌 ∘ (𝜇𝑌 ∨ id𝑌 ) ∘ 𝜇𝑌 ) ≃* ((id𝑋 ∨ 𝜇) ∘ 𝜇) ∘ ℎ. (5.8)

Now, one would hope that the right-hand side of (5.8) can be rewritten in terms
of the composition (id𝑌 ∨ 𝜇𝑌 ) ∘ 𝜇𝑌 . Indeed, we have the homotopy commutative diagram

𝑌 𝑋

𝑌 ∨ 𝑌 𝑋 ∨𝑋

𝑌 ∨ (𝑌 ∨ 𝑌 ) 𝑋 ∨ (𝑋 ∨𝑋),

ℎ

𝜇𝑌 𝜇

ℎ∨ℎ

id𝑌 ∨𝜇𝑌 id𝑋∨𝜇

ℎ∨(ℎ∨ℎ)

which allows us to write

(ℎ ∨ (ℎ ∨ ℎ)) ∘ ((id𝑌 ∨ 𝜇𝑌 ) ∘ 𝜇𝑌 ) ≃* ((id𝑋 ∨ 𝜇) ∘ 𝜇) ∘ ℎ. (5.9)

Comparing equations (5.8) and (5.9) give us

(ℎ ∨ (ℎ ∨ ℎ)) ∘ (𝐴𝑌 ∘ (𝜇𝑌 ∨ id𝑌 ) ∘ 𝜇𝑌 ) ≃* (ℎ ∨ (ℎ ∨ ℎ)) ∘ ((id𝑌 ∨ 𝜇𝑌 ) ∘ 𝜇𝑌 ),

and if we then compose both sides above with ℎ−1 ∨ (ℎ−1 ∨ ℎ−1) we obtain the desired
pointed homotopy

𝐴𝑌 ∘ (𝜇𝑌 ∨ id𝑌 ) ∘ id𝑌 ≃* (id𝑌 ∨ 𝜇𝑌 ) ∘ 𝜇𝑌 .

We define a co-inversion map 𝜈𝑌 : (𝑌, 𝑦0) → (𝑌, 𝑦0) by using the map ℎ and the
co-inversion 𝜈 of 𝑋.

𝑌 𝑋 𝑋 𝑌ℎ

𝜈𝑌

𝜈 ℎ−1

We must construct the two pointed homotopies indicated below.

⟨id𝑌 , 𝜈𝑌 ⟩ ∘ 𝜇𝑌 ≃* ct𝑌,𝑦0 ≃* ⟨𝜈𝑌 , id𝑌 ⟩ ∘ 𝜇𝑌 .

The strategy behind the proof is the same. For the left-hand side, we use the
homotopy commutative diagram

𝑌 𝑋

𝑌 ∨ 𝑌 𝑋 ∨𝑋

𝑌 𝑋

ℎ

𝜇𝑌 𝜇

ℎ∨ℎ

⟨id𝑌 ,𝜈𝑌 ⟩ ⟨id𝑋 ,𝜈⟩

ℎ
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and the homotopical properties of 𝜇 to write

ℎ ∘ (⟨id𝑌 , 𝜈𝑌 ⟩ ∘ 𝜇𝑌 ) ≃* (⟨id𝑋 , 𝜈⟩ ∘ 𝜇) ∘ ℎ ≃* ct𝑋,𝑥0 ∘ ℎ = ct𝑌,𝑥0 .

Composing both sides above with ℎ−1 then gives us the desired pointed homotopy

⟨id𝑌 , 𝜈𝑌 ⟩ ∘ 𝜇𝑌 ≃* ct𝑌,𝑦0 .

The other pointed homotopy is obtained by an analogous reasoning. �

Let us return to the study of some explicit H-cogroups. Recall that, for every 𝑛 ≥ 1,
we have the pointed homeomorphisms

Σ𝑆𝑛−1 ∼= 𝑆𝑛−1 ∧ 𝑆1 ∼= 𝑆𝑛,

The next result follows from this observation by applying Proposition 5.1.4.

5.1.5 Corollary. For every 𝑛 ≥ 1, the 𝑛-sphere 𝑆𝑛 admits an H-cogroup structure.

Let us examine this H-cogroup structure in detail for the particular case of the
circle 𝑆1 by following the construction given in the proof of Proposition 5.1.4. We start by
giving an explicit description of the pointed homeomorphism Σ𝑆0 ∼= 𝑆1. Let exp : 𝐼 → 𝑆1

be the usual quotient map which identifies the two endpoints of the unit interval. Define
Φ : 𝑆0 × 𝐼 → 𝑆1 by the formula

Φ(𝑡, 𝑠) :=

⎧⎪⎨⎪⎩exp(𝑠), if 𝑡 = −1

*𝑆1 , if 𝑡 = 1.

This map satisfies the condition

Φ(𝑆0 × {0} ∪ 𝑆0 × {1} ∪ {1} × 𝐼) ⊆ {*𝑆1},

so it descends to a pointed map

𝜑 : (Σ𝑆0, *Σ𝑆0)→ (𝑆1, *𝑆1).

Conversely, the map Ψ : 𝐼 → Σ𝑆0 defined as

Ψ(𝑠) := [−1, 𝑠]

satisfies Ψ(0) = Ψ(1) = *Σ𝑆0 , therefore it can be factored through exp to define a pointed
map

𝜓 : (𝑆1, *𝑆1)→ (Σ𝑆0, *Σ𝑆0).
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The maps 𝜑 and 𝜓 defined above are inverse to one another. If 𝜇Σ𝑆0 denotes
the H-comultiplication map of Σ𝑆0, according to Proposition 5.1.4 we obtain an H-
comultiplication map 𝜇𝑆1 : 𝑆1 → 𝑆1 ∨ 𝑆1 as the composition

𝑆1 Σ𝑆0 Σ𝑆0 ∨ Σ𝑆0 𝑆1 ∨ 𝑆1𝜓

𝜇𝑆1

𝜇 𝜑∨𝜑

Using the definitions for 𝜑 and 𝜓 we can show that 𝜇𝑆1 can be described in the following
way: given a point in 𝑆1 of the form exp(𝑠) for some 𝑠 ∈ 𝐼, we have

𝜇𝑆1(exp(𝑠)) =

⎧⎪⎨⎪⎩𝑗1(exp(2𝑠)), if 0 ≤ 𝑠 ≤ 1
2

𝑗2(exp(2𝑠− 1)), if 1
2 ≤ 𝑠 ≤ 1,

where 𝑗1, 𝑗2 : 𝑆1 → 𝑆1 ∨ 𝑆1 are the canonical injections.

We can also understand 𝜇𝑆1 geometrically. The wedge sum 𝑆1∨𝑆1 can be visualized
as two tangent circles in the plane. The canonical injections 𝑗1 and 𝑗2 map 𝑆1 to either one
of these two tangent circles. The exponential map exp : 𝐼 → 𝑆1 wraps the unit interval
around the circle, with the restriction exp|[0, 1

2 ] covering the upper hemisphere, and the
restriction exp|[ 1

2 ,1] covering the lower one. The map 𝜇 then uses the circle 𝑆1 to cover the
whole wedge sum 𝑆1 ∨ 𝑆1, the upper hemisphere is used to cover one of the two circles
by applying exp with “double the speed”, while the lower hemisphere is used to cover the
other circle that makes up the wedge sum, like shown in Figure 6.

𝜇𝑆1

𝑆1

𝑆1 ∨ 𝑆1

𝑗1(𝑆1)

𝑗2(𝑆1)

Figure 6 – The H-comultiplication map of the circle.

Sometimes 𝜇𝑆1 is also called the pinching map. This is because, since 𝜇𝑆1 maps
*𝑆1 and −*𝑆1 both to the basepoint of 𝑆1 ∨ 𝑆1, we can consider the quotient

𝑞 : 𝑆1 → 𝑆1/{*𝑆1 ,−*𝑆1}

and factor 𝜇𝑆1 through it to obtain a pointed homeomorphism

𝑆1/{*𝑆1 ,−*𝑆1} ∼= 𝑆1 ∨ 𝑆1;
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and one way to visualize 𝑆1/{*𝑆1 ,−*𝑆1} is by pinching the equator of 𝑆1 to a single point.

There is a similar geometric interpretation of the H-comultiplication maps for the
higher dimensional spheres. The pointed homeomorphism 𝜑 : Σ𝑆𝑛 → 𝑆𝑛+1 maps a point
[𝑥, 𝑠] ∈ Σ𝑆𝑛 to the point

1
2(𝑖(𝑥) + *𝑆𝑛+1) +

(︃
cos(𝑡)

2

)︃
· (*𝑆𝑛+1 − 𝑖(𝑥)) +

(︃
‖*𝑆𝑛+1 − 𝑖(𝑥)‖ sin(𝑡)

2

)︃
· (0, . . . , 0, 1),

where 𝑖 : 𝑆𝑛 → 𝑆𝑛+1 is the inclusion at the equator. Recall that geometrically, for a fixed
𝑥 ∈ 𝑆𝑛, as we vary 𝑡 ∈ 𝐼, the image 𝜑([𝑥, 𝑡]) describes a loop on the surface of 𝑆𝑛+1 that
starts at *𝑆𝑛+1 , moves across the upper hemisphere, passes through 𝑖(𝑥) when 𝑡 = 1

2 , then
moves across the lower hemisphere, and then finally comes back to *𝑆𝑛+1 when 𝑡 = 1. We
see then that the map 𝜇𝑆𝑛+1 : 𝑆𝑛+1 → 𝑆𝑛+1 ∨ 𝑆𝑛+1 uses the upper hemisphere of 𝑆𝑛 to
cover one copy of 𝑆𝑛 inside the wedge sum, and then uses the lower hemisphere to cover
the other copy of 𝑆𝑛. In particular, the whole equator gets mapped to the basepoint of
wedge sum, so we have the same pinching effect as before.

5.2 Homotopy groups

In this section we finally introduce the homotopy groups of a pointed space. The
payoff for using the language of H-cogroups is that the definition is uniform in all dimen-
sions, and it automatically comes with the property of being functorial for pointed spaces
and pointed maps. Our approach heavily relies on the concepts of group and cogroup
objects developed in Appendix A.1 and on the results proved therein.

The goal of this section is merely to define the homotopy groups, we do not delve
to deep into its properties for now. In a later section we will use the notion of H-groups to
deduce some interesting basic properties satisfied by the homotopy groups. It is only in
the next chapter that we obtain some tools for really computing some homotopy groups
coming from the theory of locally trivial bundles.

We first recall some basic categorical properties of HoTop* that we have already
studied. The singleton pointed space ({pt}, pt) is both an initial and terminal object of the
category Top*. Consequently, it is also both initial and terminal in the pointed homotopy
category HoTop*: given a pointed space (𝑋, 𝑥0), [ct{pt},𝑥0 ]* is the only pointed homotopy
class from ({pt}, pt) to (𝑋, 𝑥0), while [ct𝑋,pt]* is the only pointed homotopy class from
(𝑋, 𝑥0) to ({pt}, pt). We have also seen in Corollary 4.2.7 that HoTop* admits all finite
products and coproducts.

These categorical properties ensure that the category HoTop* supports the alge-
braic notion of cogroups objects. The next result shows that we have in fact already
obtained a bunch of cogroup objects in HoTop*.
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5.2.1 Lemma. If ((𝑋, 𝑥0), 𝜇, 𝜈) is an H-cogroup, then ((𝑋, 𝑥0), [𝜇]*, [ct𝑋,pt]*, [𝜈]*) defines
a cogroup object in HoTop*.

Proof. The idea behind the proof is pretty simple: the homotopical conditions that 𝜇 and
𝜈 satisfy imply the equalities that the comultiplication and co-inversion morphisms of a
cogroup object must satisfy. There are, however, some subtleties that we must take care
of. The problem is that, while being a cogroup object in HoTop* involves morphisms and
equalities in this category, being an H-cogroup involves maps and pointed homotopies in
Top*, so in order to prove the result in question, we need to understand how categorical
constructions in HoTop* can be obtained from the analogous constructions in Top*.

We saw in Corollary 4.2.7 that, given two pointed spaces (𝑋, 𝑥0) and (𝑌, 𝑦0), the
triple ((𝑋 ∨ 𝑌, *), [𝑗1]*, [𝑗2]*) defines a coproduct for (𝑋, 𝑥0) and (𝑌, 𝑦0) in the pointed
homotopy category HoTop*, where 𝑗1 and 𝑗2 are the canonical injections into the wedge
sum. More succinctly, we can say that the coproduct in HoTop* can be obtained by the
corresponding coproduct in Top*. In order to prove this, we showed that, given pointed
homotopy classes [𝑓 ]* : (𝑋, 𝑥0) → (𝑍, 𝑧0) and [𝑔]* : (𝑌, 𝑦0) → (𝑍, 𝑧0), the pointed homo-
topy class [⟨𝑓, 𝑔⟩]* : (𝑋∨𝑌, *)→ (𝑍, 𝑧0) is the unique morphism (in HoTop*) factoring [𝑓 ]*
and [𝑔]* through the morphisms [𝑗1]* and [𝑗2]*. In other words, the morphism ⟨[𝑓 ]*, [𝑔]*⟩
induced by the universal property of the coproduct in HoTop* is defined in terms of the
analogous induced morphism in Top*.

There are two formal consequences of this that will be useful for us in the current
proof. The first is that, given pointed homotopy classes [𝑓 ]* : (𝑊,𝑤0)→ (𝑌, 𝑦0) and [𝑔]* :
(𝑋, 𝑥0)→ (𝑍, 𝑧0), the categorical coproduct morphism [𝑓 ]*⊔ [𝑔]* : (𝑊 ∨𝑋, *)→ (𝑌 ∨𝑍, *)
can be described as the pointed homotopy class [𝑓 ∨ 𝑔]* of the corresponding coproduct
map in Top*. The other consequence is that the associator isomorphism (𝑋 ∨𝑋) ∨𝑋 ∼=
𝑋 ∨ (𝑋 ∨𝑋) in the pointed homotopy category HoTop*, or in other words, the associator
pointed homotopy equivalence

(𝑋 ∨𝑋) ∨𝑋 ≃* 𝑋 ∨ (𝑋 ∨𝑋)

is given simply by the pointed homotopy class [𝐴]* of the associator isomorphism in Top*.

Keeping these subtleties in mind, in order to prove that (𝑋, [𝜇]*, [ct𝑋,pt]*, [𝜈]*)
defines a cogroup structure in HoTop*, we need to check the commutativity of the three
following diagrams:

1. (Existence of two-sided counit)

𝑋 𝑋 ∨𝑋

𝑋 ∨𝑋 𝑋

[⟨id𝑋 ,ct𝑋,𝑥0 ⟩]*

[⟨ct𝑋,𝑥0 ,id𝑋 ]* [𝜇]*

[𝜇]*

[id𝑋 ]*
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2. (Existence of co-inverses)

𝑋 𝑋 ∨𝑋

𝑋 ∨𝑋 𝑋

[⟨id𝑋 ,𝜈⟩]*

[⟨𝜈,id𝑋⟩]* [𝜇]*

[𝜇]*

[ct𝑋,𝑥0 ]*

3. (Coassociativity)

𝑋 ∨ (𝑋 ∨𝑋) (𝑋 ∨𝑋) ∨𝑋

𝑋 ∨𝑋 𝑋 ∨𝑋

𝑋

[𝐴]*

[id𝑋∨𝜇]* [𝜇∨id𝑋 ]*

[𝜇]* [𝜇]*

The commutativity of these diagrams actually follows directly from the defining
properties of an H-cogroup. For example, the H-comultiplication by definition satisfies the
homotopical conditions

⟨id𝑋 , ct𝑋,𝑥0⟩ ∘ 𝜇 ≃* id𝑋 ≃* ⟨ct𝑋,𝑥0 , id𝑋⟩ ∘ 𝜇,

so, if we pass to pointed homotopical classes, this becomes the equality

[⟨id𝑋 , ct𝑋,𝑥0⟩]* ∘ [𝜇]* = [id𝑋 ]* = [⟨ct𝑋,𝑥0 , id𝑋⟩]* ∘ [𝜇]*;

which means precisely that the first of the three diagrams above commute. The required
commutativity of the two other diagrams then follows from the two other defining prop-
erties of an H-cogroup. �

Now that we have cogroup objects, applying the tools developed in Appendix A.1,
in particular Theorem A.2.2, allows us to obtain many algebraic objects from homotopical
ones.

5.2.2 Corollary. If ((𝑋, 𝑥0), 𝜇, 𝜈) is an H-cogroup, then for any pointed space (𝑌, 𝑦0),
the set of pointed homotopy classes [𝑋,𝑌 ]* admits a group structure such that, if 𝛼 :
(𝑌, 𝑦0) → (𝑍, 𝑧0) is a pointed map, then the pushforward function along the pointed
homotopy class [𝛼]*

HoTop(𝑋, [𝛼]*) : [𝑋,𝑌 ]* → [𝑋,𝑍]*

defines a group homomorphism.

Following the discussion after Theorem A.2.2, we can explicitly describe the group
structure on [𝑋,𝑌 ]*. The binary product

·𝑌 : [𝑋,𝑌 ]* × [𝑋,𝑌 ]* → [𝑋,𝑌 ]*
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is described explicitly as

[𝑓 ]* ·𝑌 [𝑔]* := ([𝑓 ]* ⊔ [𝑔]*) ∘ [𝜇]*,

but according to the discussion at the start of the proof of Lemma 5.2.1, the coproduct
morphism [𝑓 ]* ⊔ [𝑔]* is given by the pointed homotopy class [𝑓 ∨ 𝑔]* of the wedge sum,
therefore the previous formula can be rewritten as

[𝑓 ]* ·𝑌 [𝑔]* := [⟨𝑓, 𝑔⟩ ∘ 𝜇]* (5.10)

for all [𝑓 ]*, [𝑔]* ∈ [𝑋,𝑌 ]*. The unit for such product is given by composing the counit
[ct𝑋,pt] with the unique pointed homotopy class [ct{pt},𝑦0 ] : ({pt}, pt) → (𝑌, 𝑦0), but this
composition is simply equal to [ct𝑋,𝑦0 ]*. Lastly, given a pointed homotopy class [𝑓 ]* ∈
[𝑋,𝑌 ]* its inverse with respect to ·𝑌 is given explicitly in terms of the H-co-inversion as

[𝑓 ]−1
* := [𝑓 ∘ 𝜈]*. (5.11)

Of course, the result of Corollary 5.2.2 would not be very useful had we not de-
scribed explicit examples of H-cogroups coming from reduced suspensions in the previous
section.

5.2.3 Corollary. For any two pointed spaces (𝑋, 𝑥0) and (𝑌, 𝑦0), the set [Σ𝑋,𝑌 ]* admits a
group structure, such that, if 𝛼 : (𝑌, 𝑦0)→ (𝑍, 𝑧0) is a pointed map, then the pushforward
along [𝛼]* defines a group homomorphism [Σ𝑋,𝑌 ]* → [Σ𝑋,𝑍]*.

Since we have an explicit description of the H-comultiplication 𝜇 and of the H-
co-inversion of Σ𝑋, we also have a more explicit description of the induced product
on [Σ𝑋,𝑌 ]*. Given two pointed homotopy classes [𝑓1, ]*, [𝑓2]* ∈ [Σ𝑋,𝑌 ]*, according to
equation (5.10) their product [𝑓1]* ·𝑌 [𝑓2]* is given by the pointed homotopy class of the
map

⟨𝑓1, 𝑓2⟩ ∘ 𝜇 : Σ𝑋 → 𝑌.

Now recall that the H-comultiplication map 𝜇 : Σ𝑋 → Σ𝑋 ∨ Σ𝑋 constructed in Theo-
rem 5.1.2 is given by the formula

𝜇([𝑥, 𝑠]) =

⎧⎪⎨⎪⎩𝑗1([𝑥, 2𝑠]), if 0 ≤ 𝑠 ≤ 1
2 ,

𝑗2([𝑥, 2𝑠− 1]), if 1
2 ≤ 𝑠 ≤ 1,

where 𝑗1, 𝑗2 : Σ𝑋 → Σ𝑋 ∨ Σ𝑋 are the canonical injections. Since the induced morphism
⟨𝑓1, 𝑓2⟩ satisfies ⟨𝑓1, 𝑓2⟩∘𝑗1 = 𝑓1 and ⟨𝑓1, 𝑓2⟩∘𝑗2, it follows that the pointed map ⟨𝑓1, 𝑓2⟩∘𝜇
representing the product [𝑓1]* ·𝑌 [𝑓2]* can be described explicitly as

(⟨𝑓1, 𝑓2⟩ ∘ 𝜇)([𝑥, 𝑠]) =

⎧⎪⎨⎪⎩𝑓1([𝑥, 2𝑠]), if 0 ≤ 𝑠 ≤ 1
2 ,

𝑓2([𝑥, 2𝑠− 1]), if 1
2 ≤ 𝑠 ≤ 1.

(5.12)



5.2. Homotopy groups 143

We can also obtain a more explicit description of the inverse of a pointed homotopy
class [𝑓 ]* ∈ [Σ𝑋,𝑌 ]*. According to Equation (5.11), this inverse [𝑓 ]−1

* is given by the
pointed homotopy class of the map

𝑓 ∘ 𝜈 : Σ𝑋 → 𝑌.

The H-co-inversion map 𝜈 : Σ𝑋 → Σ𝑋 is described as

𝜈([𝑥, 𝑠]) = [𝑥, 1− 𝑠]

for every point [𝑥, 𝑠] ∈ Σ𝑋, therefore the composite 𝑓 ∘ 𝜈 representing the inverse of [𝑓 ]*
is given explicitly by

(𝑓 ∘ 𝜈)([𝑥, 𝑠]) = 𝑓([𝑥, 1− 𝑠]). (5.13)

Even more important than the fact that reduced suspensions are H-cogroups is
the fact that all spheres 𝑆𝑛 for 𝑛 ≥ 1 are homeomorphic to reduced suspensions, and
therefore inherit an H-cogroup structure too (Corollary 5.1.5), a result which together
with Corollary 5.2.2 implies the next one.

5.2.4 Corollary. For every 𝑛 ≥ 1 and for every pointed space (𝑋, 𝑥0), the set of pointed
homotopy classes [𝑆𝑛, 𝑋]* admits a group structure such that, if 𝑓 : (𝑋, 𝑥0) → (𝑌, 𝑦0) is
pointed map, then the pushforward along [𝑓 ]* defines a group homomorphism [𝑆𝑛, 𝑋]* →
[𝑆𝑛, 𝑌 ]*.

At last, we have the infamous homotopy groups.

5.2.5 Definition. Let (𝑋, 𝑥0) be a pointed space, and consider an integer 𝑛 ≥ 1. The
group [𝑆𝑛, 𝑋]* induced by the H-comultiplication map on 𝑆𝑛 according to Corollary 5.2.4
is called the 𝑛-th homotopy group of (𝑋, 𝑥0) or also the 𝑛-th homotopy group of
𝑋 based at 𝑥0, and is denoted by 𝜋𝑛(𝑋, 𝑥0). In the case where 𝑛 = 1, 𝜋1(𝑋, 𝑥0) is
traditionally called the fundamental group of 𝑋 at 𝑥0.

If 𝑓 : (𝑋, 𝑥0) → (𝑌, 𝑦0) is a pointed map, we know from Corollary 5.2.4 that the
pushforward along [𝑓 ]* defines a group homomorphism 𝜋𝑛(𝑋, 𝑥0) → 𝜋𝑛(𝑌, 𝑦0) which we
denote by 𝜋𝑛(𝑓). Of course, if 𝑔 : (𝑋, 𝑥0) → (𝑌, 𝑦0) is pointed homotopic to 𝑓 , then
the induced homomorphism 𝜋𝑛(𝑔) coincides with 𝜋𝑛(𝑓), since these only depend on the
homotopy classes [𝑔]* and [𝑓 ]* which are equal.

All of this can be rephrased by saying that the construction of the homotopy
group defines either a functor of type Top* → Grp, or a functor of type HoTop* → Grp.
We denote both of these functors by 𝜋𝑛 and refer to them both as the 𝑛-th homotopy
group functor. The two points of view are useful for different things. Notice for example
that, since functors always preserve isomorphisms, thinking of 𝜋𝑛 as a functor of type
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Top* → Grp shows that, if 𝑓 : (𝑋, 𝑥0)→ (𝑌, 𝑦0) is a pointed homeomorphism, then 𝜋𝑛(𝑓)
is a group isomorphism; while thinking of 𝜋𝑛 as a functor of type HoTop* → Grp implies
the following stronger result:

5.2.6 Proposition. If 𝑓 : (𝑋, 𝑥0)→ (𝑌, 𝑦0) is a pointed homotopy equivalence, then the
induced group homomorphism 𝜋𝑛(𝑓) : (𝑋, 𝑥0) → 𝜋𝑛(𝑌, 𝑦0) is an isomorphism for every
integer 𝑛 ≥ 1.

Even though we cannot do much with the homotopy groups yet, we can state a
definition that will be crucial for our study of Obstruction Theory.

5.2.7 Definition. Given an integer 𝑛 ≥ 1, we say a space 𝑋 is 𝑛-connected if it is
path-connected, and if the homotopy groups 𝜋𝑘(𝑋, 𝑥0) are trivial for all 1 ≤ 𝑘 ≤ 𝑛 and
all points 𝑥0 ∈ 𝑋. A 1-connected is more often said to be a simply-connected space.
We also refer to a path-connected space as a 0-connected space.

5.2.8 Remark. So far we have only worked with pointed spaces when dealing with the
homotopy group. Any map 𝑓 : 𝑋 → 𝑌 can be turned into a pointed map by choosing an
arbitrary basepoint 𝑥0 ∈ 𝑋, and then taking 𝑓(𝑥0) as a basepoint for 𝑌 . Consequently,
for every 𝑥0 ∈ 𝑋 we have the induced homomorphism 𝜋𝑛(𝑓) : 𝜋𝑛(𝑋, 𝑥0) → 𝜋𝑛(𝑌, 𝑓(𝑥0))
between the homotopy groups.

Unfortunately, this construction is not always adequate, the domain 𝑋 might not
have a natural choice of basepoint, or the corresponding basepoint 𝑓(𝑥0) might not be
relevant to the problem at hand. Another problem is that this strategy for choosing
basepoints does not allow us to compare maps with are homotopic in the unpointed sense.
If 𝑔 : 𝑋 → 𝑌 is another map homotopic to 𝑓 , the basepoint 𝑔(𝑥0) in 𝑌 induced by 𝑔

might be different from 𝑓(𝑥0), and then it is not possible to compare the homomorphisms

𝜋𝑛(𝑓) : 𝜋𝑛(𝑋, 𝑥0)→ 𝜋𝑛(𝑌, 𝑓(𝑥0)) and 𝜋𝑛(𝑔) : 𝜋𝑛(𝑋, 𝑥0)→ 𝜋𝑛(𝑌, 𝑔(𝑥0))

with the tools we have so far. Nevertheless, the points 𝑓(𝑥0) and 𝑔(𝑥0) are not entirely
unrelated, since the existence of a homotopy 𝑓 ≃ 𝑔 allows us to obtain a path connecting
𝑓(𝑥0) to 𝑔(𝑥0) for nay choice of initial basepoint 𝑥0 ∈ 𝑋.

We will see later that the existence of paths between two points allows us to
compare the homotopy groups based at these points, but since there might exist many
paths connecting two points, we might end up with many ways to compare the different
homotopy groups.

We end this section with an alternative description of the set 𝜋0(𝑋) of path-
components which more closely resembles the definition of the homotopy groups. Notice
first that, although 𝜋0(𝑋) is in general merely a set, the choice of a basepoint 𝑥0 ∈ 𝑋
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gives rise to a distinguished element in 𝜋0(𝑋): the path-component [𝑥0] of the chosen
basepoint. The pair (𝜋0(𝑋), [𝑥0]) therefore defines a pointed set, and when we want to
talk about this pointed set instead of just 𝜋0(𝑋), we employ the notation 𝜋0(𝑋, 𝑥0). This
of course means that instead of the functor 𝜋0 : HoTop → Set, we can now consider a
functor 𝜋0 : HoTop* → Set*.

The sphere 𝑆0 ⊆ R consists of the two disjoint points −1 and +1. A pointed map
𝑓 : (𝑆0,+1) → (𝑋, 𝑥0) is then uniquely determined by the choice of point 𝑓(−1) ∈ 𝑋.
Given a point 𝑥 ∈ 𝑋, let 𝜃𝑥 : (𝑆0,+1) → (𝑋, 𝑥0) be the induced pointed map. Notice
that the map 𝜃𝑥0 induced by the basepoint itself is the constant map ct𝑆0,𝑥0 : (𝑆0,+1)→
(𝑋, 𝑥0).

A path 𝛾 : 𝐼 → 𝑋 from 𝑥 to 𝑥′ induces a pointed homotopy from 𝜃𝑥 to 𝜃𝑥′ ,
therefore we can consider the pointed function Θ(𝑋,𝑥0) : 𝜋0(𝑋, 𝑥0)→ [𝑆0, 𝑋]* sending the
path-component [𝑥] to the pointed homotopy class [𝜃𝑥]*. It is straightforward to show that
Θ(𝑋,𝑥0) is a bijection: if two components [𝑥] and [𝑥′] are such that [𝜃𝑥]* = [𝜃𝑥′ ]*, then a
pointed homotopy 𝜃𝑥 ⇒* 𝜃𝑥′ defines a path from 𝑥 to 𝑥′ by restricting it to {−1}× 𝐼; and
any pointed homotopy class [𝛼]* ∈ [𝑆0, 𝑋]* is equal to ′[𝜃𝑥𝛼 ], where 𝑥𝛼 := 𝛼(−1) ∈ 𝑋.’

The bijection Θ(𝑋,𝑥0) depends naturally on (𝑋, 𝑥0). Given a pointed homotopy class
[𝑓 ]* : (𝑋, 𝑥0)→ (𝑌, 𝑦0), the compositions [𝑆0, 𝑓 ]* ∘Θ(𝑋,𝑥0) and Θ(𝑌,𝑦0) ∘ 𝜋0(𝑓) both send a
path component [𝑥] ∈ 𝜋0(𝑋, 𝑥0) to the pointed homotopy class in [𝑆0, 𝑋]* represented by
the map 𝑆0 → 𝑋 given by −1 ↦→ 𝑓(𝑥) and +1 ↦→ 𝑦0; showing the commutativity of the
diagram below.

𝜋0(𝑋, 𝑥0) 𝜋0(𝑌, 𝑦0)

[𝑆0, 𝑋]* [𝑆0, 𝑌 ]*

𝜋0(𝑓)

Θ(𝑋,𝑥0) Θ(𝑌,𝑦0)

[𝑆0,𝑓 ]*

We summarize this discussion in the next result for later referencing.

5.2.9 Proposition. The path-components functor 𝜋0 : HoTop* → Set* is naturally iso-
morphic to the representable functor [𝑆0,−]* : HoTop* → Set*.

5.3 H-groups

In this section we introduce the concept of H-groups, which are dual to the H-
cogroups introduced in Section 5.1. The progression of ideas is similar to that of the
aforementioned section, we first define H-groups, and then later we describe a family of
examples. In the next section we will then see how the interaction of H-cogroups and
H-groups allows us to deduce some properties of the homotopy groups.
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5.3.1 Definition. An H-group consists of a pointed space (𝑋, 𝑥0) together with the
following data:

• A pointed map 𝑚 : (𝑋 ×𝑋, (𝑥0, 𝑥0))→ (𝑋, 𝑥0) called the H-multiplication;

• A pointed map inv : (𝑋, 𝑥0)→ (𝑋, 𝑥0) called the H-inversion.

These maps are required to satisfy the following homotopical conditions:

1. 𝑚 ∘ (id𝑋 , ct𝑋,𝑥0) ≃* id𝑋 ≃* 𝑚 ∘ (ct𝑋,𝑥0 , id𝑋);

2. 𝑚 ∘ (id𝑋 , inv) ≃* ct𝑋,𝑥0 ≃* 𝑚 ∘ (inv, id𝑋);

3. 𝑚 ∘ (𝑚× id𝑋) ≃* 𝑚 ∘ (id𝑋 ×𝑚) ∘ 𝐴,

where 𝐴 denotes the product associator pointed homeomorphism

𝐴 : (𝑋 ×𝑋)×𝑋
∼=−→ 𝑋 × (𝑋 ×𝑋).

The geometric interpretation of an H-group is simpler than that of an H-cogroup.
The maps 𝑚 and inv are like the multiplication and inversion maps of an ordinary group,
but the usual properties satisfied in a group only hold up to homotopy. In the first of
the properties above, the map 𝑚 ∘ (id𝑋 , ct𝑋,𝑥0) sends a point 𝑥 ∈ 𝑋 to 𝑚(𝑥, 𝑥0). If we
had a strict equality 𝑚 ∘ (id𝑋 , ct𝑋,𝑥0) = id𝑋 , then 𝑚(𝑥, 𝑥0) would be equal to 𝑥 itself.
In an H-group, even though this equality does not necessarily hold, by virtue of the
pointed homotopy 𝑚 ∘ (id𝑋 , ct𝑋,𝑥0) ≃* id𝑋 , there is a path connecting 𝑚(𝑥, 𝑥0) and 𝑥,
and this path depends continuously on 𝑥. There is a similar interpretation for the other
two properties. The point inv(𝑥) is not necessarily an inverse for 𝑥 with respect to 𝑚, but
𝑚(𝑥, inv(𝑥)) and 𝑚(inv(𝑥), 𝑥) can be connected to the basepoint 𝑥0 by a path depending
continuously on 𝑥. Lastly, for any three points 𝑥1, 𝑥2, 𝑥3 ∈ 𝑋, the points 𝑚(𝑚(𝑥1, 𝑥2), 𝑥3)
and 𝑚(𝑥1,𝑚(𝑥2, 𝑥3)) might be different, but there is a path connecting the two, and this
path depends continuously on the three chosen points.

The most important result on H-groups for now is the fact that we have already
encountered a family of them.

5.3.2 Theorem. If (𝑋, 𝑥0) is any pointed space, then its loop space (Ω𝑋, ct𝑆1,𝑥0) admits
an H-group structure.

Proof. We first define an H-multiplication map

𝑚 : (Ω𝑋 × Ω𝑋, (𝜔𝑥0 , 𝜔𝑥0))→ (Ω𝑋,𝜔𝑥0).
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Consider the map 𝜓 : (Ω𝑋 × Ω𝑋)× 𝐼 → 𝑋 defined by the formula

𝜓((𝑓, 𝑔), 𝑠) :=

⎧⎪⎨⎪⎩𝑓(exp(2𝑠)), if 0 ≤ 𝑠 ≤ 1
2 ,

𝑔(exp(2𝑠− 1)), if 1
2 ≤ 𝑠 ≤ 1.

This is a well-defined function, since for 𝑠 = 1
2 the equalities

𝑓(exp(2 · 12)) = 𝑓(exp(1)) = 𝑓(*) = 𝑥0

and
𝑔(exp(2 · 12 − 1)) = 𝑔(exp(0)) = 𝑔(*) = 𝑥0

hold for any pair of loops (𝑓, 𝑔) ∈ Ω𝑥× Ω𝑋.

The restriction of 𝜓 to the subspace (Ω𝑋×Ω𝑋)× [0, 1
2 ] is given by the composition

shown below

(Ω𝑋 × Ω𝑋)× [0, 1
2 ] Ω𝑋 × [0, 1

2 ] Ω𝑋 × 𝐼 Ω𝑋 × 𝑆1 𝑋,

𝜓|(Ω𝑋×Ω𝑋)×[0, 1
2 ]

id𝑋×(2·) id𝑋×exp

where the first map is a suitable combination of canonical projections, and where the last
map is the usual evaluation map, therefore this restriction is continuous. Similarly, the
restriction of 𝜓 to the subspace (Ω𝑋 × Ω𝑋) × [1

2 , 1] is also continuous, thus 𝜓 itself is
continuous by virtue of the Pasting Lemma.

Now consider the map

idΩ𝑋×Ω𝑋 × exp : (Ω𝑋 × Ω𝑋)× 𝐼 → (Ω𝑋 × Ω𝑋)× 𝑆1,

which is a quotient map due to the fact that exp is a proper map. This map has two types
of fibers: given ((𝑓, 𝑔), 𝑧) ∈ (Ω𝑋×Ω𝑋)×𝑆1, if 𝑧 ̸= *, then the fiber this point consists of a
single point, while if 𝑧 = *, then the fiber over ((𝑓, 𝑔), 𝑧) is equal to {((𝑓, 𝑔), 0), ((𝑓, 𝑔), 1)}.
Since

𝜓((𝑓, 𝑔), 0) = 𝑓(exp(2 · 0)) = 𝑓(𝑒𝑥𝑝(0)) = 𝑓(*) = 𝑥0,

and also
𝜓((𝑓, 𝑔), 1) = 𝑔(exp(2 · 1− 1)) = 𝑔(exp(1)) = 𝑔(*) = 𝑥0,

𝜓 is constant on the fibers of idΩ𝑋×Ω𝑋 × exp, therefore we have an induced map

𝜓 : (Ω𝑋 × Ω𝑋)× 𝑆1 → 𝑋

as shown in the diagram below.

(Ω𝑋 × Ω𝑋)× 𝐼 𝑋

(Ω𝑋 × Ω𝑋)× 𝑆1

𝜓

idΩ𝑋×Ω𝑋×exp
𝜓
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The computations we have already performed show that

𝜓((Ω𝑋 × Ω𝑋)× {*}) ⊆ {𝑥0}.

Moreover, a simple computation shows that 𝜓 also satisfies

𝜓({(𝜔𝑥0 , 𝜔𝑥0)} × 𝑆1) ⊆ {𝑥0}.

It then follows from Lemma 3.2.4 that the exponential adjoint 𝑚 := 𝜆𝜓 defines a pointed
map

(Ω𝑋 × Ω𝑋, (𝜔𝑥0 , 𝜔𝑥0))→ (Ω𝑋,𝜔𝑥0).

We now prove that the map 𝑚 obtained above satisfied the required conditions
for an H-multiplication. The first thing we need to prove is that the constant loop 𝜔𝑥0

behaves as an H-unit, that is, we need to construct pointed homotopies

𝑚 ∘ (idΩ𝑋 , ctΩ𝑋,𝜔𝑥0
) ≃* idΩ𝑋 ≃* 𝑚 ∘ (ctΩ𝑋,𝜔𝑥0

, idΩ𝑋).

Let us first understand the map 𝑚 ∘ (idΩ𝑋 , ctΩ𝑋,𝜔𝑥0
) : Ω𝑋 → Ω𝑋 on the left. It sends any

loop 𝑓 ∈ Ω𝑋 to the loop 𝑚(𝑓, 𝜔𝑥0) ∈ Ω𝑋 defined as

[𝑚(𝑓, 𝜔𝑥0)](exp(𝑠)) =

⎧⎪⎨⎪⎩𝑓(exp(2𝑠)), if 0 ≤ 𝑠 ≤ 1
2 ,

𝑥0, if 1
2 ≤ 𝑠 ≤ 1.

(5.14)

The expression above shows that 𝑚(𝑓, 𝜔𝑥0) is obtained from 𝑓 by a certain repa-
rameterization: we use 𝑓 on [0, 1

2 ] with double the speed, and then we remain at the
basepoint 𝑥0 on [0, 1

2 ]. We can express this a real reparameterization of the domain 𝑆1 of
the loops. Let 𝛼 : 𝐼 → 𝐼 be the map defined as

𝛼(𝑠) :=

⎧⎪⎨⎪⎩2𝑠, if 0 ≤ 𝑠 ≤ 1
2 ,

1, if 1
2 ≤ 𝑠 ≤ 1.

(5.15)

Since 𝛼(𝜕𝐼) ⊆ 𝜕𝐼, we can obtain a pointed quotient map 𝛼 : (𝑆1, *)→ (𝑆1, *) that fits in
the commutative diagram below.

𝐼 𝐼

𝑆1 𝑆1

𝛼

exp exp

𝛼

Equation (5.14) then shows that the map 𝑚 ∘ (idΩ𝑋 , ctΩ𝑋,𝜔𝑥0
) is equal to the pullback

Map*(𝛼,𝑋).

It is clear that we need a reparameterization lemma analogous to Lemma 5.1.3 to
understand how the properties of 𝛼 affect the pullback Map*(𝛼,𝑋).
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5.3.3 Lemma (Reparamaterization II). Let (𝑥, 𝑥0) be an arbitrary pointed space. Sup-
pose 𝛼 : 𝐼 → 𝐼 is a map such that 𝛼(𝜕𝐼) ⊆ 𝜕𝐼, and let 𝛼 : (𝑆1, *)→ (𝑆1, *) be the pointed
map induced by passage to the quotient as shown in the diagram below.

𝐼 𝐼

𝑆1 𝑆1

𝛼

exp exp

𝛼

1. If 𝛼(0) = 𝛼(1), then the pullback map Map*(𝛼,𝑋) : Ω𝑋 → Ω𝑋 is pointed null
homotopic.

2. If 𝛼(0) = 0 and 𝛼(1) = 1, then the pullback map Map*(𝛼) : (Ω𝑋,𝜔𝑥0)→ (Ω𝑋,𝜔𝑥0)
is pointed homotopic to idΩ𝑋 .

Proof of the Lemma. The proof is just a combination of several other results.

1. Let 𝑝 := 𝛼(0) = 𝛼(1) ∈ 𝜕𝐼, and define a map 𝐻 : 𝐼 × 𝐼 → 𝐼 as

𝐻(𝑠, 𝑡) := (1− 𝑡)𝛼(𝑠) + 𝑡𝑝.

Direct computations show that 𝐻 satisfies the following properties:

(i) 𝐻(𝑠, 0) = 𝛼(𝑠) for every 𝑠 ∈ 𝐼;

(ii) 𝐻(𝑠, 1) = 𝑝 = ct𝐼,𝑝(𝑠) for every 𝑠 ∈ 𝐼;

(iii) 𝐻(𝜕𝐼 × 𝐼) ⊆ 𝜕𝐼.

It follows from Proposition 4.2.8 that the induced map 𝛼 is pointed homotopic to
ct𝐼,𝑝 = ct𝑆1,*. Since 𝑆1 is locally compact Hausdorff, by applying Proposition 4.2.11 we
conclude that the pullback maps

Map*(𝛼,𝑋), Map*(ct𝑆1,*, 𝑋) : (Ω𝑋,𝜔𝑥0)→ (Ω𝑋,𝜔𝑥0)

are pointed homotopic, but the pullback Map*(ct𝑆1,*, 𝑋) is just the constant map ctΩ𝑋,𝜔𝑥0
;

thus Map*(𝛼,𝑋) is pointed null homotopic.

2. Consider the map 𝐻 : 𝐼 × 𝐼 → 𝐼 defined as

𝐻(𝑠, 𝑡) := (1− 𝑡)𝛼(𝑠) + 𝑡𝑠

for all (𝑠, 𝑡) ∈ 𝐼 × 𝐼. Again, direct computations show that 𝐻 satisfies the following
properties:

(i) 𝐻(𝑠, 0) = 𝛼(𝑠) for every 𝑠 ∈ 𝐼;
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(ii) 𝐻(𝑠, 1) = 𝑠 = id𝐼(𝑠) for every 𝑠 ∈ 𝐼;

(iii) 𝐻(𝜕𝐼 × 𝐼) ⊆ 𝜕𝐼.

Applying Proposition 4.2.8 again, we conclude that 𝛼 is pointed homotopic to id𝐼 ,
but this latter map is just the identity id𝑆1 on the circle. Proposition 4.2.11 then implies
that Map*(𝛼,𝑋) is pointed homotopic to Map*(id𝑆1 , 𝑋), but by functoriality we know
that this latter pullback is nothing but the identity idΩ𝑋 on the loop space. �

With Lemma 5.3.3 at our disposal, the rest of the current proof is very similar
to the proof of Theorem 5.1.2. As we saw before the statement of the lemma, the map
𝑚 ∘ (idΩ𝑋 , ctΩ𝑋,𝜔𝑥0

) is equal to the pullback Map*(𝛼,𝑋), where 𝛼 is induced by the map
𝛼 : 𝐼 → 𝐼 defined in Equation (5.15). Since 𝛼(0) = 0 and 𝛼(1) = 1, it follows from
Lemma 5.3.3 that 𝑚 ∘ (idΩ𝑋 , ctΩ𝑋,𝜔𝑥0

) is pointed homotopic to idΩ𝑋 .

Now for the composition 𝑚∘(ctΩ𝑋,𝜔𝑥0
, idΩ𝑋), unpacking the definitions we see that

it sends a loop 𝑓 ∈ Ω𝑋 to the loop 𝑚(𝜔𝑥0 , 𝑓) given by

[𝑚(𝜔𝑥0 , 𝑓)](exp(𝑠)) =

⎧⎪⎨⎪⎩𝑥0, if 0 ≤ 𝑠 ≤ 1
2 ,

𝑓(exp(2𝑠− 1)), if 1
2 ≤ 𝑠 ≤ 1.

(5.16)

This means 𝑚 ∘ (ctΩ𝑋,𝜔𝑥0
, idΩ𝑋) is equal to the pullback Map*(𝛼,𝑋), where 𝛼 is induced

by the map 𝛼 : 𝐼 → 𝐼 defined as

𝛼(𝑠) :=

⎧⎪⎨⎪⎩0, if 0 ≤ 𝑠 ≤ 1
2 ,

2𝑠− 1, if 1
2 ≤ 𝑠 ≤ 1.

(5.17)

Since 𝛼(0) = 0 and 𝛼(1) = 1, we know from Lemma 5.3.3 that 𝑚 ∘ (ctΩ𝑋,𝜔𝑥0
, idΩ𝑋) is

pointed homotopic to idΩ𝑋 .

We now deal with the H-associativity of 𝑚. We must exhibit a pointed homotopy

𝑚 ∘ (𝑚× idΩ𝑋) ≃* 𝑚 ∘ (idΩ𝑋 ×𝑚) ∘ 𝐴.

The idea is to show that one side of the equation above can be obtained from the other
using a certain pullback. The map on the left-hand side above sends a triple of loops
((𝑓, 𝑔), ℎ) ∈ Ω𝑋 to the loop 𝑚(𝑚(𝑓, 𝑔), ℎ) described explicitly as

[𝑚(𝑚(𝑓, 𝑔), ℎ)](exp(𝑠)) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑓(exp(4𝑠)), if 0 ≤ 𝑠 ≤ 1

4 ,

𝑔(exp(4𝑠− 1)), if 1
4 ≤ 𝑠 ≤ 1

2 ,

ℎ(exp(2𝑠− 1)), if 1
2 ≤ 𝑠 ≤ 1.

(5.18)
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Similarly, the composition on the right-hand side sends the same triple ((𝑓, 𝑔), ℎ) to the
loop 𝑚(𝑓,𝑚(𝑔, ℎ)) described as

[𝑚(𝑓,𝑚(𝑔, ℎ))](exp(𝑠)) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑓(exp(2𝑠)), if 0 ≤ 𝑠 ≤ 1

2 ,

𝑔(exp(4𝑠− 2)), if 1
2 ≤ 𝑠 ≤ 3

4 ,

ℎ(exp(4𝑠− 3)), if 3
4 ≤ 𝑠 ≤ 1.

(5.19)

Now, just like we did in the proof of Theorem 5.1.2, consider the map 𝛼 : 𝐼 → 𝐼

defined as

𝛼(𝑠) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
2𝑠, if 0 ≤ 𝑠 ≤ 1

4

𝑠+ 1
4 , if 1

4 ≤ 𝑠 ≤ 1
2

1
2𝑠+ 1

2 , if 1
2 ≤ 𝑠 ≤ 1,

(5.20)

which satisfies 𝛼(𝜕𝐼) ⊆ 𝜕𝐼. Comparing equations (5.18) and (5.19) we see that 𝛼 is such
that the induced pullback Map*(𝛼,𝑋) fits in the equality

𝑚 ∘ (𝑚× idΩ𝑋) = 𝑚 ∘ (idΩ𝑋 ×𝑚) ∘ 𝐴 ∘Map*(𝛼,𝑋);

but since 𝛼(0) = 0 and 𝛼(1) = 1, Lemma 5.3.3 implies that the pullback Map*(𝛼,𝑋) is
pointed homotopic to idΩ𝑋 , and by combining this with the previous equality we obtain
the desired pointed homotopy relation.

We still have to define an H-inversion map and prove that it satisfies the two
required conditions. Consider the map 𝑟 : 𝐼 → 𝐼 that reverses the interval, that is,
𝑟(𝑠) := 1− 𝑠 for every 𝑠 ∈ 𝐼. Since 𝑟(𝜕𝐼) ⊆ 𝜕𝐼, we have the corresponding pointed map
𝑟 : (𝑆1, *)→ (𝑆1, *) like shown below.

𝐼 𝐼

𝑆1 𝑆1

𝑟

exp exp

𝑟

We then define an H-inversion map via the pullback inv := Map*(𝑟,𝑋) : (Ω𝑋,𝜔𝑥0) →
(Ω𝑋,𝜔𝑥0). This inversion sends a loop 𝑓 ∈ Ω𝑋 to the loop inv(𝑓) defined by the formula

[inv(𝑓)](exp(𝑠)) = 𝑓(exp(1− 𝑠)) (5.21)

for every 𝑠 ∈ 𝐼.

In order to show that inv really defines an H-inversion, we need to show that the
homotopical relations

𝑚 ∘ (idΩ𝑋 , inv) ≃* ctΩ𝑋,𝜔𝑥0
≃* 𝑚 ∘ (inv, idΩ𝑋)

hold. The map on the left sends an arbitrary loop 𝑓 to the loop 𝑚(𝑓, inv(𝑓)) given by the
formula

[𝑚(𝑓, inv(𝑓))](exp(𝑠)) =

⎧⎪⎨⎪⎩𝑓(exp(2𝑠)), if 0 ≤ 𝑠 ≤ 1
2 ,

𝑓(exp(2− 2𝑠)), if 1
2 ≤ 𝑠 ≤ 1.

(5.22)
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This means that 𝑚 ∘ (idΩ𝑋 , inv) is nothing but the pullback Map*(𝛼,𝑋), where 𝛼 : 𝐼 → 𝐼

is defined as

𝛼(𝑠) :=

⎧⎪⎨⎪⎩2𝑠, if 0 ≤ 𝑠 ≤ 1
2 ,

2− 2𝑠, if 1
2 ≤ 𝑠 ≤ 1.

(5.23)

Since 𝛼(0) = 𝛼(1), it follows from 𝐿𝑒𝑚𝑚𝑎 5.3.3 that Map*(𝛼,𝑋) = 𝑚 ∘ (idΩ𝑋 , inv) is
pointed homotopic to ctΩ𝑋,𝜔𝑥0

. Similarly, the other composition 𝑚 ∘ (inv, idΩ𝑋) sends a
loop 𝑓 to the loop 𝑚(inv(𝑓), 𝑓) defined by the formula

[𝑚(inv(𝑓), 𝑓)](exp(𝑠)) =

⎧⎪⎨⎪⎩𝑓(exp(1− 2𝑠)), if 0 ≤ 𝑠 ≤ 1
2 ,

𝑓(2𝑠− 1), if 1
2 ≤ 𝑠 ≤ 1.

