• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Thèse de Doctorat
DOI
https://doi.org/10.11606/T.55.2019.tde-12042016-112051
Document
Auteur
Nom complet
Simone Mazzini Bruschi
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Carlos, 2000
Directeur
Jury
Carvalho, Alexandre Nolasco de (Président)
Lopes Filho, Milton da Costa
Nascimento, Arnaldo Simal do
Oliveira, Luiz Augusto Fernandes de
Táboas, Plácido Zoega
Titre en portugais
Discretização de problemas semilineares dissipativos parabólicos e hiperbólicos em domínios unidimensionais
Mots-clés en portugais
Não disponível
Resumé en portugais
Neste trabalho estudamos a redução do estudo da dinâmica assintótica de problemas de evolução semilineares em espaços de dimensão infinita ao estudo da dinâmica assintótica de problemas de evolução semilineares em espaços de dimensão finita. Mais especificamente, estaremos lidando com os problemas da condução de calor e de ondas. A forma escolhida para a redução da dimensão é a discretização. Neste sentido, estudamos: 1. A relação entre as dinâmicas assintóticas da equação do calor semilinear em domínios unidimensionais e sua respectiva discretização. Mostramos que, para passos suficientemente pequenos, os fluxos sobre os atratores são topologicamente equivalentes, e 2. A relação entre as dinâmicas assintóticas da equação semilinear de ondas amortecidas em domínios unidimensionais e sua respectiva discretização. Neste caso não foi possível obter a equivalência topológica entre os fluxos nos atratores, mas ainda é possível obter relações entre as dinâmicas assintóticas dadas pela semicontinuidade superior e inferior dos atratores.
Titre en anglais
Not available
Mots-clés en anglais
Not available
Resumé en anglais
In this work we study the reduction of the study of the asymptotic dynamics of semilinear evolution problems in infinite- dimensional spaces to the study of the asymptotic dynamics of semilinear evolution problems in finite dimensional spaces. More specifically we will dealing with the heat conduction and wave problems. The tool choosen for the reduction of dimension is the discretization. In this way, we study: 1. The relationship between the asymptotic dynamics of the semilinear heat equation in one-dimensional domains and its discretization. We prove that for sufficiently small step-size, the flows on the attractors are topologically equivalente, and 2. The relationship between the asymptotic dynamics of semilinear damped wave equations in one-dimensional domains and its discretization. In this case it was not possible to obtain the topological equivalence between the flows in the attractors, however it is still possible to obtain a relationship between the asymptotic dynamics given by the upper and lower semicontinuity of attractors.
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Date de Publication
2019-12-03
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
CeTI-SC/STI
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2020. Tous droits réservés.