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RESUMO

ANDRADE DA SILVA. F. Estabilidade para EDOs generalizadas não lineares e para equa-
ções integrais de Volterra-Stieltjes retardadas e teoria de controle para estas equações e
para equações dinâmicas em escala temporal. 2021. 205 p. Tese (Doutorado em Ciências –
Matemática) – Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo,
São Carlos – SP, 2021.

Este trabalho têm dois objetivos principais. O primeiro é provar teoremas do tipo Lyapunov e
teoremas inversos de Lyapunov a respeito de limitação de soluções, estabilidade regular e estabi-
lidade uniforme para equações diferenciais ordinárias generalizadas e para equações integrais
de Volterra-Stieltjes retardadas. Como uma aplicação, estabelecemos condições necessárias e
suficientes para um sistema de equações diferenciais ordinárias generalizadas perturbadas e para
um sistema de equações integrais de Volterra-Stieltjes retardadas perturbadas, definidas em um
espaço de Banach, sejam assimptoticamente controláveis.

O segundo objetivo é investigar a existência e unicidade de uma solução para uma equação
integral de Volterra-Stieltjes de segunda ordem, assim como, para uma equação dinâmica em
escala temporal, cujas formas integrais contêm ∆-integrais de Perron definidas em espaços de
Banach. Também fornecemos uma fórmula da variação-das-contantes para equações dinânicas
lineares não homogêneas em escala temporal e estabelecemos resultados sobre controlabilidade
para estas equações.

Os resultados inétidos apresentados neste trabalho estão contidos em 3 artigos (veja [4–6]) e em
2 capítulos do livro [13].

Palavras-chave: Teoremas de Lyapunov para estabilidade e limitação de solução, Teoria de
controle, Equações diferenciais ordinárias generalizadas, Equações integrais de Volterra-Stieltjes
retardadas.





ABSTRACT

ANDRADE DA SILVA. F. Stability for nonlinear generalized ODEs and for retarded
Volterra-Stieltjes integral equations and control theory for these equations and for dy-
namic equations on time scale. 2021. 205 p. Tese (Doutorado em Ciências – Matemática) –
Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, São Carlos –
SP, 2021.

This work has two main purposes. The first one is to prove Lyapunov-type theorems and
converse Lyapunov theorems on boundedness of solutions, regular stability and uniform stability
for generalized ODEs and retarded Volterra-Stieltjes integral equations. As an application, we
establish necessary and sufficient conditions for a system of perturbed generalized ODEs and for
a system of perturbed retarded Volterra-Stieltjes integral equations, defined in a Banach space, to
be asymptotically controllable.

The second purpose is to investigate the existence and uniqueness of a solution for a linear
Volterra-Stieltjes integral equation of the second kind, as well as for a homogeneous and
a nonhomogeneous linear dynamic equations on time scales, whose integral forms contain
Perron ∆-integrals defined in Banach spaces. We also provide a variation-of-constant formula
for a nonhomogeneous linear dynamic equations on time scales and we establish results on
controllability for these equations.

The new results presented in this work are contained in 3 papers (see [4–6]) and in two chapters
of the book [13].

Keywords: Lyapunov theorems on stability and boundedness of solutions, Control theory,
Generalized ODEs, Retarded Volterra-Stieljes integral equations, Dynamic equations on time
scales.
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CHAPTER

1
INTRODUCTION

The notion of derivatives were already known before Isaac Newton and Gottfried Leibniz.
These two mathematicians are credited with the invention of calculus around 1670. For Newton,
the process of integration was largely seen as an inverse to the operation of differentiation, and
the integral was synonymous with the anti-derivative, which is known as the Newton integral.
Around 1850 a new approach came out in the work of Augustin-Louis Cauchy and soon after
in the work of Georg Riemann. They believed that the definite integral could be interpreted as
the area under continuous curves, and could be obtained by summing an infinite series of areas
corresponding to approximating rectangles of infinitely small width, which makes this definition
of integral is independent of the derivative.

The theory of the Riemann integral was not fully satisfactory. Firstly, the class of
integrable curves was limited not only to continuous curves, but also to those with elementary
anti-derivatives. Therefore, many important functions do not have a Riemann integral, even after
when one extends them to a larger class of integrable functions by allowing “improper” Riemann
integrals in. Moreover, the Riemann integral does not yield good convergence theorems. For
instance, a pointwise, bounded limit of Riemann integrable functions is not necessarily Riemann
integrable. To overcome these deficiencies, Henri Lebesgue proposed a new notion of integration,
known as the Lebesgue integral. The Lebesgue integral is strictly more general than the proper
Riemann integral, that is, it can integrate a larger class of functions. However, in comparing
the improper Riemann integral with the Lebesgue integral, we find that neither is strictly more
general than the other. Furthermore, Lebesgue’s method is a complex one and a considerably
amount of measure theory is required even to define the integral.

Neither the improper Riemann integral nor the Lebesgue integral generated a fully
satisfactory construction of anti-derivatives. Slightly more general notions of integral were given
by Arnaud Denjoy (1912) and Oskar Perron (1914). Denjoy’s and Perron’s definitions turned out
to be equivalent.
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Decades later, independently, Ralph Henstock (1955) and Jaroslav Kurzweil (1957) came
up with a much simpler formulation of the Denjoy-Perron integral. In their definition the intuitive
approach of the Riemann integral is preserved, but unlike the Riemann integral which considers
tagged partitions of an interval with subintervals whose lengths are limited by a fixed constant,
Henstock and Kurzweil used a strictly positive function δ (called gauge) to measure the length
of each subintervals, that is, the maximum length of the subintervals are allowed to vary. By
making this small adjustment, it turned out that their integral also surpassed limitations of the
Riemann integral, in particular, every derivative function is integrable. Moreover, the integral of
Kurzweil and Henstock allows us to deal with integrands which are highly oscillating and have
many discontinuities.

The integral of Kurzweil and Henstock is also known by various names: the Henstock-
Kurzweil integral, the generalized Riemann integral, the Perron integral and, because of its
definition, it is also called as a gauge integral. However, in the original paper [38] by Kurzweil
we find a more general definition of this integral which we refer to as the Kurzweil integral. See
Definition B.0.11.

In order to generalize certain classical results on the existence and continuous dependence
on a parameter of solutions of ordinary differential equations, J. Kurzweil introduced, in [38],
a special class of generalized differential equation, currently known as generalized ordinary
differential equations or generalized ODEs, for short. Moreover, he applied his results to classical
differential equations with distributing terms which approximate the Dirac function. See [39].

Generalized ODEs are described by integral equations involving the Kurzweil integral
and are known to encompass several other types of equations as Volterra-Stieltljes integral
equations, measure functional differential equations, among others. Therefore, the theory of
generalized ODEs has been shown to act as a unifying theory for many differential equations.

In the present thesis, one of our purposes is to establish necessary and sufficient conditions
for a perturbed nonlinear generalized ODE to be asymptotically controllable. Usually, in the
definition of asymptotic controllability, some type of stability is required (see Definition 5.0.1).
For this reason, we introduced a new concept of uniform stability with respect to perturbations
for a trivial solution of a homogeneous nonlinear generalized ODE and studied stability for
generalized ODEs via Lyapunov functionals. In particular, we obtained converse Lyapunov
theorems on regular and uniform stability for the trivial solution of a homogeneous generalized
ODE. Since up to now the theory of Lyapunov functionals for generalized ODEs deals only
with homogeneous equations, we needed to establish a relation between uniform stability and
uniform stability with respect to perturbations. On the other hand, while we were investigating
the theory of Lyapunov functionals for generalized ODEs, we came across the theory of uniform
boundedness of solutions of generalized ODEs and we were intrigued to find out whether there
exists a relation between this concept and the concept of uniform stability. Therefore, the main
goals of this work in the framework of generalized ODEs are:
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∙ to establish converse theorems on regular and uniform stability for a homogeneous gener-
alized ODE;

∙ to introduce a concept of uniform stability with respect to perturbations for a trivial solution
of a homogeneous generalized ODE;

∙ to provide relations between the concept of uniform stability and uniform stability with
respect to perturbations;

∙ to investigate converse theorems on uniform boundedness of solutions of homogeneous
generalized ODEs;

∙ to set relations between boundedness of solutions of homogeneous and perturbed general-
ized ODEs;

∙ to relate boundedness of solutions to uniform stability for homogeneous generalized ODE;

∙ to introduce the definition of asymptotic controllability for a perturbed generalized ODEs
and to apply the Lyapunov theorems to provide a criteria for asymptotic controllability.

Thus, under some hypotheses, we obtained a few relations which are illustrated, in a
simplified way, in the following diagram.

R U pU

pR B pB

Th.2.3.1 Th.2.2.7
Th.2.2.4

Th.2.1.5 Cor.4.0.1

Th.3.0.7
Th.3.0.6

∙ R = regular stability;

∙ pR = regular stability with respect to perturbations;

∙ U = uniform stability;

∙ pU = uniform stability with respect to perturbations;

∙ B = uniform boundedness of solutions for homogeneous generalized ODEs;

∙ pB = uniform boundedness of solutions for perturbed generalized ODEs.

Retarded Volterra-Stieljes integral equations (we write retarded VS integral equations,
for short) play an important role not only from a theoretical point of view but also in applications,
since they are used in many types of well known mathematical models. Therefore, VS integral
equations have been attracting the attention of several researchers (see, for instance, [8,14,15,36]).
Motivated by these features, we are interested in obtaining Lyapunov theorems on stability and
boundedness of solutions as well as asymptotic controllability results for these equations. To this
end, we proved that a retarded VS integral equation can be regarded as a generalized ODE and
used this fact to obtain
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∙ a result on the existence and uniqueness of a solution of a retarded VS integral equation;

∙ Lyapunov-type and converse theorems on integral stability, uniform stability and bounded-
ness of solutions for homogeneous retarded VS integral equations;

∙ relations between the concepts of integral stability, uniform stability and uniform stability
with respect to perturbations;

∙ relations between boundedness of solutions for homogeneous and perturbed retarded VS
integral equations;

∙ a characterization of asymptotic controllability.

In the sequel, we exhibit a digram which contains the relations above.

B BV UV U R

pB pBV pUV pU I

Th.6.3.3

Th.6.3.8

Cor.6.3.5

Th.6.2.8
Th.6.2.2

Th.2.2.7

Th.6.2.3
Th.2.3.1

Th.6.2.13

Th.6.3.3

Th.6.3.2

Th.6.2.9

Th.6.2.6 Th.2.2.4

Rm.6.2.12
Th.6.2.5

Th.6.2.14

∙ BV = boundedness of the solutions of a homogeneous retarded VS integral equation;

∙ pBV = boundedness of the solutions of a perturbed retarded VS integral equation;

∙ UV = uniform stability for the trivial solution of a homogeneous retarded VS equation;

∙ pUV = uniform stability with respect to pertubations for the trivial solution of a homoge-
neous retarded VS integral equation (6.2);

∙ I = integral stability .

Now, we turn our attention to calculus on time scales, introduced in 1988 by Stefan
Hilger. This theory allows us to describe continuous, discrete and hybrid systems which have
several applications (see [7, 41]). One of the main concepts of the time scale theory is the delta
derivative, which is a generalization of the classical time derivative in the continuous time and
the finite forward difference in the discrete time. As a consequence, differential equations as well
as difference equations are naturally accommodated in this theory (see [10, 11]). In this work,
we are also interested in obtaining necessary and sufficient conditions for a nonhomogeneous
linear dynamic equations on time scales to be approximately controllable/strictly controllable.
To this end, we proved that there exists a relation between the solution of a linear dynamic
equation and the solution of a Volterra-Stieltljes integral equation. Moreover, we obtained a
variation-of-constant formula for nonhomogeneous dynamic equations on time scales.

The present work is divided in seven chapters and four appendixes which are organized
as follows. The second chapter is devoted to the study of stability for the trivial solution of
a generalized ODE, where in Section 2.1, we recall the basic concepts and results, presented
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in [26], on regular, regular attracting and regular asymptotic stability. Not only that, but we
weaken the Lipschitzian condition with respect to the second variable on the Lyapunov functional,
required in [26, Theorems 6.3 and 6.4], to a condition which allows jumps and, yet, we are able
to get converse Lyapunov theorems concerning regular, regular attracting and regular asymptotic
stability for generalized ODEs. In Section 2.2, we bring up the Lyapunov-type theorem on
uniform stability for generalized ODEs, contained in [13, 23], and we also establish a converse
Lyapunov theorem. Moreover, we introduce a concept of uniform stability with respect to
perturbations and give relations between this concept and the notion of uniform stability.

The third chapter contains our contributions on uniform boundedness of solutions for gen-
eralized ODEs which are two converse Lyapunov theorems and relations between boundedness
of solutions for homogeneous and perturbed generalized ODEs.

In Chapter 4, we use the Lyapunov theorems, described in the previous chapters, to
obtain relations between uniform stability and boundedness of solutions for generalized ODEs.

Chapter 5 gethers results on control theory in the framework of generalized ODEs. In this
chapter, we introduce a definition of asymptotic controllability and we proved that this concept
is related to the existence of a Lyapunov functional.

In order to apply our results to a retarded VS equation, we describe, in Chapter 6, a
relation between retarded VS equations and generalized ODEs. With this relation at hand, we
are able to establish some interesting results for retarded VS equations, such as existence and
uniqueness of solutions, Lyapunov-type and converse Lyapunov theorems on several types of
stability and boundedness of solutions (namely integral, integral attracting, asymptotic integral,
uniform, asymptotic uniform, uniform with respect to perturbations, asymptotic uniform with
respect to perturbations). Moreover, we relate these concepts to each other, to boundedness of
solutions for homogeneous and perturbed generalized ODEs, and to each type of stability for
generalized ODEs (see the last diagram). In Section 6.4, we translate the result on asymptotic
controllability for perturbed generalized ODEs to perturbed retarded VS integral equations and,
in the end of the section, we present an example.

The goal of Chapter 7 is to present a control theory for dynamic equations on time
scales. In Subsection 7.1.1, we prove the existence and uniqueness of a solution of a Volterra-
Stieltljes integral equation of the second kind. In Subsection 7.1.2, we consider homogeneous
and nonhomogeneous linear dynamic equations on time scales, whose functions are Perron
∆-integrable and we prove the existence and uniqueness of their solutions. Still in Subsection
7.1.2, we give a relation between the solutions of our dynamic equations and the solutions of
a Volterra-Stieltljes integral equation. A variation-of-constant formula for nonhomogeneous
dynamic equations on time scales is obtained in Section 7.2. The main propose of Section 7.3 is
to investigate necessary and sufficient conditions for a nonhomogeneous dynamic equation on
time scales, defined in a Banach space with Perron ∆-integrable functions, to be approximately
controllable/strictly controllable. Yet in this section, we prove that our theorem on controllability
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generalizes some other results for the literature for dynamic equations on time scales defined
in Rn with rd-continuous and regressive functions. We also provide examples about strictly
controllable dynamic equations on time scales taking values in R2 and in an arbitrary Banach
space.

Appendix A, B, C and D provide, respectively, the basic background on regulated
functions, vector integrals, generalized ODEs and the time scales calculus.
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CHAPTER

2
STABILITY

This chapter is devoted to the study of regular and uniform stability for the trivial solution
of a generalized ODE and its main references are [4, 6, 23, 26].

In the theory of ordinary differential equations, Aleksandr Mikhailovich Lyapunov
described, in his doctoral thesis “The General Problem of Stability of Motion” (1892), a method
which shows that the existence of a functional guarantees stability of solutions of ordinary
differential equations near to an equilibrium point. This method is now referred to as Direct
Method of Lyapunov.

Results on stability of the trivial solution in the framework of generalized ODEs started
in 1984, when Štefan Schwabik introduced the concept of variational stability (see [48]). Many
years later, the authors of [1, 23, 26, 27] developed results on regular, uniform, variational and
exponential stability for generalized ODEs.

In the present work, we provide two Lyapunov functional techniques for the study of
stability for generalized ODEs. The first one, known as Direct Method of Lyapunov, makes use
of a Lyapunov functional to prove stability of the trivial solution of a generalized ODE and
it has an important application to control theory (see Chapter 5). The second technique deals
with the inverse of the Direct Method of Lyapunov, that is, assuming that the trivial solution
of a generalized ODE is stable, we are able to construct a Lyapunov functional. The results
which guarantee that “the existence of a Lyapunov functional implies stability” are known as
Lyapunov–type theorems. On the other hand, the results which show that “stability implies the
existence of a Lyapunov functional” are called converse Lyapunov theorems.

At first, we introduce the basic background on a Lyapunov functional for generalized
ODEs.

Let X be a Banach space, equipped with the norm ‖·‖, O be an open subset of X such that
0 ∈ O , where 0 is the neutral element of X , and t0 ∈ R with t0 ≥ 0. Consider Ω = O × [t0,+∞)
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and the following generalized ODE

dx
dτ

= DF(x, t), (2.1)

where F : Ω → X belongs to the class F (Ω,h) and h : [t0,+∞)→R is a nondecreasing function
which is left-continuous on (t0,+∞) (see Definitions A.0.17 and C.0.2). We also assume that
x ≡ 0 is a solution of the generalized ODE (2.1). In this case, we say that x ≡ 0 is the trivial

solution of the generalized ODE (2.1).

In what follows, we present a sufficient condition for the existence of the trivial of the
generalized ODE (2.1).

Remark 2.0.1. Assume that F(0, t2)−F(0, t1) = 0 for all t1, t2 ∈ [t0,+∞). Then, by the definition
of the Kurzweil integral (Definition B.0.11), we have∫ t2

t1
DF(0, t) = F(0, t2)−F(0, t1) = 0, for all t1, t2 ∈ [t0,+∞)

which implies that x ≡ 0 is a solution of the generalized ODE (2.1) on [t0,+∞).

Notice that, if we assume that F(x, t) is a function which depends only on the variable x,
then we can obtain a normalized representation F1 of F by

F1(z, t) = F(z, t)−F(z, t0) = 0,

for every z ∈ O . This fact shows us that, in order to get stability results for any solution of the
generalized ODE (2.1), it is sufficient to obtain the same results for the trivial solution of (2.1).

In the sequel, we introduce a definition of a Lyapunov functional for the generalized
ODE (2.1). We use the symbol R+ to denote the set of non-negative real numbers, that is, t ∈R+

whenever t ≥ 0.

Definition 2.0.2. Let B ⊂ O be any subset. We say that V : [t0,+∞)×B → R is a Lyapunov

functional with respect to the generalized ODE (2.1), if the following conditions are satisfied:

(L1) V (·,y) : [t0,+∞)→ R is left-continuous on (t0,+∞), for all y ∈ B;

(L2) there exists an increasing continuous function b : R+ → R+ satisfying b(0) = 0 such that

V (t,y)≥ b(‖y‖),

for all (t,y) ∈ [t0,+∞)×B;

(L3) for every maximal solution x : [s0,ω)→ B of the generalized ODE (2.1) (see Definition
C.0.15), the derivative

D+V (t,x(t)) = limsup
η→0+

V (t +η ,x(t +η))−V (t,x(t))
η

≤ 0

holds for all t ∈ [s0,ω)⊂ [t0,+∞), that is, the upper right derivative of V is non-positive
along every maximal solution of the generalized ODE (2.1).
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We point out that, in some references, the authors replace condition (L3), in Definition
2.0.2, by the following condition

(L’3) the function [s0,ω) ∋ t ↦→ V (t,x(t)) is nonincreasing along every maximal solution,
x : [s0,ω)→ B, of the generalized ODE (2.1).

See, e.g., [22, 23].

In the present work, we chose to use condition (L3). However, in the following lines, we
will show that conditions (L3) and (L’3) are related. This fact allows us to work with the most
convenient of these two conditions depending on the type of stability we are dealing with. In
addition, our results are still valid if we consider condition (L’3) instead of (L3) in Definition
2.0.2. See Remarks 2.1.8, 2.1.20, 2.1.28 and 2.2.17 .

It is clear that, if (L’3) holds, then V : B× [t0,+∞)→R+ satisfies condition (L3) as well.
In the sequel, we show that with an additional hypothesis on the Lyapunov functional, condition
(L3) implies (L’3).

Proposition 2.0.3. Let B ⊂ O , V : [t0,+∞)×B → R be a functional and f : [s0,ω)→ R be a
function defined by

f (t) =V (t,x(t)), t ∈ [s0,ω),

where x : [s0,ω)→ B is any maximal solution of the generalized ODE (2.1) on [s0,ω)⊂ [t0,+∞).
If f is left-continuous on (s0,ω) and

D+ f (t) = limsup
η→0+

f (t +η)− f (t)
η

≤ 0, for all t ∈ [s0,ω), (2.2)

then f is nonincreasing, that is, f (t1)≥ f (t2), whenever t1, t2 ∈ [s0,ω) and t1 < t2.

Proof. Suppose, by contradiction, there exist t1, t2 ∈ [s0,ω) for which

t1 < t2 and f (t1)< f (t2).

Let γ ∈R be such that f (t1)< γ < f (t2) and consider the set A = {t ∈ [t1, t2] : f (t)< γ}.
Then, A is upper bounded and A ̸= /0, once A ⊂ [t1, t2] and t1 ∈ A. Let c = supA and assume that
f (c)≥ γ . Since f is left-continuous, given ε > 0, there exists δ > 0 such that

γ − ε ≤ f (c)− ε < f (t), for all t ∈ (c−δ ,c). (2.3)

Moreover, by the definition of the supremum, there exists tδ ∈ A such that tδ ∈ (c−δ ,c). Thus,
by (2.3), we obtain

γ − ε < f (tδ ). (2.4)

Taking ε → 0 in (2.4), we conclude that γ < f (tδ ) which contradicts the fact that tδ ∈A. Therefore,
f (c)< γ and, hence, c ∈ A.
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On the other hand, since c = supA, f (t) ≥ γ for all t > c, t ∈ [t1, t2]. Then, for η > 0
sufficiently small, we have

f (c+η)− f (c)> γ − γ = 0. (2.5)

By (2.5), D+ f (c)> 0, contradicting (2.2). Therefore, the statement follows.

2.1 Regular stability
In this section, we apply Lyapunov functional techniques to establish necessary and

sufficient conditions for the trivial solution of the generalized ODE (2.1) to be regularly stable,
regularly attracting or regularly asymptotically stable.

As mentioned in Remark A.0.8 and Lemma C.0.9, for every [α,β ] ⊂ [t0,+∞), the
solution x : [α,β ] → X of the generalized ODE (2.1) is a regulated function (see Definition
A.0.7), where X is a Banach space. Therefore, it is natural to measure the distance between two
solutions of the generalized ODE (2.1) using the usual supremum norm (see Theorem A.0.16).
For this reason, the authors of [26], introduced a new concept of stability for generalized ODEs,
namely regular stability, which concerns the local behavior of a regulated function initially close
to the trivial solution of the generalized ODE (2.1).

Throughout this section, we suppose x ≡ 0 is a solution of the generalized ODE (2.1)
(see Remark 2.0.1 for a sufficient condition for the existence of such a solution) and F : Ω → X

belongs to F (Ω,h), where Ω = O × [t0,+∞), O ⊆ X is an open set containing the neutral
element of X and h : [t0,+∞) → R is a nondecreasing function which is left-continuous on
(t0,+∞) (see Definitions A.0.17 and C.0.2).

At first, we present the concept of regular stability for generalized ODEs, introduced
in [26], and some auxiliary results.

Definition 2.1.1. Let [α,β ]⊂ [t0,+∞). The trivial solution of the generalized ODE (2.1) is said
to be

(i) regularly stable, if for every ε > 0, there exists δ = δ (ε)> 0 such that if x ∈ G−([α,β ],O)

satisfies

‖x(α)‖< δ and sup
s∈[α,β ]

∥∥∥∥x(s)− x(α)−
∫ s

α

DF(x(τ), t)
∥∥∥∥< δ ,

then
‖x(t)‖< ε,

for all t ∈ [α,β ];

(ii) regularly attracting, if there exists a δ0 > 0 and for every ε > 0, there exist T = T (ε)≥ 0
and ρ = ρ(ε)> 0 such that if x ∈ G−([α,β ],O) satisfies

‖x(α)‖< δ0 and sup
s∈[α,β ]

∥∥∥∥x(s)− x(α)−
∫ s

α

DF(x(τ), t)
∥∥∥∥< ρ,
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then
‖x(t)‖< ε,

for all t ∈ [α,β ]∩ [α +T,+∞);

(iii) regularly asymptotically stable, if it is both regularly stable and regularly attracting.

Remark 2.1.2. The existence of the Kurzweil integrals, in Definition 2.1.1, are guaranteed by
Corollary C.0.4.

Besides the generalized ODE (2.1), we consider the perturbed generalized ODE

dx
dτ

= D[F(x, t)+P(t)], (2.6)

where F : Ω → X and P : [t0,+∞)→ X is such that P ∈ G([t0,+∞),X).

Remark 2.1.3. Considering that F ∈ F (Ω,h), if G : Ω → X is given by

G(x, t) = F(x, t)+P(t),

for all (x, t) ∈ Ω, then for all (x,s2),(x,s1),(y,s1),(y,s2) ∈ Ω, we have

‖G(x,s2)−G(x,s1)‖ ≤

∣∣∣∣∣h(s2)−h(s1)+ sup
s∈[t0,s2]

‖P(s)−P(t0)‖− sup
s∈[t0,s1]

‖P(s)−P(t0)‖

∣∣∣∣∣
and

‖G(x,s2)−G(x,s1)−G(y,s2)+G(y,s1)‖ ≤ ‖x− y‖|h(s2)−h(s1)|.

By Proposition A.0.20, if P : [t0,+∞)→ X is left-continuous on (t0,+∞), then g : [t0,+∞)→ R,
defined by g(t) = sups∈[t0,t] ‖P(s)−P(t0)‖, is a nondecreasing function which is left-continuous
on (t0,+∞). Therefore, G ∈ F (Ω, h̃), where h̃(t) = h(t)+ g(t), and all results on existence,
uniqueness and other properties of a solution of a generalized ODE, presented in Appendix C,
hold for the perturbed generalized ODE (2.6).

Based on Definitions B.0.11 and C.0.1, the function x : [α,β ]→ X is a solution of the

perturbed generalized ODE (2.6) on [α,β ]⊂ [t0,+∞), if (x(s),s) ∈ Ω, for all s ∈ [α,β ], and

x(t) = x(α)+
∫

β

α

D[F(x(τ),s)+P(s)]

= x(α)+
∫

β

α

DF(x(τ),s)+P(t)−P(α)

(2.7)

holds for all t ∈ [α,β ].

From now on, until the end of this subsection, we assume that for all [α,β ]⊂ [t0,+∞)

and all x0 ∈O , there exists a solution x : [α,β ]→ X of the perturbed generalized ODE (2.6) with
initial condition x(α) = x0.

The next definition was borrowed from [26].
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Definition 2.1.4. Let [α,β ]⊂ [t0,+∞) and x0 ∈ O . The trivial solution of the generalized ODE
(2.1) is called

(i) regularly stable with respect to perturbations, if for every ε > 0, there exists δ = δ (ε)> 0
such that, if ‖x0‖< δ and P ∈ G−([α,β ],X) with

sup
s∈[α,β ]

‖P(s)−P(α)‖< δ ,

then

‖x(t,α,x0)‖= ‖x(t)‖< ε, for every t ∈ [α,β ],

where x : [α,β ] → X is a solution of the perturbed generalized ODE (2.6) with initial
condition x(α) = x0;

(ii) regularly attracting with respect to perturbations, if there exists δ̃ > 0 for every ε > 0,
there exist T = T (ε)≥ 0 and ρ = ρ(ε)> 0 such that, if ‖x0‖< δ̃ and P ∈ G−([α,β ],X)

with

sup
s∈[α,β ]

‖P(s)−P(α)‖< ρ,

then

‖x(t,α,x0)‖= ‖x(t)‖< ε, for every t ∈ [α,β ]∩ [α +T,+∞),

where x : [α,β ] → X is a solution of the perturbed generalized ODE (2.6) with initial
condition x(α) = x0;

(iii) regularly asymptotically stable with respect to perturbations, if it is regularly stable with
respect to perturbations and regularly attracting with respect to perturbations.

The next result establishes a relation between regular stability and regular stability with
respect perturbations. For a proof of it, see [13, Theorem 8.31] or [26, Theorem 4.7].

Theorem 2.1.5. The following statements hold.

(i) The trivial solution of the generalized ODE (2.1) is regularly stable if and only if it is
regularly stable with respect to perturbations.

(ii) The trivial solution of the generalized ODE (2.1) is regularly attracting if and only if it is
regularly attracting with respect to perturbations.

(iii) The trivial solution of the generalized ODE (2.1) is regularly asymptotically stable if and
only if it is regularly asymptotically stable with respect to perturbations.
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2.1.1 Direct method of Lyapunov

In this subsection, we present Lyapunov-type theorems for generalized ODEs, settled
down in [26]. Here, we weaken the Lipschitzian condition on the second variable of the Lyapunov
functional used in [26, Theorems 6.3 and 6.4] to a condition which allows jumps (see Theorems
2.1.7, 2.1.9 and 2.1.10 in the present work). Almost all results presented in this subsection are
new and appear in the article [4] and the book [13].

Throughout this subsection, we suppose X is a Banach space, x ≡ 0 is a solution of the
generalized ODE (2.1) (see Remark 2.0.1 for a sufficient condition for the existence of such
a solution), F : Ω → X belongs to F (Ω,h), where Ω = X × [t0,+∞) and h : [t0,+∞)→ R is a
nondecreasing function which is left-continuous on (t0,+∞) (see Definitions A.0.17 and C.0.2).
By Corollary C.0.20, for all x0 ∈ X and all s0 ∈ [t0,+∞), there exists unique global forward
solution x : [s0,+∞)→ X of the generalized ODE (2.1) with initial condition x(s0) = x0 (See
Definition C.0.15 and Remark C.0.16 for the concept of global forward solution).

The proof of the next lemma was inspired by [22, Lemma 3.4].

Lemma 2.1.6. Let [α,β ]⊂ [t0,+∞) and F ∈F (Ω,h), where h : [t0,+∞)→R is a nondecreasing
function which is left-continuous on (t0,+∞). Suppose W : [t0,+∞)× X → R satisfies the
following conditions:

(H1) for each z∈G−([α,β ],X), the function [α,β ]∋ t ↦→W (t,z(t)) is left-continuous on (α,β ];

(H2) if y,z ∈ G−([α,β ],X), then

|W (s2,z(s2))−W (s2,y(s2))−W (s1,z(s1))+W (s1,y(s1))| ≤ sup
s∈[s1,s2]

‖z(s)− y(s)‖ (2.8)

holds for every α ≤ s1 < s2 ≤ β ;

(H3) there exists a continuous function Φ : X → R such that, for all local solution of the
generalized ODE (2.1), x : [s0,δ (s0)+ s0]→ X , with s0 ≥ t0, we have

D+W (t,x(t)) = limsup
η→0+

W (t +η ,x(t +η))−W (t,x(t))
η

< Φ(x(t)),

for all t ∈ [s0,δ (s0)+ s0).

If x ∈ G−([α,β ],X), then, for all t ∈ [α,β ], we have

W (t,x(t))−W (α,x(α))≤ sup
s∈[α,β ]

∥∥∥∥x(s)− x(α)−
∫ s

α

DF(x(τ), t)
∥∥∥∥+M(t −α), (2.9)

where M = sups∈[α,β ]Φ(x(s)).
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Proof. At first, notice that, by Propositions A.0.13 and A.0.14, we have supt∈[α,β ]Φ(x(t))<∞ for
all x ∈ G−([α,β ],X). Moreover, for all x ∈ G−([α,β ],X), the existence of the Kurzweil integral∫

β

α
DF(x(τ),s) is guaranteed by Corollary C.0.4 and, if σ ∈ [α,β ] is fixed, then (x(σ),σ) ∈ Ω,

once Ω = X × [t0,+∞). On the other hand, it is clear that Ω = ΩF , where ΩF is given by (C.6).
Therefore, by Theorem C.0.11, there exists a unique local solution x : [σ ,σ +η1(σ)]→ X of the
generalized ODE (2.1) with initial condition x(σ) = x(σ).

Let η2 > 0 be such that η2 ≤η1(σ) and σ +η2 ≤ β . Then, the integral
∫

σ+η2
σ

DF(x(τ), t)

exists because x is a solution of the generalized ODE (2.1) and, by the property of integrability
on subintervals, the integral

∫
σ+η2
σ

D[F(x(τ), t)−F(x(τ), t)] also exists. The existence of this
integral ensures that, given ε > 0, there exists a gauge δ on [σ ,σ +η ] (see Definition B.0.1) and
we may assume, without loss of generality, that η2 < δ (σ). By hypothesis (H3), we can take
η ≤ η2 such that the inequality

W (σ +η ,x(σ +η))−W (σ ,x(σ))≤ η (Φ(x(σ))+ ε) (2.10)

holds. Moreover, by Corollary B.0.14, for every s ∈ [σ ,σ +η ], we have∥∥∥∥F(x(σ),s)−F(x(σ),σ)−
∫ s

σ

DF(x(τ), t)
∥∥∥∥< ηε

2
and (2.11)

∥∥∥∥F(x(σ),s)−F(x(σ),σ)−
∫ s

σ

DF(x(τ), t)
∥∥∥∥< ηε

2
. (2.12)

By equations (2.11) and (2.12), we get

sup
s∈[σ ,σ+η ]

∥∥∥∥∫ s

σ

D[F(x(τ), t)−F(x(τ), t)]
∥∥∥∥

− sup
s∈[σ ,σ+η ]

‖F(x(σ),s)−F(x(σ),σ)−F(x(σ),s)+F(x(σ),σ)‖

≤ sup
s∈[σ ,σ+η ]

(∥∥∥∥∫ s

σ

D[F(x(τ), t)−F(x(τ), t)]

− (F(x(σ),s)−F(x(σ),σ)−F(x(σ),s)+F(x(σ),σ))‖)

≤ sup
s∈[σ ,σ+η ]

∥∥∥∥F(x(σ),s)−F(x(σ),σ)−
∫ s

σ

DF(x(τ), t)
∥∥∥∥

+ sup
s∈[σ ,σ+η ]

∥∥∥∥F(x(σ),s)−F(x(σ),σ)−
∫ s

σ

DF(x(τ), t)
∥∥∥∥< ηε.

(2.13)

Taking into account that F ∈ F (Ω,h) and x(σ) = x(σ), we have

sup
s∈[σ ,σ+η ]

‖F(x(σ),s)−F(x(σ),σ)−F(x(σ),s)+F(x(σ),σ)‖

≤ ‖x(σ)− x(σ)‖ sup
s∈[σ ,σ+η ]

|h(s)−h(σ)|= 0
(2.14)

(see Definition C.0.2). Replacing (2.14) in (2.13), we obtain

sup
s∈[σ ,σ+η ]

∥∥∥∥∫ s

σ

D[F(x(τ), t)−F(x(τ), t)]
∥∥∥∥< εη . (2.15)
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From hypothesis (2.8) and the relation x(σ) = x(σ), we conclude

W (σ +η ,x(σ +η))−W (σ +η ,x(σ +η))
x(σ)=x(σ)

= W (σ +η ,x(σ +η))−W (σ +η ,x(σ +η))−W (σ ,x(σ))+W (σ ,x(σ))

≤ |W (σ +η ,x(σ +η))−W (σ +η ,x(σ +η))−W (σ ,x(σ))+W (σ ,x(σ))|
(2.8)
≤ sup

s∈[σ ,σ+η ]

‖x(s)− x(s)‖

which implies

W (σ +η ,x(σ +η))−W (σ +η ,x(σ +η))≤ sup
s∈[σ ,σ+η ]

‖x(s)− x(s)‖. (2.16)

Owing to the fact that x is a local solution of the generalized ODE (2.1), we have

x(σ)− x(s) =−
∫ s

σ

DF(x(τ), t), for all s ∈ [σ ,σ +η ]. (2.17)

Thus, by (2.10), (2.15), (2.16), (2.17) and the relation x(σ) = x(σ), we obtain

W (σ +η ,x(σ +η))−W (σ ,x(σ))
x(σ)=x(σ)

= W (σ +η ,x(σ +η))−W (σ +η ,x(σ +η))+W (σ +η ,x(σ +η))−W (σ ,x(σ))
(2.10)
≤ W (σ +η ,x(σ +η))−W (σ +η ,x(σ +η))+η (Φ(x(σ))+ ε)

(2.16)
≤ sup

s∈[σ ,σ+η ]

‖x(s)− x(s)‖+η (Φ(x(σ))+ ε)

x(σ)=x(σ)
= sup

s∈[σ ,σ+η ]

‖x(s)− x(σ)+ x(σ)− x(s)‖+η (Φ(x(σ))+ ε)

(2.17)
= sup

s∈[σ ,σ+η ]

∥∥∥∥x(s)− x(σ)−
∫ s

σ

DF(x(τ), t)
∥∥∥∥+η (Φ(x(σ))+ ε)

= sup
s∈[σ ,σ+η ]

∥∥∥∥x(s)− x(σ)−
∫ s

σ

DF(x(τ), t)+
∫ s

σ

D[F(x(τ), t)−F(x(τ), t)]
∥∥∥∥

+η (Φ(x(σ))+ ε)

≤ sup
s∈[σ ,σ+η ]

∥∥∥∥x(s)− x(σ)−
∫ s

σ

DF(x(τ), t)
∥∥∥∥

+ sup
s∈[σ ,σ+η ]

∥∥∥∥∫ s

σ

D[F(x(τ), t)−F(x(τ), t)]
∥∥∥∥+η (Φ(x(σ))+ ε)

(2.15)
≤ sup

s∈[σ ,σ+η ]

∥∥∥∥x(s)− x(σ)−
∫ s

σ

DF(x(τ), t)
∥∥∥∥+ εη +η (Φ(x(σ))+ ε) .

Taking ε → 0 and M = sups∈[α,β ]Φ(x(t)), we validate

W (σ +η ,x(σ +η))−W (σ ,x(σ))

≤ sup
s∈[σ ,σ+η ]

∥∥∥∥x(s)− x(σ)−
∫ s

σ

DF(x(τ), t)
∥∥∥∥+ηM.