(5.24)

It can also be described as the pullback Map*(𝛼,𝑋), where this time 𝛼 : 𝐼 → 𝐼 is defined
as

𝛼(𝑠) :=

⎧⎪⎨⎪⎩1− 2𝑠, if 0 ≤ 𝑠 ≤ 1
2 ,

2𝑠− 1, if 1
2 ≤ 𝑠 ≤ 1.

(5.25)

Lemma 5.3.3 once again implies Map*(𝛼,𝑋) = 𝑚 ∘ (inv, idΩ𝑋) is pointed homotopic to
ctΩ𝑋,𝜔𝑥0

because 𝛼(0) = 𝛼(1). �

5.4 Commutativity results
In this section, we combine the notions of H-group from Section 5.3 with the results

of Appendix A.1 to deduce some properties of the homotopy groups. The first result says
that, dually to how H-cogroups give rise to cogroup objects in HoTop*, H-groups give rise
to group objects in this same category. The proof follows that of Lemma 5.2.1, when we
pass to the pointed homotopy category HoTop*, the properties satisfied up to homotopy
by an H-group become exactly the algebraic properties that a group object must satisfy.

5.4.1 Lemma. If ((𝑋, 𝑥0),𝑚, inv) is an H-group, then ((𝑋, 𝑥0), [𝑚]*, [ct{pt},𝑥0 ]*, [inv]*)
defines a group object in HoTop*.

Recall from Theorem A.2.1 that a group object induces an ordinary group structure
on any set of morphisms into it. When interpreted in the category HoTop*, this implies
the next result.

5.4.2 Corollary. If ((𝑋, 𝑥0),𝑚, inv) is an H-group, then for any pointed space (𝑊,𝑤0),
the set of pointed homotopy classes [𝑊,𝑋]* admits a group structure such that, if 𝛼 :
(𝑊,𝑤0) → (𝑊 ′, 𝑤′

0) is a pointed map, then the pullback function along the pointed
homotopy class [𝛼]*

HoTop*([𝛼]*, 𝑋) : [𝑊 ′, 𝑋]* → [𝑊,𝑋]*

defines a group homomorphism.
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We recall from the proof of Theorem A.2.1 how this group structure is defined.
Given two pointed homotopy classes [𝑓 ]*, [𝑔]* ∈ [𝑊,𝑋]*, their product [𝑓 ]* ·𝑊 [𝑔]* is the
pointed homotopy class defined as the composition

[𝑓 ]* ·𝑊 [𝑔]* := [𝑚]* ∘ ([𝑓 ]*, [𝑔]*),

where ([𝑓 ]*, [𝑔]*) is the pointed homotopy class 𝑊 → 𝑋 ×𝑋 induced from the universal
property of the product. We saw in Corollary 4.2.7 that this pointed homotopy class is
precisely [(𝑓, 𝑔)]*, where (𝑓, 𝑔) : 𝑊 → 𝑋 ×𝑋 is the usual induced pointed map in Top*.
This allows us to rewrite the previous expression for the product in the form

[𝑓 ]* ·𝑊 [𝑔]* := [𝑚 ∘ (𝑓, 𝑔)]*. (5.26)

The unit 𝑒𝑊 for the product ·𝑊 is obtained by composing the pointed homotopy
class [ct𝑊,pt]*, which is the unique morphism from (𝑊,𝑤0) to ({pt}, pt) in HoTop*, with
the unit morphism [ct{pt},𝑥0 ]* from the group structure, therefore we have the equality

𝑒𝑊 = [ct{pt},𝑥0 ]* ∘ [ct𝑊,pt]* = [ct𝑊,𝑥0 ]*. (5.27)

Lastly, the inverse of a pointed homotopy class [𝑓 ]* ∈ [𝑊,𝑋] is obtained by com-
posing it with the inversion morphism [inv]* : (𝑋, 𝑥0)→ (𝑋, 𝑥0) from the group structure,
so that we can write

[𝑓 ]−1
* = [inv ∘ 𝑓 ]*. (5.28)

We can specialize the previous results to the H-groups obtained in Section 5.3 via
loop spaces.

5.4.3 Corollary. For any two pointed spaces (𝑊,𝑤0) and (𝑋, 𝑥0), the set [𝑊,Ω𝑋]* admits
a group structure such that, if 𝛼 : (𝑊,𝑤0)→ (𝑊 ′, 𝑤′

0) is a pointed map, then the pullback
along [𝛼]* defines a group homomorphism [𝑊 ′,Ω𝑋]* → [𝑊,Ω𝑋]*.

Just like we gave explicit descriptions for the products and inverses of elements of
[Σ𝑋,𝑌 ]* coming from the H-cogroup structure on Σ𝑋, we also have explicit formulas for
the products and inverses of elements in [𝑊,Ω𝑋]* coming from the H-group structure of
Ω𝑋.

According to equation (5.26), given two pointed homotopy classes [𝑔1]*, [𝑔2]* ∈
[𝑊,Ω𝑋]*, their product [𝑔1]* ·𝑊 [𝑔2]* is given by the pointed homotopy class of the map
𝑚 ∘ (𝑓, 𝑔) : 𝑊 → Ω𝑋. Recall that the H-multiplication 𝑚 constructed in Theorem 5.3.2
sends a pair of loops (𝜔1, 𝜔2) ∈ Ω𝑋 × Ω𝑋 to the loop 𝑚(𝜔1, 𝜔2) : 𝑆1 → 𝑋 described by
the formula

(𝑚(𝜔1, 𝜔2))(exp(𝑠)) =

⎧⎪⎨⎪⎩𝜔1(exp(2𝑠)), if 0 ≤ 𝑠 ≤ 1
2 ,

𝜔2(exp(2𝑠− 1)), if 1
2 ≤ 𝑠 ≤ 1.



154 Chapter 5. Homotopy groups

Now given two maps 𝑔1, 𝑔2 : 𝑊 → Ω𝑋, that is, two families of loops on (𝑋, 𝑥0) param-
eterized by 𝑊 , the composite 𝑚 ∘ (𝑔1, 𝑔2) : 𝑊 → Ω𝑋 is the family of loops which sends
each point 𝑤 ∈ 𝑊 to the loop 𝑚(𝑔1(𝑤), 𝑔2(𝑤)) described explicitly as

[𝑚(𝑔1(𝑤), 𝑔2(𝑤))](exp(𝑠)) =

⎧⎪⎨⎪⎩[𝑔1(𝑤)](exp(2𝑠)), if 0 ≤ 𝑠 ≤ 1
2 ,

[𝑔2(𝑤)](exp(2𝑠− 1)), if 1
2 ≤ 𝑠 ≤ 1;

(5.29)

that is, 𝑚(𝑔1(𝑤), 𝑔2(𝑤)) is the loop obtained by first traversing the loop 𝑔1(𝑤), and then
traversing the loop 𝑔2(𝑤), both with twice their usual speed.

Now, according to (5.28), the inverse [𝑔]−1
* of a class [𝑔]* ∈ [𝑊,Ω𝑋]* is given

by the pointed homotopy class of the map inv ∘ 𝑔 : 𝑊 → Ω𝑋. The H-inversion map
inv : Ω𝑋 → Ω𝑋 transforms a loop 𝜔 ∈ Ω𝑋 into the loop inv(𝜔) : 𝑆1 → 𝑋 described as

[inv(𝜔)](exp(𝑠)) = 𝜔(exp(1− 𝑠))

for every 𝑠 ∈ 𝐼. It follows that inv ∘ 𝑔 : 𝑊 → Ω𝑋 sends each point 𝑤 ∈ 𝑊 to the loop
inv(𝑔(𝑤)) on (𝑋, 𝑥0) described explicitly as

[inv(𝑔(𝑤))](exp(𝑠)) = [𝑔(𝑤)](exp(1− 𝑠)) (5.30)

for every 𝑠 ∈ 𝐼.

So far we have studied H-groups and H-cogroups separately, but our main interest
in this section is on the results obtained by studying the interaction between these two
concepts. We know that we have a group structure on sets of morphisms coming out of
a cogroup object, as well a group structure on sets of morphisms coming into a group
object. If we then look at the morphisms from a cogroup object to a group object, we
have two possible group structures a priori, but according to Proposition A.2.3, these two
structures coincide and are automatically commutative. Applying this to H-cogroups and
H-groups gives us the next result.

5.4.4 Proposition. Let ((𝑋, 𝑥0), 𝜇, 𝜈) be an H-cogroup, and let ((𝑌, 𝑦0),𝑚, inv) be an H-
group. Denote by ·𝑌 the product on [𝑋,𝑌 ]* induced by the cogroup object obtained from
(𝑋, 𝑥0), and denote by ·𝑋 the product on [𝑋,𝑌 ]* induced by the group object obtained
from (𝑌, 𝑦0). Then these two products coincide, and they define an abelian group structure
on the set [𝑋,𝑌 ]*.

This has immediate consequences for the homotopy groups of H-groups.

5.4.5 Corollary. If ((𝑋, 𝑥0),𝑚, inv) is an H-group, then its homotopy groups 𝜋𝑛(𝑋, 𝑥0)
are abelian for all integers 𝑛 ≥ 1.

Proof. By definition, 𝜋𝑛(𝑋, 𝑥0) is the group of pointed homotopy classes [𝑆𝑛, 𝑋]* obtained
by equipping 𝑆𝑛 with an H-cogroup structure induced via the homeomorphism 𝑆𝑛 ∼=
Σ𝑆𝑛−1. The result then follows immediately from Proposition 5.4.4. �
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The simplest examples of H-groups are those where the homotopical conditions
are satisfied strictly, also known as topological groups, so the previous result immediately
implies the next corollary.

5.4.6 Corollary. The homotopy groups of a topological group based at any point are
all abelian. In particular, the homotopy groups of the circle 𝑆1 based at any point are all
abelian.

Of course, using other tools, like covering space theory, we can show that 𝜋1(𝑆1, 𝑝)
is in fact isomorphic to Z for any choice of basepoint 𝑝, but it is still interesting that
the fact that 𝜋1(𝑆1, 𝑝) is abelian holds for purely formal reasons. As we will see in the
next chapter, the higher homotopy groups 𝜋𝑛(𝑆1, 𝑝) for 𝑛 ≥ 2 are in fact trivial, so their
commutativity is not very surprising.

We finish this section by showing how Corollary 5.4.5 can be used to show that
the higher homotopy groups of any space are commutative. The idea is that, given a
pointed homotopy class [𝑓 ]* ∈ 𝜋𝑛(𝑋, 𝑥0), if we look at the representing pointed map 𝑓 :
(𝑆𝑛, *𝑆𝑛)→ (𝑋, 𝑥0), and we identify 𝑆𝑛 with Σ𝑆𝑛−1, then we can use the Eckmann-Hilton
Duality of Corollary 3.4.6 to obtain a pointed map of type (𝑆𝑛−1, *𝑆−1)→ (Ω𝑋,𝜔𝑥0), which
gives rise to an element of the homotopy group 𝜋𝑛−1(Ω𝑋,𝜔𝑥0). This suggests that there is
a bijection 𝜋𝑛(𝑋, 𝑥0) ∼= 𝜋𝑛−1(Ω𝑋,𝜔𝑥0). This is indeed true, and moreover, if 𝑛 ≥ 2, this is
not only a bijection but also an isomorphism of groups. In order to show this, however, we
need to take a slight detour to understand how the pointed exponential adjoint interacts
with pointed homotopies.

5.4.7 Proposition. Let (𝑋, 𝑥0), (𝑌, 𝑦0) and (𝑍, 𝑧0) be pointed spaces, and suppose 𝑌 is
locally compact and Hausdorff.

1. If 𝑓1, 𝑓2 : (𝑋 ∧ 𝑌, *)→ (𝑍, 𝑧0) are pointed homotopic, then the pointed exponential
adjuncts 𝜆*𝑓1, 𝜆

*𝑓2 : (𝑋, 𝑥0)→ (Map*(𝑌, 𝑍), ct𝑌,𝑧0) are pointed homotopic.

2. If 𝑔1, 𝑔2 : (𝑋, 𝑥0)→ (Map*(𝑌, 𝑍), ct𝑌,𝑧0) are pointed homotopic, then the inverse ex-
ponential adjuncts (𝜆*)−1𝑔1, (𝜆*)−1𝑔2 : (𝑋 ∧ 𝑌, *)→ (𝑍, 𝑧0) are pointed homotopic.

Proof. 1. Recall that, given a pointed map 𝑓 : (𝑋∧𝑌, *)→ (𝑍, 𝑧0), its pointed exponential
adjunct can be described as the composition

𝜆*𝑓 = Map*(𝑌, 𝑓) ∘ 𝜄*𝑋 ,

where 𝜄*𝑋 : (𝑋, 𝑥0) → Map*(𝑌,𝑋 ∧ 𝑌 ) is the unit morphism which associates to each
point 𝑥 ∈ 𝑋 the pointed map 𝜄*𝑋(𝑥) : (𝑌, 𝑦0) → (𝑋 ∧ 𝑌, *) defined by [𝜄*𝑋(𝑥)](𝑦) :=
[𝑥, 𝑦]. Since 𝑓1 ≃* 𝑓2, and 𝑌 is locally compact Hausdorff by hypothesis, we know from
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Proposition 4.2.11 that there is also a pointed homotopy Map*(𝑌, 𝑓1) ≃* Map*(𝑌, 𝑓2). If
we then recall that composition preserves pointed homotopies, we see that

𝜆*𝑓1 = Map*(𝑌, 𝑓1) ∘ 𝜄*𝑋
≃* Map*(𝑌, 𝑓2) ∘ 𝜄*𝑋
= 𝜆*𝑓2.

2. Recall that, given a pointed map 𝑔 : (𝑋, 𝑥0) → (Map*(𝑌, 𝑍), ct𝑌,𝑧0), its inverse
pointed exponential adjunct can be described as the composition

(𝜆*)−1𝑔 = ev*
𝑌,𝑍 ∘ (𝑔 ∧ id𝑌 ),

where ev*
𝑌,𝑍 : Map*(𝑌, 𝑍) ∧ 𝑌 → 𝑍 is the counit of the pointed exponential adjunction

obtained by factoring the usual evaluation ev𝑌,𝑍 through the quotient map defining the
smash product in question. Since 𝑔1 ≃* 𝑔2, by Corollary 4.2.10 we deduce that 𝑔1∧ id𝑌 ≃*

𝑔2 ∧ id𝑌 also holds. Combining this with the compatibility of composition with pointed
homotopies we see that

(𝜆*)−1𝑔1 = ev*
𝑌,𝑍 ∘ (𝑔1 ∧ id𝑌 )

≃* ev*
𝑌,𝑍 ∘ (𝑔2 ∧ id𝑌 )

= (𝜆*)−1𝑔2. �

As a corollary, we deduce that the pointed exponential adjunction descends to a
natural bijection between the sets of pointed homotopy classes.

5.4.8 Corollary. Given pointed spaces (𝑋, 𝑥0), (𝑌, 𝑦0) and (𝑍, 𝑧0), if 𝑌 is locally compact
Hausdorff, then the pointed exponential adjunction descends to a bijection

[𝑋 ∧ 𝑌, 𝑍]* ∼= [𝑋,Map*(𝑌, 𝑍)]*

which depends naturally on (𝑋, 𝑥0) and (𝑌, 𝑦0).

Proof. Consider the function Ho(𝜆*) : [𝑋 ∧ 𝑌, 𝑍]* → [𝑋,Map*(𝑌, 𝑍)]* defined as

Ho(𝜆*)([𝑓 ]*) := [𝜆*𝑓 ]* ∀[𝑓 ]* ∈ [𝑋 ∧ 𝑌, 𝑍]*.

The result of Proposition 5.4.7 guarantees that Ho(𝜆*) is a well-defined function.

We can also define a function Ho((𝜆*)−1) : [𝑋,Map*(𝑌, 𝑍)]* → [𝑋 ∧ 𝑌, 𝑍]* in the
opposite direction as

Ho((𝜆*)−1)([𝑔]*) := [(𝜆*)−1𝑔]* ∀[𝑔]* ∈ [𝑋,Map*(𝑌, 𝑍)]*.

This is well-defined by virtue of Proposition 5.4.7 again.

The fact that Ho(𝜆*) and Ho((𝜆*)−1) are inverse to one another follows from the
fact that 𝜆* and (𝜆*)−1 are inverse to one another, while the naturality of Ho(𝜆*) follows
from the corresponding naturality of 𝜆*. �
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We are particularly interested in applying this result to the case where the lo-
cally compact Hausdorff space is the circle 𝑆1. Recall that the Eckmann-Hilton Duality
(Corollary 3.4.6) gives us a bijection

Top*(Σ𝑋,𝑌 ) ∼= Top*(𝑋,Ω𝑌 )

depending naturally on both (𝑋, 𝑥0) and (𝑌, 𝑦0). We briefly recall its construction, since it
will be used in the next result. The first step consists of identifying the reduced suspension
Σ𝑋 with the smash product 𝑋 ∧ 𝑆1 by means of the only pointed homeomorphism 𝜓𝑋 :
𝑋 ∧ 𝑆1 → Σ𝑋 satisfying the equation

𝜓𝑋([𝑥, exp(𝑠)]) = [𝑥, 𝑠]

for any 𝑥 ∈ 𝑋 and 𝑠 ∈ 𝐼.

Pulling back along this homeomorphism gives us a bijection

Top*(Σ𝑋,𝑌 ) ∼= Top*(𝑋 ∧ 𝑆1, 𝑌 ),

and then composing this with the pointed exponential adjunction gives us the desired
bijection, which we denote by EH temporarily1, as shown below.

Top*(Σ𝑋,𝑌 ) Top*(𝑋 ∧ 𝑆1, 𝑌 ) Top*(𝑋,Ω𝑌 )Top*(𝜓𝑋 ,𝑌 )

EH

𝜆*

Explicitly, given a pointed map 𝑓 : Σ𝑋 → 𝑍, the adjunct EH(𝑓) : 𝑋 → Ω𝑍 sends a point
𝑥 ∈ 𝑋 to the loop EH(𝑓)(𝑥) on (𝑍, 𝑧0) described by the formula

[EH(𝑓)(𝑥)](exp(𝑠)) = 𝑓([𝑥, 𝑠])

for every 𝑠 ∈ 𝐼.

This bijection continues to hold on the homotopical level, but we want to under-
stand how it interacts with the extra algebraic structure present on this level.

5.4.9 Proposition. Given pointed spaces (𝑋, 𝑥0) and (𝑌, 𝑦0), the Eckmann-Hilton Dual-
ity induces an isomorphism of groups

[Σ𝑋,𝑌 ]*
∼=−→ [𝑋,Ω𝑌 ]*,

where the group structure on the left comes from the H-cogroup structure on Σ𝑋, while
the group structure on the right comes from the H-group structure on Ω𝑌 .
1 EH here stands for Eckmann-Hilton.
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Proof. The bijection comes from applying the bijection EH of the Eckmann-Hilton Duality
at the level of pointed homotopy classes, that is, we consider the function

EH : [Σ𝑋,𝑌 ]* → [𝑋,Ω𝑌 ]*

defined as
EH([𝑓 ]*) := [EH(𝑓)]* = [𝜆*(𝑓 ∘ 𝜓𝑋)]*.

This is well-defined, because if 𝑓 ≃* 𝑓
′, then also 𝑓 ∘𝜓𝑋 ≃* 𝑓

′∘𝜓𝑋 , and thus 𝜆*(𝑓 ∘𝜓𝑋) ≃*

𝜆*(𝑓 ′ ∘ 𝜓𝑋) by virtue of Proposition 5.4.7. The fact that EH is a bijection follows from
the fact that EH itself is a bijection.

The only thing left to show is that EH is a group homomorphism. Given pointed
homotopy classes [𝑓1]*, [𝑓2]* ∈ [Σ𝑋,𝑌 ]*, we must show the equality

EH([𝑓1]* ·𝑌 [𝑓2]*) = EH([𝑓1]*) ·𝑋 EH([𝑓2]*).

Unpacking the definition of EH as well as the definitions of the products ·𝑌 and ·𝑋 , the
expression above can be rewritten as

[EH(⟨𝑓1, 𝑓2⟩ ∘ 𝜇)]* = [𝑚 ∘ (EH(𝑓1),EH(𝑓2))]*,

which is equivalent to the following homotopical condition:

EH(⟨𝑓1, 𝑓2⟩ ∘ 𝜇) ≃* 𝑚 ∘ (EH(𝑓1),EH(𝑓2)). (5.31)

The proof that this homotopical condition holds consists of simply comparing both
sides of the expression. ON the left-hand side, it follows from our discussion before the
statement of the proposition (or from equation (3.11)), that the adjunct EH(⟨𝑓1, 𝑓2⟩ ∘𝜇) :
𝑋 → Ω𝑌 sends any point 𝑥 ∈ 𝑋 to a loop on (𝑌, 𝑦0) given by the formula

(EH(⟨𝑓1, 𝑓2⟩ ∘ 𝜇)(𝑥))(exp(𝑠)) = (⟨𝑓1, 𝑓2⟩ ∘ 𝜇)([𝑥, 𝑠]).

We can then use equation (5.12) to conclude that the equality

[EH(⟨𝑓1, 𝑓2⟩ ∘ 𝜇)(𝑥)](exp(𝑠)) =

⎧⎪⎨⎪⎩𝑓1([𝑥, 2𝑠]), if 0 ≤ 𝑠 ≤ 1
2 ,

𝑓2([𝑥, 2𝑠− 1]), if 1
2 ≤ 𝑠 ≤ 1

holds for every 𝑠 ∈ 𝐼.

Now we analyze the right-hand side of (5.31). We know from (5.29) that 𝑚 ∘
(EH(𝑓1),EH(𝑓2)) : 𝑋 → Ω𝑌 sends any point 𝑥 ∈ 𝑋 to the loop on (𝑌, 𝑦0) given by the
formula

[(𝑚 ∘ (EH(𝑓1),EH(𝑓2))(𝑥)](exp(𝑠)) =

⎧⎪⎨⎪⎩[EH(𝑓1)(𝑥)](exp(2𝑠)), if 0 ≤ 𝑠 ≤ 1
2 ,

[EH(𝑓2)(𝑥)](exp(2𝑠− 1)), if 1
2 ≤ 𝑠 ≤ 1.
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If we then apply equation (3.11) to rewrite the parts of the expression above involving
EH(𝑓1) and EH(𝑓2) we conclude that the equality

[(𝑚 ∘ (EH(𝑓1),EH(𝑓2)))(𝑥)](exp(𝑠)) =

⎧⎪⎨⎪⎩𝑓1([𝑥, 2𝑠]), if 0 ≤ 𝑠 ≤ 1
2 ,

𝑓2([𝑥, 2𝑠− 1]), if 1
2 ≤ 𝑠 ≤ 1.

Comparing the end results we see that, for any 𝑥 ∈ 𝑋, we have the equality of
loops

EH(⟨𝑓1, 𝑓2⟩ ∘ 𝜇)(𝑥) = (𝑚 ∘ (EH(𝑓1),EH(𝑓2)))(𝑥),

from which we deduce the equality of maps

EH(⟨𝑓1, 𝑓2⟩ ∘ 𝜇) = 𝑚 ∘ (EH(𝑓1),EH(𝑓2)).

This means that the homotopical relation (5.31) we wanted to prove holds strictly in fact,
and not simply up to homotopy. �

As promised, a corollary of this is that all the homotopy groups of a space are in
bijection with a lower dimensional homotopy groups of its loop space.

5.4.10 Corollary. Given a pointed space (𝑋, 𝑥0), for every integer 𝑛 ≥ 1, there is an
isomorphism of groups

𝜋𝑛(𝑋, 𝑥0) ∼= 𝜋𝑛−1(Ω𝑋,𝜔𝑥0)

depending naturally on (𝑋, 𝑥0). Consequently, the homotopy groups 𝜋𝑛(𝑋, 𝑥0) are abelian
for all integers 𝑛 ≥ 2.

Proof. Let Φ : Σ𝑆𝑛−1 → 𝑆𝑛 be the pointed homeomorphism of Proposition 3.4.7. Since
the H-cogroup structure on 𝑆𝑛 comes from this identification with a reduced suspension,
by pulling back along the pointed homotopy class [Φ]* we obtain a natural isomorphism
of groups

𝜋𝑛(𝑋, 𝑥0) = [𝑆𝑛, 𝑋]* ∼= [Σ𝑆𝑛−1, 𝑋]*.

If we combine this with the natural isomorphism

[Σ𝑆𝑛−1, 𝑋]* ∼= [𝑆𝑛−1,Ω𝑋]*

of Proposition 5.4.9 we conclude that there exists a natural isomorphism of groups

𝜋𝑛(𝑋, 𝑥0) ∼= [𝑆𝑛−1,Ω𝑋]*.

The last step is to identify the group on right with 𝜋𝑛−1(Ω𝑋,𝜔𝑥0). The group
isomorphism [Σ𝑆𝑛−1, 𝑋]* ∼= [𝑆𝑛−1,Ω𝑋]* from Proposition 5.4.9 considers [𝑆𝑛−1,Ω𝑋]*
equipped with the group structure induced by the H-group structure on Ω𝑋, but the ho-
motopy group 𝜋𝑛−1(Ω𝑋,𝜔𝑥0) comes from equipping [𝑆𝑛−1,Ω𝑋]* with the group structure
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induced by the H-cogroup structure on 𝑆𝑛−1. Luckily, these two group structures coincide
by virtue of Proposition 5.4.4, and we really end up with a natural isomorphism of groups

𝜋𝑛(𝑋, 𝑥0) ∼= 𝜋𝑛−1(Ω𝑋,𝜔𝑥0).

The fact that 𝜋𝑛(𝑋, 𝑥0) is abelian for 𝑛 ≥ 2 then follows from the fact that the
homotopy groups 𝜋𝑛−1(Ω𝑋,𝜔𝑥0) are all abelian due to Ω𝑋 being an H-group (Corol-
lary 5.4.5). �

5.5 Change of basepoint

This section is concerned with addressing an issue raised in the section where
we defined homotopy groups: how do different choices of basepoints affect the homotopy
groups. In summary, we show in the present section that the data of the homotopy groups
can be “transported along paths”, so that a path 𝛾 : 𝐼 → 𝑋 from a point 𝑥0 to a point 𝑥1

gives rise to a group homomorphism 𝜋𝑛(𝑋, 𝑥0) → 𝜋𝑛(𝑋, 𝑥1) for every integer 𝑛 ≥ 1. By
further exploring the properties of this transport procedure we eventually show that the
homotopy groups are constant (up to isomorphism!) on the path-components of a space.
This does not mean that we can always forget the basepoints, but it does make our life
easier in many cases.

The next result is the main tool used in the construction of this transport proce-
dures.

5.5.1 Proposition. Fix an integer 𝑛 ≥ 0, let 𝑋 be any space, and suppose we are given a
homotopy ℎ : 𝑆𝑛 × 𝐼 → 𝑋. If there exists a map 𝐹 : 𝐷𝑛+1 → 𝑋 such that 𝐹 (𝑥) = ℎ(𝑥, 0)
for every 𝑥 ∈ 𝑆𝑛, then there exists a homotopy 𝐻 : 𝐷𝑛+1 × 𝐼 → 𝑋 with the following
properties:

1. 𝐻(𝑥, 0) = 𝐹 (𝑥) for every 𝑥 ∈ 𝐷𝑛+1,

2. 𝐻(𝑥, 𝑡) = ℎ(𝑥, 𝑡) for every 𝑥 ∈ 𝑆𝑛 and every 𝑡 ∈ 𝐼.

In other words, the homotopy ℎ : 𝑆𝑛 × 𝐼 → 𝑋 can be extended to a homotopy
𝐻 : 𝐷𝑛+1 × 𝐼 → 𝑋 as soon as its initial stage ℎ0 : 𝑆𝑛 → 𝑋 can be extended to a map
𝐹 : 𝐷𝑛+1 → 𝑋.

Proof. The two numbered conditions above impose restrictions on the behavior of the
extension 𝐻 on the subspace (𝐷𝑛+1 × {0}) ∪ (𝑆𝑛 × 𝐼) ⊆ 𝐷𝑛+1 × 𝐼. Recall that there is a
homeomorphism of pairs

𝑢 : (𝐷𝑛+1 × 𝐼,𝐷𝑛+1 × {0})→ (𝐷𝑛+1 × 𝐼, (𝐷𝑛+1 × {0}) ∪ (𝑆𝑛 × 𝐼)),
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so we can work with the subspace 𝐷𝑛+1 × {0} instead of (𝐷𝑛+1 × {0}) ∪ (𝑆𝑛 × 𝐼).

First, let 𝜙 : (𝐷𝑛+1 × {0}) ∪ (𝑆𝑛 × 𝐼) be defined as follows:

𝜙(𝑥, 𝑡) :=

⎧⎪⎨⎪⎩𝐹 (𝑥), if 𝑡 = 0,

ℎ(𝑥, 𝑡), if 𝑥 ∈ 𝑆𝑛.

The fact that 𝐹 |𝑆𝑛 = ℎ0 ensures that 𝜙 is well-defined, and the Pasting Lemma then
implies its continuity.

Using 𝜙 and the homeomorphism 𝑢 we define 𝜓 : 𝐷𝑛+1 × {0} as the composition

𝜓 := 𝜙 ∘ 𝑢|𝐷𝑛+1×{0}.

Since 𝑢 maps 𝐷𝑛+1×{0} to the subspace (𝐷𝑛+1×{0})∪ (𝑆𝑛× 𝐼) where 𝜙 is defined, the
composition above is well-defined.

It is easy to extend 𝜓 to a homotopy Ψ : 𝐷𝑛+1× 𝐼 → 𝑋, we just project 𝐷𝑛+1× 𝐼
down to 𝐷𝑛+1 × {0} and apply 𝜓, that is, we define Ψ : 𝐷𝑛+1 × 𝐼 → 𝑋 by the formula

Ψ(𝑥, 𝑡) := 𝜓(𝑥, 0) ∀ (𝑥, 𝑡) ∈ 𝐷𝑛+1 × 𝐼.

Now we undo the effect of 𝑢 by defining 𝐻 : 𝐷𝑛+1 × 𝐼 → 𝑋 via the composition

𝐻 := Ψ ∘ 𝑢−1.

The only thing left is checking that 𝐻 satisfies the required conditions.

1. For any (𝑥, 0) ∈ 𝐷𝑛+1 × {0}, the inverse image 𝑢−1(𝑥, 0) is of the form (𝑥′, 0) for
some 𝑥′ ∈ 𝐷𝑛+1, therefore

𝐻(𝑥, 0) = Ψ(𝑢−1(𝑥, 0))

= Ψ(𝑥′, 0)

= 𝜓(𝑥′, 0)

= 𝜙(𝑢(𝑥′, 0))

= 𝜙(𝑥, 0)

= 𝐹 (𝑥).

2. For any (𝑥, 𝑡) ∈ 𝑆𝑛 × 𝐼, its inverse image 𝑢−1(𝑥, 𝑡) is of the form (𝑥′′, 0) for some
𝑥′′ ∈ 𝐷𝑛+1, therefore

𝐻(𝑥, 𝑡) = Ψ(𝑢−1(𝑥, 𝑡))

= Ψ(𝑥′′, 0)

= 𝜓(𝑥′′, 0)

= 𝜙(𝑢(𝑥′′, 0))

= 𝜙(𝑥, 𝑡)

= ℎ(𝑥, 𝑡). �
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Arguing cell by cell we can generalize this result to the case where (𝑋,𝐴) is any
𝑛-cellular pair.

5.5.2 Corollary. Let (𝑋,𝐴) be an 𝑛-cellular pair, 𝑌 an arbitrary space, and consider a
homotopy ℎ : 𝐴 × 𝐼 → 𝑌 . If 𝐹 : 𝑋 → 𝑌 is a map such that the equality 𝐹 (𝑎) = ℎ(𝑎, 0)
holds for every 𝑎 ∈ 𝐴, then there exists a homotopy 𝐻 : 𝑋 × 𝐼 → 𝑌 satisfying the
following conditions:

1. 𝐻(𝑥, 0) = 𝐹 (𝑥) for every 𝑥 ∈ 𝑋;

2. 𝐻(𝑎, 𝑡) = ℎ(𝑎, 𝑡) for every (𝑎, 𝑡) ∈ 𝐴× 𝐼.

This can be further generalized to any relative CW-complex (𝑋,𝐴) by induction
over the skeletal filtration.

5.5.3 Corollary. Let (𝑋,𝐴) be a relative CW-complex, 𝑌 be an arbitrary space, and
consider a homotopy ℎ : 𝐴 × 𝐼 → 𝑌 . If 𝐹 : 𝑋 → 𝑌 is a map such that the equality
𝐹 (𝑎) = ℎ(𝑎, 0) holds for every 𝑎 ∈ 𝐴, then there exists a homotopy 𝐻 : 𝑋 × 𝐼 → 𝑌

satisfying the following conditions:

1. 𝐻(𝑥, 0) = 𝐹 (𝑥) for every 𝑥 ∈ 𝑋;

2. 𝐻(𝑎, 𝑡) = ℎ(𝑎, 𝑡) for every (𝑎, 𝑡) ∈ 𝐴× 𝐼.

Recall that we proved in Example 1.2.5 that the pair (𝑆𝑛, *𝑆𝑛) is 𝑛-cellular for
every integer 𝑛 ≥ 1. We can then specialize Corollary 5.5.2 to this particular case keeping
in mind that a homotopy {*𝑆𝑛} × 𝐼 → 𝑋 is equivalent to a map 𝐼 → 𝑋.

5.5.4 Corollary. Let 𝑋 be any space, and consider a path 𝛾 : 𝐼 → 𝑋. If 𝑓 : 𝑆𝑛 → 𝑋 is
a map such that 𝑓(*𝑆𝑛) = 𝛾(0), then there exists a homotopy 𝐻 : 𝑆𝑛 × 𝐼 → 𝑋 satisfying
the following conditions:

1. 𝐻(𝑥, 0) = 𝑓(𝑥) for every 𝑥 ∈ 𝑆𝑛;

2. 𝐻(*𝑆𝑛 , 𝑡) = 𝛾(𝑡) for every 𝑡 ∈ 𝐼.

This last result is the fundamental tool used for relating the homotopy groups for
different choices of basepoints.

5.5.5 Construction. Let 𝑋 be an arbitrary space, 𝑥0, 𝑥1 ∈ 𝑋 two different choices of
basepoints, and suppose 𝛾 : 𝐼 → 𝑋 is a path from 𝑥0 to 𝑥1.

For every integer 𝑛 ≥ 1, we define a function 𝑡𝛾 : 𝜋𝑛(𝑋, 𝑥0)→ 𝜋𝑛(𝑋, 𝑥1) as follows:
given an element [𝑓 ]* ∈ 𝜋𝑛(𝑋, 𝑥0) represented by a pointed map 𝑓 : (𝑆𝑛, *𝑆𝑛) → (𝑋, 𝑥0),
since 𝑓(*𝑆𝑛) = 𝑥0 = 𝛾(0), by Corollary 5.5.4 there exists a homotopy ℎ : 𝑆𝑛 × 𝐼 → 𝑋

satisfying the following conditions:
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1. ℎ(𝑥, 0) = 𝑓(𝑥) for every 𝑥 ∈ 𝑆𝑛;

2. ℎ(*𝑆𝑛 , 𝑡) = 𝛾(𝑡) for every 𝑡 ∈ 𝐼.

Let us say that a homotopy ℎ satisfying these conditions is adapted to 𝛾 and 𝑓 . If we look
at the final stage ℎ1 : 𝑆𝑛 → 𝑋 of this homotopy we see that

ℎ1(*𝑆𝑛) = ℎ(*𝑆𝑛 , 1) = 𝛾(1) = 𝑥1,

therefore we have a pointed ℎ1 : (𝑆𝑛, *𝑆𝑛)→ (𝑋, 𝑥1), and it is reasonable to define

𝑡𝛾([𝑓 ]*) := [𝐻1]* ∈ 𝜋𝑛(𝑋, 𝑥1).

Of course, one needs to check that this construction is well-defined, which means
that it must be independent of the chosen homotopy 𝐻 adapted to 𝑓 and 𝛾, and also
independent of the pointed homotopy class of 𝑓 . This can be shown by using the extension
Corollary 5.5.2 for suitably chosen cellular pairs. For example, if ℎ′ : 𝑆𝑛×𝐼 → 𝑋 is another
homotopy adapted to 𝑓 and 𝛾, let

𝐴 := (𝑆𝑛 × {0}) ∪ (𝑆𝑛 × {1}) ∪ ({*𝑆𝑛} × 𝐼) ⊆ 𝑆𝑛 × 𝐼,

and consider the homotopy 𝜑 : 𝐴× 𝐼 → 𝑋 defined as follows:

𝜑((𝑥, 𝑠), 𝑡) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ℎ(𝑥, 𝑡), if 𝑠 = 0,

ℎ′(𝑥, 𝑡), if 𝑠 = 1,

𝛾(𝑡), if 𝑥 = *𝑆𝑛 .

This is well-defined since both ℎ and ℎ′ coincide with 𝛾 when restricted to {*𝑆𝑛} × 𝐼.
Now, since the pair (𝑆𝑛× 𝐼, 𝑆𝑛×{0}∪𝑆𝑛×{1}∪ {*𝑆𝑛}× 𝐼) is (𝑛+ 1)-cellular according
to Proposition 1.2.8, by Corollary 5.5.2 we know that 𝜑 can be extended to a homotopy
Φ : (𝑆𝑛 × 𝐼) × 𝐼 → 𝑋 if its initial stage 𝜑0 can be extended. Substituting 𝑡 = 0 in the
expression for 𝜑 and using the defining properties of ℎ and ℎ′ one can show that

𝜑((𝑥, 𝑠), 0) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑓(𝑥), if 𝑠 = 0,

𝑓(𝑥), if 𝑠 = 1,

𝑥0, if 𝑥 = *𝑆𝑛 .

This means that the map 𝑆𝑛 × 𝐼 → 𝑋 defined as (𝑥, 𝑠) ↦→ 𝑓(𝑥) is an extension of 𝜑0,
therefore we obtain the homotopy Φ : (𝑆𝑛 × 𝐼)× 𝐼 satisfying

1. Φ((𝑥, 𝑠), 0) = 𝑓(𝑥) for every (𝑥, 𝑠) ∈ 𝑆𝑛 × 𝐼;

2. Φ((𝑥, 𝑠), 𝑡) = 𝜑((𝑥, 𝑠), 𝑡) if ((𝑥, 𝑠), 𝑡) ∈ 𝐴× 𝐼.
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Having such map Φ, a simple computation shows that the rule (𝑥, 𝑠) ↦→ Φ((𝑥, 𝑠), 1) defines
a pointed homotopy from ℎ1 to ℎ′

1 as desired.

The next result summarizes the main properties of this transport construction.

5.5.6 Proposition. Fix an integer 𝑛 ≥ 1, and let 𝑋 be an arbitrary space.

1. If 𝛾, 𝛾′ : 𝐼 → 𝑋 are two paths from 𝑥0 to 𝑥1 which are homotopic as paths, then
the two transport functions 𝑡𝛾, 𝑡𝛾′ : 𝜋𝑛(𝑋, 𝑥0)→ 𝜋𝑛(𝑥, 𝑥1) are equal.

2. The transport along the constant path ct𝐼,𝑥0 : 𝐼 → 𝑋 is equal to the identity, i.e.,
the equality 𝑡ct𝐼,𝑥0

= id𝜋𝑛(𝑋,𝑥0) holds.

3. If 𝛾0 : 𝐼 → 𝑋 is a path from 𝑥0 to 𝑥1, 𝛾1 : 𝐼 → 𝑋 is a path from 𝑥1 to 𝑥2, and
𝛾0 · 𝛾1 : 𝐼 → 𝑋 denotes the concatenation of the two paths, then the equality
𝑡𝛾0·𝛾1 = 𝑡𝛾1 ∘ 𝑡𝛾0 holds.

4. If 𝛾 : 𝐼 → 𝑋 is a path from 𝑥0 to 𝑥1, then the transport function 𝑡𝛾 : 𝜋𝑛(𝑋, 𝑥0)→
𝜋𝑛(𝑋, 𝑥1) defines a group homomorphism.

An immediate corollary of this is the comparison between homotopy groups based
at different points in the same path-component.

5.5.7 Corollary. If 𝑋 is any space, and 𝑥0, 𝑥1 ∈ 𝑋 are two points belonging to the same
path-component of 𝑋, then there is an isomorphism of groups 𝜋𝑛(𝑋, 𝑥0) ∼= 𝜋𝑛(𝑋, 𝑥1) for
every integer 𝑛 ≥ 1.

Proof. Let 𝛾 : 𝐼 → 𝑋 be a path from 𝑥0 to 𝑥1, which gives an associated transport map
𝑡𝛾 : 𝜋𝑛(𝑥, 𝑥0) → 𝜋𝑛(𝑋, 𝑥1). If 𝛾 : 𝐼 → 𝑋 denotes the inverse of the path 𝛾, we also have
an associated transport 𝑡𝛾 : 𝜋𝑛(𝑋, 𝑥1) → 𝜋𝑛(𝑥, 𝑥0). Since 𝛾 · 𝛾 is homotopic as a path to
ct𝐼,𝑥0 , it follows from the above properties that

𝑡𝛾 ∘ 𝑡𝛾 = 𝑡𝛾·𝛾 = 𝑡ct𝐼,𝑥0
= id𝜋𝑛(𝑋,𝑥0).

Analogously, since 𝛾 · 𝛾 is homotopic as a path to ct𝐼,𝑥1 , we also have

𝑡𝛾 ∘ 𝑡𝛾 = 𝑡𝛾·𝛾 = 𝑡ct𝐼,𝑥1
= id𝜋𝑛(𝑋,𝑥1).

These two chains of equalities show that 𝑡𝛾 and 𝑡𝛾 define inverse group homomorphism,
therefore there is an isomorphism 𝜋𝑛(𝑥, 𝑥0) ∼= 𝜋𝑛(𝑥, 𝑥1). �

It is important to remark, however, that this isomorphism is not naturally defined,
we have to specify a path between 𝛾 : 𝐼 → 𝑋 from 𝑥0 to 𝑥1 before obtaining an isomor-
phism 𝑡𝛾 : 𝜋𝑛(𝑋, 𝑥0) ∼= 𝜋𝑛(𝑥, 𝑥1), and if 𝛾′ : 𝐼 → 𝑋 is another path from 𝑥0 to 𝑥1, it is
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possible for the isomorphism 𝑡𝛾′ to be different from 𝑡𝛾. Of course, if 𝛾 and 𝛾′ are homo-
topic as paths, then 𝑡𝛾 and 𝑡𝛾′ coincide by the first item of Proposition 5.5.6. In particular,
if 𝑋 is simply connected, then for any two points 𝑥0, 𝑥1 ∈ 𝑋 there is a naturally specified
isomorphism 𝜋𝑛(𝑥, 𝑥0) ∼= 𝜋𝑛(𝑋, 𝑥1) obtained by choosing any path between these points.

There is a nice way to formalize this discussion in terms of group actions. Given
a pointed 𝑥0 ∈ 𝑋, let Top(𝐼, 𝜕𝐼;𝑋, 𝑥0) denote the set of paths 𝛾 : 𝐼 → 𝑋 such that
𝛾(𝜕𝐼) ⊆ {𝑥0}, i.e., the set of loops at the point 𝑥0. There is a natural bijection

Top(𝐼, 𝜕𝐼;𝑥, 𝑥0) ∼= Top*(𝑆1, 𝑋)

assigning to each loop 𝛾 : 𝐼 → 𝑋 its quotient 𝛾 : 𝑆1 → 𝑋 through the exponential
map exp : 𝐼 → 𝑆1, and assigning to each pointed 𝑓 : (𝑆1, *𝑆1) → (𝑋, 𝑥0) the loop
𝑓 ∘ exp : 𝐼 → 𝑋. Moreover, this bijection transforms path homotopies of loops on the left
into pointed homotopies on the right, so it induces a bijection

[𝐼, 𝜕𝐼;𝑋, 𝑥0] ∼= [𝑆1, 𝑋]*2

of appropriate sets of homotopy classes.

The properties of the transport maps allow us to define a function

[𝐼, 𝜕𝐼;𝑋, 𝑥0]× 𝜋𝑛(𝑋, 𝑥0)→ 𝜋𝑛(𝑋, 𝑥0)

by assigning to each pair ([𝛾], [𝑓 ]*) the element 𝑡𝛾([𝑓 ]*), i.e., the result of transporting
the pointed homotopy class [𝑓 ]* along the loop 𝛾 representing the path-homotopy class.
Taking the bijection [𝐼, 𝜕𝐼;𝑋, 𝑥0] ∼= [𝑆1, 𝑋] = 𝜋1(𝑋, 𝑥0), this can also be seen as a function
of type

𝜋1(𝑋, 𝑥0)× 𝜋𝑛(𝑋, 𝑥0)→ 𝜋𝑛(𝑋, 𝑥0)

that assigns to a pair of pointed homotopy classes ([𝛼]*, [𝑓 ]*) the element 𝑡𝛼∘exp([𝑓 ]*) ∈
𝜋𝑛(𝑥, 𝑥0) obtained by transporting [𝑓 ]* along the path 𝛼 ∘ exp : 𝐼 → 𝑋. We will from now
on use the notation [𝛼]* · [𝑓 ]* to denote this operation. The next result explains why this
is a good choice of notation.

5.5.8 Proposition. The function · : 𝜋1(𝑋, 𝑥0)×𝜋𝑛(𝑋, 𝑥0)→ 𝜋𝑛(𝑋, 𝑥0) defines an action
of 𝜋𝑛(𝑋, 𝑥0) on 𝜋𝑛(𝑋, 𝑥0) by automorphisms.

Sketch of proof. We already know from Proposition 5.5.6 that, for a fixed [𝛼]* ∈ 𝜋1(𝑋, 𝑥0),
the transport map 𝑡𝛼∘exp : 𝜋𝑛(𝑋, 𝑥0) → 𝜋𝑛(𝑥, 𝑥0) is a group homomorphism, or in other
words, the function [𝛼]* · (−) : 𝜋𝑛(𝑥, 𝑥0)→ 𝜋𝑛(𝑥, 𝑥0) mapping [𝑓 ]* to [𝛼]* · [𝑓 ]* is a group
homomorphism.
2 It is important to stress that the notation [𝐼, 𝜕𝐼; 𝑋, 𝑥0] on the left-hand side denotes the set

of homotopy classes of paths, also known as homotopies relative to 𝜕𝐼, so that each stage of
the homotopy defines another loop based at 𝑥0.
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Moreover, the inverse [𝛼]−1
* is by definition equal to [𝛼 ∘ 𝜈𝑆1 ]*, and a direct veri-

fication shows that the path (𝛼 ∘ 𝜈𝑆1) ∘ exp : 𝐼 → 𝑋 is homotopic as a path to 𝛼 ∘ exp,
i.e., the reverse path of 𝛼 ∘ exp. This means that the function [𝛼]−1

* · (−) is the inverse of
[𝛼]* · (−), which defines therefore an automorphism of 𝜋𝑛(𝑋, 𝑥0).

The only thing left is showing that this action is compatible with the group struc-
ture on 𝜋1(𝑋, 𝑥0). The identity of the fundamental group is [ct𝑆1,𝑥0 ]*, and the corre-
sponding path ct𝑆1,𝑥0 ∘ exp : 𝐼 → 𝑋 is the constant path ct𝐼,𝑥0 . Since we already know
from Proposition 5.5.6 that the transport 𝑡ct𝐼,𝑥0

along the constant path is the identity
id𝜋𝑛(𝑋,𝑥0), it follows that [ct𝑆1,𝑥0 ]* · (−) is equal to this same identity. Lastly, given two
elements [𝛼]*, [𝛽]* ∈ 𝜋1(𝑋, 𝑥0), their product [𝑓 ]* · [𝑔]* in 𝜋1(𝑋, 𝑥0) is given by the pointed
homotopy class [⟨𝛼, 𝛽⟩ ∘ 𝜇𝑆1 ]*. A direct computation the shows that the corresponding
path

⟨𝑓, 𝑔⟩ ∘ 𝜇𝑆1 ∘ exp : 𝐼 → 𝑋

is in fact equal to the concatenation

(𝑓 ∘ exp) · (𝑔 ∘ exp) : 𝐼 → 𝑋,

and since the transport along a concatenation is equal to the composition of the individual
transports, it follows that the function [⟨𝑓, 𝑔⟩ ∘ 𝜇𝑆1 ]* · (−) is equal to the composition
([𝑔]* · (−)) ∘ ([𝑓 ]* · (−)). �

We can then state a definition that will be crucial during our study of Obstruction
Theory.

5.5.9 Definition. A topological space 𝑋 is called 𝑛-simple for some integer 𝑛 ≥ 1 if it
is path-connected, and if the action of 𝜋1(𝑋, 𝑥0) on 𝜋𝑛(𝑋, 𝑥0) is trivial for every choice of
basepoint 𝑥0 ∈ 𝑋.

In an 𝑛-simple space, the homotopy groups 𝜋𝑛(𝑋, 𝑥0) and 𝜋𝑛(𝑋, 𝑥1) at two different
basepoints 𝑥0, 𝑥1 are naturally identified. If 𝛾, 𝛾′ : 𝐼 → 𝑋 are two distinct paths from 𝑥0

to 𝑥1, then the concatenation 𝛾 · 𝛾′ defines a loop based at 𝑥0. Now, since the action of
𝜋1(𝑋, 𝑥0) on 𝜋𝑛(𝑋, 𝑥0) is trivial, the transport map 𝑡𝛾·𝛾′ : 𝜋𝑛(𝑋, 𝑥0)→ 𝜋𝑛(𝑋, 𝑥0) must be
equal to the identity id𝜋𝑛(𝑥,𝑥0). If we use the properties of Proposition 5.5.6 we see that

𝑡𝛾·𝛾′ = 𝑡𝛾′ ∘ 𝑡𝛾 = 𝑡−1
𝛾′ ∘ 𝑡𝛾,

therefore we have the equality 𝑡−1
𝛾′ ∘ 𝑡𝛾 = id𝜋𝑛(𝑥,𝑥0), which implies that 𝑡𝛾 = 𝑡𝛾′ . This

shows that we can identify 𝜋𝑛(𝑋, 𝑥0) with 𝜋𝑛(𝑋, 𝑥1) by choosing any path joining the two
basepoints.
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CHAPTER

6
LOCALLY TRIVIAL BUNDLES

This chapter is devoted to a particular class of maps known as locally trivial bundles.
There are two main reasons behind our interest in this class of maps:

1. locally trivial bundles have nice homotopical properties which allow us to develop
some computational tools for studying homotopy groups;

2. our study of Obstruction Theory will be restricted to the analysis of the possibility
or impossibility of constructing and extending sections of a locally trivial bundles.

