• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Thèse de Doctorat
DOI
Document
Auteur
Nom complet
Liliam Carsava Merighe
Adresse Mail
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Carlos, 2019
Directeur
Jury
Pérez, Victor Hugo Jorge (Président)
Levcovitz, Daniel
Miranda Neto, Cleto Brasileiro
Ramos, Zaqueu Alves
Titre en anglais
On properties about local cohomology modules, finiteness of torsion and extension functors, and integral closure relative to Artinian modules
Mots-clés en anglais
Attached primes
Generalized local cohomology
Homological algebra
Integral closure
Multiplicity
Resumé en anglais
Let R be a non-zero commutative Noetherian ring with unit 1 ≠ 0, a be an ideal of R, and M and N be R-modules. This thesis makes a contribution to the study of generalized local cohomology modules, namely Hia (M;N), with applications for the study of attached primes, torsion product and extension functors, and integral closures and multiplicities relative to Artinian modules. In particular, we obtained results on the following topics: counting the number of non-isomorphic top generalized local cohomology modules, conditions to finiteness, cofiniteness, artinianess and representability of generalized local cohomology modules, torsion product and extension functors applied to R-modules, and conditions to equality between some types of integral closures and multiplicities.
Titre en portugais
Propriedades sobre módulos de cohomologia local, finitude dos funtores torção e extensão, e fecho integral relativo a módulos Artinianos
Mots-clés en portugais
Álgebra homológica
Cohomologia local generalizada
Fecho integral
Multiplicidade
Primos anexados
Resumé en portugais
Sejam R um anel Noetheriano comutativo com unidade 1 ≠ 0, a um ideal de R e M e N módulos sobre R. Nessa tese, fazemos contribuições ao estudo dos módulos de cohomologia local generalizada, a saber Hia (M;N), com aplicações ao estudo dos ideais primos anexados de R, funtores torção e extensão, e fecho integral e multiplicidades relativos a módulos artinianos. Em particular, estabelecemos resultados nos seguintes temas: contar o número de módulos de cohomologia local generalizados no topo não isomorfos; condições para os módulos de cohomologia local e os funtores torção e extensão aplicados a R-módulos terem características finitas (finitamente gerado, finitos primos associados, etc), serem cofinitos, serem artinianos e serem representáveis; e condições para a igualdade entre tipos de fechos integrais e multiplicidades.
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Date de Publication
2019-08-12
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
CeTI-SC/STI
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2021. Tous droits réservés.