(2.18)

In order to proceed with the proof, we define P : [α,β ]→ X by

P(s) = x(s)−
∫ s

α

DF(x(τ), t), for all s ∈ [α,β ].
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Since x ∈ G−([α,β ],X), by Lemma C.0.7, P ∈ G−([α,β ],X). Furthermore, if s ∈ [σ ,β ], then

‖P(s)−P(σ)‖

=

∥∥∥∥x(s)−
∫ s

α

DF(x(τ), t)− x(σ)+
∫

σ

α

DF(x(τ), t)
∥∥∥∥

=

∥∥∥∥x(s)− x(α)−
∫ s

α

DF(x(τ), t)−
(

x(σ)− x(α)−
∫

σ

α

DF(x(τ), t)
)∥∥∥∥

≤
∥∥∥∥x(s)− x(α)−

∫ s

α

DF(x(τ), t)
∥∥∥∥+∥∥∥∥x(σ)− x(α)−

∫
σ

α

DF(x(τ), t)
∥∥∥∥

=

∥∥∥∥x(s)− x(α)−
∫ s

α

DF(x(τ), t)
∥∥∥∥+‖P(σ)−P(α)‖

(2.19)

Define a function f : [α,β ]→ R by

f (t) =


sup

s∈[t,σ ]

‖P(s)−P(σ)‖+M(t −σ), t ∈ [α,σ ],

sup
s∈[σ ,t]

‖P(s)−P(σ)‖+M(t −σ), t ∈ [σ ,β ].

Clearly, f is well-defined and, by the left continuity of P, f is left-continuous on (α,β ] (see
Propositions A.0.20 and A.0.21). Moreover,

f (σ +η)− f (σ) = sup
s∈[σ ,σ+η ]

∥∥∥∥x(s)− x(σ)−
∫ s

σ

DF(x(τ), t)
∥∥∥∥+Mη .

Using this fact together with (2.18), we get

W (σ +η ,x(σ +η))−W (σ ,x(σ))≤ f (σ +η)− f (σ). (2.20)

Then, the functions [a,b] ∋ t ↦→ W (t,x(t)) and [a,b] ∋ t ↦→ f (t) satisfy all the hypotheses of
Proposition A.0.19 and, hence,

W (t,x(t))−W (α,x(α))≤ f (t)− f (α),

for all t ∈ [α,β ].

We conclude the proof by showing

f (t)− f (α)≤ sup
s∈[α,t]

∥∥∥∥x(s)− x(α)−
∫ s

α

DF(x(τ),v)
∥∥∥∥+M(t −α),

for all t ∈ [α,β ]. To this end, we consider two cases.

Case 1: α ≤ σ < t.
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In this case, we have

f (t)− f (α) = sup
s∈[σ ,t]

‖P(s)−P(σ)‖+M(t −σ)− sup
s∈[α,σ ]

‖P(s)−P(σ)‖−M(α −σ)

(2.19)
≤ sup

s∈[σ ,t]

(∥∥∥∥x(s)− x(α)−
∫ s

α

DF(x(τ),v)
∥∥∥∥+‖P(σ)−P(α)‖

)
− sup

s∈[α,σ ]

‖P(s)−P(σ)‖+M(t −α)

≤ sup
s∈[σ ,t]

∥∥∥∥x(s)− x(α)−
∫ s

α

DF(x(τ),v)
∥∥∥∥

+‖P(σ)−P(α)‖− sup
s∈[α,σ ]

‖P(s)−P(σ)‖+M(t −α)

≤ sup
s∈[α,t]

∥∥∥∥x(s)− x(α)−
∫ s

α

DF(x(τ),v)
∥∥∥∥

+ sup
s∈[α,σ ]

‖P(s)−P(σ)‖− sup
s∈[α,σ ]

‖P(s)−P(σ)‖+M(t −α)

= sup
s∈[α,t]

∥∥∥∥x(s)− x(α)−
∫ s

α

DF(x(τ),v)
∥∥∥∥+M(t −α).

Case 2: α < t ≤ σ .

In this case, we have

f (t)− f (α) = sup
s∈[t,σ ]

‖P(s)−P(σ)‖+M(t −σ)− sup
s∈[α,σ ]

‖P(s)−P(σ)‖−M(α −σ)

≤ sup
s∈[α,σ ]

‖P(s)−P(σ)‖− sup
s∈[α,σ ]

‖P(s)−P(σ)‖+M(t −α)

= M(t −α)≤ sup
s∈[α,t]

∥∥∥∥x(s)− x(α)−
∫ s

α

DF(x(τ),v)
∥∥∥∥+M(t −α)

and the result follows.

It is worth mentioning that, when Φ ≡ 0 in the proof of Lemma 2.1.6, we obtain
[4, Lemma 3.7] and [13, Lemma 8.32].

Based on Lemma 2.1.6, the following result gives sufficient conditions for regular stability
of the trivial solution of the generalized ODE (2.1) and weakens the Lipschitzian condition on
the second variable of the Lyapunov functional used in [26, Theorem 6.3].

Theorem 2.1.7. Let V : [t0,+∞)×X → R be a Lyapunov functional with respect to the gen-
eralized ODE (2.1) and assume that F ∈ F (Ω,h), where h : [t0,+∞)→ R is a nondecreasing
function which is left-continuous on (t0,+∞). Furthermore, suppose V satisfies conditions (H1)
and (H2) from Lemma 2.1.6 and

(LR1) there exists an increasing continuous function a : R+ → R+ satisfying a(0) = 0 such that

V (t,z)≤ a(‖z‖),

for all z ∈ X and all t ∈ [t0,+∞).
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Then, the trivial solution of the generalized ODE (2.1) is regularly stable.

Proof. From the definition of a Lyapunov functional, there exists an increasing continuous
function b : R+ → R+ such that b(0) = 0 and

V (t,y)≥ b(‖y‖),

for every (t,y) ∈ [t0,+∞)×X . Let s0 ≥ t0 and ε > 0. Consider the set A = {a(t)+ t; t ∈ R+}. It
is clear that infA = 0 and, by the property of the infimum, for b(ε)> 0, there exists δ > 0, such
that 0 < a(δ )+δ < b(ε).

Let [α,β ]⊂ [t0,+∞) and x ∈ G−([α,β ],X) be such that

‖x(α)‖< δ and sup
s∈[α,β ]

∥∥∥∥x(s)− x(α)−
∫ s

α

DF(x(τ), t)
∥∥∥∥< δ .

Since V : [t0,+∞)×X → R is a Lyapunov functional with respect to the generalized
ODE (2.1), for all solution x : [s0,δ (s0)+ s0]→ X of the generalized ODE (2.1) with s0 ≥ t0, we
have

D+V (t,x(t)) = limsup
η→0+

V (t +η ,x(t +η))−V (t,x(t))
η

≤ 0,

for all t ∈ [s0,δ (s0)+ s0). Thus, V : [t0,+∞)×X → R satisfies all the hypotheses of Lemma
2.1.6 with Φ ≡ 0. By (2.9), for all t ∈ [α,β ], we get

V (t,x(t)) ≤ V (α,x(α))+ sup
s∈[α,t]

∥∥∥∥x(s)− x(α)−
∫ s

α

DF(x(τ), t)
∥∥∥∥

≤ V (α,x(α))+ sup
s∈[α,β ]

∥∥∥∥x(s)− x(α)−
∫ s

α

DF(x(τ), t)
∥∥∥∥

≤ a(‖x(α)‖)+δ

≤ a(δ )+δ

< b(ε).

Moreover, by the definition of b, for every t ∈ [α,β ], we have

b(‖x(t)‖)≤V (t,x(t))< b(ε).

From this fact and since b is an increasing function, we conclude

‖x(t)‖< ε, for all t ∈ [α,β ],

which proves that the trivial solution of the generalized ODE (2.1) is regularly stable.

Remark 2.1.8. If we consider condition (L’3) instead of condition (L3) in Definition 2.0.2, the
proof of Theorem 2.1.7 holds, once condition (L’3) implies condition (L3).
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The next result is a Lyapunov-type theorem on regular asymptotic stability. A version of
such a result when the Lyapunov functional with respect to the generalized ODE satisfies the
following Lipschitz condition

|V (t,z)−V (t,y)| ≤ K‖z− y‖, for all t ∈ [t0,+∞) and all z,y ∈ Bc = {y ∈ X ;‖y‖ ≤ c}

can be found in [26, Theorem 6.4].

Theorem 2.1.9. Let V : [t0,+∞)×Bc → R be a Lyapunov functional with respect to the gener-
alized ODE, where Bc = {y ∈ X ;‖y‖ ≤ c} and c > 0. Suppose V satisfies the conditions from
Theorem 2.1.7 and

(LRA1) there exists a continuous function Φ : X → R satisfying Φ(0) = 0 and Φ(x)> 0 for x ̸= 0
such that for every solution x : [α,β ]⊂ [t0,+∞)→ X of (2.1), we have

D+V (t,x(t))≤−Φ(x(t)),

for all t ∈ [α,β ).

Then, the trivial solution of the generalized ODE (2.1) is regularly asymptotically stable.

Proof. By Theorem 2.1.7, the trivial solution of the generalized ODE (2.1) is regularly stable.
Then,

(I) there exists δ0 ∈ (0,c) such that, if x ∈ G−([α,β ],X) satisfies

‖x(α)‖< δ0 and sup
s∈[α,β ]

∥∥∥∥x(s)− x(α)−
∫ s

α

DF(x(τ), t)
∥∥∥∥< δ0,

then
‖x(t)‖< c, for all t ∈ [α,β ].

(II) for every ε > 0, there exists δ > 0 such that for every α ≤ γ < θ ≤ β and x ∈ G−([γ,θ ],X)

for which

‖x(γ)‖< δ and sup
s∈[γ,θ ]

∥∥∥∥x(s)− x(γ)−
∫ s

γ

DF(x(τ), t)
∥∥∥∥< δ ,

we have
‖x(t)‖< ε,

for all t ∈ [γ,θ ].

Define ρ(ε) = min{δ0,δ}
2 and

T = T (ε) =−
(

a(δ0)+ρ(ε)

N

)
, (2.21)
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where a : R+ → R+ is given by Theorem 2.1.7-(LR1) and

N = sup{−Φ(y) : δ ≤ ‖y‖< c}=− inf{Φ(y) : δ ≤ ‖y‖< c}< 0.

Assume that x ∈ G−([α,β ],X) is such that

‖x(α)‖< δ0 and sup
s∈[α,β ]

∥∥∥∥x(s)− x(α)−
∫ s

α

DF(x(τ), t)
∥∥∥∥< ρ(ε)<

δ

2
. (2.22)

We aim to prove that ‖x(t)‖< ε , for all t ∈ [α,β ]∩ [T +α,+∞).

If T > β −α , there is nothing to prove, once [α,β ]∩ [T +α,+∞) = /0. Assume that
T < β −α . We assert that there exists t ∈ [α,β ] such that ‖x(t)‖< δ . Suppose to the contrary,
that is,

‖x(t)‖ ≥ δ for all t ∈ [α,β ]. (2.23)

In particular, ‖x(T +α)‖ ≥ δ . Owing to the fact that V : [t0,+∞)×Bc → R is a Lyapunov
functional with respect the generalized ODE (2.1), there exists an incresing continuous function
b : R+ → R+ such that b(0) = 0 and

V (T +α,x(T +α))≥ b(‖x(T +α)‖)≥ b(δ )> 0. (2.24)

On the other hand, by (2.22), item (I) and (2.23), we conclude that δ ≤ ‖x(t)‖< c, for
all t ∈ [α,β ]. Consequently,

sup
s∈[α,β ]

[−Φ(x(s))]≤ N. (2.25)

By (2.22) and by the definition of the function a : R+ → R+, we have

V (α,x(α))≤ a(‖x(α)‖)< a(δ0). (2.26)

By Lemma 2.1.6, we get

V (T +α,x(T +α))

≤ V (α,x(α))+ sup
s∈[α,T+α]

∥∥∥∥x(s)− x(α)−
∫ s

α

DF(x(τ), t)
∥∥∥∥

+ sup
s∈[α,T+α]

(−Φ(x(s)))(T +α −α)

(2.25), (2.26)
≤ a(δ0)+ sup

s∈[α,β ]

∥∥∥∥x(s)− x(α)−
∫ s

α

DF(x(τ), t)
∥∥∥∥+NT

(2.21), (2.22)
≤ a(δ0)+ρ(ε)−a(δ0)−ρ(ε) = 0

(2.27)

which contradicts (2.24). Therefore, there exists t ∈ [α,β ] such that ‖x(t)‖< δ .
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Let t* be the smallest point t ∈ [α,β ] such that ‖x(t)‖< δ . Then,

sup
s∈[t*,β ]

∥∥∥∥x(s)− x(t*)−
∫ s

t*
DF(x(τ), t)

∥∥∥∥
≤ sup

s∈[t*,β ]

∥∥∥∥x(s)− x(α)−
∫ t*

α

DF(x(τ), t)−
∫ s

t*
DF(x(τ), t)

−
(

x(t*)− x(α)−
∫ t*

α

DF(x(τ), t)
)∥∥∥∥

≤ sup
s∈[t*,β ]

∥∥∥∥x(s)− x(α)−
∫ s

α

DF(x(τ), t)
∥∥∥∥+∥∥∥∥x(t*)− x(α)−

∫ t*

α

DF(x(τ), t)
∥∥∥∥

≤ 2 sup
s∈[α,β ]

∥∥∥∥x(s)− x(α)−
∫ s

α

DF(x(τ), t)
∥∥∥∥

(2.22)
≤ 2ρ(ε)< 2

δ

2
= δ .

By item (II), ‖x(t)‖< ε for all t ∈ [t*,β ]. Moreover, by (2.24) and (2.27), T +α ≥ t* and, hence,
[T +α,β ]⊂ [t*,β ] and ‖x(t)‖< ε for all t ∈ [T +α,β ] = [α,β ]∩ [T +α,β ].

We point out that the regular asymptotic stability in Theorem 2.1.9 is guaranteed only
for regulated functions whose their range is a subset of the open ball Bc = {y ∈ X ;‖y‖ < c}
(see the statement (I) in the proof of Thereom 2.1.9). In order to generalize this result for every
regulated function taking values in X , we obtained, in the next result, the same conclusion as in
Theorem 2.1.9, but we assume that the Lyapunov functional is defined in [t0,+∞)×X instead
of [t0,+∞)×Bc. Thereby, regular asymptotic stability holds for regulated functions with range
outside Bc. We also highlight that the proof of the next theorem follows similar ideas to the proof
of Theorem 2.1.9.

Theorem 2.1.10. Let V : [t0,+∞)×X → R be a Lyapunov functional with respect to the gener-
alized ODE. Suppose V satisfies the conditions from Theorem 2.1.7 and

(LRA’1) there exists a continuous function Φ : X → R satisfying Φ(0) = 0 and Φ(x)> 0 for x ̸= 0
such that for every solution x : [α,β ]⊂ [t0,+∞)→ X of (2.1), we have

D+V (t,x(t))≤−Φ(x(t)),

for all t ∈ [α,β ).

Then, the trivial solution of the generalized ODE (2.1) is regularly asymptotically stable.

Proof. Let x ∈ G−([α,β ],X) and δ0 > 0 be given. Since V : [t0,+∞)×X → R is a Lyapunov
functional with respect to the generalized ODE (2.1), there exist increasing continuous functions,
a,b : R+ → R+ such that

b(‖y‖)≤V (t,y)≤ a(‖y‖), for all (t,y) ∈ [t0,+∞)×X . (2.28)
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Moreover, since all the hypotheses of Theorem 2.1.7 are satisfied, the trivial solution of the
generalized ODE (2.1) is regularly stable. Then, for all ε > 0, there exists δ > 0 such that if
α ≤ γ < θ ≤ β and

‖x(γ)‖< δ and sup
s∈[γ,θ ]

∥∥∥∥x(s)− x(γ)−
∫ s

γ

DF(x(τ), t)
∥∥∥∥< δ , (2.29)

then
‖x(t)‖< ε, for all, t ∈ [γ,θ ]. (2.30)

We target to prove that there exist ρ(ε)> 0 and T (ε)> 0 such that if x ∈ G−([α,β ],X)

is such that ‖x(α)‖< δ0 and sups∈[α,β ] ‖x(s)− x(α)−
∫ s

α
DF(x(τ),s)‖< ρ(ε), then

‖x(t)‖< ε, for all t ∈ [α,β ]∩ [α +T (ε),+∞). (2.31)

At first, notice that, M = sups∈[α,β ]−Φ(x(t)) < ∞ (see Propositions A.0.13 and A.0.14) and
M < 0, once Φ(y)> 0, whenever y ̸= 0. Take ρ(ε) = δ

2 and

T = T (ε) =
a(δ0)+ρ(ε)

−M
> 0. (2.32)

Assume that ‖x(α)‖< δ0 and

sup
s∈[α,β ]

∥∥∥∥x(s)− x(α)−
∫ s

α

DF(x(τ),s)
∥∥∥∥< ρ(ε) =

δ

2
. (2.33)

In order to show that (2.30) holds we consider two cases.

Case 1: T +α > β .

In this case, [α,β ]∩ [α +T,+∞) = /0 and (2.31) is trivially satisfied.

Case 2: T +α ≤ β .

Let us prove that ‖x(T +α)‖< δ . Indeed, suppose ‖x(T +α)‖≥ δ . Since b is increasing,
we have

b(‖x(T +α)‖)≥ b(δ )> 0. (2.34)

By the fact that a is increasing, ‖x(α)‖< δ0 and, by Lemma 2.1.6, we obtain

V (T +α,x(T +α))

≤ V (α,x(α))+ sup
s∈[α,T+α]

∥∥∥∥x(s)− x(α)−
∫ s

α

DF(x(τ), t)
∥∥∥∥+M(T +α −α)

(2.28)
≤ a(‖x(α)‖)+ sup

s∈[α,β ]

∥∥∥∥x(s)− x(α)−
∫ s

α

DF(x(τ), t)
∥∥∥∥−a(δ0)−ρ(ε)

≤ a(δ0)+ρ(ε)−a(δ0)−ρ(ε) = 0

which contradicts the fact that

V (T +α,x(T +α))
(2.28)
≥ b(‖x(T +α)‖)

(2.34)
≥ b(δ )> 0.
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Therefore ‖x(T +α)‖< δ and,

sup
s∈[T+α,β ]

∥∥∥∥x(s)− x(T +α)−
∫ s

T+α

DF(x(τ), t)
∥∥∥∥

≤ sup
s∈[T+α,β ]

∥∥∥∥x(s)− x(α)−
∫ T+α

α

DF(x(τ), t)−
∫ s

T+α

DF(x(τ), t)

−
(

x(T +α)− x(α)−
∫ T+α

α

DF(x(τ), t)
)∥∥∥∥

≤ sup
s∈[T+α,β ]

∥∥∥∥x(s)− x(α)−
∫ s

α

DF(x(τ), t)
∥∥∥∥+∥∥∥∥x(T +α)− x(α)−

∫ T+α

α

DF(x(τ), t)
∥∥∥∥

≤ 2 sup
s∈[α,β ]

∥∥∥∥x(s)− x(α)−
∫ s

α

DF(x(τ), t)
∥∥∥∥

(2.33)
≤ 2ρ(ε) = 2

δ

2
= δ .

These facts together with (2.29) and (2.30) lead to (2.31).

2.1.2 Converse Lyapunov theorems

Our goal in this subsection is to obtain converse Lyapunov Theorems on regular stability
and on regular attractivity with some properties described in Theorems 2.1.7 and 2.1.10. We
were motivated by [48,49], when Š. Schwabik proved a converse Lyapunov Theorem concerning
variational stability. The results presented here are new and they can be found in [4] (they also
can be found in [13]).

Suppose X is a Banach space, O ⊆ X is an open subset containing the neutral element of
X , x ≡ 0 is a solution of the generalized ODE (2.1) (see Remark 2.0.1 for a sufficient condition
for the existence of such a solution), F : Ω→ X belongs to F (Ω,h), where Ω=O× [t0,+∞) and
h : [t0,+∞)→R is a nondecreasing function which is left-continuous on (t0,+∞) (see Definitions
A.0.17 and C.0.2). Moreover, we assume that, for every (x0,s0)∈ Ω, there exists unique maximal
solution x : [s0,ω(s0,x0))→ X of the generalized ODE (2.1) with initial condition x(s0) = x0.
See Definition C.0.15 for the concept of maximal solution and Theorem C.0.17 and Corollaries
C.0.20 and C.0.21 for sufficient conditions for the existence of such a solution.

Let s ≥ t0, y ∈ O and consider

A(s,y) = {ϕ ∈ G([t0,+∞),O) : ϕ(t0) = 0, ϕ(s) = y, ϕ is left-continuos on(t0,+∞)} , (2.35)

where the set G([t0,+∞),O) is described in Definition A.0.22-(ii).

For s ≥ t0 and y ∈ O , define V : [t0,+∞)×O → R by

V (s,y) =

 inf
ϕ∈A(s,y)

{
sup

σ∈[t0,s]

∥∥∥∥ϕ(σ)−
∫

σ

t0
DF(ϕ(τ), t)

∥∥∥∥
}
, if s > t0,

‖y‖, if s = t0.

(2.36)
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By Corollary C.0.4, we know that, for all ϕ ∈ A(s,y) and all σ ∈ [t0,s], the Kurzweil
integral

∫
σ

t0 DF(ϕ(τ), t) exists. Moreover, by Lemma C.0.5, the function

[t0,s] ∋ σ ↦→ f (σ) := ϕ(σ)−
∫

σ

t0
DF(ϕ(τ), t)

is also regulated which guarantees that supσ∈[t0,s] ‖ f (σ)‖< ∞ (see Proposition A.0.13). There-
fore, V is well-defined for all (s,y) ∈ [t0,+∞)×O .

Remark 2.1.11. Let σ > s ≥ t0, y ∈ X and ϕ ∈ A(s,y) be given. If ϕ̃ ∈ G−([s,σ ],O) is such
that ϕ̃(s) = ϕ(s), then the function φ : [t0,+∞)→ O , defined by

φ(t) =


ϕ(t), if t ∈ [t0,s],

ϕ̃(t), if t ∈ [s,σ ],

0, if t ∈ (σ ,+∞),

belongs to A(s,y). Indeed, φ is well-defined, once ϕ̃(s) = ϕ(s). Moreover, since ϕ ∈ A(s,x),
we have ϕ(t0) = 0, ϕ(s) = y, ϕ is regulated on [t0,s] and ϕ is left-continuous on (t0,+∞).
Then, it is clear that φ(t0) = ϕ(t0) = 0, φ(s) = ϕ(s) = y, φ is left-continuous on (t0,+∞) and
φ ∈ G([t0,+∞),O). From these facts, φ ∈ A(s,y).

Furthermore, by Lemma C.0.9, if F ∈ F (Ω,h), where h : [t0,+∞) → R is a nonde-
creasing function which is left-continuous on (t0,+∞), then every solution x : [s,σ ] → X of
the generalized ODE (2.1) with x(s) = y is such that x ∈ G−([s,σ ],O) and, hence, the function
φ̃ : [t0,+∞)→ O , defined by

φ̃ =


ϕ(t), if t ∈ [t0,s],

x(t), if t ∈ [s,σ ],

0, if t ∈ (σ ,+∞),

belongs to A(s,y).

In the sequel, we present an useful property of the set A(s,y) given by (2.35).

Lemma 2.1.12. For all s ≥ t0 and all y ∈ O, the set A(s,y) is closed, that is, if {ϕn}n∈N is a
sequence in A(s,y) which converges to a function ϕ in G([t0,+∞),O) with the topology of
locally uniform convergence, then ϕ ∈ A(s,y).

Proof. Let {ϕn}n∈N be a sequence in A(s,y) which converges to ϕ in G([t0,+∞),O), that is,

lim
n→∞

sup
σ∈[α,β ]

‖ϕn(σ)−ϕ(σ)‖= 0, for all [α,β ]⊂ [t0,+∞). (2.37)

We need to prove the following assertions:

(i) ϕ ∈ G([t0,+∞),O);
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(ii) ϕ(t0) = 0;

(iii) ϕ(s) = y;

(iv) ϕ is left-continuous on (t0,+∞).

Item (i) follows directly from (2.37) and the fact that ϕn ∈ G([α,β ],O) for all n ∈N and
all [α,β ]⊂ [t0,+∞) (see Theorem A.0.11). Moreover, since [t0,s]⊂ [t0,+∞), we have

ϕ(t0) = lim
n→∞

ϕn(t0) = lim
n→∞

0 = 0 and

ϕ(s) = lim
n→∞

ϕn(s) = lim
n→∞

y = y,

which prove items (ii) and (iii). In order to prove (iv), we show that ϕ ∈ G−([α,β ],O) for
each [α,β ]⊂ [t0,+∞). Indeed, let [α,β ]⊂ [t0,+∞) be given and, applying the Moore-Osgood
Theorem (see Theorem A.0.12), we obtain

lim
σ→t−

ϕ(σ) = lim
σ→t−

lim
n→∞

ϕn(σ) = lim
n→∞

lim
σ→t−

ϕn(σ) = lim
n→∞

ϕn(t−) = lim
n→∞

ϕn(t) = ϕ(t),

for all t ∈ (α,β ]. Therefore, ϕ ∈ A(s,y).

In what follows, we show that the function V : [t0,+∞)×O → R, defined by (2.36),
satisfies some special properties.

Lemma 2.1.13. Let V : [t0,+∞)×O → R be defined by (2.36). Then V satisfies the following
conditions:

(i) V (s,0) = 0 for all s ≥ t0;

(ii) V (s,y)≥ 0, for all y ∈ O and all s ≥ t0.

Proof. Item (i) follows immediately from the fact that ϕ ≡ 0 ∈ A(s,0).

In order to prove item (ii), notice that

sup
σ∈[t0,s]

∥∥∥∥ϕ(σ)−
∫

σ

t0
DF(ϕ(τ), t)

∥∥∥∥≥ 0,

for all ϕ ∈ A(s,y). Therefore, V (s,y)≥ 0, for all y ∈ O and all s ≥ t0.

Lemma 2.1.14. Let V : [t0,+∞)×O → R be defined by (2.36) and assume that F ∈ F (Ω,h),
where h : [t0,+∞)→ R is a nondecreasing function which is left-continuous on (t0,+∞). Then,

V (s,y)−V (s,z)≤ ‖y− z‖,

for all y,z ∈ O and all s ∈ [t0,+∞).
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Proof. At first, assume that s = t0. Then, by the definition of V , we have

V (t0,y)−V (t0,z) = ‖y‖−‖z‖ ≤ ‖y− z‖.

Let s > t0, ϕ ∈ A(s,z) and take 0 < η < s− t0. Define a function ϕη : [t0,+∞)→ O by

ϕη(σ) =


ϕ(σ), if σ ∈ [t0,s−η ],

ϕ(σ)+
σ − s+η

η
(y− z), if σ ∈ [s−η ,s],

0, if σ ∈ (s,+∞).

As we mentioned in Remark 2.1.11, ϕη ∈ A(s,y) and, by the definition of the function V , we
have

V (s,y)− sup
σ∈[t0,s]

∥∥∥∥ϕ(σ)−
∫

σ

t0
DF(ϕ(τ), t)

∥∥∥∥
≤ sup

σ∈[t0,s]

∥∥∥∥ϕη(σ)−
∫

σ

t0
DF(ϕη(τ), t)

∥∥∥∥− sup
σ∈[t0,s]

∥∥∥∥ϕ(σ)−
∫

σ

t0
DF(ϕ(τ), t)

∥∥∥∥
≤ sup

σ∈[t0,s]

∥∥∥∥ϕη(σ)−
∫

σ

t0
DF(ϕη(τ), t)−ϕ(σ)+

∫
σ

t0
DF(ϕ(τ), t)

∥∥∥∥
≤ sup

σ∈[t0,s−η ]

∥∥∥∥ϕη(σ)−
∫

σ

t0
DF(ϕη(τ), t)−ϕ(σ)+

∫
σ

t0
DF(ϕ(τ), t)

∥∥∥∥
+ sup

σ∈[s−η ,s]

∥∥∥∥ϕη(σ)−
∫

σ

t0
DF(ϕη(τ), t)−ϕ(σ)+

∫
σ

t0
DF(ϕ(τ), t)

∥∥∥∥
= sup

σ∈[t0,s−η ]

∥∥∥∥ϕ(σ)−
∫

σ

t0
DF(ϕ(τ), t)−ϕ(σ)+

∫
σ

t0
DF(ϕ(τ), t)

∥∥∥∥
+ sup

σ∈[s−η ,s]

∥∥∥∥ϕ(σ)+
σ − s+η

η
(y− z)−

∫
σ

t0
DF(ϕη(τ), t)−ϕ(σ) +

∫
σ

t0
DF(ϕ(τ), t)

∥∥∥∥
= sup

σ∈[s−η ,s]

∥∥∥∥σ − s+η

η
(y− z)−

∫ s−η

t0
DF(ϕη(τ), t)−

∫
σ

s−η

DF(ϕη(τ), t)

+
∫ s−η

t0
DF(ϕ(τ), t)+

∫
σ

s−η

DF(ϕ(τ), t)
∥∥∥∥

= sup
σ∈[s−η ,s]

∥∥∥∥σ − s+η

η
(y− z)−

∫ s−η

t0
DF(ϕ(τ), t)−

∫
σ

s−η

DF(ϕη(τ), t)

+
∫ s−η

t0
DF(ϕ(τ), t)+

∫
σ

s−η

DF(ϕ(τ), t)
∥∥∥∥

= sup
σ∈[s−η ,s]

∥∥∥∥σ − s+η

η
(y− z)−

∫
σ

s−η

DF(ϕη(τ), t)+
∫

σ

s−η

DF(ϕ(τ), t)
∥∥∥∥

≤ sup
σ∈[s−η ,s]

∥∥∥∥σ − s+η

η
(y− z)

∥∥∥∥+ sup
σ∈[s−η ,s]

∥∥∥∥∫ σ

s−η

DF(ϕη(τ), t)
∥∥∥∥

+ sup
σ∈[s−η ,s]

∥∥∥∥∫ σ

s−η

DF(ϕ(τ), t)
∥∥∥∥

≤ ‖y− z‖+2 sup
σ∈[s−η ,s]

|h(σ)−h(s−η)|

= ‖y− z‖+2|h(s)−h(s−η)|,
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where the inequality∥∥∥∥∫ σ

s−η

DF(ϕη(τ), t)
∥∥∥∥+ sup

σ∈[s−η ,s]

∥∥∥∥∫ σ

s−η

DF(ϕ(τ), t)
∥∥∥∥≤ 2|h(σ)−h(s−η)|

follows from Lemma C.0.5. Therefore,

V (s,y)− sup
σ∈[t0,s]

∥∥∥∥ϕ(σ)−
∫

σ

t0
DF(ϕ(τ), t)

∥∥∥∥≤ ‖y− z‖+2|h(s)−h(s−η)|.

Taking η → 0+, we obtain

V (s,y)≤ ‖y− z‖+ sup
σ∈[t0,s]

∥∥∥∥ϕ(σ)−
∫

σ

t0
DF(ϕ(τ), t)

∥∥∥∥ , (2.38)

once h is left-continuous on (t0,+∞) and, hence,

lim
η→0+

|h(s)−h(s−η)|= lim
t→s−

|h(s)−h(t)|= 0.

Taking the infimum over all infϕ ∈ A(s,z) in (2.38), we conclude

V (s,y)≤ ‖y− z‖+V (s,z),

and the proof is complete.

As a consequence of Lemmas 2.1.13 and 2.1.14, we have the following result.

Corollary 2.1.15. Let V : [t0,+∞)×O →R be defined by (2.36) and assume that F ∈ F (Ω,h),
where h is a nondecreasing function which is left-continuous on (t0,+∞). Then, for all z ∈ O

and all s ∈ [t0,+∞), we have

V (s,z)≤ ‖z‖.

Proof. By Lemma 2.1.13, V (s,0) = 0 for all s ≥ t0 and, by Lemma 2.1.14, we conclude

V (s,z) =V (s,z)−V (s,0)≤ ‖z‖,

for all z ∈ O and all s ∈ [t0,+∞).

The next result shows that the function V : [t0,+∞)×O → R, given by (2.36), satisfies
condition (L’3) from Definition 2.0.2.

Lemma 2.1.16. Let V : [t0,+∞)×O → R be defined by (2.36) and assume that F ∈ F (Ω,h),
where h is a nondecreasing function which is left-continuous on (t0,+∞). Then, for every
s0 ≥ t0, the function [s0,ω) ∋ t ↦→ V (t,x(t)) is nonincreasing along every maximal solution
x : [s0,ω)→ X of the generalized ODE (2.1).
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Proof. Let x : [s0,ω)→ X be a maximal solution of the generalized ODE (2.1), t1, t2 ∈ [s0,ω)

be such that t2 > t1, and ϕ ∈ A(t1,x(t1)). Define φ : [t0,+∞)→ O as

φ(σ) :=


ϕ(σ), if σ ∈ [t0, t1],

x(σ), if σ ∈ [t1, t2],

0, if σ ∈ (t2,+∞).

Notice that, by Remark 2.1.11, φ ∈ A(t2,x(t2)). Thus, by the definition of V , we have

V (t2,x(t2))≤ sup
σ∈[t0,t2]

∥∥∥∥φ(σ)−
∫

σ

t0
DF(φ(τ),s)

∥∥∥∥ . (2.39)

Owing to the fact that φ ∈ A(t2,x(t2)), Lemma C.0.5 ensures that the function

[t0, t2] ∋ σ ↦→ φ(σ)−
∫

σ

t0
DF(φ(τ),s)

belongs to G−([t0, t2],X) and, according to Lemma A.0.15, we may consider two cases with
respect to

sup
σ∈[t0,t2]

∥∥∥∥φ(σ)−
∫

σ

t0
DF(φ(τ),s)

∥∥∥∥ .
Case 1: Assume that, for some v ∈ [t0, t2], we have

sup
σ∈[t0,t2]

∥∥∥∥φ(σ)−
∫

σ

t0
DF(φ(τ),s)

∥∥∥∥= ∥∥∥∥φ(v)−
∫ v

t0
DF(φ(τ),s)

∥∥∥∥ .
In this case, either v ∈ [t0, t1] or v ∈ [t1, t2].

If v ∈ [t0, t1], then

sup
σ∈[t0,t2]

∥∥∥∥φ(σ)−
∫

σ

t0
DF(φ(τ),s)

∥∥∥∥= sup
σ∈[t0,t1]

∥∥∥∥φ(σ)−
∫

σ

t0
DF(φ(τ),s)

∥∥∥∥ .
Since φ |[t0,t1] = ϕ, we get

sup
σ∈[t0,t2]

∥∥∥∥φ(σ)−
∫

σ

t0
DF(φ(τ),s)

∥∥∥∥= sup
σ∈[t0,t1]

∥∥∥∥ϕ(σ)−
∫

σ

t0
DF(ϕ(τ),s)

∥∥∥∥ .
From this and (2.39), we obtain

V (t2,x(t2))≤ sup
σ∈[t0,t1]

∥∥∥∥ϕ(σ)−
∫

σ

t0
DF(ϕ(τ),s)

∥∥∥∥ . (2.40)

On the other hand, if v ∈ [t1, t2], then φ |[t1,t2] = x and∥∥∥∥φ(v)−
∫ v

t0
DF(φ(τ),s)

∥∥∥∥ =

∥∥∥∥φ(v)−
∫ t1

t0
DF(φ(τ),s)−

∫ v

t1
DF(φ(τ),s)

∥∥∥∥
=

∥∥∥∥x(v)−
∫ t1

t0
DF(ϕ(τ),s)−

∫ v

t1
DF(x(τ),s)

∥∥∥∥ . (2.41)
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The fact that x is a solution of the generalized ODE (2.1) and x(t1) = ϕ(t1) ensure

x(v)−
∫ v

t1
DF(x(τ),s) = x(t1) = ϕ(t1). (2.42)

Replacing (2.42) in (2.41), we gain∥∥∥∥φ(v)−
∫ v

t0
DF(φ(τ),s)

∥∥∥∥ =

∥∥∥∥ϕ(t1)−
∫ t1

t0
DF(ϕ(τ),s)

∥∥∥∥
≤ sup

σ∈[t0,t1]

∥∥∥∥ϕ(σ)−
∫

σ

t0
DF(ϕ(τ),s)

∥∥∥∥ . (2.43)

Therefore, by equations (2.39) and (2.43), we conclude

V (t2,x(t2))≤ sup
σ∈[t0,t1]

∥∥∥∥ϕ(σ)−
∫

σ

t0
DF(ϕ(τ),s)

∥∥∥∥ . (2.44)

Case 2: Assume that, for some v ∈ [t0, t2), we have

sup
σ∈[t0,t2]

∥∥∥∥φ(σ)−
∫

σ

t0
DF(φ(τ),s)

∥∥∥∥= ∥∥∥∥φ(v+)− lim
σ→v+

∫
σ

t0
DF(φ(τ),s)

∥∥∥∥ .
Thus, either v ∈ [t0, t1) or v ∈ [t1, t2).

If v ∈ [t0, t1), then φ |[t0,t1] = ϕ and, by (2.39), we get

V (t2,x(t2)) ≤ sup
σ∈[t0,t2]

∥∥∥∥φ(σ)−
∫

σ

t0
DF(φ(τ),s)

∥∥∥∥
=

∥∥∥∥ϕ(v+)− lim
σ→v+

∫
σ

t0
DF(ϕ(τ),s)

∥∥∥∥
≤ sup

σ∈[t0,t1]

∥∥∥∥ϕ(σ)−
∫

σ

t0
DF(ϕ(τ),s)

∥∥∥∥ .
(2.45)

On the other hand, if v ∈ [t1, t2), then φ |[t1,t2] = x and

sup
σ∈[t0,t2]

∥∥∥∥φ(σ)−
∫

σ

t0
DF(φ(τ),s)

∥∥∥∥
=

∥∥∥∥φ(v+)− lim
σ→v+

∫
σ

t0
DF(φ(τ),s)

∥∥∥∥
=

∥∥∥∥x(v+)− lim
σ→v+

∫
σ

t0
DF(φ(τ),s)

∥∥∥∥
=

∥∥∥∥x(v+)−
∫ t1

t0
DF(ϕ(τ),s)− lim

σ→v+

∫
σ

t1
DF(x(τ),s)

∥∥∥∥ .
(2.46)

From Remark C.0.10 and equation (2.42), we conclude∥∥∥∥x(v+)−
∫ t1

t0
DF(ϕ(τ),s)− lim

σ→v+

∫
σ

t1
DF(x(τ),s)

∥∥∥∥
C.0.10
=

∥∥∥∥x(v)−
∫ t1

t0
DF(ϕ(τ),s)−

∫ v

t1
DF(x(τ),s)

∥∥∥∥
(2.42)
=

∥∥∥∥ϕ(t1)−
∫ t1

t0
DF(ϕ(τ),s)

∥∥∥∥
≤ sup

σ∈[t0,t1]

∥∥∥∥ϕ(σ)−
∫

σ

t0
DF(ϕ(τ),s)

∥∥∥∥ .
(2.47)
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By (2.45), (2.46) and (2.47), we gain

sup
σ∈[t0,t2]

∥∥∥∥φ(σ)−
∫

σ

t0
DF(φ(τ),s)

∥∥∥∥≤ sup
σ∈[t0,t1]

∥∥∥∥ϕ(σ)−
∫

σ

t0
DF(ϕ(τ),s)

∥∥∥∥ .
Using this fact together with (2.39), we obtain

V (t2,x(t2))≤ sup
σ∈[t0,t1]

∥∥∥∥ϕ(σ)−
∫

σ

t0
DF(ϕ(τ),s)

∥∥∥∥ . (2.48)

Taking inf over ϕ ∈ A(t1,x(t1)) in (2.40), (2.44), (2.45) and (2.48), we conclude

V (t2,x(t2))≤V (t1,x(t1)),

obtaining the desired result.