The two reasons outlined above hopefully make it clear that we are interested in
locally trivial bundles primarily for their homotopical properties, and this influences the
choice of topics developed in this chapter.

After introducing the basic definitions, we investigate locally trivial bundles arising
from group actions. We prove a theorem giving sufficient conditions for the orbit map of
an action to be a locally trivial bundle, and use this theorem to obtain several important
examples that will be useful later on. After this, we turn to the homotopical study of locally
trivial bundles by first proving the crucial result of Feldbau characterizing bundles over
cubes and disks, and then applying this result to study the homotopy lifting properties
of bundles, as well as some properties of bundles over CW-complexes. The study of the
homotopy lifting property leads to a long exact sequence relating the homotopy groups of
the various spaces that make up a locally trivial bundle. We finish the chapter with some
computations to illustrate the use of the long exact sequence.

Since our interest is mainly in the sections dealing with the Homotopy Theory of
locally trivial bundles, the first couple of sections contain mostly either sketches of proofs,
or references for complete proofs in the literature. We do however discuss in details some
examples that reappear later in the text.
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6.1 First definitions and examples

This first section introduces the concept of locally trivial bundles, as well as the
more restricted notions of covering maps and vector bundles. We also study important
examples of these concepts that will reappear in later sections.

Roughly speaking, a locally trivial bundle is a map that locally looks like the
projection out of a product space into one of its factors.

6.1.1 Definition. A locally trivial bundle consists of a quadruple (𝐸,𝐵, 𝐹, 𝑝) where:

• 𝐸, 𝐵 and 𝐹 are spaces,

• 𝑝 : 𝐸 → 𝐵 is a map.

These data are required to satisfy the following local triviality condition: every point 𝑏 ∈ 𝐵
admits a neighborhood 𝑈 ⊆ 𝐵 for which there exists a homeomorphism 𝜙𝑈 : 𝑝−1(𝑈) →
𝑈 × 𝐹 that fits in the commutative triangle below.

𝑝−1(𝑈) 𝑈 × 𝐹

𝑈

𝑝

𝜙𝑈

𝜋1
(6.1)

Each of the objects appearing in the definition above have particular names: 𝐸 is
called the total space, 𝐵 is called the base space, 𝐹 is called the typical fiber, and 𝑝 is
usually called the projection map. The neighborhood 𝑈 appearing in the local triviality
condition is called a trivializing neighborhood, or sometimes also a distinguished
neighborhood, and the homeomorphism 𝜙𝑈 comparing 𝑝−1(𝑈) with the product 𝑈 ×𝐹
is called a local trivialization.

Sometimes, instead of saying that the quadruple (𝐸,𝐵, 𝐹, 𝑝) is a locally trivial
bundle, we also simply say that the map 𝑝 : 𝐸 → 𝐵 defines a locally trivial bundle
with typical fiber 𝐹 .

Let us discuss the geometric meaning of this definition. If 𝑝 : 𝐸 → 𝐵 is a locally
trivial bundle with typical fiber 𝐹 , then the parts of the total space 𝐸 that are over
sufficiently small parts of the base space 𝐵 look like a product with the typical fiber.
Even though 𝐸 might not be globally like the product space 𝐵 × 𝐹 , if we restrict to the
part 𝑝−1(𝑈) of 𝐸 that is over a trivializing neighborhood 𝑈 ⊆ 𝐵, then this part looks like
a product 𝑈 × 𝐹 by means of the trivialization 𝜙𝑈 .

Notice that the condition 𝜋1 ∘ 𝜙𝑈 = 𝑝 implies that 𝜙𝑈 maps the fiber 𝑝−1(𝑏) over
a point 𝑏 ∈ 𝑈 to the subspace {𝑏} × 𝐹 ⊆ 𝑈 × 𝐹 , but since 𝜙𝑈 is a homeomorphism by
hypothesis, the restriction 𝜙𝑈 |𝑝−1(𝑈) actually defines a homeomorphism between the fiber
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𝑝−1(𝑏) and the space {𝑏} × 𝐹 , and this space is itself homeomorphic to the typical fiber
𝐹 . This means that, in a locally trivial bundle, every fiber is topologically the same as
the typical fiber. We can then regard the total space 𝐸 of the bundle as being obtained
by gluing together a bunch of copies of the typical fiber 𝐹 , but this gluing is far from
being arbitrary: fibers over nearby points of the base space 𝐵 are in some sense “parallel”,
just like the fibers of the canonical projection 𝐵 × 𝐹 → 𝐵 are all parallel in our usual
depictions of products.

6.1.2 Example. Given any two spaces 𝐵 and 𝐹 , the canonical projection 𝜋1 : 𝐵×𝐹 → 𝐵

defines a locally trivial bundle. Notice that, if we take 𝑈 := 𝐵, then 𝜋−1
1 (𝑈) = 𝜋−1

1 (𝐵) =
𝐵×𝐹 = 𝑈 ×𝐹 , and then the identity map id𝐵×𝐹 defines a trivialization, since it trivially
fits in the commutative triangle below.

𝜋−1
1 (𝑈) = 𝐵 × 𝐹 𝑈 × 𝐹 = 𝐵 × 𝐹

𝑈 = 𝐵

id𝐵×𝐹

𝜋1 𝜋1

This is called the trivial bundle over 𝐵 with typical fiber 𝐹 .

We have a special terminology for locally trivial bundle 𝑝 : 𝐸 → 𝐵 that are
equivalent to the trivial bundle 𝜋1 : 𝐵 × 𝐹 → 𝐹 .

6.1.3 Definition. A locally trivial bundle 𝑝 : 𝐸 → 𝐵 with typical fiber 𝐹 is said to be
trivial if 𝐵 itself is a trivializing neighborhood, that is, if there exists a homeomorphism
𝜙 : 𝐸 → 𝐵 × 𝐹 that fits in the commutative triangle below.

𝐸 𝐵 × 𝐹

𝐵

𝜙

𝑝 𝜋1

In this case, the homeomorphism 𝜙 is called a global trivialization of the bundle.

6.1.1 Bundles from group actions

In this subsection we study some useful results relating group actions to locally
trivial bundles, and then use these results to deduce some important examples of locally
trivial bundles that will reappear later on. The contents presented here is based mainly
on (STROM, 2011, Section 15.3) and (DIECK, 2008, Section 14.1). Since our focus for
the moment is on the examples, we only sketch the simpler proofs, or instead point to
references in the literature when possible.

Let 𝐺 be a topological group, and suppose we have a map 𝜌 : 𝐺×𝑋 → 𝑋 defining
a (left) action of 𝐺 on 𝑋. There are a number of objects associated with this action. Given
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any point 𝑥 ∈ 𝑋, the subspace

𝐺𝑥 := {𝑔 · 𝑥 | 𝑔 ∈ 𝐺}

is called the orbit of the point 𝑥. The subgroup 𝐺𝑥 ⊆ 𝐺 defined as

𝐺𝑥 := {𝑔 ∈ 𝐺 | 𝑔 · 𝑥 = 𝑥}

is called the stabilizer of 𝑥, or also the isotropy group of 𝑥. The action of 𝐺 induces
an equivalence relation ∼𝐺 defined as 𝑥 ∼𝐺 𝑥′ if and only 𝑥′ = 𝑔 · 𝑥 for some 𝑔 ∈ 𝐺. The
equivalence classes of this relation are precisely the orbits of the action, and the quotient
space 𝑋/ ∼𝐺 is aptly called the orbit space and is commonly denoted by 𝑋/𝐺.

We are interested in obtaining conditions under which the canonical projection
𝜋 : 𝑋 → 𝑋/𝐺 - called the orbit map of the action - defines a locally trivial bundle with
typical fiber 𝐺. In order to obtain nice results, however, we will need to consider a more
restricted notion of locally trivial bundle by imposing a certain compatibility condition
with the action that we now explain.

If 𝑈 ⊆ 𝑋/𝐺 is any subset, then its inverse image 𝜋−1(𝑈) ⊆ 𝑋 satisfies a 𝐺-stability
condition: for any 𝑥 ∈ 𝜋−1(𝑈) and any 𝑔 ∈ 𝐺, the point 𝑔 ·𝑥 still belongs to 𝜋−1(𝑈), since
𝜋(𝑔 · 𝑥) = 𝜋(𝑥) ∈ 𝑈 . This means that the action of 𝐺 on 𝑋 restricts to an action of 𝐺 on
𝜋−1(𝑈). Given a local trivialization 𝜙 : 𝜋−1(𝑈)→ 𝑈 ×𝐺 for 𝜋, since 𝐺 also acts on 𝑈 ×𝐺
by the rule 𝑔 · (𝑏, 𝑔′) := (𝑏, 𝑔𝑔′), we can ask for 𝜙 to satisfy the condition 𝜙(𝑔 ·𝑥) = 𝑔 ·𝜙(𝑥).
When this happens, we say that 𝜙 is a 𝐺-equivariant local trivialization, or more
simply a local 𝐺-trivialization.

We can now state our goal: we want to find conditions under which every point
𝑏 ∈ 𝑋/𝐺 has a neighborhood 𝑈 over which there exists a local 𝐺-trivialization 𝜙𝑈 :
𝜋−1(𝑈) → 𝑈 × 𝐺. This of course implies that 𝜋 : 𝑋 → 𝑋/𝐺 is a locally trivial bundle
with typical fiber 𝐺, but local 𝐺-trivialiaty is stronger than mere local triviality.

It turns out that this local 𝐺-triviality condition is equivalent to a combination
of global and local properties of both the action and the orbit map 𝑋 → 𝑋/𝐺. Roughly
speaking, the local 𝐺-triviality condition is equivalent to the combination of the following
conditions:

1. two global conditions on the action which ensure that the orbits of the action are
all topologically equivalent to 𝐺;

2. a local condition on the projection 𝑋 → 𝑋/𝐺 allowing us to continuously choose
points in different orbits of the action.

The next example shows that, in general, the orbits of an action are topologically
distinct, so we really need to impose restrictions on the action to avoid this problem.
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6.1.4 Example. Regard the multiplicative group Z2 = {−1, 1} as a discrete topological
group, and consider the action 𝜌 : Z2 × 𝑆1 → 𝑆1 defined as

𝜌(𝑔, (𝑥, 𝑦)) :=

⎧⎪⎨⎪⎩(𝑥, 𝑦), if 𝑔 = 1,

(𝑥,−𝑦), if 𝑔 = −1.

The orbit of a point (𝑥0, 𝑦0) ∈ 𝑆1 is the set {(𝑥0, 𝑦0), (𝑥0,−𝑦0)}. Notice that, if 𝑦0 ̸= 0,
then the orbit contains two points, but if 𝑦0 = 0, then the orbit contains a single point.
This means that there are topologically distinct orbits, or equivalently, that the projection
𝜋 : 𝑆1 → 𝑆1/Z2 has topologically distinct fibers, so there is no hope of it being a locally
trivial bundle.

I am not familiar with a general condition that ensures the different orbits of the
action are similar in some sense, so I will use one which is sufficient for our purpose. An
action 𝜌 : 𝐺×𝑋 → 𝑋 is said to be free if, for any point 𝑥 ∈ 𝑋, the equality 𝑔 ·𝑥 = 𝑥 only
holds if 𝑔 = 𝑒. This is equivalent to saying that all the stabilizers 𝐺𝑥 are trivial. Notice
that the action of Example 6.1.4 is not free, because the stabilizers of the points (1, 0)
and (−1, 0) are both equal to Z2.

When dealing with free actions, there is more hope for the quotient 𝑋 → 𝑋/𝐺 to
be locally trivial. This is because in this case the orbits are more similar than in the case
of an arbitrary action. More precisely, for any action 𝜌 : 𝐺 ×𝑋 → 𝑋 and for any point
𝑥 ∈ 𝑋, we always have a surjection 𝜌𝑥 : 𝐺→ 𝐺𝑥 defined as

𝜌𝑥(𝑔) := 𝑔 · 𝑥 ∀ 𝑔 ∈ 𝐺.

If 𝑔1, 𝑔2 ∈ 𝐺 are such that 𝜌𝑥(𝑔1) = 𝜌𝑥(𝑔2), then 𝑔1 · 𝑥 = 𝑔2 · 𝑥, which can be rewritten
as (𝑔−1

2 𝑔1) · 𝑥 = 𝑥. If the action is free, this implies 𝑔−1
2 𝑔1 = 𝑒, therefore 𝑔1 = 𝑔2. This

shows that in a free action there is always a continuous bijection 𝜌𝑥 : 𝐺 → 𝐺𝑥 between
the orbits and the group itself.

In general, there is no reason to expect 𝜌𝑥 to be a homeomorphism, so we have
not solved the problem of topologically distinct fibers yet, but we are closer to a solution.
If the action of 𝐺 on 𝑋 is free, then there is an obvious inverse function 𝜌−1

𝑥 : 𝐺𝑥 → 𝐺

sending 𝑔 · 𝑥 to 𝑔, that is, 𝜌−1
𝑥 “extracts” the group elements from the points of the orbit.

We want to consider actions where this extraction can be made continuously for all orbits,
and we now formalize this idea.

The action 𝜌 : 𝐺×𝑋 → 𝑋 and the projection 𝜋2 : 𝐺×𝑋 → 𝑋 together determine
a map

(𝜋2, 𝜌) : 𝐺×𝑋 → 𝑋 ×𝑋,

called the shear map of the action, which sends (𝑔, 𝑥) to (𝑥, 𝑔 · 𝑥). The image of this
map is the subspace

𝐶(𝑋) := {(𝑥, 𝑔 · 𝑥) ∈ 𝑋 ×𝑋 | 𝑥 ∈ 𝑋, 𝑔 ∈ 𝐺}.
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If the action 𝜌 is free, then its shear map is injective, and we can then consider the
translation function1 𝑡 : 𝐶(𝑋)→ 𝐺 defined as the composition

𝑡 := 𝜋1 ∘ (𝜋2, 𝜌)−1.

Explicitly, 𝑡 sends a point (𝑥, 𝑔 · 𝑥) to 𝑔 ∈ 𝐺, so it is related to the extraction process
mentioned above. In principle, 𝑡 is just a function, and if 𝑡 happens to be continuous, we
say that the action is weakly proper.

The next result shows that, if we want the projection 𝑋 → 𝑋/𝐺 to be a locally
trivial bundle, then it is reasonable to work with free and weakly proper actions.

6.1.5 Lemma. Let 𝜌 : 𝐺 × 𝑋 → 𝑋 be a continuous action of the topological group 𝐺

on the space 𝑋. Suppose that, for each 𝑏 ∈ 𝑋/𝐺, we can find a neighborhood 𝑈 ⊆ 𝑋/𝐺

over which there exists a 𝐺-equivariant local trivialization 𝜙 : 𝜋−1(𝑈) → 𝑈 × 𝐺 of the
canonical projection 𝜋 : 𝑋 → 𝑋/𝐺. Under these conditions, the action of 𝐺 on 𝑋 is both
free and weakly proper.

Sketch of proof. For any space 𝑌 , notice that the action of 𝐺 on 𝑌 × 𝐺 defined as 𝑔 ·
(𝑦, ℎ) := (𝑦, 𝑔ℎ) is free. Indeed, if 𝑔 · (𝑦, ℎ) = (𝑦, ℎ), then 𝑔ℎ = ℎ, which implies 𝑔 = 𝑒.

This action is also weakly proper. The translation map 𝑡 : 𝐶(𝑌 ×𝐺)→ 𝐺 can be
described as the composition below,

𝐶(𝑌 ×𝐺) 𝐺×𝐺 𝐺×𝐺 𝐺
id𝐺×inv 𝑚

where the first map is a combination of projections sending ((𝑦, ℎ), (𝑦, 𝑔ℎ)) to (𝑔ℎ, ℎ), and
𝑚 and inv are the multiplication and inversion maps of 𝐺.

The result then follows by using local 𝐺-trivializations over neighborhood 𝑈 ⊆
𝑋/𝐺 to compare the action 𝜌 on 𝜋−1(𝑈) with the action of 𝐺 on 𝑈 ×𝐺. �

Free and weakly proper actions solve the problem of topologically distinct fibers.
We have already discussed how the map 𝜌𝑥 : 𝐺→ 𝐺𝑥 defines a continuous bijection in the
case of a free action. Now, if the action is moreover weakly proper, then the continuity of
the translation function implies that we can continuously invert the shear map, therefore
it defines a homeomorphism

𝑠 : 𝑋 ×𝐺
∼=−→ 𝐶(𝑋).

Restricting 𝑠 gives us a homeomorphism between {𝑥} ×𝐺 and the subspace

𝑠({𝑥} ×𝐺) = {(𝑥, 𝑔 · 𝑥) ∈ 𝑋 ×𝑋 | 𝑔 ∈ 𝐺} = {𝑥} ×𝐺𝑥.

Using that there are homeomorphisms 𝐺
∼=−→ {𝑥} ×𝐺 and {𝑥} ×𝐺𝑥

∼=−→ 𝐺𝑥 we deduce
that 𝜌𝑥 : 𝐺→ 𝐺𝑥 is also a homeomorphism.
1 Some authors call 𝑡 the division function of the action.
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So far we know that, if the projection 𝑋 → 𝑋/𝐺 is locally 𝐺-trivial, then the
action is free and weakly proper, and that a free and weakly proper action has all its
orbits homeomorphic to the group 𝐺 itself. These two conditions are almost sufficient to
guarantee that the orbit map 𝑋 → 𝑋/𝐺 is globally 𝐺-trivial! The space 𝑋 is partitioned
into orbits, and each of these orbits is homeomorphic to 𝐺, so it seems like we can compare
𝑋 to (𝑋/𝐺)×𝑋 by means of a map 𝜙 : 𝑋 → (𝑋/𝐺)×𝐺 whose restriction to the orbit
𝐺𝑥 sends every point of the form 𝑔 · 𝑥 to the pair (𝐺𝑥, 𝑔). Notice that this definition
depends on choosing for each orbit 𝑏 ∈ 𝑋/𝐺 a representing point in 𝑋, that is, a point
𝑥 ∈ 𝑋 such that 𝑏 = 𝐺𝑥. Of course, any point on the orbit can serve as a representing
point for it, and without further assumptions on the action, it is not possible to guarantee
that we can continuously choose a representing point for each orbit. In order to do this,
we introduce the concept of sections.

6.1.6 Definition. If 𝑝 : 𝑋 → 𝑌 is a map, then a section of 𝑝 is a map 𝑠 : 𝑌 → 𝑋

satisfying the equation 𝑝∘𝑠 = id𝑌 . If 𝑈 ⊆ 𝑌 is an open subset, a section of the restriction
𝑝|𝑝−1(𝑈) : 𝑝−1(𝑈)→ 𝑈 is called a local section of 𝑝 over 𝑈 .

At the moment we are interested in constructing local sections of the orbit map
𝑋 → 𝑋/𝐺. Maps out of a quotient can always be constructed by starting with a map on
the “over” space, and then factoring it through the quotient. The next result is a useful
lemma for defining local sections by a similar factoring process.

6.1.7 Lemma. Let 𝑝 : 𝑋 → 𝑌 be a surjective quotient map. Given an open subset
𝑈 ⊆ 𝑌 , denote by 𝑝𝑈 : 𝑝−1(𝑈) → 𝑈 the restriction 𝑝|𝑝−1(𝑈). The following assertions are
equivalent:

1. there exists a local section 𝑠 : 𝑈 → 𝑝−1(𝑈) of 𝑝 over 𝑈 ;

2. there exists a map 𝑆 : 𝑝−1(𝑈) → 𝑝−1(𝑈) which is constant on the fibers of 𝑝𝑈 and
satisfies the equation 𝑝𝑈 ∘ 𝑆 = 𝑝𝑈 .

Proof. Suppose that 𝑠 : 𝑈 → 𝑝−1(𝑈) is a local section of 𝑝 over 𝑈 . Define 𝑆 : 𝑝−1(𝑈) →
𝑝−1(𝑈) as the composition 𝑆 := 𝑠 ∘ 𝑝𝑈 . If 𝑥1, 𝑥2 ∈ 𝑋 are such that 𝑝𝑈 (𝑥1) = 𝑝𝑈 (𝑥2), then

𝑆(𝑥1) = 𝑠(𝑝𝑈(𝑥1)) = 𝑠(𝑝𝑈(𝑥2)) = 𝑆(𝑥2),

showing that 𝑆 is constant on the fibers of 𝑝𝑈 . Now, using that 𝑠 is a local section we see
that

𝑝𝑈 ∘ 𝑆 = 𝑝𝑈 ∘ 𝑠 ∘ 𝑝𝑈
= id𝑈 ∘ 𝑝𝑈
= 𝑝𝑈 .
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Conversely, suppose 𝑆 satisfies the conditions in the statement. Since 𝑝−1(𝑈) is
an open subset of 𝑋 saturated with respect to 𝑝, according to (BROWN, 2006, result
4.3.1), 𝑝𝑈 : 𝑝−1(𝑈)→ 𝑈 is still a quotient map. Since 𝑆 is constant on the fibers of 𝑝𝑈 by
hypothesis, it can be factored through it to define a map 𝑠 : 𝑈 → 𝑝−1(𝑈).

𝑝−1(𝑈) 𝑝−1(𝑈)

𝑈

𝑝|𝑝−1(𝑈)

𝑆

𝑠

We claim that 𝑠 is a local section of 𝑝 over 𝑈 . In order to see this, using the equality
𝑝𝑈 ∘ 𝑆 = 𝑝𝑈 we first notice that 𝑠 satisfies

𝑝𝑈 ∘ 𝑠 ∘ 𝑝𝑈 = 𝑝𝑈 ∘ 𝑆 = 𝑝𝑈 .

Now, since 𝑝𝑈 is surjective, we can cancel it from both sides of the equation above to
deduce that 𝑝𝑈 ∘ 𝑠 = id𝑈 as desired. �

The concept of section solves our problem of representing points for orbits: a
section of the orbit map 𝑋 → 𝑋/𝐺 is precisely a way to continuously choose a point
in each of the orbits. With this in mind, the next result is expected. See (DIECK, 2008,
Propositions 14.1.5 and 14.1.7) for a proof.

6.1.8 Theorem. Let 𝜌 : 𝐺×𝑋 → 𝑋 be a continuous action of a topological group 𝐺 on
a space 𝑋. The following assertions are equivalent:

1. the orbit map 𝜋 : 𝑋 → 𝑋/𝐺 is globally𝐺-trivial, that is, there exists a𝐺-equivariant
homeomorphism 𝜙 : 𝑋 → (𝑋/𝐺)×𝐺 such that 𝜋1 ∘ 𝜙 = 𝜋;

2. the action is free, weakly proper, and the orbit map admits a section.

Now that we know conditions ensuring the global 𝐺-triviality of the orbit map of
an action, in order to obtain conditions for local triviality we just need to reformulate the
previous result in local terms.

6.1.9 Theorem. Let 𝜌 : 𝐺×𝑋 → 𝑋 be a continuous action of a topological group 𝐺 on
a space 𝑋. The following assertions are equivalent:

1. the orbit map 𝜋 : 𝑋 → 𝑋/𝐺 is locally 𝐺-trivial, that is, every 𝑏 ∈ 𝑋/𝐺 has a
neighborhood 𝑈 ⊆ 𝑋/𝐺 over which there exists a 𝐺-equivariant homeomorphism
𝜙𝑈 : 𝜋−1(𝑈)→ 𝑈 ×𝐺 such that 𝜋1 ∘ 𝜙𝑈 = 𝜋;

2. the action is free, weakly proper, and every 𝑏 ∈ 𝑋/𝐺 has a neighborhood 𝑈 ⊆ 𝑋/𝐺

over which the orbit map admits a local section.
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6.1.10 Remark. One could wonder why we did not make the apparently weaker assump-
tions that the action 𝜌 : 𝐺 × 𝑋 → 𝑋 in Theorem 6.1.9 is only locally free and locally
weakly proper. This is because these two assumption imply that 𝜌 is globally free and
weakly proper. More precisely, if we suppose that each 𝑏 ∈ 𝑋/𝐺 has a neighborhood 𝑈

such that the restricted action 𝜌𝑈 : 𝐺×𝜋−1(𝑈)→ 𝜋−1(𝑈) is free and weakly proper, then
it follows that 𝜌 itself also satisfies these two properties.

The examples below show that many important locally trivial bundles in Algebraic
Topology can be described as orbit maps of group actions.

6.1.11 Example. Regard the integers Z as a discrete topological group, and consider
the action 𝜌 : Z× R→ R defined as

𝜌(𝑛, 𝑡) := 𝑡+ 𝑛 ∀ (𝑛, 𝑡) ∈ Z× R.

Geometrically, each 𝑛 ∈ Z acts by translating the points of R.

We now show that the orbit map 𝑝 : R → R/Z defines a locally Z-trivial bundle.
First, it is clear that the action in question is free, since the equality 𝑡+𝑛 = 𝑡 only happens
if 𝑛 = 0. For the weak properness, notice that the translation function 𝐶(R)→ Z sending
(𝑡, 𝑡+𝑛) to 𝑛 can be described by simply subtracting the first coordinate from the second,
therefore it is continuous. Now, given a point [𝑡] ∈ R/Z represented by a point 𝑡 ∈ R,
consider the open neighborhood 𝑈 of [𝑡] defined as 𝑈 := 𝑝(𝑉 ), where 𝑉 :=

(︁
𝑡− 1

2 , 𝑡+ 1
2

)︁
is an open interval around 𝑡. The restriction 𝑝|𝑉 : 𝑉 → 𝑈 is injective, because it [𝑡] = [𝑡′],
then 𝑡 − 𝑡′ = 𝑛 for some 𝑛 ∈ Z, but since the distance between any two points of 𝑉 is
strictly smaller than 1, this equality can only happen if 𝑛 = 0, therefore 𝑡 = 𝑡′. This means
that 𝑝|𝑉 is a continuous an open bijection from 𝑉 to 𝑈 , thus a homeomorphism. A local
section of 𝑝 over 𝑈 can then be obtained as the inverse of 𝑝|𝑉 .

The previous paragraph shows that the action 𝜌 in question is free, weakly proper,
and that the orbit map 𝑝 admits local sections. It then follows from Theorem 6.1.9 that
𝑝 : R → R/Z is a locally Z-trivial. And why is this particular bundle important? The
answer is that it is merely an alternative description to a famous bundle, as we now show.

Since the complex exponential is 2𝜋−-periodic, the quotient map 𝐸 : R → 𝑆1

given by 𝐸(𝑡) := 𝑒2𝜋𝑖𝑡 = (cos(2𝜋𝑡), sin(2𝜋𝑡)) is constant on the orbits of the action 𝜌,
therefore it can be factored through the orbit map to define 𝐸 : R/Z→ 𝑆1.

R

R/Z 𝑆1

𝑝 𝐸

𝐸

Conversely, given a point 𝑧 ∈ 𝑆1 of the form 𝑒2𝜋𝑖𝑡 = 𝐸(𝑡), its fiber 𝐸−1(𝑧) is equal to
{𝑡+ 𝑛 | 𝑛 ∈ Z}, i.e., it is precisely the orbit of 𝑡 under the action of Z; therefore the orbit
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map 𝑝 is constant on the fibers of the quotient map 𝐸, so it can also be factored through
it to define 𝑝 : 𝑆1 → R/Z.

R

R/Z 𝑆1

𝑝 𝐸

𝑝

Using the defining properties of 𝐸 and 𝑝 it is straightforward to show that they are inverse
maps. Of course, 𝐸 is the famous covering of the circle by the real line, and we have simply
given an alternative description of it in terms of orbit maps of group actions.

6.1.12 Example. Recall that, as a mere set, the 𝑛-dimensional projective space R𝑃 𝑛 can
be defined as

R𝑃 𝑛 := {ℓ ⊆ R𝑛+1 | ℓ is a 1-dimensional linear real subspace}.

Since every 1-dimensional linear real subspace of R𝑛+1 is generated by a non-zero vector,
we have a surjective function 𝑞𝑛 : 𝑆𝑛 → R𝑃 𝑛 which sends each point 𝑥 ∈ 𝑆𝑛 to the linear
real subspace ⟨𝑥⟩ spanned by it. We then regard R𝑃 𝑛 as a topological space by equipping
it with the quotient topology induced by the function 𝑞𝑛.

Standard results from the theory of quotient spaces imply that there is a homeo-
morphism 𝜑 : R𝑃 𝑛 → 𝑆𝑛/ ∼𝑞𝑛 that fits in the commutative triangle below.

𝑆𝑛

R𝑃 𝑛 𝑆𝑛/ ∼𝑞𝑛

𝑞𝑛 𝜋

𝜑

Here ∼𝑞𝑛 is the equivalence relation defined as 𝑥 ∼𝑞𝑛 𝑦 if and only if 𝑞𝑛(𝑥) = 𝑞𝑛(𝑦).

In this case, there is a very simple explicit description for ∼𝑞𝑛 . If 𝑥 ∼𝑞𝑛 𝑦, then
⟨𝑥⟩ = ⟨𝑦⟩, so there exists a real number 𝑡 > 0 such that 𝑦 = 𝑡𝑥. Taking norms of both
sides we conclude that |𝑡| = 1, that is, 𝑡 = ±1. The equivalence ∼𝑞𝑛 can then be restated
as 𝑥 ∼𝑞𝑛 𝑦 if and only if 𝑥 = 𝑦 or 𝑦 = −𝑥.

This equivalence relation can in fact be seen as induced by a group action. Regard
Z2 as a discrete group, and define an action 𝜌 : Z2 × 𝑆𝑛 → 𝑆𝑛 by the formula

𝜌(𝑔, 𝑥) :=

⎧⎪⎨⎪⎩𝑥, if 𝑔 = 1,

−𝑥, if 𝑔 = −1.

The equivalence relation induced by this action is precisely ∼𝑞𝑛 , so we can regard the
quotient 𝑆𝑛/ ∼𝑞𝑛 as the orbit space 𝑆𝑛/Z2 and use Theorem 6.1.9 to study the local
triviality of the orbit map 𝜋 : 𝑆𝑛 → 𝑆𝑛/Z2.
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Since there is no point 𝑥 ∈ 𝑆𝑛 satisfying the equation 𝑥 = −𝑥, the action of
−1 ∈ Z2 does not fix any points of 𝑆𝑛, therefore the action of Z2 in question is free. The
image of the shear map 𝑆𝑛 × Z2 → 𝑆𝑛 × 𝑆𝑛 is the subspace

𝐶(𝑆𝑛) = {(𝑥, 𝑥) | 𝑥 ∈ 𝑆𝑛} ∪ {(𝑥,−𝑥) | 𝑥 ∈ 𝑆𝑛},

which can be written as the disjoint union of two closed subspaces. The restriction of the
translation function 𝑡 : 𝐶(𝑆𝑛)→ Z2 to the first of these subspaces is constant and equal
1, and thus continuous; while the restriction to the second subspace is constant and equal
to 1, therefore also continuous. It follows from the Pasting Lemma that 𝑡 is continuous,
so the action in question is weakly proper.

Now we show that the orbit map 𝜋 : 𝑆𝑛 → 𝑆𝑛/Z2 admits local sections. It is a
standard fact from the theory of topological groups that the orbit map is always open
(see for example (BROWN, 2006, result 11.1.2)). It follows that the subset 𝑈𝑗 ⊆ 𝑆𝑛/Z2

defined as
𝑈𝑗 := {[𝑦] ∈ 𝑆𝑛/Z2 | 𝑦 = (𝑦1, . . . , 𝑦𝑛+1) ∈ 𝑆𝑛, 𝑦𝑗 ̸= 0}

is open.

The map 𝑆𝑗 : 𝜋−1(𝑈𝑗)→ 𝜋−1(𝑈𝑗) defined as

𝑆𝑗(𝑥1, . . . , 𝑥𝑛+1) := 𝑥𝑗
|𝑥𝑗|

(𝑥1, . . . , 𝑥𝑛+1)

is constant on the fibers of 𝜋|𝜋−1(𝑈𝑗), because 𝑆𝑗(−𝑥) = 𝑆𝑗(𝑥) holds for every 𝑥 ∈ 𝜋−1(𝑈𝑗),
and it also satisfies 𝜋|𝜋−1(𝑈𝑗) ∘ 𝑆 = 𝜋|𝜋−1(𝑈𝑗), because 𝑆𝑗(𝑥) is obtained from 𝑥 by scalar
multiplication. It follows from Lemma 6.1.7 that the map 𝑠𝑗 : 𝑈𝑗 → 𝜋−1(𝑈𝑗) obtained by
factoring 𝑆𝑗 through the quotient is a local section of 𝜋 over 𝑈𝑗.

If we vary 𝑗 ∈ {1, . . . , 𝑛+ 1}, then the open subsets of 𝑆𝑛/Z2 of the form 𝑈𝑗 define
an open covering of the orbit space. This means that every orbit lies in an open subset
over which we can define a local section. Theorem 6.1.9 then implies that there exists a
local trivialization 𝜓 : 𝑈𝑗 × Z2 → 𝜋−1(𝑈𝑗). Explicitly, this map is given by

𝜓([𝑥1, . . . , 𝑥𝑛+1], 𝑔) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑥𝑗
|𝑥𝑗|

(𝑥1, . . . , 𝑥𝑛+1), if 𝑔 = 1,

− 𝑥𝑗
|𝑥𝑗|

(𝑥1, . . . , 𝑥𝑛+1), if 𝑔 = −1.

Notice, moreover, that 𝜓 is Z2-equivariant, because 𝜓([𝑥],−1) = −𝜓([𝑥], 1).

6.1.13 Example. The 𝑛-dimensional complex projective space C𝑃 𝑛 has an analogous
construction. As a set, it is defined as

C𝑃 𝑛 := {ℓ ⊆ C𝑛+1 | ℓ is a 1-dimensional complex linear subspace of C𝑛+1}.

Let 𝑆 be the set of unit norm vectors in C𝑛+1. Since every 1-dimension complex linear
subspace of C𝑛+1 can be generated by a vector in 𝑆, the map 𝑞𝑛 : 𝑆 → C𝑃 𝑛 defined
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a 𝑞𝑛(𝑧) := ⟨𝑧⟩ is a surjection, and we can then equip C𝑃 𝑛 with the quotient topology
induced by 𝑞𝑛.

Like in Example 6.1.12, we can also regard C𝑃 𝑛 as a quotient of 𝑆 by the equiva-
lence relation ∼𝑞𝑛 defined as 𝑧 ∼𝑞𝑛 𝑧

′ if and only if 𝑞𝑛(𝑧) = 𝑞𝑛(𝑧′). Using that the vectors
of 𝑆 have unit norm, a simple computation then shows that 𝑧 ∼𝑞𝑛 𝑧

′ if and only if there
exists a complex number 𝑤 ∈ 𝑆1 such that 𝑧′ = 𝑤 · 𝑧, where the dot denotes the usual
scalar multiplication in C𝑛+1. In other words, ∼𝑞𝑛 is the equivalence relation induced by
the group action 𝜌 : 𝑆1 × 𝑆 → 𝑆 defined as

𝜌(𝑤, (𝑧1, . . . , 𝑧𝑛+1)) := 𝑤 · (𝑧1, . . . , 𝑧𝑛+1) = (𝑤𝑧1, . . . , 𝑤𝑧𝑛+1).

We then have a homeomorphism 𝑓 : 𝑆/𝑆1 → C𝑃 𝑛 that fits in the commutative triangle
below.

𝑆

𝑆/𝑆1 C𝑃 𝑛

𝜋 𝑞𝑛

𝑓

If 𝑧 = (𝑧1, . . . , 𝑧𝑛+1) ∈ 𝑆 and 𝑤 ∈ 𝑆1 are such that 𝑤 · 𝑧 = 𝑧, then 𝑤𝑧𝑖 = 𝑧𝑖 holds
for every 𝑖 ∈ {1, . . . , 𝑛+1}. Since 𝑧 ̸= 0, at least one of its coordinates, say 𝑧𝑖, is non-zero,
and then the equality 𝑤𝑧𝑖 = 𝑧𝑖 implies 𝑤 = 1; proving that the action of 𝑆1 on 𝑆 is free.

In order to prove that the action is also weakly proper, consider first the usual
hermitian product 𝐵 : C𝑛+1 × C𝑛+1 → C given by

𝐵((𝑤1, . . . , 𝑤𝑛+1), (𝑧1, . . . , 𝑧𝑛+1)) :=
𝑛+1∑︁
𝑖=0

𝑤𝑖𝑧𝑖.

For any 𝑧 ∈ 𝑆 and 𝑤 ∈ 𝑆1 we have the equality

𝐵(𝑧, 𝑤 · 𝑧) = 𝑤,

therefore the translation function 𝑡 of the action can be described as the composition
of 𝐵 (suitably restricted) with the complex conjugation map, which means that 𝑡 is a
continuous function.

Now we deal with the construction of local sections. Similar to what we did in
Example 6.1.12, we consider the open subset 𝑈𝑗 ⊆ C𝑃 𝑛 defined as

𝑈𝑗 := {[𝑧] ∈ 𝑆/𝑆1 | 𝑧 = (𝑧1, . . . , 𝑧𝑛+1) ∈ 𝑆, 𝑧𝑗 ̸= 0}.

Now let 𝑆𝑗 : 𝜋−1(𝑈𝑗)→ 𝜋−1(𝑈𝑗) be defined as

𝑆𝑗(𝑧1, . . . , 𝑧𝑛+1) := 𝑧𝑗
‖𝑧𝑗‖

· (𝑧1, . . . , 𝑧𝑛+1).

Reasoning like in Example 6.1.12 we can show that 𝑆𝑗 is constant on the fibers of the
orbit map and that it satisfies the equation 𝜋|𝜋−1(𝑈𝑗) ∘ 𝑆𝑗 = 𝜋|𝜋−1(𝑈𝑗). It follows from
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Lemma 6.1.7 that by factoring 𝑆𝑗 through 𝜋 we obtain a map 𝑠𝑗 : 𝑈𝑗 → 𝜋−1(𝑈𝑗) which is
a local section of 𝜋 over 𝑈𝑗.

Theorem 6.1.9 then implies that the map 𝜓 : 𝑈𝑗 × 𝑆1 → 𝜋−1(𝑈𝑗) defined as

𝜓([𝑧1, . . . , 𝑧𝑛+1], 𝑤) := 𝑤𝑧𝑗
‖𝑧𝑗‖

· (𝑧1, . . . , 𝑧𝑛+1)

defines an 𝑆1-equivariant local trivialization of 𝜋, and since 𝑆/𝑆1 can be covered by open
subsets of the form 𝑈𝑗 for varying 𝑗 ∈ {1, . . . , 𝑛 + 1}, the projection 𝜋 : 𝑆 → 𝑆/𝑆1

is a locally trivial bundle with typical fiber 𝑆1, the same being true of the projection
𝑞𝑛 : 𝑆 → C𝑃 𝑛.

We now study some results closely related to Theorem 6.1.9. Suppose 𝜌 : 𝐺 ×
𝑋 → 𝑋 is a continuous action of a topological group 𝐺 on a space 𝑋, and suppose
that this action is free, weakly proper, and admits local sections, so that the orbit map
𝜋 : 𝑋 → 𝑋/𝐺 is locally trivial with typical fiber 𝐺. If 𝐻 ≤ 𝐺 is a subgroup, it becomes
a topological group when equipped with the subspace topology, and it gives rise to a
restricted action

𝜌𝐻 := 𝜌|𝐻×𝑋 : 𝐻 ×𝑋 → 𝑋.

The orbit map 𝜋𝐻 : 𝑋 → 𝑋/𝐻 obtained from this restricted action might not be a
locally 𝐻-trivial bundle, because it might not admit local sections. A rough explanation
for this possible non-existence of local sections is that, even though every orbit of 𝐻 is
contained in an orbit of 𝐺, this containment might be strict, and then, even if we are able
to continuously choose points in sufficiently close orbits of 𝐺, it might happen that the
chosen points are outside the orbits of 𝐻.

There is, however, a map related to 𝜋 and 𝜋𝐻 that is a locally trivial bundle. The
orbit map 𝜋 : 𝑋 → 𝑋/𝐺 is constant on the orbits of 𝐻, therefore it can be factored
through 𝜋𝐻 : 𝑋 → 𝑋/𝐻 to define an induced map 𝑝 : 𝑋/𝐻 → 𝑋/𝐺. Explicitly, 𝑝 sends
an 𝐻-orbit of the form 𝐻𝑥 to the corresponding 𝐺-orbit 𝐺𝑥.

𝑋

𝑋/𝐻 𝑋/𝐺

𝜋𝐻
𝜋

𝑝

The next result shows that this induced map 𝑝 defines locally trivial bundle.

6.1.14 Proposition. Let 𝜌 : 𝐺×𝑋 → 𝑋 be a continuous, free and weakly proper action
of the topological group 𝐺 on the space 𝑋, and suppose that the orbit map 𝜋 : 𝑋 → 𝑋/𝐺

admits local sections. Given a subgroup 𝐻 ≤ 𝐺, let 𝜌𝐻 : 𝐻×𝑋 → 𝑋 denote the restricted
action. The map 𝑝 : 𝑋/𝐻 → 𝑋/𝐺 obtained by factoring 𝜋 through 𝜋𝐻 is a locally trivial
bundle with typical fiber 𝐺/𝐻, where 𝐺/𝐻 denotes the orbit space of the action of 𝐻 on
𝐺 by multiplication on the right.
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Sketch of proof. Let 𝑈 ⊆ 𝑋/𝐺 be an open subset together with a 𝐺-equivariant local
trivialization 𝜙 : 𝜋−1(𝑈)→ 𝑈 ×𝐺. We will construct a local trivialization 𝜙 : 𝑝−1(𝑈)→
𝑈 × (𝐺/𝐻) of 𝑝 over this same subset.

Since 𝜋−1
𝐻 (𝑝−1(𝑈)) = 𝜋−1(𝑈), by (BROWN, 2006, result 4.3.1) we know that the

restricted projection 𝜋𝐻 |𝜋−1(𝑈) : 𝜋−1(𝑈)→ 𝑝−1(𝑈) is still a quotient map. If 𝑞 : 𝐺→ 𝐺/𝐻

denotes the orbit map given by 𝑔 ↦→ 𝑔𝐻, then using the 𝐺-equivariance of 𝜙 one can show
that the composite map

(id𝑈 × 𝑞) ∘ 𝜙 : 𝜋−1(𝑈)→ 𝑈 × (𝐺/𝐻)

is constant on the fibers of 𝜋𝐻 |𝜋−1(𝑈), therefore it can be factored through this projection
to define a map

𝜙 : 𝑝−1(𝑈)→ 𝑈 × (𝐺/𝐻).

Now let 𝜓 : 𝑈 × 𝐺 → 𝜋−1(𝑈) be the inverse map of the 𝐺-trivialization 𝜙. Since
𝑞 : 𝐺 → 𝐺/𝐻 is an open map, being the orbit map of an action, the product id𝑈 × 𝑞 :
𝑈 × 𝐺 → 𝑈 × (𝐺/𝐻) is an open surjection, and thus a quotient map. Using the 𝐺-
equivariance of 𝜓 we can show that 𝜋𝐻 ∘ 𝜓 : 𝑈 ×𝐺→ 𝑝−1(𝑈) is constant on the fibers of
id𝑈 × 𝑞, therefore it can be factored to define a map 𝜓 : 𝑈 × (𝐺/𝐻)→ 𝑝−1(𝑈).

A straightforward computation using the defining properties of 𝜙 and 𝜓 shows that
these two maps are inverse to one another. Moreover, they are compatible with the maps
𝑝 : 𝑝−1(𝑈)→ 𝑈 and 𝜋1 : 𝑈 × (𝐺/𝐻)→ 𝑈 , defining therefore local trivializations. �

The next example is an application of Proposition 6.1.14 which will be relevant
later for the construction of characteristic classes.

6.1.15 Example (Stiefel manifolds). Let F denote either the field of real or complex
numbers. Given integers 1 ≤ 𝑘 ≤ 𝑛, a 𝑘-frame in F𝑛 is a 𝑘-tuple (𝑣1, . . . , 𝑣𝑘) ∈ (F𝑛)𝑘 of
linearly independent vectors. The space of all 𝑘-tuples in F𝑛

𝑉 ∘
𝑘 (F𝑛) := {(𝑣1, . . . , 𝑣𝑘) ∈ (F𝑛)𝑘 | (𝑣1, . . . , 𝑣𝑘) is a 𝑘-frame},

regarded as a subspace of (F𝑛)𝑘 is called the open Stiefel manifold of 𝑘-frames in F𝑛.

Let ⟨−,−⟩ denote the usual inner product on F𝑛 (euclidean if F = R, and hermitian
if F = C). If a 𝑘-frame (𝑣1, . . . , 𝑣𝑘) is such that ‖𝑣𝑖‖ = 1 for every 𝑖 ∈ {1, . . . , 𝑘}, and
𝑣𝑖 ⊥ 𝑣𝑗 for all 𝑖 ̸= 𝑗, then we say (𝑣1, . . . , 𝑣𝑘) is an orthonormal 𝑘-frame. The space

𝑉𝑘(F𝑛) := {(𝑣1, . . . , 𝑣𝑘) ∈ 𝑉 ∘
𝑘 (F𝑛) | (𝑣1, . . . , 𝑣𝑘) is an orthonormal 𝑘-frame}

is called the Stiefel manifold of orthonormal 𝑘-frames in F𝑛. Notice that 𝑉𝑘(F𝑛) is
a closed subspace of the product of spheres (𝑆𝑑𝑛−1)𝑘, where 𝑑 = 1 if F = R, and 𝑑 = 2 if
F = C; therefore 𝑉𝑘(F𝑛) is compact.



6.1. First definitions and examples 181

The Gram-Schmidt orthonormalization algorithm defines a map GS : 𝑉 ∘
𝑘 (F𝑛) →

𝑉𝑘(F𝑛). Since the algorithm does nothing when applied to a 𝑘-frame that is already or-
thonormal, GS is a retraction.

Now given another integer 1 ≤ 𝑗 ≤ 𝑘, there is a projection map 𝑞𝑘,𝑗 : 𝑉𝑘(F𝑛) →
𝑉𝑗(F𝑛) defined as

𝑞𝑘,𝑗(𝑣1, . . . , 𝑣𝑘) := (𝑣1, . . . , 𝑣𝑗).

We want to show that 𝑞𝑘,𝑗 is a locally trivial bundle. In order to do this, we give an
alternative description of 𝑉𝑘(F𝑛) in terms of group actions.

The group 𝑂(F𝑛) of orthogonal transformation of F𝑛 to itself acts on 𝑉𝑘(F𝑛) via
the map 𝜌 : 𝑂(F𝑛)× 𝑉𝑘(F𝑛)→ 𝑉𝑘(F𝑛) defined as

𝜌(𝑇, (𝑣1, . . . , 𝑣𝑘)) = 𝑇 · (𝑣1, . . . , 𝑣𝑘) := (𝑇 (𝑣1), . . . , 𝑇 (𝑣𝑘)).

If 𝑒1, . . . , 𝑒𝑛 are the canonical basis vectors of F𝑛, we let 𝑒 := (𝑒1, . . . , 𝑒𝑘) ∈ 𝑉𝑘(F𝑛). If
(𝑣1, . . . , 𝑣𝑘) is any orthonormal 𝑘-frame in F𝑛, there exists an orthogonal transformation
𝑇 ∈ 𝑂(F𝑛) such that (𝑣1, . . . , 𝑣𝑘) = 𝑇 · 𝑒. This means that the action 𝜌 is transitive, and
that the map 𝜌𝑒 : 𝑂(F𝑛)→ 𝑉𝑘(F𝑛) defined as

𝜌𝑒(𝑇 ) := 𝑇 · 𝑒 = (𝑇 (𝑒1), . . . , 𝑇 (𝑒𝑘))

is surjective.

The isotropy subgroup 𝑂(F𝑛)𝑒 ≤ 𝑂(F𝑛) consists of the orthogonal transformations
𝑇 ∈ 𝑂(F𝑛) satisfying 𝑇 (𝑒𝑖) = 𝑒𝑖 for every 𝑖 ∈ {1, . . . , 𝑘}. If 𝑇1, 𝑇2 ∈ 𝑂(F𝑛) are such that
𝜌𝑒(𝑇1) = 𝜌(𝑇2), then the orthogonal transformation 𝑇−1

2 ∘ 𝑇1 belongs to 𝑂(F𝑛)𝑒. In other
words, if we let 𝑂(F𝑛)𝑒 act on 𝑂(F𝑛) by multiplication (= composition) on the right, then
𝜌𝑒(𝑇1) = 𝜌𝑒(𝑇2) if and only if 𝑇1 and 𝑇2 are in the same orbit under this action of 𝑂(F𝑛)𝑒.
We can then factor 𝜌𝑒 through the orbit map 𝜋 : 𝑂(F𝑛)→ 𝑂(F𝑛)/𝑂(F𝑛)𝑒 to obtain a map
𝜑𝑛,𝑘 : 𝑂(F𝑛)/𝑂(F𝑛)𝑒 → 𝑉𝑘(F𝑛).

𝑂(F𝑛) 𝑉𝑘(R𝑛)

𝑂(F𝑛)/𝑂(F𝑛)𝑒

𝜌𝑒

𝜋
𝜑𝑛,𝑘

Since 𝜌𝑒 is surjective, and 𝑂(F𝑛)/𝑂(F𝑛)𝑒 is compact, the induced map 𝜑𝑛,𝑘 is a homeo-
morphism.

There is a more familiar description of the isotropy group 𝑂(F𝑛)𝑒. There is an
“inclusion map” 𝑖 : 𝑂(F𝑛−𝑘)→ 𝑂(F𝑛) mapping an orthogonal transformation 𝑇 : F𝑛−𝑘 →
F𝑛−𝑘 to the orthogonal transformation ̂︀𝑇 : F𝑛 → F𝑛 defined as

̂︀𝑇 (𝑥1, . . . , 𝑥𝑘, 𝑥𝑘+1, . . . , 𝑥𝑛) := (𝑥1, . . . , 𝑥𝑘, 𝑇 (𝑥𝑘+1, . . . , 𝑥𝑛)),
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where we are making the harmless identification F𝑛 ∼= F𝑘 ⊕ F𝑛−𝑘. Notice that ̂︀𝑇 fixes the
first 𝑘 basis vectors of F𝑛, that is, ̂︀𝑇 ∈ 𝑂(F𝑛)𝑒, and the inclusion 𝑂(F𝑛−𝑘) →˓ 𝑂(F𝑛) just
described establishes a homeomorphism 𝑂(F𝑛)𝑒 ∼= 𝑂(F𝑛−𝑘). For this reason, we usually
write the quotient 𝑂(F𝑛)/𝑂(F𝑛)𝑒 as 𝑂(F𝑛)/𝑂(F𝑛−𝑘), so that we have a homeomorphism

𝜑𝑛,𝑘 : 𝑂(F𝑛)/𝑂(F𝑛−𝑘)
∼=−→ 𝑉𝑘(F𝑛).

