• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Doctoral Thesis
DOI
https://doi.org/10.11606/T.55.2019.tde-12042016-112051
Document
Author
Full name
Simone Mazzini Bruschi
Institute/School/College
Knowledge Area
Date of Defense
Published
São Carlos, 2000
Supervisor
Committee
Carvalho, Alexandre Nolasco de (President)
Lopes Filho, Milton da Costa
Nascimento, Arnaldo Simal do
Oliveira, Luiz Augusto Fernandes de
Táboas, Plácido Zoega
Title in Portuguese
Discretização de problemas semilineares dissipativos parabólicos e hiperbólicos em domínios unidimensionais
Keywords in Portuguese
Não disponível
Abstract in Portuguese
Neste trabalho estudamos a redução do estudo da dinâmica assintótica de problemas de evolução semilineares em espaços de dimensão infinita ao estudo da dinâmica assintótica de problemas de evolução semilineares em espaços de dimensão finita. Mais especificamente, estaremos lidando com os problemas da condução de calor e de ondas. A forma escolhida para a redução da dimensão é a discretização. Neste sentido, estudamos: 1. A relação entre as dinâmicas assintóticas da equação do calor semilinear em domínios unidimensionais e sua respectiva discretização. Mostramos que, para passos suficientemente pequenos, os fluxos sobre os atratores são topologicamente equivalentes, e 2. A relação entre as dinâmicas assintóticas da equação semilinear de ondas amortecidas em domínios unidimensionais e sua respectiva discretização. Neste caso não foi possível obter a equivalência topológica entre os fluxos nos atratores, mas ainda é possível obter relações entre as dinâmicas assintóticas dadas pela semicontinuidade superior e inferior dos atratores.
Title in English
Not available
Keywords in English
Not available
Abstract in English
In this work we study the reduction of the study of the asymptotic dynamics of semilinear evolution problems in infinite- dimensional spaces to the study of the asymptotic dynamics of semilinear evolution problems in finite dimensional spaces. More specifically we will dealing with the heat conduction and wave problems. The tool choosen for the reduction of dimension is the discretization. In this way, we study: 1. The relationship between the asymptotic dynamics of the semilinear heat equation in one-dimensional domains and its discretization. We prove that for sufficiently small step-size, the flows on the attractors are topologically equivalente, and 2. The relationship between the asymptotic dynamics of semilinear damped wave equations in one-dimensional domains and its discretization. In this case it was not possible to obtain the topological equivalence between the flows in the attractors, however it is still possible to obtain a relationship between the asymptotic dynamics given by the upper and lower semicontinuity of attractors.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2019-12-03
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2020. All rights reserved.