The next result deals with condition (L1) from Definition 2.0.2.

Lemma 2.1.17. Let V : [t0,+∞)×O → R be defined by (2.36) and assume that F ∈ F (Ω,h),
where h : [t0,+∞)→ R is a nondecreasing function which is left-continuous on (t0,+∞). Then,
V (·,y) : [t0,+∞)→ R is left-continuous on (t0,+∞) for all O ∈ X .

Proof. Let y ∈ O , σ0 ∈ (t0,+∞) and ε > 0. By Lemma 2.1.12, there exists ψ ∈ A(σ0,y) such
that

V (σ0,y) = sup
σ∈[t0,σ0]

∥∥∥∥ψ(σ)−
∫

σ

t0
DF(ψ(τ), t)

∥∥∥∥ . (2.49)

Since h and ψ are left-continuous on (t0,+∞), there exists δ > 0 such that

|h(t)−h(σ0)|< ε and ‖ψ(t)−ψ(σ0)‖< ε, (2.50)

for all t ∈ (σ0−δ ,σ0). Moreover, by the usual properties of the supremum and, by the definition
of V , we have

V (σ0,y)≥ sup
σ∈[t0,t]

∥∥∥∥ψ(σ)−
∫

σ

t0
DF(ψ(τ),s)

∥∥∥∥≥V (t,ψ(t)), for all t ∈ (σ0 −δ ,σ0). (2.51)

Combining (2.51) with the fact that ψ ∈ A(σ0,y), we get

V (t,y)−V (t,ψ(t))≤ ‖y−ψ(t)‖= ‖ψ(σ0)−ψ(t)‖, for all t ∈ (σ0 −δ ,σ0). (2.52)

By (2.50), (2.51) and (2.52), we conclude that the following inequality

V (t,y)−V (σ0,y)
(2.51)
≤ V (t,y)−V (t,ψ(t))

(2.52)
≤ ‖ψ(σ0)−ψ(t)‖

(2.50)
< ε (2.53)

holds for all t ∈ (σ0 −δ ,σ0).

On the other hand, for each t ∈ (σ0 − δ ,σ0), let xt : [t,ω(t,y)) → X be the maximal
solution of the generalized ODE (2.1) with initial condition xt(t) = y (the existence of such
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solutions are ensured by the hypotheses in the beginning of this subsection). By Lemma 2.1.16,
we have V (σ0,xt(σ0))−V (t,xt(t))≤ 0, for all t ∈ (σ0 −δ ,σ0) and, consequently,

V (σ0,y)−V (t,y) = V (σ0,y)−V (σ0,xt(σ0))+V (σ0,xt(σ0))−V (t,xt(t))

≤ V (σ0,y)−V (σ0,xt(σ0)),
(2.54)

for all t ∈ (σ0 −δ ,σ0).

Once xt is a solution of the generalized ODE (2.1) with xt(t) = y, we have

xt(σ0)− y =
∫

σ0

t
DF(xt(τ),s), for all t ∈ (σ0 −δ ,σ0). (2.55)

By Lemma 2.1.14, we obtain

V (σ0,y)−V (σ0,xt(σ0))≤ ‖xt(σ0)− y‖, for all t ∈ (σ0 −δ ,σ0). (2.56)

From (2.54), (2.55) and (2.56), we get

V (σ0,y)−V (t,y)≤
∥∥∥∥∫ σ0

t
DF(xt(τ),s)

∥∥∥∥ , for all t ∈ (σ0 −δ ,σ0).

Using this fact together with Lemma C.0.5 and (2.50), we obtain

V (σ0,y)−V (t,y)≤ |h(σ0)−h(t)|< ε, for all t ∈ (σ0 −δ ,σ0). (2.57)

According to (2.53) and (2.57), |V (σ0,y)−V (t,y)|< ε , for all t ∈ (σ0−δ ,σ0) which proves that
V (·,y) : [t0,+∞)→ R is left-continuous at σ0 for all y ∈ O. Since σ0 has be taken arbitrarily in
(t0,+∞), we conclude that V (·,y) : [t0,+∞)→R is left-continuous at (t0,+∞) for all y ∈O.

In the sequel, we prove that if the trivial solution of the generalized ODE is regularly
stable, then the function V : [t0,+∞)×O → R, defined by (2.36), satisfies condition (L2) from
Definition 2.0.2.

Lemma 2.1.18. Let V : [t0,+∞)×O → R be defined by (2.36) and assume that F ∈ F (Ω,h),
where h : [t0,+∞)→ R is a nondecreasing function which is left-continuous on (t0,+∞). If the
trivial solution of the generalized ODE (2.1) is regularly stable, then

(1) there exists an increasing continuous function b : R+ → R+ satisfying b(0) = 0 such that,

V (t,x)≥ b(‖x‖),

for every (t,x) ∈ [t0,+∞)×O .

Proof. We assume that (1) does not hold, that is, there are ε > 0 and a sequence of pairs
(tk,xk) ∈ [t0,+∞)×O , k ∈ N, such that

ε ≤ ‖xk‖, (2.58)
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tk → ∞ as k → ∞

and
V (tk,xk)→ 0 as k → ∞. (2.59)

By the hypotheses and Theorem 2.1.5, the trivial solution of the generalized ODE (2.1) is
regularly stable with respect to perturbations. Take δ = δ (ε)> 0 as in Definition 2.1.4-(i). By
(2.59), there exists k0 ∈ N such that

V (tk,xk)< δ , for all k > k0.

From this and the fact that A(tk,xk) is a closed set (see Lemma 2.37), there exists ϕk ∈ A(tk,xk)

(with k > k0) such that

sup
σ∈[t0,tk]

∥∥∥∥ϕk(σ)−
∫

σ

t0
DF(ϕk(τ), t)

∥∥∥∥< δ . (2.60)

We proceed this proof by constructing a perturbed generalized ODE whose solution has
initial condition 0. Define Pk : [t0, tk]→ X by

Pk(σ) = ϕk(σ)−
∫

σ

t0
DF(ϕk(τ), t), for all σ ∈ [t0, tk].

Since ϕk ∈ A(tk,xk), we have ϕk ∈ G−([t0, tk],X) and ϕk(t0) = 0 which, in turn, imply that
P ∈ G−([t0, tk],X) (see Lemma C.0.7), Pk(t0) = 0 and

sup
σ∈[t0,tk]

‖Pk(σ)−Pk(t0)‖ = sup
σ∈[t0,tk]

‖Pk(σ)‖

= sup
σ∈[t0,tk]

∥∥∥∥ϕk(σ)−
∫

σ

t0
DF(ϕk(τ), t)

∥∥∥∥
(2.60)
< δ .

Moreover, for σ ∈ [t0, tk], we have

ϕk(σ)
ϕk(t0)=0

=
∫

σ

t0
DF(ϕk(τ), t)+ϕk(σ)−

∫
σ

t0
DF(ϕk(τ), t)+ϕk(t0)

Pk(t0)=0
= ϕk(t0)+

∫
σ

t0
DF(ϕk(τ), t)+Pk(σ)−Pk(t0)

= ϕk(t0)+
∫

σ

t0
D[F(ϕk(τ), t)+Pk(t)].

Consequently, ϕk : [t0, tk]→ X is a solution of the perturbed generalized ODE

dx
dτ

= D[F(x, t)+Pk(t)]

with initial condition ϕk(t0) = 0. Since the trivial solution of the generalized ODE (2.1) is
regularly stable with respect to perturbations, P∈G−([t0, tk],X), supσ∈[t0,tk] ‖Pk(σ)−Pk(t0)‖< δ

and ‖ϕk(t0)‖= 0 < δ , we have ‖ϕk(t)‖< ε , for all t ∈ [t0, tk]. In particular, ‖ϕk(tk)‖= ‖xk‖< ε

which contradicts (2.58).



2.1. Regular stability 47

In what follows, we present a converse Lyapunov theorem on regular stability for the
trivial solution of the generalized ODE (2.1).

Theorem 2.1.19. If the trivial solution of the generalized ODE (2.1) is regularly stable, then
there exists a function V : [t0,+∞)×O → R satisfying:

(CLR1) for all s0 ≥ t0, the function
[s0,+∞) ∋ t ↦→V (t,x(t))

is nonincreasing, where x : [s0,ω)→ O is a maximal solution of the generalized ODE
(2.1);

(CLR2) V (·,y) : [t0,+∞)→ R is left-continuous on (t0,+∞), for all y ∈ O;

(CLR3) there exists an increasing continuous function b : R+ → R+ satisfying b(0) = 0 such that

V (t,y)≥ b(‖y‖),

for every (t,y) ∈ [t0,+∞)×O;

(CLR4) there exists an increasing continuous function a : R+ → R+ satisfying a(0) = 0, such that

V (t,y)≤ a(‖y‖),

for all y ∈ O and all t ∈ [t0,+∞);

(CLR5) V (t,0) = 0 for all t ∈ [t0,+∞);

(CLR6) for all s0 ≥ t0 and all maximal solution x : [s0,ω)→ X of the generalized ODE (2.1), the
derivative

D+V (t,x(t)) = limsup
η→0+

V (t +η ,x(t +η))−V (t,x(t))
η

≤ 0

holds for all t ∈ [s0,ω), that is, the right derivative of V is non-positive along every solution
of the generalized ODE (2.1).

Proof. Let V : [t0,+∞)×O → R be defined by (2.36). Properties (CLR1), (CLR2) and (CLR3)
are direct consequences of Lemmas 2.1.16, 2.1.17 and 2.1.18 respectively. Property (CLR4) is
proved in Corollary 2.1.15 with a as the identity function. Although condition (CLR5) is proved
in Lemma 2.1.13, it is also a consequence of conditions (CLR3) and (CLR4), since

0 = b(0)≤V (t,0)≤ a(0) = 0, for all t ∈ [t0,+∞).

Finally, item (CLR6) is a straightforward consequence of item (CLR1) (see the comment before
Proposition 2.0.3).

Remark 2.1.20. Conditions (CLR2), (CLR3) and (CLR6) from Theorem 2.1.19 ensure that
the function V : [t0,+∞)×O → R, defined by (2.36), is a Lyapunov functional with respect to
the generalized ODE (2.1) in the framework of Definition 2.0.2. On the other hand, conditions
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(CLR1), (CLR2) and (CLR3), given in Theorem 2.1.19, shows that V satisfies all the conditions
of the definition of a Lyapunov functional presented in [22, 23]. Therefore, no matter which
definition of Lyapunov functional we are using, Theorem 2.1.19 ensures that regular stability
for generalized ODEs implies in the existence of a Lyapunov functional. Moreover, condition
(CLR4) shows that V satisfies the hypothesis (LR1) from the Lyapunov-type Theorem 2.1.7 on
regular stability.

Our next goal is to prove the converse Lyapunov theorem on regular attractivity. In order
to do this, for s ≥ t0 and y ∈ O , we define Ṽ : [t0,+∞)×O → R as

Ṽ (s,y) :=

 inf
ϕ∈A(s,y)

{
sup

σ∈[t0,s]

∥∥∥∥ϕ(σ)−
∫

σ

t0
DF(ϕ(τ), t)

∥∥∥∥e−s

}
, if s > t0,

‖y‖, if s = t0,

(2.61)

where A(s,y) is given by (2.35).

By Corollary C.0.4, we know that, for all ϕ ∈ A(s,y) and all σ ∈ [t0,s], the Kurzweil
integral

∫
σ

t0 DF(ϕ(τ), t) exists. Moreover, by Lemma C.0.5, the function

[t0,s] ∋ σ ↦→ f (σ) := ϕ(σ)−
∫

σ

t0
DF(ϕ(τ), t)

is also regulated and, by Proposition A.0.13, supσ∈[t0,s] ‖ f (σ)‖< ∞. Therefore, Ṽ is well-defined
for all (s,y) ∈ [t0,+∞)×O .

The proofs of the next two lemmas are analogous to the proofs of Lemmas 2.1.14 and
2.1.17 respectively. Therefore, we omit them here.

Lemma 2.1.21. Let Ṽ : [t0,+∞)×O → R be defined by (2.61) and assume that F ∈ F (Ω,h),
where h : [t0,+∞)→ R is a nondecreasing functions which is left-continuous on (t0,+∞). Then,
for all y,z ∈ O and all s ∈ [t0,+∞), we have

Ṽ (s,y)−Ṽ (s,z)≤ ‖y− z‖.

Lemma 2.1.22. Let Ṽ : [t0,+∞)×O → R be defined by (2.61) and assume that F ∈ F (Ω,h),
where h : [t0,+∞)→ R is a nondecreasing function which is left-continuous on (t0,+∞). Then,
Ṽ (·,y) : [t0,+∞)→ R is left-continuous on (t0,+∞) for all y ∈ O.

As a consequence of the definition of the function Ṽ : [t0,+∞)×O → R and Lemma
2.1.21, we have the following result.

Corollary 2.1.23. Let Ṽ : [t0,+∞)×O →R be defined by (2.61) and assume that F ∈ F (Ω,h),
where h is a nondecreasing function which is left-continuous on (t0,+∞). Then, for all z ∈ O

and all s ∈ [t0,+∞),

Ṽ (s,z)≤ ‖z‖.
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Proof. Since ϕ ≡ 0 ∈ A(s,0) for all s ∈ [t0,+∞), we have

Ṽ (s,0) = 0, for all s ∈ [t0,+∞). (2.62)

Therefore, the result follows from Lemma 2.1.21 and (2.62).

Although the proof of the next lemma is similar to the proof of Lemma 2.1.16, it shows
the importance of the exponential function in the definition of the function Ṽ : [t0,+∞)×O →R
and, hence, we include it here.

Lemma 2.1.24. Let Ṽ : [t0,+∞)×O → R be defined by (2.61) and assume that F ∈ F (Ω,h),
where h : [t0,+∞)→ R is a nondecreasing function which is left-continuous on (t0,+∞). Then,
for every maximal solution, x : [s0,ω)⊂ [t0,+∞)→ X , of the generalized ODE (2.1), we have

D+Ṽ (t,x(t)) := limsup
η→0+

Ṽ (t +η ,x(t +η))−Ṽ (t,x(t))
η

≤−Ṽ (t,x(t)),

for all t ∈ [s0,ω).

Proof. Let x : [s0,ω)⊂ [t0,+∞)→ X be a maximal solution of the generalized ODE (2.1) and
t ∈ [s0,ω). Let ϕ ∈ A(t,x(t)) and η > 0. Define φη : [t0,+∞)→ O by

φη(σ) :=


ϕ(σ), if σ ∈ [t0, t],

x(σ), if σ ∈ [t, t +η ],

0, if σ ∈ (t +η ,+∞).

By Remark 2.1.11, φη ∈ A(t +η ,x(t +η)) and, by the definition of Ṽ , we have

Ṽ (t +η ,x(t +η))≤ sup
σ∈[t0,t+η ]

∥∥∥∥φη(σ)−
∫

σ

t0
DF(φη(τ),s)

∥∥∥∥e−(t+η).

Owing to the fact that F ∈ F (Ω,h), we can apply Lemma C.0.7 to guarantee that
the function φη(σ)−

∫
σ

t0 DF(φη(τ),s), with σ ∈ [t0, t +η ], is regulated and left-continuous on
(t0, t +η ]. According to Lemma A.0.15, we may consider two cases with respect to

sup
σ∈[t0,t+η ]

∥∥∥∥φη(σ)−
∫

σ

t0
DF(φη(τ),s)

∥∥∥∥e−(t+η).

Case 1: Assume that, for some v ∈ [t0, t +η ], we have

sup
σ∈[t0,t+η ]

∥∥∥∥φη(σ)−
∫

σ

t0
DF(φη(τ),s)

∥∥∥∥e−(t+η) =

∥∥∥∥φη(v)−
∫ v

t0
DF(φη(τ),s)

∥∥∥∥e−(t+η).
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Taking into account that φη |[t0,t] = ϕ and φη |[t,t+η ] = x, we conclude

Ṽ (t +η ,x(t +η))≤ sup
σ∈[t0,t+η ]

∥∥∥∥φη(σ)−
∫

σ

t0
DF(φη(τ),s)

∥∥∥∥e−(t+η)

=



∥∥∥∥φη(v)−
∫ v

t0
DF(φη(τ),s)

∥∥∥∥e−(t+η), for somev ∈ [t0, t]

or∥∥∥∥φη(v)−
∫ v

t0
DF(φη(τ),s)

∥∥∥∥e−(t+η), for somev ∈ [t, t +η ]

=



∥∥∥∥ϕ(v)−
∫ v

t0
DF(ϕ(τ),s)

∥∥∥∥e−(t+η), for somev ∈ [t0, t]

or∥∥∥∥x(v)−
∫ t

t0
DF(ϕ(τ),s)−

∫ v

t
DF(x(τ),s)

∥∥∥∥e−(t+η), for somev ∈ [t, t +η ].

Since x(v)−
∫ v

t
DF(x(τ),s) = x(t) and ϕ(t) = x(t), we get

Ṽ (t +η ,x(t +η))

≤



∥∥∥∥ϕ(v)−
∫ v

t0
DF(ϕ(τ),s)

∥∥∥∥e−(t+η), for some v ∈ [t0, t]

or∥∥∥∥x(t)−
∫ t

t0
DF(ϕ(τ),s)

∥∥∥∥e−(t+η), for some v ∈ [t, t +η ]

=



∥∥∥∥ϕ(v)−
∫ v

t0
DF(ϕ(τ),s)

∥∥∥∥e−(t+η), for some v ∈ [t0, t]

or∥∥∥∥ϕ(t)−
∫ t

t0
DF(ϕ(τ),s)

∥∥∥∥e−(t+η), for some v ∈ [t, t +η ]

≤


sup

σ∈[t0,t]

∥∥∥∥ϕ(σ)−
∫

σ

t0
DF(ϕ(τ),s)

∥∥∥∥e−te−η ,

or

sup
σ∈[t0,t]

∥∥∥∥ϕ(σ)−
∫

σ

t0
DF(ϕ(τ),s)

∥∥∥∥e−te−η .

Taking the infimum over all ϕ ∈ A(t,x(t)), we obtain

Ṽ (t +η ,x(t +η))≤ Ṽ (t,x(t))e−η

which implies
Ṽ (t +η ,x(t +η))−Ṽ (t,x(t))≤ Ṽ (t,x(t))(e−η −1).

Therefore,

limsup
η→0+

Ṽ (t +η ,x(t +η))−V (t,x(t))
η

≤ limsup
η→0+

Ṽ (t,x(t))(e−η −1)
η

= Ṽ (t,x(t)) limsup
η→0+

(e−η −1)
η

= −Ṽ (t,x(t))
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obtaining the desired result.

Case 2: Assume that, for some v ∈ [t0, t +η ], we have

sup
σ∈[t0,t+η ]

∥∥∥∥φη(σ)−
∫

σ

t0
DF(φη(τ),s)

∥∥∥∥e−(t+η) =

∥∥∥∥φη(v+)− lim
σ→v+

∫
σ

t0
DF(φη(τ),s)

∥∥∥∥e−(t+η).

Since the proof of Case 2 is similar to the proof of Case 2 from Lemma 2.1.16, with the same
adaptations that we did here, we will omit it.

The next result ensure that Ṽ : [t0,+∞)×O → R, given by (2.61), satisfies condition
(L’3).

Lemma 2.1.25. Let Ṽ : [t0,+∞)×O → R be defined by (2.61) and assume that F ∈ F (Ω,h),
where h : [t0,+∞)→ R is a nondecreasing function which is left-continuous on (t0,+∞). Then,
for every s0 ≥ t0, the function [s0,ω) ∋ t ↦→ Ṽ (t,x(t)) is nonincreasing along every maximal
solution x : [s0,ω)→ X of the generalized ODE (2.1)

Proof. Let s0 ≥ t0, x : [s0,ω) → X be a maximal solution of the generalized ODE (2.1) and
t1, t2 ∈ [s0,ω) be such that t2 > t1. Since the function R ∋ x ↦→ e−x is decreasing, we have

e−t2 < e−t1. (2.63)

Let ϕ ∈ A(t1,x(t1)) and define φ : [t0,+∞)→ O by

φ(σ) :=


ϕ(σ), if σ ∈ [t0, t1],

x(σ), if σ ∈ [t1, t2],

0, if σ ∈ (t2,+∞).

Notice that φ ∈ A(t2,x(t2)) (see Remark 2.1.11). By the definition of Ṽ , we have

Ṽ (t2,x(t2))≤ sup
σ∈[t0,t2]

∥∥∥∥φ(σ)−
∫

σ

t0
DF(φ(τ),s)

∥∥∥∥e−t2 .

By the fact that F ∈ F (Ω,h) and Lemma C.0.7, the function

[t0, t2] ∋ σ ↦→ φ(σ)−
∫

σ

t0
DF(φ(τ),s)

belongs to G−([t0, t2],X) and, by Lemma A.0.15, we must consider two cases with respect to

sup
σ∈[t0,t2]

∥∥∥∥φ(σ)−
∫

σ

t0
DF(φ(τ),s)

∥∥∥∥e−t2 .

Case 1: For some v ∈ [t0, t2], we have

sup
σ∈[t0,t2]

∥∥∥∥φ(σ)−
∫

σ

t0
DF(φ(τ),s)

∥∥∥∥e−t2 =

∥∥∥∥φ(v)−
∫ v

t0
DF(φ(τ),s)

∥∥∥∥e−t2.
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In this case, either v ∈ [t0, t1] or v ∈ [t1, t2]. Then,

Ṽ (t2,x(t2))

≤
∥∥∥∥φ(v)−

∫ v

t0
DF(φ(τ),s)

∥∥∥∥e−t2 , for somev ∈ [t0, t2]

=



∥∥∥∥ϕ(v)−
∫ v

t0
DF(ϕ(τ),s)

∥∥∥∥e−t2, for somev ∈ [t0, t1]

or∥∥∥∥x(v)−
∫ t1

t0
DF(ϕ(τ),s)−

∫ v

t1
DF(x(τ), t)

∥∥∥∥e−t2, for somev ∈ [t1, t2]

(2.63)
≤



∥∥∥∥ϕ(v)−
∫ v

t0
DF(ϕ(τ),s)

∥∥∥∥e−t1, for some ,v ∈ [t0, t1]

or∥∥∥∥x(v)−
∫ t1

t0
DF(ϕ(τ),s)−

∫ v

t1
DF(x(τ), t)

∥∥∥∥e−t1, for somev ∈ [t1, t2].

By the definition of a solution of generalized ODEs and since ϕ ∈ A(t1,x(t1)), we get

x(v)−
∫ v

t1
DF(x(τ), t) = x(t1) = ϕ(t1).

Thus,

Ṽ (t2,x(t2)) ≤



∥∥∥∥ϕ(v)−
∫ v

t0
DF(ϕ(τ),s)

∥∥∥∥e−t1 , for some v ∈ [t0, t1]

or∥∥∥∥ϕ(t1)−
∫ t1

t0
DF(ϕ(τ), t)

∥∥∥∥e−t1, for some v ∈ [t1, t2]

≤


sup

σ∈[t0,t1]

∥∥∥∥ϕ(σ)−
∫

σ

t0
DF(ϕ(τ),s)

∥∥∥∥e−t1

or

sup
σ∈[t0,t1]

∥∥∥∥ϕ(σ)−
∫

σ

t0
DF(ϕ(τ),s)

∥∥∥∥e−t1.

Taking the infimum over all ϕ ∈ A(t1,x(t1)), we obtain

Ṽ (t2,x(t2))≤ Ṽ (t1,x(t1)).

Case 2: For some v ∈ [t0, t2],

sup
σ∈[t0,t2]

∥∥∥∥φ(σ)−
∫

σ

t0
DF(φ(τ),s)

∥∥∥∥e−t2 =

∥∥∥∥φ(v+)− lim
σ→v+

∫
σ

t0
DF(φ(τ),s)

∥∥∥∥e−t2

Since the proof of Case 2 is similar to the proof of Case 2 from Lemma 2.1.16 with the
same adaptations that we did here, we will omit it.

In the sequel, we present a result which shows that the function Ṽ : [t0,+∞)×O → R,
defined by (2.61), satisfies condition (L2) from Definition 2.0.2. Although its proof is follows
the same ideas of the proof of Lemma 2.1.18, we exhibit the details here.
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Lemma 2.1.26. Let Ṽ : [t0,+∞)×O → R be defined by (2.61) and assume that F ∈ F (Ω,h),
where h : [t0,+∞)→ R is a nondecreasing function which is left-continuous on (t0,+∞). If the
trivial solution of the generalized ODE (2.1) is regularly attracting, then

(1) there exists an increasing continuous function b : R+ → R+ satisfying b(0) = 0 such that,
for every (t,x) ∈ [t0,+∞)×O ,

Ṽ (t,x)≥ b(‖x‖).

Proof. Let Ṽ : [t0,+∞)×O → R be given by (2.61). Assume that Ṽ is not positive definite.
Then, for δ̃ as in Definition 2.1.4-(ii), there exist ε > 0 and a sequence of pairs (tk,xk)k∈N in
[t0,+∞)×O such that

ε ≤ ‖xk‖, (2.64)

tk → ∞ as k → ∞ (2.65)

and

Ṽ (tk,xk)→ 0 as k → ∞. (2.66)

Using the hypotheses and Theorem 2.1.5, the trivial solution of the generalized ODE (2.1) is
regularly attracting with respect to perturbations. We consider T = T (ε)≥ 0 and ρ = ρ(ε)> 0
as in Definition 2.1.4-(ii). By (2.65), there exists k0 ∈ N such that for every k > k0 we have
tk > T + t0 and, by (2.66), we may assume

Ṽ (tk,xk)< ρe−tk ,

for every k > k0. According to the definition of Ṽ and since A(tk,xk) is a closed set (see Lemma
2.1.12), fix k > k0 and choose ϕ ∈ A(tk,xk) such that

Ṽ (tk,xk) sup
s∈[t0,tk]

∥∥∥∥ϕ(s)−
∫ s

t0
DF(ϕ(τ), t)

∥∥∥∥e−tk ≤ ρe−tk

which implies

sup
s∈[t0,tk]

∥∥∥∥ϕ(s)−
∫ s

t0
DF(ϕ(τ), t)

∥∥∥∥≤ ρ.

For σ ∈ [t0, tk], define P : [t0, tk]→ X by

P(σ) = ϕ(σ)−
∫

σ

t0
DF(ϕ(τ), t).

Since ϕ(t0) = 0, we have

sup
σ∈[t0,tk]

‖P(σ)−P(t0)‖= sup
σ∈[t0,tk]

∥∥∥∥ϕ(σ)−
∫

σ

t0
DF(ϕ(τ), t)

∥∥∥∥≤ ρ.
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Moreover,

ϕ(σ) =
∫

σ

t0
DF(ϕ(τ), t)+ϕ(σ)−

∫
σ

t0
DF(ϕ(τ), t)

=
∫

σ

t0
DF(ϕ(τ), t)+P(σ)

ϕ(t0)=0=P(t0)
= ϕ(t0)+

∫
σ

t0
DF(ϕ(τ), t)+P(σ)−P(t0)

= ϕ(t0)+
∫

σ

t0
D[F(ϕ(τ), t)+P(t)].

Therefore, ϕ : [t0, tk]→ X is a solution of the following perturbed generalized ODE

dx
dτ

= D[F(x, t)+P(t)]

with ‖ϕ(t0)‖ = 0 ≤ δ̃ . Since the trivial solution of the generalized ODE (2.1) is regularly
attracting, the inequality ‖ϕ(t)‖ ≤ ε holds for every t > t0 +T (ε). In particular,

‖ϕ(tk)‖= ‖xk‖< ε

which contradicts (2.64).

In what follows, we present a converse Lyapunov theorem on regular attracting for the
trivial solution of the generalized ODE (2.1).

Theorem 2.1.27. If the trivial solution x ≡ 0 of the generalized ODE (2.1) is regularly attracting,
then there exists a function Ṽ : [t0,+∞)×O → R satisfying:

(CLRA1) Ṽ (·,y) : [t0,+∞)→ R is left-continuous on (t0,+∞), for all y ∈ O;

(CLRA2) there exists an increasing continuous function a : R+ → R+ satisfying a(0) = 0, such that

Ṽ (t,y)≤ a(‖y‖),

for all y ∈ O and all t ∈ [t0,+∞);

(CLRA3) for every s0 ≥ t0, the function [s0,+ω) ∋ t ↦→ Ṽ (t,x(t)) is nonincreasing along every
maximal solution x : [s0,+ω)→ X of the generalized ODE (2.1);

(CLRA4) there exists an increasing continuous function b : R+ → R+ satisfying b(0) = 0 such that

Ṽ (t,y)≥ b(‖y‖),

for every (t,y) ∈ [t0,+∞)×O;

(CLRA5) Ṽ (t,0) = 0 for all t ∈ [t0,+∞);

(CLRA6) there exists a continuous function Φ : X → R satisfying Φ(0) = 0 and Φ(x)> 0 for x ̸= 0
such that for every s0 ≥ t0 and every maximal solution x : [s0,ω)→ X of the generalized
(2.1), we have

D+Ṽ (t,x(t))≤−Φ(x(t)),

for all t ∈ [s0,ω).
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Proof. Let Ṽ : [t0,+∞)×O → R be defined by (2.61) . Items (CLRA1) and (CLRA3) follow
directly from Lemmas 2.1.22 and Lemma 2.1.25 respectively. By Lemma 2.1.21, for all y ∈ O ,
we have

Ṽ (t,y)≤ ‖y‖, for all t ∈ [t0,+∞).

Therefore, item (CLRA2) holds for a as the identity function.

Property (CLRA4) is proved in Lemma 2.1.26.

As a consequence of items (CLRA2) and (CLRA4), we obtain property (CLRA5) once

0 = b(0)≤ Ṽ (t,0)≤ a(0) = 0, for all t ∈ [t0,+∞).

Let us prove item (CLRA6). By Lemma 2.1.24, for every s0 ≥ t0 and every maximal
solution x : [s0,ω)→ X of the generalized ODE (2.1), we have

D+Ṽ (t,x(t))≤−Ṽ (t,x(t)), for all t ∈ [s0,ω).

On the other hand, by item (CLRA4), we obtain

D+Ṽ (t,x(t))≤−b(‖x(t)‖), for all t ∈ [s0,ω),

once x(t) ∈ O by the definition of a solution of a generalized ODE. Define Φ : X → R by
Φ(y) = b(‖y‖) for all y ∈ X . Since b is continuous, b(0) = 0 and b(t)> 0 for all t > 0, we have
Φ is clearly continuous, Φ(0) = b(0) = 0 and Φ(y) = b(‖y‖)> 0 whenever y ̸= 0.

Remark 2.1.28. Conditions (CLRA1), (CLRA4) and (CLRA6) from Theorem 2.1.27 ensure
that the function Ṽ : [t0,+∞)×X → R, defined by (2.61), is a Lyapunov functional with respect
to the generalized ODE (2.1) in the framework of Definition 2.0.2. On the other hand, conditions
(CLRA1), (CLRA3) and (CLRA4) from Theorem 2.1.27 show that Ṽ satisfies all the conditions
of the definition of a Lyapunov functional presented in [22, 23]. Therefore, no matter which
definition of Lyapunov functional we are using, Theorem 2.1.27 ensures that if the trivial solution
of the generalized ODE (2.1) is regularly attracting, then there exists a Lyapunov functional with
respect to (2.1). Moreover, condition (CLRA6) shows that Ṽ satisfies hypothesis (LRA’1) from
the Lyapunov-type theorem 2.1.10 on regular attractivity.

The next result is a consequence of Theorems 2.1.19 and 2.1.27 and it is a version of a
converse Lyapunov theorem on asymptotic stability.

Corollary 2.1.29. If the trivial solution of the generalized ODE (2.1) is regularly asymptotically
stable, then there exists a Lyapunov functional, V : [t0,+∞)×O → R, with respect to the
generalized ODE (2.1) satisfying:

(CLRS1) there exists an increasing continuous function a : R+ → R+ satisfying a(0) = 0, such that

V (t,y)≤ a(‖y‖),

for all y ∈ O and all t ∈ [t0,+∞);
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(CLRS2) for every s0 ≥ t0, the function [s0,ω ∋ t ↦→V (t,x(t)) is nonincreasing along every maximal
solution x : [s0,+∞)→ X of the generalized ODE (2.1);

(CLRS3) V (t,0) = 0 for all t ∈ [t0,+∞);

(CLRS4) there exists a continuous function Φ : X → R satisfying Φ(0) = 0 and Φ(x)> 0 for x ̸= 0
such that for every s0 ≥ t0 and every maximal solution x : [s0,ω)→ X of the generalized
(2.1), we have

D+V (t,x(t))≤−Φ(x(t)),

for all t ∈ [s0,ω).

2.2 Uniform stability
In this section, we present the Lyapunov-type theorem on uniform stability of the trivial

solution of the generalized ODE (2.1), presented in [13,23], and we establish a converse Lyapunov
theorem. Moreover, we introduce a concept of uniform stability with respect to perturbations
and give relations between this concept and the notion of uniform stability. The main references
for this section are [6, 13, 23]

Assume that X is a Banach space, O ⊆ X is an open subset such that 0 ∈ O , where 0
represents the neutral element of X and F : Ω → X belongs to F (Ω,h), where Ω = O× [t0,+∞)

and h : [t0,+∞) → R is a nondecreasing function which is left-continuous on (t0,+∞) (see
Definitions A.0.17 and C.0.2). Moreover, we suppose x ≡ 0 is a solution of the generalized ODE
(2.1) (see Remark 2.0.1 for a sufficient condition of such a solution) and, for all s0 ∈ [t0,+∞)

and all x0 ∈ O , there exists a unique maximal solution x : [s0,ω(s0,x0))→ X of the generalized
ODE (2.1) with initial condition x(s0) = x0. In this case, we denote x(·) by x(·,s0,x0). We recall
that the concept of a maximal solution is given in Definition C.0.15 and sufficient conditions for
its existence can be found in Theorem C.0.17 and Corollaries C.0.20 and C.0.21.

In the sequel, we present a definition of uniform stability for generalized ODEs introduced
in [23].

Definition 2.2.1. The trivial solution of the generalized ODE (2.1) is said to be

(i) stable, if for every s0 ≥ t0, ε > 0, there exists δ = δ (ε,s0)> 0 such that if x0 ∈ O satisfies

‖x0‖< δ ,

then
‖x(t,s0,x0)‖= ‖x(t)‖< ε, for all t ∈ [s0,ω(s0,x0)),

where x : [s0,ω(s0,x0)) → X is a maximal solution of the generalized ODE (2.1) with
initial condition x(s0) = x0;

(ii) uniformly stable, if it is stable with δ independent of s0;
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(iii) uniformly asymptotically stable, if there exists δ0 > 0 and for every ε > 0, there exists a
T = T (ε,δ0)≥ 0 such that if (x0,s0) ∈ Ω and

‖x0‖< δ ,

then

‖x(t,s0,x0)‖= ‖x(t)‖< ε, for all t ∈ [s0,ω(s0,x0))∩ [s0 +T,+∞),

where x : [s0,ω(s0,x0)) → X is a maximal solution of the generalized ODE (2.1) with
initial condition x(s0) = x0.

Now, consider the perturbed generalized ODE

dx
dτ

= DF(x, t)+P(t), (2.67)

where P : [t0,+∞)→ X is left-continuous on (t0,+∞) and

sup
s∈[t0,+∞)

‖P(s)−P(t0)‖< ∞.

Notice that, sups∈[t0,t] ‖P(s)−P(t0)‖< ∞ for all t ∈ [t0,+∞) and, by Proposition A.0.20,
the function g : [t0,+∞)→R, defined by g(t)= sups∈[t0,t] ‖P(s)−P(t0)‖, is a nondecreasing func-
tion which is left-continuous on (t0,+∞). Therefore, as we mentioned in Remark 2.1.3, we may
assume that, for every (x0,s0) ∈ Ω, there exists a unique maximal solution x : [s0,ω(s0,x0))→ X

of the perturbed generalized ODE (2.67) with initial condition x(s0) = x0.

In the sequel, we present a definition of uniform stability with respect to perturbations.

Definition 2.2.2. The trivial solution of the generalized ODE (2.1) is said to be

(i) stable with respect to perturbations if, for all s0 ≥ t0 and ε > 0, there exists δ = δ (ε,s0)> 0
such that if x0 ∈ O with

‖x0‖< δ and sup
s∈[s0,+∞)

‖P(s)−P(s0)‖< δ ,

then

‖x(t,s0,x0)‖= ‖x(t)‖< ε, for all s ∈ [s0,ω(s0,x0)),

where x : [s0,ω(s0,x0)) → X is a maximal solution of the perturbed generalized ODE
(2.67) with initial condition x(s0) = x0;

(ii) uniformly stable with respect to perturbations, if it is stable with respect to perturbations
with δ independent of s0.
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(iii) uniformly asymptotically stable with respect to perturbations, if there exists δ0 > 0 and
for every ε > 0, there exists a T = T (ε,δ0)≥ 0 such that if x0 ∈ O and

‖x0‖< δ and sup
s∈[s0,+∞)

‖P(s)−P(s0)‖< δ ,

then
‖x(t,s0,x0)‖= ‖x(t)‖< ε, for all t ∈ [s0,ω(s0,x0))∩ [s0 +T,+∞),

where x : [s0,ω(s0,x0)) → X is a maximal solution of the perturbed generalized ODE
(2.67) with initial condition x(s0) = x0.

In what follows, we assume the existence of global forward solutions of the generalized
ODE (2.1) and of the perturbed generalized ODE (2.6).