For an integer 1 ≤ 𝑗 ≤ 𝑘, we also have the analogous inclusion 𝑂(F𝑛−𝑗) →˓ 𝑂(F𝑛)
identifying 𝑂(F𝑛−𝑗) with the orthogonal transformations in 𝑂(F𝑛) that fix the first 𝑗
canonical basic vectors of F𝑛. With these identifications in mind, we have the subgroup
inclusions 𝑂(F𝑛−𝑘) ≤ 𝑂(F𝑛−𝑗) ≤ 𝑂(F𝑛), and therefore we have an induced map

𝑝𝑘,𝑗 : 𝑂(F𝑛)/𝑂(F𝑛−𝑘)→ 𝑂(F𝑛)/𝑂(F𝑛−𝑗)

fitting in the commutative triangle below.

𝑂(F𝑛)

𝑂(F𝑛)/𝑂(F𝑛−𝑘) 𝑂(F𝑛)/𝑂(F𝑛−𝑗)

𝜋𝑛,𝑘 𝜋𝑛,𝑗

𝑝𝑘,𝑗

A direct computation shows that 𝑝𝑘,𝑗 fits into the commutative square below.

𝑂(F𝑛)/𝑂(F𝑛−𝑘) 𝑉𝑘(F𝑛)

𝑂(F𝑛)/𝑂(F𝑛−𝑗) 𝑉𝑗(F𝑛)

𝜑𝑛,𝑘

𝑝𝑘,𝑗 𝑞𝑘,𝑗

𝜑𝑛,𝑗

This means that we can study the local triviality of 𝑞𝑘,𝑗 by instead studying the local
triviality of 𝑝𝑘,𝑗, and for this we have Proposition 6.1.14 at our disposal.

The action of a subgroup on the ambient group by multiplication on the left or
on the right is always free and weakly proper, therefore the action of 𝑂(F𝑛−𝑗) on 𝑂(F𝑛)
is free and weakly proper. We now show that the orbit map 𝜋 : 𝑂(F𝑛)→ 𝑂(F𝑛)/𝑂(F𝑛−𝑗)
admits local sections. Fix 𝑛 − 𝑗 vectors 𝑤1, . . . , 𝑤𝑛−𝑗 ∈ F𝑛. Using the continuity of the
determinant we can show that the subset 𝑉 ⊆ 𝑉𝑗(F𝑛) defined as

𝑉 := {(𝑣1, . . . , 𝑣𝑗) ∈ 𝑉𝑗(F𝑛) | ⟨𝑣1, . . . , 𝑣𝑗, 𝑤1, . . . , 𝑤𝑛−𝑗⟩ = F𝑛}

is open, therefore 𝑈 := 𝜑−1
𝑛,𝑗(𝑉 ) is an open subset of the orbit space 𝑂(F𝑛)/𝑂(F𝑛−𝑗). The

inverse image 𝜋−1(𝑈) consists of those orthogonal transformations 𝑇 ∈ 𝑂(F𝑛) such that

⟨𝑇 (𝑒1), . . . , 𝑇 (𝑒𝑗), 𝑤1, . . . , 𝑤𝑛−𝑗⟩ = F𝑛.

Define a map Σ : 𝜋−1(𝑈)→ 𝜋−1(𝑈) by setting Σ(𝑇 ) to be the unique orthogonal
transformation satisfying

(Σ(𝑇 )(𝑒1), . . . ,Σ(𝑇 )(𝑒𝑛)) = GS(𝑇 (𝑒1), . . . , 𝑇 (𝑒𝑗), 𝑤1, . . . , 𝑤𝑛−𝑗).
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Notice that Σ is constant on the orbits of 𝑂(F𝑛−𝑗). Indeed, if 𝑆 ∈ 𝑂(F𝑛−𝑗), that is, if 𝑆
fixes the first 𝑗 basic vectors, then

GS((𝑇 ∘ 𝑆)(𝑒1), . . . , (𝑇 ∘ 𝑆)(𝑒𝑗), 𝑤1, . . . , 𝑤𝑛−𝑗) = GS(𝑇 (𝑒1), . . . , 𝑇 (𝑒𝑗), 𝑤1, . . . , 𝑤𝑛−𝑗),

which means that Σ(𝑇 ∘ 𝑆) = Σ(𝑇 ). Moreover, since (𝑇 (𝑒1), . . . , 𝑇 (𝑒𝑗)) is already an or-
thonormal 𝑗-frame, the Gram-Schmidt algorithm does not change the first 𝑗 components
of the 𝑛-frame (𝑇 (𝑒1), . . . , 𝑇 (𝑒𝑗), 𝑤1, . . . , 𝑤𝑛−𝑗). This means that the orthogonal transfor-
mation 𝑇−1 ∘ Σ(𝑇 ) fixes the first 𝑗 basic vectors, i.e., 𝑇−1 ∘ Σ(𝑇 ) ∈ 𝑂(F𝑛−𝑗). It follows
that Σ(𝑇 ) and 𝑇 are in the same orbit of 𝑂(F𝑛−𝑗), therefore 𝜋(Σ(𝑇 )) = 𝜋(𝑇 ) holds for
every 𝑇 ∈ 𝜋−1(𝑈). Lemma 6.1.7 implies that Σ can be factored through 𝜋 to define a
local section 𝑠 : 𝑈 → 𝜋−1(𝑈) of the orbit map 𝜋 : 𝑂(F𝑛)→ 𝑂(F𝑛)/𝑂(F𝑛−𝑗).

We have shown so far that the action of 𝑂(F𝑛−𝑗) on 𝑂(F𝑛) is free, weakly proper
and admits local sections. If we then apply Proposition 6.1.14 to the subgroup 𝑂(F𝑛−𝑘) ≤
𝑂(F𝑛−𝑗) we deduce that the induced map

𝑝𝑘,𝑗 : 𝑂(F𝑛)/𝑂(F𝑛−𝑘)→ 𝑂(F𝑛)/𝑂(F𝑛−𝑗)

is a locally trivial bundle whose typical fiber is the quotient space 𝑂(F𝑛−𝑗)/𝑂(F𝑛−𝑘), which
is homeomorphic to the Stiefel manifold 𝑉𝑘−𝑗(F𝑛−𝑗) via the map

𝜑𝑛−𝑗,𝑘−𝑗 : 𝑂(F𝑛−𝑗)/𝑂(F𝑛−𝑘)→ 𝑉𝑘−𝑗(F𝑛−𝑗).

Thinking only in terms of Stiefel manifolds, this example shows that the projection 𝑞𝑘,𝑗 :
𝑉𝑘(F𝑛)→ 𝑉𝑗(F𝑛) is a locally trivial bundle with typical fiber 𝑉𝑘−𝑗(F𝑛−𝑗).

6.1.16 Example. Regard the additive group Z as a discrete topological group, and
consider its action on the infinite horizontal strip R× 𝐼 defined by the formula

𝜌(𝑛, (𝑠, 𝑡)) :=
(︁
𝑠+ 𝑛, 1

2 + (−1)𝑛
(︁
𝑡− 1

2

)︁)︁
.

This action is free, since if 𝑛·(𝑠, 𝑡) = (𝑠, 𝑡), then in particular 𝑠+𝑛 = 𝑠, which implies 𝑛 = 0.
Moreover, the translation function 𝑡 : 𝐶(R × 𝐼) → Z can be described as a combination
of projections and a subtraction as shown below,(︁

(𝑠, 𝑡),
(︁
𝑠+ 𝑛, 1

2 + (−1)𝑛
(︁
𝑡− 1

2

)︁)︁)︁
↦→ (𝑠, 𝑠+ 𝑛) ↦→ 𝑠+ 𝑛− 𝑠 = 𝑛

therefore the action 𝜌 is also weakly proper.

Let us describe the orbit space 𝑀 := R× 𝐼/Z of this action. Notice that, for any
point (𝑠, 𝑡), we can find another point (𝑠′, 𝑡′) which belongs to the subspace 𝐼 × 𝐼 and
which is in the same orbit of (𝑠, 𝑡). Indeed, if we let 𝑛 be the greatest integer satisfying
𝑛 ≤ 𝑠, then the point

(𝑠′, 𝑡′) :=
(︁
𝑠− 𝑛, 1

2 + (−1)𝑛
(︁
𝑡− 1

2

)︁)︁
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𝑠

𝑡

𝑡=1

0 1−1 − 1
2

1
2− 3

2
3
2

Figure 7 – Line segments on the Möbius strip.

𝑠

𝑡

𝑡=1
𝑡= 3

4
𝑡= 1

2
𝑡= 1

4
𝑡=0

Figure 8 – Topological circles on the Möbius strip.

belongs to 𝐼 × 𝐼 and satisfies 𝑛 · (𝑠′, 𝑡′) = (𝑠, 𝑡). This means that the restriction of the
orbit map 𝜋 : R× 𝐼 → R× 𝐼/Z to the unit square 𝐼 × 𝐼 is surjective, thus we can regard
the orbit space R × 𝐼/Z as a quotient 𝐼 × 𝐼. The only identifications made on 𝐼 × 𝐼 by
the action are those of the form (0, 𝑡) ∼ 1 · (0, 𝑡) = (1, 1 − 𝑡). This means that R × 𝐼/Z
can be obtained from 𝐼 × 𝐼 by identifying the left side {0}× 𝐼 of the square with the left
side {1} × 𝐼, but performing a half-twist before making the identification; therefore the
orbit space R× 𝐼/Z is a Möbius strip.

We can better visualize the orbit map 𝜋 : R × 𝐼 → 𝑀 by studying how it affects
particular subspaces of R × 𝐼. In Figure 7 we can see how different line segments in
R× 𝐼 are identified with alternating orientations, and then how these correspond to line
segments on the surface of the Möbius strip.

It is also interesting to see how the orbit map affects lines of the form R× {𝑡} for
some 𝑡 ∈ 𝐼. Their images are topologically equivalent to circles, but due to the way that
the points in R× 𝐼 are identified, pairs of lines which are symmetric with respect to the
central line R×

{︁
1
2

}︁
have equal images, as shown in Figure 8

Let 𝐸 : R → 𝑆1 de the map defined as 𝐸(𝑠) := (cos(2𝜋𝑠), sin(2𝜋𝑠)), so that 𝐸|𝐼
is the exponential map exp : 𝐼 → 𝑆1 we have been using so far. Using 𝐸, we define a
map 𝑃 : R × 𝐼 → 𝑆1 by the formula 𝑃 (𝑠, 𝑡) := 𝐸(𝑠). The periodicity of 𝐸 implies that
𝑃 (𝑛 · (𝑠, 𝑡)) = 𝑃 (𝑠, 𝑡) holds for any (𝑠, 𝑡) ∈ R × 𝐼 and any 𝑛 ∈ Z, therefore 𝑃 can be
factored through the orbit map of the action to define a map 𝑝 : 𝑀 → 𝑆1.

We want to show that the map 𝑝 constructed above is a locally trivial bundle
with typical fiber the unit interval 𝐼. Consider the open subset 𝑈 := 𝑆1 ∖ {(1, 0)}. Since
𝐸(𝑠) = (1, 0) if and only if 𝑠 = 𝑛 for some 𝑛 ∈ Z, if we set 𝑈𝑛 := (𝑛, 𝑛 + 1)× 𝐼 for each
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𝑛 ∈ Z, then we can write
𝑃−1(𝑈) =

⋃︁
𝑛∈Z

𝑈𝑛.

The map 𝑝 was defined by factoring 𝑃 through 𝜋, so the equality 𝜋−1(𝑝−1(𝑈)) = 𝑃−1(𝑈)
holds, and by restriction we have a surjection 𝜋|𝑃−1(𝑈) : 𝑃−1(𝑈)→ 𝑝−1(𝑈). Now, for every
point (𝑠, 𝑡) ∈ 𝑃−1(𝑈) we can find another point (𝑠′, 𝑡′) ∈ 𝑈0 such that (𝑠, 𝑡) ∼ (𝑠′, 𝑡′), which
means that the restriction 𝜋|𝑈0 : 𝑈0 → 𝑝−1(𝑈) is still surjective. Moreover, this restriction
is also an open map, and thus a quotient map, because the orbit map 𝜋 : R×𝐼 →𝑀 is itself
an open map. Notice, however, that 𝜋|𝑈0 is also injective, because if (𝑠1, 𝑡1), (𝑠2, 𝑡2) ∈ 𝑈0

are such that 𝜋(𝑠1, 𝑡1) = 𝜋(𝑠2, 𝑡2), then in particular 𝑠2 = 𝑠1 + 𝑛 for some integer 𝑛 ∈ Z,
but since 𝑠1 and 𝑠2 are both in (0, 1), this is only possible if 𝑛 = 0, which then implies
(𝑠1, 𝑡1) = (𝑠2, 𝑡2).

The reasoning of the previous paragraph implies that 𝜋|𝑈0 : 𝑈0 → 𝑝−1(𝑈) is a
homeomorphism. Now, since the restriction 𝐸|(0,1) : (0, 1)→ 𝑈 is also a homeomorphism,
so is the map Φ𝑈 : 𝑈0 → 𝑈 × 𝐼 defined as

Φ𝑈(𝑠, 𝑡) := (𝐸(𝑠), 𝑡) = ((cos(2𝜋𝑠), sin(2𝜋𝑠)), 𝑡)

for every (𝑠, 𝑡) ∈ 𝑈0. Using this we define a homeomorphism 𝜙𝑈 : 𝑝−1(𝑈)→ 𝑈 × 𝐼 via the
composition 𝜙𝑈 := Φ ∘ 𝜋|−1

𝑈0 . Notice then that, given [𝑠, 𝑡] ∈𝑀 with (𝑠, 𝑡) ∈ 𝑈0, we have

𝜋1(𝜙𝑈([𝑠, 𝑡])) = 𝜋1(𝐸(𝑠), 𝑡) = 𝐸(𝑠) = 𝑝([𝑠, 𝑡]); (6.2)

showing that the homeomorphism 𝜙 commutes with the projections of 𝑝−1(𝑈) and 𝑈 × 𝐼,
and therefore that it defines a local trivialization.

The open subset 𝑈 does not cover all of 𝑆1, however. We still need to construct a
local trivialization around the point (1, 0) ∈ 𝑆1. Consider the open neighborhood of such
point defined by 𝑉 := 𝑆1 ∖ {(−1, 0)}. Since 𝐸(𝑠) = −1 if and only if 𝑠 = 𝑛+ 1

2 for some
𝑛 ∈ Z, we can write

𝑃−1(𝑉 ) =
(︁
R ∖

{︁
𝑛+ 1

2 | 𝑛 ∈ Z
}︁)︁
× 𝐼

Similarly to the previous case, if we consider, for each 𝑛 ∈ Z, the subset

𝑉𝑛 :=
(︁
𝑛+ 1

2 , 𝑛+ 1 + 1
2

)︁
× 𝐼,

then we can rewrite the previous expression as

𝑃−1(𝑉 ) =
⋃︁
𝑛∈Z

𝑉𝑛.

The restricted exponential 𝐸|(︁1
2 ,

3
2

)︁ :
(︁

1
2 ,

3
2

)︁
→ 𝑉 is again a homeomorphism, and

using it we define a homeomorphism Φ𝑉 : 𝑉0 → 𝑉 × 𝐼 by the formula

Φ𝑉 (𝑠, 𝑡) := (𝐸(𝑠), 𝑡) ∀ (𝑠, 𝑡) ∈ 𝑉0.
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Using the same reasoning as in the previous case we can show that the restriction 𝜋|𝑉0 :
𝑉0 → 𝑝−1(𝑉 ) is a homeomorphism, and combining everything we define the required
trivial localization 𝜙𝑉 : 𝑝−1(𝑉 )→ 𝑉 × 𝐼 via the composition 𝜙𝑉 := Φ𝑉 ∘ 𝜋|−1

𝑉0 .

The trivializations 𝜙𝑈 and 𝜙𝑉 constructed above look similar, and this might
suggest that they actually coincide where both are defined, i.e., that 𝜙𝑉 (𝜙−1

𝑈 (𝑧, 𝑡)) = (𝑧, 𝑡)
for every (𝑧, 𝑡) ∈ (𝑈∩𝑉 )×𝐼, but this is far from being true. Consider for example 𝑧 = (0, 1),
so that for any 𝑡 ∈ 𝐼 we can write ((0, 1), 𝑡) =

(︁
𝐸
(︁

1
4

)︁
, 𝑡
)︁
, and therefore

𝜙−1
𝑈 ((0, 1), 𝑡) =

[︁
1
4 , 𝑡
]︁
.

Now, if we are careless we might say that

𝜙𝑉
(︁[︁

1
4 , 𝑡
]︁)︁

=
(︁
𝐸
(︁

1
4

)︁
, 𝑡
)︁

= ((0, 1), 𝑡)

and conclude that 𝜙𝑉 and 𝜙𝑈 really coincide. The problem is that before applying 𝜙𝑉 we
need to rewrite the input in the form [𝑠, 𝑡] with (𝑠, 𝑡) belonging to 𝑉0, and

(︁
1
4 , 𝑡
)︁

does not
belong to 𝑉0! In order to fix this, we note that

(︁
5
4 , 1− 𝑡

)︁
belongs to 𝑉0, and it is in the

same orbit of
(︁

1
4 , 𝑡
)︁

since
(︁

5
4 , 1− 𝑡

)︁
=
(︁

1
4 + 1, 1

2 + (−1)1
(︁
𝑡− 1

2

)︁)︁
= 1 ·

(︁
1
4 , 𝑡
)︁
.

It follows that

𝜙𝑉
(︁[︁

1
4 , 𝑡
]︁)︁

= 𝜙𝑉
(︁[︁

5
4 , 1− 𝑡

]︁)︁
=
(︁
𝐸
(︁

5
4

)︁
, 1− 𝑡

)︁
= ((0, 1), 1− 𝑡);

therefore, going back and forth along the trivializations results in a vertical reflection of
(𝑈 ∩ 𝑉 )× 𝐼 along the axis (𝑈 ∩ 𝑉 )×

{︁
1
2

}︁
.

6.2 Feldbau’s Theorem

The goal of this short section is to prove Feldbau’s Theorem, one of the most
important basic results in the theory of locally trivial bundles. It plays a crucial role in
the next section where we study the lifting properties of the projection map of a locally
trivial bundle, and it is these properties that allow us to develop Obstruction Theory for
locally trivial bundles.

The lemma below on locally trivial bundles over cylinders is the main technical
result used in the proof of Feldbau’s Theorem.

6.2.1 Lemma. Let 𝐵 be any space, and suppose 𝜉 = (𝐸,𝐹,𝐵 × [𝑎, 𝑏], 𝑝) is a locally
trivial bundle over the cylinder 𝐵× [𝑎, 𝑏]. If there exists 𝑐 ∈ (𝑎, 𝑏) such that the restricted
bundles 𝜉|𝐵×[𝑎,𝑐] and 𝜉|𝐵×[𝑐,𝑏] are both trivial, then 𝜉 itself is trivial.
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Proof. Consider local trivializations

𝜙 : (𝐵 × [𝑎, 𝑐])× 𝐹 → 𝑝−1(𝐵 × [𝑎, 𝑐]),

𝜓 : (𝐵 × [𝑐, 𝑏])× 𝐹 → 𝑝−1(𝐵 × [𝑐, 𝑏]).

We want to somehow glue these two trivializations along (𝐵 × {𝑐}) × 𝐹 , but since they
do not necessarily agree on this subspace, we need to modify them before performing this
gluing.

The restriction 𝜙|(𝐵×{𝑐})×𝐹 defines a homeomorphism (𝐵×{𝑐})×𝐹 ∼= 𝑝−1(𝐵×{𝑐}),
the same being true of the restriction 𝜓|(𝐵×{𝑐})×𝐹 . We can then find a homeomorphism
𝛼 : 𝐹 → 𝐹 such that the equality

𝜓−1(𝜙((𝑥, 𝑐), 𝑧)) = ((𝑥, 𝑐), 𝛼(𝑧))

holds for every 𝑥 ∈ 𝐵 and 𝑧 ∈ 𝐹 . Using this auxiliary map we define Φ : (𝐵× [𝑎, 𝑏])×𝐹 →
𝐸 by the formula

Φ((𝑥, 𝑡), 𝑧) :=

⎧⎪⎨⎪⎩𝜙((𝑥, 𝑡), 𝑧), if 𝑎 ≤ 𝑡 ≤ 𝑐,

𝜓((𝑥, 𝑡), 𝛼(𝑧)), if 𝑐 ≤ 𝑡 ≤ 𝑏.

Notice that, for 𝑡 = 𝑐, the two expression above coincide since

𝜓((𝑥, 𝑐), 𝛼(𝑧)) = 𝜓(𝜓−1(𝜙((𝑥, 𝑐), 𝑧))) = 𝜙((𝑥, 𝑐), 𝑧),

therefore Φ is well-defined and continuous by the Pasting Lemma.

Using that 𝜙, 𝜓 and 𝛼 are homeomorphisms, it is straightforward to check that Φ
is a bijection. Now let 𝐴 ⊆ (𝐵 × [𝑎, 𝑏])× 𝐹 be a closed subset. The intersections

𝐴1 := 𝐴 ∩ ((𝐵 × [𝑎, 𝑐])× 𝐹 ) and 𝐴2 := 𝐴 ∩ ((𝐵 × [𝑐, 𝑏])× 𝐹 )

are closed in (𝐵 × [𝑎, 𝑐])× 𝐹 and (𝐵 × [𝑐, 𝑏])× 𝐹 , respectively, and we can write

Φ(𝐴) = Φ(𝐴1) ∪ Φ(𝐴2).

Since Φ is equal to 𝜙 on the subspace (𝐵 × [𝑎, 𝑐])× 𝐹 , we have the equality

Φ(𝐴1) = 𝜙(𝐴1),

which is a closed subset of 𝑝−1(𝐵× [𝑎, 𝑐]), since 𝜙 is a homeomorphism; but 𝑝−1(𝐵× [𝑎, 𝑐])
is closed in 𝐸, therefore Φ(𝐴1) is closed in 𝐸. For the other intersection, by definition of
Φ we can write

Φ(𝐴2) = (𝜓 ∘ (id𝐵×[𝑐,𝑏] × 𝛼))(𝐴2),

so this image is a closed subset of 𝑝−1(𝐵×[𝑐, 𝑏]), since 𝜓∘(id𝐵×[𝑐,𝑏]×𝛼) is a homeomorphism;
and then reasoning like in the previous case we deduce that Φ(𝐴2) is closed in 𝐸 too.
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It follows that Φ(𝐴) is the union of two closed subsets of 𝐸, so it is also closed in
𝐸. This means that Φ is a closed map, but since we already know that it is a bijection, we
deduce that Φ is in fact a homeomorphism, and it defines the desired global trivialization
of 𝜉. �

6.2.2 Remark. We will need a version of Lemma 6.2.1 which follows from the one we just
proved, although it certainly looks stronger. In this version, we consider a finite number
of spaces 𝑋1, . . . , 𝑋𝑛, and a locally trivial bundle

𝑝 : 𝐸 → 𝑋1 × · · · ×𝑋𝑖−1 × [𝑎, 𝑏]×𝑋𝑖 × · · · ×𝑋𝑛.

If there exists a number 𝑐 ∈ (𝑎, 𝑏) such that restrictions of the bundle above to 𝑋1 ×
· · ·𝑋𝑖−1× [𝑎, 𝑐]×𝑋𝑖× · · · ×𝑋𝑛 and 𝑋1× · · · ×𝑋𝑖−1× [𝑐, 𝑏]×𝑋𝑖× · · ·𝑋𝑛 are both trivial,
then the original bundle is also trivial.

This version follows from the one we proved because there is a homeomorphism

𝑋1 × · · · ×𝑋𝑖−1 × [𝑎, 𝑏]×𝑋𝑖 × · · · ×𝑋𝑛
∼= (𝑋1 × · · · ×𝑋𝑛)× [𝑎, 𝑏],

therefore the bundle in question is isomorphic to a bundle over (𝑋1 × · · ·𝑋𝑛) × [𝑎, 𝑏] to
which we can apply Lemma 6.2.1.

With Lemma 6.2.1 we can prove the main result of the section.

6.2.3 Theorem (Feldbau). Every locally trivial bundle over the 𝑛-cube 𝐼𝑛 is globally
trivial, where 𝑛 ≥ 0 is an integer.

Proof. Let 𝜉 = (𝐸,𝐹, 𝐼𝑛, 𝑝) be a locally trivial bundle over 𝐼𝑛. By the Lebesgue Covering
Lemma, we can find a sufficiently big integer 𝑁 > 0 such that, for any integers 𝑖1, . . . , 𝑖𝑛 ∈
{0, . . . , 𝑁 − 1}, the subcube [︁

𝑖1
𝑁
, 𝑖1+1

𝑁

]︁
× · · · ×

[︁
𝑖𝑛
𝑁
, 𝑖𝑛+1

𝑁

]︁
⊆ 𝐼𝑛

is contained in a trivializing neighborhood, therefore the restriction of 𝜉 to this subcube
is trivial.

Now, if we fix the first 𝑛− 1 integers 𝑖1, . . . , 𝑖𝑛−1 ∈ {0, . . . , 𝑁 − 1}, we claim that
𝜉 is actually trivial when restricted to the strip[︁

𝑖1
𝑁
, 𝑖1+1

𝑁

]︁
× · · · ×

[︁
𝑖𝑛−1
𝑁
, 𝑖𝑛−1+1

𝑁

]︁
× 𝐼.

Indeed, if we let
𝐶𝑛 :=

[︁
𝑖1
𝑁
, 𝑖1+1

𝑁

]︁
× · · · ×

[︁
𝑖𝑛
𝑁
, 𝑖𝑛+1

𝑁

]︁
denote the “horizontal part” of this strip, then we know that 𝜉 is trivial when restricted
to the subcubes 𝐶𝑛×

[︁
0, 1

𝑁

]︁
and 𝐶𝑛×

[︁
1
𝑁
, 2
𝑁

]︁
, therefore 𝜉 is trivial when restricted to the
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subcube 𝐶𝑛×
[︁
0, 2

𝑁

]︁
by Lemma 6.2.1 But 𝜉 is also trivial when restricted to 𝐶𝑛×

[︁
2
𝑁
, 3
𝑁

]︁
,

so using Lemma 6.2.1 again we conclude that 𝜉 is trivial over 𝐶𝑛×
[︁
0, 3

𝑁

]︁
. Proceeding like

this we eventually deduce that 𝜉 is trivial over 𝐶𝑛 × 𝐼.

Now consider only 𝑛− 1 integers 𝑖1, . . . , 𝑖𝑛−1 ∈ {0, . . . , 𝑁 − 1}, and let

𝐶𝑛−1 :=
[︁
𝑖1
𝑁
, 𝑖1+1

𝑁

]︁
× · · · ×

[︁
𝑖𝑛−1
𝑁
, 𝑖𝑛−1+1

𝑁

]︁
.

We claim that 𝜉 is trivial over 𝐶𝑛−1 × 𝐼 × 𝐼. Indeed, by the previous paragraph we know
that 𝜉 is trivial over 𝐶𝑛−1 ×

[︁
0, 1

𝑁

]︁
× 𝐼 and 𝐶𝑛−1 ×

[︁
1
𝑁
, 2
𝑁

]︁
× 𝐼, so Lemma 6.2.1 (and

also Remark 6.2.2) implies that 𝜉 is trivial over 𝐶𝑛−1 ×
[︁
0, 2

𝑁

]︁
× 𝐼. Proceeding like in the

previous case we eventually deduce the desired triviality condition.

Repeating the reasoning above a bunch of times we eventually show that, for any
choice of integer 𝑖1 ∈ {0, . . . , 𝑁 − 1}, the bundle 𝜉 is trivial over

[︁
𝑖1
𝑁
, 𝑖1+1

𝑁

]︁
× (𝐼 × · · · × 𝐼).

Varying 𝑖1 and applying Lemma 6.2.1 like in the previous cases we see that 𝜉 is trivial
over 𝐼𝑛 �

6.3 Lifting properties

In this section we prove several results characterizing the lifting properties of the
projection map of a locally trivial bundle. We first prove that certain simple inclusions
can be lifted, and then use this to prove similar lifting results for certain inclusion of
CW-complexes and for homotopically simple maps. These results will be crucial for the
construction of the long exact sequence of homotopy groups associated to a locally trivial
bundle in the next section, which constitutes our main tool for calculating some homotopy
groups.

We begin by defining the meaning of a lifting property.

6.3.1 Definition. We say that a map 𝑝 : 𝐸 → 𝐵 has the right lifting property with
respect to a map 𝑖 : 𝑋 → 𝑌 , if, given any maps 𝑓 : 𝑋 → 𝐸 and 𝑔 : 𝑌 → 𝐵 such that the
square below is commutative,

𝑋 𝐸

𝑌 𝐵

𝑓

𝑖 𝑝

𝑔

there exists a diagonal map ℎ : 𝑌 → 𝐸 such that the resulting diagram below is still
commutative.

𝑋 𝐸

𝑌 𝐵

𝑓

𝑖 𝑝

𝑔

ℎ
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Our first important theorem is that the projection of a locally trivial bundle has
the right lifting property with respect to a family of simple inclusions.

6.3.2 Theorem. Let 𝑝 : 𝐸 → 𝐵 be a locally trivial bundle with typical fiber 𝐹 . Then 𝑝

has the right lifting property with respect to the inclusion 𝑖𝐼𝑛,0 : 𝐼𝑛 → 𝐼𝑛 × 𝐼 for every
integer 𝑛 ≥ 0.

Proof. We first prove that the result holds in the case where the locally trivial bundle is
globally trivial. Consider then the commutative square below.

𝐼𝑛 𝐵 × 𝐹

𝐼𝑛 × 𝐼 𝐵

𝑓

𝑖𝐼𝑛,0 𝜋1

𝑔

Define ℎ : 𝐼𝑛 × 𝐼 → 𝐵 × 𝐹 by the formula

ℎ(𝑠, 𝑡) := (𝑔(𝑠, 𝑡), 𝜋2(𝑓(𝑠)))

for any 𝑠 = (𝑠1, . . . , 𝑠𝑛) ∈ 𝐼𝑛 and any 𝑡 ∈ 𝐼, where 𝜋2 : 𝐵 × 𝐹 → 𝐹 is the canonical
projection.

Let us check that ℎ defined as above satisfies the two required conditions. On the
one hand

𝜋1(ℎ(𝑠, 𝑡)) = 𝜋1(𝑔(𝑠, 𝑡), 𝜋2(𝑓(𝑠))) = 𝑔(𝑠, 𝑡),

which means that 𝜋1 ∘ ℎ = 𝑔. On the other hand,

𝜋1(ℎ(𝑖𝐼𝑛,0(𝑠))) = 𝜋1(ℎ(𝑠, 0)) = 𝑔(𝑠, 0) = 𝜋1(𝑓(𝑠)),

and also

𝜋2(ℎ(𝑖𝐼𝑛,0(𝑠))) = 𝜋2(ℎ(𝑠, 0)) = 𝜋2(𝑔(𝑠, 0), 𝜋2(𝑓(𝑠))) = 𝜋2(𝑓(𝑠)).

These two equalities mean that 𝜋1 ∘ ℎ ∘ 𝑖𝐼𝑛,0 = 𝜋1 ∘ 𝑓 and 𝜋2 ∘ ℎ ∘ 𝑖𝐼𝑛,0 = 𝜋2 ∘ 𝑓 , and by
combining these two equalities we deduce that ℎ ∘ 𝑖𝐼𝑛,0 = 𝑓 .

Now let 𝑝 : 𝐸 → 𝐵 be an arbitrary locally trivial bundle with typical fiber 𝐹 .
Consider the pullback bundle 𝑔*𝑝 : 𝑔*𝐸 → 𝐼𝑛 × 𝐼 which fits in the commutative square
below.

𝑔*𝐸 𝐸

𝐼𝑛 × 𝐼 𝐵

𝐺

𝑔*𝑝 𝑝

𝑔
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Using the universal property of the product we obtain a map 𝛼 : 𝐼𝑛 → 𝑔*𝐸 that fits in
the commutative diagram below.

𝐼𝑛 𝑔*𝐸 𝐸

𝐼𝑛 × 𝐼 𝐼𝑛 × 𝐼 𝐵

𝛼

𝑖𝐼𝑛,0

𝑓

𝐺

𝑔*𝑝 𝑝

id 𝑔

Since 𝐼𝑛×𝐼 is homeomorphic to the cube 𝐼𝑛+1, Feldbau’s Theorem (Theorem 6.2.3)
implies that the pullback 𝑔*𝑝 : 𝑔*𝐸 → 𝐼𝑛 × 𝐼 is a trivial bundle, therefore we can find a
diagonal map 𝛽 : 𝐼𝑛×𝐼 → 𝑔*𝐸 such that the resulting diagram below is still commutative.

𝐼𝑛 𝑔*𝐸 𝐸

𝐼𝑛 × 𝐼 𝐼𝑛 × 𝐼 𝐵

𝛼

𝑖𝐼𝑛,0

𝑓

𝐺

𝑔*𝑝 𝑝

id

𝛽

𝑔

We then define ℎ : 𝐼𝑛 × 𝐼 → 𝐸 as ℎ := 𝐺 ∘ 𝛽. This map satisfies the two required
conditions, since on the one hand

𝑝 ∘ ℎ = 𝑝 ∘𝐺 ∘ 𝛽

= 𝑔 ∘ 𝑔*𝑝 ∘ 𝛽

= 𝑔 ∘ id𝐼𝑛×𝐼

= 𝑔,

while on the other

ℎ ∘ 𝑖𝐼𝑛,0 = 𝐺 ∘ 𝛽 ∘ 𝑖𝐼𝑛,0

= 𝐺 ∘ 𝛼

= 𝑓. �

Since the 𝑛-dimensional cube 𝐼𝑛 is homeomorphic to the 𝑛-dimensional disk 𝐷𝑛,
Theorem 6.3.2 can also be stated in terms of disks.

6.3.3 Corollary. Let 𝑝 : 𝐸 → 𝐵 be a locally trivial bundle with typical fiber 𝐹 . Then 𝑝

has the right lifting property with respect to the inclusion 𝑖𝐷𝑛,0 : 𝐷𝑛 → 𝐷𝑛 × 𝐼 for every
integer 𝑛 ≥ 0.

So far we have proved that we can lift maps 𝑔 : 𝐷𝑛 × 𝐼 → 𝐵 through a locally
trivial projection 𝑝 : 𝐸 → 𝐵 by specifying the initial stage of the lift, that is, by imposing
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conditions on the values ℎ(𝑥, 0) for a lift ℎ : 𝐷𝑛× 𝐼 → 𝐸. In many cases, however, we will
need a more refined control over the lift obtained by specifying not just its initial stage,
but also its behavior along a subspace 𝐴 ⊆ 𝑋, that is, by specifying the values ℎ(𝑥, 𝑡) for
𝑥 ∈ 𝐴 and 𝑡 ∈ 𝐼.

Naturally, this is not always possible, we need to impose some nice conditions on
the subspace. We start by studying the case of the subspace inclusion 𝑆𝑛−1 ⊆ 𝐷𝑛. The
problem then is to lift a map 𝑔 : 𝐷𝑛 × 𝐼 → 𝐵 through the projection 𝑝 : 𝐸 → 𝐵 subject
to predetermined conditions on the subspace 𝐷𝑛×{0} ∪ 𝑆𝑛−1× 𝐼 ⊆ 𝐷𝑛× 𝐼. The trick is
to compare this inclusion with a more familiar one.

6.3.4 Lemma (“Stacking cups” homeomorphism). For every integer 𝑛 ≥ 0, there exists
a homeomorphism 𝑢 : 𝐷𝑛× 𝐼 → 𝐷𝑛× 𝐼 such that 𝑢(𝐷𝑛×{0}) = (𝐷𝑛×{0})∪ (𝑆𝑛−1× 𝐼).

Sketch of proof. If 𝑛 = 0 the result is trivial, because in this case 𝑆−1 = ∅, and then the
identity id𝐷𝑛×𝐼 satisfies the required conditions, so we suppose from now on that 𝑛 ≥ 1.

Recall that the map 𝑞 : 𝑆𝑛−1 × 𝐼 → 𝐷𝑛 given by (𝑥, 𝑡) ↦→ 𝑡 · 𝑥 is a quotient map.
In particular 𝑞 × id𝐼 : (𝑆𝑛−1 × 𝐼)× 𝐼 → 𝐷𝑛 × 𝐼 is also a quotient map, since 𝐼 is locally
compact Hausdorff.

Define 𝑈 : (𝑆𝑛−1 × 𝐼)× 𝐼 → 𝐷𝑛 × 𝐼 by the formula

𝑈((𝑥, 𝑠), 𝑡) :=

⎧⎪⎨⎪⎩(2𝑠(1− 𝑡) · 𝑥, 𝑡), if 0 ≤ 𝑠 ≤ 1
2 ,

((1− 𝑡) · 𝑥, 2
(︁
𝑠− 1

2

)︁
(1− 𝑡) + 𝑡), if 1

2 ≤ 𝑠 ≤ 1.

This is a well-defined function, because at 𝑠 = 1
2 both expressions evaluate to ((1−𝑡) ·𝑥, 𝑡),

and the Pasting Lemma then implies its continuity.

The only fibers of 𝑞 × id𝐼 : (𝑆𝑛−1 × 𝐼) × 𝐼 → 𝐷𝑛 × 𝐼 which contain more than a
single point are those over points of the form (0, 𝑡), and we can describe them explicitly
as

(𝑞 × id𝐼)−1(0, 𝑡) = (𝑆𝑛−1 × {0})× {𝑡}.

Since for any 𝑥 ∈ 𝑆𝑛−1 we have 𝑈((𝑥, 0), 𝑡) = (0, 𝑡), it follows that 𝑈 is constant on the
fibers of 𝑞×id𝐼 , therefore it can be factored through it to define a map 𝑢 : 𝐷𝑛×𝐼 → 𝐷𝑛×𝐼.

Notice that the map 𝑈 satisfies

𝑈
(︁(︁
𝑆𝑛−1 ×

[︁
0, 1

2

]︁)︁
× {0}

)︁
⊆ 𝐷𝑛 × {0} and 𝑈

(︁(︁
𝑆𝑛−1 ×

[︁
1
2 , 1

]︁)︁
× {0}

)︁
⊆ 𝑆𝑛−1 × 𝐼,

therefore the induced map 𝑢 satisfies 𝑢(𝐷𝑛 × {0}) ⊆ (𝐷𝑛 × {0}) ∪ (𝑆𝑛−1 × 𝐼).

We trust the reader will believe that this map 𝑢 is a homeomorphism. �

With this auxiliary homeomorphism at our disposal, we can prove the existence
of lifts satisfying extra conditions.
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6.3.5 Proposition. Let 𝑝 : 𝐸 → 𝐵 be a locally trivial bundle with typical fiber 𝐹 . Given
any maps 𝑓 : (𝐷𝑛×{0})∪(𝑆𝑛−1×𝐼)→ 𝐸 and 𝑔 : 𝐷𝑛×𝐼 → 𝐵 satisfying 𝑝∘𝑓 = 𝑔∘𝑖, where
𝑖 : (𝐷𝑛×{0})∪ (𝑆𝑛−1× 𝐼) →˓ 𝐷𝑛× 𝐼 is the inclusion, there exists a map ℎ : 𝐷𝑛× 𝐼 → 𝐸

that makes the diagram below commute.

(𝐷𝑛 × {0}) ∪ (𝑆𝑛−1 × 𝐼) 𝐸

𝐷𝑛 × 𝐼 𝐵

𝑓

𝑖 𝑝

𝑔

ℎ

Proof. Consider the homeomorphism 𝑢 of Lemma 6.3.4 which fits in the commutative,
and form the commutative square below.

𝐷𝑛 𝐸

𝐷𝑛 × 𝐼 𝐵

𝑓∘𝑢∘𝑖𝐷𝑛,0

𝑖𝐷𝑛,0 𝑝

𝑔∘𝑢

Since (𝑢 ∘ 𝑖𝐷𝑛,0)(𝐷𝑛) ⊆ (𝐷𝑛 × {0})∪ (𝑆𝑛−1 × 𝐼), and the restriction of 𝑔 to this subspace
coincides with 𝑝 ∘ 𝑓 by hypothesis, the diagram above is commutative.

Using Corollary 6.3.3 we obtain a diagonal map 𝜃 : 𝐷𝑛 × 𝐼 → 𝐸 satisfying the
equations 𝑝∘ 𝜃 = 𝑔 ∘𝑢 and 𝜃 ∘ 𝑖𝐷𝑛,0 = 𝑓 ∘𝑢∘ 𝑖𝐷𝑛,0. We claim that the map ℎ : 𝐷𝑛× 𝐼 → 𝐸

defined as ℎ := 𝜃 ∘𝑢−1 is the desired lift. Indeed, on the one hand the equality 𝑝∘𝜃 = 𝑔 ∘𝑢
implies 𝑝 ∘ 𝜃 ∘ 𝑢−1 = 𝑔, that is, 𝑝 ∘ ℎ = ℎ; and on the other, since any point (𝑦, 𝑡) ∈
(𝐷𝑛 × {0}) ∪ (𝑆𝑛−1 × 𝐼) is of the form (𝑦, 𝑡) = 𝑢(𝑥, 0) for some 𝑥 ∈ 𝐷𝑛, we have

ℎ(𝑦, 𝑡) = ℎ(𝑢(𝑥, 0)) = 𝜃(𝑢−1(𝑢(𝑥, 0))) = 𝜃(𝑥, 0) = 𝑓(𝑢(𝑥, 0)) = 𝑓(𝑦, 𝑡). �

We now derive some useful corollaries from this enhanced lifting result.

6.3.6 Corollary. Let 𝑝 : 𝐸 → 𝐵 be a locally trivial bundle with typical fiber 𝐹 , and let
(𝑋,𝐴) be a pair such that 𝑋 is obtained from 𝐴 by cell attachments. Suppose we are given
maps 𝑓 : (𝑋 × {0}) ∪ (𝐴× 𝐼)→ 𝐸 and 𝑔 : 𝑋 × 𝐼 → 𝐵 such that 𝑝 ∘ 𝑓 = 𝑔|(𝑋×{0})∪(𝐴×𝐼).
There exists a map ℎ : 𝑋 × 𝐼 → 𝐸 making the diagram below commute.

(𝑋 × {0}) ∪ (𝐴× 𝐼) 𝐸

𝑋 × 𝐼 𝐵

𝑓

𝑝

𝑔

ℎ

Proof. By the definition of cell attachment, there exists a family of maps {Φ𝑒 : 𝐷𝑑(𝑒) →
𝑋}𝑒∈ℰ satisfying the two following conditions:

1. Φ𝑒(𝑆𝑑(𝑒)−1) ⊆ 𝐴 for every 𝑒 ∈ ℰ ;
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2. the diagram below is a pushout square.

⨆︀
𝑒∈ℰ

𝑆𝑑(𝑒)−1 𝐴

⨆︀
𝑒∈ℰ

𝐷𝑑(𝑒) 𝑋

⟨𝜙𝑒⟩𝑒∈ℰ

⟨Φ𝑒⟩𝑒∈ℰ

Since the functor −×𝐼 is a left adjoint, it commutes with coproducts and pushouts,
therefore the diagram below is also a pushout square.

⨆︀
𝑒∈ℰ

(𝑆𝑑(𝑒)−1 × 𝐼) 𝐴× 𝐼

⨆︀
𝑒∈ℰ

(𝐷𝑑(𝑒) × 𝐼) 𝑋 × 𝐼

⟨𝜙𝑒×id𝐼⟩𝑒∈ℰ

⟨Φ𝑒×id𝐼⟩𝑒∈ℰ

For every 𝑒 ∈ ℰ , the restriction of Φ𝑒×id𝐼 to (𝐷𝑑(𝑒)×{0})∪(𝑆𝑑(𝑒)−1×𝐼) takes values
in (𝑋×{0})∪(𝐴×𝐼), therefore we can consider the map 𝑓𝑒 : (𝐷𝑑(𝑒)×{0})∪(𝑆𝑑(𝑒)−1×𝐼)→ 𝐸

defined by the composition

𝑓𝑒 := 𝑓 ∘ (Φ𝑒 × id𝐼)|(𝐷𝑑(𝑒)×{0})∪(𝑆𝑑(𝑒)−1×𝐼).

We also consider the map 𝑔𝑒 : 𝐷𝑑(𝑒) × 𝐼 → 𝐵 defined as

𝑔𝑒 := 𝑔 ∘ (Φ𝑒 × id𝐼).

Since 𝑓 is a partial lift of 𝑔 over (𝑋 × {0}) ∪ (𝐴× 𝐼), it follows that 𝑓𝑒 is a partial lift of
𝑔𝑒 over (𝐷𝑑(𝑒) × {0}) ∪ (𝑆𝑑(𝑒)−1 × 𝐼), i.e., the square below is commutative.

(𝐷𝑑(𝑒) × {0}) ∪ (𝑆𝑑(𝑒)−1 × 𝐼) 𝐸

𝐷𝑑(𝑒) × 𝐼 𝐵

𝑓𝑒

𝑝

𝑔𝑒

Applying Proposition 6.3.5 we obtain a map ℎ𝑒 : 𝐷𝑑(𝑒) × 𝐼 → 𝐸 lifting 𝑔𝑒 and
coinciding with 𝑓𝑒 on the subspace (𝐷𝑑(𝑒) × {0}) ∪ (𝑆𝑑(𝑒)−1 × 𝐼). The maps ℎ𝑒 so defined
for all 𝑒 ∈ ℰ give rise to an induced map

⟨ℎ𝑒⟩𝑒∈ℰ :
⨆︁
𝑒∈ℰ

𝐷𝑑(𝑒) × 𝐼 → 𝐸.

The defining property of ℎ𝑒 is such that the restriction ℎ𝑒|𝑆𝑑(𝑒)×𝐼 is equal to 𝑓𝑒|𝑆𝑑(𝑒)×𝐼 , and
this latter restriction is the same as the composition 𝑓 |𝐴×𝐼 ∘ (𝜙𝑒× id𝐼). Since this holds for
every 𝑒 ∈ ℰ , it follows that the “outer square” of the diagram below commutes, therefore
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the universal property of the pushout implies the existence of the map ℎ : 𝑋 × 𝐼 → 𝐸

making the whole diagram commute.

⨆︀
𝑒∈ℰ

𝑆𝑑(𝑒)−1 × 𝐼 𝐴× 𝐼

⨆︀
𝑒∈ℰ

𝐷𝑑(𝑒) × 𝐼 𝑋 × 𝐼

𝐸

⟨𝜙𝑒×id𝐼⟩𝑒∈ℰ

𝑓 |𝐴×𝐼

⟨Φ𝑒×id𝐼⟩𝑒∈ℰ

⟨ℎ𝑒⟩𝑒∈ℰ

ℎ

We would like to show that ℎ is the desired lift of 𝑔. In order to do this, we need to
show that ℎ satisfies the equation 𝑝∘ℎ = 𝑔, and that its restriction to (𝑋×{0})∪ (𝐴× 𝐼)
coincides with 𝑓 . From the diagram above we see immediately that ℎ coincides with 𝑓

over 𝐴 × 𝐼. Now, given (𝑥, 0) ∈ 𝑋 × {0}, if 𝑥 ∈ 𝐴, then we have already shown that
ℎ(𝑥, 0) = 𝑓(𝑥, 0); but if 𝑥 ∈ 𝑋 ∖ 𝐴, then according to Definition 1.2.1 there is a point
𝑎 ∈ 𝐷𝑑(𝑒) such that 𝑥 = Φ𝑒(𝑎) for some 𝑒 ∈ ℰ , therefore

ℎ(𝑥, 0) = ℎ(Φ𝑒 × id𝐼(𝑎, 0))

= ℎ𝑒(𝑎, 0)

= 𝑓𝑒(𝑎, 0)

= 𝑓(Φ𝑒 × id𝐼(𝑎, 0))

= 𝑓(𝑥, 0).

In order to show that ℎ is a lift of 𝑔, notice that

(𝑝 ∘ ℎ)|𝐴×𝐼 = 𝑝 ∘ ℎ|𝐴×𝐼 = 𝑝 ∘ 𝑓 |𝐴×𝐼 = 𝑔|𝐴×𝐼 ,

and also that

𝑝 ∘ ℎ ∘ ⟨Φ𝑒 × id𝐼⟩𝑒∈ℰ = 𝑝 ∘ ⟨ℎ𝑒⟩𝑒∈ℰ

= ⟨𝑝 ∘ ℎ𝑒⟩𝑒∈ℰ

= ⟨𝑔𝑒⟩𝑒∈ℰ

= ⟨𝑔 ∘ (Φ𝑒 × id𝐼)⟩𝑒∈ℰ

= 𝑔 ∘ ⟨Φ𝑒 × id𝐼⟩𝑒∋ℰ .

This means that both 𝑔 and 𝑝 ∘ ℎ make the diagram below commute, so the uniqueness
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in the universal property of the pushout implies that 𝑝 ∘ ℎ = 𝑔.

⨆︀
𝑒∈ℰ

𝑆𝑑(𝑒)−1 × 𝐼 𝐴× 𝐼

⨆︀
𝑒∈ℰ

𝐷𝑑(𝑒) × 𝐼 𝑋 × 𝐼

𝐵

⟨𝜙𝑒×id𝐼⟩𝑒∈ℰ

𝑔|𝐴×𝐼

⟨Φ𝑒×id𝐼⟩𝑒∈ℰ

𝑔∘⟨Φ𝑒×id𝐼⟩𝑒∈ℰ

𝑝∘ℎ

𝑔

�

The previous result has a particularly simple form for CW-complexes.

6.3.7 Corollary. Let 𝑝 : 𝐸 → 𝐵 be a locally trivial bundle with typical fiber 𝐹 , and
let 𝑋 be a CW-complex. Suppose we are given maps 𝑓 : 𝑋 → 𝐸 and 𝑔 : 𝑋 × 𝐼 → 𝐵

such that 𝑔 ∘ 𝑖𝑋,0 = 𝑝 ∘ 𝑓 . There exists a map ℎ : 𝑋 × 𝐼 → 𝐸 making the diagram below
commute.

𝑋 𝐸

𝑋 × 𝐼 𝐵

𝑓

𝑖𝑋,0 𝑝

𝑔

ℎ

In other words, 𝑝 has the right lifting property with respect to the cylinder inclusion
𝑖𝑋,0 : 𝑋 → 𝑋 × 𝐼 for any CW-complex 𝑋.

Proof. Consider the skeletal filtration of 𝑋:

∅ = 𝑋−1 ⊆ 𝑋0 ⊆ 𝑋1 ⊆ · · · ⊆ 𝑋𝑛 ⊆ · · · ⊆ 𝑋.

Using that 𝑋 is the colimit of its skeletons, it follows that the existence of ℎ is equivalent
to the existence of a collection of maps {ℎ𝑛 : 𝑋𝑛 × 𝐼 → 𝐸}𝑛≥0 satisfying the following
conditions:

1. ℎ𝑛|𝑋𝑛−1×𝐼 = ℎ𝑛−1 for every 𝑛 ≥ 1;

2. 𝑝 ∘ ℎ𝑛 = 𝑔|𝑋𝑛×𝐼 for every 𝑛 𝑔𝑒𝑞0;

3. ℎ𝑛 ∘ 𝑖𝑋𝑛,0 = 𝑓 |𝑋𝑛 for every 𝑛 ≥ 0.

