• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tesis Doctoral
DOI
https://doi.org/10.11606/T.55.2019.tde-12042016-112051
Documento
Autor
Nombre completo
Simone Mazzini Bruschi
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Carlos, 2000
Director
Tribunal
Carvalho, Alexandre Nolasco de (Presidente)
Lopes Filho, Milton da Costa
Nascimento, Arnaldo Simal do
Oliveira, Luiz Augusto Fernandes de
Táboas, Plácido Zoega
Título en portugués
Discretização de problemas semilineares dissipativos parabólicos e hiperbólicos em domínios unidimensionais
Palabras clave en portugués
Não disponível
Resumen en portugués
Neste trabalho estudamos a redução do estudo da dinâmica assintótica de problemas de evolução semilineares em espaços de dimensão infinita ao estudo da dinâmica assintótica de problemas de evolução semilineares em espaços de dimensão finita. Mais especificamente, estaremos lidando com os problemas da condução de calor e de ondas. A forma escolhida para a redução da dimensão é a discretização. Neste sentido, estudamos: 1. A relação entre as dinâmicas assintóticas da equação do calor semilinear em domínios unidimensionais e sua respectiva discretização. Mostramos que, para passos suficientemente pequenos, os fluxos sobre os atratores são topologicamente equivalentes, e 2. A relação entre as dinâmicas assintóticas da equação semilinear de ondas amortecidas em domínios unidimensionais e sua respectiva discretização. Neste caso não foi possível obter a equivalência topológica entre os fluxos nos atratores, mas ainda é possível obter relações entre as dinâmicas assintóticas dadas pela semicontinuidade superior e inferior dos atratores.
Título en inglés
Not available
Palabras clave en inglés
Not available
Resumen en inglés
In this work we study the reduction of the study of the asymptotic dynamics of semilinear evolution problems in infinite- dimensional spaces to the study of the asymptotic dynamics of semilinear evolution problems in finite dimensional spaces. More specifically we will dealing with the heat conduction and wave problems. The tool choosen for the reduction of dimension is the discretization. In this way, we study: 1. The relationship between the asymptotic dynamics of the semilinear heat equation in one-dimensional domains and its discretization. We prove that for sufficiently small step-size, the flows on the attractors are topologically equivalente, and 2. The relationship between the asymptotic dynamics of semilinear damped wave equations in one-dimensional domains and its discretization. In this case it was not possible to obtain the topological equivalence between the flows in the attractors, however it is still possible to obtain a relationship between the asymptotic dynamics given by the upper and lower semicontinuity of attractors.
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
Fecha de Publicación
2019-12-03
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
CeTI-SC/STI
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2020. Todos los derechos reservados.