Theorem 2.2.3. Let F ∈ F (Ω,h), where h : [t0,+∞)→ R is a nondecreasing function which is
left-continuous on (t0,+∞). If the trivial solution of generalized ODE (2.1) is stable with respect
to perturbations, then it is stable.

Proof. For all s0 ≥ t0 and all x0 ∈ X , let x : [s0,+∞)→ X be the global forward solution of the
generalized ODE (2.1) with initial condition x(s0) = x0, ε > 0, P : [s0,+∞)→ X be a function
defined by P(t) = x0, for all t ≥ s0, and let x : [s0,+∞)→ X be the global forward solution of
the perturbed generalized ODE

dx
dτ

= D[F(x, t)+P(t)],

with initial condition x(s0) = x0. Then,

x(t) = x0 +
∫ t

s0

DF(x(τ),s)+P(t)−P(s0) = x0 +
∫ t

s0

DF(x(τ),s).

Therefore, x is the global forward solution of the generalized ODE (2.1) with initial condition
x(s0) = x0 and, by the uniqueness of a solution, x(t) = x(t) for all t ≥ s0. Since the trivial solution
of the generalized ODE (2.1) is stable with respect to perturbations, there exists δ > 0 such
that if ‖x0‖< δ and sups∈[s0,+∞) ‖P(s)−P(t0)‖= 0 < δ , then ‖x(t)‖= ‖x(t)‖< ε for all t ≥ s0.
This fact leads to the uniform stability for the trivial solution of the generalized ODE (2.1)

The proof of Theorem 2.2.4, in the sequel, follows as in Theorem 2.2.3 and, therefore,
we omit it here.

Theorem 2.2.4. Assume that F ∈ F (Ω,h), where h : [t0,+∞)→ R is a nondecreasing function
which is left-continuous on (t0,+∞). Then, the following statements hold.

(i) If the trivial solution of the generalized ODE (2.1) is uniformly stable with respect to
perturbations, then it is uniformly stable.
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(ii) If the trivial solution of the generalized ODE (2.1) is uniformly asymptotically stable with
respect to perturbations, then it is uniformly asymptotically stable.

In order to prove that uniform stability implies uniform stability with respect to perturba-
tions, we need the following auxiliary result.

Lemma 2.2.5. Let F ∈ F (Ω,h), where h : [t0,+∞)→ R is a nondecreasing function which is
left-continuous on (t0,+∞). Furthermore, assume that h is bounded. For every global forward
solution x of the generalized ODE (2.1) and for every global forward solution x of the perturbed
generalized ODE (2.67) on [s0,+∞), with x(s0) = x0 = x(s0) and s0 ≥ t0, there exists a constant
M > 0 such that

‖x(t)− x(t)‖ ≤ M,

for all t ≥ s0.

Proof. Since h is bounded, there exists H > 0 such that supt∈[t0,+∞) |h(t)−h(t0)|= H and, once
sups∈[s0,+∞) ‖P(s)−P(s0)‖ < ∞, there exists P > 0 such that sups∈[s0,+∞) ‖P(s)−P(s0)‖ = P.
Using these facts together with Lemma C.0.5, we obtain

‖x(t)− x(t)‖ =

∥∥∥∥x(s0)+
∫ t

s0

D[F(x(τ),s)−F(x(τ),s)]− x(s0)−P(s)+P(s0)

∥∥∥∥
x(s0)=x(s0)

≤
∥∥∥∥∫ t

s0

D[F(x(τ),s)−F(x(τ),s)]
∥∥∥∥+ sup

s∈[s0,+∞)

‖P(s)−P(s0)‖

Lem.C.0.5
≤ 2|h(t)−h(s0)|+P

≤ (2|h(t)−h(t0)|+ |h(s0)−h(t0)|)+P

≤ 2(H +H)+P = 4H +P = M,

for all t ≥ s0 and the statement holds.

The next result relates the concept of stability to the notion of stability with respect to
perturbations.

Theorem 2.2.6. Let F ∈ F (Ω,h), where h : [t0,+∞)→ R is a nondecreasing function which
is left-continuous on (t0,+∞). Moreover, suppose h is bounded. If the trivial solution of the
generalized ODE (2.1) is stable, then it is stable with respect to perturbations.

Proof. For all s0 ≥ t0 and all x0 ∈ X , let x : [s0,+∞) → X be a global forward solution of
the perturbed generalized ODE (2.67) with initial condition x(s0) = x0 and let ε > 0. Take
δ as in Definition 2.2.1-(i) and assume that ‖x0‖ < δ

2 and sups∈[s0,+∞) ‖P(s)−P(t0)‖ < δ

2eH ,
where H = supt∈[t0,+∞) |h(t)−h(t0)|. Let x : [s0,+∞)→ X be a global forward solution of the
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generalized ODE (2.1) with initial condition x(s0) = x0. Then for all t ≥ s0, we have

‖x(t)− x(t)‖ ≤
∥∥∥∥∫ t

s0

D[F(x(τ),s)−F(x(τ),s)]
∥∥∥∥+‖P(t)−P(s0)‖

≤
∥∥∥∥∫ t

s0

D[F(x(τ),s)−F(x(τ),s)]
∥∥∥∥+ sup

s∈[s0,+∞)

‖P(s)−P(s0)‖.

By Lemma C.0.6, we get

‖x(t)− x(t)‖ ≤
∫ t

s0

‖x(s)− x(s)‖dh(s)+ sup
s∈[s0,+∞)

‖P(s)−P(s0)‖, for all t ∈ [s0,+∞).

Thus, by hypotheses, sups∈[s0,+∞) ‖P(s)−P(s0)‖ < ∞, h is nondecreasing and it is also left-
continuous on (t0,+∞) and, by Lemma 2.2.5, the function [s0,+∞) ∋ t ↦→ ‖x(t)− x(t)‖ is
bounded. Therefore, we are under the hypotheses of the Gronwall-type inequality (see Theorem
B.0.10) and, hence,

‖x(t)− x(t)‖ ≤ sup
s∈[s0,+∞)

‖P(s)−P(s0)‖e|h(t)−h(s0)| ≤ sup
s∈[s0,+∞)

‖P(s)−P(s0)‖eH ,

where H = supt∈[t0,+∞) |h(t)− h(t0)|. Notice that, ‖x(t)‖ < ε

2 for all t ≥ s0, since the trivial
solution of the generalized ODE (2.1) is stable. Therefore, for all t ∈ [s0,+∞), we conclude

‖x(t)‖ ≤ ‖x(t)‖+‖x(t)− x(t)‖< ε

2
+

δ

2eH eH < ε,

once δ < ε .

The proof of the next result is analogous to the proof of Theorem 2.2.6 and, therefore,
we omit it here.

Theorem 2.2.7. Let F ∈ F (Ω,h), where h : [t0,+∞)→ R is a nondecreasing, left-continuous
on (t0,+∞) and it is bounded. Then, the following statements hold.

(i) If the trivial solution of the generalized ODE (2.1) is uniformly stable, then it is uniformly
stable with respect to perturbations.

(ii) If the trivial solution of the generalized ODE (2.1) is uniformly asymptotically stable, then
it is uniformly asymptotically stable with respect to perturbations.

2.2.1 Direct method of Lyapunov

In this subsection, we present Lyapunov-type theorems on uniform stability and uniform
asymptotic stability borrowed from [13, 23].

We recall that we are considering F : Ω → X belonging to F (Ω,h), where O ⊆ X is
an open set containing the neutral element of X , X is a Banach space, Ω = O × [t0,+∞) and
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h : [t0,+∞)→R is a nondecreasing function which is left-continuous on (t0,+∞) (see Definitions
A.0.17 and C.0.2). Moreover, we suppose that x ≡ 0 is a solution of the generalized ODE (2.1)
(see Remark 2.0.1 for a sufficient condition for the existence of such a solution) and, for all
(x0,s0) ∈ Ω, there exists a unique maximal solution x : [s0,ω(s0,x0))→ X of the generalized
ODE (2.1) with initial condition x(s0) = x0. We point out that the concept of a maximal solution
is given in Definition C.0.15 and sufficient conditions for its existence can be found in Theorem
C.0.17 and Corollaries C.0.20 and C.0.21.

In what follows, we present a result which ensures that the trivial solution of the general-
ized ODE (2.1) is uniformly stable. A version of such a result, when the Lyapunov functional
with respect to the generalized ODE (2.1) is defined in [t0,+∞)×Bρ , Bρ = {y ∈ X ;‖y‖ ≤ ρ},
can be found in [13, Theorem 8.18] or [23, Theorem 3.4] and, for a Lyapunov functional defined
in [t0,+∞)×O , its proofs follows analogously.

Theorem 2.2.8. Let F ∈ F (Ω,h), where h : [t0,+∞)→ R is a nondecreasing function which is
left-continuous on (t0,+∞), and let V : [t0,+∞)×O →R be a Lyapunov functional with respect
to the generalized ODE (2.1). Suppose V satisfies the following conditions:

(LU1) there exists an increasing continuous function a : R+ → R+ satisfying a(0) = 0 and

V (t,y)≤ a(‖y‖),

for all t ∈ [t0,+∞) and all y ∈ O;

(LU2) for every s0 ≥ t0 and every maximal solution x : [s0,ω)→O of the generalized ODE (2.1),
the function [s0,ω) ∋ t ↦→V (t,x(t)) is nonincreasing.

Then, the trivial solution of the generalized ODE (2.1) is uniformly stable.

We end this subsection by presenting a Lyapunov-type theorem on uniform asymptotic
stability. The reader may consult [13, Theorem 8.20] or [23, Theorem 3.6] for a proof.

Theorem 2.2.9. Let F ∈ F (Ω,h), where h : [t0,+∞)→ R is a nondecreasing function which is
left-continuous on (t0,+∞), and let V : [t0,+∞)×O be a Lyapunov functional with respect to
the generalized ODE (2.1). Suppose V satisfies following conditions:

(LA1) there exists an increasing continuous function a : R+ → R+ satisfying a(0) = 0 and

V (t,y)≤ a(‖y‖),

for all t ∈ [t0,+∞) and all y ∈ O;

(LA2) there exists a continuous function Φ : X →R satisfying Φ(0) = 0 and Φ(y)> 0, whenever
y ̸= 0 such that, for all maximal solution x : [s0,ω)→ X of the generalized ODE (2.1) with
s0 ≥ t0, we have

V (s,x(s))−V (t,x(t))≤ (s− t)(−Φ(x(t))) ,
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for every s, t ∈ [s0,ω), with t ≤ s.

Then, the trivial solution of the generalized ODE (2.1) is uniformly asymptotically stable.

2.2.2 Converse Lyapunov theorems

This subsection is devoted to the investigation of a converse Lyapunov theorem on
uniform stability. The results presented here are new and can be found in [6].

Throughout this subsection, we assume that X is a Banach space and O ⊆ X is an open
subset such that 0 ∈ O , where 0 represents the neutral element of X . Consider F ∈ F (Ω,h),
where h : [t0,+∞)→ R is a nondecreasing function which is left-continuous on (t0,+∞) and
Ω=O× [t0,+∞) (see Definitions A.0.17 and C.0.2). Furthermore, we suppose x≡ 0 is a solution
of the generalized ODE (2.1) (see Remark 2.0.1 for a sufficient condition for the existence of
such a solution) and, for all s0 ∈ [t0,+∞) and all x0 ∈ O , there exists a unique maximal solution
x : [s0,ω(s0,x0)) → X of the generalized ODE (2.1) with initial condition x(s0) = x0. In this
case, we denote x(·) by x(·,s0,x0). We point out that the concept of a maximal solution is given
in Definition C.0.15 and sufficient conditions for its existence can be found in Theorem C.0.17
and Corollaries C.0.20 and C.0.21.

The next result gives a characterization of uniform stability of the trivial solution of the
generalized ODE (2.1). Its proof follows as the proof of [30, Lemma 4.1].

Lemma 2.2.10. The trivial solution of the generalized ODE (2.1) is uniformly stable if and only
if there exists a function a : R+ → R+ fufilling the following properties:

(i) a is increasing and continuous;

(ii) a(0) = 0;

(iii) for any x0 ∈ O and any s0 ≥ t0, the solution x(·,s0,x0) of the generalized ODE (2.1)
satisfies

‖x(t,s0,x0)‖ ≤ a(‖x0‖), for all t ∈ [s0,ω(s0,x0)).

Proof. We begin by proving the existence of the function a : R+ → R+. For all ε > 0, let δ̃ (ε)

be the least upper bound of all numbers δ (ε) occurring in Definition 2.2.1-(ii), that is,

δ̃ (ε) = sup{‖x(t,s0,x0)‖;‖x0‖< δ (ε),s0 ≥ t0, t ≥ s0},

where x(·,s0,x0) is the maximal solution of the generalized ODE (2.1) with initial condition
x(s0) = x0. Since the trivial solution of the generalized ODE (2.1) is uniformly stable, for
all s0 ≥ t0 and all x0 ∈ O , with ‖x0‖ < δ (ε), we have ‖x(t,s0,x0)‖ < ε for all t ≥ s0 and,
therefore, δ̃ is well-defined and it is positive for ε > 0. Moreover, for every ε2 > ε1 > 0, we have
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δ̃ (ε1)≤ δ̃ (ε2). Indeed, suppose δ̃ (ε2)< δ̃ (ε1). Then, there exist δ0 > 0 and x̂0 ∈ O such that
δ̃ (ε2)< δ0 < δ̃ (ε1), ‖x̂0‖< δ0 < δ̃ (ε1) and

‖x(t,s0, x̂0)‖ ≥ ε2, for some t ≥ s0. (2.68)

On the other hand, by the uniform stability, we have ‖x(t,s0, x̂0)‖< ε1 < ε2 for all t ≥ s0 which
contradicts (2.68). Therefore, δ̃ (ε) is nondecreasing. In addition, since x ≡ 0 is a solution of
the generalized ODE (2.1), we conclude that δ̃ (ε) → 0 as ε → 0. Owing to the fact that δ̃

is nondecreasing, positive for ε > 0 and tends to zero as ε tends to zero, we may choose an
increasing continuous function δ̂ : R+ → R+ such that δ̃ (ε)< δ̂ (ε) for all ε > 0.

Let a : R+ → R+ be the inverse function of δ̂ . Thus, for any x0 ∈ O with ‖x0‖< δ̂ (ε),

there exists ε1 > 0 such that ‖x0‖= δ̂ (ε1) and, since the trivial solution of the generalized ODE
(2.1) is uniformly stable, we have ‖x(t,s0,x0)‖< ε1 = a(‖x0‖) for all t ≥ s0.

Reciprocally, assume the existence of the function a : R+ → R+. By items (i) and (ii),
for every ε > 0, there exists δ > 0 such that a(δ )< ε . Since a is increasing, item (iii) guarantees
that if x ∈ O is such that ‖x0‖ < δ , then for any s0 ≥ t0 and any solution, x(·,s0,x0), of the
generalized ODE (2.1), we have

‖x(t,s0,x0)‖< a(‖x0‖)< a(δ )< ε

which completes the proof.

By the fact that O is an open set, there exists c > 0 such that Bc = {y ∈ X ;‖y‖< c} ⊂ O .
Let ρ < c and Bρ = {y ∈ X ;‖y‖ ≤ ρ}. For all y ∈ Bρ and all t ∈ [t0,+∞) define

V (t,y) = sup
τ∈[t,ω(t,y))

‖x(τ, t,y)‖, (2.69)

where x : [t,ω(t,y)) → X is the maximal solution of the generalized ODE (2.1) with initial
condition x(t) = y. Notice that, by Lemma 2.2.10, for all y ∈ Bρ and t ∈ [t0,+∞), we have

V (t,y)≤ a(‖y‖)≤ a(ρ).

Therefore, V is well-defined for all t ≥ t0 and all y ∈ Bρ . Moreover, V satisfies

V (t,y)≤ a(‖y‖), for all (t,y) ∈ [t0,+∞)×Bρ . (2.70)

In what follows, we prove that the function V : [t0,+∞)×Bρ → R, defined by (2.69),
satisfies condition (L2) from Definition 2.0.2.

Lemma 2.2.11. Let V : [t0,+∞)×Bρ →R be defined by (2.69). Then, there exists an increasing
continuous function b : R+ → R+ satisfying b(0) = 0 such that

V (t,y)≥ b(‖y‖),

for every (t,y) ∈ [t0,+∞)×Bρ .
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Proof. Let y ∈ Bρ and t ∈ [t0,+∞). Let x : [t,ω(t,y)) → X be the maximal solution of the
generalized ODE (2.1) with initial condition x(t) = y. It is clear that the following inequality

‖y‖ ≤ sup
τ∈[t,ω(t,y))

‖x(τ, t,y)‖=V (t,y)

holds and, hence, the result follows by considering b as the identity function.

As a consequence of Lemmas 2.2.10 and 2.2.11, we obtain the next result.

Lemma 2.2.12. Let V : [t0,+∞)× Bρ → R be defined by (2.69). Then, V (t,0) = 0 for all
t ∈ [t0,+∞).

The next lemma give us condition (L1) from Definition 2.0.2.

Lemma 2.2.13. Let V : [t0,+∞)×Bρ → R be defined by (2.69) and assume that F ∈ F (Ω,h),
where h : [t0,+∞)→ R is a nondecreasing function which is left-continuous on (t0,+∞). Then,

V (·,y) : [t0,+∞)→ R

is left-continuous on (t0,+∞), for all y ∈ Bρ .

Proof. Let σ0 ∈ (t0,+∞), y ∈ Bρ and ε > 0 be given. Since F ∈ F (Ω,h) and h : [t0,+∞)→ R
is left-continuous on (t0,+∞), there exists δ > 0 such that

‖F(y,s)−F(y,σ0)‖ ≤ |h(s)−h(s0)|< ε, for all s ∈ (σ0 −δ ,σ0). (2.71)

Let x : [σ0,ω)→ X be the maximal solution of the generalized ODE (2.1) with initial
condition x(σ0) = y and, for all s ∈ (σ0 −δ ,σ0), define zs : [s,ω)→ X by

zs(t) =

{
y, if t ∈ [s,σ0],

x(t), if t ∈ [σ0,ω)

By Remark A.0.8 and Lemma C.0.9, zs is regulated and, by Corollary C.0.4, the integral∫ t
s DF(zs(τ),v) exists for all t ∈ [s,ω). Moreover, since x is a solution of the generalized ODE

(2.1), for all t ∈ [σ0,ω), we have

zs(σ0)+
∫ t

σ0

DF(zs(τ),v) = x(σ0)+
∫ t

σ0

DF(x(τ),v) = x(t) = zs(t). (2.72)

On the other hand, if t ∈ [s,σ0], then

zs(s)+
∫ t

s
DF(zs(τ),v) = y+

∫ t

s
DF(y,v) = y+F(y, t)−F(y,s).

This fact together with (2.71) reveals

zs(t) = zs(s)+
∫ t

s
DF(zs(τ),v), for all t ∈ [s,σ0]. (2.73)
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Then, equations (2.72) and (2.73) show that zs is a solution of the generalized ODE (2.1) with
zs(s) = y. By the definition of V , we obtain

|V (s,y)−V (σ0,y)|=

∣∣∣∣∣ sup
τ∈[s,ω)

‖zs(τ)‖− sup
τ∈[σ0,ω)

‖x(τ)‖

∣∣∣∣∣= 0, for all s ∈ (σ0 −δ ,σ0)

which proves that V (·,y) : [t0,+∞)→ R is left-continuous at σ0.

The following lemma guarantees that V : [t0,+∞)×Bρ → R, defined by (2.69), satisfies
hypothesis (LU2) from Theorem 2.2.8.

Lemma 2.2.14. The function [s0,ω) ∋ t ↦→ V (t,x(t)) is nonincreasing along every maximal
solution x : [s0,ω)→ Bρ of the generalized ODE (2.1), where V : [t0,+∞)×Bρ → R is defined
by (2.69) and s0 ≥ t0.

Proof. Let x : [s0,ω)→Bρ be a maximal solution of the generalized ODE (2.1) and t1, t2 ∈ [s0,ω)

be such that t1 < t2. Notice that, since x is a maximal solution of the generalized ODE (2.1), for
all t ∈ [t1,ω), we have

x(t,s0,x(s0)) = x(s0)+
∫ t

s0

DF(x(τ),s) = x(s0)+
∫ t1

s0

DF(x(τ),s)+
∫ t

t1
DF(x(τ),s)

= x(t1)+
∫ t

t1
DF(x(τ),s) = x(t, t1,x(t1)).

Analogously, x(t, t2,x(t2)) = x(t,s0,x(s0)) for all t ∈ [t2,ω). Then,

V (t2,x(t2)) = sup
τ∈[t2,ω)

‖x(τ, t2,x(t2))‖

= sup
τ∈[t2,ω)

‖x(τ,s0,x(s0))‖

≤ sup
τ∈[t1,ω)

‖x(τ,s0,x(s0))‖

= sup
τ∈[t1,ω)

‖x(τ, t1,x(t1))‖

= V (t1,x(t1))

and the proof is complete.

The next result shows that the right-derivative of V is non-positive along the solutions of
the generalized ODE (2.1), where V : [t0,+∞)×Bρ →R is defined by (2.69). Its proof is similar
to the proof of Lemma 2.2.14 .

Lemma 2.2.15. Let V : [t0,+∞)×Bρ → R be defined by (2.69). For every s0 ≥ t0 and every
maximal solution x : [s0,ω)⊂ [t0,+∞)→ Bρ of the generalized ODE (2.1), we have

D+V (t,x(t)) := limsup
η→0+

V (t +η ,x(t +η))−V (t,x(t))
η

≤ 0, t ∈ [s0,ω),

that is, the right-derivative of V is non-positive along the solutions of the generalized ODE (2.1).
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Proof. Let s0 ≥ t0 and x : [s0,ω)⊂ [t0,+∞)→ Bρ be a maximal solution of the generalized ODE
(2.1). Then, for all t ∈ [s0,ω) and all τ ∈ [t +η ,ω), with η ≥ 0, we have

x(τ, t,x(t)) = x(t)+
∫

τ

t
DF(x(s),σ) = x(t)+

∫ t+η

t
DF(x(s),σ)+

∫
τ

t+η

DF(x(s),σ)

= x(t +η)+
∫

τ

t+η

DF(x(s),σ) = x(τ, t +η ,x(t +η)).

Thus,

V (t +η ,x(t +η))−V (t,x(t)) = sup
τ∈[t+η ,ω)

‖x(τ, t +η ,x(t +η))‖− sup
τ∈[t,ω)

‖x(τ, t,x(t))‖

= sup
τ∈[t+η ,ω)

‖x(τ, t,x(t))‖− sup
τ∈[t,ω)

‖x(τ, t,x(t))‖

≤ sup
τ∈[t,ω)

‖x(τ, t,x(t))‖− sup
τ∈[t,ω)

‖x(τ, t,x(t))‖= 0.

Therefore,

D+V (t,x(t)) := limsup
η→0+

V (t +η ,x(t +η))−V (t,x(t))
η

≤ 0, t ∈ [s0,ω)

which completes the proof.

In the sequel, we present a converse Lyapunov theorem on uniform stability.

Theorem 2.2.16. Let F ∈F (Ω,h), where h : [t0,+∞)→R is a nondecreasing function which is
left-continuous on (t0,+∞). If the trivial solution x ≡ 0 of the generalized ODE (2.1) is uniformly
stable, then there exists a functional V : [t0,+∞)×Bρ → R, 0 < ρ < c satisfying:

(CLU1) there exists an increasing continuous function a : R+ → R+ satisfying a(0) = 0, such that

V (t,y)≤ a(‖y‖),

for all t ∈ [t0,+∞) and y ∈ Bρ ;

(CLU2) there exists an increasing continuous function b : R+ → R+, with b(0) = 0, such that

V (t,y)≥ b(‖y‖),

for every (t,y) ∈ [t0,+∞)×Bρ ;

(CLU3) V (t,0) = 0 for all t ∈ [t0,+∞);

(CLU4) V (·,y) : [t0,+∞)→ R is left-continuous on (t0,+∞), for all y ∈ Bρ ;

(CLU5) for every s0 ≥ t0, the function [s0,ω)∋ t ↦→V (t,x(t)) is nonincreasing along every maximal
solution x : [s0,ω)→ Bρ , of the generalized ODE (2.1).
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(CLU6) for every s0 ≥ t0 and every maximal solution x : [s0,ω)⊂ [t0,+∞)→ Bρ of the generalized
ODE (2.1), we have

D+V (t,x(t)) := limsup
η→0+

V (t +η ,x(t +η))−V (t,x(t))
η

≤ 0, t ∈ [s0,ω),

that is, the right-derivative of V is non-positive along the solutions of the generalized ODE
(2.1);

Proof. Let V : [t0,+∞)×Bρ → R be defined by (2.69). Then, items (CLU1), (CLU2), (CLU3),
(CLU4), (CLU5) and (CLU6) are straightforward consequence of Lemmas 2.2.10, 2.2.11, 2.2.12,
2.2.13, 2.2.14 and 2.2.15 respectively.

Remark 2.2.17. Conditions (CLU2), (CLU4) and (CLU6) from Theorem 2.2.16 guarantee that
the function V : [t0,+∞)×X → R, defined by (2.69), is a Lyapunov functional with respect to
the generalized ODE (2.1) in the framework of Definition 2.0.2. On the other hand, conditions
(CLU2), (CLU4) and (CLU5) given in Theorem 2.2.16, show that V satisfies all the conditions
of the definition of a Lyapunov functional presented in [22, 23]. Therefore, no matter which
definition of Lyapunov functional we are using, Theorem 2.1.19 ensures that uniform stability
for generalized ODEs implies in the existence of a Lyapunov functional. Moreover, conditions
(CLU1) and (CLU5) in Theorem 2.2.16 show that V satisfies the hypotheses (LU1) and (LU2)
from the Lyapunov-type theorem 2.1.7 on uniform stability.

2.3 Relations
In this section, we use the Lyapunov theorems, described in Sections 2.1 and 2.2, to

obtain relations between regular stability and uniform stability for the trivial solution of the
generalized ODE (2.1). At first, we recall that F in the right-hand side of the generalized ODE
(2.1) belongs to the class F (Ω,h), where Ω = O × [t0,+∞), O is an open set containing the
neutral element of the Banach space X and h : [t0,+∞)→ R is a nondecreasing function which
is left-continuous on (t0,+∞).

The next result shows regular stability implies uniform stability.

Theorem 2.3.1. If the trivial solution of the generalized ODE (2.1) is regularly stable, then it is
uniformly stable.

Proof. By Theorem 2.1.19, there exists a Lyapunov functional V : [t0,+∞)×O →R with respect
to the generalized ODE (2.1). Moreover, V satisfies all conditions from Theorem 2.2.8 which, in
turn, implies that the trivial solution of the generalized ODE (2.1) is uniformly stable.

The next diagram illustrates the relations between the concepts of regular stability and
uniform stability, where, by R we mean regular stability, U represents uniform stability for
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generalized ODEs, pR denotes regular stability with respect to perturbations and pU means
uniform stability with respect to perturbations.

R U

pR pU

Th.2.3.1

Th.2.1.5 Th.2.2.4 (2.74)

Moreover, if h : [t0,+∞)→ R is bounded, then we have the following diagram.

R U

pR pU

Th.2.3.1

Th.2.2.7Th.2.1.5 Th.2.2.4 (2.75)

In what follows, we relate regular asymptotic stability to uniform asymptotic stability.

Using Theorem 2.1.29 instead of 2.1.19 and Theorem 2.2.9 instead of 2.2.8 in the proof
of Theorem 2.3.1, we obtain the following result.

Theorem 2.3.2. If the trivial solution of the generalized ODE (2.1) is regular asymptotically
stable, then it is uniformly asymptotically stable.

Therefore, if RA, pRA, UA and pUA denotes, respectively, regular asymptotic stability,
regular asymptotic stability with respect to perturbations, uniform asymptotic stability and
uniform asymptotic stability with respect to perturbations, then we have the following diagrams

RA UA

pRA pUA

Th.2.3.2

Th.2.1.5 Th.2.2.4 (2.76)

and, if in addition h : [t0,+∞)→ R is bounded, then

RA UA

pRA pUA

Th.2.3.2

Th.2.2.7Th.2.1.5 Th.2.2.4 (2.77)

We point out that, in [48], Štefan Schwabik proved a Lypunov-type theorem and a
converse Lyapunov theorem on a different type of stability for the generalized ODE (2.1) called
variational stability. Therefore, using the same arguments of this section, one can prove that the
following implications hold:

V UA

pV pUA

Th.2.2.4 (2.78)
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and
VA UA

pVA pUA

Th.2.2.4 (2.79)

Moreover, if h : [t0,+∞)→ R is bounded, then

V UA

pV pUA

Th.2.2.7 Th.2.2.4 (2.80)

and
VA UA

pVA pUA

Th.2.2.7 Th.2.2.4 (2.81)

where V, VA, pV and pVA denote, respectively, variational stability, variational asymptotically
stability, variational stability with respect to perturbations and variational asymptotically stability
with respect to perturbations.
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CHAPTER

3
BOUNDEDNESS OF SOLUTIONS

Concepts of boundedness of solution in the setting of generalized ODEs were firstly
introduced in [2] and were inspired by the definitions of boundedness of solutions of impulsive
functional differential equations presented in [20, 29, 42, 54]. Motived by [2], the authors of [22]
proved several criteria, via Direct Method of Lyapunov, for the boundedness of solutions of
generalized ODEs and, using the correspondence between the solutions of these equations
and the solutions of measure differential equations, they were able to introduce new concepts
of boundedness of solutions in the framework of measure differential equations and to prove
Lyapunov-type theorems on boundedness of solutions of these equations.

Our goal in this chapter is to present Lyapunov-type theorems, borrowed from [13, 22]
and to prove that uniform boundedness of solutions of generalized ODEs implies the existence
of a Lyapunov functional (see Definition 2.0.2). Furthermore, we introduce concepts of uniform
boundedness of solutions of a perturbed generalized ODE, we give sufficient conditions for the
uniform boundedness of solutions of a perturbed generalized ODE to imply uniform boundedness
of solutions of a homogeneous generalized ODE and vice-versa. Almost all results presented in
this chapter are new and can be found in [6].

We consider X a Banach space, t0 ∈ R with t0 ≥ 0, and F ∈ F (X × [t0,+∞),h), where
h : [t0,+∞)→R is a nondecreasing function which is left-continuous on (t0,+∞) (see Definitions
A.0.17 and C.0.2). Furthermore, consider the following generalized ODE

dx
dτ

= DF(x, t). (3.1)

By Corollary C.0.20, for all t ∈ [t0,+∞) and all y ∈ X , there exists a unique global forward
solution x : [t,+∞)→ X of the generalized ODE (3.1) with initial condition x(t) = y and we
denote x(·) by x(·,y, t).

In the sequel, we recall concepts of boundedness of solutions in the setting of generalized
ODEs described in [2].
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Definition 3.0.1. We say that the generalized ODE (3.1) is

(i) uniformly bounded, if for every α > 0, there exists M = M(α) > 0 such that, for all
s0 ∈ [t0,+∞) and all x0 ∈ X , with ‖x0‖< α , we have

‖x(s,s0,x0)‖= ‖x(s)‖< M, for all s ≥ s0,

where x : [s0,+∞)→ X is a global forward solution of the generalized ODE (3.1) with
initial condition x(s0) = x0;

(ii) quasi-uniformly ultimately bounded, if there exists B > 0 such that for every α > 0, there
exists T = T (α) > 0, such that for all s0 ∈ [t0,+∞) and all x0 ∈ X , with ‖x0‖ < α , we
have

‖x(s,s0,x0)‖= ‖x(s)‖< B, for all s ≥ s0 +T,

where x : [s0,+∞)→ X is a global forward solution of the generalized ODE (3.1) with
initial condition x(s0) = x0;

(iii) uniform ultimately bounded, if it is uniformly bounded and quasi-uniformly ultimately
bounded.

In [22], the authors proved the following result which gives a sufficient condition for the
uniform boundedness of a solution of the generalized ODE (3.1). For a proof of it, the reader
may consult [13, Theorem 11.3] or [22, Theorem 3.5].

Theorem 3.0.2. Let V : [t0,+∞)×X → R satisfy the following conditions:

(LB1) for each z ∈ G−([α,β ],X), the function [α,β ]∋ t →V (t,z(t)) is left-continuous on (α,β ];

(LB2) there are two increasing functions p,b : R+ → R+ such that p(0) = b(0) = 0,

lim
s→+∞

b(s) = +∞

and

b(‖y‖)≤V (t,y)≤ p(‖y‖),

for every (t,y) ∈ [t0,+∞)×X ;

(LB3) for every s0 ≥ t0 and every global forward solution x : [s0,+∞)→ X of the generalized
ODE (3.1), we have

V (s,x(s))−V (t,x(t))≤ 0,

for every s0 ≤ t < s <+∞.

Then, the generalized ODE (3.1) is uniformly bounded.
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In what follows, we target to prove a converse Lyapunov theorem.

Assume that the generalized ODE (3.1) is uniformly bounded. For all t ∈ [t0,+∞) and
all y ∈ X define

V (t,y) = sup
τ∈[t,+∞)

‖x(τ, t,y)‖, (3.2)

where x : [t,+∞)→ X is the global forward solution of the generalized ODE (3.1) with initial
condition x(t) = y.

Let α = ‖y‖ > 0. Since the generalized ODE (3.1) is uniformly bounded, there exists
M = M(2α)> 0 such that

‖x(τ, t,y)‖ ≤ M for all τ ≥ t.

Then, V is well-defined for all (t,y) ∈ [t0,+∞)×X .

The next result ensures that the boundedness of solutions of the generalized ODE (3.1)
implies the existence of a Lyapunov functional satisfying some conditions of Theorem 3.0.2.
The reader may check Definition 2.0.2 for the concept of a Lyapunov functional.

Theorem 3.0.3. If the generalized ODE (3.1) is uniformly bounded, then there exists a function
V : [t0,+∞)×X → R satisfying:

(CB1) there exists an increasing continuous function b : R+ → R+ such that b(0) = 0,

lim
s→+∞

b(s) = +∞,

and

b(‖y‖)≤V (t,y),

for every (t,y) ∈ [t0,+∞)×X ;

(CB2) V (·,y) is left-continuous on (t0,+∞) for every y ∈ X ;

(CB3) for every s0 ≥ t0 and every global forward solution x : [s0,+∞)→ X of the generalized
ODE (3.1), we have

V (s,x(s))−V (t,x(t))≤ 0,

for every s0 ≤ t < s <+∞;

(CB4) for all s0 ≥ t0 and all global forward solution x : [s0,+∞)→ X of the generalized ODE
(3.1), we have

D+V (t,x(t)) := limsup
η→0+

V (t +η ,x(t +η))−V (t,x(t))
η

≤ 0, t ∈ [s0,+∞),

that is, the right-derivative of V is non-positive along the solutions of the generalized ODE
(3.1);
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(CB5) there exists an increasing function p : R+ → R+ such that p(0) = 0 and

p(‖y‖)≥V (t,y),

for every (t,y) ∈ [t0,+∞)×X ;

(CB6) V (t,0) = 0 for all t ∈ [t0,+∞).

Proof. Let V : [t0,+∞)×X → R be defined by (3.2). The proofs of items (CB1), (CB2), (CB3)
and (CB4) are analogous to the proofs of Lemmas 2.2.11, 2.2.13, 2.2.14 and 2.2.15 respectively.
Therefore, we omit them here.

Let us prove condition (CB5). Let α > 0. Then, by Definition 3.0.1-(i), for all s0 ≥ t0
and x0 ∈ X with ‖x0‖< α , there exists M(α)> 0 such that ‖x(s,s0,x0)‖< M(α) for all s ≥ s0.
Therefore, the set

{‖x(s,s0,x0)‖;‖x0‖< α,s0 ≥ t0,s ≥ s0}

is upper bounded for all s ≥ s0. Define M : R+ → R+ by

M(α) =

{
sup{‖x(s,s0,x0)‖;‖x0‖< α,s0 ≥ t0,s ≥ s0}, if α > 0,
0, if α = 0.

At first, we prove that M is nondecreasing. Indeed, let 0 < α1 < α2 and consider

A = {‖x(s,s0,x0)‖;‖x0‖< α1,s0 ≥ t0,s ≥ s0} and

B = {‖x(s,s0,x0)‖;‖x0‖< α2,s0 ≥ t0,s ≥ s0}.

Then, it is clear that A ⊂ B which implies that M(α1)≤ M(α2). Since M may not be increasing,
we can choose a function M̂ : [0,+∞)→ [0,+∞) which is non-negative, increasing such that
M̂(0) = 0 and M(α)≤ M̂(α) for all α > 0. Define p : R+ → R+ by

p(t) =

 0, t = 0,
lim

ε→0+
M̂(t + ε), t > 0.

Then, if 0 ≤ t1 < t2, we have

p(t1) = M̂(t+1 )< M̂(t2)≤ M̂(t+2 ) = p(t2)

which shows that p is an increasing function.

It remains to demonstrate that p satisfies the following inequality

p(‖y‖)≥V (t,y), for all (t,y) ∈ [t0,+∞)×X .

Let y ∈ X and t ∈ [t0,+∞) be given and take α = ‖y‖+ ε , where ε is sufficiently small. Let
x(·, t,y) be the global forward solution of the generalized ODE (3.1) with initial condition
x(t) = y. Then, by the definition of M(·) and M̂(·), we have

‖x(τ, t,y)‖ ≤ M(α)≤ M̂(α) = M̂(‖y‖+ ε),
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for all τ ∈ [t,+∞), which implies

V (t,y) = sup
τ∈[t,+∞)

‖x(τ, t,y)‖= lim
ε→0+

sup
τ∈[t,+∞)

‖x(τ, t,y)‖ ≤ lim
ε→0+

M̂(‖y‖+ ε) = p(‖y‖),

for all τ ∈ [t,+∞). Therefore, condition (CB5) is proved.

To finish this proof, we notice that (CB6) is a consequence of conditions (CB1) and
(CB5), once

0 = b(0)≤V (t,0)≤ p(0) = 0,

for all t ∈ [t0,+∞).

Although the next result is similar to Theorem 3.0.3, it shows that, with the additional
hypothesis that x ≡ 0 is a solution of the generalized ODE (3.1), the boundedness of solutions
of the generalized ODE (3.1) implies the existence of a Lyapunov functional satisfying all
conditions of the Lyapunov-type Theorem on uniform stability 2.2.8.