The first of these conditions ensures that the collection {ℎ𝑛}𝑛≥0 induces a map ℎ : 𝑋×𝐼 →
𝐸, while the two other conditions ensure that the induced map ℎ will satisfy the required
commutativity properties.

We construct the maps ℎ𝑛 by induction. Since 𝑋0 is obtained by attaching points
(0-dimensional disks) to the empty set, 𝑋0 consists of a discrete collection of points
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{Φ𝑒(pt)}𝑒∈ℰ0 , where Φ𝑒 : 𝐷0 → 𝑋0 are the attaching maps. The product 𝑋0 × 𝐼 is
then a disjoint union of copies of the unit interval, and for each 𝑒 ∈ ℰ0 we define

ℎ0(Φ𝑒(pt), 𝑡) := 𝑓(Φ𝑒(pt))

for every 𝑡 ∈ 𝐼, so that ℎ0 automatically satisfies 𝑝 ∘ ℎ0 = 𝑔 ∘ 𝑖𝑋0,0 and ℎ0 ∘ 𝑖𝑋0,0 = 𝑓 |𝑋0 .

Now suppose we have defined ℎ𝑛 : 𝑋𝑛 × 𝐼 → 𝐸 satisfying the required conditions,
and let us define ℎ𝑛+1. Let 𝐹 : (𝑋𝑛+1 × {0}) ∪ (𝑋𝑛 × 𝐼)→ 𝐸 be the map defined by the
conditions 𝐹 (𝑥, 0) = 𝑓(𝑥) for every 𝑥 ∈ 𝑋𝑛+1, and 𝐹 |𝑋𝑛×𝐼 = ℎ𝑛. Notice that this is well-
defined because ℎ𝑛 ∘ 𝑖𝑋𝑛,0 = 𝑓 |𝑋𝑛 holds by the inductive hypothesis, and the continuity
of 𝐹 then follows from the Pasting Lemma. If we combine the initial hypothesis that
𝑝 ∘ 𝑓 = 𝑔 ∘ 𝑖𝑋,0 with the inductive hypothesis saying that 𝑝 ∘ ℎ𝑛 = 𝑔|𝑋𝑛×𝐼 , it follows
that the outer square below is commutative, therefore from Corollary 6.3.6 we deduce the
existence of a map ℎ𝑛+1 : 𝑋𝑛+1 × 𝐼 → 𝐸 making the whole diagram commute.

(𝑋𝑛+1 × {0}) ∪ (𝑋𝑛 × 𝐼) 𝐸

𝑋𝑛+1 × 𝐼 𝐵

𝐹

𝑝

𝑔|𝑋𝑛+1×𝐼

ℎ𝑛+1

The condition 𝑝 ∘ ℎ𝑛+1 = 𝑔|𝑋𝑛+1×𝐼 is immediate from the commutativity, while the other
two conditions that ℎ𝑛+1 must satisfy follow from the fact that ℎ𝑛+1 coincides with 𝐹

when restricted to (𝑋𝑛+1 × {0}) ∪ (𝑋𝑛 × 𝐼). �

We finish this section by making some general remarks on lifting properties. In
Homotopy Theory, a map 𝑝 : 𝐸 → 𝐵 which has the right lifting property with respect
to the inclusion 𝑖𝐼𝑛,0 : 𝐼𝑛 → 𝐼𝑛 × 𝐼 for every integer 𝑛 ≥ 0 is called a Serre fibration.
Theorem 6.3.2 can then be restated as saying that the projection 𝑝 : 𝐸 → 𝐵 of a locally
trivial bundle is a Serre fibration. The proof we gave using Lebesgue’s Covering Lemma
and Feldbau’s Theorem can be adapted to show the following slightly stronger result: if
𝑝 : 𝐸 → 𝐵 is a map for which there exists an open cover {𝑈𝑗}𝑗∈𝐽 of 𝐵 such that the
restricted projection 𝑝|𝑝−1(𝑈𝑗) : 𝑝−1(𝑈𝑗) → 𝑈𝑗 is a Serre fibration for every 𝑗 ∈ 𝐽 , then 𝑝

itself is a Serre fibration. Brifely, a local Serre fibration is a Serre fibration. This implies
Theorem 6.3.2 because every trivial bundle is a Serre fibration, so a locally trivial bundle
is a local Serre fibration.

The results of this section show that a Serre fibration has the right lifting property
with respect to the cylinder inclusion 𝑋 → 𝑋 × 𝐼 also when 𝑋 is a CW-complex, and
that under certain conditions we can impose additional conditions on the lift.

If we demand that 𝑝 : 𝐸 → 𝐵 satisfies the stronger condition of having the right
lifting property with respect to the inclusion 𝑖𝑋,0 : 𝑋 → 𝑋×𝐼 for any space, not just cubes
or CW-complexes, then we say that 𝑝 is a Hurewicz fibration or simply a fibration.
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This is a much stronger condition than being a Serre fibration, and it implies some nice
properties on 𝑝 like the homotopy equivalence of fibers, for example.

Over nice spaces there is a local-to-global result for detecting fibrations: if 𝐵 is
a paracompact Hausdorff space, and 𝑝 : 𝐸 → 𝐵 is a map for which there exists an open
cover {𝑈𝑗}𝑗∈𝐽 of 𝐵 such that the restricted projection 𝑝|𝑝−1(𝑈𝑗) : 𝑝−1(𝑈𝑗)→ 𝑈𝑗 is a fibration
for every 𝑗 ∈ 𝐽 , then 𝑝 itself is a fibration. This result has a much more difficult proof
than the analogous result for Serre fibrations requiring some serious juggling of partitions
of unity. One important consequence of this is that every locally trivial bundle over a
paracompact Hausdorff space is a fibration, since trivial bundles are clearly fibrations.
We leave this registered here as a theorem, since we will need to refer to it later when
talking about Obstruction Theory.

6.3.8 Theorem. If 𝑝 : 𝐸 → 𝐵 is a locally trivial bundle with typical fiber 𝐹 , and 𝐵 is a
paracompact Hausdorff space, then 𝑝 is a fibration.

6.4 A long exact sequence
In this section we show how the lifting properties satisfied by the projection of a

locally trivial bundle allow us to construct a long exact sequence relating the homotopy
groups of the base space, the total space, and the typical fiber.

We first define a slightly generalized notion of exactness.

6.4.1 Definition. A triple of pointed sets and pointed functions

(𝑋, 𝑥0) (𝑌, 𝑦0) (𝑍, 𝑧0)
𝑓 𝑔

is said to be exact if the equality Im 𝑓 = 𝑔−1(𝑧0) holds.

A group 𝐺 gives rise to the pointed set (𝐺, 𝑒𝐺), where 𝑒𝐺 is the identity element of
the group, and since group homomorphisms preserve identities, a group homomorphism 𝑓 :
𝐺→ 𝐻 gives rise to a pointed function 𝑓 : (𝐺, 𝑒𝐺)→ (𝐻, 𝑒𝐻). Notice that the definition
of exact triple of pointed sets is such that a triple of groups and group homomorphisms

𝐺 𝐻 𝐿
𝑓 𝑔

is exact if, and only if, the corresponding triple of pointed sets and pointed functions

(𝐺, 𝑒𝐺) (𝐻, 𝑒𝐻) (𝐿, 𝑒𝐿)𝑓 𝑔

is exact. During the rest of this chapter, whenever we encounter a group in a context
involving pointed sets, we choose its identity element as basepoint, and therefore treat it
as a pointed set.
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We first construct exact triples of homotopy groups in different dimensions, and
then later we study how these different triples can be connected to form a long exact
sequence. The proof only uses the lifting properties proved in the previous section, so the
results holds in fact for any Serre fibration.

6.4.2 Proposition. Let 𝑝 : 𝐸 → 𝐵 be a locally trivial bundle with typical fiber 𝐹 . Given
a point 𝑏0 ∈ 𝐵, let 𝑖 : 𝑝−1(𝑏0) →˓ 𝐸 be the inclusion of the fiber over 𝑏0 into the total
space. For any choice of basepoint 𝑒0 ∈ 𝑝−1(𝑏0), and for any integer 𝑛 𝑔𝑒𝑞0, the sequence
of pointed sets and pointed functions below is exact.

𝜋𝑛(𝑝−1(𝑏0), 𝑒0) 𝜋𝑛(𝐸, 𝑒0) 𝜋𝑛(𝐵, 𝑏0)
𝜋𝑛(𝑖) 𝜋𝑛(𝑝)

Proof. Let [𝑓 ] ∈ 𝜋𝑛(𝑝−1(𝑏0), 𝑒0) be a pointed homotopy class represented by the pointed
map 𝑓 : (𝑆𝑛, *𝑆𝑛) → (𝑝−1(𝑏0), 𝑒0). Since the image of 𝑓 is contained in the fiber over 𝑏0,
the composite 𝑝 ∘ 𝑖 ∘ 𝑓 is constant and equal to 𝑏0, therefore

(𝜋𝑛(𝑝) ∘ 𝜋𝑛(𝑖))([𝑓 ]*) = [𝑝 ∘ 𝑖 ∘ 𝑓 ]* = [ct𝑆𝑛,𝑏0 ]*;

showing that the inclusion Im 𝜋𝑛(𝑖) ⊆ 𝜋𝑛(𝑝)−1([ct𝑆𝑛,𝑏0 ]*) holds.

Conversely, suppose [𝑓 ]* ∈ 𝜋𝑛(𝐸, 𝑒0) belongs to the kernel of 𝑝, so there exists a
pointed homotopy 𝑔 : 𝑆𝑛 × 𝐼 → 𝐵 from 𝑝 ∘ 𝑓 to ct𝑆𝑛,𝑏0 . Recall from Example 1.2.5 that
the pair (𝑆𝑛, *𝑆𝑛) is 𝑛-cellular, therefore Corollary 6.3.6 allows us to lift the homotopy 𝑔
through 𝑝 by first lifting it partially over the subspace (𝑆𝑛×{0})∪ ({*𝑆𝑛}× 𝐼). With this
in mind, consider the map 𝐺 : (𝑆𝑛 × {0}) ∪ ({*𝑆𝑛 × 𝐼})→ 𝐸 defined as

𝐺(𝑥, 𝑡) :=

⎧⎪⎨⎪⎩𝑓(𝑥), if 𝑡 = 0,

𝑒0, if 𝑥 = *𝑆𝑛 .

This is well-defined as a function since for 𝑥 = *𝑆𝑛 and 𝑡 = 0 the first expression for 𝐺
gives 𝑓(*𝑆𝑛) = 𝑏0, which coincides with the value given by the second expression. It then
follows from the Pasting Lemma that 𝐺 is continuous.

We claim that 𝐺 is a partial lift of 𝑔 on (𝑆𝑛×{0})∪ ({*𝑆𝑛}× 𝐼). On the one hand,
for every 𝑥 ∈ 𝑆𝑛, we have

𝑝(𝐺(𝑥, 0)) = 𝑝(𝑓(𝑥)) = 𝑔(𝑥, 0),

since 𝑔 by hypothesis starts at 𝑝 ∘ 𝑓 ; and on the other

𝑝(𝐺(*𝑆𝑛 , 𝑡)) = 𝑝(𝑒0) = 𝑏0 = 𝑔(*𝑆𝑛 , 𝑡)

for every 𝑡 ∈ 𝐼, where we used the fact that 𝑔 is a pointed homotopy.
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Applying Corollary 6.3.6 we obtain a map ℎ : 𝑆𝑛 × 𝐼 → 𝐸 making the diagram
below commute.

(𝑆𝑛 × {0}) ∪ ({*𝑆𝑛} × 𝐼) 𝐸

𝑆𝑛 × 𝐼 𝐵

𝐺

𝑝

𝑔

ℎ

Let ℎ1 : 𝑆𝑛 → 𝐸 be the “final stage” of the homotopy ℎ, that is, ℎ1(𝑥) := ℎ(𝑥, 1) for every
𝑥 ∈ 𝑆𝑛. Since ℎ is a lift of 𝑔 through 𝑝, we have

𝑝(ℎ1(𝑥)) = 𝑝(ℎ(𝑥, 1)) = 𝑔(𝑥, 1) = ct𝑆𝑛,𝑏0(𝑥) = 𝑏0,

showing that ℎ1 takes values in the fiber 𝑝−1(𝑏0), so we may regard it as a map ℎ1 : 𝑆𝑛 →
𝑝−1(𝑏0). Moreover, since ℎ coincides with 𝐺 on {*𝑆𝑛} × 𝐼, we have

ℎ1(*𝑆𝑛) = ℎ(*𝑆𝑛 , 1) = 𝐺(*𝑆𝑛 , 1) = 𝑒0,

so ℎ1 defines a pointed map (𝑆𝑛, *𝑆𝑛) → (𝑝−1(𝑏0), 𝑒0). Lastly, since ℎ defines a pointed
homotopy from 𝑓 to ℎ1, since

ℎ(𝑥, 0) = 𝐺(𝑥, 0) = 𝑓(𝑥)

holds for every 𝑥 ∈ 𝑆𝑛, and

ℎ(*𝑆𝑛 , 𝑡) = 𝐺(*𝑆𝑛 , 𝑡) = 𝑒0

holds for every 𝑡 ∈ 𝐼. We conclude at last that 𝜋𝑛(𝑖)([ℎ1]*) = [𝑖 ∘ ℎ1]* = [𝑓 ]*; proving that
the reverse inclusion 𝜋𝑛(𝑝)−1([ct𝑆𝑛,𝑏0 ]*) ⊆ Im 𝜋𝑛(𝑖) also holds.

We remark that the proof given also works for 𝑛 = 0, since for any pointed
space (𝑋, 𝑥0), there is a natural pointed bijection between the set of path-components
𝜋0(𝑋, 𝑥0) := (𝜋0(𝑋), [𝑥0]) and the set of pointed homotopy classes ([𝑆0, 𝑋]*, [ct𝑆0,𝑥0 ]*). �

Even more important than this exactness property is the fact that there are con-
necting maps relating the various exact sequences above turning them into a long exact
sequence. We first describe this construction before analyzing its exactness properties.

6.4.3 Construction. Given a locally trivial bundle 𝑝 : 𝐸 → 𝐵 with typical fiber 𝐹 ,
choose a basepoint 𝑏0 ∈ 𝐵, as well as a basepoint 𝑒0 ∈ 𝑝−1(𝑏0) ⊆ 𝐸. We will construct, for
every integer 𝑛 ≥ 1, a function 𝜕𝑛 : 𝜋𝑛(𝐵, 𝑏0)→ 𝜋𝑛−1(𝑝−1(𝑏0)). The construction depends
only on the lifting properties proved in the previous section, so it works more generally
for Serre fibrations.

Consider an element [𝑓 ]* ∈ 𝜋𝑛(𝐵, 𝑏0) represented by a pointed map 𝑓 : (𝑆𝑛, *𝑆𝑛)→
(𝐵, 𝑏0). Recall from Proposition 3.4.7 that there is a pointed homeomorphism

𝑊 : (Σ𝑆𝑛−1, *)
∼=−→ (𝑆𝑛, *𝑆𝑛 , )
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and this allows us to define a map of type 𝑆𝑛−1 × 𝐼 → 𝐵 via the composition shown
below,

𝑆𝑛−1 × 𝐼 Σ𝑆𝑛−1 𝑆𝑛 𝐵𝜋

𝑓∘𝑊∘𝜋

𝑊 𝑓

where 𝜋 : 𝑆𝑛−1 × 𝐼 → Σ𝑆𝑛−1 denotes the canonical projection.

Let ct𝑒0 : (𝑆𝑛−1 × {0}) ∪ ({*𝑆𝑛−1} × 𝐼) → 𝐸 be the map which is constant and
equal to 𝑒0. Since the projection 𝜋 maps (𝑆𝑛−1×{0})∪ ({*𝑆𝑛−1}×𝐼) to the basepoint * of
the reduced suspension, and 𝑊 and 𝑓 are both pointed maps, the composition 𝑓 ∘𝑊 ∘ 𝜋
is constant and equal to 𝑏0 on (𝑆𝑛−1 × {0}) ∪ ({*𝑆𝑛−1} × 𝐼), therefore ct𝑒0 is a partial lift
of 𝑓 ∘𝑊 ∘ 𝜋 over this subspace, or equivalently, the outer square in the diagram below is
commutative. Applying Corollary 6.3.6 we then obtain a diagonal map ℎ𝑓 : 𝑆𝑛−1×𝐼 → 𝐸

making the whole diagram commute.

(𝑆𝑛−1 × {0}) ∪ ({*𝑆𝑛−1} × 𝐼) 𝐸

𝑆𝑛−1 × 𝐼 𝐵

ct𝑒0

𝑝

𝑓∘𝑊∘𝜋

ℎ𝑓

We will say that a map 𝑆𝑛−1 × 𝐼 → 𝐸 satisfying the same commutativity properties of
ℎ𝑓 is adapted to 𝑓 .

Let ℎ𝑓1 : 𝑆𝑛−1 → 𝐸 be the final stage of the homotopy ℎ𝑓 , that is,

ℎ𝑓1(𝑥) := ℎ𝑓 (𝑥, 1) ∀𝑥 ∈ 𝑆𝑛−1.

The commutativity properties of ℎ𝑓 imply that ℎ𝑓1 is pointed, since

ℎ𝑓1(*𝑆𝑛−1) = ℎ𝑓 (*𝑆𝑛−1 , 1) = 𝑒0.

Moreover, since ℎ𝑓 lifts 𝑓 ∘𝑊 ∘ 𝜋, and 𝜋 maps the subspace 𝑆𝑛−1 × {1} to the basepoint
* of the reduced suspension, for any 𝑥 ∈ 𝑆𝑛−1 we have the chain of equalities

𝑝(ℎ𝑓1(𝑥)) = 𝑝(ℎ𝑓 (𝑥, 1))

= 𝑓(𝑊 (𝜋(𝑥, 1)))

= 𝑓(𝑊 (*))

= 𝑓(*𝑆𝑛)

= 𝑏0,

which means that the image of ℎ𝑓1 is contained entirely in the fiber 𝑝−1(𝑏0); therefore we
can regard it as a pointed map ℎ𝑓1 : (𝑆𝑛−1, *𝑆𝑛−1)→ (𝑝−1(𝑏0), 𝑒0).

It is tempting to define a function 𝜕𝑛 : 𝜋𝑛(𝐵, 𝑏0) → 𝜋𝑛−1(𝑝−1(𝑏0), 𝑒0) via the
formula

𝜕𝑛([𝑓 ]*) := [ℎ𝑓1 ]*.
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By the previous paragraph we know that this defines an element of 𝜋𝑛−1(𝑝−1(𝑏0), 𝑒0)
indeed, but we need to be careful. Before doing so we need to check that this definition
is homotopy invariant, that is, if 𝑓 ′ : (𝑆𝑛, *𝑆𝑛) → (𝐵, 𝑏0) is pointed homotopic to 𝑓 , we
must show that applying the above procedure to 𝑓 ′ instead of 𝑓 yields the same element
of 𝜋𝑛−1(𝑝−1(𝑏0), 𝑒0). There is another more subtle possible problem with this definition.
The homotopy ℎ𝑓 was obtained from the lifting properties of 𝑝, but Corollary 6.3.6 is
only concerned with the existence of lifts, it does not say anything about uniqueness. If
we choose a different homotopy ℎ : 𝑆𝑛−1 × 𝐼 → 𝐸 satisfying the same commutativity
properties of ℎ𝑓 , do we obtain the same element of 𝜋𝑛−1(𝑝−1(𝑏0), 𝑒0)?

We first show that the pointed homotopy class [ℎ𝑓1 ]* is independent of the lift ℎ𝑓 ,
since this will be crucial for studying the other properties of 𝜕𝑛. Suppose ℎ : 𝑆𝑛−1×𝐼 → 𝐸

is another homotopy adapted to 𝑓 , so it fits in a commutative diagram analogous to
(6.4.3). We would like to construct a pointed homotopy 𝐻 : 𝑆𝑛−1× 𝐼 → 𝑝−1(𝑏0) such that
𝐻(𝑥, 0) = ℎ𝑓1(𝑥) = ℎ𝑓 (𝑥, 1) and 𝐻(𝑥, 1) = ℎ(𝑥, 1). The idea is that this homotopy is given
by the final stage of a “homotopy of homotopies” ̃︁𝐻 : (𝑆𝑛−1 × 𝐼)× 𝐼 → 𝐸, which can be
constructed by applying a suitable lifting property. This lifting property comes from the
fact that the pair

(𝑆𝑛−1 × 𝐼, 𝑆𝑛−1 × {0} ∪ 𝑆𝑛−1 × {1} ∪ {*𝑆𝑛−1} × 𝐼)

is 𝑛-cellular according to Proposition 1.2.8, since by Example 1.2.5 (𝑆𝑛−1, {*𝑆𝑛−1}) is
(𝑛− 1)-cellular, while by Example 1.2.3 (𝐼, 𝜕𝐼) is 1-cellular.

Let 𝜙 : (𝑆𝑛−1 × 𝐼)× 𝐼 → 𝐵 be defined as

𝜙((𝑥, 𝑠), 𝑡) := (𝑓 ∘𝑊 ∘ 𝜋)(𝑥, 𝑡) ∀ ((𝑥, 𝑠), 𝑡) ∈ (𝑆𝑛−1 × 𝐼)× 𝐼.

According to Corollary 6.3.6, we can lift 𝜙 through 𝑝 by first lifting it partially over the
subspace

𝑋 := (𝑆𝑛−1 × 𝐼)× {0} ∪ (𝑆𝑛−1 × {0} ∪ 𝑆𝑛−1 × {1} ∪ {*𝑆𝑛−1} × 𝐼)× 𝐼.

Consider then the map Φ : 𝑋 → 𝐸 defined as follows:

Φ((𝑥, 𝑠), 𝑡) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑒0, if 𝑡 = 0,

ℎ𝑓 (𝑥, 𝑡), if 𝑠 = 0,

ℎ(𝑥, 𝑡), if 𝑠 = 1,

𝑒0, if 𝑥 = *𝑆𝑛−1 .

The domains of definition of the first two expressions for Φ intersect on (𝑆𝑛−1×{0})×{0},
and the two expressions agree on this intersection since ℎ𝑓 (𝑥, 0) = 𝑒0 holds for every 𝑥 ∈
𝑆𝑛−1. Continuing like this we can show that, whenever two of the expressions appearing
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in the definition of Φ have intersecting domains of definition, the two possible expressions
agree on this intersection. Proving this is as tedious as it sounds. In the end, this argument
shows that Φ is well-defined, and its continuity then follows from the Pasting Lemma once
again.

Using the fact that ℎ𝑓 and ℎ both lift 𝑓 ∘𝑊 ∘ 𝜋, and working case by case we can
show that Φ is a partial lift of 𝜙 over the subspace 𝑋, and Corollary 6.3.6 then gives us
a map 𝐻 : (𝑆𝑛−1 × 𝐼)× 𝐼 → 𝐸 as shown below.

𝑋 𝐸

(𝑆𝑛−1 × 𝐼)× 𝐼 𝐵

Φ

𝑝

𝜙

𝐻

Let 𝐻1 : 𝑆𝑛−1 × 𝐼 → 𝐸 be the final stage of 𝐻, and notice that it takes values in 𝑝−1(𝑏0),
since

𝑝(𝐻1(𝑥, 𝑠)) = 𝑝(𝐻((𝑥, 𝑠), 1)) = 𝜙((𝑥, 𝑠), 1) = 𝑓(𝑊 (𝜋(𝑥, 1))) = 𝑏0.

The following are true for every 𝑥 ∈ 𝑆𝑛−1:

1. 𝐻1(𝑥, 0) = 𝐻((𝑥, 0), 1) = ℎ𝑓 (𝑥, 1) = ℎ𝑓1(𝑥),

2. 𝐻1(𝑥, 1) = 𝐻((𝑥, 1), 1) = ℎ(𝑥, 1) = ℎ1(𝑥),

3. 𝐻1(*𝑆𝑛−1 , 𝑠) = 𝐻((*𝑆𝑛−1 , 𝑠), 1) = 𝑒0.

This shows that 𝐻1 defines a pointed homotopy ℎ𝑓1 ≃* ℎ1, therefore the element 𝜕𝑛([𝑓 ]*)
is independent of the choice of homotopy adapted to 𝑓 .

Now we show that the element [ℎ𝑓1 ]* ∈ 𝜋𝑛−1(𝑝−1(𝑏0), 𝑒0) only depends on the
pointed homotopy class of 𝑓 . Let 𝑓 ′ : (𝑆𝑛, *𝑆𝑛) → (𝐵, 𝑏0) be another pointed map such
that 𝑓 ′ ≃* 𝑓 , and let 𝑔 : 𝑆𝑛 × 𝐼 → 𝐵 be a pointed homotopy from 𝑓 ′ to 𝑓 . Let ℎ𝑓 , ℎ𝑓 ′ :
𝑆𝑛−1 × 𝐼 → 𝐸 be homotopies adapted to 𝑓 and 𝑓 ′, respectively. The idea is to use 𝑔
together with the lifting properties of 𝑝 : 𝐸 → 𝐵 to construct a pointed homotopy from
ℎ𝑓

′

1 to ℎ𝑓1 . In order to do this, consider first the map 𝜙 : (𝑆𝑛−1 × 𝐼)× 𝐼 → 𝐵 defined as

𝜙((𝑥, 𝑠), 𝑡) := 𝑔(𝑊 (𝜋(𝑥, 𝑡)), 𝑠)

for every ((𝑥, 𝑠), 𝑡) ∈ (𝑆𝑛−1 × 𝐼)× 𝐼. Consider also Φ : 𝑋 → 𝐸 defined as follows:

Φ((𝑥, 𝑠), 𝑡) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑒0, if 𝑡 = 0,

ℎ𝑓
′(𝑥, 𝑡), if 𝑠 = 0,

ℎ𝑓 (𝑥, 𝑡), if 𝑠 = 1,

𝑒0, if 𝑥 = *𝑆𝑛−1 .
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Comparing each of the two expressions and using the commutativity properties defining
ℎ𝑓

′ and ℎ𝑓 one can show that Φ is well-defined, and its continuity follows from the Pasting
Lemma. Working case by case we can show that Φ is a partial lift of 𝜙 over 𝑋. For example,
if 𝑠 = 0, then on the one hand

𝑝(Φ((𝑥, 0), 𝑡)) = 𝑝(ℎ𝑓 ′(𝑥, 𝑡)) = 𝑓 ′(𝑊 (𝜋(𝑥, 𝑡))),

while on the other

𝜙((𝑥, 0), 𝑡) = 𝑔(𝑊 (𝜋(𝑥, 𝑡)), 0) = 𝑓 ′(𝑊 (𝜋(𝑥, 𝑡)));

so Φ lifts 𝜙 over (𝑆𝑛−1 × {0})× 𝐼 ⊆ 𝑋. Reasoning like this for each of the closed subsets
that make up 𝑋 we eventually show that the equality 𝑝 ∘ Φ = 𝑔|𝑋 is indeed true.

Applying Corollary 6.3.6 we obtain the map 𝐻 : (𝑆𝑛−1 × 𝐼)× 𝐼 → 𝐸 depicted in
the commutative diagram below.

𝑋 𝐸

(𝑆𝑛−1 × 𝐼)× 𝐼 𝐵

Φ

𝑝

𝜙

𝐻

Like before, let 𝐻1 : (𝑆𝑛−1× 𝐼)× 𝐼 be the final stage of 𝐻1. Using the fact that 𝐻 lifts 𝜙,
together with the fact that 𝑔 is a pointed homotopy, we can show that 𝐻 takes values in
the fiber 𝑝−1(𝑏0). Using the commutativity properties of 𝐻, for every 𝑥 ∈ 𝑆𝑛−1 we have
the following:

1. 𝐻1(𝑥, 0) = 𝐻((𝑥, 0), 1) = ℎ𝑓
′(𝑥, 1) = ℎ𝑓

′

1 (𝑥);

2. 𝐻1(𝑥, 1) = 𝐻((𝑥, 1), 1) = ℎ𝑓 (𝑥, 1) = ℎ𝑓1(𝑥);

3. 𝐻1(*𝑆𝑛−1 , 𝑠) = 𝐻((*𝑆𝑛−1 , 𝑠), 1) = 𝑒0.

It follows that 𝐻 defines a pointed homotopy ℎ𝑓
′

1 ≃* ℎ
𝑓
1 .

We have shown at last that the function 𝜕𝑛 : 𝜋𝑛(𝐵, 𝑏0)→ 𝜋𝑛−1(𝑝−1(𝑏0), 𝑒0) sending
[𝑓 ]* to [ℎ𝑓1 ]*, where ℎ𝑓 : (𝑆𝑛−1×𝐼)×𝐼 → 𝐸 is any homotopy adapted to 𝑓 , is well-defined.
We will refer to it as the connecting map associated with the triple (𝑝−1(𝑏0), 𝑒0) �
(𝐸, 𝑒0) → (𝐵, 𝑏0). The main result of the present section concerns the algebraic and
exactness properties of this connecting map.

6.4.4 Theorem. Let 𝑝 : 𝐸 → 𝐵 be a locally trivial bundle with typical fiber 𝐹 , and
choose basepoints 𝑏0 ∈ 𝐵 and 𝑒0 ∈ 𝑝−1(𝑏0) ⊆ 𝐸.
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1. The various connecting maps fit together in a long exact sequence of pointed sets.

...

𝜋𝑛(𝑝−1(𝑏0), 𝑒0) 𝜋𝑛(𝐸, 𝑒0) 𝜋𝑛(𝐵, 𝑏0)

𝜋𝑛−1(𝐵, 𝑏0) 𝜋𝑛−1(𝐸, 𝑒0) 𝜋𝑛−1(𝑝−1(𝑏0), 𝑒0)

...

𝜋1(𝑝−1(𝑏0), 𝑒0) 𝜋1(𝐸, 𝑒0) 𝜋1(𝑏, 𝑏0)

𝜋0(𝐵, 𝑏0) 𝜋0(𝐸, 𝑒0) 𝜋0(𝑝−1(𝑏0), 𝑒0)

𝜋𝑛(𝑖) 𝜋𝑛(𝑝)

𝜕𝑛

𝜋𝑛−1(𝑝) 𝜋𝑛−1(𝑖)

𝜋1(𝑖) 𝜋1(𝑝)

𝜕1

𝜋0(𝑝) 𝜋0(𝑖)

2. The connecting map 𝜕𝑛 : 𝜋𝑛(𝐵, 𝑏0) → 𝜋𝑛−1(𝑝−1(𝑏0), 𝑒0) is a group homomorphism
for every integer 𝑛 ≥ 2.

Proof. 1. We first show that the triples of the form

𝜋𝑛(𝑏, 𝑏0) 𝜋𝑛−1(𝑝−1(𝑏0), 𝑒0) 𝜋𝑛−1(𝐸, 𝑒0)
𝜕𝑛 𝜋𝑛−1(𝑖)

are exact. Given [𝑓 ]* ∈ 𝜋𝑛(𝐵, 𝑏0), let ℎ : 𝑆𝑛−1 × 𝐼 → 𝐸 be a homotopy adapted to 𝑓 , so
that we have the equality 𝜕𝑛([𝑓 ]*) = [ℎ1]*. We need to show that 𝑖 ∘ ℎ1 : 𝑆𝑛−1 → 𝐸 is
pointed null homotopic. This is actually easy, because since ℎ is adapted to 𝑓 , it satisfies
the two following properties:

1. ℎ(𝑥, 0) = 𝑒0 = ct𝑆𝑛−1,𝑒0 for every 𝑥 ∈ 𝑆𝑛−1,

2. ℎ(*𝑆𝑛−1 , 𝑡) = 𝑒0 for every 𝑡 ∈ 𝐼.

It follows that ℎ defines a pointed homotopy ct𝑆𝑛−1,𝑒0 ≃* 𝑖 ∘ ℎ1, from which
we deduce that 𝜋𝑛−1(𝑖)([ℎ1]*) = [ct𝑆𝑛−1,𝑒0 ]*. This proves that the inclusion Im 𝜕𝑛 ⊆
𝜋𝑛−1(𝑖)−1([ct𝑆𝑛−1 , 𝑒0]*) holds.

Conversely, suppose [𝑓 ]* ∈ 𝜋𝑛−1(𝑝−1(𝑏0), 𝑒0) is such that 𝑖 ∘ 𝑓 ≃* ct𝑆𝑛−1,𝑒0 , and let
ℎ : 𝑆𝑛−1×𝐼 → 𝐸 be a pointed homotopy from ct𝑆𝑛−1,𝑒0 to 𝑖∘𝑓 . It is reasonable to look for
a pointed map 𝐹 : (𝑆𝑛, *𝑆𝑛) → (𝐵, 𝑏0) such that ℎ itself is adapted to it. In order to do
this, notice that ℎ is constant and equal to 𝑒0 on the subspace (𝑆𝑛−1×{0})∪({*𝑆𝑛−1}×𝐼),
therefore 𝑝 ∘ ℎ is constant and equal to 𝑏0 on this same subspace. Moreover,

𝑝(ℎ(𝑆𝑛−1 × {1})) = 𝑝(𝑓(𝑆𝑛−1)) ⊆ {𝑏0},
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where we used the fact that 𝑓 takes values in 𝑝−1(𝑏0) by hypothesis.

In summary, 𝑝 ∘ ℎ : 𝑆𝑛−1 × 𝐼 → 𝐵 is constant and equal to 𝑏0 on (𝑆𝑛−1 × {0}) ∪
(𝑆𝑛−1 × {0}) ∪ ({*𝑆𝑛−1} × 𝐼), therefore it can be factored through 𝜋𝑛−1 : 𝑆𝑛−1 × 𝐼 →
Σ𝑆𝑛−1 to define a pointed map 𝑝 ∘ ℎ : (Σ𝑆𝑛−1, *Σ𝑆𝑛−1) → (𝐵, 𝑏0), and using it we define
𝐹 : (𝑆𝑛, *𝑆𝑛)→ (𝐵, 𝑏0) via the composition

𝐹 := 𝑝 ∘ ℎ ∘𝑊−1
𝑛−1

as shown below.
𝑆𝑛−1 × 𝐼 𝐵

Σ𝑆𝑛−1 𝑆𝑛

𝑝∘ℎ

𝜋𝑛−1 𝑝∘ℎ

𝑊−1
𝑛−1

𝐹

The map 𝐹 really has ℎ as an associated homotopy since

𝐹 ∘𝑊𝑛−1 ∘ 𝜋𝑛−1 = 𝑝 ∘ ℎ ∘𝑊−1
𝑛−1 ∘𝑊𝑛−1 ∘ 𝜋𝑛−1

= 𝑝 ∘ ℎ ∘ 𝜋𝑛−1

= 𝑝 ∘ ℎ.

It follows that 𝜕𝑛([𝐹 ]*) = [ℎ1]* = [𝑓 ]*, proving that the inclusion 𝜋𝑛−1(𝑖)−1([ct𝑆𝑛−1,𝑒0 ]*) ⊆
Im 𝜕𝑛 also holds.

The only thing left is showing the exactness of the triples of the form

𝜋𝑛(𝐸, 𝑒0) 𝜋𝑛(𝐵, 𝑏0) 𝜋𝑛−1(𝑝−1(𝑏0), 𝑒0).
𝜋𝑛(𝑝) 𝜕𝑛

Consider an arbitrary element [𝑓 ]* ∈ 𝜋𝑛(𝐸, 𝑒0), and let ℎ : 𝑆𝑛−1 × 𝐼 → 𝐸 be defined via
the composition

ℎ := 𝑓 ∘𝑊𝑛−1 ∘ 𝜋𝑛−1,

as shown in the diagram below.

𝑆𝑛−1 × 𝐼 Σ𝑆𝑛−1 𝑆𝑛 𝐸
𝜋𝑛−1

ℎ

𝑊𝑛−1 𝑓

Since 𝜋𝑛−1 maps (𝑆𝑛−1×{0})∪ ({*𝑆𝑛−1}×𝐼) to *Σ𝑆𝑛−1 , and 𝑊𝑛−1 and 𝑓 are both pointed,
ℎ maps (𝑆𝑛−1 × {0}) ∪ ({*𝑆𝑛−1} × 𝐼) to 𝑒0. Moreover, the definition of ℎ immediately
implies the equality

𝑝 ∘ ℎ = (𝑝 ∘ 𝑓) ∘𝑊𝑛−1 ∘ 𝜋𝑛−1,

i.e., ℎ is adapted to 𝑝 ∘ 𝑓 . It follows that 𝜕𝑛([𝑝 ∘ 𝑓 ]*) = [ℎ1]*, but ℎ1 = ct𝑆𝑛−1,𝑒0 since 𝜋𝑛−1

maps 𝑆𝑛−1×{1} to *Σ𝑆𝑛−1 . We have then proved the inclusion Im 𝜋𝑛(𝑝) ⊆ 𝜕−1
𝑛 ([ct𝑆𝑛−1 , 𝑒]*).

The reverse inclusion is a bit harder to show. Let [𝑓 ]* ∈ 𝜋𝑛(𝐵, 𝑏0) be such that
𝜕𝑛([𝑓 ]*) = [ct𝑆𝑛−1,𝑒0 ]* in 𝜋𝑛−1(𝑝−1(𝑏0), 𝑒0). This means that, if ℎ : 𝑆𝑛−1 × 𝐼 → 𝐸 is a
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homotopy adapted to 𝑓 , then we have an equality [ℎ1]* = [ct𝑆𝑛−1,𝑒0 ]*, so there is a pointed
homotopy ℎaux : 𝑆𝑛−1 × 𝐼 → 𝑝−1(𝑏0) from ℎ1 to ct𝑆𝑛−1,𝑒0 . The map ℎ1 is not necessarily
constant and equal to 𝑒0, but we claim that by using ℎaux and the lifting properties of 𝑝
we can modify ℎ to obtain another homotopy ℎ′ : 𝑆𝑛−1 × 𝐼 → 𝐸 which is still adapted to
𝑓 , but which is also constant and equal to 𝑒0 on 𝑆𝑛−1 × {1}.

In order to do this, let 𝜙 : (𝑆𝑛−1 × 𝐼)× 𝐼 → 𝐵 be defined as

𝜙((𝑥, 𝑠), 𝑡) := (𝑓 ∘𝑊𝑛−1 ∘ 𝜋𝑛−1)(𝑥, 𝑠).

We can lift 𝜙 partially over the subspace

𝑋 := (𝑆𝑛−1 × 𝐼)× {0} ∪ (𝑆𝑛−1 × {0})× 𝐼 ∪ (𝑆𝑛−1 × {1})× 𝐼 ∪ ({*𝑆𝑛−1} × 𝐼)× 𝐼

by defining Φ : 𝑋 → 𝐸 as follows:

Φ((𝑥, 𝑠), 𝑡) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ℎ(𝑥, 𝑠), if 𝑡 = 0,

𝑒0, if 𝑠 = 0,

ℎaux(𝑥, 𝑡), if 𝑠 = 1,

𝑒0, if 𝑥 = *𝑆𝑛−1 .

One can show that Φ is well-defined by comparing the expressions above in pairs. Moreover,
using that ℎ is adapted to 𝑓 , and that the image of ℎaux is contained in the fiber 𝑝−1(𝑏0),
one can show that Φ is indeed a lift of 𝜙 through 𝑝. We thus obtain the diagonal map
Ψ : (𝑆𝑛−1 × 𝐼)× 𝐼 → 𝐸 shown in the commutative diagram below.

𝑋 𝐸

(𝑆𝑛−1 × 𝐼)× 𝐼 𝐵

Φ

𝑝

𝜙

Ψ

We now define ℎ′ : 𝑆𝑛−1 × 𝐼 → 𝐸 as ℎ′(𝑥, 𝑠) := Ψ((𝑥, 𝑠), 1) for every (𝑥, 𝑠) ∈
𝑆𝑛−1 × 𝐼. This map ℎ′ satisfies the following properties:

(i) ℎ′(𝑥, 0) = Ψ((𝑥, 0), 1) = 𝑒0 for every 𝑥 ∈ 𝑆𝑛−1;

(ii) 𝑝(ℎ′(𝑥, 𝑠)) = 𝑝(Ψ((𝑥, 𝑠), 1)) = 𝜙((𝑥, 𝑠), 1) = (𝑓 ∘𝑊𝑛−1 ∘ 𝜋𝑛−1)(𝑥, 𝑠) for every (𝑥, 𝑠) ∈
𝑆𝑛−1 × 𝐼;

(iii) ℎ′(𝑥, 1) = Ψ((𝑥, 1), 1) = ℎaux(𝑥, 1) = 𝑒0 for every 𝑥 ∈ 𝑆𝑛−1.

The first two properties say that ℎ′ is adapted to 𝑓 , while the third one says that ℎ′ is
constant and equal to 𝑒0 on 𝑆𝑛−1 × {1}; thus ℎ′ is the homotopy we were looking for.
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Equipped with this improved homotopy ℎ′, we now construct the desired map
𝐹 : (𝑆𝑛, *𝑆𝑛)→ (𝐸, 𝑒0). Consider the map 𝜙 : (𝑆𝑛−1 × 𝐼)× 𝐼 → 𝐵 as defined before, but
this time let Φ′ : 𝑋 → 𝐸 be the alternative lifting defined as follows:

Φ′((𝑥, 𝑠), 𝑡) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ℎ′(𝑥, 𝑠), if 𝑡 = 0,

𝑒0, if 𝑠 = 0,

𝑒0, if 𝑠 = 1,

𝑒0, if 𝑥 = *𝑆𝑛−1 .

Notice that, since ℎ′(𝑥, 1) = 𝑒0 for every 𝑥 ∈ 𝑆𝑛−1, Φ′ is well-defined, and a case-by-case
computation shows that it really lifts 𝜙 over 𝑋. The lifting properties of 𝑝 then imply the
existence of a diagonal map 𝐻 : (𝑆𝑛−1 × 𝐼)× 𝐼 → 𝐸 as shown below.

𝑋 𝐸

(𝑆𝑛−1 × 𝐼)× 𝐼 𝐵

Φ′

𝑝

𝜙

𝐻

The definition of Φ′ ensures that, for every 𝑡 ∈ 𝐼, the inclusion

𝐻((𝑆𝑛−1 × {0})× {𝑡} ∪ (𝑆𝑛−1 × {1})× {𝑡} ∪ ({*𝑆𝑛−1} × 𝐼)× {𝑡}) ⊆ {𝑒0}

holds, therefore 𝐻 can be factored through the quotient 𝜋𝑛−1 × id𝐼 : (𝑆𝑛−2 × 𝐼) × 𝐼 →
Σ𝑆𝑛−1 × 𝐼 to define 𝐻 : Σ𝑆𝑛−1 × 𝐼 → 𝐸. Using this factored homotopy we define
𝐾 : 𝑆𝑛 × 𝐼 → 𝐸 via the composition 𝐾 := 𝐻 ∘ (𝑊−1

𝑛−1 × id𝐼).

We would like to show that the final stage 𝐹 := 𝐾1 of the homotopy 𝐾 is the
desired map. Notice first that 𝐹 is pointed since

𝐹 (*𝑆𝑛) = 𝐾(*𝑆𝑛 , 1) = 𝐻(𝑊−1
𝑛−1(*𝑆𝑛), 1) = 𝐻(*Σ𝑆𝑛−1 , 1) = 𝐻((*𝑆𝑛−1 , 0), 1) = 𝑒0.

Moreover, since 𝐹 = 𝐾1 ≃* 𝐾0, if we can show the equality 𝑝∘𝐾0 = 𝑓 , then the homotopy
relation 𝑝 ∘ 𝐹 ≃* 𝑓 will follow. In order to show this, we begin by noting that

𝑝 ∘𝐻0 ∘ 𝜋𝑛−1 = 𝑝 ∘𝐻0

= 𝜙0

= 𝑓 ∘𝑊𝑛−1 ∘ 𝜋𝑛−1,

and by eliminating 𝜋𝑛−1 we deduce that

𝑝 ∘𝐻0 = 𝑓 ∘𝑊𝑛−1.

Using this expression we then see that 𝐾0 satisfies

𝑝 ∘𝐾0 = 𝑝 ∘𝐻0 ∘𝑊−1
𝑛−1

= 𝑓 ∘𝑊𝑛−1 ∘𝑊−1
𝑛−1

= 𝑓.
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Overall, we have seen that 𝐹 defines an element [𝐹 ]* ∈ 𝜋𝑛(𝐸, 𝑒0) such that 𝜋𝑛(𝑝)([𝐹 ]*) =
[𝑝 ∘ 𝐹 ]* = [𝑓 ]*; proving that the reverse inclusion 𝜕−1

𝑛 ([ct𝑆𝑛−1,𝑒0 ]*) ⊆ Im 𝜋𝑛(𝑝) also holds.
�

6.4.5 Remark. A personal remark about the proof above. The reader has certainly
noticed that we did not prove that the connecting map 𝜕𝑛 is a group homomorphism. In
the literature, the most common proof is actually indirect: one first shows that, for any
pair (𝑋,𝐴) and any basepoint 𝑥0 ∈ 𝐴, there is an exact sequence of pointed sets and
groups of the form

· · · 𝜋𝑛(𝐴, 𝑥0) 𝜋𝑛(𝑋, 𝑥0) 𝜋𝑛(𝑋,𝐴, 𝑥0) 𝜋𝑛−1(𝐴, 𝑥0) · · · .Δ

Here, 𝜋𝑛(𝑋,𝐴, 𝑥0) denotes the relative homotopy sets of the pair (𝑋,𝐴) at the base-
point 𝑥0. These sets have a group structure when 𝑛 ≥ 2, and they are also abelian
when 𝑛 ≥ 3. They capture in some sense the possible loss of injectivity of the map
𝜋𝑛(𝐴, 𝑥0)→ 𝜋𝑛(𝑋, 𝑥0) induced by the inclusion (𝐴, 𝑥0)� (𝑋, 𝑥0). In the sequence above,
Δ : 𝜋𝑛(𝑋,𝐴, 𝑥0) → 𝜋𝑛−1(𝐴, 𝑥0) is a naturally defined map which is easily shown to be a
group homomorphism in suitable dimensions.

When 𝑝 : 𝐸 → 𝐵 is a locally trivial bundle (or more generally a Serre fibra-
tion), the lifting properties can be used to show that the projection 𝑝 induces a bijection
(isomorphism)

𝑝* : 𝜋𝑛(𝐸, 𝑝−1(𝐴), 𝑒0)
∼=−→ 𝜋𝑛(𝐵,𝐴, 𝑏0)

of relative homotopy sets (groups), where 𝑏0 ∈ 𝐴 is a basepoint, and 𝑒0 ∈ 𝑝−1(𝑏0) ⊆ 𝑝−1(𝐴)
is a basepoint lying over 𝑏0. If we consider 𝐴 := {𝑏0} as being the basepoint itself, then
the aforementioned isomorphism becomes 𝜋𝑛(𝐸, 𝑝−1(𝑏0), 𝑒0) ∼= 𝜋𝑛(𝐵, {𝑏0}, 𝑏0), and if we
take into account that there is also an isomorphism 𝜋𝑛(𝐵, {𝑏0}, 𝑏0) ∼= 𝜋𝑛(𝐵, 𝑏0), we end
up with an isomorphism

𝑝* : 𝜋𝑛(𝐸, 𝑝−1(𝑏0), 𝑒0)
∼=−→ 𝜋𝑛(𝐵, 𝑏0).

This isomorphism can be used to “divert” the long exact sequence associated with the
pointed pair (𝐸, 𝑝−1(𝑏0), 𝑒0) by considering the composite map depicted below.

𝜋𝑛(𝐸, 𝑝−1(𝑏0), 𝑒0) 𝜋𝑛−1(𝑝−1(𝑏0), 𝑒0)

𝜋𝑛(𝐵, 𝑏0)

Δ

𝑝*

The composition Δ ∘ (𝑝*)−1 : 𝜋𝑛(𝐵, 𝑏0) → 𝜋𝑛−1(𝑝−1(𝑏0), 𝑒0) is precisely the connecting
map 𝜕𝑛 that we constructed. Notice that, in this approach, the fact that 𝜕𝑛 is a group
homomorphism in certain dimensions follows from the fact that both Δ and 𝑝* are group
homomorphisms.
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As I said, this is the most common approach for constructing the long exact se-
quence of homotopy groups of a Serre fibration. However, due to time and space limita-
tions, I decided to not include a discussion of relative homotopy groups in the text, so
that is why we had to construct the sequence from scratch. Using the lifting properties
we managed to prove that it is exact, but I couldn’t for the life of me prove that 𝜕𝑛 is a
group homomorphism directly, and I also did not find a reference that proves it without
appealing to the exact sequence of a pair. The closest proofs that I found in the literature
are in (GOERSS; JARDINE, 2009, Section 1.7, Lemma 7.3) and (LURIE, 2022, Subsec-
tion 3.2.4, Proposition 3.2.4.4). These two proofs, however, are written in the language of
simplicial sets, but since the homotopy theory of simplicial sets is equivalent (in a precise
sense) to the classical homotopy theory of spaces, they can probably be translated and
adapted to our context.

6.4.1 Some computations

In this subsection we apply the long exact sequence constructed above to explicitly
compute some homotopy groups that will be useful later on.

We start with one of the simplest non-trivial spaces whose homotopy groups can
be fully determined.

6.4.6 Proposition. The homotopy groups of the circle can be described as follows:

𝜋𝑗(𝑆1, *𝑆1) ∼=

⎧⎪⎨⎪⎩Z, if 𝑗 = 1,

0, if 𝑗 > 1.

Proof. We showed in Example 6.1.11 that the map 𝐸 : R → 𝑆1 defined as 𝐸(𝑡) := 𝑒2𝜋𝑖𝑡

is a locally trivial bundle with typical fiber the discrete space Z. The origin 0 ∈ R is in
the fiber 𝐸−1(*𝑆1) = Z, so consider the following fragment of the exact sequence of the
bundle in question:

𝜋𝑗(Z, 0) 𝜋𝑗(R, 0) 𝜋𝑗(𝑆1, *𝑆1) 𝜋𝑗−1(Z, 0)𝜋𝑗(𝑖) 𝜋𝑗(𝐸) 𝜕𝑗

If 𝑗 > 1, since the fiber Z is discrete, and the spheres 𝑆𝑗 and 𝑆𝑗−1 are connected
(it is important that 𝑗 > 1 for this!), the only pointed maps (𝑆𝑗, *𝑆𝑗 ) → (Z, 0) and
(𝑆𝑗−1, *𝑆𝑗−1)→ (Z, 0) are the constant ones, therefore the groups 𝜋𝑗(Z, 0) and 𝜋𝑗−1(Z, 0)
appearing at the endpoints of the sequence are both trivial. Exactness then implies that
we have an isomorphism

𝜋𝑗(𝐸) : 𝜋𝑗(R, 0)
∼=−→ 𝜋𝑗(𝑆1, *𝑆1).