Theorem 3.0.4. If the generalized ODE (3.1) is uniformly bounded and x ≡ 0 is a solution of
the generalized ODE (3.1), then there exists a function V : [t0,+∞)×X → R satisfying:

(CB1) there exists an increasing continuous functions b : R+ → R+ such that b(0) = 0,

lim
s→+∞

b(s) = +∞,

and
b(‖y‖)≤V (t,y),

for all (t,x) ∈ [t0,+∞)×X ;

(CB2) for every s0 ≥ t0 and every global forward solution x : [s0,+∞) → X , s0 ≥ t0, of the
generalized ODE (3.1), we have

V (s,x(s))−V (t,x(t))≤ 0,

for all s0 ≤ t < s <+∞;

(CB3) V (·,y) is left-continuous on (t0,+∞) for every y ∈ X ;

(CB4) for all s0 ≥ t0 and all global forward solution x : [s0,+∞)→ X of the generalized ODE
(3.1), we have

D+V (t,x(t)) := limsup
η→0+

V (t +η ,x(t +η))−V (t,x(t))
η

≤ 0, t ∈ [s0 +∞),

that is, the right-derivative of V is non-positive along the solutions of (3.1);

(CB5) there exist an increasing continuous functions a : R+ → R+ such that a(0) = 0 and

V (t,y)≤ a(‖y‖),

for every (t,y) ∈ [t0,+∞)×X ;
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(CB6) V (t,0) = 0 for all t ∈ [t0,+∞).

Proof. Let V : [t0,+∞)×X → R be defined by (3.2). By Theorem 3.0.3, items (CB1) to (CB4)
hold. Therefore, it remains to prove items (CB5) and (CB6).

In order to prove item (CB5), we take α > 0 and define

M̃(α) = sup{‖x(s,s0,x0)‖;‖x0‖< α,s0 ≥ t0,s ≥ s0}.

Since the generalize ODE (3.1) is uniformly bounded, for all s0 ∈ [t0,+∞) and all x0 ∈ X with
‖x0‖ < α , there exists M(α) > 0 such that ‖x(s,s0,x0)‖ < M(α) for all s ≥ s0 and, therefore,
M̃(α) is well-defined for all α > 0. It is also clear that M̃(α) is nondecreasing (see the proof of
Theorem 3.0.3). Let M : R+ → R+ be defined by

M(α) = inf{M̃(r);α < r} for all α ∈ R+.

We target to prove that M(α) is nondecreasing. Let 0 < α1 < α2, then M(α1) ≤ M̃(r)

for all r > α1. In particular, M(α1)≤ M̃(r) for all r > α2 > α1 which enables M(α1)≤ M(α2).

Moreover, we claim that M is right-continuous on [0,+∞). Indeed, let α0 ∈ [0,+∞)

be fixed and ε > 0. By the property of the infimum, there exists c ∈ {M̃(r);α0 < r} such that
M(α0)≤ c < M(α0)+ ε . Since c ∈ {M̃(r);α0 < r}, it is clear that there exists δ > 0 such that
c = M̃(α0 +δ ) and, hence,

M(α0)≤ M̃(α0 +δ )< M(α0)+ ε. (3.3)

Despite this fact, M̃(α0 +δ ) ∈ {M̃(r);α < r} for all α ∈ (α0,α0 +δ ) and, by the definition of
M, we have M(α)≤ M̃(α0 +δ ). Thus, by (3.3), we get

M(α)≤ M̃(α0 +δ )≤ M(α0)+ ε (3.4)

which proves that M is right-continuous on [0,+∞).

Furthermore, we point out that M(0) = 0. In fact, let αk =
1
k for k ∈ N and xk be the

solution of the generalized ODE (2.1) with initial condition xk(s0) = xk,0 such that ‖xk,0‖< αk

and s0 ≥ t0, where the existence of such a solution is guaranteed by Corollary C.0.20. Then,
xk,0 goes to zero as k → ∞. By Proposition C.0.23, with Fk = F for all k = 0,1,2, . . ., we have
limk→∞ xk(s) = x(s) for all s ∈ [s0,+∞), where x is the solution of the generalized ODE (2.1)
with initial condition x(s0) = 0. Once x ≡ 0 is a solution of the generalized ODE (3.1) and,
by the uniqueness of a solution, we infer that x ≡ 0 and limk→∞ xk(s) = 0 for all s ∈ [s0,+∞).
Consequently, M(α) goes to zero as α goes to zero and, since M is right-continuous on [0,+∞),
we conclude that M(0) = 0.

From the previous paragraphs, M is nondecreasing, positive, right-continuous on [0,+∞)

and M(0) = 0. Therefore, there exists an increasing continuous function a : R+ → R+ such that
a(α)≥ M(α) for all α ∈ [0,+∞) and a(0) = 0.
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Finally, for all t ∈ [t0,+∞) and all y ∈ X , we have

V (t,y) = sup
τ∈[t,+∞)

‖x(τ, t,y)‖< M̃(α), for all α > ‖y‖

which implies
V (t,y)≤ inf{M̃(α),‖y‖< α}= M(‖y‖)≤ a(‖y‖)

and condition (CB5) is proved.

Moreover, condition (CB6) follows from (CB1) and (CB5), since

0 = b(0)≤V (t,0)≤ a(0) = 0, for all t ∈ [t0,+∞).

Therefore, the proof of the theorem is complete.

Consider the perturbed generalized ODE

dx
dτ

= D[F(x, t)+P(t)], (3.5)

where F : Ω → X and P : [t0,+∞)→ X is a left-continuous function on (t0,+∞) such that

sup
s∈[t0,+∞)

‖P(s)−P(t0)‖< ∞.

Notice that, sups∈[t0,t] ‖P(s)−P(t0)‖< ∞ for all t ∈ [t0,+∞) and, by Proposition A.0.20,
the function g : [t0,+∞) → R, defined by g(t) = sups∈[t0,t] ‖P(s)−P(t0)‖, is a nondecreasing
function which is left-continuous on (t0,+∞). Therefore, as we mentioned in Remark 2.1.3, the
function x : [α,β ]→ X is a solution of the perturbed generalized ODE (3.5) on [α,β ]⊂ [t0,+∞),
if (x(s),s) ∈ Ω, for all s ∈ [α,β ], and the following equality

x(t) = x(α)+
∫ b

α

DF(x(τ),s)+P(t)−P(α)

holds for all t ∈ [α,β ]. Moreover, since we are considering Ω = X × [t0,+∞), Corollary C.0.20
ensures the existence of a unique global forward solution x : [s0,+∞) → X of the perturbed
generalized ODE (3.5) with initial condition x(s0) = x0, for all s0 ∈ [t0,+∞) and all x0 ∈ X .

In what follows, we introduce a concept of uniform boundedness of solutions of the
perturbed generalized ODE (3.5).

Definition 3.0.5. We say that the perturbed generalized ODE (3.5) is

(i) uniformly bounded, if for every α > 0, there exists M = M(α) > 0 such that, for all
s0 ∈ [t0,+∞) and for all x0 ∈ X , with ‖x0‖< α , we have

‖x(s,s0,x0)‖< M, for all s ≥ s0,

where x : [s0,+∞)→ X is a global forward solution of the perturbed generalized ODE
(3.5) with initial condition x(s0) = x0;
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(ii) quasi-uniformly ultimately bounded, if there exists B > 0 such that for every α > 0, there
exists T = T (α)> 0, such that for all s0 ∈ [t0,+∞) and for all x0 ∈ X , with ‖x0‖< α , we
have

‖x(s,s0,x0)‖< B, for all s ≥ s0 +T,

where x : [s0,+∞)→ X is a global forward solution of the perturbed generalized ODE
(3.5) with initial condition x(s0) = x0;

(iii) uniform ultimately bounded, if it is uniformly bounded and quasi-uniformly ultimately
bounded.

The next results relate the concepts of Definitions 3.0.1 and 3.0.5. The proof of first one
is analogous to that of Theorem 2.2.3 and, therefore, we omit it here.

Theorem 3.0.6. The following statements hold.

(i) If the perturbed generalized ODE (3.5) is uniformly bounded, then the generalized ODE
(3.1) is uniformly bounded.

(ii) If the perturbed generalized ODE (3.5) is quasi-uniformly ultimately bounded, then the
generalized ODE (3.1) is quasi-uniformly ultimately bounded.

(iii) If the perturbed generalized ODE (3.5) is uniform ultimately bounded, then the generalized
ODE (3.1) is uniform ultimately bounded.

Theorem 3.0.7. Let F ∈ F (Ω,h), where h : [t0,+∞)→ R is a nondecreasing function which
is left-continuous on (t0,+∞). Furthermore, assume that h is bounded. If the generalized ODE
(3.1) is uniformly bounded, then the perturbed generalized ODE (3.5) is uniformly bounded.

Proof. Let x : [s0,+∞)→ X be the global forward solution of the perturbed generalized ODE
(2.6) with initial condition x(s0) = x0, α > 0 and x : [s0,+∞)→ X be the global forward solution
of the generalized ODE (2.1) with initial condition x(s0) = x0. For all t ≥ s0, we have

‖x(t)− x(t)‖ ≤
∥∥∥∥∫ t

s0

D[F(x(τ),s)−F(x(τ),s)]
∥∥∥∥+‖P(t)−P(s0)‖

≤
∥∥∥∥∫ t

s0

D[F(x(τ),s)−F(x(τ),s)]
∥∥∥∥+ sup

s∈[s0,+∞)

‖P(s)−P(s0)‖.

Then, by Lemma C.0.6, we have

‖x(t)− x(t)‖ ≤
∫ t

s0

‖x(s)− x(s)‖dh(s)+ sup
s∈[s0,+∞)

‖P(s)−P(s0)‖,

for all t ≥ s0. Thus, by hypotheses, sups∈[s0,+∞) ‖P(s)−P(s0)‖< ∞, h is nondecreasing and it is
left-continuous on (t0,+∞) and, by Lemma 2.2.5, the function [s0,+∞) ∋ t ↦→ ‖x(t)− x(t)‖ is
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bounded. Therefore, we are under the hypotheses of the Gronwall-type inequality (see Theorem
B.0.10) and, hence,

‖x(t)− x(t)‖ ≤ sup
s∈[s0,+∞)

‖P(s)−P(s0)‖e|h(t)−h(s0)| ≤ sup
s∈[s0,+∞)

‖P(s)−P(s0)‖eH ,

where H = supt∈[t0,+∞) |h(t)−h(t0)|.

On the other hand, since the generalized ODE (3.1) is uniformly bounded, there exists
M = M(α)> 0 such that if ‖x0‖< α , then

‖x(t)‖< M, for all t ≥ s0.

Taking M̃ = M+ sups∈[s0,+∞) ‖P(s)−P(s0)‖eH , we obtain

‖x0‖< α ⇒‖x(t)‖< M̃, for all t ≥ t0,

yielding that the perturbed generalized ODE (3.5) is uniformly bounded.

The proof of the following theorem is analogous to that of Theorem 3.0.7 and, therefore,
we omit it here.

Theorem 3.0.8. Let F ∈ F (Ω,h), where h : [t0,+∞)→ R is a nondecreasing function which is
left-continuous on (t0,+∞). Furthermore, assume that h is bounded. Then, the next assertions
are true.

(i) If the generalized ODE (3.1) is quasi-uniformly ultimately bounded, then the perturbed
generalized ODE (3.5) is quasi-uniformly ultimately bounded.

(ii) If the generalized ODE (3.1) is uniform ultimately bounded, then the perturbed generalized
ODE (3.5) is uniform ultimately bounded.
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CHAPTER

4
STABILITY X BOUNDEDNESS OF

SOLUTIONS

In this chapter, we relate the concepts of stability and boundedness of solutions of
generalized ODEs, presented in Chapters 2 and 3.

Consider the following generalized ODE

dx
dτ

= DF(x, t), (4.1)

where X is a Banach space, t0 ∈R with t0 ≥ 0, and F : X × [t0,+∞)→ X is an X-valued function.
Moreover, we assume that x ≡ 0 is a solution of the generalized ODE (4.1) (see Remark 2.0.1
for a sufficient condition for the existence of such solution) and F ∈ F (X × [t0,+∞),h), where
h : [t0,+∞)→R is a nondecreasing function which is left-continuous on (t0,+∞) (see Definitions
A.0.17 and C.0.2). Under these conditions, for all (x0,s0) ∈ X × [t0,+∞), there exists a unique
global forward solution x : [s0,+∞)→ X of the generalized ODE (4.1) with initial condition
x(s0) = x0. See Corollary C.0.20.

The next result is a consequence of Theorems 2.2.8 and 3.0.4.

Corollary 4.0.1. If the generalized ODE (4.1) is uniformly bounded, then the trivial solution of
the generalized ODE (4.1) is uniformly stable.

Proof. By Theorem 3.0.4, there exists a Lyapunov functional V : [t0,+∞)×X → R with respect
to the generalized ODE (4.1) which satisfies all the hypotheses of Theorem 2.2.8 , which in turns,
implies that the trivial solution of the generalized ODE (4.1) is uniformly stable.

Now, consider the perturbed generalized ODE

dx
dτ

= DF(x, t)+P(t), (4.2)



82 Chapter 4. Stability x boundedness of solutions

where P : [t0,+∞)→ X is left-continuous on (t0,+∞) and

sup
s∈[t0,+∞)

‖P(s)−P(t0)‖< ∞.

Notice that, sups∈[t0,t] ‖P(s)−P(t0)‖< ∞ for all t ∈ [t0,+∞) and, by Proposition A.0.20,
the function g : [t0,+∞) → R, defined by g(t) = sups∈[t0,t] ‖P(s)−P(t0)‖, is a nondecreasing
function and it is left-continuous on (t0,+∞). Therefore, as we mentioned in Remark 2.1.3,
Corollary C.0.20 guarantees that, for all (x0,s0) ∈ Ω, the exists a unique global forward solution
x : [s0,+∞) → X of the perturbed generalized ODE (4.2) with initial condition x(s0) = x0.
Moreover, by the definition of solution, we have

x(t) = x0 +
∫ t

s0

DF(x(τ), t)+P(t)−P(s0), for all t ∈ [s0,+∞).

In the sequel, we establish a relation between boundedness of solutions of the perturbed
generalized ODE (4.2) and uniform stability for the generalized ODE (4.1).

Corollary 4.0.2. If the perturbed generalized ODE (4.2) is uniformly bounded, then the trivial
solution of the generalized ODE (4.1) is uniformly stable.

Proof. By Theorem 3.0.6, the generalized ODE (4.1) is uniformly bounded. Then, by Corollary
4.0.1, the trivial solution of the generalized ODE (2.1) is uniformly stable.

The next result is a consequence of the converse Lyapunov theorems for generalized
ODEs presented in Chapters 2 and 3 and it will be crucial to prove the asymptotic controllability
results for generalized ODEs in Chapter 5.

Corollary 4.0.3. If the function h from the class F (X × [t0,+∞),h) is bounded, then the trivial
solution of the generalized ODE (4.1) is uniformly stable with respect to perturbations.

Proof. Let α > 0, s0 ≥ t0, x0 ∈ X , with ‖x0‖< α , and x : [s0,+∞)→ X be the global forward
solution of the generalized ODE (4.1) with initial condition x(s0) = x0. Then, by Lemma C.0.9,
for all t ∈ [s0,+∞), we have

‖x(t)− x0‖ ≤ |h(t)−h(s0)| ≤ |h(t)−h(t0)|+ |h(s0)−h(t0)|< 2H,

where H = sups∈[s0,+∞) |h(s)−h(t0)|. Taking M(α) = α +2H, we obtain ‖x(t)‖< M(α) for all
t ∈ [s0,+∞) which implies that the generalized ODE (4.1) is uniformly bounded. Finally, by
Corollary 4.0.1, the trivial solution of the generalized ODE (4.1) is uniformly stable and, by
Theorem 2.2.7, it is uniformly stable with respect to perturbations.

We end this chapter by presenting a diagram which illustrates the relations above, where
U means uniform stability for the trivial solution of the generalized ODE (4.1), B denotes uniform



83

boundedness of solutions of the generalized ODE (4.1), pU uniform stability with respect to
perturbations for the trivial solution of the generalized ODE (4.1), and pB stands for the uniform
boundedness of solutions of the perturbed generalized ODE (4.2)

U pU

B pB

Th.2.2.7
Th.2.2.4

Cor.4.0.1

Th.3.0.7
Th.3.0.6

(4.3)

It can be inferred from the diagram that generalized ODEs are robust with respect to
perturbations, when this “robustness” concerns the uniform boundedness of solutions or the
uniform stability of the trivial solution, and not only this, but also that boundedness of solutions
implies uniform stability (see Corollary 4.0.1). Moreover, by diagram (2.75), we have

R U pU

pR B pB

Th.2.3.1 Th.2.2.7
Th.2.2.4

Th.2.1.5 Cor.4.0.1

Th.3.0.7
Th.3.0.6

(4.4)

where, R and pR denote regular stability and regular stability with respect to perturbations
respectively.
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CHAPTER

5
ASYMPTOTIC CONTROLLABILITY

In this chapter, we use Lyapunov techniques to give necessary and sufficient conditions
for a nonlinear perturbed generalized ODEs to be asymptotic controllable. The results presented
here are new and can be found in [6].

In the following lines, we specify our contributions concerning control theory.

In [53], the author proved that an ordinary differential equation of the form

ẋ(t) = f (x(t),u(t)) (5.1)

is asymptotic controllable if and only if there exists a continuous Lyapunov functional V :Rn →R
(satisfying some conditions) with respect to (5.1), where f is locally Lipschitz on the second
variable, x(t) ∈ Rn, u(t) ∈U and U is a locally compact metric space (see [53, Theorem 2.5]).
The continuity of the Lyapunov functional is strongly used in the proof of [53, Theorem 2.5]. In
the present work, our Lyapunov functional V : X × [t0,+∞)→ R with respect to the generalized
ODE

dx
dτ

= DF(x, t) (5.2)

is a two-variable functional which does not need to be continuous on the first variable and is
left-continuous on the second variable (see Definition 2.0.2). Thus, discontinuities are allowed.
Moreover, our results do not require any Lipschitz-type condition on the right-hand side F . Our
requirements are compatible with applications to retarded Volterra–Stieljes integral equations
whose solutions may undergo jumps (see Chapter 6-Section 6.4). The interested reader may
notice that the results from [35, 45, 53, 55] require continuity of the Lyapunov functional.

In addition, we consider a perturbed generalized ODE of the form

dx
dτ

= D[F(x, t)+u(t)] (5.3)

where F : X × [t0,+∞) → X and u : [t0,+∞) → X satisfy some properties and X is a Banach
space. Having in mind that the Lyapunov functional with respect to (5.2) does not need to be
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continuous, we used the converse Lyapunov theorems (see Theorems 2.2.16, 3.0.3 and 3.0.4
presented in the previous chapters) and the relations described previously in order to give a
characterization of the asymptotic controllability of equation (5.3). See Theorem 5.0.2 and
Corollary 5.0.3. In particular, our results generalize those presented in [53].

Let X be a Banach space and Ω = X × [t0,+∞), where t0 ≥ 0. Consider the perturbed
generalized ODE given by

dx
dτ

= D[F(x, t)+u(t)], (5.4)

where F : Ω → X and u : [t0,+∞)→ X is a control function and assume following conditions:

(AC1) F(0, t)−F(0,s) = 0 for t,s ≥ t0;

(AC2) F ∈ F (Ω,h), where h : [t0,+∞)→ R is nondecreasing, left-continuous on (t0,+∞) and
bounded. See Definitions A.0.17 and C.0.2

By condition (AC1) and Remark 2.0.1, the following generalized ODE

dx
dτ

= DF(x, t) (5.5)

admits trivial solution and, by condition (AC2), for all (x0,s0) ∈ X × [t0,+∞), there exists
a unique global forward solution x : [s0,+∞) → X of the generalized ODE (5.5) with initial
condition x(s0) = x0. See Corollary C.0.20. Moreover, for all ξ ∈ X and all control function
u : [t0,+∞)→ X , we denote by x(·,ξ ,u) the global forward solution of the perturbed generalized
ODE (5.4) with initial condition x(t0) = ξ ∈ X and control u, provided it exists.

In the sequel, we give a definition of asymptotic controllability for generalized ODEs.

Definition 5.0.1. The perturbed generalized ODE (5.4) is asymptotically controllable, if the
following properties hold:

(i) (global part) for each ξ in X , there exists a control u such that x(t) = x(t,ξ ,u) is defined
for all t ≥ t0 and, moreover, x(t) goes to 0 as t goes to ∞;

(ii) (stability) for each ε > 0, there exists δ > 0 such that for any state ξ ∈ X , with ‖ξ‖ ≤ δ ,
there is a control u as in (i) such that ‖x(t)‖ ≤ ε for all t ≥ t0;

(iii) (bounded controls) there exist positive numbers η , k such that, if ξ given in (ii) satisfies
‖ξ‖< η , then the control u satisfies ‖u‖ ≤ k, where ‖u‖= sups∈[t0,+∞) ‖u(s)‖.

The next result gives sufficient conditions for the perturbed generalized ODE (5.4) to be
asymptotically controllable.

Theorem 5.0.2. If conditions (AC1) and (AC2) hold, then the perturbed generalized ODE (5.4)
is asymptotically controllable.
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Proof. If ξ = 0, then x ≡ 0 is a solution of the perturbed generalized ODE (5.4) with control
u ≡ 0 and it is clear that conditions (i) to (iii) of Definition 5.0.1 are fulfilled.

Let ξ ∈ X , ξ ̸= 0. Consider u : [t0,+∞)→ X given by

u(t) =

{
0, t = t0
−ξ , t > t0.

and x : [t0,+∞)→ X given by

x(t) =

{
ξ , t = t0
0, t > t0.

Then, for all t > 0, we have

x(t0)+
∫ t

t0
DF(x(τ),s)+u(t)−u(t0) = ξ +0−ξ = 0 = x(t)

and, therefore, x is a solution of the perturbed generalized ODE (5.4) with initial condition
x(t0) = ξ . Besides, x is defined for all t ≥ t0 and x(t) goes to 0 as t goes to ∞. This gives the first
part of the definition of asymptotic controllability.

In order to prove item (iii) from Definition 5.0.1, we notice that

‖u‖= sup
s∈[t0,+∞)

‖u(s)‖= ‖ξ‖.

Therefore, the statement holds by taking k = η .

Finally, since u is bounded and (AC2) is fulfilled, by Corollary 4.0.3, the trivial solution
of the generalized ODE (5.5) is uniformly stable with respect to perturbations. This gives the
second part of the Definition 5.0.1.

We point out that the proof of Theorem 5.0.2 uses the fact that boundedness of solutions
of the generalized ODE (5.5) implies the existence of a Lyapunov functional and, in turn, the
existence of this functional implies the uniform stability for the generalized ODE (5.5) (see
Theorem 3.0.4 and Corollary 4.0.1 respectively). On the other hand, if the perturbed generalized
ODE (5.4) is asymptotically controllable, then by condition (ii) of Definition 5.0.1 and Theorem
2.2.3, the trivial solution of the generalized ODE (5.5) is uniformly stable and, by Theorem
2.2.16, there exists a Lyapunov functional with respect to the generalized ODE (5.5). Hence, we
have the following result.

Corollary 5.0.3. The perturbed generalized ODE (5.4) is asymptotically controllable if and only
if there is a Lyapunov functional V : [t0,+∞)×X →R with respect to the generalized ODE (5.5)
satisfying

(AC1) there exists an increasing continuous function a : R+ → R+ satisfying a(0) = 0 and

V (t,y)≤ a(‖y‖),

for all y ∈ X and t ∈ [t0,+∞).
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CHAPTER

6
RETARDED VOLTERRA-STIELJTES

INTEGRAL EQUATIONS

In this chapter, we apply the results, described in Chapters 2, 3, 4 and 5, to obtain
Lyapunov theorems on stability and boundedness of solutions for retarded Volterra-Stieltjes
integral equations (we write retarded VS integral equations, for short), as well as, results on
asymptotically controllable for a perturbed retarded VS integral equation. Almost all the results
in this chapter are new and can be found in [6].

We organized this chapter so that its first section contains a result on the existence of
solutions of a retarded VS integral equation, where the given initial condition is evaluated at a
point in the interval [t0,+∞). We also establish a relation between the solutions of a retarded
VS integral equation (perturbed retarded VS integral equation) and the solutions of a certain
generalized ODE (perturbed generalized ODE).

The main goal of the second section is to study stability. In Subsection 6.2.1, we present
some concepts of stability of the trivial solution of a retarded VS integral equation and relations
between these concepts. Moreover, we give relations between types of stability for the trivial
solution of a retarded VS integral equation and types of stability for the trivial solution of
a generalized ODE. Subsection 6.2.2 is devoted to the proof Lyapunov-type theorems and,
in subsection 6.2.3, we use the fact that retarded VS integral equations can be regarded as a
generalized ODEs to obtain converse Lyapunov theorems.

In Section 6.3, we recall the definition of boundedness of solutions in the setting of
retarded VS integral equations and we obtain converse Lyapunov Theorems. Furthermore, we
relate stability and boundedness of solutions in the setting of retarded VS integral equations.

In the last section, we introduce a concept of asymptotic controllability for retarded
VS integral equations and we present necessary and sufficient conditions to obtain asymptotic
controllability for such equations. In the end of Section 6.4, we include an example.
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Throughout this chapter, we consider as X being a Banach space, equipped with the
norm ‖ · ‖, [t0,+∞)⊂ R, r > 0 and the sets BG([t0 − r,+∞),X) and G([−r,0],X) equipped with
the usual supremum norm, that is,

‖y‖∞ = sup
θ∈[t0−r,+∞)

‖y(θ)‖, for all y ∈ BG([t0 − r,+∞),X)

and
‖ψ‖∞ = sup

θ∈[−r,0]
‖ψ(θ)‖, for all y ∈ G([−r,0],X).

Moreover, we recall that the sets G([−r,0],X) and BG([t0 − r,+∞),X) are described in Defini-
tions A.0.7 and A.0.22 respectively.

In the sequel, we define a special set of functions in BG([t0 − r,+∞),X).

Definition 6.0.1. Let O⊂ BG([t0−r,+∞),X) be an open set. We say that O has the prolongation

property, if for every y∈O, s0 ∈ [t0,+∞) and every t̃ ∈ [s0,+∞), the function ỹ : [t0−r,+∞)→X ,
defined by

ỹ(θ) =


y(s0 − r), t0 − r ≤ θ ≤ s0 − r,

y(θ), s0 − r ≤ θ ≤ t̃,

y(̃t), t̃ ≤ θ <+∞,

is also an element of O.

Let O ⊂ BG([t0 − r,+∞),X) be an open set with the prolongation property and define

S = {yt ;y ∈ O, t ∈ [t0,+∞)} ⊂ G([−r,0],X). (6.1)

Consider the retarded VS integral equation

y(t) = y(s0)+
∫ t

s0

f (ys,s)dg(s), t ≥ s0, (6.2)

where s0 ≥ t0, f : S× [t0,+∞) → X , with S given by (6.1), g : [t0,+∞) → R, the integral on
the right-hand side is in the sense of Perron-Stieltjes and, for all s ≥ t0, the memory function,
ys : [−r,0]→ X is given by ys(θ) = y(s+θ) for all θ ∈ [−r,0] with r > 0. We recall that the
concept of Perron-Stieltjes integral can be found in Definition B.0.4.

Furthermore, we assume the additional conditions:

(A1) the function g : [t0,+∞)→ R is left-continuous on (t0,+∞) and nondecreasing;

(A2) for all y ∈ O and all s1,s2 ∈ [t0,+∞), the Perron-Stieltjes integral∫ s2

s1

f (ys,s)dg(s)

exists;
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(A3) there exists a locally Perron-Stieltjes integrable function M : [t0,+∞)→ R with respect to
g such that ∥∥∥∥∫ s2

s1

f (ys,s)dg(s)
∥∥∥∥≤ ∫ s2

s1

M(s)dg(s),

for all y ∈ O and all s1,s2 ∈ [t0,+∞);

(A4) there exists a locally Perron-Stieltjes integrable function L : [t0,+∞)→ R with respect to
g such that ∥∥∥∥∫ s2

s1

[ f (ys,s)− f (zs,s)]dg(s)
∥∥∥∥≤ ∫ s2

s1

L(s)‖ys − zs‖∞dg(s),

for all y,z ∈ O and all s1,s2 ∈ [t0,+∞).

We also refer the retarded VS integral equation (6.2) as homogeneous retarded VS

integral equation. In what follows, we show important properties of the functions M and L from
conditions (A3) and (A4).

Remark 6.0.2. Let y ∈ BG([t0 − r,+∞),X) and s1,s2 ∈ [t0,+∞) be such that s1 ≤ s2. Then,

0 ≤
∥∥∥∥∫ s2

s1

f (ys,s)dg(s)
∥∥∥∥≤ ∫ s2

s1

M(s)dg(s) =
∫ s2

t0
M(s)dg(s)−

∫ s1

t0
M(s)dg(s),

which implies ∫ s2

t0
M(s)dg(s)≥

∫ s1

t0
M(s)dg(s)

and, hence, the function t ↦→
∫ t

t0 M(s)dg(s) is nondecreasing. Moreover, for all θ ∈ [s1,s2], we
have ∫ s2

θ

M(s)dg(s)≥
∥∥∥∥∫ s2

θ

f (ys,s)dg(s)
∥∥∥∥≥ 0 and

∫ s2

s1

M(s)dg(s) =
∫

θ

s1

M(s)dg(s)+
∫ s2

θ

M(s)dg(s)≥
∫

θ

s1

M(s)dg(s).

which implies ∫ s2

s1

M(s)dg(s)≥ sup
θ∈[s1,s2]

∫
θ

s1

M(s)dg(s). (6.3)

Similarly, t ↦→
∫ t

t0 L(s)dg(s) is a nondecreasing function and∫ s2

s1

L(s)dg(s)≥ sup
θ∈[s1,s2]

∫
θ

s1

L(s)dg(s) (6.4)

holds for all y ∈ BG([t0 − r,+∞),X) and all s1,s2 ∈ [t0,+∞) with s1 ≤ s2.

In what follows, we present a definition of a solution of the retarded VS integral equation
(6.2).

Definition 6.0.3. We say that a function y : [s0− r,ω(s0,φ))→ X , ω(s0,φ)≤+∞, is a maximal

solution of the retarded VS integral equation (6.2) with initial condition ys0 = φ , s0 ≥ t0, if it
satisfies the following conditions:
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(i) y(t) = φ(t − s0) for all t ∈ [s0 − r,s0];

(ii) (yt , t) ∈ S× [s0,ω(s0,φ));

(iii) the Perron-Stieltjes integral
∫ t

s0
f (ys,s)dg(s) exists, for all t ≥ s0;

(iv) the equality

y(t) = y(s0)+
∫ t

s0

f (ys,s)dg(s)

holds for all t ∈ [s0,ω(s0,φ)).

When ω(s0,φ) = +∞, y is also known as a global forward solution.

Consider the perturbed retarded VS integral equation

y(t) = y(s0)+
∫ t

s0

f (ys,s)dg(s)+
∫ t

s0

p(s)dv(s), t ≥ s0 ≥ t0, (6.5)

where the integrals on the right-hand side are in the sense of Perron-Stieltjes, S is given by (6.1),
f : S× [t0,+∞)→ X , p : [t0,+∞)→ X , and g,v : [t0,+∞)→ R.

Assume that f satisfies conditions (A2), (A3) and (A4), g satisfies condition (A1) and
the functions p and v satisfy the following conditions:

(A5) the function v : [t0,+∞)→ R is left-continuous on (t0,+∞) and nondecreasing;

(A6) the Perron-Stieltjes integral ∫ t

t0
p(s)dv(s)

exists, for all t ∈ [t0,+∞);

(A7) there exists a locally Perron-Stieltjes integrable function K : [t0,+∞)→ R with respect to
v such that ∥∥∥∥∫ s2

s1

p(s)dv(s)
∥∥∥∥≤ ∫ s2

s1

K(s)dv(s),

for all s1,s2 ∈ [t0,+∞).

Analogous to Definition 6.0.3 , we say that a function y : [s0 − r,ω(s0,φ))→ X , with
ω(s0,φ)≤+∞, is a maximal solution of the perturbed retarded VS integral equation (6.5) with
initial condition ys0 = φ , s0 ≥ t0, if it satisfies the following conditions:

(i) y(t) = φ(t − s0) for all t ∈ [s0 − r,s0];

(ii) (yt , t) ∈ S× [s0,ω(s0,φ));

(iii) the Perron-Stieltjes integrals
∫ t

s0
f (ys,s)dg(s) and

∫ t
s0

p(s)dv(s) exist, for all t ≥ s0;
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(iv) the equality

y(t) = y(s0)+
∫ t

s0

f (ys,s)dg(s)+
∫ t

s0

p(s)dv(s)

holds for all t ∈ [s0,ω(s0,φ)).

When ω(s0,φ) = +∞, y is also known as a global forward solution.

6.1 Existence and uniqueness of a solution
As our interest in the next section is to study stability for the trivial solution of the

retarded VS integral equation (6.2), it is preferable that the point at which we consider the
initial condition is loose within the interval [t0,+∞). With this in mind, in this section, we
adapted [26, Theorem 3.1], where the initial condition is taken at t0 to an initial condition taken
at some s0 ∈ [t0,+∞). Moreover, we introduce a relation between a solution of the retarded
VS integral equation (6.2) (perturbed retarded VS integral equation (6.5)) and a solution of a
generalized ODE (perturbed generalized ODE). Furthermore, we give a sufficient condition for
the existence of a maximal solution of the retarded VS integral equation (6.2). The result present
here are contained in [6].

At first, we define a special set O. Let O ⊂ BG([t0 − r,+∞),X) be an open set with the
prolongation property, y ∈ O and s0 ∈ [t0,+∞) be given. For all t ∈ [s0,+∞), define the function
xy,s0(t) : [t0 − r,+∞)→ X by

xy,s0(t)(θ) =


y(s0 − r), t0 − r ≤ θ ≤ s0 − r,

y(θ), s0 − r ≤ θ ≤ t,

y(t), t ≤ θ <+∞

(6.6)

and
Ot,s0 = {xy,s0(t) : y ∈ O, t ∈ [s0,+∞), where xy,s0(t) is given by (6.6)}.

Consider Os0 =
⋃

t∈[s0,+∞)Ot,s0 and set

O=
⋃

s0∈[t0,+∞)

Os0. (6.7)

Then, O⊂ O ⊂ BG([t0 − r,+∞),X), once O is a set with the prolongation property.

In what follows, we present an interesting property of the set O.

Remark 6.1.1. For all ψ ∈ S, there exist y ∈ O and s0 ∈ [t0,+∞) such that ψ(θ) = ys0(θ) for
all θ ∈ [−r,0]. Then, the function x0 : [t0 − r,+∞)→ X , given by

x0(θ) =


ψ(−r), t0 − r ≤ θ ≤ s0 − r,

ψ(θ − s0), s0 − r ≤ θ ≤ s0,

ψ(0), s0 ≤ θ <+∞,
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belongs to O. Indeed, by the definition of ψ , we have

x0(θ) =


ψ(−r), t0 − r ≤ θ ≤ s0 − r,

ψ(θ − s0), s0 − r ≤ θ ≤ s0,

ψ(0), s0 ≤ θ <+∞

=


y(s0 − r), t0 − r ≤ θ ≤ s0 − r,

y(θ), s0 − r ≤ θ ≤ s0,

y(s0), s0 ≤ θ <+∞,

= xy,s0(s0)(θ).

Define F : O× [t0,+∞)→ BG([t0 − r,+∞),X) by

F(y, t)(θ) =



0, t0 − r ≤ θ ≤ t0,∫
θ

t0
f (ys,s)dg(s), t0 ≤ θ ≤ t,∫ t

t0
f (ys,s)dg(s), t ≤ θ <+∞.

(6.8)

Notice that, by condition (A2), the integrals appearing in (6.8) exist and, by condition (A3) and
Remark 6.0.2, we have

‖F(y, t)‖∞ = sup
θ∈[t0,t]

∥∥∥∥∫ θ

t0
f (ys,s)dg(s)

∥∥∥∥≤ sup
θ∈[t0,t]

∫
θ

t0
M(s)dg(s) =

∫ t

t0
M(s)dg(s)< ∞.

Therefore, F is well-defined.

Consider the following generalized ODE

dx
dτ

= DF(x, t). (6.9)

We target to prove that every solution of the retarded VS integral equation (6.2) is a solution of
the generalized ODE (6.9) and vice-versa.

We show, in the sequel, that there exists a nondrecreasing function h : [t0,+∞)→R such
that F , defined by (6.8), belongs to the class F (Ω,h) (see Definition C.0.2). Its proof follows
the same ideas from [13, Lemma 4.16].

Lemma 6.1.2. Let O be given by (6.7), S by (6.1) and φ ∈ S. Assume that g : [t0,+∞) → R
satisfies (A1) and f : S× [t0,+∞)→ X satisfies (A2), (A3) and (A4). Then, F given by (6.8)
belongs to the class F (Ω,h), where Ω =O× [t0,+∞), and h : [t0,+∞)→ R, given by

h(t) =
∫ t

t0
[M(s)+L(s)]dg(s), t ∈ [t0,+∞), (6.10)

is a nondecreasing function which is left-continuous on (t0,+∞).

Proof. At first, we notice that, by Remark 6.0.2, h is nondecreasing. Moreover, by Theorem
B.0.17 and condition (A1), h is left-continuous on (t0,+∞).
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Let us show that F ∈ F (Ω,h). Let y ∈O and s1,s2 ∈ [t0,+∞). Assume, without loss of
generality, that s1 < s2. Then, by the definition of F , we have

[F(y,s2)−F(y,s1)](θ) =


0, t0 − r ≤ θ ≤ s1,∫

θ

s1

f (ys,s)dg(s), s1 ≤ θ ≤ s2,∫ s2

s1

f (ys,s)dg(s), s2 ≤ θ <+∞.

(6.11)

By (6.11), condition (A3) and Remark 6.0.2 (see equation (6.3)), we conclude

‖F(y,s2)−F(y,s1)‖∞ = sup
θ∈[t0,+∞)

‖F(y,s2)(θ)−F(y,s1)(θ)‖

= sup
θ∈[s1,s2]

‖F(y,s2)(θ)−F(y,s1)(θ)‖

(6.11)
= sup

θ∈[s1,s2]

∥∥∥∥∫ θ

s1

f (ys,s)dg(s)
∥∥∥∥

Cond.(A3)
≤ sup

θ∈[s1,s2]

∫
θ

s1

M(s)dg(s)

(6.3)
≤

∫ s2

s1

M(s)dg(s)

≤
∫ s2

s1

[M(s)+L(s)]dg(s) = h(s2)−h(s1).

Similarly, if y,z ∈O and s1,s2 ∈ [t0,+∞), with s1 < s2, then condition (A4) and Remark
6.0.2 (see equation (6.4)) imply

‖F(y,s2)−F(y,s1)−F(z,s2)+F(z,s1)‖∞ = sup
θ∈[s1,s2]

∥∥∥∥∫ θ

s1

[ f (ys,s)− f (zs,s)]dg(s)
∥∥∥∥

Cond.(A4)
≤ sup

θ∈[s1,s2]

∫
θ

s1

L(s)‖ys − zs‖∞dg(s)

≤ ‖y− z‖∞

∫ s2

s1

L(s)dg(s)

≤ ‖y− z‖∞

∫ s2

s1

[M(s)+L(s)]dg(s)

= ‖y− z‖∞h(s2)−h(s1)

and the proof is complete.

The next result gives sufficient conditions for the existence of a maximal solution of the
generalized ODE (6.9) (see Definition C.0.15).

Theorem 6.1.3. Let O be given by (6.7) and F be defined by (6.8). If s0 ∈ [t0,+∞) is such
that ∆+g(s0) = g(s+0 )−g(s0) = 0, then for all x0 ∈O, there exists a unique maximal solution
x : [s0,ω(s0,x0))→O of the generalized ODE (6.9) with initial condition x(s0) = x0.

Proof. By Lemma 6.1.2, F ∈ F (Ω,h), where Ω = O× [t0,+∞) and h : [t0,+∞) → R is a
nondecreasing function which is left-continuous on (t0,+∞). Then, by Theorem C.0.17, it
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remains to show that (x0,s0) ∈ ΩF , that is,

x0 + lim
s→s+0

F(x0,s)−F(x0,s0) ∈O.

Notice that, by the definition of F , Theorem B.0.17 and the fact that ∆+g(s0) = 0, we
have

lim
s→s+0

F(x0,s)(θ) =


0, t0 − r ≤ θ ≤ t0,∫

θ

t0
f ((x0)s,s)dg(s), t0 ≤ θ ≤ s0,∫ s0

t0
f ((x0)s,s)dg(s), s0 ≤ θ <+∞

= F(x0,s0)(θ),

which implies lims→s+0
F(x0,s) = F(x0,s0). Then, since x0 ∈O, we conclude

x0 + lim
s→s+0

F(x0,s)−F(x0,s0) = x0

belongs to O.

In the sequel, we present an import property concerning the maximal solution of the
generalized ODE (6.9). Its proof follows similar ideas to the proof of [24, Lemma 3.7].

Lemma 6.1.4. Let O be given by (6.7), F by (6.8), s0 ∈ [t0,+∞) and ψ ∈ S. Assume that
x : [s0,ω(s0,x0))→ BG([t0 − r,+∞),X) is the maximal solution of the generalized ODE (6.9)
with initial condition

x(s0)(θ) = x0(θ) =


ψ(−r), t0 − r ≤ θ ≤ s0 − r,

ψ(θ − s0), s0 − r ≤ θ ≤ s0,

ψ(0), s0 ≤ θ <+∞.

If v,θ ∈ [s0,ω(s0,x0)), then

x(v)(θ) =

{
x(v)(v), θ ≥ v,

x(θ)(θ), v ≥ θ .
(6.12)

Moreover, if θ ∈ [s0,ω(s0,x0)) and v ∈ [t0 − r,s0], then

x(θ)(v) = x(s0)(v). (6.13)

Proof. Let v,θ ∈ [s0,ω(s0,x0)). At first, assume that θ ≥ v. By the definition of a solution of the
generalized ODE (6.9), x(t) ∈O for all t ∈ [s0,ω(s0,x0)) (see Definition C.0.1). Moreover,

x(v)(v) = x(s0)(v)+
∫ v

s0

DF(x(τ),s)(v) and (6.14)

x(v)(θ) = x(s0)(θ)+
∫ v

s0

DF(x(τ),s)(θ). (6.15)
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Combining equations (6.14) and (6.15) with the fact that x(s0)(v) = x(s0)(θ), we obtain

x(v)(θ)− x(v)(v) =
∫ v

s0

DF(x(τ),s)(θ)−
∫ v

s0

DF(x(τ),s)(v). (6.16)

By the definition of the Kurzweil integral, given ε , there exists a gauge δ on [s0,v] such that∥∥∥∥∥ |d|

∑
i=1

[F(x(τi),si)−F(x(τi),si−1)]−
∫ v

s0

DF(x(τ),s)

∥∥∥∥∥
∞

< ε, (6.17)

provided d = (τi, [si−1,si]) is a δ -fine tagged division of [s0,v] (see Definitions B.0.1 and B.0.11).
By (6.16) and (6.17), we get

‖x(v)(θ)− x(v)(v)‖=
∥∥∥∥∫ v

s0

DF(x(τ),s)(θ)−
∫ v

s0

DF(x(τ),s)(v)
∥∥∥∥

≤

∥∥∥∥∥
∫ v

s0

DF(x(τ),s)(θ)−
|d|

∑
i=1

[F(x(τi),si)−F(x(τi),si−1)](θ)

−
∫ v

s0

DF(x(τ),s)(v)+
|d|

∑
i=1

[F(x(τi),si)−F(x(τi),si−1)](v)

∥∥∥∥∥
+

∥∥∥∥∥ |d|

∑
i=1

[F(x(τi),si)−F(x(τi),si−1)](θ)−
|d|

∑
i=1

[F(x(τi),si)−F(x(τi),si−1)](v)

∥∥∥∥∥
≤

∥∥∥∥∥
∫ v

s0

DF(x(τ),s)(θ)−
|d|

∑
i=1

[F(x(τi),si)−F(x(τi),si−1)](θ)

∥∥∥∥∥
+

∥∥∥∥∥ |d|

∑
i=1

[F(x(τi),si)−F(x(τi),si−1)](v)−
∫ v

s0

DF(x(τ),s)(v)

∥∥∥∥∥
+

∥∥∥∥∥ |d|

∑
i=1

[F(x(τi),si)−F(x(τi),si−1)](θ)−
|d|

∑
i=1

[F(x(τi),si)−F(x(τi),si−1)](v)

∥∥∥∥∥
≤ 2

∥∥∥∥∥
∫ v

s0

DF(x(τ),s)−
|d|

∑
i=1

[F(x(τi),si)−F(x(τi),si−1)]

∥∥∥∥∥
∞

+

∥∥∥∥∥ |d|

∑
i=1

[F(x(τi),si)−F(x(τi),si−1)](θ)−
|d|

∑
i=1

[F(x(τi),si)−F(x(τi),si−1)](v)

∥∥∥∥∥
≤ 2ε +

∥∥∥∥∥ |d|

∑
i=1

[F(x(τi),si)−F(x(τi),si−1)](θ)−
|d|

∑
i=1

[F(x(τi),si)−F(x(τi),si−1)](v)

∥∥∥∥∥ .
In addition, by the definition of F , we have

[F(x(τi),si)−F(x(τi),si−1)](θ) = [F(x(τi),si)−F(x(τi),si−1)](v)

and, hence,

‖x(v)(θ)− x(v)(v)‖ ≤ 2ε.

Since ε can be made arbitrarily small, we conclude

x(v)(θ) = x(v)(v).
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Similarly, if θ ≤ v, then

x(v)(θ) = x(s0)(θ)+
∫ v

s0

DF(x(τ),s)(θ) and

x(θ)(θ) = x(s0)(θ)+
∫

θ

s0

DF(x(τ),s)(θ).

Consequently,

x(v)(θ)− x(θ)(θ) =
∫ v

θ

DF(x(τ),s)(θ).

Moreover, if d = (τi, [si−1,si]) is a δ -fine tagged division of [θ ,v], then, by the definition of F ,
we have

F(x(τi),si)(θ)−F(x(τi),si−1)(θ) = 0, for all i = 1, . . . , |d|

which implies that
∫ v

θ
DF(x(τ),s)(θ) = 0 and the proof of (6.12) is complete.

On the other hand, if θ ∈ [s0,ω(s0,x0)) and v ∈ [t0 − r,s0], then

x(θ)(v) = x(s0)(v)+
∫

θ

s0

DF(x(τ),s)(v). (6.18)

Moreover, by the definition of F , if d = (τi, [si−1,si]) is a δ -fine tagged division of [s0,θ ], then

F(x(τi),si)(v)−F(x(τi),si−1)(v) = 0, for all i = 1, . . . , |d|,

once v ≤ s0 < si−1 < si. Thus,

∫
θ

s0

DF(x(τ),s)(v) = 0. (6.19)

Replacing (6.19) into (6.18), we have x(θ)(v) = x(s0)(v) which yields (6.13).

In the following result, we assume the existence of maximal solutions of the retarded
VS integral equation (6.2) and of the generalized ODE (6.9). Moreover, we present a relation
between a solution of the generalized ODE (6.9) and a solution of the retarded VS integral
equation (6.2). A version of such a result, when the initial condition occurs at time t0 and the
solutions of the retarded VS integral equation (6.2) and the generalized ODE (6.9) are defined in
a closed interval [t0, t0 +σ ], with σ > 0, can be found in [13, Theorems 3.8 and 3.9]. Although
the proof, presented in the sequel, is analogous to the proof of [13, Theorems 3.8 and 3.9], it
shows the reason for choosing the set O.

Theorem 6.1.5. Let O be given by (6.7) and S by (6.1). Assume that g : [t0,+∞)→ R satisfies
condition (A1) and f : S× [t0,+∞)→ X satisfies conditions (A2), (A3) and (A4). For all s0 ≥ t0,
the following statements hold.
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(i) Let y : [s0 − r,ω(s0,ψ))→ X be a maximal solution of the retarded VS integral equation
(6.2) with initial condition ys0 = ψ ∈ S. For every t ∈ [s0,ω(s0,ψ)), let

x(t)(θ) =


y(s0 − r), t0 − r ≤ θ ≤ s0 − r,

y(θ), s0 − r ≤ θ ≤ t,

y(t), t ≤ θ <+∞.

(6.20)

Then, the function x : [s0,ω(s0,ψ))→O is a maximal solution of the generalized ODE
(6.9) with initial condition x(s0) = x0, where

x0(θ) =


ψ(−r), t0 − r ≤ θ ≤ s0 − r,

ψ(θ − s0), s0 − r ≤ θ ≤ s0,

ψ(0), s0 ≤ θ <+∞.

(6.21)

(ii) Conversely, let ψ ∈ S and x0 be given by (6.21). If x : [s0,ω(s0,x0))→ O is a maximal
solution of the generalized ODE (6.9) with initial condition x(s0) = x0, then the function
y : [s0 − r,ω(s0,x0))→ X , defined by

y(θ) =

{
x(s0)(θ), s0 − r ≤ θ ≤ s0,

x(θ)(θ), s0 ≤ θ < ω(s0,x0),
(6.22)

is a maximal solution of the retarded VS integral equation (6.2) with initial condition
ys0 = ψ .

Proof. At first, we notice that, by the definition of S, ys0 = ψ ∈ S. Then, x : [s0,ω(s0,ψ))→O,
given by (6.20), can be rewritten as

x(t)(θ) =


y(s0 − r), t0 − r ≤ θ ≤ s0 − r,

y(θ), s0 − r ≤ θ ≤ t,

y(t), t ≤ θ <+∞

= xy,s0(t)(θ)

Therefore, x(t) ∈O for all t ∈ [s0,ω(s0,ψ)) and, hence, x : [s0,ω(s0,ψ))→O is well-defined.

Let us prove item (i). Let s0 ≥ t0 and y : [s0 − r,ω(s0,ψ))→ X be a maximal solution of
the retarded VS integral equation (6.2) with initial condition ys0 = ψ . We target to show that, for
every t ∈ [s0,ω(s0,ψ)), the integral

∫ t
s0

DF(x(τ),s) exists and

x(t)− x(s0) =
∫ t

s0

DF(x(τ),s),

where x : [s0,ω(s0,ψ))→O is given by (6.20).

Let ε > 0 be given and h : [t0,+∞)→ R be given by (6.10). Once h is nondecreasing
(see Remark 6.0.2), Corollary A.0.10 guarantees that there exist at most finitely many points
s ∈ [s0, t] such that

∆
+h(s) = h(s+)−h(s)≥ ε. (6.23)
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Let us denote the points in [s0, t] for which (6.23) holds by s1, . . . ,sm. Consider a gauge δ on
[s0, t] such that

δ (τ)< min
{

sk − sk−1

2
: k = 2, . . . ,m

}
, for τ ∈ [s0, t], and

δ (τ)< min{|τ − sk| : k = 2, . . . ,m} for τ ∈ [s0, t]∖{sk}m
k=1.

Notice that, if a point-interval par (τ, [c,d]), with [c,d] ⊂ [s0, t], is δ -fine, then [c,d]

contains at most one of the points s1, . . . ,sm and, if sk ∈ [c,d], then

τ = sk. (6.24)

Moreover, by the definition of x (see (6.20)), we have

x(sk)sk = ysk , for every k = 1, . . . ,m. (6.25)

By (6.25) and Theorem B.0.17, we obtain

lim
θ→s+k

∫
θ

sk

L(s)‖ys − x(sk)s‖∞dg(s) = L(sk)‖ysk − x(sk)sk‖∞∆
+g(tk) = 0,

for every k = 1, . . . ,m. Then, we can choose a gauge δ on [s0, t] such that∫ sk+δ (sk)

sk

L(s)‖ys − x(sk)s‖∞dg(s)<
ε

2m+1
, for every k = 1, . . . ,m. (6.26)

Furthermore, by condition (A3), for all τ ∈ [s0, t]∖{sk}m
k=1, we have

‖y(τ+)− y(τ)‖=
∥∥∥∥ lim

θ→τ+

∫
θ

τ

f (ys,s)dg(s)
∥∥∥∥≤ lim

θ→τ+

∫
θ

τ

M(s)dg(s)≤ h(τ+)−h(τ)

and, by (6.23), we conclude

‖y(τ+)− y(τ)‖ ≤ ε.

Therefore, we choose a gauge δ on [s0, t] such that

‖y(θ)− y(τ)‖ ≤ ε, for every τ ∈ [s0, t]∖{sk}m
k=1 and θ ∈ [τ,τ +δ (τ)). (6.27)

Assume that d = (τi, [ti−1, ti]), i= 1, . . . , |d|, is a δ -fine tagged division of [t0, t]. By (6.20)
and the fact that y : [s0− r,ω(s0,ψ))→ X is a solution of the retarded VS integral equation (6.2),
we have

[x(ti)− x(ti−1)](θ) =


0, t0 − r ≤ θ ≤ ti−1,

y(θ)− y(ti−1) =
∫

θ

ti−1

f (ys,s)dg(s), ti−1 ≤ θ ≤ ti,

y(ti)− y(ti−1) =
∫ ti

ti−1

f (ys,s)dg(s), ti ≤ θ <+∞.
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Moreover, by the definition of F (see (6.8)), for all i = 1, . . . , |d|, we conclude

[F(x(τi), ti)−F(x(τi), ti−1)](θ) =


0, t0 − r ≤ θ ≤ ti−1,∫

θ

ti−1

f (x(τi)s,s)dg(s), ti−1 ≤ θ ≤ ti,∫ ti

ti−1

f (x(τi)s,s)dg(s), ti ≤ θ <+∞.

Then,
[x(ti)− x(ti−1)](θ)− [F(x(τi), ti)−F(x(τi), ti−1](θ)

=


0, t0 − r ≤ θ ≤ ti−1,∫

θ

ti−1

[ f (ys,s)− f (x(τi)s,s)]dg(s), ti−1 ≤ θ ≤ ti,∫ ti

ti−1

[ f (ys,s)− f (x(τi)s,s)]dg(s), ti ≤ θ <+∞

and
‖x(ti)− x(ti−1)− [F(x(τi), ti)−F(x(τi), ti−1]‖∞

= sup
θ∈[t0,+∞)

‖[x(ti)− x(ti−1)](θ)− [F(x(τi), ti)−F(x(τi), ti−1](θ)‖

= sup
θ∈[ti−1,ti]

∥∥∥∥∫ θ

ti−1

[ f (ys,s)− f (x(τi)s,s)]dg(s)
∥∥∥∥ .

Notice that, if s < τi, then by equation (6.20), we get

x(τi)s(θ) = x(τi)(s+θ) = y(s+θ) = ys(θ), for all θ ∈ [−r,0]

which implies that x(τi)s = ys and

∫
θ

ti−1

[ f (ys,s)− f (x(τi)s,s)]dg(s) =

 0, ti−1 ≤ θ ≤ τi,∫
θ

τi

[ f (ys,s)− f (x(τi)s,s)]dg(s), τi ≤ θ ≤ ti.

Furthermore, by condition (A4) and Remark 6.0.2, we have∥∥∥∥∫ θ

ti−1

[ f (ys,s)− f (x(τi)s,s)]dg(s)
∥∥∥∥ ≤

∥∥∥∥∫ θ

ti−1

L(s)‖ys − x(τi)s‖∞dg(s)
∥∥∥∥

≤
∥∥∥∥∫ ti

ti−1

L(s)‖ys − x(τi)s‖∞dg(s)
∥∥∥∥ . (6.28)

By the definition of the gauge δ , we have two cases.

Case 1: [ti−1, ti]∩{s1, . . . ,sm}= {sk}, for some k ∈ {1, . . . ,m}.

In this case, we have τi = sk (see (6.24)) and from (6.26), we obtain∫ ti

τi

L(s)‖ys − x(τi)s‖∞ ≤ ε

2m+1
.

Therefore,
‖x(ti)− x(ti−1)− [F(x(τi), ti)−F(x(τi), ti−1]‖∞ ≤ ε

2m+1
. (6.29)
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Case 2: [ti−1, ti]∩{s1, . . . ,sm}= /0.

In this case, let s ∈ [τi, ti]. Then,

‖ys − x(τi)s‖∞ = sup
θ∈[−r,0]

‖y(s+θ)− x(τi)(s+θ)‖

= sup
θ∈[s−r,s]

‖y(θ)− x(τi)(θ)‖

By the definition of x (see (6.20)), if s− r ≤ τi, then

‖ys − x(τi)s‖∞ ≤ sup
θ∈[s−r,τi]

‖y(θ)− x(τi)(θ)‖+ sup
θ∈[τi,s]

‖y(θ)− x(τi)(θ)‖

= sup
θ∈[s−r,τi]

‖y(θ)− y(θ)‖+ sup
θ∈[τi,s]

‖y(θ)− y(τi)‖

= sup
θ∈[τi,s]

‖y(θ)− y(τi)‖.

(6.30)

On the other hand, if s− r ≥ τi, then

‖ys − x(τi)s‖∞ ≤ sup
θ∈[s−r,s]

‖y(θ)− y(τi)‖. (6.31)

Since d = (τi, [ti−1, ti]) is δ -fine, we have s ≤ ti < δ (τi)+ τi and, hence, [τi,s]⊂ [τi,δ (τi)+ τi)

and [s− r,s]⊂ [τi,δ (τi)+ τi), whenever s− r ≥ τi. Therefore, by (6.27), (6.30) and (6.31), for
all s ∈ [τi, ti], we have

‖ys − x(τi)s‖∞ ≤ ε. (6.32)

By (6.28) and (6.32), we get

‖x(ti)− x(ti−1)− [F(x(τi), ti)−F(x(τi), ti−1]‖∞ ≤ ε

∫ ti

τi

L(s)dg(s). (6.33)

Then, from Cases 1 and 2 (see (6.29) and (6.33)) and the fact that Case 1 occurs at most
2m times, we conclude∥∥∥∥∥x(t)− x(s0)−

|d|

∑
i=1

[F(x(τi), ti)−F(x(τi), ti−1]

∥∥∥∥∥
∞

≤ ε

∫ t

s0

L(s)dg(s)+
2mε

2m+1
.

Since ε and t ∈ [s0,ω(s0,ψ)) are arbitrary, we have

x(t)− x(s0) =
∫ t

s0

DF(x(τ),s),

for all t ∈ [s0,ω(s0,ψ)) which completes the proof of item (i).

Our next goal is to prove item (ii). Let ψ ∈ S and x0 be given by (6.21). Assume that
x : [s0,ω(s0,x0))→O is a maximal solution of the generalized ODE (6.9) with initial condition
x(s0) = x0 and let y : [s0,ω(s0,x0))→ X be given by (6.22).

At first, notice that, by (6.22), for all θ ∈ [−r,0], we have

ys0(θ) = y(s0 +θ) = x(s0)(s0 +θ) = ψ(s0 +θ − s0) = ψ(θ) and
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y(t) = x(s0)(θ) = ψ(t − s0),

for all t ∈ [s0 − r,s0]. Therefore, condition (i) from Definition 6.0.3 is satisfied.

Moreover, by the definition of y and Lemmas 6.1.2 and C.0.9, y∈BG([s0−r,ω(s0,x0)),X).
By condition (A2), the Perron-Stieltjes integral

∫ s2
s1

f (ys,s)dg(s) exists, for all s1,s2 ∈ [s0,ω(s0,x0))

and, consequently, condition (iii) from Definition 6.0.3 holds.

It remains to show that y satisfies

y(t) = y(s0)+
∫ t

s0

f (ys,s)dg(s),

for all t ∈ [s0,ω(s0,x0)). Indeed, by the definition of y and Lemma 6.1.4, we have

y(t)− y(s0)−
∫ t

s0

f (ys,s)dg(s) = x(t)(t)− x(s0)(s0)−
∫ t

s0

f (ys,s)dg(s)

= x(t)(t)− x(s0)(t)−
∫ t

s0

f (ys,s)dg(s)

=
∫ t

s0

DF(x(τ),s)(t)−
∫ t

s0

f (ys,s)dg(s).

(6.34)

Similarly to what we did in item (i), for a fixed t ∈ [s0,ω(s0,x0)), we may consider a
gauge δ on [s0, t] such that if sk, k = 1, . . . ,m are points in [s0, t] for which (6.23) holds, then δ

satisfies the following properties:

(I) δ (τ)< min
{

sk−sk−1
2 : k = 2, . . . ,m

}
, for τ ∈ [s0, t];

(II) δ (τ)< min{|τ − sk| : k = 2, . . . ,m} for τ ∈ [s0, t]∖{sk}m
k=1;

(III)
∫ sk+δ (sk)

sk
L(s)‖ys − x(sk)s‖∞dg(s)< ε

2m+1 , k ∈ {1, . . . ,m};

(IV) ‖h(θ)−h(τ)‖, for all τ ∈ [s0, t]∖{sk}m
k=1 and all θ ∈ [τ,τ +δ (τ)).

By the definition of the Kurzweil integral
∫ t

s0
DF(x(τ),s), the gauge δ may be chosen in

such a way that, for every ε > 0 and every δ -fine tagged division d = (τi, [ti−1, ti]) of [s0, t], we
have ∥∥∥∥∥

∫ t

s0

DF(x(τ),s)−
|d|

∑
i=1

[F(x(τi), ti)−F(x(τi), ti−1)]

∥∥∥∥∥
∞

< ε. (6.35)
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By (6.34) and (6.35), we obtain∥∥∥∥y(t)− y(s0)−
∫ t

s0

f (ys,s)dg(s)
∥∥∥∥

=

∥∥∥∥∫ t

s0

DF(x(τ),s)(t)−
∫ t

s0

f (ys,s)dg(s)
∥∥∥∥

≤

∥∥∥∥∥
∫ t

s0

DF(x(τ),s)(t)−
|d|

∑
i=1

[F(x(τi), ti)−F(x(τi), ti−1)](t)

∥∥∥∥∥
+

∥∥∥∥∥ |d|

∑
i=1

[F(x(τi), ti)−F(x(τi), ti−1)](t)−
∫ t

s0

f (ys,s)dg(s)

∥∥∥∥∥
≤

∥∥∥∥∥
∫ t

s0

DF(x(τ),s)−
|d|

∑
i=1

[F(x(τi), ti)−F(x(τi), ti−1)]

∥∥∥∥∥
∞

+

∥∥∥∥∥ |d|

∑
i=1

[F(x(τi), ti)−F(x(τi), ti−1)](t)−
∫ t

s0

f (ys,s)dg(s)

∥∥∥∥∥
≤ ε +

∥∥∥∥∥ |d|

∑
i=1

[F(x(τi), ti)−F(x(τi), ti−1)](t)−
∫ t

s0

f (ys,s)dg(s)

∥∥∥∥∥ .
From the definition of F , we conclude

[F(x(τi), ti)−F(x(τi), ti−1)](t) =
∫ ti

ti−1

f (x(τi)s,s)dg(s)

which implies

[F(x(τi), ti)−F(x(τi), ti−1)](t)−
∫ ti

ti−1

f (ys,s)dg(s) =
∫ ti

ti−1

[ f (x(τi)s,s)− f (ys,s)]dg(s).

On the other hand, by the definition of y and Lemma 6.1.4, if s ∈ [ti−1,τi] and s− r ≥ s0,
then

x(τi)s(θ) = x(τi)(s+θ) = x(s+θ)(s+θ) = y(s+θ) = ys(θ), for all θ ∈ [−r,0]

and, if s ∈ [ti−1,τi] and s− r ≤ s0, thus

x(τi)(s+θ) =

{
x(τi)(s+θ), θ ∈ [−r,s0 − s],

x(s+θ)(s+θ), θ ∈ [s0 − s,0].

=

{
x(s0)(s+θ), v ∈ [s− r,s0],

x(s+θ)(s+θ), v ∈ [s0,s].

= y(s+θ),

for all θ ∈ [−r,0]. Therefore,

x(τi)s = ys, for all s ∈ [ti−1,τi]. (6.36)

Moreover, if s ∈ [τi, ti] and s− r ≥ s0, then, for all for all θ ∈ [−r,0], we have

ys(θ) = y(s+θ) = x(s+θ)(s+θ) = x(ti)(s+θ) = x(ti)s(θ), for all θ ∈ [−r,0] (6.37)
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and, if s ∈ [τi, ti] and s− r ≤ s0, then for all θ ∈ [−r,0], we obtain

x(ti)(s+θ) =

{
x(s0)(s+θ), θ ∈ [−r,s0 − s],

x(s+θ)(s+θ), θ ∈ [s0 − s,0].
= y(s+θ)

(6.38)

By (6.37) and (6.38), we conclude

x(si)s = ys, for all s ∈ [τi, ti]. (6.39)

From (6.36), (6.39) and condition (A4), we get∥∥∥∥∫ ti

ti−1

[ f (x(τi)s,s)− f (ys,s)]dg(s)
∥∥∥∥ =

∥∥∥∥∫ ti

τi

[ f (x(τi)s,s)− f (x(ti)s,s)]dg(s)
∥∥∥∥

≤
∫ ti

τi

L(s)‖x(τi)s − x(ti)s‖∞dg(s).

As in the proof of item (i), let us consider two cases.

Case 1: [ti−1, ti]∩{s1, . . . ,sm}= {sk}, for some k ∈ {1, . . . ,m}.

Since x is a solution of the generalized ODE (6.9), by Lemma C.0.9 and by the definition
of the gauge δ (see item (III)), we obtain∫ ti

τi

L(s)‖x(τi)s − x(ti)s‖∞dg(s)≤ ε

2m+1
,

which, in turn, implies∥∥∥∥[F(x(τi), ti)−F(x(τi), ti−1)](t)−
∫ ti

ti−1

f (ys,s)dg(s)
∥∥∥∥≤ ε

m+1

Case 2: [ti−1, ti]∩{s1, . . . ,sm}= /0.

By item (IV), for all s ∈ [τi, ti], we have

‖x(ti)s − x(τi)s‖∞ ≤ ‖x(ti)− x(τi)‖∞ ≤ |h(ti)−h(τi)| ≤ ε

and, hence,∥∥∥∥[F(x(τi), ti)−F(x(τi), ti−1)](t)−
∫ ti

ti−1

f (ys,s)dg(s)
∥∥∥∥≤ ε

∫ ti

τi

L(s)dg(s).

From Cases 1 and 2 and the fact that Case 1 occurs at most 2m times, we conclude

|d|

∑
i=1

∥∥∥∥[F(x(τi), ti)−F(x(τi), ti−1)](t)−
∫ ti

ti−1

f (ys,s)dg(s)
∥∥∥∥

≤ ε

∫ t

s0

L(s)dg(s)+
2mε

2m+1
< ε

(
2+

∫ t

s0

L(s)dg(s)
)
.

Consequently, ∥∥∥∥y(t)− y(s0)−
∫ t

s0

f (ys,s)dg(s)
∥∥∥∥< ε

(
2+

∫ t

s0

L(s)dg(s)
)
.

and the statement follows, once ε is arbitrary.
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The next result gives sufficient conditions for the existence and uniqueness of a maximal
solution of the retarded VS integral equation (6.2).

Theorem 6.1.6. Let S be given by (6.1). Assume that g : [t0,+∞) → R satisfies (A1) and
f : S× [t0,+∞)→ X satisfies (A2), (A3) and (A4). Let s0 ∈ [t0,+∞) and suppose ∆+g(s0) = 0.
Then, for all ψ ∈ S, there exists a unique maximal solution y : [s0,ω)→ X of the retarded VS
integral equation (6.2) with initial condition ys0 = ψ.

Proof. Let x0 : [t0 − r,+∞)→ X be given by

x0(θ) =


ψ(−r), t0 − r ≤ θ ≤ s0 − r,

ψ(θ − s0), s0 − r ≤ θ ≤ s0,

ψ(0), s0 ≤ θ <+∞.

By Remark 6.1.1, x0 ∈O. Moreover, by Theorem 6.1.3, there exists a unique maximal solution
x : [s0,ω(s0,x0))→ O of the generalized ODE (6.9) with initial condition x(s0) = x0 and, by
Theorem 6.1.5-(ii), the function y : [s0 − r,ω(s0,x0))→ X , defined by

y(θ) =

{
x(s0)(θ), s0 − r ≤ θ ≤ s0,

x(θ)(θ), s0 ≤ θ < ω(s0,x0),

is a maximal solution of the retarded VS integral equation (6.2) with initial condition ys0 = ψ .

In order to prove the uniqueness, we assume that y : [s0 − r,ω(s0,x0))→ X is another
solution of the retarded VS integral equation with initial condition ys0

= ψ . By Theorem 6.1.5-(i),
the function x : [s0,ω(s0,x0))→O, given by

x(t)(θ) =


y(s0 − r), t0 − r ≤ θ ≤ s0 − r,

y(θ), s0 − r ≤ θ ≤ t,

y(t), t ≤ θ <+∞,

is a solution of the generalized ODE (6.9) with initial condition x(s0) = x0. By the uniqueness
of a solution of the generalized ODE (6.9), x(t) = x(t) for all t ∈ [s0,ω(s0,x0)). Thus, for all
θ ∈ [s0 − r,s0], we have

y(θ) = x(s0)(θ) = x(s0)(θ) = y(θ)

and, for all θ ∈ [s0,ω(s0,x0)), we have

y(θ) = x(θ)(θ) = x(θ)(θ) = y(θ).

Consequently, y(θ) = y(θ) for all θ ∈ [s0−r,ω(s0,x0)) and the maximal solution of the retarded
VS integral equation is unique.

Our next goal is to relate the solutions of the perturbed retarded VS integral equation
(6.5) to the solutions of a perturbed generalized ODE.
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Let F : O× [t0,+∞) → BG([t0 − r,+∞),X) be defined by (6.8), where O is given by
(6.7). Define P : [t0,+∞)→ BG([t0 − r,+∞),X) by

P(t)(θ) =


0, t0 − r ≤ θ ≤ t0,∫

θ

t0
p(s)dv(s), t0 ≤ θ ≤ t,∫ t

t0
p(s)dv(s), t ≤ θ <+∞,

(6.40)

and consider the following perturbed generalized ODE

dx
dτ

= D[F(x, t)+P(t)]. (6.41)

Notice that, by condition (A6), P is well-defined and, by condition (A5) and Theorem
B.0.17, P is left-continuous on (t0,+∞). As we mentioned in Remark 2.1.3, all results on
existence, uniqueness and other properties of a solution of a generalized ODE, presented in
Appendix C, hold for the perturbed generalized ODE (6.41).

The next result relates a solution of the perturbed generalized ODE (6.41) to a solution
of the perturbed retarded VS integral equation (6.5). Its proof is analogous to that of Theorem
6.1.7. Therefore, we omit it here.

Theorem 6.1.7. Consider O⊂ BG([t0 − r,+∞),X) given by (6.7) and S by (6.1). Assume that
g : [t0,+∞)→ R satisfies (A1), f : S× [t0,+∞)→ X satisfies (A2), (A3), (A4) and the functions
p : [t0,+∞)→ X and v : [t0,+∞)→ R satisfy (A5), (A6) and (A7). For all s0 ≥ t0, the following
statement hold.

(i) Let y : [s0 − r,ω(s0,φ))→ X be a maximal solution of the perturbed retarded VS integral
equation (6.2) with initial condition ys0

= φ ∈ S. For every t ∈ [s0,ω(s0,φ)), let

x(t)(θ) =


y(s0 − r), t0 − r ≤ θ ≤ s0 − r,

y(θ), s0 − r ≤ θ ≤ t,

y(t), t ≤ θ <+∞.

Then, x : [s0,ω(s0,φ))→O is a maximal solution of the perturbed generalized ODE (6.41)
with initial condition x(s0) = x0, where

x0(θ) =


φ(−r), t0 − r ≤ θ ≤ s0 − r,

φ(θ − s0), s0 − r ≤ θ ≤ s0,

φ(0), s0 ≤ θ <+∞.

(6.42)

(ii) Conversely, let φ ∈ S and x0 be given by (6.42). If x : [s0,ω(s0,x0))→ O is a maximal
solution of the perturbed generalized ODE (6.41) with initial condition x(s0) = x0, then
the function y : [s0 − r,ω(s0,x0))→ X , defined by

y(θ) =

{
x(t0)(θ), s0 − r ≤ θ ≤ s0,

x(θ)(θ), s0 ≤ θ < ω(s0,x0),
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is a maximal solution of the perturbed retarded VS integral equation (6.2) with initial
condition ys0

= φ .

6.2 Stability
This section is devoted to the study of uniform stability, uniform stability with respect to

perturbations and integral stability for the trivial solution of the retarded VS integral equation
(6.2) and the relations between these concepts. Furthermore, in Sections 6.2.2 and 6.2.3, we
applied the results described in Chapter 2 to establish Lyapunov theorems on uniform stability
and integral stability for the trivial solution of the retarded VS integral equation (6.2).

Throughout this section, we consider the set S, given by (6.1), and O by (6.7). We
suppose g : [t0,+∞)→ R satisfies(A1) and f : S× [t0,+∞)→ X satisfies (A2), (A3) and (A4).
Moreover, we assume that, for all s0 ≥ t0 and all ψ ∈ S, there exists a unique maximal solution
y : [s0−r,ω(s0,ψ))→ X of the retarded VS integral equation (6.2) with initial condition ys0 = ψ .
In this case, for all t ∈ [s0 − r,ω(s0,ψ)), we denote the memory function yt by yt(s0,ψ). In
addition, we suppose the function f : S× [t0,+∞)→ X is such that

f (0, t) = 0, for every t ∈ [t0,+∞). (6.43)

Therefore, y ≡ 0, is a solution of (6.2). In this case, we say that y ≡ 0 is the trivial solution of the
retarded VS integral equation (6.2). Moreover, notice that if f satisfies (6.43), then F , defined by
(6.8), satisfies

F(0, t)−F(0,s) = 0, for all t,s ∈ [t0,+∞)

which implies that x ≡ 0 is a solution of the generalized ODE (6.9). See Remark 2.0.1.

6.2.1 Basic results

In this subsection, we introduce the concepts of uniform stability, uniform stability with
respect to perturbations and integral stability for the trivial solution of the retarded VS integral
equation (6.2). Furthermore, we give relations between these concepts and relations between:

∙ uniform stability for the retarded VS integral equation (6.2) and uniform stability for the
generalized ODE (6.9);

∙ uniform stability with respect to perturbations for the retarded VS integral equation (6.2)
and uniform stability with respect to perturbations for the generalized ODE (6.9);

∙ integral stability for the retarded VS integral equation (6.2) and regular stability for the
generalized ODE (6.9).

Almost all the results presented here are new and can be found in [4, 6].



6.2. Stability 109

In the following, we present some concepts of stability for the retarded VS integral
equation (6.2).

Definition 6.2.1. The trivial solution of (6.2) is said to be

(i) stable, if for all s0 ≥ t0 and ε > 0, there exists δ = δ (ε,s0)> 0 such that if ψ ∈ S satisfies

‖ψ‖∞ = sup
θ∈[−r,0]

‖ψ(θ)‖< δ ,

then
‖yt(s0,ψ)‖∞ = sup

θ∈[−r,0]
‖y(θ + t)‖< ε, for all t ∈ [s0,ω(s0,ψ)),

where y : [s0− r,ω(s0,ψ))→ X is a maximal solution of the retarded VS integral equation
(6.2) with initial condition ys0 = ψ;

(ii) uniformly stable, if it is stable with δ independent of s0.

(iii) uniformly asymptotically stable, if there exists δ0 > 0 such that for all ε > 0 and all s0 ≥ t0,
there exists T = T (ε)≥ 0 such that if ψ ∈ S satisfies

‖ψ‖∞ = sup
θ∈[−r,0]

‖ψ(θ)‖< δ ,

then

‖yt(s0,ψ)‖∞ = sup
θ∈[−r,0]

‖y(θ + t)‖< ε, for all t ∈ [s0,ω(s0,ψ))∩ [s0 +T,+∞),

where y : [s0− r,ω(s0,ψ))→ X is a maximal solution of the retarded VS integral equation
(6.2) with initial condition ys0 = ψ .

The next two results relate the concepts above to the corresponding concepts of stability
for the trivial solution of the generalized ODE (6.9), presented in Definition 2.2.1.

Theorem 6.2.2. Let S be given by (6.1). Assume that g : [t0,+∞)→ R satisfies condition (A1)
and f : S× [t0,+∞)→ X satisfies conditions (A2), (A3) and (A4). Then, the following statements
hold.

(i) If the trivial solution of the generalized ODE (6.9) is stable, then the trivial solution of the
retarded VS integral equation (6.2) is stable.

(ii) If the trivial solution of the generalized ODE (6.9) is uniformly stable, then the trivial
solution of the retarded VS integral equation (6.2) is uniformly stable.