Now, the real line R can be contracted to 0, i.e., (R, 0) is pointed contractible, therefore
𝜋𝑗(R, 0) is trivial, and the isomorphism above implies that 𝜋𝑗(𝑆1, *𝑆1) is also trivial for
𝑗 > 1.
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Now let us deal with the fundamental group. We have the following fragment of
the exact sequence:

𝜋1(R, 0) 𝜋1(𝑆1, *𝑆1) 𝜋0(Z, 0)𝜋1(𝐸) 𝜕1

There is a natural pointed bijection 𝜋0(Z, 0) ∼= (Z, 0) mapping a pointed homotopy
class [𝑓 : (𝑆0,+1)→ (Z, 0)]* to the integer 𝑓(−1). Notice that this is indeed well-defined,
since if 𝑓 ′ : (𝑆0,+1) → (Z, 0) is another pointed map, and ℎ : 𝑓 ⇒ 𝑓 ′ is a pointed
homotopy, the fact Z is discrete forces the restriction ℎ|{−1}×𝐼 to be constant, therefore
𝑓(−1) = 𝑓 ′(−1).

Under this identification, the connecting map 𝜕1 : 𝜋1(𝑆1, *𝑆1) → (Z, 0) can be
described as follows: given an element [𝑓 ]* ∈ 𝜋1(𝑆1, *𝑆1), if ℎ𝑓 : 𝑆0× 𝐼 → R is a homotopy
adapted to 𝑓 , then

𝜕1([𝑓 ]*) = ℎ𝑓1(−1) = ℎ𝑓 (−1, 1).

Keeping this identification in mind, we claim that the connecting map 𝜕1 is in fact
a group homomorphism, with Z regarded as a group via its addition operation. Suppose
[𝑓 ]*, [𝑔]* ∈ 𝜋1(𝑆1, *𝑆1) are such that 𝜕1([𝑓 ]*) = 𝑚 and 𝜕1([𝑔]*) = 𝑛. This means that
there are homotopies ℎ𝑓 , ℎ𝑔 : 𝑆0 × 𝐼 → R adapted to 𝑓 and 𝑔, respectively, such that
ℎ𝑓(−1, 1) = 𝑚 and ℎ𝑔(−1, 1) = 𝑛. Now, the product [𝑓 ]* · [𝑔]* ∈ 𝜋1(𝑆1, *𝑆1) is equal
to [⟨𝑓, 𝑔⟩ ∘ 𝜇𝑆1 ]*, so in order to evaluate 𝜕1([𝑓 ]* · [𝑔]*), we need to find a homotopy 𝐻 :
𝑆0 × 𝐼 → R adapted to ⟨𝑓, 𝑔⟩ ∘ 𝜇𝑆1 , which means that it must fit in the commutative
diagram below.

(𝑆0 × {0}) ∪ ({+1} × 𝐼) R

𝑆0 × 𝐼 𝑆1

ct0

𝐸

⟨𝑓,𝑔⟩∘𝜇𝑆1 ∘𝑊0∘𝑝0

𝐻

Unpacking the definition of the H-comultiplication 𝜇𝑆1 , we can show that the map on the
bottom can be alternatively described as

⟨𝑓, 𝑔⟩ ∘ 𝜇𝑆1 ∘𝑊0 ∘ 𝑝0 = ⟨𝑓 ∘𝑊0, 𝑔 ∘𝑊0⟩ ∘ 𝜇0 ∘ 𝑝0,

where 𝜇0 is the standard H-comultiplication on Σ𝑆0. More explicitly, for any (𝑠, 𝑡) ∈ 𝑆0×𝐼
we have

(⟨𝑓 ∘𝑊0, 𝑔 ∘𝑊0⟩ ∘ 𝜇0 ∘ 𝑝0)(𝑠, 𝑡) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
*𝑆1 , if 𝑠 = +1,

(𝑓 ∘𝑊0 ∘ 𝑝0)(−1, 2𝑡), if 𝑠 = −1 and 0 ≤ 𝑡 ≤ 1
2 ,

(𝑔 ∘𝑊0 ∘ 𝑝0)(−1, 2𝑡− 1), if 𝑠 = 1 and 1
2 ≤ 𝑡 ≤ 1.
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Using the action of Z on R it is easy to combine ℎ𝑓 and ℎ𝑔 to obtain the desired
homotopy. We define 𝐻 : 𝑆0 × 𝐼 → R as follows:

𝐻(𝑠, 𝑡) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0, if 𝑠 = +1,

ℎ𝑓 (−1, 2𝑡), if 𝑠 = −1 and 0 ≤ 𝑡 ≤ 1
2 ,

𝑚+ ℎ𝑔(−1, 2𝑡− 1), if 𝑠 = −1 and 1
2 ≤ 𝑡 ≤ 1.

This is well-defined, because 𝑠 = −1 and 𝑡 = 1
2 we have

𝑚+ ℎ𝑔(−1, 2 · 1
2 − 1) = 𝑚+ ℎ𝑔(−1, 0) = 𝑚+ 0 = 𝑚 = ℎ𝑓 (−1, 1) = ℎ𝑓 (−1, 2 · 1

2).

It is clear from the definition that 𝐻 maps the segment {+1}× 𝐼 to 0, and since ℎ𝑓 maps
𝑆0×{0} to 0, the same is also true of 𝐻. Moreover, since ℎ𝑓 and ℎ𝑔 are adapted to 𝑓 and
𝑔, we have the equalities

𝐸 ∘ ℎ𝑓 = 𝑓 ∘𝑊0 ∘ 𝑝0 and 𝐸 ∘ ℎ𝑔 = 𝑔 ∘𝑊0 ∘ 𝑝0,

and using these we can show with a direct computation that

𝐸 ∘𝐻 = ⟨𝑓 ∘𝑊0, 𝑔 ∘𝑊0⟩ ∘ 𝜇0 ∘ 𝑝0

also holds.

The conclusions of the previous paragraph show that 𝐻 is adapted to ⟨𝑓, 𝑔⟩ ∘ 𝜇𝑆1 ,
therefore

𝜕1([𝑓 ]* · [𝑔]*) = 𝜕1([⟨𝑓, 𝑔⟩ ∘ 𝜇𝑆1 ]*)

= 𝐻(−1, 1)

= 𝑚+ ℎ𝑔(−1, 1)

= 𝑚+ 𝑛

= 𝜕1([𝑓 ]*) + 𝜕1([𝑔]*);

proving that 𝜕1 is a group homomorphism.

The exactness of the sequence implies

𝜕−1
1 (0) = Im 𝜋1(𝐸),

but since (R, 0) is pointed contractible, 𝜋1(R, 0) is the trivial group, thus the image
Im 𝜋1(𝐸) above is also trivial. Knowing that 𝜕1 is a homomorphism, the equality above
means that its kernel is trivial, which implies that it is injective.

The only thing left is proving the surjectivity of 𝜕1. Since Z is generated by 1, it
suffices to prove that 1 belongs to the image of 𝜕1. We will show that 𝜕1([id𝑆1 ]*) = 1. Let
ℎ : 𝑆0 × 𝐼 → R be defined as

ℎ(𝑠, 𝑡) :=

⎧⎪⎨⎪⎩0, if 𝑠 = +1,

𝑡, if 𝑠 = −1.
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According to the discussion after the proof of Proposition 3.4.7, the composition 𝑊0 ∘ 𝑝0 :
𝑆0 × 𝐼 → 𝑆1 is described explicitly

(𝑊0 ∘ 𝑝0)(𝑠, 𝑡) =

⎧⎪⎨⎪⎩*𝑆
1 , if 𝑠 = +1,

𝑒2𝜋𝑖𝑡, if 𝑠 = −1.

This means that the equality 𝐸 ∘ ℎ = 𝑊0 ∘ 𝑝0 holds, therefore ℎ is adapted to id𝑆1 , and
then by definition

𝜕1([id𝑆1 ]*) = ℎ(−1, 1) = 1. �

For the next computation, we will have to assume the following results about the
homotopy groups of a sphere 𝑆𝑛 for 𝑛 ≥ 1:

𝜋𝑗(𝑆𝑛, *𝑆𝑛) =

⎧⎪⎨⎪⎩0, if 0 ≤ 𝑗 ≤ 𝑛− 1,

Z, if 𝑗 = 𝑛.

6.4.7 Proposition. Given integers 1 ≤ 𝑘 ≤ 𝑛, the homotopy groups of the complex
Stiefel manifold 𝑉𝑘(C𝑛) can be described as follows:

𝜋𝑗(𝑉𝑘(C𝑛)) ∼=

⎧⎪⎨⎪⎩0, if 0 ≤ 𝑗 ≤ 2(𝑛− 𝑘);

Z, if 𝑗 = 2(𝑛− 𝑘) + 1.

Proof. The proof is by a double induction on both 𝑛 and 𝑘. If 𝑛 = 1, then necessarily
𝑘 = 1 too, and 𝑉1(C) is simply the set of unit norm complex numbers, that is, 𝑉1(C) = 𝑆1,
and from Proposition 6.4.6 we know that

𝜋𝑗(𝑉1(C)) = 𝜋𝑗(𝑆1) ∼=

⎧⎪⎨⎪⎩0, if 𝑗 = 0,

Z, if 𝑗 = 1;

therefore the statement is true in this case.

Now suppose 𝑛 is an integer such that the statement is true for all smaller non-
negative integers. We then perform an induction on 𝑘. For 𝑘 = 1, 𝑉1(C𝑛) is the set
of unit norm vectors on C𝑛, so if we consider the usual identification C𝑛 = R2𝑛, then
𝑉1(C𝑛) = 𝑆2𝑛−1. If we then use the result about homotopy groups of spheres mentioned
above, we deduce that

𝜋𝑗(𝑉1(C𝑛)) = 𝜋𝑗(𝑆2𝑛−1) ∼=

⎧⎪⎨⎪⎩0, if 0 ≤ 𝑗 ≤ 2𝑛− 2,

Z, if 𝑗 = 2𝑛− 1;

which is what we had to show.

Now, suppose 2 ≤ 𝑘 ≤ 𝑛, and assume that the statement has been proved for
integers smaller than 𝑘. We then have to prove that the statement holds for 𝑘 itself.
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The trick to use the inductive hypotheses (both of them!) is to recall that the map
𝑞𝑘,1 : 𝑉𝑘(C𝑛)→ 𝑉1(C𝑛) mapping a 𝑘-frame (𝑣1, . . . , 𝑣𝑘) to the vector 𝑣1 is a locally trivial
bundle with typical fiber 𝑉𝑘−1(C𝑛−1), as was showed in Example 6.1.15.

Let us first deal with path-connectedness. Choosing appropriated basepoints 𝑏0 ∈
𝑉1(C𝑛) and 𝑒0 ∈ 𝑞−1

𝑘,1(𝑏0), if we let 𝑒′
0 ∈ 𝑉𝑘−1(C𝑛−1) be the image of 𝑒0 with respect to

the identification 𝑞−1
𝑘,1(𝑏0) ∼= 𝑉𝑘−1(C𝑛−1), then from the exact sequence of a locally trivial

bundle we have the following exact triple of pointed sets:

𝜋0(𝑉𝑘−1(C𝑛−1), 𝑒′
0) 𝜋0(𝑉𝑘(C𝑛), 𝑒0) 𝜋0(𝑉1(C𝑛), 𝑏0).

The inductive hypotheses imply that both pointed sets at the sides contain only a single
element, therefore the same is true of 𝜋0(𝑉𝑘(C𝑛), 𝑒0); proving the path-connectedness of
𝑉𝑘(C𝑛).

Keeping in mind this path-connectedness, we now omit the basepoints from our
notation. For 𝑗 ≥ 1, we have the following exact sequence of homotopy groups:

𝜋𝑗(𝑉𝑘−1(C𝑛−1)) 𝜋𝑗(𝑉𝑘(C𝑛)) 𝜋𝑗(𝑉1(C𝑛)) 𝜋𝑗−1(𝑉𝑘−1(C𝑛−1)).

Notice that 2((𝑛−1)− (𝑘−1)) = 2(𝑛−𝑘), so if 𝑗 ≤ 2(𝑛−𝑘), by the inductive hypotheses
we know that the groups 𝜋𝑗(𝑉𝑘−1(C𝑛−1)) and 𝜋𝑗−1(𝑉𝑘−1(C𝑛−1)) are both trivial. Exactness
then implies that there is an isomorphism

𝜋𝑗(𝑉𝑘(C𝑛)) ∼= 𝜋𝑗(𝑉1(C𝑛)),

and since 2(𝑛 − 𝑘) ≤ 2𝑛 − 2 because 𝑘 ≥ 2, 𝑗 is smaller than 2𝑛 − 2, so 𝜋𝑗(𝑉1(C𝑛)) is
trivial; therefore 𝜋𝑗(𝑉𝑘(C𝑛)) is also trivial.

The only case left is when 𝑗 = 2(𝑛−𝑘)+1. We now consider the following fragment
of the exact sequence:

𝜋𝑗+1(𝑉1(C𝑛)) 𝜋𝑗(𝑉𝑘−1(C𝑛−1)) 𝜋𝑗(𝑉𝑘(C𝑛)) 𝜋𝑗(𝑉1(C𝑛)).

Since 𝑘 ≥ 2, 𝑛− 𝑘 ≤ 𝑛− 2, therefore

𝑗 = 2(𝑛− 𝑘) + 1 ≤ 2(𝑛− 2) + 1 = 2𝑛− 3.

It follows that both 𝑗 and 𝑗+1 are smaller than 2𝑛−2, therefore the groups 𝜋𝑗+1(𝑉1(C𝑛))
and 𝜋𝑗(𝑉1(C𝑛)) appearing at the endpoints are both trivial. We then have an isomorphism

𝜋2(𝑛−𝑘)+1(𝑉𝑘−1(C𝑛−1) ∼= 𝜋2(𝑛−𝑘)+1(𝑉𝑘(C𝑛)).

Now we just need to notice that 2((𝑛−1)− (𝑘−1))+1 = 2(𝑛−𝑘)+1, so by the inductive
hypothesis

𝜋2(𝑛−𝑘)+1(𝑉𝑘−1(C𝑛−1)) ∼= Z;

therefore 𝜋2(𝑛−𝑘)+1(𝑉𝑘(C𝑛)) ∼= Z also holds. �
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There is a similar result for real Stiefel manifolds, but it is more complicated.

6.4.8 Proposition. Given integers 1 ≤ 𝑘 ≤, the real Stiefel manifold 𝑉𝑘(R𝑛) is (𝑛−𝑘−1)-
connected, that is, it is path-connected, and 𝜋𝑗(𝑉𝑘(R𝑛)) is trivial for every 1 ≤ 𝑗 ≤ 𝑛−𝑘−1.
Moreover, its (𝑛− 𝑘)-th homotopy group is given by

𝜋𝑛−𝑘(𝑉𝑘(R𝑛)) ∼=

⎧⎪⎨⎪⎩Z, if 𝑘 = 1 or if 𝑛− 𝑘 is even,

Z2, otherwise.





217

CHAPTER

7
OBSTRUCTION THEORY

We have at last developed all the concepts required for analyzing the main results
from Obstruction Theory, which is the goal of the present chapter. We start out by
broadly describing the goals of Obstruction Theory in terms of the so-called extension-
lifting property. This is a big class of problems whose analysis in the most general case
is way beyond the scope of this text, so, after giving some examples of such problems,
we turn our attention to a particular class of them: constructing and extending maps
and section of locally trivial bundles over CW-complexes. We first deal with the case of
globally trivial bundles where the problem can be restated in terms of constructing and
extending maps. In this simple case we can already discuss some important subtleties
that arise, and also get a taste of the different techniques and ingredients required in the
proofs. After studying this simple case, we go back to the more general context of only
locally trivial bundles where the same results continue to hold, but with an added layer
of possible complications.

Many of the proofs in this chapter would be too technical, or would at the very
least require too much sidetracking to recall the necessary concepts, so we decided to
many of the proofs, and focus instead on the flow of ideas and on the subtleties that must
be dealt with when trying to formalize all the results.

7.1 Extension-lifting problems

Many of the problems one encounters when doing Algebraic Topology have the
following form: we are given spaces 𝐸, 𝐵 and 𝑋, a subspace 𝐴 ⊆ 𝑋, and also maps
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𝑓 : 𝐴→ 𝐸, 𝑝 : 𝐸 → 𝐵 and 𝑔 : 𝑋 → 𝐵 that fit in a commutative square.

𝐴 𝐸

𝑋 𝐵

𝑓

𝑝

𝑔

(7.1)

We will usually say that a diagram like this poses an extension-lifting problem. We are
then interested in finding a diagonal ℎ : 𝑋 → 𝐸 such that the resulting diagram is still
commutative.

𝐴 𝐸

𝑋 𝐵

𝑓

𝑝

𝑔

ℎ (7.2)

This commutativity is equivalent to the two following equalities:

1. 𝑝 ∘ ℎ = 𝑔;

2. ℎ|𝐴 = 𝑓 .

The first equality says that ℎ is a lift of 𝑔 through 𝑝, while the second one says that ℎ is
an extension of 𝑓 . Diagram (7.1) says that 𝑓 is a lift of 𝑔, but only over the subspace
𝐴 ⊆ 𝑋, i.e., 𝑓 is a partial lift. The map ℎ then furnishes an extension of the partial lift
𝑓 to a global lift defined on the whole space 𝑋. We call such map ℎ a solution to the
extension-lifting problem posed by (7.1).

Let us see some examples of common problem that can be formulated in this
framework of extension-lifting problems.

7.1.1 Example (Lifting homotopies). Consider the extension-lifting problem posed by
the commutative diagram below.

𝑋 × {0} 𝐸

𝑋 × 𝐼 𝐵

𝑓

𝑝

𝑔

In this case, the map 𝑔 is a homotopy between the maps 𝑔0, 𝑔1 : 𝑋 → 𝐵, and the
commutativity condition says that 𝑓 (or more precisely the composition 𝑓 ∘ 𝑖𝑋,0) is a lift
of the initial stage 𝑔0 of 𝑔 through 𝑝.

If ℎ : 𝑋 × 𝐼 → 𝐸 is a solution to the problem, then it is a homotopy lifting the
entire homotopy 𝑔 through 𝑝, and moreover its initial stage ℎ0 coincides with the given
initial lift 𝑓 . When such a solution always exist, it means that, in order to lift a homotopy
𝑋 × 𝐼 → 𝐵 to a homotopy 𝑋 × 𝐼 → 𝐸, we just need to lift its initial stage. We have
already encountered problems of this kind when studying locally trivial bundles (or Serre
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fibrations more generally). We saw in Corollary 6.3.7 that, if 𝑝 : 𝐸 → 𝐵 is a locally trivial
bundle with typical fiber 𝐹 , then the extension-lifting problem in question always has a
solution if 𝑋 is a CW-complex.

7.1.2 Example (Extending maps). Consider the extension-lifting problem posed by the
commutative diagram below,

𝐴 𝑋 × 𝐹

𝑋 𝑋

𝑓

𝜋1

id𝑋

where 𝜋1 : 𝑋 × 𝐹 → 𝑋 denotes the canonical projection to the first coordinate.

The commutativity condition says that 𝑓 is a section of 𝜋1 over the subspace
𝐴 ⊆ 𝑋, i.e., a partial section. If 𝐹 : 𝑋 → 𝑋 × 𝐹 is a solution to the problem, then it
defines a global section of 𝜋1. This can be reformulated in more familiar terms by noticing
that, since 𝐹 is a map into a product, it is completely determined by the compositions
𝜋1 ∘ 𝐹 and 𝜋2 ∘ 𝐹 , and since 𝜋1 ∘ 𝐹 is forced to be equal to id𝑋 by the commutativity
conditions, 𝐹 is completely determined by the map 𝜋2 ∘ 𝐹 : 𝑋 → 𝑋 × 𝐹 . In other words,
constructing a section of 𝜋1 extending 𝑓 is the same thing as constructing a map of type
𝑋 → 𝐹 extending 𝑓 .

7.1.3 Example (Constructing and extending sections). Let 𝑝 : 𝐸 → 𝑋 be a locally
trivial bundle with typical fiber 𝐹 , and consider the extension-lifting problem posed by
the following diagram.

𝐴 𝐸

𝑋 𝑋

𝑠

𝑝

id𝑋

The commutativity condition expressed above says that 𝑠 is partial section of
the bundle over the subspace 𝐴 ⊆ 𝑋. If 𝑆 : 𝑋 → 𝐸 solves the extension-lifting problem,
then it defines a global section of 𝑝 extending the one defined over the subspace 𝐴.

Notice that the previous example is a particular example of this one, since the
projection onto the first coordinate 𝜋1 : 𝑋 × 𝐹 → 𝑋 is the worldwide famous trivial
bundle with typical fiber 𝐹 .

This problem of extending and constructing sections of bundles is in general non-
trivial. For example, 𝑇𝑆2 ∖ {0} be the space of non-zero tangent vectors on the 2-sphere
𝑆2. The usual tangent bundle projection 𝑝 : 𝑇𝑆2 → 𝑆2 restricts to a locally trivial bundle
projection 𝑝′ : 𝑇𝑆2 ∖ {0} → 𝑆2 whose fiber has the homotopy type of a circle.

This bundle certainly admits local sections over some subspace of 𝑆2. For example,
if we regard 𝑆1 as a subspace of 𝑆2 via the embedding at the equator, then we can consider
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the vector field 𝑣 : 𝑆1 → 𝑇𝑆2 ∖ 0 running parallel to the equator. We could then search
for a solution to the extension-lifting problem

𝑆1 𝑇𝑆2 ∖ {0}

𝑆2 𝑆2

𝑣

𝑝′

id𝑆2

However, one of the most important results of Algebraic Topology says that this particular
problem cannot be solved: if 𝑉 : 𝑆2 → 𝑇𝑆2 ∖ {0} were such a solution, then it would
define a vector field on 𝑆2 without any singularities, but this is impossible by the hairy
ball theorem.

When we later study the results of Obstruction Theory, we will see that the lack
of solution to this problem is simultaneously related to two algebro-topological properties:
the non-vanishing of the first homotopy group 𝜋1(𝑆1) of the circle, and also the non-
vanishing of the second homology group 𝐻2(𝑆2) of the sphere.

7.2 Obstruction Theory for maps
In this section we develop Obstruction Theory for analyzing the problem of con-

structing and extending maps. As we discussed in one of the examples of the previous
section, given a pair (𝑋,𝐴), a space 𝑌 , and a map 𝑓 : 𝐴→ 𝑌 , the problem of extending 𝑓
to a map 𝐹 : 𝑋 → 𝑌 is equivalently the extension-lifting problem posed by the diagram
below.

𝐴 𝑋 × 𝑌

𝑋 𝑋

𝑓

𝜋1

id𝑋

We make the simplifying assumption that the pair (𝑋,𝐴) is 𝑛-cellular for some
integer 𝑛 ≥ 0. The advantage of this is that we can then restate the extension problem in
homotopical terms by using Corollary 2.3.11.

7.2.1 Theorem. Let 𝑌 be any space, and let (𝑋,𝐴) be an 𝑛-cellular pair for some
integer 𝑛 ≥ 0, with {Φ𝑒 : 𝐷𝑛 → 𝑋}𝑒∈ℰ being its family of characteristic maps. Given a
map 𝑓 : 𝐴→ 𝑌 , the following are equivalent:

1. 𝑓 can be extended to a map 𝐹 : 𝑋 → 𝑌 ;

2. the map 𝑓𝑒 := 𝑓 ∘ 𝜙𝑒 : 𝑆𝑛−1 → 𝑌 is null homotopic for every 𝑒 ∈ ℰ .

Proof. Suppose first that the extension 𝐹 exists. Consider, for each 𝑒 ∈ ℰ , the composite
map 𝐹𝑒 : 𝐷𝑛 → 𝑌 defined as 𝐹𝑒 := 𝐹 ∘ Φ𝑒. Now, since 𝜙𝑒 = Φ𝑒|𝑆𝑛−1 , 𝐹 |𝐴 = 𝑓 , and
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𝜙𝑒(𝑆𝑛−1) ⊆ 𝐴, we see that

𝐹 |𝑆𝑛−1 = 𝐹 ∘ Φ𝑒|𝑆𝑛−1 = 𝐹 ∘ 𝜙𝑒 = 𝑓,

therefore 𝐹𝑒 is an extension of 𝑓𝑒, It then follows from Corollary 2.3.11 that each of the
maps 𝑓𝑒 is null homotopic.

Conversely, suppose each of the maps 𝑓𝑒 : 𝑆𝑛−1 → 𝑌 is null homotopic. Applying
Corollary 2.3.11 again implies the existence of maps 𝐹𝑒 : 𝐷𝑛 → 𝑌 extending 𝑓𝑒 for every
𝑒 ∈ ℰ .

Recall now that by the definition of cellular pair we have the pushout square below.

⨆︀
𝑒∈ℰ

𝑆𝑛−1 𝐴

⨆︀
𝑒∈ℰ

𝐷𝑛 𝑋

⟨𝜙𝑒⟩

⟨Φ𝑒⟩

The various maps 𝐹𝑒 together induce a map ⟨𝐹𝑒⟩ : ⨆︀𝑒∈ℰ 𝐷
𝑛 → 𝑌 , and since for each

𝑒 ∈ ℰ the restriction 𝐹𝑒|𝑆𝑛−1 equal 𝑓𝑒 = 𝑓 ∘ 𝜙𝑒, the “outer shell” of the diagram below
commutes; therefore by the universal property of the pushout we obtain the diagonal map
𝐹 : 𝑋 → 𝑌 depicted. ⨆︀

𝑒∈ℰ
𝑆𝑛−1 𝐴

⨆︀
𝑒∈ℰ

𝐷𝑛 𝑋

𝑌

⟨𝜙𝑒⟩

𝑓

⟨Φ𝑒⟩

⟨𝐹𝑒⟩

𝐹

It is then immediate from the commutativity properties of 𝐹 that it extends the initial
map 𝑓 . �

Since relative CW-complexes are obtained by successive cell attachments to an
initial subspace, it seems reasonable to apply this result to the problem of extension on
relative CW-complexes.

Let (𝑋,𝐴) be a relative CW-complex with skeletal filtration

𝐴 = 𝑋−1 ⊆ 𝑋0 ⊆ 𝑋1 ⊆ · · · ⊆ 𝑋𝑛 ⊆ · · · ⊆ 𝑋.

Given a map 𝑓 : 𝐴 → 𝑌 , we can use the previous result to investigate the possibility of
extending 𝑓 to higher stages of the skeletal filtration.

By the definition of relative CW-complex we know that the pair (𝐴,𝑋0) is 0-
cellular, which means that 𝑋0 is given by the disjoint union of 𝐴 and a disjoint collection
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of points.

𝑋0 ∼= 𝐴 ⊔

⎛⎝ ⨆︁
𝑒∈ℰ0

{pt}
⎞⎠ .

It is then always possible to extend 𝑓 to 𝑋0: if we choose for each 𝑒 ∈ ℰ0 an arbitrary point
𝑦𝑒 ∈ 𝑌 , then the collection of maps {ct{pt},𝑦𝑒}𝑒∈ℰ0 gives rise to a map 𝑔 : ⨆︀𝑒∈ℰ0{pt} → 𝑌 ,
and taking into account the description of 𝑋0 as a disjoint union we then have the induced
map

𝑓0 := ⟨𝑓, 𝑔⟩ : 𝑋0 → 𝑌.

Okay, so extending over to the 0-skeleton is always possible, but what about ex-
tending to the 1-skeleton? According to the definition of relative CW-complex, the pair
(𝑋1, 𝑋0) is 1-cellular, so there exists a collection of characteristic maps {Φ𝑒 : 𝐼 → 𝑋1}𝑒∈ℰ1

that fit in the pushout square below.

⨆︀
𝑒∈ℰ1
{0, 1} 𝑋0

⨆︀
𝑒∈ℰ1

𝐼 𝑋1

⟨𝜙𝑒⟩

⟨Φ𝑒⟩

We already have the partial extension 𝑓0 : 𝑋0 → 𝑌 , so it seems reasonable to
look for a map 𝑔 : ⨆︀𝑒∈ℰ1 𝐼 → 𝑌 which we can combine with 𝑓0 to use the universal
property of the pushout to obtain a map 𝑓1 : 𝑋1 → 𝑌 . In order for this to work, the
maps 𝑔 and 𝑓0 must be compatible in some way. Precisely, for every 𝑒 ∈ ℰ1, the maps
(𝑔 ∘ 𝑖𝑒)|{0,1}, 𝑓0 ∘ 𝜙𝑒 : {0, 1} → 𝑌 must coincide, which means that 𝑔 ∘ 𝑖𝑒 is a path in 𝑌

from 𝑓0(𝜙𝑒(0)) to 𝑓0(𝜙𝑒(1)). If we want to be sure that such a map exists, we can suppose
that the target space 𝑌 is path-connected. If this is the case, then for every 𝑒 ∈ ℰ1 we can
choose a path 𝑔𝑒 : 𝐼 → 𝑌 from 𝑓0(𝜙𝑒(0)) to 𝑓0(𝜙𝑒(1)). All these paths together define a
map

⟨𝑔𝑒⟩ :
⨆︁
𝑒∈ℰ1

𝐼 → 𝑌,

and by construction it fits together with 𝑓0 ∘ ⟨𝜙𝑒⟩ in the commutative “outer shell” of the
diagram below. ⨆︀

𝑒∈ℰ1
{0, 1} 𝑋0

⨆︀
𝑒∈ℰ1

𝐼 𝑋1

𝑌

⟨𝜙𝑒⟩

𝑓0

⟨Φ𝑒⟩

⟨𝑔𝑒⟩

𝑓1
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The diagonal map 𝑓1 : 𝑋1 → 𝑌 is obtained via the universal property of the pushout, and
it is clear from the commutativity properties of the diagram that 𝑓1 is an extension of 𝑓0,
and therefore also an extension of 𝑓 .

The crucial part in this reasoning of extending to the 1-skeleton was assuming that
𝑌 is path-connected. This simpler case already illustrates the general principle that how
far it can extend 𝑓 up the skeletal fibration depends on the connectivity of the target
space. The next result makes this precise.

7.2.2 Theorem. Let (𝑋,𝐴) be a relative CW-complex with skeletal filtration

𝐴 = 𝑋−1 ⊆ 𝑋0 ⊆ 𝑋1 ⊆ · · · ⊆ 𝑋𝑛 ⊆ · · · ⊆ 𝑋.

If 𝑌 is a (𝑛 − 1)-connected space for some integer 𝑛 ≥ 1, then any map 𝑓 : 𝐴 → 𝑌 can
be extended to a map 𝑓𝑛 : 𝑋𝑛 → 𝑌 defined on the 𝑛-skeleton.

Proof. The discussion above shows that 𝑓 can always be extended to a map 𝑓0 : 𝑋0 → 𝑌

defined on the 0-skeleton.

Now suppose we have extended 𝑓 to a map 𝑓𝑘 : 𝑋𝑘 → 𝑌 on the 𝑘-skeleton for
some integer 0 < 𝑘 ≤ 𝑛 − 1. We will show that 𝑓𝑘 can then be extended to the next
stage 𝑓𝑘+1 : 𝑋𝑘+1 → 𝑌 of the filtration. By definition of relative CW-complex we know
the pair (𝑋𝑘+1, 𝑋𝑘) is (𝑘 + 1)-cellular, so there exists a collection of characteristic maps
{Φ𝑒 : 𝐷𝑘+1 → 𝑋𝑘+1}𝑒∈ℰ𝑘+1 which together fit in a pushout square.

⨆︀
𝑒∈ℰ𝑘+1

𝑆𝑘 𝑋𝑘

⨆︀
𝑒∈ℰ𝑘+1

𝐷𝑘+1 𝑋𝑘+1

⟨𝜙𝑒⟩

⟨Φ𝑒⟩

For each 𝑒 ∈ ℰ𝑘+1, we can regard the composition 𝑓𝑘∘𝜙𝑒 : 𝑆𝑘 → 𝑌 as a pointed map
of type (𝑆𝑘, *𝑆𝑘) → (𝑌, 𝑦𝑒), where 𝑦𝑒 := 𝑓𝑘(𝜙𝑒(*𝑆𝑘)). This map then defines an element
[𝑓𝑘 ∘ 𝜙𝑒]* of the 𝑘-th homotopy group 𝜋𝑘(𝑌, 𝑦𝑒). Since 𝑘 ≤ 𝑛, and 𝑌 is 𝑛-connected, this
homotopy group is in fact trivial, therefore [𝑓𝑘 ∘𝜙𝑒]* = [ct𝑆𝑘,𝑦𝑒

]*, which implies that 𝑓𝑘 ∘𝜙𝑒
is null homotopic (even pointed null homotopic).

The reasoning above shows that 𝑓𝑘 ∘ 𝜙𝑒 is null homotopic for every 𝑒 ∈ ℰ𝑘+1.
Theorem 7.2.1 then implies that 𝑓𝑘 can be extended to a map 𝑓𝑘+1 : 𝑋𝑘+1 → 𝑌 as
claimed. Now, if 𝑘 was equal to 𝑛 − 1, then we have succeeded in extending 𝑓 to the
𝑛-skeleton; if not, then 𝑘+ 1 is still strictly smaller than 𝑛, and the argument still applies,
so we can then extend 𝑓𝑘+1 to a map 𝑓𝑘+2 : 𝑋𝑘+2 → 𝑌 . Continuing like this inductively
we eventually obtain a map 𝑓𝑛 : 𝑋𝑛 → 𝑌 extending the initial map 𝑓 . �
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7.2.1 The obstruction cocycle

Theorem 7.2.2 tells us that, the more connected the target space 𝑌 is, the easier it
is to extend a map 𝑓 : 𝐴→ 𝑌 through higher stages of the skeletal filtration of a relative
CW-complex (𝑋,𝐴).

But what happens when 𝑌 has some non-vanishing homotopy groups? Suppose we
have a partially extended map 𝑓𝑛 : 𝑋𝑛 → 𝑌 defined on the 𝑛-skeleton, and that 𝑌 does
not necessarily have trivial homotopy groups in dimension 𝑛. By the definition of CW-
complex, the pair (𝑋𝑛+1, 𝑋𝑛) is (𝑛 + 1)-cellular, so there is a collection of characteristic
maps {Φ𝑒 : 𝐷𝑛+1 → 𝑋𝑛}𝑛∈ℰ𝑛+1 that give rise to a certain pushout square. Theorem 7.2.1
still applies, so that 𝑓𝑛 can be extended to a map 𝑓𝑛+1 : 𝑋𝑛+1 → 𝑌 if and only if the
compositions 𝑓𝑛 ∘ 𝜙𝑒 : 𝑆𝑛 → 𝑌 are null homotopic for every 𝑒 ∈ ℰ𝑛+1. If like before we
set 𝑦𝑒 := 𝑓𝑛(𝜙𝑒(*𝑆𝑛)), and we assume at the very least that 𝑌 is path-connected, then the
pointed map 𝑓𝑛 ∘ 𝜙𝑒 : (𝑆𝑛, *𝑆𝑛)→ (𝑌, 𝑦𝑒) is null homotopic if and only if [𝑓𝑛 ∘ 𝜙𝑒]* is the
trivial element of 𝜋𝑛(𝑌, 𝑦𝑒).

7.2.3 Remark. Here we have to be a bit careful with basepoints. If [𝑓𝑛 ∘ 𝜙𝑒]* defines
the trivial element of 𝜋𝑛(𝑌, 𝑦𝑒), then 𝑓𝑛 ∘ 𝜙𝑒 is certainly null homotopic, even pointed
null homotopic. For the converse, if 𝑓𝑛 ∘ 𝜙𝑒 is null homotopic, since this homotopy need
not be pointed, its final stage might not define an element of 𝜋𝑛(𝑌, 𝑦𝑒). More precisely, if
ℎ : 𝑆𝑛× 𝐼 → 𝑌 is the homotopy of 𝑓𝑛 ∘𝜙𝑒 to a constant map ct𝑆𝑛,𝑦 for some point 𝑦 ∈ 𝑌 ,
then we have the trivial element of 𝜋𝑛(𝑌, 𝑦), and not of 𝜋𝑛(𝑌, 𝑦𝑒).

Nonetheless, if we consider the path 𝛾 : 𝐼 → 𝑌 defined as 𝛾(𝑡) := ℎ(*𝑆𝑛 , 𝑡) for
every 𝑡 ∈ 𝐼, that is, if we keep track of how the image of the basepoint *𝑆𝑛 moves during
the null homotopy, we have the transport map 𝑡𝛾 : 𝜋𝑛(𝑌, 𝑦𝑒)→ 𝜋𝑛(𝑌, 𝑦). Moreover, ℎ is a
homotopy adapted to 𝑓𝑛 ∘𝜙𝑒 and 𝛾, so we know that the image 𝑡𝛾([𝑓𝑛 ∘𝜙𝑒]*) is exactly the
pointed homotopy class [ℎ1]*, which we know is the trivial element of 𝜋𝑛(𝑌, 𝑦). Since the
transport map 𝑡𝛾 is an isomorphism of homotopy groups according to Proposition 5.5.6,
it follows that [𝑓𝑛 ∘ 𝜙𝑒]* must also be equal to the trivial element of 𝜋𝑛(𝑌, 𝑦𝑒).

In our present context, it might very well happen that [𝑓𝑛 ∘ 𝜙𝑒]* does not define
the trivial element of 𝜋𝑛(𝑌, 𝑦𝑒). In this case, it is then not possible to extend 𝑓𝑛 further to
the (𝑛+1)-skeleton, the non-vanishing homotopy class [𝑓𝑛 ∘𝜙𝑒]* represents an obstruction
to the possibility of extending.

Our goal is to quantify algebraically this extension, and in order to do this we
use the cellular cohomology of the relative CW-complex (𝑋,𝐴). Let us very briefly recall
how this is constructed. If {Φ𝑒 : 𝐷𝑛 → 𝑋𝑛−1}𝑒∈ℰ𝑛 are the characteristic maps for the
𝑛-skeleton, we can consider the collection of open cells {Φ𝑒(𝐷𝑛 ∖𝑆𝑛−1)}𝑒∈ℰ𝑛 . The group of
𝑛-dimensional relative cellular chains 𝒞𝑛(𝑋,𝐴) can be defined as the free abelian group
generated by the open 𝑛-cells of (𝑋,𝐴). A boundary operator 𝜕𝑛 : 𝒞𝑛(𝑋,𝐴)→ 𝒞𝑛−1(𝑋,𝐴)
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is constructed as follows, if Φ𝑒(𝐷𝑛 ∖𝑆𝑛−1) is an open 𝑛-cell of (𝑋,𝐴), and Φ𝑓 (𝐷𝑛−1 ∖𝑆𝑛−2)
is an open (𝑛− 1)-cell of (𝑋,𝐴), it turns out that there is a homeomorphism

𝑋𝑛−1/(𝑋𝑛−1 ∖ Φ𝑓 (𝐷𝑛−1 ∖ 𝑆𝑛−2)) ∼= 𝐷𝑛−1/𝑆𝑛−2 ∼= 𝑆𝑛−1,

so via the composition

𝑆𝑛−1 𝑋𝑛−1 𝑋𝑛−1/(𝑋𝑛−1 ∖ Φ𝑓 (𝐷𝑛−1 ∖ 𝑆𝑛−2)) 𝐷𝑛−1/𝑆𝑛−2 𝑆𝑛−1𝜙𝑒 𝑝 ∼= ∼=

we end up with a self-map 𝑆𝑛−1 → 𝑆𝑛−1 whose degree is called the incidence number of
the 𝑛-cell Φ𝑒(𝐷𝑛∖𝑆𝑛−1) and the (𝑛−1)-cell Φ𝑓 (𝐷𝑛−1∖𝑆𝑛−2), and is denoted by [𝑒 : 𝑓 ]. We
then define the boundary operator 𝜕𝑛 : 𝒞𝑛(𝑋,𝐴)→ 𝒞𝑛−1(𝑋,𝐴) on the 𝑛-cell Φ𝑒(𝐷𝑛∖𝑆𝑛−1)
as

𝜕𝑛(Φ𝑒(𝐷𝑛 ∖ 𝑆𝑛−1)) :=
∑︁

𝑓∈ℰ𝑛−1

[𝑒 : 𝑓 ] · Φ𝑓 (𝐷𝑛−1 ∖ 𝑆𝑛−2),

where the sum is over all the (𝑛−1)-cells of (𝑋,𝐴). Since 𝒞𝑛(𝑋,𝐴) is freely generated by the
open 𝑛-cells, the definition above can be extended by linearity to a group homomorphism
𝜕𝑛 : 𝒞𝑛(𝑋,𝐴)→ 𝒞𝑛−1(𝑋,𝐴).

This procedure then gives us a chain complex {𝒞𝑛(𝑋,𝐴)}𝑛≥0 whose homology
groups define the relative cellular homology groups of the relative CW-complex (𝑋,𝐴).
The construction can then be dualized to define cellular cohomology, that is, we consider
an abelian group 𝐺, define the group of cellular cochains 𝒞𝑛(𝑋,𝐴;𝐺) as the group of
homomorphisms 𝒞𝑛(𝑋,𝐴)→ 𝐺, and define a coboundary operator

𝛿𝑛 : 𝒞𝑛(𝑋,𝐴;𝐺)→ 𝒞𝑛+1(𝑋,𝐴;𝐺)

by dualizing 𝜕𝑛+1. We end up with a cochain complex {𝒞𝑛(𝑋,𝐴;𝐺)}𝑛≥0 whose cohomology
groups define the relative cellular cohomology groups with coefficients in 𝐺 of (𝑋,𝐴)

Back to our obstruction problem, we have seen that the possibility of extending
𝑓𝑛 : 𝑋𝑛 → 𝑌 further to 𝑓𝑛+1 is controlled by the elements [𝑓𝑛 ∘ 𝜙𝑒]* ∈ 𝜋𝑛(𝑌, 𝑦𝑒). We can
consider this as assigning an element of 𝜋𝑛(𝑌, 𝑦𝑒) to each (𝑛+1)-cell in the (𝑛+1)-skeleton
of (𝑋,𝐴), something that looks a lot like a cellular cochain as described above. There is a
problem, however, since the elements [𝑓𝑛 ∘𝜙𝑒]* assigned to the (𝑛+1)-cells live in different
groups for each 𝑒 ∈ ℰ𝑛+1. We can make the assumption that 𝑌 is path-connected, which
allows us to identify the homotopy groups 𝜋𝑛(𝑌, 𝑦𝑒) for different (𝑛 + 1)-cells 𝑒 ∈ ℰ𝑛+1,
but recall that these identifications are not canonical, they are obtained by transporting
along paths between the various basepoints, and we might run into problems if we choose
paths arbitrarily. At this point, we make the simplifying assumption that the target space
𝑌 is 𝑛-simple, which allows us to canonically identify the homotopy groups at different
basepoints. Keeping this in mind, we from now on denote the homotopy groups of 𝑌
simply by 𝜋𝑛(𝑌 ), omitting the basepoint.

With these considerations in place, we can make the following definition.
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7.2.4 Definition. Let (𝑋,𝐴) be a relative CW-complex, and let 𝑌 be an 𝑛-simple space.
Given a map 𝑓 : 𝑋𝑛 → 𝑌 defined on the 𝑛-skeleton, the cellular (𝑛+ 1)-cochain obtained
by assigning to each (𝑛 + 1)-cell Φ𝑒(𝐷𝑛+1 ∖ 𝑆𝑛) of (𝑋,𝐴) the pointed homotopy class
[𝑓𝑛 ∘ 𝜙𝑒]* ∈ 𝜋𝑛(𝑌 ) is called the obstruction cochain of 𝑓 , and is denoted by 𝜃𝑛+1(𝑓) ∈
𝒞𝑛+1(𝑋,𝐴; 𝜋𝑛(𝑌 )).

Since a relative cellular cochain in 𝒞𝑛+1(𝑋,𝐴; 𝜋𝑛(𝑌 )) is the same thing as a group
homomorphism 𝒞𝑛+1(𝑋,𝐴)→ 𝜋𝑛(𝑌 ), and 𝒞𝑛+1(𝑋,𝐴) is by definition freely generated by
the open (𝑛+1)-cells of (𝑋,𝐴), a cellular cochain vanishes if and only if it maps each open
(𝑛+ 1)-cell to the trivial element of 𝜋𝑛(𝑌 ). Specializing this to the case of the obstruction
cochain 𝜃𝑛+1(𝑓) ∈ 𝒞𝑛+1(𝑋,𝐴; 𝜋𝑛(𝑌 )) we obtain the following algebraic reformulation of
Theorem 7.2.1:

7.2.5 Corollary. Let (𝑋,𝐴) be a relative CW-complex, and let 𝑌 be an 𝑛-simple space.
A map 𝑓 : 𝑋𝑛 → 𝑌 defined on the 𝑛-skeleton of (𝑋,𝐴) admits an extension to the (𝑛+1)-
skeleton if and only if its obstruction cochain 𝜃𝑛+1(𝑓) ∈ 𝒞𝑛+1(𝑋,𝐴; 𝜋𝑛(𝑌 )) vanishes.

We have taken a step towards an algebraic condition for the existence of an exten-
sion of 𝑓 : 𝑋𝑛 → 𝑌 to the (𝑛 + 1)-skeleton with Corollary 7.2.5. Unfortunately, it is not
of much practical use, since verifying if 𝜃𝑛+1(𝑓) vanishes is the same thing as verifying if
the maps 𝑓 ∘ 𝜙𝑒 : 𝑆𝑛 → 𝑌 are null homotopic.

Nevertheless, this reformulation suggests that the extension problem has a cohomo-
logical nature to it. This is indeed true, and the main result of Obstruction Theory makes
precise the connection between extensions and cohomology. The crucial result behind this
connection is the following:

7.2.6 Theorem. Let (𝑋,𝐴) be a relative CW-complex, and let 𝑌 be an 𝑛-simple space.
If 𝑓 : 𝑋𝑛 → 𝑌 is a map, then its obstruction cochain 𝜃𝑛+1(𝑓) ∈ 𝒞𝑛+1(𝑋,𝐴; 𝜋𝑛(𝑌 )) is in
fact a relative cellular cocycle.

All proofs of this result rely in some way or another on auxiliary results that tell
us how the homotopy groups are related to the homology groups. The most famous result
of this type is the Hurewicz Theorem, which basically states that the homotopy group
𝜋𝑛(𝑋, 𝑥0) of a path-connected space is isomorphic to the corresponding homology group
𝐻𝑛(𝑋) if the homotopy groups 𝜋𝑖(𝑋, 𝑥0) are trivial for all 1 ≤ 𝑖 ≤ 𝑛− 1.1 For proofs, see
for example (STEENROD, 1951, Part III, Section 32) and (DAVIS; KIRK, 2001, Theorem
7.6).
1 There is a subtlety in dimension 𝑛 = 1, since 𝜋1(𝑋, 𝑥0) is in general non-abelian, even if 𝑋 is

path-connected (that is, if 𝜋0(𝑋) is trivial). In this case, the Hurewicz Theorem states that
𝐻1(𝑋) is isomorphic to the abelianization of 𝜋1(𝑋, 𝑥0).
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7.2.7 Definition. Let (𝑋,𝐴) be a relative CW-complex, and let 𝑌 be an 𝑛-simple space.
Given a map 𝑓 : 𝑋𝑛 → 𝑌 , the relative cohomology class [𝜃𝑛+1(𝑓)] ∈ 𝐻𝑛+1(𝑋,𝐴; 𝜋𝑛(𝑌 ))
determined by the obstruction cocycle of 𝑓 is called the obstruction class of 𝑓 .

7.2.2 The difference cochain

We now take another step towards understanding the connection between exten-
sions and cohomology by understanding how the obstruction cochain of 𝑓 depends on its
values on the previous skeleton 𝑋𝑛−1. The main result needed for this comparison is the
following:

7.2.8 Lemma. Let (𝑋,𝐴) be a relative CW-complex, and let 𝑌 be an 𝑛-simple space.
If 𝑓, 𝑔 : 𝑋𝑛 → 𝑌 are two maps such that their restriction 𝑓 |𝑋𝑛−1 , 𝑔|𝑋𝑛−1 : 𝑋𝑛−1 → 𝑌 to
the previous skeleton are homotopic, then there exists a relative cellular cochain 𝑑(𝑓, 𝑔) ∈
𝒞𝑛(𝑋,𝐴; 𝜋𝑛(𝑌 )) satisfying the equality

𝛿𝑛(𝑑(𝑓, 𝑔)) = 𝜃𝑛+1(𝑓)− 𝜃𝑛+1(𝑔).

Sketch of proof. Since (𝐼, 𝜕𝐼) is a relative CW-complex with 𝑋0 = 𝑋−1 = 𝜕𝐼, and 𝑋1 = 𝐼,
where the only characteristic map is the identity id𝐼 : (𝐼, 𝜕𝐼) → (𝐼, 𝜕𝐼) (notice that we
are making the harmless identification of pairs (𝐷1, 𝑆0) ∼= (𝐼, 𝜕𝐼)), the pair (𝑋× 𝐼, 𝐴× 𝐼)
is also relative CW-complex whose 𝑘-th skeleton (𝑋×𝐼)𝑘 is given by (𝑋𝑘𝜕𝐼)∪ (𝑋𝑘−1×𝐼).
In this case, the characteristic maps for the 𝑘-cells can be identified with the products

Φ𝑒 × id𝐼 : 𝐷𝑘 × 𝐼 → (𝑋 × 𝐼)𝑘

taking into account the existence of a homeomorphism of pairs

(𝐷𝑘 × 𝐼,𝐷𝑘 × 𝜕𝐼 ∪ 𝑆𝑘−1 × 𝐼) ∼= (𝐷𝑘+1, 𝑆𝑘).2

Let 𝐻 : 𝑋𝑘−1 × 𝐼 → 𝑌 be a homotopy from 𝑓 |𝑋𝑛−1 to 𝑔|𝑋𝑛−1 . These maps can be
combined to define a map Γ : (𝑋 × 𝐼)𝑛 → 𝑌 as

Γ(𝑥, 𝑡) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑓(𝑥), if 𝑥 ∈ 𝑋𝑘, 𝑡 = 0,

𝑔(𝑥), if 𝑥 ∈ 𝑋𝑘, 𝑡 = 1,

𝐻(𝑥, 𝑡), if 𝑥 ∈ 𝑋𝑘−1.

This map Γ gives rise to an obstruction cochain 𝜃𝑛+1(Γ) ∈ 𝒞𝑛+1(𝑋×𝐼, 𝐴×𝐼, 𝜋𝑛(𝑌 ))
measuring the possibility of extending it to the (𝑛+ 1)-skeleton of 𝑋 × 𝐼. Using this we
define a cochain 𝑑(𝑓, 𝑔) ∈ 𝒞𝑛(𝑋,𝐴; 𝜋𝑛(𝑌 )) as follows: given an open 𝑛-cell Φ𝑒(𝐷𝑛 ∖ 𝑆𝑛−1),
2 See the discussion at Example 1.2.7.
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the product Φ𝑒 × id𝐼 : 𝐷𝑛 × id𝐼 can be identified with the characteristic map of an
(𝑛+ 1)-cell in 𝑋 × 𝐼, and we then define

𝑑(Φ𝑒(𝐷𝑛 ∖ 𝑆𝑛−1)) := (−1)𝑛+1 · 𝜃𝑛+1(Γ)(Φ𝑒(𝐷𝑛 ∖ 𝑆𝑛−1)× (𝐼 ∖ 𝜕𝐼)).