(iii) If the trivial solution of the generalized ODE (6.9) is uniformly asymptotically stable, then
the trivial solution of the retarded VS integral equation (6.2) is uniformly asymptotically
stable.
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Proof. Due to the similarity of the proofs items (i), (ii) and (iii), we only prove item (ii).

Given s0 ≥ t0 and ε > 0, let y : [s0 − r,ω(s0,ψ))→ X be the maximal solution of the
retarded VS integral equation (6.2) with initial condition ys0 = ψ . By Theorem 6.1.5-(i), the
function x : [s0,ω(s0,ψ))→O, given by

x(t)(θ) =


y(s0 − r), t0 − r ≤ θ ≤ s0 − r,

y(θ), s0 − r ≤ θ ≤ t,

y(t), t ≤ θ <+∞,

is the maximal solution of the generalized ODE (6.9) with initial condition x(s0) = x̃, where

x̃(θ) =


ψ(−r), t0 − r ≤ θ ≤ s0 − r,

ψ(θ − s0), s0 − r ≤ θ ≤ s0,

ψ(0), θ ≥ s0.

Moreover, for all t ∈ [s0,ω(s0,ψ)), we have

‖yt‖∞ = sup
θ∈[−r,0]

‖y(θ + t)‖= sup
θ∈[t−r,t]

‖y(θ)‖

= sup
θ∈[t−r,t]

‖x(t)(θ)‖ ≤ sup
θ∈[t0−r,+∞)

‖x(t)(θ)‖= ‖x(t)‖∞.
(6.44)

Since the trivial solution of the generalized ODE (6.9) is uniformly stable, there exists
δ > 0 such that, if

‖x(s0)‖∞ < δ , (6.45)

then
‖x(t)‖∞ < ε, for all t ∈ [s0,ω(s0,ψ)). (6.46)

Therefore, by equations (6.44), (6.45) and (6.46), we have

‖ys0‖∞ = ‖x(s0)‖∞ < δ ⇒‖yt‖∞ ≤ ‖x(t)‖∞ < ε, for all t ≥ s0

which shows that the trivial solution of the retarded VS integral equation (6.2) is uniformly
stable.

Theorem 6.2.3. Let S be given by (6.1). Assume that g : [t0,+∞)→ R satisfies condition (A1)
and f : S× [t0,+∞)→ X satisfies conditions (A2), (A3) and (A4). Then, the following statements
hold.

(i) If the trivial solution of the retarded VS integral equation (6.2) is uniformly stable, then
the trivial solution of the generalized ODE (6.9) is uniformly stable.

(ii) If the trivial solution of the retarded VS integral equation (6.2) is uniformly asymptotically
stable, then the trivial solution of the generalized ODE (6.9) is uniformly asymptotically
stable.
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Proof. We start by proving item (i). Let s0 ≥ t0, ε > 0 and x0 ∈O. By the definition of the set O,
there exist y ∈ O and s,τ0 ∈ [t0,+∞), with s ≥ τ0, such that

x0(θ) =


y(τ0 − r), t0 − r ≤ θ ≤ τ0 − r,

y(θ), τ0 − r ≤ θ ≤ s,

y(s), s ≤ θ <+∞.

Let ψ = yτ0 and define x0 : [t0 − r,+∞)→ X by

x0(θ) =


ψ(−r), t0 − r ≤ θ ≤ τ0 − r,

ψ(θ − τ0), τ0 − r ≤ θ ≤ τ0,

ψ(0), τ0 ≤ θ <+∞.

By Theorem 6.1.5-(i), for all t ∈ [τ0,ω(τ0,ψ)) the function x(t) ∈O, given by

x(t)(θ) =


y(τ0 − r), t0 − r ≤ θ ≤ τ0 − r,

y(θ), τ0 − r ≤ θ ≤ t,

y(t), t ≤ θ <+∞,

is the maximal solution of the generalized ODE (6.9) with initial condition x(τ0) = x0, where
y : [τ0 − r,ω(τ0,ψ))→ X is the maximal solution of the retarded VS integral equation (6.2) with
initial condition yτ0 = ψ .

By the fact that x(s) = x0, if x : [s0,ω(s0,x0)) → O is the solution of the generalized
ODE (6.9) with initial condition x(s0) = x0, then the function z : [τ0,ω(s0,x0))→O, defined by

z(t) =

{
x(t), t ∈ [τ0,s],

x(t − (s− s0)), t ∈ [s,ω(s0,x0)),

is well-defined. Moreover, z is a maximal solution of the generalized ODE (6.9) with initial
condition z(τ0) = x(τ0) = x0, once x and x are solutions of the generalized ODE (6.9) (see
Theorem C.0.14). By the uniqueness of solution, we have z(t) = x(t) for all t ∈ [s0,ω(s0,x0))

and, by the fact that x is a maximal solution, ω(s0,x0)≤ ω(τ0,ψ). Consequently,

x(t − (s− s0)) = x(t), for all t ∈ [s,ω(s0,x0)). (6.47)

Now, for all t ≥ s0, we have t + s− s0 ≥ t + s− t = s. Then, by (6.47), we obtain

x(t) = x(t +(s− s0)− (s− s0)) = x(t +(s− s0)), for all t ∈ [s0,ω(s0,x0)). (6.48)

Notice that, since t ≥ s0 and s ≥ τ0, we have t + s ≥ s0 + τ0 and, hence, t +(s− s0)≥ τ0. Then,
x(t +(s− s0)) is well-defined for all t ∈ [s0,ω(s0,x0)).

On the other hand, since the trivial solution of the retarded VS integral equation (6.2) is
uniformly stable, there exists δ = δ (ε)> 0, such that, if ‖ψ‖∞ < δ , then

‖yt‖∞ <
ε

3
, for all t ∈ [τ0,ω(τ0,ψ)). (6.49)
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Furthermore, it is not difficult to see that ‖ψ‖∞ = ‖x0‖∞ ≤ ‖x0‖∞.

Let t ∈ [τ0,ω(τ0,ψ)) and consider the following two cases.

Case 1: t − r < τ0 and ‖x0‖∞ < δ .

Then,

‖x(t)‖∞ = sup
θ∈[τ0−r,t]

‖y(θ)‖ ≤ sup
θ∈[τ0−r,τ0]

‖y(θ)‖+ sup
θ∈[τ0,t]

‖y(θ)‖

≤ sup
θ∈[−r,0]

‖yτ0‖∞ + sup
θ∈[t−r,t]

‖y(θ)‖

≤ sup
θ∈[−r,0]

‖yτ0‖∞ + sup
θ∈[−r,0]

‖yt‖∞

(6.49)
< 2

ε

3
< ε.

(6.50)

Case 2: τ0 ≤ t − r and ‖x0‖∞ < δ .

In this case, for all θ ∈ [τ0, t − r], we get

‖y(θ)‖ ≤ ‖yθ‖∞ <
ε

3
,

which implies
sup

θ∈[τ0,t−r]
‖y(θ)‖< ε

3
. (6.51)

Consequently,

‖x(t)‖∞ = sup
θ∈[τ0−r,t]

‖y(θ)‖

≤ sup
θ∈[τ0−r,τ0]

‖y(θ)‖+ sup
θ∈[τ0,t−r]

‖y(θ)‖+ sup
θ∈[t−r,t]

‖y(θ)‖

= ‖yτ0‖∞ + sup
θ∈[τ0,t−r]

‖y(θ)‖+‖yt‖∞

(6.49), (6.51)
< 3

ε

3
= ε.

(6.52)

Therefore, equations (6.50) and (6.52) yield

‖x(t)‖∞ ≤ ε, for all t ∈ [τ0,ω(τ0,ψ)),

whenever ‖x0‖∞ < δ and, by (6.48), we conclude

‖x(t)‖∞ = ‖x(t +(s− s0))‖∞ ≤ ε, for all t ∈ [s0,ω(s0,x0)),

whenever ‖x0‖∞ < δ . Therefore, the trivial solution of the generalized ODE (6.9) is uniformly
stable.

The proof of item (ii) is analogous to the proof of item (i) and, hence, we omit it here.

Henceforward, we assume that, for all s0 ≥ t0 and all ψ ∈ S, there exists a unique maximal
solution y : [s0−r,ω(s0,ψ))→ X of the perturbed retarded VS integral equation (6.5) with initial
condition ys0

= ψ .
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In what follows, we describe when the trivial of the retarded VS integral equation (6.2)
is stable with respect to perturbations.

Definition 6.2.4. The trivial solution of the retarded VS integral equation (6.2) is said to be

(i) stable with respect to perturbations if, for all s0 ≥ t0 and ε > 0, there exists δ = δ (ε,s0)> 0
such that if ψ ∈ S satisfies

‖ψ‖∞ = sup
θ∈[−r,0]

‖ψ(θ)‖< δ and sup
s∈[s0,+∞)

∥∥∥∥∫ s

s0

p(s)dv(s)
∥∥∥∥< δ ,

then

‖yt‖∞ = sup
θ∈[−r,0]

‖y(θ + t)‖< ε, for all t ≥ s0,

where y : [s0−r,ω(s0,ψ))→ X is a maximal solution of the perturbed retarded VS integral
equation (6.5) with initial condition ys0

= ψ;

(ii) uniformly stable with respect to perturbations, if it is stable with respect to perturbations
with δ independent of s0;

(iii) uniformly asymptotically stable with respect to perturbations, if there exists δ0 > 0 such
that for all ε > 0 and all s0 ≥ t0, there exists T = T (ε)≥ 0 such that if ψ ∈ S satisfies

‖ψ‖∞ = sup
θ∈[−r,0]

‖ψ(θ)‖< δ ,

then

‖yt(s0,ψ)‖∞ = sup
θ∈[−r,0]

‖y(θ + t)‖< ε, for all t ∈ [s0,ω(s0,ψ))∩ [s0 +T,+∞),

where y : [s0−r,ω(s0,ψ))→ X is a maximal solution of the perturbed retarded VS integral
equation (6.5) with initial condition ys0

= ψ .

The next result relates the concepts above to the corresponding concepts for the trivial
solution of the generalized ODE (6.9), presented in Definition 2.1.4. Its proof follows by using
Theorem 6.1.7 instead of Theorem 6.1.5 in Theorem 6.2.2 and noticing that, if P is defined by
(6.41), then

sup
s∈[s0,+∞)

‖P(s)−P(s0)‖∞ = sup
s∈[s0,+∞)

∥∥∥∥∫ s

s0

p(s)dv(s)
∥∥∥∥ .

Therefore, we omit it here.

Theorem 6.2.5. Let S be given by (6.1). Assume that g : [t0,+∞) → R satisfies condition
(A1), f : S× [t0,+∞) → X satisfies (A2), (A3), (A4) and the functions p : [t0,+∞) → X and
v : [t0,+∞)→ R satisfy (A5), (A6) and (A7). The following statements hold.
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(i) If the trivial solution of the generalized ODE (6.9) is stable with respect to perturbations,
then the trivial solution of the retarded VS integral equation (6.2) is stable with respect to
perturbations.

(ii) The trivial solution of the generalized ODE (6.9) is uniformly stable with respect to pertur-
bations, then the trivial solution of the retarded VS integral equation (6.2) is uniformly
stable with respect to perturbations.

(iii) The trivial solution of the generalized ODE (6.9) is uniformly asymptotically stable with
respect to perturbations, then the trivial solution of the retarded VS integral equation (6.2)
is uniformly asymptotically stable with respect to perturbations.

In the next result, we are assuming that, for all s0 ≥ t0 and ψ ∈ S, there exist global
forward solutions of the retarded VS integral equation (6.2) and of the perturbed retarded VS
integral equation (6.5) with same initial condition ψ evaluated at s0. Its proof is analogous to the
proof of Theorem 2.2.3. Therefore, we omit it here.

Theorem 6.2.6. Let S be given by (6.1). Assume that g : [t0,+∞) → R satisfies condition
(A1), f : S× [t0,+∞) → X satisfies (A2), (A3), (A4) and the functions p : [t0,+∞) → X and
v : [t0,+∞)→ R satisfy (A5), (A6) and (A7). Then, the following assertions hold.

(i) If the trivial solution of the retarded VS integral equation (6.2) is stable with respect to
perturbations, then it is stable.

(ii) If the trivial solution of the retarded VS integral equation (6.2) is uniformly stable with
respect to perturbations, then it is uniformly stable.

(iii) If the trivial solution of the retarded VS integral equation (6.2) is uniformly asymptotically
stable with respect to perturbations, then it is uniformly asymptotically stable.

In order to show that uniform stability for the trivial solution of the retarded VS integral
equation (6.2) implies uniform stability with respect to perturbations, we introduce the following
conditions:

(A 3) there exists a Perron-Stieltjes integrable function M : [t0,+∞)→ R with respect to g such
that ∥∥∥∥∫ s2

s1

f (ys,s)dg(s)
∥∥∥∥≤ ∫ s2

s1

M (s)dg(s),

for all y ∈ O and all s1,s2 ∈ [t0,+∞);

(A 4) there exists a Perron-Stieltjes integrable function L : [t0,+∞)→ R with respect to g such
that ∥∥∥∥∫ s2

s1

[ f (ys,s)− f (zs,s)]dg(s)
∥∥∥∥≤ ∫ s2

s1

L (s)‖ys − zs‖∞dg(s),

for all y,z ∈ O and all s1,s2 ∈ [t0,+∞).
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In the sequel, we point out that if f : S× [t0,+∞)→ X satisfies (A2), (A 3) and (A 4),
then F , defined by (6.8), satisfies an useful property.

Remark 6.2.7. Assume that f : S× [t0,+∞) → X satisfies (A2), (A 3) and (A 4) and define
h̃ : [t0,+∞)→ R by

h̃(t) =
∫ s2

s1

[M (s)+L (s)]dg(s), t ∈ [t0,+∞). (6.53)

Then, h̃ is a nondecreasing function which is left-continuous on (t0,+∞) and F , defined by (6.8),
belongs to the class F (Ω, h̃) (the proof of these facts are analogous to the proof of Lemma 6.1.2).
Furthermore, since the integrals in conditions (A 3) and (A 4) are in the sense of Perron-Stieltjes,
h̃ is bounded.

The next theorem shows that with conditions (A 3) and (A 4), uniform stability with
respect to perturbations implies uniform stability.

Theorem 6.2.8. Let S be given by (6.1). Assume that g : [t0,+∞) → R satisfies condition
(A1), f : S× [t0,+∞)→ X satisfies (A2), (A 3), (A 4) and the functions p : [t0,+∞)→ X and
v : [t0,+∞)→ R satisfy (A5), (A6) and (A7). The following statements hold.

(i) If the trivial solution of the retarded VS integral equation (6.2) is uniformly stable, then it
is uniformly stable with respect to perturbations.

(ii) If the trivial solution of the retarded VS integral equation (6.2) is uniformly asymptotically
stable, then it is uniformly asymptotically stable with respect to perturbations.

Proof. Once the proof of item (ii) is similar to the proof of item (i), we only prove item (i).

Assume that the trivial solution of the retarded VS integral equation (6.2) is uniformly
stable. By Theorem 6.2.13, the trivial solution of the generalized ODE (6.9) is uniformly stable.

On the other hand, since f : S× [t0,+∞)→ X satisfies conditions (A 3) and (A 4), F

defined by (6.8), belongs to the class F (Ω, h̃), where h̃ is bounded (see Remark 6.2.7). Then,
by Theorem 2.2.7, the trivial solution of the generalized ODE (6.9) is uniformly stable with
respect to perturbations and, by Theorem 6.2.5-(ii), the trivial solution of the retarded VS integral
equation (6.2) is uniformly stable with respect to perturbations.

As a consequence of Theorems 6.2.6 and 6.2.8, we have the following result.

Theorem 6.2.9. Let S be given by (6.1). Assume that g : [t0,+∞) → R satisfies condition
(A1), f : S× [t0,+∞)→ X satisfies (A2), (A 3), (A 4) and the functions p : [t0,+∞)→ X and
v : [t0,+∞)→ R satisfy (A5), (A6) and (A7). The following statements hold.
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(i) If the trivial solution of the retarded VS integral equation (6.2) is uniformly stable with
respect to perturbations, then the trivial solution of the generalized ODE (6.9) is uniformly
stable with respect to perturbations.

(ii) If the trivial solution of the retarded VS integral equation (6.2) is uniformly asymptotically
stable with respect to perturbations, then the trivial solution of the generalized ODE (6.9)
is uniformly stable with respect to perturbations.

Proof. Let us start by proving item (i). By Theorem 6.2.6-(ii), the trivial solution of the retarded
VS integral equation (6.2) is uniformly stable. On the other hand, it is clear that if a function
f : S× [t0,+∞)→ X satisfies conditions (A 3) and (A 4), then it satisfies conditions (A3) and
(A4). Therefore, by Theorem 6.2.6-(ii), the trivial solution of the generalized ODE (6.9) is
uniformly stable and, by Theorem 2.2.4-(i), it is uniformly stable with respect to perturbations,
once h̃ from the class F (Ω, h̃) is bounded (see Remark 6.2.7).

The proof of item (ii) is analogous and, therefore, we omit it here.

In the sequel, we present sufficient conditions for the retarded VS integral equation (6.2)
to be uniformly stable with respect to perturbations.

Theorem 6.2.10. Let S be given by (6.1). Assume that g : [t0,+∞) → R satisfies condition
(A1), f : S× [t0,+∞)→ X satisfies (A2), (A 3), (A 4) and the functions p : [t0,+∞)→ X and
v : [t0,+∞)→ R satisfy (A5), (A6) and (A7). Then, trivial solution of the retarded VS integral
equation (6.2) is uniformly stable with respect to perturbations.

Proof. By Remark 6.2.13, the function h̃ from the class F (Ω, h̃) is bounded and, by Corollary
4.0.3, the trivial solution of the generalized ODE (6.9) is uniformly stable with respect to
perturbations. Then, by Theorem 6.2.5-(ii), the trivial solution of the retarded VS integral
equation (6.2) is uniformly stable with respect to perturbations.

We end this subsection by presenting the definition of integral stability for the retarded
VS integral equation (6.2), contained in [26], and a relation between this stability and the concept
of regular stability for the generalized ODE (6.9) (see Definitions 2.1.4 and 2.1.1).

Definition 6.2.11. Let [α,β ]⊂ [t0,+∞) and ψ ∈ S. The trivial solution y ≡ 0 of (6.2) is called

(i) integrally stable, if for every ε > 0 there is a δ = δ (ε)> 0 such that if

‖ψ‖∞ = sup
θ∈[−r,0]

‖ψ(θ)‖< δ and sup
θ∈[α,β ]

∥∥∥∥∫ θ

α

p(s)dv(s)
∥∥∥∥< δ ,

then

‖yt(α,ψ)‖∞ = sup
θ∈[−r,0]

‖y(θ + t)‖< ε, for every t ∈ [α,β ],
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where y(·,α,ψ) is a solution of the perturbed retarded VS integral equation (6.5) with
yα = ψ;

(ii) integrally attracting, if there is a δ̃ > 0 and for every ε > 0, there exist T = T (ε)≥ 0 and
ρ = ρ(ε)> 0 such that if

‖ψ‖∞ = sup
θ∈[−r,0]

‖ψ(θ)‖< δ and sup
θ∈[α,β ]

∥∥∥∥∫ θ

α

p(s)dv(s)
∥∥∥∥< δ ,

then
‖yt(α,ψ)‖∞ = sup

θ∈[−r,0]
‖y(θ + t)‖< ε, for all t ≥ α +T, t ∈ [α,β ],

where y(·,α,ψ) is a solution of the perturbed retarded VS integral equation (6.5) with
yα = ψ;

(iii) integrally asymptotically stable, if it is integrally stable and integrally attracting.

Remark 6.2.12. It is clear that if the trivial solution of the retarded VS integral equation (6.2)
is uniformly stable with respect to perturbations, then it is integrally stable. Moreover, if the
trivial solution of the retarded VS integral equation (6.2) is uniformly asymptotically stable with
respect to perturbations, then it is integrally asymptotically stable.

The proof of the next result can be found in [26, Theorem 5.1].

Theorem 6.2.13. Let S be given by (6.1). Assume that g : [t0,+∞) → R satisfies condition
(A1), f : S× [t0,+∞) → X satisfies (A2), (A3), (A4) and the functions p : [t0,+∞) → X and
v : [t0,+∞)→ R satisfy (A5), (A6) and (A7). Then, the following statements hold.

(i) If the trivial solution of the generalized ODE (6.9) is regularly stable, then the trivial
solution of the retarded VS integral equation (6.2) is integrally stable.

(ii) If the trivial solution of the generalized ODE (6.9) is regularly attracting, then the trivial
solution of the retarded VS integral equation (6.2) is integrally attracting.

(iii) If the trivial solution of the generalized ODE (6.9) is regularly asymptotically stable, then
the trivial solution of the retarded VS integral equation (6.2) is integrally asymptotically
stable.

In what follows, we prove the inverse implications of Theorem 6.2.13.

Theorem 6.2.14. Let S be given by (6.1). Assume that g : [t0,+∞) → R satisfies condition
(A1), f : S× [t0,+∞) → X satisfies (A2), (A3), (A4) and the functions p : [t0,+∞) → X and
v : [t0,+∞)→ R satisfy (A5), (A6) and (A7). Then, the following statements hold.

(i) If the trivial solution of the retarded VS integral equation (6.2) is integrally stable, then
the trivial solution of the generalized ODE (6.9) is regularly stable.
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(ii) If the trivial solution of the retarded VS integral equation (6.2) is integrally attracting, then
the trivial solution of the generalized ODE (6.9) is regularly attracting.

(iii) If the trivial solution of the retarded VS integral equation (6.2) is integrally asymptotically
stable, then the trivial solution of the generalized ODE (6.9) is regularly asymptotically
stable.

Proof. Since the proof of items (ii) and (iii) are similar to the proof of item (i), we omit them
here.

Let ε > 0, [α,β ] ⊂ [t0,+∞), P ∈ G−([α,β ],BG([t0 − r,+∞),X)) and x0 ∈ O. By the
definition of O, there exist y ∈ O and s,s0 ∈ [t0,+∞), with s ≥ s0, such that

x0(θ) =


y(s0 − r), t0 − r ≤ θ ≤ s0 − r,

y(θ), s0 − r ≤ θ ≤ s,

y(s), s ≤ θ <+∞.

Define P : [t0,+∞)→ BG([t0 − r,+∞),X) by

P(t)(θ) =


0, t0 − r ≤ θ ≤ t0,∫

θ

t0
p(s)dv(s), t0 ≤ θ ≤ t,∫ t

t0
p(s)dv(s), t ≤ θ <+∞.

Since v : [t0,+∞)→ R is left-continuous, by Theorem B.0.17, P is a regulated function which is
left-continuous on (t0,+∞).

Using the ideas from the proof of Theorem 6.2.3, the function x̃ : [s0,ω)→O, given by

x̃(t)(θ) =


y(s0 − r), t0 − r ≤ θ ≤ s0 − r,

y(θ), s0 − r ≤ θ ≤ t,

y(t), t ≤ θ <+∞,

is the solution of the perturbed generalized ODE

dx
dτ

= D[F(x, t)+P(t)] (6.54)

with initial condition x̃(s0) = x̃0, where y : [s0−r,ω)→X is the solution of the perturbed retarded
VS equation (6.5) with initial condition ys0 = ψ and x̃0 is given by

x̃0(θ) =


ψ(−r), t0 − r ≤ θ ≤ s0 − r,

ψ(θ − s0), s0 − r ≤ θ ≤ s0,

ψ(0), s0 ≤ θ <+∞,

Furthermore, if x : [α,β ] → O is the solution of the perturbed generalized ODE (6.54) with
initial condition x(α) = x0, then β < ω , ‖x̃0‖∞ = ‖ψ‖∞ ≤ ‖x0‖∞ and

‖x(t)‖∞ = ‖x̃(t +(s−α))‖∞, for all t ∈ [α,β ]. (6.55)
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Since the retarded VS integral equation (6.2) is integrally stable, there exists δ > 0 such that, if

‖ψ‖∞ < δ and sup
θ∈[α,β ]

∥∥∥∥∫ θ

α

p(s)dv(s)
∥∥∥∥< δ , (6.56)

then,
‖yt‖∞ <

ε

6
, for all t ∈ [α,β ]. (6.57)

Define G : [α,β ] → BG([t0 − r,+∞),X) by G(t) = P(t)−P(t), for all t ∈ [α,β ] and
assume that

‖x0‖∞ <
δ

4eH , sup
θ∈[α,β ]

‖P(θ)−P(α)‖∞ <
δ

4eH and sup
θ∈[α,β ]

∥∥∥∥∫ θ

α

p(s)dv(s)
∥∥∥∥< δ

4eH ,

where H = sups∈[α,β ] |h(s)−h(α)|.

Notice that, for all t ∈ [α,β ], we have

[P(t)−P(α)](θ) =


0, t0 − r ≤ θ ≤ α,∫

θ

α

p(s)dv(s), α ≤ θ ≤ t,∫ t

α

p(s)dv(s), t ≤ θ <+∞,

and, hence,

sup
θ∈[α,β ]

‖P(θ)−P(α)‖∞ = sup
θ∈[α,β ]

∥∥∥∥∫ θ

α

p(s)dv(s)
∥∥∥∥ , (6.58)

‖G(t)−G(α)‖∞ ≤ ‖P(t)−P(α)‖∞ +‖P(t)−P(α)‖∞ <
δ

2eH < ∞

and, consequently,

sup
θ∈[α,β ]

‖G(θ)−G(α)‖∞ <
δ

2eH < ∞. (6.59)

Let x : [α,β ]→O be the solution of the perturbed generalized ODE (6.41) with initial
condition x(α) = x0. Then, for all t ∈ [α,β ], we have

‖x(t)− x(t)‖∞ ≤
∥∥∥∥∫ t

α

DF(x(τ),s)−
∫ t

α

DF(x(τ),s)
∥∥∥∥

∞

+‖G(t)−G(α)‖∞

≤ 2|h(t)−h(α)|+ δ

2eH < 2H +
δ

2eH < ∞.

Therefore, the function [α,β ] ∋ t → ‖x(t)− x(t)‖∞ is bounded and, by Lemma C.0.6, for all
t ∈ [α,β ], we get

‖x(t)− x(t)‖∞ ≤
∫ t

s0

‖x(s)− x(s)‖∞dh(s)+ sup
θ∈[α,β ]

‖G(θ)−G(α)‖∞, for all t ∈ [α,β ].

Furthermore, by the Gronwall-type inequality (see Theorem B.0.10), we have

‖x(t)‖∞ ≤ ‖x(t)‖∞ +‖x(t)− x(t)‖∞ ≤ ‖x(t)‖∞ + sup
θ∈[α,β ]

‖G(θ)−G(α)‖∞eH

< ‖x(t)‖∞ +
δ

2
.

(6.60)
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On the other hand, by (6.56) and (6.57) (see Cases 1 and 2 in the proof of Theorem
6.2.3), we conclude

‖x̃(t)‖∞ <
ε

2
, for all t ∈ [s0,ω) (6.61)

since ‖ψ‖∞ = ‖x̃0‖∞ ≤ ‖x0‖∞ < δ

4eH . By equations (6.55) and (6.61), we get

‖x(t)‖∞ = ‖x̃(t +(s−α))‖∞ <
ε

2
, for all t ∈ [α,β ]. (6.62)

By equations (6.60) and (6.62) and the fact that δ < ε , we obtain

‖x(t)‖∞ ≤ ε, for all t ∈ [α,β ],

which shows that the trivial solution of the generalized ODE (6.9) is regular stable with respect
to perturbations and, by Theorem 2.1.5, it is regularly stable.

6.2.2 Direct method of Lyapunov

This subsection is devoted to proving Lyapunov-type theorems on uniform stability and
integral stability for the retarded VS integral equation (6.2).

At first, we introduce a concept of Lyapunov functional with respect to the retarded VS
integral equation (6.2) (see also [26, Definition 7.1]). To this end, we recall that R+ denotes the
set of non-negative real numbers.

Definition 6.2.15. Let E ⊂ S, where S is given by (6.1). We say that U : [t0,+∞)×E → R is
a Lyapunov functional with respect to the retarded VS integral equation (6.2), if the following
conditions are satisfied:

(i) U(·,ψ) : [t0,+∞)→ R is left-continuous on (t0,+∞), for all ψ ∈ E;

(ii) there exists an increasing continuous function b : R+ → R+ satisfying b(0) = 0 such that

U(t,ψ)≥ b(‖ψ‖),

for every (t,ψ) ∈ [t0,+∞)×E;

(iii) for every t ≥ t0 and ψ ∈ E,

U̇(t,ψ) := limsup
η→0+

U(t +η ,yt+η(t,ψ))−U(t,yt(t,ψ))

η
≤ 0

holds, where y(t,ψ) denotes the maximal solution of the retarded VS integral equation
(6.2) with initial condition yt = ψ and the functions yt+η ,yt : [−r,0]→ X are defined by
yt+η(θ) = y(t +η +θ) and yt(θ) = y(t +θ) for all θ ∈ [−r,0].

In the sequel, we present a Lyapunov-type theorem on uniform stability for the retarded
VS integral equation (6.2). Such a result weakens the Lipschitzian condition on the Lyapunov
functional found in [26, Theorem 7.3] and its proof follows the same ideas of the proof of [23,
Theorem 3.4].



6.2. Stability 121

Theorem 6.2.16. Let S be given by (6.1). Assume that g : [t0,+∞)→ R satisfies condition (A1)
and f : S× [t0,+∞)→ X satisfies conditions (A2), (A3) and (A4). Let U : [t0,+∞)×S →R be a
Lyapunov functional with respect to the retarded VS integral equation (6.2). Suppose U satisfies
the following conditions:

(LUV1) there exists an increasing continuous function a : R+ → R+ satisfying a(0) = 0, and

U(t,ψ)≤ a(‖ψ‖∞),

for all (t,ψ) ∈ [t0,+∞)×S;

(LUV2) for all s0 ≥ t0, the function [s0,ω(s0,ψ)) ∋ t ↦→ U(t,yt(s0,ψ)) is nonincreasing along
every maximal solution y : [s0 − r,ω(s0,ψ)) → X of the retarded VS integral equation
(6.2) with initial condition ys0 = ψ ∈ S.

Then, the trivial solution of the retarded VS integral equation (6.2) is uniformly stable.

Proof. By the definition of Lyapunov functional, there exists an increasing continuous function
b : R+ → R+ satisfying b(0) = 0 and

b(‖ψ‖∞)≤U(t,ψ), for all (t,ψ) ∈ [t0,+∞)×S. (6.63)

Let s0 ≥ t0 and ε > 0. Consider A = {a(t); t ∈ R+}. Since a(0) = 0 and a is increasing,
infA = 0. Then, by the property of the infimum, for b(ε)> 0, there exists δ > 0 such that

0 < a(δ )< b(ε). (6.64)

Let ψ ∈ S and y : [s0 − r,ω(s0,ψ)) → X be a maximal solution of the retarded VS
integral equation (6.2) with initial condition ys0 = ψ . Assume that ‖ψ‖∞ < δ . By the fact that a

is increasing, we have

a(‖ψ‖∞)< a(δ ). (6.65)

Then, by condition (LUV2) and equations (6.63), (6.64) and (6.65), we obtain

b(‖yt‖∞)≤U(t,yt)≤U(t,ψ)≤ a(‖ψ‖∞)< a(δ )< b(ε),

for all t ∈ [s0,ω(s0,ψ)). Once b is increasing, we conclude ‖yt‖∞ < ε , for all t ∈ [s0,ω(s0,ψ))

and the proof is complete.

In the next lines, we establish a Lyapunov-type theorem on uniform asymptotic stability
for the retarded VS integral equation (6.2). Its proof follows the same ideas as those in Theorem
2.1.9, and therefore, we omit it here.
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Theorem 6.2.17. Let S be given by (6.1). Assume that g : [t0,+∞)→ R satisfies condition (A1)
and f : S× [t0,+∞)→ X satisfies conditions (A2), (A3) and (A4). Let U : [t0,+∞)×S →R be a
Lyapunov functional with respect to the retarded VS integral equation (6.2). Suppose U satisfies
conditions (LUV1) and (LUV2) from Theorem 6.2.16. Furthermore, assume that there exists a
continuous function Φ : R+ → R+ for which Φ(0) = 0, Φ(t)> 0 whenever t ̸= 0 and

D+U(t,ψ)≤−Φ(‖ψ‖∞),

for all (t,ψ) ∈ [t0,+∞)×S. Then, the trivial solution of the retarded VS integral equation (6.2)
is uniformly asymptotically stable.

In what follows, we obtain a Lyapunov-type theorem on integral stability for the retarded
VS integral equation (6.2).

Theorem 6.2.18. Let S be given by (6.1). Assume that g : [t0,+∞)→ R satisfies condition (A1)
and f : S× [t0,+∞)→ X satisfies conditions (A2), (A 3) and (A 4). Let U : [t0,+∞)×S → R
be a Lyapunov functional with respect to the retarded VS integral equation (6.2). Suppose U

satisfies conditions (LUV1) and (LUV2) from Theorem 6.2.16. Then, the trivial solution of the
retarded VS integral equation (6.2) is integrally stable.

Proof. Once f : S× [t0,+∞)→X satisfies conditions (A2), (A 3) and (A 4), it satisfies conditions
(A2), (A3) and (A4). Then, by Theorem 6.2.16, the trivial solution of the retarded VS integral
equation (6.2) is uniformly stable. Moreover, by Theorem 6.2.8-(i), the trivial solution of the
retarded VS integral equation (6.2) is uniformly stable with respect to perturbations and, by
Remark 6.2.12, it is integrally stable.

We end this section by presenting a Lyapunov-type theorem on integral asymptotic
stability for the retarded VS integral equation (6.2). Its proofs is analogous to that of Theorem
6.2.18.

Theorem 6.2.19. Let S be given by (6.1). Assume that g : [t0,+∞)→ R satisfies condition (A1)
and f : S× [t0,+∞)→ X satisfies conditions (A2), (A 3) and (A 4). Let U : [t0,+∞)×S → R
be a Lyapunov functional with respect to the retarded VS integral equation (6.2). Suppose U

satisfies all conditions from Theorem 6.2.17. Then, the trivial solution of the retarded VS integral
equation (6.2) is integrally asymptotically stable.

6.2.3 Converse Lyapunov theorems

In this subsection, we prove converse Lyapunov theorems on uniform stability and
integral stability for the trivial solution of the retarded VS integral equation (6.2).

At first, we show that the existence of a Lyapunov functional with respect to the general-
ized ODE (6.9) (see Definition 2.0.2) implies the existence of a Lyapunov functional with respect
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to the retarded VS integral equation (6.2) (see Definition 6.2.15). This result plays an important
role in the proof of the converse Lyapunov theorems for the retarded VS integral equation (6.2).

Theorem 6.2.20. Consider O⊂ BG([t0 − r,+∞),X) given by (6.7) and S by (6.1). Assume that
g : [t0,+∞) → R satisfies condition (A1) and f : S× [t0,+∞) → X satisfies conditions (A2),
(A3) and (A4). If there exists a Lyapunov functional V : [t0,+∞)×O→ R with respect to the
generalized ODE (6.9), then there exists a Lyapunov functional U : [t0,+∞)×S →R with respect
to the retarded VS integral equation (6.2).

Proof. Given t ≥ t0 and ψ ∈ S, let y : [t − r,ω(t,ψ)) → X be a solution of the retarded VS
integral equation (6.2) with initial condition yt = ψ . Then, by Theorem 6.1.5-(i), the function
x : [t,ω(t,ψ))→O, defined by

x(τ)(θ) =


y(t − r), t0 − r ≤ θ ≤ t − r,

y(θ), t − r ≤ θ ≤ τ,

y(τ), τ ≤ θ<+∞

(6.66)

is the solution of a generalized ODE (6.9) with initial condition x(t) = x̃, where

x̃(θ) =


ψ(−r), t0 − r ≤ θ ≤ t − r,

ψ(θ − t), t − r ≤ θ ≤ t,

ψ(0), t ≤ θ <+∞

(6.67)

In this case, we write xψ(τ) instead of x(τ) for all τ ∈ [t,ω(t,ψ)). Besides,

‖xψ(t)‖∞ = sup
θ∈[t0−r,+∞)

‖xψ(t)(θ)‖= sup
θ∈[t−r,t]

‖y(θ)‖= sup
θ∈[−r,0]

‖yt(θ)‖= ‖ψ‖∞ (6.68)

and, for all τ ∈ [t,ω(t,ψ)) and θ ∈ [−r,0], we have

(x(τ))τ(θ) = x(τ)(τ +θ) = y(τ +θ) = yτ(θ). (6.69)

Define U : [t0,+∞)×S → R by

U(t,ψ) =V (t,xψ(t)), for all t ∈ [t0,+∞), ψ ∈ S,

where V : [t0,+∞)×O→ R is a Lyapunov functional with respect to the generalized ODE (6.9).

Owing to the fact that there exists a one-to-one correspondence between ψ ∈ S and
xψ ∈O, U is well-defined in [t0,+∞)×S and, by the left-continuity of V (·,xψ(t)) : [t0,+∞)→R
on (t0,+∞), U(·,ψ) : [t0,+∞)→ R is left-continuous on (t0,+∞) for all ψ ∈ S, which implies
condition (i) from Definition 6.2.15. Moreover, by condition (L2) from Definition 2.0.2, we have

U(t,ψ) =V (t,xψ(t))≥ b(‖xψ(t)‖∞)
(6.68)
= b(‖ψ‖∞), for all (t,ψ) ∈ [t0,+∞)×S,

where b : R+ → R+ is an increasing continuous function such that b(0) = 0.
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We target to prove that U satisfies condition (iii) from Definition 6.2.15. Consider the
solution y : [t − r,ω(t,ψ))→ X of the retarded VS integral equation (6.2) with initial condition
yt = ψ and let x : [t,ω(t,ψ))→O be the solution of the generalized ODE (6.9) given by (6.66).
By (6.69), for all η > 0 for which t +η < ω(t,ψ), we have yt+η(t,ψ) = (xψ(t +η))t+η . By
the definition of U and the fact that V satisfies condition (L3) of Definition 2.0.2, we have

limsup
η→0+

U(t +η ,yt+η(t,ψ))−U(t,yt(t,ψ))

η

= limsup
η→0+

V (t +η ,xψ(t +η))−V (t,xψ(t))
η

≤ 0,

which concludes the proof.

The next result is a converse Lyapunov theorem on integral stability for the retarded VS
integral equation (6.2).