This assigns an element in 𝜋𝑛(𝑌 ) to each open 𝑛-cell of (𝑋,𝐴) by considering the element
that is assigned to a corresponding product open (𝑛 + 1)-cell in (𝑋 × 𝐼, 𝐴 × 𝐼) by the
obstruction cochain 𝜃𝑛+1(Γ).

The fact that 𝜃𝑛(𝑑(𝑓, 𝑔)) = 𝜃𝑛+1(𝑓)− 𝜃𝑛+1(𝑔) follows by direct comparison cell-by-
cell using that 𝜃𝑛+1(Γ) is a cocycle. There are some subtleties since we have to understand
how the boundary operator of (𝑋 × 𝐼, 𝐴× 𝐼) relates to the boundary operators of (𝑋,𝐴)
and (𝐼, 𝜕𝐼). See (DAVIS; KIRK, 2001, Lemma 7.8) for a detailed computation. �

The cochain 𝑑(𝑓, 𝑔) constructed above is called the difference cochain of 𝑓 and
𝑔. Notice that its definition requires first choosing a homotopy between the restrictions
𝑓 |𝑋𝑛−1 and 𝑔|𝑋𝑛−1 .

Lemma 7.2.8 allows us to prove the first part of the connection between extensions
and cohomology classes.

7.2.9 Corollary. Let (𝑋,𝐴) be a relative Cw-complex, and let 𝑌 be an 𝑛-simple space.
Given a map 𝑓 : 𝑋𝑛 → 𝑌 , if there exists a map 𝐹 : 𝑋𝑛+1 → 𝑌 whose restriction
𝐹 |𝑋𝑛−1 is homotopic to the restriction 𝑓 |𝑋𝑛−1 , then the obstruction class of 𝑓 [𝜃𝑛+1(𝑓)] ∈
𝐻𝑛+1(𝑋,𝐴; 𝜋𝑛(𝑌 )) vanishes.

Proof. Let 𝑔 := 𝐹 |𝑋𝑛 : 𝑋𝑛 → 𝑌 , and notice that 𝑔|𝑋𝑛−1 = 𝐹 |𝑋𝑛−1 , therefore 𝑓 |𝑋𝑛−1 and
𝑔|𝑋𝑛−1 are homotopic by hypothesis. According to Lemma 7.2.8, there exists a difference
cochain 𝑑(𝑓, 𝑔) ∈ 𝒞𝑛(𝑋,𝐴; 𝜋𝑛(𝑌 )) such that

𝛿𝑛(𝑑(𝑓, 𝑔)) = 𝜃𝑛+1(𝑓)− 𝜃𝑛+1(𝑔),

and since 𝐹 is an extension of 𝑔, the obstruction cochain on the right vanishes, and
we are then left with the equality 𝜃𝑛+1(𝑓) = 𝛿𝑛(𝑑(𝑓, 𝑔)). This means that 𝜃𝑛+1(𝑓) is
a coboundary in 𝒞𝑛+1(𝑋,𝐴; 𝜋𝑛(𝑌 )), from which we deduce that its cohomology class
[𝜃𝑛+1(𝑓)] is zero. �

7.2.3 The main extension result

At the end of the previous subsection we proved that, if a map 𝑓 : 𝑋𝑛 → 𝑌 can be
extended to 𝑋𝑛+1 after being modified on𝑋𝑛, in the sense that the restriction 𝑓 |𝑋𝑛−1 is
homotopically to a map which does extend to 𝑋𝑛+1, then the obstruction class [𝜃𝑛+1(𝑓)]
vanishes.
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The goal of this subsection is to prove that the converse is also true, that is, if the
obstruction class vanishes, then 𝑓 can be extended to 𝑋𝑛+1 after being modified on 𝑋𝑛−1.

In all the next results, (𝑋,𝐴) is a relative CW-complex, 𝑌 is an 𝑛-simples space.

The proof of the main result depends on the following:

7.2.10 Proposition (Realization). Given a map 𝑓0 : 𝑋𝑛 → 𝑌 , a homotopy 𝐻 : 𝑋𝑛−1 ×
𝐼 → 𝑌 such that 𝐻0 = 𝑓0|𝑋𝑛−1 , and a cochain 𝑑 ∈ 𝒞𝑛(𝑋,𝐴; 𝜋𝑛(𝑌 )), there exists a map
𝑓1 : 𝑋𝑛 → 𝑌 such that 𝐻1 = 𝑓1|𝑋𝑛−1 and 𝑑(𝑓0, 𝑓1) = 𝑑. In summary, given 𝑓0 and 𝐻, any
cochain of 𝒞𝑛(𝑋,𝐴; 𝜋𝑛(𝑌 )) can be realized as a difference cochain.

The proof depends on a simple homotopical result.

7.2.11 Lemma. For any map 𝑓 : 𝐷𝑛×{0} ∪𝑆𝑛−1× 𝐼 → 𝑌 , and for any homotopy class
𝛼 ∈ [𝜕(𝐷𝑛 × 𝐼), 𝑌 ]3, there exists a map 𝐹 : 𝜕(𝐷𝑛 × 𝐼) → 𝑌 such that [𝐹 ] = [𝛼], and
whose restriction to 𝐷𝑛 × {0} ∪ 𝑆𝑛−1 × 𝐼 coincides with 𝑓 .

Proof. Consider the representing map 𝛼 : 𝜕(𝐷𝑛 × 𝐼) → 𝑌 . If 𝐷 denotes the subspace
𝐷𝑛×{0} ∪ 𝑆𝑛−1×𝐼, then 𝐷 is contractible, therefore 𝑓 and 𝛼|𝐷 are both null homotopic,
therefore homotopic to one another. Consider then a homotopy ℎ : 𝐷 × 𝐼 → 𝑌 starting
at 𝑓 and ending at the restriction 𝛼|𝐷, and notice that 𝛼 itself extends the final stage of
ℎ. Since the pair (𝜕(𝐷𝑛× 𝐼), 𝐷) is 𝑛-cellular - we just need to attach the “cap” 𝐷𝑛×{1} -
it satisfies the Homotopy Extension Property4, therefore we can extend ℎ to a homotopy
𝐻 : 𝜕(𝐷𝑛 × 𝐼)× 𝐼 → 𝑌 satisfying the following properties:

1. 𝐻(𝑥, 1) = 𝛼(𝑥) for every 𝑥 ∈ 𝜕(𝐷𝑛 × 𝐼);

2. 𝐻(𝑥, 𝑡) = ℎ(𝑥, 𝑡) for every (𝑥, 𝑡) ∈ 𝐷 × 𝐼.

We then let 𝐹 := 𝐻0 : 𝜕(𝐷𝑛× 𝐼) be the initial stage of this extended homotopy. It
is homotopic to 𝛼, so the equality [𝐹 ] = [𝛼] holds, and its restriction 𝐹 |𝐷 coincides with
𝑓 by virtue of the second property above. �

Proof of Proposition 7.2.10. Consider an 𝑛-cell Φ𝑒 : (𝐷𝑛, 𝑆𝑛−1) → (𝑋𝑛, 𝑋𝑛−1) of (𝑋,𝐴).
Let 𝑓 : 𝐷𝑛 × {0} ∪ 𝑆𝑛−1 × 𝐼 → 𝑌 be defined as

𝜆𝑒(𝑥, 𝑡) :=

⎧⎪⎨⎪⎩𝑓0(Φ𝑒(𝑥)), if 𝑥 ∈ 𝐷𝑛, 𝑡 = 0,

𝐻(𝜙𝑒(𝑥), 𝑡), if 𝑥 ∈ 𝑆𝑛−1, 𝑡 ∈ 𝐼.
3 The notation 𝜕(𝐷𝑛 × 𝐼) denotes the “outer shell” of the filled cylinder 𝐷𝑛 × 𝐼, i.e., the

subspace 𝑆𝑛−1 × 𝐼 ∪ 𝐷𝑛 × {0} ∪ 𝐷𝑛 × {1}, which is topologically an 𝑛-sphere.
4 Technically, we are using the fact that, if (𝑋, 𝐴) is a cellular pair, then the inclusion 𝑖 : 𝐴� 𝑋

is a cofibration
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Consider also [𝛼] := 𝑑(Φ𝑒(𝐷𝑛 ∖ 𝑆𝑛−1)) the homotopy class assigned to the open cell
Φ𝑒(𝐷𝑛 ∖ 𝑆𝑛−1) by the cellular cochain 𝑑.5

Applying the previous Lemma we obtain a map 𝐹 𝑒 : 𝜕(𝐷𝑛 × 𝐼) → 𝑌 such that
[𝐹 𝑒] = [𝛼] and whose restriction to 𝐷 coincides with 𝜆𝑒. We then let 𝑓 𝑒1 : 𝐷𝑛 → 𝑌

be defined as 𝑓 𝑒1 := 𝐹 𝑒
1 . Doing this for every 𝑛-cell of (𝑋,𝐴) we can glue together the

various maps 𝑓 𝑒1 (formally, we use the universal property of the pushout) to obtain a map
𝑓1 : 𝑋𝑛 → 𝑌 . Since 𝜆𝑒(𝑥, 1) = 𝐻(𝜙𝑒(𝑥), 1) = 𝐹 𝑒(𝑥, 1) holds for every 𝑥 ∈ 𝑆𝑛−1 and every
open 𝑛-cell, this map 𝑓1 we have defined satisfies the equality 𝑓 |𝑋𝑛−1 = 𝐻1.

The only thing left is showing that the difference cochain 𝑑(𝑓0, 𝑓1) has the specified
value. If we go over its construction, we see that it assigns to each 𝑛-cell Φ𝑒(𝐷𝑛 ∖ 𝑆𝑛−1)
an element 𝜋𝑛(𝑌 ) which can be identified with the class [Γ ∘ (Φ𝑒 × id𝐼)] ∈ [𝜕(𝐷𝑛 × 𝐼), 𝑌 ],
where Γ : 𝑋𝑛 × 𝜕𝐼 ∪ 𝑋𝑛−1 × 𝐼 → 𝑌 is defined as

Φ(𝑥, 𝑡) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑓0(𝑥), if 𝑥 ∈ 𝑥𝑛, 𝑡 = 0,

𝑓1(𝑥), if 𝑥 ∋ 𝑋𝑛, 𝑡 = 1,

𝐻(𝑥, 𝑡), if 𝑥 ∈ 𝑋𝑛−1.

This means that Φ∘(Φ𝑒×id𝐼) is equal precisely to the map 𝐹 𝑒 we obtained by applying the
previous Lemma. Since this map satisfied [𝐹 ] = [𝛼], and 𝛼 was obtained from evaluating
the cochain 𝑑 on the open 𝑛-cell Φ𝑒(𝐷𝑛 ∖ 𝑆𝑛−1) via the identification 𝜕(𝐷𝑛 × 𝐼) ∼= 𝑆𝑛, if
we revert this identification we see that [𝐹 ] gets mapped precisely to the value 𝑑(Φ𝑒(𝐷𝑛 ∖
𝑆𝑛−1)) ∈ 𝜋𝑛(𝑌 ). In summary, the element of 𝜋𝑛(𝑌 ) assigned to the open cell Φ𝑒(𝐷𝑛∖𝑆𝑛−1)
by the difference cochain 𝑑(𝑓0, 𝑓1) is equal to the element assigned by the cochain 𝑑, and
since this holds for every 𝑛-cell, we deduce that 𝑑(𝑓0, 𝑓1) = 𝑑 as desired. �

We finally have all the ingredients to prove the main theorem.

7.2.12 Theorem. Let (𝑋,𝐴) be a CW-complex, and let 𝑌 be an 𝑛-simple space. Given
a map 𝑓 : 𝑋𝑛 → 𝑌 , its obstruction class [𝜃𝑛−1(𝑓) ∈ 𝐻𝑛+1(𝑋,𝐴; 𝜋𝑛(𝑌 )) vanishes if and
only if there exists a map 𝐹 : 𝑋𝑛+1 → 𝑌 whose restriction 𝐹 |𝑋𝑛−1 is homotopic to the
restriction 𝑓 |𝑋𝑛−1 .

Proof. We have already proved that, if the extension 𝐹 exists, then [𝜃𝑛+1(𝑓)] vanishes. For
the converse, suppose this cohomology class vanishes, so that 𝜃𝑛+1(𝑓) = 𝛿𝑛(𝑑) for some
cellular cochain 𝑑 ∈ 𝒞𝑛(𝑋,𝐴; 𝜋𝑛(𝑌 )).

Consider the homotopy 𝐻 : 𝑋𝑛−1 × 𝐼 → 𝑌 given by 𝐻(𝑥, 𝑡) := 𝑓 |𝑋𝑛−1(𝑥). By
definition the initial stage 𝐻0 agrees wit 𝑓 |𝑋𝑛−1 , and we can then apply Proposition 7.2.10
5 This cochain actually assigns an element to the open cell an element in the homotopy group

𝜋𝑛(𝑌 ), but this gives rise to a homotopy class in [𝜕(𝐷𝑛 × 𝐼), 𝑌 ] since 𝜕(𝐷𝑛 × 𝐼) ∼= 𝑆𝑛 as we
have already remarked.
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to obtain a map 𝑓 ′ : 𝑋𝑛 → 𝑌 such that 𝐻1 = 𝑓 ′|𝑋𝑛−1 , and such that the difference cochain
𝑑(𝑓, 𝑓 ′) is equal precisely to 𝑑.

We just need to show that 𝑓 ′ can be extended to a map 𝐹 : 𝑋𝑛+1 → 𝑌 . In order
to see this, recall that the difference cochain satisfies the equality

𝛿𝑛(𝑑(𝑓, 𝑓 ′)) = 𝜃𝑛+1(𝑓)− 𝜃𝑛+1(𝑓 ′).

In our case, this can be rewritten as

𝛿𝑛(𝑑) = 𝜃𝑛+1(𝑓)− 𝜃𝑛+1(𝑓 ′),

but 𝑑 was chosen to satisfy 𝜃𝑛+1(𝑓) = 𝛿𝑛(𝑑), which implies that the obstruction cochain
𝜃𝑛+1(𝑓 ′) vanishes, thus it can be extended to 𝑋𝑛+1. �

It is interesting to note that the extension 𝐹 constructed above is such that the
restriction 𝐹 |𝑋𝑛−1 is not only homotopic to 𝑓 |𝑋𝑛−1 , but in fact equal to it.

7.3 Obstruction Theory for sections
The theory developed in the previous section can be adapted to study the extension

lifting problem for sections of a locally trivial bundle. In this section we briefly go over
the main results. We do not include proofs, but mostly point out where are the differences
and subtleties in adapting the obstruction theory for maps to the context of sections.

Throughout the section, let 𝑋 be a CW-complex, and suppose 𝑝 : 𝐸 → 𝑋 is a
locally trivial bundle with typical fiber 𝐹 . Given a section 𝑠 : 𝑋𝑛 → 𝐸 of the bundle, we
are interested in investigating the possibility of extending 𝑠 to higher stages of the skeletal
filtration of 𝑋 such that the extension is still a section of the bundle.

If we suppose that 𝑠 is defined on the 𝑛-skeleton of 𝑋𝑛, and we consider the
characteristic map Φ𝑒 : (𝐷𝑛+1, 𝑆𝑛)→ (𝑋𝑛, 𝑋𝑛−1) of an (𝑛+1)-cell, we have the composite
𝑠𝑒 := 𝑠 ∘ 𝜙𝑒 : 𝑆𝑛 → 𝐸. The projection 𝑝 ∘ 𝑠𝑒 : 𝑆𝑛−1 → 𝐵 is null homotopic, because
𝑝 ∘ 𝑠𝑒 = 𝑝 ∘ 𝑠 ∘ 𝜙𝑒 = id𝐵 ∘ 𝜙𝑒 = 𝜙𝑒, and Φ𝑒 extends 𝜙𝑒.

If we then consider a null homotopy ℎ : 𝑆𝑛×𝐼 → 𝐵 of 𝑝∘𝑠𝑒 to some constant map
ct𝑆𝑛,𝑥, using the lifting property of locally trivial bundles we can find a lift ̃︀ℎ : 𝑆𝑛×𝐼 → 𝐸

of ℎ such that its final stage ℎ1 maps 𝑆𝑛 entirely to the fiber 𝑝−1(𝑥). This procedure then
assigns an element in 𝜋𝑛(𝑝−1(𝑥), *) to each (𝑛 + 1)-cell of (𝑋,𝐴). We have the same
possible problem of choice of basepoints in the fiber 𝑝−1(𝑥), so we better assume that the
fibers are 𝑛-simple. Since the fibers are all homeomorphic to the typical fiber 𝐹 , it suffices
to assume that 𝐹 is 𝑛-simple.

We then have a procedure that assigns to every open (𝑛+ 1)-cell of 𝑋 an element
in the homotopy group 𝜋𝑛(𝑝−1(𝑥)) of some fiber. Since all fibers are homeomorphic to 𝐹 ,
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we can identify 𝜋𝑛(𝑝−1(𝑥)) with 𝜋𝑛(𝐹 ). It is tempting to say that this whole procedure of
assigning homotopy classes in 𝜋𝑛(𝐹 ) to the (𝑛 + 1)-cells of 𝑋 defines a cellular cochain
𝒞𝑛+1(𝑋; 𝜋𝑛(𝐹 )). Unfortunately, there is still a possible problem. When we identify the
fiber 𝑝−1(𝑥) with 𝐹 , this identification is not canonical, it depends on choosing a local
trivialization around the point 𝑥. Now, different points will give rise to potentially different
local trivialization, and we might end up with a mess of different identifications between
fibers over points of 𝑥 and the typical fiber 𝐹 .

There are two ways to circumvent this problem:

1. we fix once and for all a point 𝑥0, and fix an identification 𝑝−1(𝑥0) ∼= 𝐹 . This
will serve as the standard identification with the typical fiber. If we can somehow
naturally identify other fiber 𝑝−1(𝑥) with 𝑝−1(𝑥0), then we can also identify them
naturally with 𝐹 . The situation is similar to the process of identifying homotopy
groups based at different points.

2. We can give up on assigning elements of the single group 𝜋𝑛(𝐹 ) to the open (𝑛+ 1)-
cells, and instead allow a varying family of groups. The local triviality of the bundle
ensures that at least locally it is possible to make a consistent choice of groups. It is
possible to develop an alternative cohomology theory based on this idea of varying
coefficient groups called cohomology with local coefficients. If we use this technology,
then the process described above does indeed produce a cochain on this generalized
sense, and the theory can be developed in this way.

The second approach is way beyond the scope of this text, so we comment a little
on the first. If we recall that every CW-complex is a paracompact space, then it follows
that every locally trivial bundle over a CW-complex is in fact a Hurewicz fibration. This
means that the projection 𝑝 : 𝐸 → 𝑋 satisfies the right-lifting property with respect to
any cylinder inclusion 𝑍 � 𝑍 × 𝐼, not just those defined on other CW-complexes.

This allows us to transport information on fibers along paths on the base space.
More precisely, if 𝛾 : 𝐼 → 𝑋 is a path from 𝑥0 to 𝑥1, and we denote the respective fibers
by 𝐹𝑥0 and 𝐹𝑥1 , then the homotopy ℎ : 𝐹𝑥0 × 𝐼 → 𝐵 given by ℎ(𝑢, 𝑡) := 𝛾(𝑡) can be lifted
to a homotopy ̃︀ℎ : 𝐹𝑥0 × 𝐼 → 𝐸, and its final stage ̂︀ℎ1 : 𝐹𝑥0 → 𝐸 actually takes values in
the other fiber 𝐹𝑥1 .

Let 𝑡𝛾 : 𝐹𝑥0 → 𝐹𝑥1 be this map obtained from the path 𝛾. This construction satisfies
properties similar to those satisfied by the transport map for the homotopy groups, in
particular:

1. if ̂︀ℎ is another lift of ℎ, then the final stages ̂︀ℎ1 and ̃︀ℎ1 are homotopic, therefore the
definition of 𝑡𝛾 is independent of the chosen lift;
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2. if 𝛾 ≃ 𝛾′ as paths, then 𝑡𝛾 and 𝑡𝛾′ are homotopic maps;

3. if we consider the constant path ct𝐼,𝑥0 : 𝐼 → 𝑋, then the associated transport map
𝑡ct𝐼,𝑥0

: 𝐹𝑥0 → 𝐹𝑥0 is homotopic to the identity;

4. if 𝛾′ : 𝐼 → 𝑋 is a path from 𝑥1 to 𝑥2, and 𝛾 · 𝛾′ denotes the concatenation of the
two paths, then 𝑡𝛾·𝛾′ is homotopic to the composition 𝑡𝛾′ ∘ 𝑡𝛾.

This allows us to associate to path-homotopy class [𝛾] between two points 𝑥0 and
𝑥1 a homotopy class [𝐹𝑥0 , 𝐹𝑥1 ] of maps between the corresponding fibers.

The algebraic properties “up to homotopy” satisfied by the transport construction
that were mentioned above allow us to define an action of the fundamental group 𝜋1(𝑋, 𝑥0)
on the homotopy group 𝜋𝑛(𝐹𝑥0): given a class [𝛼]* ∈ 𝜋1(𝑋, 𝑥0), the properties listed above
imply that the associated transport map 𝑡𝛼 : 𝐹𝑥0 → 𝐹𝑥0 is actually a homotopy equivalence
of the fiber, whose inverse up to homotopy can be obtained by transporting along the
reverse loop 𝛼, and the homotopy class [𝑡𝛼] ∈ [𝐹𝑥0 , 𝐹𝑥0 ] induces a group homomorphism
by the rule [𝑓 ] ↦→ [𝑡𝛼 ∘ 𝑓 ], where [𝑓 ] ∈ 𝜋𝑛(𝐹𝑥0). Notice that we are not worrying about the
basepoints because we supposed that the typical fiber 𝐹 is 𝑛-simple, so the same is true
of the fiber 𝐹𝑥0 . We can avoid the problem of canonical identification between fibers if we
demand that this action be trivial.

7.3.1 Definition. A locally trivial bundle 𝑝 : 𝐸 → 𝑋 with typical fiber 𝐹 is said to be
𝑛-simple if the following conditions are satisfied:

1. 𝑋 is path connected;

2. the typical fiber 𝐹 is 𝑛-simple;

3. for every point 𝑥0 ∈ 𝑋, the action of the fundamental group 𝜋1(𝑋, 𝑥0) on the
homotopy group 𝜋𝑛(𝐹𝑥0) of the corresponding fiber is trivial.

If we restrict ourselves to working with 𝑛-simple locally trivial bundles, then the
construction described at the beginning of the section goes through. Fix a point 𝑥0 ∈ 𝑋,
identify 𝐹𝑥0 , which we will denote by 𝐹 , since it is homeomorphic to the typical fiber, and
then by transporting along paths every other fiber can be identified with 𝐹 . Given a section
𝑠 : 𝑋𝑛 → 𝐸 over the 𝑛-skeleton, we assign to each (𝑛+1)-cell Φ𝑒 : (𝐷𝑛+1, 𝑆𝑛)→ (𝑋𝑛+1, 𝑋𝑛)
the element of 𝜋𝑛(𝐹 ) by first lifting a null homotopy ℎ : 𝑆𝑛 × 𝐼 → 𝐵 of the composition
𝑝 ∘ 𝑠 ∘ 𝜙𝑒 to a homotopy ̃︀ℎ : 𝑆𝑛 × 𝐼 → 𝐸, and then looking at the homotopy class of the
last stage of this lift [̃︀ℎ1]. Again, this class lives in the 𝑛-th homotopy group of some fiber,
but the assumption of 𝑛-simplicity allows us to identify this with 𝜋𝑛(𝐹 ). We obtain then
obtain a cellular cochain 𝜃𝑛+1(𝑠) ∈ 𝒞𝑛+1(𝑋; 𝜋𝑛(𝐹 )) called the obstruction cochain of
𝑠.
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We then have results analogous to the ones proved in the previous chapter.

7.3.2 Theorem. Let 𝑋 be a path-connected CW-complex, and let 𝑝 : 𝐸 → 𝑋 be an
𝑛-simple locally trivial bundle with typical fiber 𝐹 . Given a section 𝑠 : 𝑋𝑛 → 𝐸 of the
bundle over the 𝑛-skeleton, the following are true:

1. the section 𝑠 can be extended to a section 𝑆 : 𝑋𝑛+1 → 𝐸 if and only if its obstruction
cochain 𝜃𝑛+1(𝑠) vanishes.

2. The obstruction cochain 𝜃𝑛+1(𝑠) is a cellular cocycle.

3. The cohomology class [𝜃𝑛+1(𝑠)] ∈ 𝐻𝑛+1(𝑋; 𝜋𝑛(𝐹 )) vanishes if and only if there exists
a section 𝑆 : 𝑋𝑛+1 → 𝐸 whose restriction 𝑆|𝑋𝑛−1 to the (𝑛 − 1)-skeleton coincides
with the restriction 𝑠|𝑋𝑛−1 .
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CHAPTER

8
SOME APPLICATIONS

In this final chapter we briefly describe some applications of the results of Obstruc-
tion Theory obtained in the previous chapter. It is a short chapter mainly concerned with
exposing the potential ways in which Obstruction Theory can be used in other areas of
Mathematics.

The first section discusses characteristic classes of vector bundles. These are co-
homology classes that can be naturally associated with any vector bundle, and which
are connected with its topology. In our obstruction-theoretic approach, these cohomology
classes show up as obstruction classes of some locally trivial bundle naturally associated
to the initial vector bundle.

In the second and last section, we discuss how the results of Obstruction Theory
have been applied in Singularity Theory to define the so-called local Euler obstruction,
a numerical invariant which in some sense measures the complexity of a singularity at a
point of a space. We then briefly describe how this invariant was first used to construct
Chern classes for possibly singular spaces.

This chapter is of a more expository nature, without worrying about the technical-
ities. Compared to the previous chapters, this one reads more like a mathematical prose
than a technical text.

8.1 Characteristic classes

Let 𝑋 be a path-connected CW-complex, and let 𝑝 : 𝐸 → 𝑋 be a real vector
bundle of rank 𝑛 ≥ 2. Suppose also that the bundle is orientable, that is, we can cover
𝑋 by trivializing neighborhoods {𝑈𝑖}𝑖∈𝐼 such that, for each 𝑖, 𝑗 ∈ 𝐼, over the intersection
𝑈𝑖 ∩ 𝑈𝑗 the change of coordinates map 𝜑𝑗 ∘ 𝜑−1

𝑖 : (𝑈𝑖 ∩ 𝑈𝑗) × R𝑛 → (𝑈𝑖 ∩ 𝑈𝑗) × R𝑛 is of
the form (𝑥, 𝑣) ↦→ (𝑥, 𝑡𝑖𝑗(𝑥)(𝑣)), where 𝑡𝑖𝑗(𝑥) : R𝑛 → R𝑛 is an orientation preserving linear
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isomorphism which depends continuously on 𝑥 ∈ 𝑈𝑖 ∩ 𝑈𝑗.

Every vector bundle comes equipped with a zero section 𝑖 : 𝑋 → 𝐸 which maps
each point 𝑥 ∈ 𝑋 to the corresponding zero vector 0𝑥 ∈ 𝑝−1(𝑥) in the fiber above. We
can obtain a new bundle 𝑝0 : 𝐸0 → 𝑋 by removing the image of this zero section, i.e., by
defining 𝐸0 := 𝐸 ∖ 𝑖(𝑋). The resulting projection is no longer a vector bundle, of course,
but it is still a locally trivial bundle whose typical fiber is the pointed euclidean space
R𝑛 ∖ {0}.

This typical fiber is homotopy equivalent to a sphere 𝑆𝑛−1, so some of its homotopy
groups can be explicitly described as

𝜋𝑗(R𝑛 ∖ {0}) =

⎧⎪⎨⎪⎩0, if 0 ≤ 𝑗 ≤ 𝑛− 2,

Z, if 𝑗 = 𝑛− 1.

We then see that the typical fiber is (𝑛 − 1)-connected. This is why we restricted to the
case 𝑛 ≥ 2 by the way, since when 𝑛 = 1, the fiber R ∖ {0} is not path-connected.

This connectedness means that we can find a section 𝑠 : 𝑋𝑛−1 → 𝐸0 over the (𝑛−1)-
skeleton. The orientability hypothesis on the vector bundle ensures that 𝑝0 : 𝐸0 → 𝑋 is
(𝑛 − 1)-simple, and so by the results of Obstruction Theory we know that there is an
obstruction class [𝜃𝑛(𝑠)] ∈ 𝐻𝑛(𝑋;Z) which measures the possibility of extending 𝑠 to
𝑛-skeleton. It follows from the connectedness of the fiber that this obstruction class is
actually uniquely determined, if 𝑠′ : 𝑋𝑛−1 → 𝐸0 is another section, then [𝜃𝑛(𝑠′)] is equal
to [𝜃𝑛(𝑠)]. In other words, the cohomology class obtained this way is intrinsic to the
bundle, and it is called the Euler class of the bundle, and denoted by 𝑒(𝐸) or 𝑒(𝑝).

The construction of the Euler class can be generalized. Since every CW-complex is
paracompact, a vector bundle over a CW-complex can always be equipped with a metric.
This allows us to define a new bundle 𝑉𝑘(𝑝) : 𝑉𝑘(𝐸) → 𝑋, where 𝑉𝑘(𝐸) is obtained by
replacing each fiber 𝑝−1(𝑥) with the Stiefel manifold 𝑉𝑘(𝑝−1(𝑥)) with respect to the metric
mentioned above. As a set, 𝑉𝑘(𝐸) is then given by the disjoint union ⨆︀𝑥∈𝑋 𝑉𝑘(𝑝−1(𝑥)), and
by suitably topologizing this the projection 𝑉𝑘(𝑝) : 𝑉𝑘(𝐸) → 𝑋 becomes a locally trivial
bundle with typical fiber the usual Stiefel manifold 𝑉𝑘(R𝑛) of orthonormal 𝑘-frames in
R𝑛.

We mentioned in Proposition 6.4.8 that 𝑉𝑘(R𝑛) is (𝑛 − 𝑘 − 1)-connected, so we
can always find a section 𝑠 : 𝑋𝑛−𝑘 → 𝑉𝑘(𝐸) defined over the (𝑛 − 𝑘)-skeleton. The
possibility of extending this section to 𝑋𝑛−𝑘+1 is controlled by its obstruction class
[𝜃𝑛−𝑘+1(𝑠)] ∈ 𝐻𝑛−𝑘+1(𝑋; 𝜋𝑛−𝑘(𝑉𝑘(R𝑛))). Recall that the homotopy group 𝜋𝑛−𝑘(𝑉𝑘(R𝑛)) is
a bit complicated:

𝜋𝑛−𝑘(𝑉𝑘(R𝑛)) ∼=

⎧⎪⎨⎪⎩Z, if 𝑘 = 1 or 𝑛− 𝑘 is even,

Z2, otherwise.
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This means that, depending on the particular values of 𝑛 and 𝑘, the obstruction class
[𝜃𝑛−𝑘+1(𝑠)] either lives in 𝐻𝑛−𝑘+1(𝑋;Z) or in 𝐻𝑛−𝑘+1(𝑋;Z2). If we reduce Z mod 2, then
we can always obtain a cohomology class in 𝐻𝑛+𝑘−1(𝑋;Z2) regardless of the values of
𝑛 and 𝑘. Like in the case of the Euler class, this obstruction class does not depend on
the section 𝑠 : 𝑋𝑛−𝑘 → 𝑉𝑘(𝐸) considered initially, being intrinsic to the bundle. The Z2-
cohomology class obtained in this way starting with any section is called the (𝑛−𝑘+1)-th
Stiefel-Whitney class of the bundle, and it is denoted as 𝑤𝑛−𝑘+1(𝐸).

Geometrically, the Stiefel-Whitney classes measure how far up the skeletal filtra-
tion of 𝑋 we can find a continuously varying family of 𝑘-frames in the fibers above. For
example, if𝑋 is a smooth manifold, and the initial bundle is the tangent bundle 𝑇𝑀 →𝑀 ,
then 𝑤𝑛−𝑘+1 measures in some sense on how much of the manifold 𝑀 we can define a
collection of 𝑘 linearly independent vector fields.

We end our discussion of characteristic classes with a brief comment on Chern
classes. Let 𝑝 : 𝐸 → 𝐵 be a complex vector bundle over a path-connected CW-complex
𝑋. It can be equipped with a continuously varying family of hermitian products on each
of its fibers, and we can then perform the previous construction by replacing each fiber
𝑝−1(𝑥) with 𝑉𝑗(𝑝−1(𝑥)), where we are now considering the Stiefel manifold of complex
frames that are orthonormal with respect to the hermitian product. This gives us a locally
trivial bundle ̃︀𝑝 : 𝑉𝑘(𝐸) → 𝑋 whose typical fiber is the complex Stiefel manifold 𝑉𝑘(C𝑛)
of orthonormal frames with respect to the usual hermitian product on 𝒞𝑛.

Luckily, the homotopy of the complex Stiefel manifolds is a bit simpler than that of
their real counterpart, and we showed in Proposition 6.4.7 that some of the first homotopy
groups can be described as follows:

𝜋𝑗(𝑉𝑘(C𝑛)) =

⎧⎪⎨⎪⎩0, if 0 ≤ 𝑗 ≤ 2(𝑛− 𝑘),

Z, if 𝑗 = 2(𝑛− 𝑘) + 1.

This means that we can always find a section 𝑠 : 𝑋2(𝑛−𝑘)+1 → 𝑉𝑘(𝐸) over the (2(𝑛−𝑘)+1)-
th skeleton. The possibility of extending it to the next stage of the filtration is controlled
by its obstruction class 𝜃2(𝑛−𝑘+1)(𝑋;Z). Like with the two previous characteristic classes,
this cohomology class does not depend on the section initially considered, it is intrinsic
to the bundle. It is called the (𝑛− 𝑘+ 1)-th Chern class of 𝐸, and is commonly denoted
by 𝑐𝑛−𝑘+1(𝐸).

8.2 Local Euler obstruction

In the previous section, we were mainly interested in explaining how some charac-
teristic classes of vector bundles arise from the main results of Obstruction Theory. Part
of the importance of these classes, however, is how they admit multiple constructions in
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different areas, each of them revealing a connection with another topic. Some possible
constructions are:

• the classical construction via Obstruction Theory as presented in the previous sec-
tion;

• a construction via the Leray-Hirsch Theorem and the projectivization of a vector
bundle;

• a construction via the Thom Isomorphism and the Steenrod squaring operations in
cohomology;

• in Differential Geometry, Chern-Weil Theory allows us to relate Chern classes, which
live in singular or cellular cohomology, with classes in de Rham cohomology.

Beyond the various possible constructions, the importance of characteristic classes
can also be perceived by looking at some theorems related to these objects.

1. Every manifold has associated to it a vector bundle: its tangent bundle 𝑇𝑀 → 𝑀 .
The Stiefel-Whitney classes 𝑤𝑖(𝑇𝑀) of the tangent bundle are also called the Stiefel-
Whitney bundles of 𝑀 . Using the obstruction-theoretic construction of these classes
one can show the following result: a manifold 𝑀 is orientable if and only if its first
Stiefel-Whitney class 𝑤1(𝑀) vanishes.

2. Given a closed manifold 𝑀 , let [𝑀 ] denote its fundamental class in homology with
Z2 coefficients. The evaluations ⟨𝑤𝑖(𝑀), [𝑀 ]⟩ are called the Stiefel-Whitney numbers
of 𝑀 . René Thom proved the following result: two closed manifolds 𝑀 and 𝑁 are
cobordant if and only if their Stiefel-Whitney numbers agree.

3. There exists a special 𝐵𝑂(𝑛), called the classifying space of the orthogonal group
𝑂(𝑛), as well as a rank 𝑛 vector bundle 𝐸𝑂(𝑛)→ 𝐵𝑂(𝑛), called the universal rank
𝑛 vector bundle: which together satisfy the following properties: if 𝑋 is a sufficiently
nice space (like a CW-complex), and 𝑝 : 𝐸 → 𝐵 is a rank 𝑛 vector bundle over 𝑋,
then there exists a map 𝑓 : 𝑋 → 𝐵𝑂(𝑛) such that 𝑝 : 𝐸 → 𝐵 is the pullback of the
universal bundle 𝐸𝑂(𝑛)→ 𝐵𝑂(𝑛) along the map 𝑓 , which is called the classifying
map for the bundle. It turns out that the cohomology ring of the space 𝐵𝑂(𝑛) is
determined by the Stiefel-Whitney classes of the bundle 𝐸𝑂(𝑛) → 𝐵𝑂(𝑛). Using
the classifying maps we can then obtain the Stiefel-Whitney classes of any rank
𝑛 bundle over a nice space from the corresponding classes of the universal rank 𝑛

bundle.

Historically, characteristic classes have been important tools in the study of the
topology and geometry of manifolds. One reason behind this usefulness is the fact that
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manifolds have many vector bundles associated to them by means of the tangent bundle
and modifications of it. When we enter the world of singular space, the situation is more
complicated. Since these spaces are characterized by having points without a well-defined
tangent space, we cannot associate a vector bundle to a general singular space. This leaves
us wondering if the theory of characteristic classes can be of any use in Singularity Theory.

The goal of this final section is to give a brief overview of how the techniques of
Obstruction Theory can be used to construct characteristic classes for a certain class of
singular spaces. We do not give proofs, that is beyond the scope of this work, but at times
we offer some pointers to the literature.

Before looking for characteristic classes for singular spaces, we first reformulate
the usual characteristic classes in a functorial way. This is possible due to the following:

8.2.1 Proposition. The Chern classes enjoy the following properties:

1. If 𝜉 is a rank 𝑛 complex vector bundle, then 𝑐𝑖(𝜉) = 0 for every 𝑖 > 𝑛.

2. If 𝜉 is a complex vector bundle over the space 𝑌 , and 𝑓 : 𝑋 → 𝑌 is a map, then
the Chern classes of the pullback bundle 𝑓 *𝜉 satisfy the equality 𝑐𝑖(𝑓 *𝜉) = 𝑓 *(𝑐𝑖(𝜉)),
where 𝑓 * : 𝐻2𝑖(𝑌 ;Z)→ 𝐻2𝑖(𝑋;Z) denotes the morphism induced in cohomology.

3. If 𝜂 and 𝜉 are two complex vector bundles over the same base space, then the Chern
classes of the Whitney sum 𝜂 ⊕ 𝜂 can be described via the formula

𝑐𝑘(𝜂 ⊕ 𝜉) =
∑︁
𝑖+𝑗=𝑘

𝑐𝑖(𝜂) ⌣ 𝑐𝑗(𝜉).

4. The first Chern class 𝑐1(𝛾) of the tautological line bundle over the complex projective
line CP1 is a generator of the cohomology group 𝐻2(CP1;Z) ∼= 𝐻2(𝑆2;Z) ∼= Z.

These properties can actually be proved via the obstruction-theoretic construction
of Chern classes, see for example (FOMENKO; FUCHS, 2016, Section 19.5) for a proof in
the context of Stiefel-Whitney classes. Other approaches to characteristic provide easier
proofs, however. It is also interesting to note that these properties completely characterize
the Chern classes, so they can be taken as axioms.

Let us see how these properties allow us to think of Chern classes functorially.
Let HoCW be the category whose objects are CW-complexes, and whose morphisms are
homotopy classes of maps. Given an integer 𝑖 ≥ 0, we define two (contravariant) functors
on this category:

1. The first is the cohomology functor 𝐻2𝑖(−;Z) : HoCWop → Set sending a CW-
complex to its singular cohomology group 𝐻2𝑖(𝑋;Z), and sending a homotopy class
[𝑓 ] : 𝑋 → 𝑌 to the induced morphism 𝑓 * : 𝐻2𝑖(𝑌 ;Z)→ 𝐻2𝑖(𝑋,Z).
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2. The second is the functor Vec : HoCWop → Set sending a CW-complex to the set
Vec(𝑋) of isomorphism classes of complex vector bundles over 𝑋, and sending a
homotopy class [𝑓 ] : 𝑋 → 𝑌 to the function Vec([𝑓 ]) : Vec(𝑌 ) → Vec(𝑋) given
by [𝜉] ↦→ [𝑓 *𝜉], where [𝜉] denotes the set of isomorphism classes of 𝜉. This is well-
defined by virtue of the well-known result that pullbacks of a vector bundle along
homotopic maps are isomorphic.

The Chern classes allow us to define natural transformations of type

Vec⇒ 𝐻2𝑖(−;Z).

More precisely, we can consider for each CW-complex 𝑋 the function 𝑐𝑋𝑖 : Vec(𝑋) →
𝐻2𝑖(𝑋;Z) defined as

𝑐𝑋𝑖 ([𝜉]) := 𝑐𝑖(𝜉) ∈ 𝐻2𝑖(𝑋;Z),

that is, 𝑐𝑋𝑖 sends the isomorphism class [𝜉] to the 𝑖-th Chern class 𝑐𝑖(𝜉). This is well-defined
by virtue of the naturality property of Chern classes, and it satisfies the commutativity
condition characterizing natural transformations.

Vec(𝑋) Vec(𝑌 )

𝐻2𝑖(𝑋;Z) 𝐻2𝑖(𝑌 ;Z)

𝑐𝑋
𝑖

Vec([𝑓 ])

𝑐𝑌
𝑖

𝑓*

This formulation makes it clear that the characteristic classes allows us to naturally
translate geometric information about a space (vector bundles over it) into algebraic
information (cohomology classes). It is this functorial formulation which represents a
bridge to the world of characteristic classes for singular spaces.

Alexander Grothendieck and Pierre Deligne conjectured the following result:

8.2.2 Theorem. Let C denote the category of complex algebraic varieties and algebraic
maps. Let ℱ : C→ Ab be the “constructible functions” functor, and let 𝐻2*(−;Z) : C→
Ab be the total homology functor.

There exists a unique natural transformation 𝑐 : ℱ ⇒ 𝐻2*(−;Z) satisfying the
following normalization condition: if 𝑋 is smooth, and [𝑋] denotes its fundamental class,
then the equality 𝑐*(𝑋) ⌢ [𝑋] = 𝑐𝑋(ct𝑋,1).

Some explanation of this statement is needed:

• Very roughly speaking, a constructible function on a complex algebraic variety 𝑋

is a function 𝑋 → Z which is constant on the pieces of a nice decomposition of 𝑋
into smooth pieces.
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• The homology functor 𝐻2*(−;Z) sends a space 𝑋 to the direct sum ⨁︀
𝑖≥0 𝐻2𝑖(𝑋;Z)

of all its even dimensional homology groups. Similarly, 𝑐*(𝑋) ∈ 𝐻2*(𝑋;Z) is the
total Chern class of 𝑋, that is, the formal sum of all its Chern classes.

The idea is that this natural transformation 𝑐 behaves as the natural transforma-
tion induced by the usual Chern classes that we mentioned before. For each 𝑋 ∈ C, the
homology class 𝑐𝑋(ct𝑋,1) ∈ 𝐻2*(𝑋;Z) coming from the constant constructible function
is called the Chern-Schwartz-MacPherson class of 𝑋. The normalization condition
in the theorem statement says that, if 𝑋 is in fact smooth, then its Chern-Schwartz-
MacPherson class agrees with its usual Chern class up to Poincaré duality.

The reason we have stated a theorem, and not a conjecture, is because it was
proved by Robert MacPherson in (MacPherson, 1974). Interestingly, some years before
this, the French mathematician Marie-HéLène Schwartz had in fact already constructed
Chern classes for some singular spaces (even before the Grothendieck-Deligne conjecture
was stated!), and in later work together with Jean-Paul Brasselet they showed that her
construction was in fact dual to MacPherson’s.

8.2.3 Remark. On a personal remark, one thing that has never been clear for me about
this Grothendieck-Deligne conjecture is: why constructible functions? If classical char-
acteristic classes are useful for turning geometric data into algebraic data, why consider
constructible functions in the singular case? What is the geometric content of constructible
functions? I discussed this with some other students and looked for some information in
the literature, but I did not find a precise explanation.

Having explained the general context of part of the historical origins of the theory
of characteristic classes for singular spaces, we dedicate the rest of this chapter (and of
the text!) to very briefly explain the construction introduced by MacPherson, and how
results from Obstruction Theory played a rôle in it.

The first step is to find a substitute for the tangent bundle. Let 𝑋 be a 𝑑-
dimensional complex algebraic variety embedded in a smooth complex ambient manifold
𝑀 of dimension 𝑁 . Using the tangent bundle 𝑇𝑀 of 𝑀 , we define a map 𝛾 : 𝑋reg →
𝐺𝑑(𝑇𝑀) over the regular part of 𝑋 as

𝛾(𝑥) := (𝑥, 𝑇𝑥𝑋reg).

Here, 𝐺𝑑(𝑇𝑀) denotes the bundle over 𝑀 obtained by replacing each of the tangent space
of 𝑀 with their corresponding grassmannian of 𝑑-planes. The closure of the image of 𝛾 in
𝐺𝑑(𝑇𝑀) is called the Nash modification of 𝑋 and is denoted by ̃︁𝑋. The restriction of
the projection 𝐺𝑑(𝑇𝑀)→ 𝑇𝑀 to ̃︁𝑋 defines a map 𝜈 : ̃︁𝑋 → 𝑋 called the Nash blow-up.

Over 𝐺𝑑(𝑇𝑀) we have the tautological bundle 𝑇 → 𝐺𝑑(𝑇𝑀) whose points are
the triples (𝑚,𝑉, 𝑣), where 𝑚 is a point of 𝑀 , 𝑉 ≤ 𝑇𝑚𝑀 is a 𝑑-plane, and 𝑣 ∈ 𝑉 is a
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vector. The restriction of this tautological bundle to the Nash modification is called the
Nash bundle of 𝑋, and is denoted by ̃︂𝑇𝑋.

A first idea for obtaining a class as described in the theorem above is to define

𝑐𝑀(𝑋) := 𝜈*(𝑐*(̃︂𝑇𝑋) ⌢ [̃︁𝑋]),

i.e., we consider the total Chern class 𝑐*(̃︂𝑇𝑋) of the Nash bundle, dualize to obtain a
homology class in 𝐻2*(̃︁𝑋;Z), and then push it down to 𝐻2*(𝑋;Z) via the pushforward 𝜈*

along the Nash blow-up. The class 𝑐𝑀 (𝑋) obtained like this is called the Chern-Mather
class of 𝑋.

Unfortunately, even though 𝑐𝑀(𝑋) satisfies the required normalization condition
when 𝑋 is smooth, i.e., it is Poincaré-dual to the usual Chern class, it does not de-
pend naturally on the initial variety 𝑋. Nevertheless, these Chern-Mather classes are still
part of the solution to the problem. More precisely, using it we can associate to every
subvariety 𝑉 ⊆ 𝑋 a homology class in 𝐻2*(𝑋;Z) via the rule 𝑉 ↦→ 𝑖𝑉* (𝑐𝑀(𝑉 )), where
𝑖𝑉* : 𝐻2*(𝑉 ;Z)→ 𝐻2*(𝑋;Z) is the morphism induced by the inclusion map 𝑖𝑉 : 𝑉 � 𝑋.
This assignment can be extended to a group homomorphism 𝑐𝑀 : 𝒜*(𝑋) → 𝐻2*(𝑋;Z),
where 𝒜*(𝑋) is the group of algebraic cycles on 𝑋, which is defined as the free abelian
group generated by all the subvarieties of 𝑋.

The component 𝑐𝑋 : ℱ(𝑋) → 𝐻2*(𝑋;Z) of the natural transformation 𝑐 : ℱ ⇒
𝐻2*(−;Z) we are trying to define is obtained by composing the Chern-Mather homo-
morphism 𝑐𝑀 : 𝒜*(𝑋) → 𝐻2*(𝑋;Z) constructed above with a certain isomorphism
ℱ(𝑋)

∼=→ 𝒜*(𝑋) between the group of constructible functions and the group of algebraic
cycles.

This is where Obstruction Theory finally shows up. Suppose 𝑉 is a 𝑣-dimensional
complex algebraic variety embedded in a smooth complex algebraic variety 𝑁 . Given a
point 𝑝 ∈ 𝑉 , let 𝑧 = (𝑧1, . . . , 𝑧𝑛) be a set of local coordinates for 𝑁 on a neighborhood 𝑈
of this point such that 𝑧𝑖(𝑝) = 0 for every 𝑖. Let ‖𝑧‖2 : 𝑈 → R be the map defined as

‖𝑧‖2(𝑦) :=
√︁
𝑧1(𝑦)𝑧1(𝑦) + · · ·+ 𝑧𝑛(𝑦)𝑧𝑛(𝑦)

for each 𝑦 ∈ 𝑈 . This map induces a differential form 𝑑‖𝑧‖2, which is a section of the
cotangent bundle 𝑇𝑁* over this neighborhood 𝑈 . This section can be pulled-back along
the Nash blow-up 𝜈 : ̃︁𝑋 → 𝑋 to define a section 𝑟 of the dual bundle ̃︂𝑇𝑋*

over the
neighborhood 𝜈−1(𝑈) ⊆ ̃︁𝑋.

The next result, whose proof requires using techniques from the Stratification
Theory of algebraic varieties, is crucial for the definition of the local Euler obstruction.

8.2.4 Lemma. Given 𝜀 ≥ 0, let 𝐵×
𝜀 be the set of points in 𝑦 ∈ 𝑈 such that 0 < ‖𝑦‖ ≤ 𝜀,

i.e., it is a punctured ball in the metric associated with the local coordinates on 𝑈 .
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If 𝜀 is sufficiently small, then the section 𝑟 of ̃︂𝑇𝑋*
is non-zero on the subspace

𝜈−1(𝐵×
𝜀 ).

Knowing this, for a sufficiently small 𝜀, let 𝐵𝜀 be the closed 𝜀-ball in this coordi-
nate neighborhood, and let 𝑆𝜀 be the corresponding boundary sphere. The Lemma above
implies that 𝑟 is non-zero on the subspace 𝜈−1(𝑆𝜀) lying over the 𝜀-sphere. The possibility
of extending 𝑟 from 𝜈−1(𝑆𝜀) to 𝜈−1(𝐵𝜀) is controlled by its obstruction class

𝜃 ∈ 𝐻𝑣(𝜈−1(𝐵𝜀), 𝜈−1(𝑆𝜀);Z).

If 𝒪𝜀 ∈ 𝐻𝑣(𝜈−1(𝐵𝜀), 𝜈−1(𝑆𝜀);Z) is the orientation homology class of the pair of spaces
(𝜈−1(𝐵𝜀), 𝜈−1(𝑆𝜀)), we have

8.2.5 Definition. The integer

Eu𝑝(𝑉 ) := ⟨𝜃,𝒪𝜀⟩

is called the local Euler obstruction of 𝑉 at 𝑝.

Back to the original context, given a subvariety 𝑉 ≤ 𝑋, using the local Euler
obstruction we can define a function Eu𝑉 : 𝑋 → Z as follows:

Eu𝑉 (𝑝) :=

⎧⎪⎨⎪⎩Eu𝑝(𝑉 ), if 𝑝 ∈ 𝑉,

0, if 𝑝 ̸∈ 𝑉.

One of the key properties of the Euler obstruction is that Eu𝑝(𝑉 ) = 1 if 𝑝 is a smooth
point of the variety 𝑉 . By choosing a stratification of 𝑋 adapted to 𝑉 , using this property
one can then show that Eu𝑉 : 𝑋 → Z is a constructible function.

The assignment 𝑉 ↦→ Eu𝑉 induces a group homomorphism 𝑇 : 𝒜*(𝑋) → ℱ(𝑋),
and MacPherson proves in (MacPherson, 1974) that this homomorphism 𝑇 is in fact an
isomorphism of groups. He then goes on to define the desired morphism 𝑐𝑋 : ℱ(𝑋) →
𝐻2*(𝑋;Z) via the composition

𝑐𝑋 := 𝑐𝑀 ∘ 𝑇−1

as shown below.
ℱ(𝑋) 𝒜*(𝑋) 𝐻2*(𝑋;Z)𝑇−1

𝑐𝑋

𝑐𝑀

It is straightforward to show that this definition of 𝑐𝑋 satisfies the normalization
condition. If 𝑋 is smooth, we want to show that 𝑐𝑋(ct𝑋,1) is Poincaré-dual to the classical
Chern class 𝑐*(𝑋). By definition, 𝑐𝑋(ct𝑋,1) = 𝑐𝑀(𝑇−1(ct𝑋,1)), and in order to evaluate
𝑇−1(ct𝑋,1), we need to find an algebraic cycle 𝛼 of 𝑋 such that 𝑇 (𝛼) = ct𝑋,1, but this is
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easy: consider the algebraic cycle 1 · 𝑋 ∈ 𝒜*(𝑋), then 𝑇 (1 · 𝑋) = Eu𝑋 , but since 𝑋 is
smooth, Eu𝑝(𝑋) = 1 for every 𝑝 ∈ 𝑋, i.e., Eu𝑋 = ct𝑋,1. We then have

𝑐𝑋(ct𝑋,1) = 𝑐𝑀(𝑇−1(ct𝑋,1)) = 𝑐𝑀(𝑋),

but as we remarked above, when 𝑋 is smooth, its Chern-Mather class is already Poincaré-
dual to its usual Chern class, from which we deduce that

𝑐𝑋(ct𝑋,1) ⌢ [𝑋] = 𝑐𝑀(𝑋) ⌢ [𝑋] = 𝑐*(𝑋).

The proof that 𝑐𝑋 : ℱ(𝑋) → 𝐻2*(𝑋;Z) depends naturally on 𝑋 is much more
difficult, however. It involves an intricate construction, called the graph construction, and
deeper results about algebraic cycles on algebraic varieties. A proof, albeit very succinct,
can be found in MacPherson’s original article (MacPherson, 1974).

We end this section with some final remarks on the local Euler obstruction. Unfor-
tunately, obstruction-theoretic constructions tend to be difficult work with in practice, so
without additional tools it can be difficult to calculate the local Euler obstruction. Fortu-
nately, several results of computational nature have been obtained since the introduction
of the concept. One famous such result by Brasselet-Lê-Seade roughly says that, for a
variety 𝑋 in some C𝑁 , the local Euler obstruction at 0 ∈ 𝑋 can be computed via the
weighted sum

Eu0(𝑋) =
𝑘∑︁
𝑖=1

𝜒(𝑉𝑖 ∩𝐵𝜀 ∩ ℓ−1(𝑡0)) · Eu𝑝𝑖
(𝑉𝑖).

In this formula, {𝑉𝑖}1≤𝑖≤𝑘 is a nice stratification of the variety 𝑋 (what is called a Whitney
stratification), 𝑝𝑖 is an arbitrary point in the stratum 𝑉𝑖, 𝜀 and 𝑡0 are sufficiently small
real numbers, ℓ is a suitable complex linear functional on C𝑁 , 𝐵𝜀 is the closed ball of
radius 𝜀 centered at the origin of C𝑁 , and 𝜒 denotes the usual Euler characteristic Geo-
metrically, this says that the local Euler obstruction can be calculated by looking at how
the hyperplane ℓ−1(𝑡0) intersects the different strata 𝑉𝑖 near the origin 0. For a proof, see
(BRASSELET; TRáNG; SEADE, 2000).
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APPENDIX

A
GROUP AND COGROUP OBJECTS

The goal of this appendix chapter is to analyze the categorical concepts of group
and cogroup objects. Since these concepts are more specific than the other ones used
in the text so far, and they are not always covered in introductory texts, I felt that an
appendix dedicated to them would be good.

We first introduce group objects and analyze some of the more common examples.
We then prove a seemingly innocuous result characterizing group objects in the category
of groups - the Eckmann-Hilton Argument - which is in fact very useful for studying the
commutativity of the higher homotopy groups. After this, we analyze the dual concept of
cogroups.

The last section then explains how these categorical notions of group and cogroup
can be used to generate whole families of ordinary groups. The results of this section can
be seen as a possible explanation behind the existence of group structures on certain sets
of pointed homotopy classes.

A.1 Definitions and examples

In this last section we introduce the categorical notions of group and cogroup
objects. These are special types of objects of a category which, when they exist, allow us
to obtain algebraic objects from the category in question. These concepts will be specially
important for us because they will be used to obtain algebraic objects from topological
spaces, in particular the infamous homotopy groups.

The definition of a group object comes from rewriting the axioms that define a
group in a diagrammatic way that can be stated in any category.

A.1.1 Definition. Let C be a category with binary products and a terminal object *. A
group object in C is a tuple (𝐺,𝑚, 𝑒, inv) where
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1. 𝑚 is a morphism of type 𝐺×𝐺→ 𝐺,

2. 𝑒 is a morphism of type * → 𝐺,

3. inv is a morphism of type 𝐺→ 𝐺.

These morphisms must satisfy the commutativity conditions imposed by the three dia-
grams below, where !𝐺 : 𝐺 → * denotes the unique morphism from 𝐺 to the terminal
object *, and 𝐴 : (𝐺×𝐺)×𝐺→ 𝐺× (𝐺×𝐺) denotes the associator isomorphism:

(G1) (Existence of a two-sided unit)

𝐺 𝐺×𝐺

𝐺×𝐺 𝐺

(𝑒∘!𝐺,id𝐺)

(id𝐺,𝑒∘!𝐺) id𝐺 𝑚

𝑚

(G2) (Associativity)

(𝐺×𝐺)×𝐺 𝐺× (𝐺×𝐺)

𝐺×𝐺 𝐺×𝐺

𝐺

𝐴

𝑚×id𝐺 id𝐺×𝑚

𝑚 𝑚

(G3) (Existence of inverses)
𝐺 𝐺×𝐺

𝐺×𝐺 𝐺

(id𝐺,inv)

(inv,id𝐺) 𝑒∘!𝐺 𝑚

𝑚

Each of the morphisms that make up the structure of a group object has a corre-
sponding name: 𝑚 is the multiplication morphism, 𝑒 is the unit morphism, and inv
is the inversion morphism.

A.1.2 Remark. Let us recall the construction of the associator isomorphism 𝐴 mentioned
above, since we will need to make use of its defining properties later on. Consider the
canonical projections below:

𝜋1 : 𝐺×𝐺→ 𝐺,

𝜋2 : 𝐺×𝐺→ 𝐺,

Π1 : (𝐺×𝐺)×𝐺→ 𝐺×𝐺,

Π2 : (𝐺×𝐺)×𝐺→ 𝐺,

Π′
1 : 𝐺× (𝐺×𝐺)→ 𝐺,

Π′
2 : 𝐺× (𝐺×𝐺)→ 𝐺×𝐺.
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A morphism 𝐴 : (𝐺 × 𝐺) × 𝐺 → 𝐺 × (𝐺 × 𝐺) is completely determined by
the composite morphisms Π′

1 ∘ 𝐴 : (𝐺 × 𝐺) × 𝐺 → 𝐺 and Π′
2 ∘ 𝐴 : (𝐺 × 𝐺) × 𝐺 →

𝐺 × 𝐺. The second composite morphism Π′
2 ∘ 𝐴 is itself determined by the morphisms

𝜋1 ∘ Π′
2 ∘ 𝐴, 𝜋2 ∘ Π′

2 ∘ 𝐴 : (𝐺×𝐺)×𝐺→ 𝐺. Using the universal property of the product
twice, we can then define 𝐴 as the unique morphism (𝐺×𝐺)×𝐺→ 𝐺×(𝐺×𝐺) satisfying
the following equations: ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Π′
1 ∘ 𝐴 = 𝜋1 ∘ Π1,

𝜋1 ∘ Π′
2 ∘ 𝐴 = 𝜋2 ∘ Π1,

𝜋2 ∘ Π′
2 ∘ 𝐴 = Π2.

(A.1)

Let us examine examples of group objects in particular categories to see if this
definition really captures the idea of a group.

A.1.3 Example. The category Set has all binary products, which are given by the usual
cartesian product construction, and a terminal object is given simply by a singleton set
{pt}, so the unique morphism !𝑋 : 𝑋 → {pt} is just the constant function ct𝑋,pt : 𝑋 →
{pt}.

Suppose 𝐺 is a group object in Set, so that we have functions 𝑒 : {pt} → 𝐺,
𝑚 : 𝐺 × 𝐺 → 𝐺 and inv : 𝐺 → 𝐺 satisfying the commutativity conditions stated above.
The function 𝑒 : {pt} → 𝐺 determines an element 𝑒(pt) ∈ 𝐺 which we will denote by 𝑒𝐺.
We usually think of a function of type 𝐺×𝐺→ 𝐺 as a binary operation on 𝐺, so we will
use the notation 𝑔1 · 𝑔2 := 𝑚(𝑔1, 𝑔2). Let us analyze what the commutative diagrams in
the definition of a group object mean in terms of explicit elements.

The first diagram imposes the equalities 𝑚 ∘ (id𝐺, 𝑒 ∘ ct𝐺,pt) = id𝐺 and 𝑚 ∘ (𝑒 ∘
ct𝐺,pt,𝑚) = id𝐺. Evaluating the left side of the first equation on an arbitrary element
𝑔 ∈ 𝐺 gives us

(𝑚 ∘ (id𝐺, 𝑒 ∘ ct𝐺,pt))(𝑔) = 𝑚(𝑔, 𝑒(pt)) = 𝑔 · 𝑒𝐺,

so the first equation says that 𝑔 · 𝑒𝐺 = 𝑔 holds for every 𝑔 ∈ 𝐺; and by an analogous
computation we see that the second equation says that 𝑒𝐺 · 𝑔 = 𝑔 holds for every 𝑔 ∈ 𝐺.
The commutativity of the first diagram (G1) is then equivalent to saying that 𝑒𝐺 is a two
side-unit for the binary operation defined by 𝑚.

The second diagram states the equality 𝑚 ∘ (𝑚, id𝐺) = 𝑚 ∘ (id𝐺,𝑚) ∘𝐴, where the
associator bijection 𝐴 : (𝐺 × 𝐺) × 𝐺 → 𝐺 × (𝐺 × 𝐺) maps ((𝑔1, 𝑔2), 𝑔3) to (𝑔1, (𝑔2, 𝑔3)).
On the one hand

(𝑚 ∘ (𝑚, id𝐺))((𝑔1, 𝑔2), 𝑔3) = 𝑚(𝑔1 · 𝑔2, 𝑔3)

= (𝑔1 · 𝑔2) · 𝑔3,
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while on the other

(𝑚 ∘ (id𝐺,𝑚) ∘ 𝐴)((𝑔1, 𝑔2), 𝑔3) = (𝑚 ∘ (id𝐺,𝑚))(𝑔1, (𝑔2, 𝑔3))

= 𝑚(𝑔1, 𝑔2 · 𝑔3)

= 𝑔1 · (𝑔2 · 𝑔3).

The commutativity condition of (G2) then says that the equality

(𝑔1 · 𝑔2) · 𝑔3 = 𝑔1 · (𝑔2 · 𝑔3)

holds for every 𝑔1, 𝑔2, 𝑔3 ∈ 𝐺, or in other words, that the binary operation defined by 𝑚
is associative.

Lastly, the third diagram imposes the equalities 𝑚 ∘ (id𝐺, inv) = 𝑒 ∘ !𝐺 and 𝑚 ∘
(inv, id𝐺) = 𝑒 ∘ !𝐺. We already know that the right-hand side of these equations is the
constant function ct𝐺,𝑒𝐺

. Now, evaluating the left-hand side of the first of these equations
on an element 𝑔 ∈ 𝐺 gives us

(𝑚 ∘ (id𝐺, inv))(𝑔) = 𝑚(𝑔, inv(𝑔))

= 𝑔 · inv(𝑔);

while evaluating the left-hand side of the second equations gives us

(𝑚 ∘ (inv, id))(𝑔) = 𝑚(inv(𝑔), 𝑔)

= inv(𝑔) · 𝑔.

The commutativity of (G3) then says that the equalities

𝑔 · inv(𝑔) = 𝑒𝐺 = inv(𝑔) · 𝑔

hold for any 𝑔 ∈ 𝐺. Since we have already seen that 𝑒𝐺 is a unit for the binary product
defined by 𝑚, these equalities mean that inv(𝑔) is the inverse of 𝑔 with respect to this
product.

All this reasoning shows that a group object in the category set is nothing but an
ordinary group.

A.1.4 Example. The category Top also has binary products given by the cartesian
product of sets equipped with the usual product topology, and a terminal object is also
given by a singleton set {pt} equipped with the discrete topology. The unique morphism
!𝑋 : 𝑋 → {pt} in this case is also given by the constant map ct𝑋,pt, and the associating
homeomorphism 𝐴 : (𝑋 × 𝑌 )× 𝑍 → (𝑋 × 𝑌 )× 𝑍 is also given explicitly on elements by
𝐴((𝑥, 𝑦), 𝑧) := (𝑥(, 𝑦, 𝑧)).

If 𝐺 is a group object in Top, then we have maps - not just functions - 𝑒 : {pt} → 𝐺,
𝑚 : 𝐺×𝐺→ 𝐺 and inv : 𝐺→ 𝐺. The interpretation of the map 𝑒 choosing an element of
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𝐺 also holds in this case, since any function defined on a discrete space is automatically
a map. Moreover, since composition of maps is the same as composition of ordinary
functions, the explicit interpretation of the commutativity conditions that we gave in
Example A.1.3 also holds in this topological case.

In summary, a group object in Top is like an ordinary group, but with the added
hypothesis that the multiplication 𝑚 and inversion functions inv are continuous. Not
surprisingly, group objects in Top are also called topological groups.

A.1.5 Example. Let Mfld be the category of smooth manifolds and smooth maps. It
has binary products given by the usual smooth structure on the product space of two
manifolds. It also has a terminal object given by the singleton set {pt} regarded as a zero-
dimensional manifold, with the constant map ct𝑀,pt : 𝑀 → {pt} being the unique smooth
map. The explicit description of the association isomorphism 𝐴 : (𝑀1 ×𝑀2) ×𝑀3 →
𝑀1 × (𝑀2 ×𝑀3) is the same as in the previous examples

Just as before, if 𝐺 is a group object in Diff, then 𝐺 is a smooth manifold together
with smooth maps 𝑚 : 𝐺 × 𝐺 → 𝐺 and inv : 𝐺 → 𝐺 that together satisfy the axioms of
a group. In other words, a group object in Mfld is precisely a Lie group.

Now we want to investigate the following question: what is a group object in the
category Grp of groups and morphisms of groups? This may seem weird at first because
we are essentially defining a group using an object that is already a group and using
maps that are already morphisms of groups. In order to answer this question, we need an
auxiliary result that will be very important for Homotopy Theory.

A.1.6 Theorem (Eckmann-Hilton Argument). Let 𝑋 be a set and consider two binary
operations ⊙, ⊗ : 𝑋 ×𝑋 → 𝑋 satisfying the following conditions:

1. both operations are unital, i.e., there are elements 1⊙, 1⊗ ∈ 𝑋 such that 1⊙ ⊙ 𝑥 =
𝑥⊙ 1⊙ = 𝑥 and 1⊗ ⊗ 𝑥 = 𝑥⊗ 1⊗ = 𝑥 hold for every 𝑥 ∈ 𝑋;

2. the equation (𝑤 ⊙ 𝑥)⊗ (𝑦 ⊙ 𝑧) = (𝑤 ⊗ 𝑦)⊙ (𝑥⊗ 𝑧) holds for every 𝑤, 𝑥, 𝑦, 𝑧 ∈ 𝑋.

Under these assumptions, the following properties hold:

1. 1⊙ = 1⊗;

2. ⊙ = ⊗;

3. ⊙ is commutative and associative.
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Proof. 1. Using the compatibility between the two operations we have

1⊗ = 1⊗ ⊗ 1⊗

= (1⊙ ⊙ 1⊗)⊗ (1⊗ ⊙ 1⊙)

= (1⊙ ⊗ 1⊗)⊙ (1⊗ ⊗ 1⊙)

= 1⊙ ⊙ 1⊙

= 1⊙.

2. Given any 𝑥, 𝑦 ∈ 𝑋, using the previous item and the compatibility condition
we see that

𝑥⊗ 𝑦 = (𝑥⊙ 1⊙)⊗ (1⊙ ⊙ 𝑦)

= (𝑥⊗ 1⊙)⊙ (1⊙ ⊗ 𝑦)

= (𝑥⊗ 1⊗)⊙ (1⊗ ⊗ 𝑦)

= 𝑥⊙ 𝑦.

3. Knowing that both operations are identical, we can rewrite the compatibility
condition solely in terms of a single operation, so that we are left with the equation

(𝑤 ⊙ 𝑥)⊙ (𝑦 ⊙ 𝑧) = (𝑤 ⊙ 𝑦)⊙ (𝑥⊙ 𝑧).

Given 𝑥, 𝑦 ∈ 𝑋, we have

𝑥⊙ 𝑦 = (1⊙ ⊙ 𝑥)⊙ (𝑦 ⊙ 1⊙)

= (1⊙ 𝑦)⊙ (𝑥⊙ 1⊙)

= 𝑦 ⊙ 𝑥;

showing the commutativity of ⊙.

Lastly, for the associativity, given 𝑥, 𝑦, 𝑧 ∈ 𝑋, using the compatibility condition
we see that

(𝑥⊙ 𝑦)⊙ 𝑧 = (𝑥⊙ 𝑦)⊙ (1⊙ ⊙ 𝑧)

= (𝑥⊙ 1⊙)⊙ (𝑦 ⊙ 𝑧)

= 𝑥⊙ (𝑦 ⊙ 𝑧). �

A.1.7 Remark. In Algebra, a pair (𝑀,⊙), where 𝑀 is a set and ⊙ : 𝑀 ×𝑀 → 𝑀 is
a binary operation on 𝑀 is called a magma. If there exists a double-sided unit 1 ∈ 𝑀 ,
then the triple (𝑀,⊙, 1) is a unital magma. The Eckmann-Hilton Argument can then be
restated as saying that, if two unital magma structures on a set satisfy the compatibility
condition in the statement of Theorem A.1.6, then the two structures coincide, and in
fact define commutative and associative magma.
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One important consequence of Theorem A.1.6 is the characterization of group
object in the category of groups.

A.1.8 Corollary. A group object in Grp is an abelian group.

Proof. The category Grp satisfies the conditions required in Definition A.1.1. A terminal
object in Grp is given by the singleton group {pt} with the only binary product possible.
The unique group homomorphism 1𝐺 : 𝐺→ {pt} is of course the constant function ct𝐺,pt.
Moreover, if 𝐺 and 𝐻 are groups, the cartesian product 𝐺 × 𝐻 has the structure of a
group with product defined as

(𝑔1, ℎ1) · (𝑔2, ℎ2) := (𝑔1 · 𝑔2, ℎ1 · ℎ2),

and this is structure is such that 𝐺×𝐻 is a categorical product for 𝐺 and 𝐻.

Suppose 𝐺 is a group object in Grp. Since 𝐺 is an object of the category Grp,
it has the structure of an ordinary group. We will denote its ordinary multiplication by
· : 𝐺 × 𝐺 → 𝐺, its ordinary identity by 1 and the ordinary inverse of an element 𝑔 ∈ 𝐺
by 𝑔−1. Forgetting about the inverses for a moment, the triple (𝐺, ·, 1) is a unital magma
in the sense of Remark A.1.7.

Now, since 𝐺 is also a group object in Grp, there are group homomorphisms 𝑚 :
𝐺 × 𝐺 → 𝐺, 𝑒 : {pt} → 𝐺 and inv : 𝐺 → 𝐺 satisfying some commutativity conditions,
where 𝐺 × 𝐺 has the product group structure described in the first paragraph. We may
regard 𝑚 as defining a second binary product on 𝐺, and the commutativity axiom (G1)
then says that the triple (𝐺,𝑚, 1) is a unital magma, where we used the equality 𝑒(pt) = 1
coming from the fact that a group homomorphism preserves units.

Recall that the group structure on 𝐺×𝐺 is defined by the product

(𝑔1, 𝑔2) · (𝑔3, 𝑔4) := (𝑔1 · 𝑔3, 𝑔2 · 𝑔4).

Since 𝑚 is a group homomorphism by hypothesis, the equality

𝑚((𝑔1, 𝑔2) · (𝑔3, 𝑔4)) = 𝑚(𝑔1, 𝑔2) ·𝑚(𝑔3, 𝑔4)

holds for any 𝑔1, 𝑔2, 𝑔3, 𝑔4 ∈ 𝐺. Unpacking the definition of (𝑔1, 𝑔2) · (𝑔3, 𝑔4), this equality
is equivalent to

𝑚(𝑔1 · 𝑔3, 𝑔2 · 𝑔4) = 𝑚(𝑔1, 𝑔2) ·𝑚(𝑔3, 𝑔4).

If we introduce the auxiliary notation

𝑔 · 𝑔′ := 𝑚(𝑔, 𝑔′)

for the binary product defined by 𝑚, then the previous equality can be rewritten as

(𝑔1 · 𝑔3)⊗ (𝑔2 · 𝑔4) = (𝑔1 · 𝑔2)⊗ (𝑔3 ⊗ 𝑔4).
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This equality shows that the unital magmas (𝐺, ·, 1) and (𝐺,⊗, 1) satisfy the
compatibility condition of Theorem A.1.6, therefore · must be commutative, that is, 𝐺
must be an abelian group.

As an extra, we can also show that the inversion inv coincides with the inversion
(−)−1. Given 𝑔 ∈ 𝐺, since 𝑚 coincides with · by Theorem A.1.6, we have

𝑔 · inv(𝑔) = 𝑚(𝑔, inv(𝑔)) = 1 = 𝑚(inv(𝑔), 𝑔) = inv(𝑔) · 𝑔.

This shows that inv(𝑔) is an inverse to 𝑔 with respect to the product ·, and the uniqueness
of inverses in a group then implies that inv(𝑔) = 𝑔−1. �

Now we introduce the concept dual to group objects: cogroup objects. Whereas
in a group two elements can be combined into one, in a cogroup an element can in some
sense be separated in two. This may seem weird at first, but over the course of the text we
will encounter very natural examples of cogroups in Homotopy Theory. In fact (spoiler!),
the most important spaces in Algebraic Topology are cogroups.

The definition of a cogroup object is obtained by dualizing the definition of a group,
which informally means that we reverse the directions of arrows in diagrams and dualize
all the categorical constructions involved.

A.1.9 Definition. Suppose C is a category with binary coproducts and an initial object
0. A cogroup object in C is a tuple (𝐺,𝜇, 𝜀, 𝜈) where

1. 𝜇 is a morphism of type 𝐺→ 𝐺 ⊔𝐺,

2. 𝜀 is a morphism of type 𝐺→ 0,

3. 𝜈 is a morphism of type 𝐺→ 𝐺.

These morphisms must satisfy the commutativity conditions imposed by the three dia-
grams below, where !𝐺 : 0 → 𝐺 is the unique morphism from the initial object 0 to 𝐺,
and 𝐴 : (𝐺 ⊔𝐺) ⊔𝐺→ 𝐺 ⊔ (𝐺 ⊔𝐺) is the associator isomorphism:

(CG1) (Existence of two-sided counit)

𝐺 𝐺 ⊔𝐺

𝐺 ⊔𝐺 𝐺

⟨!𝐺∘𝜀,id𝐺⟩

⟨id𝐺,!𝐺∘𝜀⟩

𝜇

𝜇id𝐺
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(CG2) (Coassociativity)

𝐺 ⊔ (𝐺 ⊔𝐺) (𝐺 ⊔𝐺) ⊔𝐺

𝐺 ⊔𝐺 𝐺 ⊔𝐺

𝐺

𝐴

id𝐺⊔𝜇 𝜇⊔id𝐺

𝜇 𝜇

(CG3) (Existence of co-inverses)

𝐺 𝐺 ⊔𝐺

𝐺 ⊔𝐺 𝐺

⟨id𝐺,𝜈⟩

⟨𝜈,id𝐺⟩

𝜇

𝜇!𝐺∘𝜀

The morphisms in a cogroup structure also have special names: 𝜇 is the comultipli-
cation morphism, 𝜀 is the counit morphism, and 𝜈 is the co-inversion morphism.

A.1.10 Remark. The description of the associator isomorphism for the coproduct is dual
to the description of the analogous isomorphism for the product we gave in Remark A.1.2.
Consider the canonical injections below:

𝑗1 : 𝐺→ 𝐺 ⊔𝐺,

𝑗2 : 𝐺→ 𝐺 ⊔𝐺,

𝐽1 : 𝐺 ⊔𝐺→ (𝐺 ⊔𝐺) ⊔𝐺,

𝐽2 : 𝐺→ (𝐺 ⊔𝐺) ⊔𝐺,

𝐽 ′
1 : 𝐺→ 𝐺 ⊔ (𝐺 ⊔𝐺),

𝐽 ′
2 : 𝐺 ⊔𝐺→ 𝐺 ⊔ (𝐺 ⊔𝐺).

The morphism 𝐴 : (𝐺⊔𝐺)⊔𝐺→ 𝐺⊔ (𝐺⊔𝐺) we are trying to define is uniquely
determined by the compositions 𝐴∘𝐽1 : 𝐺⊔𝐺→ 𝐺⊔(𝐺⊔𝐺) and 𝐴∘𝐽2 : 𝐺→ 𝐺⊔(𝐺⊔𝐺),
and 𝐴 ∘ 𝐽1 is itself determined by the compositions 𝐴 ∘ 𝐽1 ∘ 𝑗1 and 𝐴 ∘ 𝐽1 ∘ 𝑗2 from 𝐺 to
𝐺 ⊔ (𝐺 ⊔ 𝐺). Using the universal property of the coproduct twice we can then define 𝐴
as the only morphism of its type satisfying the following equations:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝐴 ∘ 𝐽1 ∘ 𝑗1 = 𝐽 ′
1,

𝐴 ∘ 𝐽1 ∘ 𝑗2 = 𝐽 ′
2 ∘ 𝑗1,

𝐴 ∘ 𝐽2 = 𝐽 ′
2 ∘ 𝑗2.

(A.2)

Most of the interesting examples of cogroups we will meet are connected with
Homotopy Theory, so they will be studied in a future chapter. Nevertheless, there are
some basic examples that we can examine already.
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A.1.11 Example. In any category with coproducts and an initial object, the initial object
0 itself admits a cogroup structure, with comultiplication given by the unique morphism
!0⊔0 : 0 → 0 ⊔ 0, and both counit and co-inversion given by id0 : 0 → 0, which is the
unique endomorphism of 0.

All the required commutativity conditions follow from the universal property char-
acterizing 0, that is, the fact that for any object 𝐴 ∈ C there is a unique morphism in
C(0, 𝐴). For example, condition (CG1) follows because ⟨!0⊔0 ∘𝑒, id0⟩ and ⟨id0, !0⊔0 ∘𝑒⟩ both
belong to C(0, 0), therefore they must be equal.

In particular, in the category Set, the empty set ∅ admits such a cogroup structure
because it is an initial object. In fact, it is the only set admitting a cogroup structure,
because if 𝑋 ∈ Set admits one, then in particular there is a map 𝑒 : 𝑋 → ∅, but this is
only possible if 𝑋 = ∅. This is a possible explanation for the initial weirdness of cogroups:
whereas the study of group objects in Set - also known as Group Theory :) - is extremely
rich, the study of cogroup objects in Set is trivial.

A.1.12 Example. Let 𝑅 be a commutative ring with unit, and consider the category
RMod of left 𝑅-modules. Let us recall some basic facts and constructions of this category.
It has an initial object given by the trivial 𝑅-module {0} containing only the neutral
element for addition. Any two 𝑅-modules 𝑀 and 𝑁 have a coproduct given by the direct
sum 𝑀 ⊕𝑁 , with canonical injections 𝑖1 : 𝑀 →𝑀 ⊕𝑁 and 𝑖2 : 𝑁 →𝑀 ⊕𝑁 defined as

𝑖1(𝑚) := (𝑚, 0) and 𝑖2(𝑛) := (0, 𝑛)

for every 𝑚 ∈𝑀 and 𝑛 ∈ 𝑁 . If we consider another 𝑅-module 𝑃 together with morphisms
𝑓 : 𝑀 → 𝑃 and 𝑔 : 𝑁 → 𝑃 , then the induced morphism ⟨𝑓, 𝑔⟩ : 𝑀 ⊕ 𝑁 → 𝑃 is given
explicitly by

⟨𝑓, 𝑔⟩(𝑚,𝑛) := 𝑓(𝑚) + 𝑔(𝑛) ∀ (𝑚,𝑛) ∈𝑀 ⊕𝑁.

Lastly, the associating isomorphism𝐴 : (𝑀⊕𝑀)⊕𝑀 →𝑀⊕(𝑀⊕𝑀) maps ((𝑚1,𝑚2),𝑚3)
to (𝑚1, (𝑚2,𝑚3)).

We now show that any object of RMod admits the structure of a cogroup. Given an
𝑅-module 𝑀 , we define a comultiplication by using the diagonal map Δ : 𝑀 →𝑀 ⊕𝑀 ,
so that 𝑚 ∈ 𝑀 is mapped to (𝑚,𝑚). The only choice of counit map 𝜀 : 𝑀 → {0} is the
zero map. Lastly, a co-inversion morphism 𝜈 : 𝑀 → 𝑀 is defined as 𝜈(𝑚) := −𝑚 for
every 𝑚 ∈𝑀 .

We now check the commutativity conditions. Let 𝑚 ∈𝑀 be an arbitrary element.
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For the counit condition, we have

(⟨id𝑀 , !𝑀 ∘ 𝜀⟩ ∘Δ)(𝑚) = ⟨id𝑀 , !𝑀 ∘ 𝜀⟩(𝑚,𝑚)

= id𝑀(𝑚) + (!𝑀 ∘ 𝜀)(𝑚)

= id𝑀(𝑚) + 0

= id𝑀(𝑚),

and also

(⟨!𝑀 ∘ 𝜀, id𝑀⟩ ∘Δ)(𝑚) = ⟨!𝑀 ∘ 𝜀, id𝑀⟩(𝑚,𝑚)

= (!𝑀 ∘ 𝜀)(𝑚) + id𝑀(𝑚)

= 0 + id𝑀(𝑚)

= id𝑀(𝑚).

For the coassociativity, on the one hand

((id𝑀 ⊔Δ) ∘Δ)(𝑚)

= (id𝑀 ⊔Δ)(𝑚,𝑚)

= (id𝑀(𝑚),Δ(𝑚))

= (𝑚, (𝑚,𝑚)),

while on the other

(𝐴 ∘ (Δ ⊔ id𝑀) ∘Δ)(𝑚)

= (𝐴 ∘ (Δ ⊔ id𝑀))(𝑚,𝑚)

= 𝐴(Δ(𝑚), id(𝑚))

= 𝐴((𝑚,𝑚),𝑚)

= (𝑚, (𝑚,𝑚)).

Lastly, for the co-inversion condition, we have

(⟨𝜈, id𝑀⟩ ∘Δ)(𝑚)

= ⟨𝜈, id𝑀⟩(𝑚,𝑚)

= 𝜈(𝑚) + id𝑀(𝑚)

= −𝑚+𝑚

= 0

= (!𝑀 ∘ 𝜀)(𝑚),
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and also

(⟨id𝑀 , 𝜈⟩ ∘Δ)(𝑚) = ⟨id𝑀 , 𝜈⟩(𝑚,𝑚)

= id𝑀(𝑚) + 𝜈(𝑚)

= 𝑚+ (−𝑚)

= 0

= (!𝑀 ∘ 𝜀)(𝑚).

A.2 Ordinary groups from (co)group objects

After introducing the notions of group and cogroup objects, we now study how
these concepts can be used to obtain a family of ordinary groups. This is a procedure which
allows us to extract algebraic information from any category with sufficient structure
possessing either group or cogroup objects.

A.2.1 Theorem. Suppose C is a locally small category with terminal object * and with
all binary products. Let (𝐺,𝑚, 𝑒, inv) be a group object in C. Then, for any other object
𝑋 ∈ C, the set of morphisms C(𝑋,𝐺) admits a group structure such that, for any mor-
phism 𝛼 : 𝑋 → 𝑌 , the pullback function C(𝛼,𝐺) : C(𝑌,𝐺) → C(𝑋,𝐺) defines a group
homomorphism.

Proof. We define a binary product ·𝑋 : C(𝑋,𝐺)× C(𝑋,𝐺)→ C(𝑋,𝐺) using the formula

𝑓 ·𝑋 𝑔 := 𝑚 ∘ (𝑓, 𝑔) (A.3)

for every 𝑓, 𝑔 ∈ C(𝑋,𝐺). This definition makes sense: given two morphisms 𝑓, 𝑔 : 𝑋 → 𝐺,
by the universal property of the product we obtain an induced morphism (𝑓, 𝑔) : 𝑋 →
𝐺×𝐺 which we may then compose with the multiplication morphism 𝑚 : 𝐺×𝐺→ 𝐺 to
obtain another morphism from 𝑋 to 𝐺.

𝑋 𝐺
𝑓

𝑔
 𝑋 𝐺×𝐺 𝐺

(𝑓,𝑔)

𝑓 ·𝑋𝑔

𝑚

We now need to prove that this binary product ·𝑋 really defines a group structure
on C(𝑋,𝐺). We start by exhibiting an identity element for it. Let !𝑋 : 𝑋 → * be the
unique morphism from 𝑋 to the terminal object. Combining this with the unit 𝑒 : * → 𝐺

we obtain the morphism
𝑒𝑋 := 𝑒 ∘ !𝑋 : 𝑋 → 𝐺. (A.4)

Given any 𝑓 ∈ C(𝑋,𝐺), by definition we have 𝑓 · 𝑒𝑋 = 𝑚 ∘ (𝑓, 𝑒𝑋) = 𝑚 ∘ (𝑓, 𝑒 ∘ !𝑋),
but we have the equality !𝑋 = !𝐺 ∘ 𝑓 , since !𝐺 ∘ 𝑓 also defines a map from 𝑋 to *. Using
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this relation leaves us with the equality

𝑓 · 𝑒𝑋 = 𝑚 ∘ (𝑓, 𝑒 ∘ !𝐺 ∘ 𝑓).

We claim that the right-hand side can be rewritten as

(𝑓, 𝑒 ∘ !𝐺 ∘ 𝑓) = (id𝐺, 𝑒 ∘ !𝐺) ∘ 𝑓. (A.5)

Indeed, first recall that, if 𝜋1, 𝜋2 : 𝐺×𝐺→ 𝐺 are the canonical projects, then (𝑓, 𝑒∘ !𝐺∘𝑓)
is the only morphism of its type satisfying the equations

𝜋1 ∘ (𝑓, 𝑒 ∘ !𝐺 ∘ 𝑓) = 𝑓 and 𝜋2 ∘ (𝑓, 𝑒 ∘ !𝐺 ∘ 𝑓) = 𝑒 ∘ !𝐺 ∘ 𝑓.

With this in mind, notice that on the one hand

𝜋1 ∘ (id𝐺, 𝑒 ∘ !𝐺) ∘ 𝑓 = id𝐺 ∘ 𝑓 = 𝑓,

and on the other

𝜋2 ∘ (id𝐺, 𝑒 ∘ !𝐺) ∘ 𝑓 = 𝑒 ∘ !𝐺 ∘ 𝑓 ;

and these two equalities together imply (A.5). Using this newly obtained identity we see
that

𝑓 ·𝑋 𝑒𝑋 = 𝑚 ∘ (𝑓, 𝑒 ∘ !𝐺 ∘ 𝑓)

= 𝑚 ∘ (id𝐺, 𝑒 ∘ !𝐺) ∘ 𝑓

= id𝐺 ∘ 𝑓 (by axiom (G1))

= 𝑓 ;

proving that 𝑒𝑋 is a right-identity for the product ·𝐴.

The proof that 𝑒𝑋 is also a left identity is similar. For any 𝑔 ∈ C(𝑋,𝐺) we have

𝑒𝑋 · 𝑔 = 𝑚 ∘ (𝑒𝑋 , 𝑔)

= 𝑚 ∘ (𝑒 ∘ !𝑋 , 𝑔)

= 𝑚 ∘ (𝑒 ∘ !𝐺 ∘ 𝑔, 𝑔)

= 𝑚 ∘ (𝑒 ∘ !𝐺, id𝐺) ∘ 𝑔

= id𝐺 ∘ 𝑔

= 𝑔.

Now we show the existence of inverses. Given a morphism 𝑓 ∈ C(𝑋,𝐺), we will
show that inv ∘ 𝑓 : 𝐴→ 𝐺 is the inverse of 𝑓 with respect to the product ·𝑋 . On the one
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hand

𝑓 ·𝑋 (inv ∘ 𝑓) = 𝑚 ∘ (𝑓, inv ∘ 𝑓)

= 𝑚 ∘ (id𝐺, inv) ∘ 𝑓

= 𝑒 ∘ !𝐺 ∘ 𝑓

= 𝑒 ∘ !𝑋
= 𝑒𝑋 ,

which proves that inv ∘ 𝑓 is a right-inverse for 𝑓 ; and on the other

(inv ∘ 𝑓) ·𝑋 𝑓 = 𝑚 ∘ (inv ∘ 𝑓, 𝑓)

= 𝑚 ∘ (inv, id𝐺) ∘ 𝑓

= 𝑒 ∘ !𝐺 ∘ 𝑓

= 𝑒 ∘ !𝑋
= 𝑒𝑋 ,

which proves that inv ∘ 𝑓 is also a left-inverse for 𝑓 .

Now we turn to proving the associativity of ·𝑋 , the hardest part of the proof. Given
three morphisms 𝑓, 𝑔, ℎ ∈ C(𝑋,𝐺), in order to show the associativity of ·𝑋 we must show
the equality

𝑚 ∘ (𝑚 ∘ (𝑓, 𝑔), ℎ) = 𝑚 ∘ (𝑓,𝑚 ∘ (𝑔, ℎ)).

We first claim that the equality

𝐴 ∘ ((𝑓, 𝑔), ℎ) = (𝑓, (𝑔, ℎ)) (A.6)

holds, which is equivalent to the commutativity of the triangle below.

𝑋

(𝐺×𝐺)×𝐺 𝐺× (𝐺×𝐺)

((𝑓,𝑔),ℎ) (𝑓,(𝑔,ℎ))

𝐴

Following the notation of Remark A.1.2, the equality will follow from the universal prop-
erty of the product if we manage to show the equalities⎧⎪⎨⎪⎩Π′

1 ∘ 𝐴 ∘ ((𝑓, 𝑔), ℎ) = 𝑓,

Π′
2 ∘ 𝐴 ∘ ((𝑓, 𝑔), ℎ) = (𝑔, ℎ).

Using the relations (A.1) characterizing the associator isomorphism 𝐴 we see that

Π′
1 ∘ 𝐴 ∘ ((𝑔, ℎ), ℎ) = 𝜋1 ∘ Π1 ∘ ((𝑓, 𝑔), ℎ)

= 𝜋1 ∘ (𝑓, 𝑔)

= 𝑓,
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which shows the first of the required equalities. For the second equality, we first note that

𝜋1 ∘ Π′
2 ∘ 𝐴 ∘ ((𝑓, 𝑔), ℎ) = 𝜋2 ∘ Π1 ∘ ((𝑓, 𝑔), ℎ) (by (A.1))

= 𝜋2 ∘ (𝑓, 𝑔)

= 𝑔,

and then we also note that

𝜋2 ∘ Π′
2 ∘ 𝐴 ∘ ((𝑓, 𝑔), ℎ) = Π2 ∘ ((𝑓, 𝑔), ℎ) (by (A.1))

= ℎ;

but these equalities together imply that

Π′
2 ∘ 𝐴 ∘ ((𝑓, 𝑔), ℎ) = (𝑔, ℎ)

as desired.

Now, we know from axiom (G3) that the equality

𝑚 ∘ (𝑚× id𝐺) = 𝑚 ∘ (id𝐺 ×𝑚) ∘ 𝐴

holds. If we precompose both sides with the morphism ((𝑓, 𝑔), ℎ) and use (A.6) we obtain

𝑚 ∘ (𝑚× id𝐺) ∘ ((𝑓, 𝑔), ℎ) = 𝑚 ∘ (id𝐺 ×𝑚) ∘ (𝑓, (𝑔, ℎ)). (A.7)

This is in fact equivalent to the equality we want to prove. In order to show this, we first
show that

(𝑚× id𝐺) ∘ ((𝑓, 𝑔), ℎ) = (𝑚 ∘ (𝑓, 𝑔), ℎ). (A.8)

Again, this is shown by looking at the compositions with the canonical projections. The
product morphism 𝑚× id𝐺 by definition satisfies the equalities

𝜋1 ∘ (𝑚× id𝐺) = 𝑚 ∘ Π1 and 𝜋2 ∘ (𝑚× id𝐺) = id𝐺 ∘ Π2 = Π2.

Using these relations we see that

𝜋1 ∘ (𝑚× id𝐺) ∘ ((𝑓, 𝑔), ℎ) = 𝑚 ∘ Π1 ∘ ((𝑓, 𝑔), ℎ)

= 𝑚 ∘ (𝑓, 𝑔),

and also

𝜋2 ∘ (𝑚× id𝐺) ∘ ((𝑓, 𝑔), ℎ) = Π2 ∘ ((𝑓, 𝑔), ℎ)

= ℎ;

and these two equalities together imply (A.8). An analogous reasoning shows that we also
have the equality

(id𝐺 ×𝑚) ∘ (𝑓, (𝑔, ℎ)) = (𝑓,𝑚 ∘ (𝑔, ℎ)). (A.9)
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Finally, substituting (A.8) and (A.9) into (A.7) yields

𝑚 ∘ (𝑚 ∘ (𝑓, 𝑔), ℎ) = 𝑚 ∘ (𝑓,𝑚 ∘ (𝑔, ℎ)),

which is precisely the equality we wanted to show.

The only thing left is showing that, for a morphism 𝛼 : 𝑋 → 𝑌 , the pullback
C(𝑓,𝐺) : C(𝑌,𝐺) → C(𝑋,𝐺) defines a group homomorphism. This follows by a direct
computation: given 𝑓, 𝑔 ∈ C(𝑌,𝐺), we have

C(𝛼,𝐺)(𝑓 ·𝑌 𝑔) = (𝑓 ·𝑌 𝑔) ∘ 𝛼

= 𝑚 ∘ (𝑓, 𝑔) ∘ 𝛼

= 𝑚 ∘ (𝑓 ∘ 𝛼, 𝑔 ∘ 𝛼)

= (𝑓 ∘ 𝛼) ·𝑋 (𝑔 ∘ 𝛼)

= C(𝛼,𝐺)(𝑓) ·𝑋 C(𝛼,𝐺)(𝑔). �

All the results proved so far have dual ones concerning cogroups. They can be
proved either by direct arguments analogous to the ones we have already given, or by
applying the results we have already obtained to the opposite category. We now state
these dual results without proof in order to be able to reference them later on.

A.2.2 Theorem. Suppose C is a locally small category with initial object 0 and with
all binary coproducts. Let (𝐺,𝜇, 𝜀, 𝜈) be a cogroup object in C. Then, for any other
object 𝑋 ∈ C, the set of morphisms C(𝐺,𝑋) admits a group structure such that, for any
morphism 𝛼 : 𝑋 → 𝑌 , the pushforward function C(𝐺,𝛼) : C(𝐺,𝑋) → C(𝐺, 𝑌 ) defines a
group homomorphism.

The description of the product on the set C(𝐺,𝑋) is dual to that of Theorem A.2.1.
Given two morphisms 𝑓, 𝑔 : 𝐺→ 𝑋, by the universal property of the coproduct we have
an induced map ⟨𝑓, 𝑔⟩ : 𝐺 ⊔ 𝐺 → 𝑋, and combining this with the comultiplication
morphism we define

𝑓 ·𝑋 𝑔 := ⟨𝑓, 𝑔⟩ ∘ 𝜇, (A.10)

which is another morphism 𝐺→ 𝑋 as shown below.

𝐺 𝑋
𝑓

𝑔
 𝐺 𝐺 ⊔𝐺 𝑋

𝜇

𝑓 ·𝑋𝑔

⟨𝑓,𝑔⟩

A unit for this product ·𝑋 is given by the morphisms

𝑒𝑋 := !𝑋 ∘ 𝜀, (A.11)

and lastly, an inverse for a morphism 𝑓 : 𝐺→ 𝑋 with respect to the product ·𝑋 is given
by the morphism

𝑓−1 := 𝑓 ∘ 𝜈. (A.12)
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After studying how to obtain ordinary group structures from categorical group
and cogroup objects, we study a particular case of this construction where we deal simul-
taneously with both group and cogroup objects. The next result is one of the underlying
principles behind the commutativity of the higher dimensional homotopy groups.

A.2.3 Proposition. Let C be a locally small category with an initial object 0, a terminal
object *, and having all binary products and coproducts. Let (𝐺,𝜇, 𝜀, 𝜈) be a cogroup
object in C, and let (𝐻,𝑚, 𝑒, inv) be a group object in C. Denote by ·𝐻 the binary product
on C(𝐺,𝐻) coming from the cogroup structure, and denote by ·𝐺 the binary product on
the same set coming from the group structure. Then ·𝐻 and ·𝐺 coincide, and they define
an abelian group structure on the set of morphisms C(𝐺,𝐻).

Proof. The setup suggests the use of the Eckmann-Hilton Argument (Theorem A.1.6), so
we need to verify the compatibility of the products ·𝐻 and ·𝐺, that is, given morphisms
𝛼, 𝛽, 𝛾, 𝛿 ∈ C(𝐺,𝐻), we need to prove the equality

(𝛼 ·𝐻 𝛽) ·𝐺 (𝛾 ·𝐻 ·𝛿) = (𝛼 ·𝐺 𝛾) ·𝐻 (𝛽 ·𝐺 𝛿).

Unpacking the definitions of the products ·𝐻 and ·𝐺, the expression above can be
rewritten as

𝑚 ∘ (⟨𝛼, 𝛽⟩ ∘ 𝜇, ⟨𝛾, 𝛿⟩ ∘ 𝜇) = ⟨𝑚 ∘ (𝛼, 𝛾),𝑚 ∘ (𝛽, 𝛿)⟩ ∘ 𝜇. (A.13)

By studying the compositions of the morphism (⟨𝛼, 𝛽⟩ ∘ 𝜇, ⟨𝛼, 𝛽⟩ ∘ 𝜇) with the canonical
projections 𝜋1, 𝜋2 : 𝐻 ×𝐻 → 𝐻 we deduce the equality

(⟨𝛼, 𝛽⟩ ∘ 𝜇, ⟨𝛾, 𝛿⟩ ∘ 𝜇) = (⟨𝛼, 𝛽⟩, ⟨𝛾, 𝛿⟩) ∘ 𝜇,

and similarly, by studying the composition of ⟨𝑚 ∘ (𝛼, 𝛾),𝑚 ∘ (𝛽, 𝛿)⟩ with the canonical
injections 𝑗1, 𝑗2 : 𝐺→ 𝐺 ⊔𝐺 we deduce that

⟨𝑚 ∘ (𝛼, 𝛾),𝑚 ∘ (𝛽, 𝛿)⟩ = 𝑚 ∘ ⟨(𝛼, 𝛾), (𝛽, 𝛿)⟩.

Substituting these two equalities into (A.13) shows that the equality we are trying to
prove can be rewritten as

𝑚 ∘ (⟨𝛼, 𝛽⟩, ⟨𝛾, 𝛿⟩) ∘ 𝜇 = 𝑚 ∘ ⟨(𝛼, 𝛾), (𝛽, 𝛿)⟩ ∘ 𝜇. (A.14)

Comparing the two sides of this, we see that in fact it suffices to prove the equality

(⟨𝛼, 𝛽⟩, ⟨𝛾, 𝛿⟩) = ⟨(𝛼, 𝛾), (𝛽, 𝛿)⟩. (A.15)

The right-hand side of the expression above denotes a morphism of type 𝐺⊔𝐺→
𝐻 ×𝐻 obtained by applying the universal property of the coproduct, therefore (A.15) is
equivalent to the pair of equalities below:⎧⎪⎨⎪⎩(⟨𝛼, 𝛽⟩, ⟨𝛾, 𝛿⟩) ∘ 𝑗1 = (𝛼, 𝛾),

(⟨𝛼, 𝛽⟩, ⟨𝛾, 𝛿⟩) ∘ 𝑗2 = (𝛽, 𝛿).
(A.16)
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Both morphisms appearing on the right-hand side above are obtained from the universal
property of the product, so it makes sense to study the composition of the morphisms on
the left-hand side with the canonical projections 𝜋1, 𝜋2 : 𝐻 ×𝐻 → 𝐻. We have

𝜋1 ∘ (⟨𝛼, 𝛽⟩, ⟨𝛾, 𝛿⟩) ∘ 𝑗1 = ⟨𝛼, 𝛽⟩ ∘ 𝑗1 = 𝛼,

and also
𝜋2 ∘ (⟨𝛼, 𝛽⟩, ⟨𝛾, 𝛿⟩) ∘ 𝑗1 = ⟨𝛾, 𝛿⟩ ∘ 𝑗1 = 𝛾;

implying the first line of (A.16) By completely analogous computations we also have the
equalities

𝜋1 ∘ (⟨𝛼, 𝛽⟩, ⟨𝛾, 𝛿⟩) ∘ 𝑗2 = 𝛽 and 𝜋2 ∘ (⟨𝛼, 𝛽⟩, ⟨𝛾, 𝛿⟩) ∘ 𝑗2 = 𝛿;

which together imply the second line of (A.16). �
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