Theorem 6.2.21. Let S be given by (6.1). Assume that g : [t0,+∞) → R satisfies (A1) and
f : S× [t0,+∞)→X satisfies (A2), (A3) and (A4). If the trivial solution of the retarded VS integral
equation (6.2) is integrally stable, then there exists a Lyapunov functional U : [t0,+∞)×S → R
with respect to the retarded VS integral equation (6.2) satisfying

(CLIV1) there exists an increasing continuous function a : R+ → R+ satisfying a(0) = 0, and

U(t,ψ)≤ a(‖ψ‖∞),

for all (t,ψ) ∈ [t0,+∞)×S;

(CLIV2) for all s0 ≥ t0, the function [s0,ω(s0,ψ)) ∋ t ↦→ U(t,yt(s0,ψ)) is nonincreasing along
every maximal solution y : [s0 − r,ω(s0,ψ)) → X of the retarded VS integral equation
(6.2) with initial condition ys0 = ψ ∈ S.

Proof. By Theorem 6.2.14-(i), the trivial solution of the generalized ODE (6.9) is regularly
stable and, by Theorem 2.1.19, there exists a Lyapunov functional V : [t0,+∞)×O→ R with
respect to the generalized ODE (6.9). By Theorem 6.2.20, the function U : [t0,+∞)×S → R by

U(t,ψ) =V (t,x(t)), for all t ∈ [t0,+∞), ψ ∈ S,

is a Lyapunov functional with respect to the retarded VS integral equation (6.2), where x(t)t = ψ

is given by

xψ(t)(θ) =


ψ(−r), t0 − r ≤ θ ≤ t − r,

ψ(θ − t), t − r ≤ θ ≤ t,

ψ(0), t ≤ θ <+∞.

Furthermore, by Theorem 2.1.19-(CLR4), there exists an increasing continuous function
a : R+ → R+ satisfying a(0) = 0, and

U(t,ψ) =V (t,xψ)≤ a(‖ψ‖∞),
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since ‖xψ‖∞ = ‖ψ‖∞. Therefore, the proof of item (CLIV1) is complete.

In order to prove item (CLIV2), let y : [s0−r,ω(s0,ψ))→ X be a solution of the retarded
VS integral equation (6.2) with initial condition ys0 = ψ ∈ S. Then, by Theorem 6.1.5-(i), the
function x : [s0,ω(s0,ψ))→O, given by

x(t)(θ) =


y(s0 − r), t0 − r ≤ θ ≤ s0 − r,

y(θ) s0 − r ≤ θ ≤ t,

y(t), t ≤ θ <+∞,

is a solution of the generalized ODE (6.9) with initial condition x(s0) = x0, where

x0(θ) =


ψ(−r), t0 − r ≤ θ ≤ s0 − r,

ψ(θ − s0), s0 − r ≤ θ ≤ s0,

ψ(s0), s0 ≤ θ <+∞.

Notice that, for all t ∈ [s0,ω(s0,ψ)) and θ ∈ [−r,0], we have

x(t)t(θ) = x(t)(t +θ) = y(t +θ) = yt(θ)

and, by the definition of U , U(t,yt(s0,ψ)) =V (t,x(t)). Then, by Theorem 2.1.19-(CLR1), for
all t,s ∈ [s0,ω(s0,ψ)), t > s, we have

U(t,yt(s0,ψ)) =V (t,x(t))<V (s,x(s)) =U(s,ys(s0,ψ))

which proves item (CLIV2).

In the sequel, we exhibit a converse Lyapunov theorem on uniform stability for the
retarded VS integral equation (6.2).

Theorem 6.2.22. Let S be given by (6.1) and Eρ = {ψ ∈ S;‖ψ‖∞ ≤ ρ}, 0 < ρ . Assume that
g : [t0,+∞)→R satisfies condition (A1) and f : S× [t0,+∞)→ X satisfies conditions (A2), (A3)
and (A4). If the trivial solution of the retarded VS integral equation (6.2) is uniformly stable,
then there exists a Lyapunov functional U : [t0,+∞)×Eρ → R with respect to the retarded VS
integral equation (6.2) satisfying

(CLUV1) there exists an increasing continuous function a : R+ → R+ satisfying a(0) = 0, and

U(t,ψ)≤ a(‖ψ‖∞),

for all (t,ψ) ∈ [t0,+∞)×Eρ ;

(CLUV2) for all s0 ≥ t0, the function [s0,ω(s0,ψ)) ∋ t ↦→ U(t,yt(s0,ψ)) is nonincreasing along
every maximal solution y : [s0 − r,ω(s0,ψ)) → X of the retarded VS integral equation
(6.2) with initial condition ys0 = ψ ∈ Eρ .
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Proof. By Theorem 6.2.3-(i), the trivial solution of the generalized ODE (6.9) is uniformly stable
and, by the Lyapunov-type theorem on uniform stability for generalized ODEs (see Theorem
2.2.8), there exists a Lyapunov functional V : [t0,+∞)×Gρ → R with respect to the generalized
ODE, where Gρ = {x ∈O;‖x‖∞ ≤ ρ}.

Let ψ ∈ Eρ and t ∈ [t0,+∞). Define xψ(t) : [t0 − r,+∞)→ X by

xψ(t)(θ) =


ψ(−r), t0 − r ≤ θ ≤ t − r,

ψ(θ − t), t − r ≤ θ ≤ t,

ψ(0), t ≤ θ <+∞.

Then, xψ(t) ∈O and

‖x‖∞ = sup
θ∈[t0−r,+∞)

‖x(θ)‖= sup
θ∈[t−r,t]

‖ψ(θ − t)‖= sup
θ∈[−r,0]

‖ψ(θ)‖= ‖ψ‖∞, (6.70)

which implies xψ(t) ∈ Gρ .

By Theorem 6.2.20, U : [t0,+∞)×Eρ → R, defined by

U(t,ψ) =V (t,xψ(t)), for all t ∈ [t0,+∞), ψ ∈ Eρ ,

is a Lyapunov functional with respect to the retarded VS integral equation (6.2).

By conditions (LU1) and (LU2) from Theorem 2.2.8, it is not difficult to see that U

satisfies conditions (CLUV1) and (CLUV2).

6.3 Boundedness of solutions
In this section, we introduce concepts of uniform boundedness of solutions of the retarded

VS integral equation (6.2) and of the perturbed retarded VS integral equation (6.5). We also
relate these concepts to the concepts of stability, described in Section 6.2.1, and to the concept
of boundedness of solutions, as well as stability, for the generalized ODEs (6.9) and (6.41).
Moreover, we obtain a Lyapunov-type theorem and applied the results from Chapter 3 to prove a
converse Lyapunov theorem on uniform boundedness of solutions of the retarded VS integral
equation (6.2).

Throughout this section, we consider S be given by (6.1), g : [t0,+∞)→ R satisfying
(A1) and f : S× [t0,+∞)→ X satisfying (A2), (A3) and (A4). Moreover, we assume that, for
all s0 ≥ t0 and all ψ ∈ S, there exists a unique maximal solution y : [s0 − r,ω(s0,ψ))→ X of the
retarded VS integral equation (6.2) and a unique maximal solution y[s0 − r,ω(s0,ψ))→ X of
the perturbed retarded VS integral equation (6.2) with ys0 = ψ = ys0

. In addition, we suppose
the function f : S× [t0,+∞)→ X satisfies (6.43).

In the next lines, we give a definition of uniform boundedness of solutions of the retarded
VS integral equation (6.2) and of the perturbed retarded VS integral equation (6.5).
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Definition 6.3.1. We say that

(i) the retarded VS integral equation (6.2) is uniformly bounded if for every α > 0, there
exists M = M(α)> 0 such that, for all s0 ∈ [t0,+∞) and for all ψ ∈ S, with

‖ψ‖∞ = sup
θ∈[−r,0]

‖ψ(θ)‖< α,

we have

‖ys‖∞ = sup
θ∈[−r,0]

‖y(θ + s)‖< M, for all s ≥ s0,

where y : [s0,ω(s0,ψ))→ X is a solution of the retarded VS integral equation (6.2) with
initial condition ys0 = ψ;

(ii) the perturbed retarded VS integral equation (6.5) is uniformly bounded if for every α > 0,
there exists M = M(α)> 0 such that, for all s0 ∈ [t0,+∞) and for all ψ ∈ S, with

‖ψ‖∞ = sup
θ∈[−r,0]

‖ψ(θ)‖< α,

we have

‖ys‖∞ = sup
θ∈[−r,0]

‖y(θ + s)‖< M, for all s ≥ s0,

where y : [s0,ω(s0,ψ))→ X is a solution of the perturbed retarded VS integral equation
(6.2) with initial condition ys0 = ψ .

In the sequel, we establish a relation between the concepts above. Its proof follows
similar ideas to the proof of Theorem 3.0.6-(i).

Theorem 6.3.2. If the perturbed retarded VS integral equation (6.5) is uniformly bounded, then
the retarded VS integral equation (6.2) is uniformly bounded.

The proof of the next result is analogous to the proofs of Theorems 6.2.2 and 6.2.3.
Therefore, we omit it here.

Theorem 6.3.3. Let S be given by (6.1). Assume that g : [t0,+∞) → R satisfies condition
(A1), f : S× [t0,+∞) → X satisfies (A2), (A3), (A4) and the functions p : [t0,+∞) → X and
v : [t0,+∞)→ R satisfy (A5), (A6) and (A7). Then, the following statements hold.

(i) The retarded VS integral equation (6.2) is uniformly bounded if and only if the generalized
ODE (6.9) is uniformly bounded.

(ii) The perturbed retarded VS integral equation (6.5) is uniformly bounded if and only if the
perturbed generalized ODE (6.41) is uniformly bounded.
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The next result relates the existence of a Lyapunov function with respect to the retarded
VS integral equation (6.2) to the concept of uniform boundedness of solutions of the retarded VS
integral equation (6.2). This result is a version of the Lyapunov theorems on uniform boundedness
of solutions.

Theorem 6.3.4. Let S be given by (6.1). Assume that g : [t0,+∞)→ R satisfies condition (A1)
and f : S× [t0,+∞) → X satisfies conditions (A2), (A3) and (A4). Then, the trivial solution
of the retarded VS integral equation (6.2) is uniformly bounded if and only if there exists
a Lyapunov functional with respect with respect to the retarded VS integral equation (6.2)
U : [t0,+∞)×S → R satisfying the following conditions:

(CBV1) there exist two increasing continuous functions p,b :R+ →R+ satisfying p(0) = b(0) = 0,

lim
s→+∞

b(s) = +∞

and

b(‖ψ‖∞)≤U(t,ψ)≤ p(‖ψ‖∞),

for all (t,ψ) ∈ [t0,+∞)×S;

(CBV2) for all s0 ≥ t0, the function [s0,+∞) ∋ t ↦→ U(t,yt(s0,ψ)) is nonincreasing along every
global forward solution y : [s0 − r,+∞) → X of the retarded VS integral equation (6.2)
with initial condition ys0 = ψ ∈ S.

Proof. Assume that the retarded VS integral equation (6.2) is uniformly bounded. Then, by
Theorem 6.3.3-(ii) the generalized ODE (6.9) is uniformly bounded. By Theorem 3.0.3, there
exist a function V : [t0,+∞)×O→ R with respect to generalized ODE (6.9) and two increasing
functions p,b : R+ → R+ such that p(0) = b(0) = 0,

lim
s→+∞

b(s) = +∞ (6.71)

and

b(‖x‖∞)≤V (t,x)≤ p(‖x‖∞), for all (t,x) ∈ [t0,+∞)×O. (6.72)

By Theorem 6.2.20, the function U : [t0,+∞)×S → R, defined by

U(t,ψ) =V (t,xψ(t)), for all t ∈ [t0,+∞), ψ ∈ S, (6.73)

is a Lyapunov functional with respect to the retarded VS integral equation (6.2), where xψ(t) is
given by

xψ(t)(θ) =


ψ(−r), t0 − r ≤ θ ≤ t − r,

ψ(θ − t), t − r ≤ θ ≤ t,

ψ(0), t ≤ θ <+∞
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Then, it is clear that ‖ψ‖∞ = ‖xψ(t)‖∞ and, by equations (6.72) and (6.73), we conclude

b(‖ψ‖∞)≤U(t,ψ)≤ p(‖ψ‖∞), for all t ∈ [t0,+∞), ψ ∈ S.

Moreover, as in the proof of Theorem 6.2.20, U satisfies condition (CBV2).

Reciprocally, suppose there exists a Lyapunov functional with respect to the retarded VS
integral equation (6.2). Let α > 0. By condition (CBV1), there exists M = M(α) such that

p(α)< b(s), for all s ≥ M. (6.74)

Let s0 ∈ [t0,+∞) and y : [s0 − r,+∞)→ X be the global forward solution of the retarded
VS integral equation (6.2) with initial condition ys0 = ψ . Assume that ‖ψ‖∞ < α . Then, by
condition (CBV2) and the fact p is increasing, we have

b(‖yt(s0,ψ)‖∞)≤U(t,yt(s0,ψ))≤U(s0,ψ)≤ p(‖ψ‖∞)< p(α)
(6.74)
< b(M),

for all t ≥ s0. Finally, since b is increasing, we have

‖yt(s0,ψ)‖∞ < M,

for all t ≥ s0 and, consequently, the retarded VS integral equation (6.2) is uniformly bounded.

The following result is consequence of Theorems 6.2.22 and 6.3.4.

Corollary 6.3.5. If the retarded VS integral equation (6.2) is uniformly bounded, then the trivial
solution of the retarded VS integral equation (6.2) is uniformly stable.

The next result gives a relation between the uniform boundedness of solutions of the
perturbed retarded VS integral equation (6.5) and uniform stability.

Theorem 6.3.6. If the perturbed retarded VS integral equation (6.5) is uniformly bounded, then
the trivial solution of the retarded VS integral equation (6.2) is uniformly stable.

Proof. It is sufficient to notice that, by Theorem 6.3.2, the retarded VS integral equation (6.2) is
uniformly bounded and, by Corollary 6.3.5, it is also uniformly stable.

In what follows, we prove a result which guarantees that the existence of a Lyapunov
functional with respect to the retarded VS integral equation (6.2) implies the existence of a
Lyapunov functional with respect to the generalized ODE (6.9).

Theorem 6.3.7. Consider O given by (6.7) and S by (6.1). Assume that g : [t0,+∞)→R satisfies
condition (A1) and f : S× [t0,+∞)→ X satisfies conditions (A2), (A3) and (A4). If there exists a
Lyapunov functional U : [t0,+∞)×S →R with respect to the retarded VS integral equation (6.2)
satisfying conditions (LUV1) and (LUV2) from Theorem 6.2.16, then there exists a Lyapunov
functional V : [t0,+∞)×O→ R with respect to the generalized ODE (6.9).
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Proof. By Theorem 6.3.4, the solution of the retarded VS integral equation (6.2) is uniformly
bounded and, by Theorem 6.3.3-(i), the solution of the generalized ODE (6.9) is uniformly
bounded. Moreover, Theorem 3.0.4 ensures the existence of the Lyapunov functional with
respect to the generalized ODE (6.9).

Theorem 6.3.8. Let S be given by (6.1). Assume that g : [t0,+∞) → R satisfies condition
(A1), f : S× [t0,+∞)→ X satisfies (A2), (A 3), (A 4) and the functions p : [t0,+∞)→ X and
v : [t0,+∞) → R satisfy (A5), (A6) and (A7). If the retarded VS integral equation (6.2) is
uniformly bounded, then the perturbed retarded VS integral equation (6.5) is uniformly bounded.

Proof. By Theorem 6.3.3-(i), the generalized ODE (6.9) is uniformly bounded. By Remark
6.2.13, the function h̃ from the class F (Ω, h̃) is bounded and, therefore, we can apply Theorem
3.0.7 to conclude that the perturbed generalized ODE (6.41) is uniformly bounded. Finally, by
Theorem 6.3.3-(ii), the perturbed retarded VS integral equation (6.5) is uniformly bounded.

We end this section by presenting a diagram which illustrates the relations between
the types of stability, contained in Section 6.2.1, and the concepts of uniform boundedness of
solutions. We are assuming that g : [t0,+∞)→ R satisfies (A1), f : S× [t0,+∞)→ X satisfies
(A2), (A 3), (A 4) and the functions p : [t0,+∞)→ X and v : [t0,+∞)→ R satisfy (A5), (A6)
and (A7). Moreover, we consider the following symbols:

∙ B = boundedness of the solutions of the generalized ODE (6.9);

∙ pB = boundedness of the solutions of perturbed generalized ODE (6.41);

∙ BV = boundedness of the solutions of the retarded VS integral equation (6.2);

∙ pBV = boundedness of the solutions of the perturbed retarded VS integral equation (6.5);

∙ UV = uniform stability for the trivial solution of the retarded VS equation (6.2);

∙ pUV = uniform stability with respect to pertubations for the trivial solution of the retarded
VS integral equation (6.2);

∙ U = uniform stability for the trivial solution of the of the generalized ODE (6.9);

∙ pU = uniform stability with respect to perturbations for the trivial solution of the of the
generalized ODE (6.9);

∙ I = integral stability for the trivial solution of the retarded VS equation (6.2);

∙ R = regular stability for the trivial solution of the of the generalized ODE (6.9).

B BV UV U R

pB pBV pUV pU I

Th.6.3.3

Th.6.3.8

Cor.6.3.5

Th.6.2.8
Th.6.2.2

Th.2.2.7

Th.6.2.3
Th.2.3.1

Th.6.2.13

Th.6.3.3

Th.6.3.2

Th.6.2.9

Th.6.2.6 Th.2.2.4

Rm.6.2.12
Th.6.2.5

Th.6.2.14
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6.4 Asymptotic controllability
In this section, we present a definition of asymptotic controllability for perturbed retarded

VS integral equations. Moreover, we applied the results, presented in Chapter 5 and in Sections
6.2 and 6.3, to establish necessary and sufficient conditions for a perturbed retarded VS integral
equation to be asymptotically controllable. We also include an example to illustrate our main
results.

At first, we recall that O ⊂ BG([t0 − r,+∞),X) is an open set with the prolongation
property (see Definition 6.0.1) and S = {yt ;y ∈ O, t ∈ [t0,+∞)} ⊂ G([−r,0],X).

Consider a perturbed retarded VS integral equation given by

y(t) = y(s0)+
∫ t

s0

f (ys,s)dg(s)+
∫ t

s0

p(s)dv(s), t ≥ s0 ≥ t0, (6.75)

where f : S × [t0,+∞) → X , p : [t0,+∞) → X is a control function and g,v : [t0,+∞) → R.
Moreover, assume that the following conditions are fulfilled:

(C1) the functions g,v : [t0,+∞)→ R are left-continuous on (t0,+∞) and nondecreasing;

(C2) f (0, t)− f (0,s) = 0 for t,s ≥ t0;

(C3) for all y ∈ O and all s1,s2 ∈ [t0,+∞), the Perron-Stieltjes integral∫ s2

s1

f (ys,s)dg(s)

exists;

(C4) there exists a Perron-Stieltjes integrable function M : [t0,+∞)→ R with respect to g such
that ∥∥∥∥∫ s2

s1

f (ys,s)dg(s)
∥∥∥∥≤ ∫ s2

s1

M (s)dg(s),

for all y ∈ O and all s1,s2 ∈ [t0,+∞);

(C5) there exists a Perron-Stieltjes integrable function L : [t0,+∞)→ R with respect to g such
that ∥∥∥∥∫ s2

s1

[ f (ys,s)− f (zs,s)]dg(s)
∥∥∥∥≤ ∫ s2

s1

L (s)‖ys − zs‖∞dg(s),

for all y,z ∈ O and all s1,s2 ∈ [t0,+∞);

(C6) the Perron-Stieltjes integral ∫ t

t0
p(s)dv(s)

exists, for all t ∈ [t0,+∞);

(C7) there exists a locally Perron-Stieltjes integrable function K : [t0,+∞)→ R with respect to
v such that ∥∥∥∥∫ s2

s1

p(s)dv(s)
∥∥∥∥≤ ∫ s2

s1

K(s)dv(s),

for all s1,s2 ∈ [t0,+∞).
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We denote by P the set of all functions p : [t0,+∞)→ X which satisfy (C6) and (C7). In the
sequel, we define asymptotic controllability for the perturbed retarded VS integral equation
(6.75).

Definition 6.4.1. The perturbed retarded VS integral equation (6.75) is asymptotically control-

lable, if the following properties hold:

(i) (global part) for each φ in S, there exists a control function p ∈ P such that the solution
y(t) = y(t,φ , p) of the the perturbed retarded VS integral equation (6.75) is defined for all
t ≥ t0 and, moreover, y(t) goes to 0 as t goes to ∞;

(ii) (Uniform stability) for each ε > 0, there exists δ > 0 such that for any state φ ∈ S, with
‖φ‖ ≤ δ , there is a control p as in (i) such that ‖y(t)‖ ≤ ε for all t ≥ t0;

(iii) (bounded controls) there exist positive numbers η , k such that if φ , given in (ii), satisfies
‖φ‖< η , then the control p is such that ‖p̃‖∞ ≤ k, where

‖p̃‖∞ = sup
t∈[t0,+∞)

∥∥∥∥∫ t

t0
p(s)dv(s)

∥∥∥∥ .
In order to prove asymptotic controllability for the perturbed retarded VS integral

equation (6.75), we denote by U the set of all functions u : [t0,+∞)→ BG([t0,+∞),X) given by

u(t)(θ) =


0, t0 − r ≤ θ ≤ t0,∫

θ

t0
p(s)dv(s), t0 ≤ θ ≤ t,∫ t

t0
p(s)dv(s), t ≤ θ <+∞,

for some p ∈ P.

Theorem 6.4.2. Assume that g,v : [t0,+∞)→ R satisfy condition (C1), f : S× [t0,+∞)→ X

satisfies conditions (C2), (C3), (C4) and (C5) and p ∈ P. Then, the perturbed retarded VS integral
equation (6.75) is asymptotically controllable.

Proof. Consider the perturbed generalized ODE

dx
dτ

= D[F(x, t)+u(t)], (6.76)

where F is given by (6.8) and u ∈ U. By Remark 6.2.7, the function h̃ from the class F (Ω, h̃) is
bounded. On the other hand, by condition (C2), F(0, t)−F(0,s) = 0 for t,s ≥ t0. Therefore, the
perturbed generalized ODE (6.76) satisfies all conditions of Theorem 5.0.2 and, consequently, it
is asymptotically controllable.
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Let φ ∈ S and x0 : [t0,+∞)→ X be given by

x0(θ) =

{
φ(θ − t0), t0 − r ≤ θ ≤ t0,

φ(0), t0 ≤ θ <+∞.

Since the perturbed generalized ODE (6.76) is asymptotically controllable, there exists u ∈ U
such that the solution x(t,x0,u) of the perturbed generalized ODE (6.76) is defined for all t ≥ t0
and x(t) goes to zero as t goes to +∞.

By the definition of U, there exists p ∈ P such that u : [t0,+∞)→ BG([t0 − r,+∞),X) is
given by

u(t)(θ) =


0, t0 − r ≤ θ ≤ t0,∫

θ

t0
p(s)dv(s), t0 ≤ θ ≤ t,∫ t

t0
p(s)dv(s), t ≤ θ <+∞.

By Theorem 6.1.7-(ii), y : [t0 − r,+∞)→ X given by

y(θ) =

{
x(t0)(θ), t0 − r ≤ θ ≤ t0,

x(θ)(θ), t0 ≤ θ <+∞

is a solution of the perturbed retarded VS integral equation (6.75) with initial condition yt0 = φ

and control p. Since x(t) goes to 0 as t goes to ∞, we conclude that y(t) goes to 0 as t goes to ∞

and condition (i) from Definition 6.4.1 is satisfied.

By Corollary 4.0.3, the trivial solution of the generalized ODE (6.9) is uniformly stable
with respect to perturbations and, by Theorem 6.2.5-(ii), the trivial solution of the perturbed
retarded VS integral equation is uniformly stable with respect to perturbations which yields
condition (ii) of Definition 6.4.1.

Let us prove condition (iii) from Definition 6.4.1. At first, notice that

‖x0‖∞ = sup
θ∈[t0−r,∞)

‖x0(θ)‖= sup
θ∈[−r,0]

‖φ(θ)‖= ‖φ‖∞

and

sup
t∈[t0,+∞)

‖u(t)‖∞ = sup
t∈[t0,+∞)

(
sup

θ∈[t0−r,+∞)

‖u(t)(θ)‖

)

= sup
t∈[t0,+∞)

(
sup

θ∈[t0,t]

∥∥∥∥∫ θ

t0
p(s)dv(s)

∥∥∥∥
)

= sup
θ∈[t0,+∞)

∥∥∥∥∫ θ

t0
p(s)dv(s)

∥∥∥∥= ‖p̃‖∞.

By condition (iii) from Definition 5.0.1 and by the previous equations, we conclude that there
exist positive numbers η , k such that if ‖φ‖∞ = ‖x0‖∞ < η , then ‖ p̃‖∞ = supt∈[t0,+∞) ‖u(t)‖∞ ≤ k

and the proof is complete.

The existence of a Lyapunov functional with respect to retarded VS integral equation
(6.2) is related to stability and boundedness of solutions of the retarded VS integral equation (6.2)



134 Chapter 6. Retarded Volterra-Stieljtes integral equations

and these concepts are also related to stability with respect to perturbations and to boundedness
of solutions of the perturbed retarded VS integral equation (6.75). Therefore, Theorem 6.4.2
implies the next result.

Corollary 6.4.3. Assume that g,v : [t0,+∞)→ R satisfy condition (C1), f : S× [t0,+∞)→ X

satisfies conditions (C2)(C3), (C4) and (C5) and p ∈ P. Then, the perturbed retarded VS integral
equation (6.75) is asymptotically controllable if and only if there is a Lyapunov functional
U : [t0,+∞)×S → R with respect to the retarded VS integral equation

y(t) = y(s0)+
∫ t

s0

f (ys,s)dg(s), t ≥ s0 ≥ t0, (6.77)

satisfying

(H1) there exists an increasing continuous function a : R+ → R+ satisfying a(0) = 0 and

U(t,ψ)≤ a(‖ψ‖∞),

for all ψ ∈ S and t ∈ [t0,+∞).

In the sequel, we present an example to illustrate how our results can be applied to
perturbed retarded VS integral equations.

Example 6.4.4. Let ξ : S → Rn be a function fulfilling:

(i) for all y ∈ O, the mapping t ↦→ ξ (yt) is Perron-Stieltjes integrable with respect to g, where
g : [t0,+∞)→ R is a nondecreasing function which is left-continuous on (t0,+∞);

(ii) ξ (ψ +φ) = ξ (ψ)+ξ (φ) for all ψ,φ ∈ S;

(iii) ξ (ψ) = 0, whenever ψ ≡ 0;

(iv) 0 < ‖ξ (ψ)‖< ‖ψ‖∞ for all ψ ∈ S.

Consider functions f : S× [t0,+∞)→ Rn and l : [t0,+∞)→ R defined by

f (ψ,s) = l(s)ξ (ψ), (ψ,s) ∈ S× [t0,+∞), (6.78)

and

l(s) =

{
1, if s ∈ I∩ [t0,+∞),

0, otherwise,

where I denotes the set of irrational numbers.

Notice that, for all s ∈ [t0,+∞), we have

f (0,s) = l(s)ξ (0) = 0,

since ξ (0) = 0.
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Claim: f , defined by (6.78), satisfies (C3), (C4) and (C5).

Indeed, since the mapping t ↦→ ξ (yt) is Perron–Stieltjes integrable with respect to g, for
all ε > 0, there exists a gauge δ on [t0, t] such that, for all δ -fine tagged division d = (τi, [si−1,si])

of [t0, t], we have ∥∥∥∥∥ |d|

∑
i=1

ξ (yτi)(g(si)−g(si−1))−
∫ t

t0
ξ (ys)dg(s)

∥∥∥∥∥< ε. (6.79)

Once l(τi) = 0 whenever τi is rational, we can ignore these rational tags and consider a sub-
sequence (τi)

n
i=1, n ≤ |d|, consisting of irrational numbers. Therefore, for all y ∈ O, we have

|d|

∑
i=1

f (yτi,τi)(g(si)−g(si−1)) =
n

∑
i=1

ξ (yτi)(g(si)−g(si−1)). (6.80)

By (6.79) and (6.80), the mapping t ↦→ f (yt , t) is Perron-Stieltjes integrable with respect to g for
all y ∈ O, and∫ t

t0
f (ys,s)dg(s) =

∫ t

t0
ξ (ys)dg(s), for all t ∈ [t0,+∞) and all y ∈ O,

which proves condition (C3). On the other hand, since ‖ξ (ψ)‖ > 0 for all ψ ∈ S and g is
nondecreasing, we have ∥∥∥∥∫ s2

s1

f (ys,s)dg(s)
∥∥∥∥= ∫ s2

s1

ξ (ys)dg(s),

for all s1,s2 ∈ [t0,+∞) and all y ∈ O. Then, condition (C4) holds. By condition (iv), we have∥∥∥∥∫ s2

s1

[ f (ys,s)− f (zs,s)]dg(s)
∥∥∥∥≤ ∫ s2

s1

‖ys − zs‖∞dg(s),

for all s1,s2 ∈ [t0,+∞) and all y,z ∈ O (see [24, Theorem 2.1]). Therefore, condition (C5) is
satisfied and the Claim is proved. Now, consider the perturbed retarded VS integral equation

y(t) = y(s0)+
∫ t

s0

f (ys,s)ds+
∫ t

s0

p(s)dv(s), t ≥ s0 ≥ t0, (6.81)

where f is given by (6.78), p : [t0,+∞) → Rn satisfies (C6) and (C7) and v : [t0,+∞) → R
is left-continuous on (t0,+∞) and nondecreasing. We assert that the perturbed retarded VS
integral equation (6.81) is asymptotically controllable. Indeed, define U : [t0,+∞)×S → R by
U(t,ψ) = ‖ψ‖∞ for all (t,ψ) ∈ [t0,+∞)× S. Then, it is clear that U(·,ψ) : [t0,+∞) → R is
left-continuous on (t0,+∞). Moreover, if a,b : R+ → R+ are defined by a(s) = s and b(s) = s

2

for all s ∈ R+, then a and b are increasing continuous functions and

b(‖ψ‖∞)≤V (t,ψ)≤ a(‖ψ‖∞)
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holds for all (t,ψ) ∈ [t0,+∞)×S. On the other hand,

U̇(t,ψ) = limsup
η→0+

‖yt+η(t,ψ)‖∞ −‖yt(t,ψ)‖∞

η

= limsup
η→0+

sup
θ∈[−r,0]

‖y(t +η +θ)‖− sup
θ∈[−r,0]

‖y(t +θ)‖

η

= limsup
η→0+

sup
θ∈[−r+η ,η ]

‖y(t +θ)‖− sup
θ∈[−r,0]

‖y(t +θ)‖

η

≤ limsup
η→0+

sup
θ∈[−r,0]

‖y(t +θ)‖− sup
θ∈[−r,0]

‖y(t +θ)‖

η
= 0.

Therefore, U is a Lyapunov functional with respect to the retarded VS integral equation

y(t) = y(s0)+
∫ t

s0

f (ys,s)dg(s), t ≥ s0 ≥ t0

and U satisfies hypothesis (H1) from Corollary 6.4.3. By Corollary 6.4.3, the perturbed retarded
VS integral equation (6.81) is asymptotically controllable.
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CHAPTER

7
DYNAMIC EQUATIONS ON TIME SCALES

In this chapter, we investigate the existence and uniqueness of a solution for a linear
Volterra-Stieltjes integral equation (linear VS integral equation, for short) of the second kind,
as well as for a homogeneous and a nonhomogeneous linear dynamic equations on time scales,
whose integral forms contain Perron ∆-integrals defined in Banach spaces. We also provide a
variation-of-constant formula for a nonhomogeneous linear dynamic equations on time scales
and we establish results on controllability for linear dynamic equations. The results presented
here are contained in [5].

In the following lines, we specify our contributions concerning the existence and unique-
ness of a solution for homogeneous and a nonhomogeneous linear dynamic equation.

The best known results on the existence and uniqueness of a solution for a nonhomoge-
neous linear dynamic equation of the form

x∆ = a(t)x+ f (t) (7.1)

and for its corresponding homogeneous equation

x∆ = a(t)x (7.2)

on a time scale T, take into account that a is a regressive n× n-matrix-valued function (see
Definition 7.3.5) which is rd-continuous and f : T→ Rn is rd-continuous (see Appendix D for
more details). Moreover, the integrals appearing in the solutions of the dynamic equations (7.1)
and (7.2) are in the sense of the Riemann ∆-integral (see [3, 10, 11, 37], for instance).

Furthermore, [13, Theorem 5.32] ensures that the nonlinear dynamic integral equation

y(t) = y(t0)+
∫ t

t0
h(y*(s),s)∆s

on a time scale T has a unique solution, where t0 ∈ T, T0 = [t0,+∞)∩T, the integral on the
right-hand side is in the sense of Perron ∆-integral (see Definition D.0.7), X is a Banach space
and the function h : X ×T0 → X satisfies the following conditions:
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(H1) for all t1, t2 ∈T0 and all regulated function y :T0 →X , the Perron ∆-integral
∫ t1

t1 h(y(s),s)∆s

exists;

(H2) there exists a locally Perron ∆-integrable function M : T0 → R such that∥∥∥∥∫ t1

t1
h(y(s),s)∆s

∥∥∥∥≤ ∫ t2

t1
M(s)∆s

holds for every t1, t2 ∈ T0 and every y ∈ G0(T0,X) (see Definition D.0.3 );

(H3) there exists a locally Perron ∆-integrable function L : T0 → R such that∥∥∥∥∫ t1

t1
[h(y(s),s)−h(z(s),s)]∆s

∥∥∥∥≤ ‖y− z‖T0

∫ t2

t1
L(s)∆s

holds for every t1, t2 ∈ T0 and every y,z ∈ G0(T0,X).

Take h : X ×T0 → X as h(x,s) = a(s)x for all (x,s) ∈ X ×T0, where a : T→ L(X) is a
given function and L(X) is the Banach space of continuous linear mappings T : X → X . Then,
by [13, Theorem 5.32], there exists a unique solution of the linear dynamic integral equation

y(t) = y(t0)+
∫ t

t0
a(s)y(s)∆s.

Since the integral on the right-hand side of the above equation is in the sense of Perron ∆, a and
y may be discontinuous functions with highly oscillating behaviour.

We point out that the theorems on the existence and uniqueness of solutions presented
in [3,10,11,37] are not a particular case of [13, Theorem 5.32]. Indeed, we notice that there exist
a special time scale T and an rd-continuous function a : T→ L(R) such that condition (H2) is
not fulfilled and condition (H1) holds. Consider the time scale T= Z and define a : T→ L(R)
by

a(t)s =
(
(−1)t

(1+ t)

)
s, (t,s) ∈ T×R. (7.3)

Then, since Z does not contain any right-dense point (see Definition D.0.1), a is rd-continuous
and T0 = Z+ = {t ∈ Z; t ≥ 0}. Moreover, if we consider y : Z+ →R being the constant function
equal to 1, we have ∫ t

s
a(s)y(s)∆s =

t−1

∑
k=s

a(k),

for all s, t ∈ Z+ (see [10, Table 1.3]). Notice that, for all t ∈ T, we get∫ t

t−1
a(s)y(s)∆s =

(−1)t−1

t

Therefore, for all T ∈ Z+, we obtain the finite alternating harmonic series

∫ T

0
a(s)y(s)∆s =

T

∑
t=1

∫ t

t−1
a(s)y(s)∆s =

T

∑
t=1

(−1)t−1

t
.
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Owing the fact that the series ∑
∞
n=1

(−1)n−1

n converges, the Perron ∆-integral
∫ N

0 a(s)y(s)∆s exists
for a large N ∈ Z+. Assume that condition (H1) holds. Then, for all t1, t2 ∈ Z+,∣∣∣∣∫ t2

t1
a(s)y(s)∆s

∣∣∣∣≤ ∫ t2

t1
M(s)∆s,

and for a large N ∈ Z+,

∫ N

0
M(s)∆s =

N

∑
t=1

∫ t

t−1
M(s)∆s ≥

N

∑
t=1

∣∣∣∣∫ t

t−1
a(s)y(s)∆s

∣∣∣∣= N

∑
t=1

∣∣∣∣(−1)t−1

t

∣∣∣∣= N

∑
t=1

1
t

which leads to a contraction, since the series ∑
∞
n=1

1
n diverges.

It is well-known that the study of the convergence of infinite series is widely used in
physics and the position of the source charges are given as functions of time, as in the problem of
determining of electrical potential and electrical force exerted by infinite point electrical charges.
As an example, if we consider a distribution, where the positive and the negative electrical
charges are placed in 1,−3,−5, . . . and −2,−4,−6, . . . respectively, then the electric potential,
in the origin, is given by the series q

4πε0
∑

∞
n=1

(−1)n−1

n , where ε0 is a constant and q is the modulo
of the electrical changes. See [18, Chapter 2]. Therefore, the function a defined by (7.3) has
an application in physics. So, it is interesting that a good theory encompasses this situation as
well. This is one reason why we sought to suppress condition (H2) from [13, Theorem 5.32]
(in the linear case), and we assume that the functions a and f satisfy conditions (H1) and (H3)
among others, instead of being rd-continuous. As a matter of fact, we prove that all rd-continuous
function satisfies all our hypotheses (see Lemma 7.2.8) and, since we are not considering
condition (H2), our main result on the existence and uniqueness of a solution for dynamic
equations on time scales is not a particular case of [13, Theorem 5.32].

Concerning a variation-of-constant formula for the nonhomogeneous dynamic equation
(7.1), we notice that the results presented in [3, 10, 11, 37] also require that a is a regressive
n× n-matrix-valued function (see Definition 7.3.5) which is rd-continuous and f : T → Rn

is rd-continuous. Here, we provide a variation-of-constant formula, in Section 7.2, where the
functions a and f take values in an arbitrary Banach space and satisfy conditions (H1) and (H3)
among others. We emphasize that our results on the existence and uniqueness of a solution for a
linear nonhomogeneous dynamic equation and for a linear homogeneous dynamic equation, as
well as the variation-of-constant formula, generalize the results from [3, 10, 11, 37]. Moreover,
since we are considering Perron ∆-integrals instead of Riemann ∆-integrals, our integrands may
be highly oscillating and have many discontinuities.

7.1 Existence and uniqueness of a solution
In order to establish results on existence and uniqueness of solutions for linear homoge-

neous and nonhomogeneous dynamic equations on time scales, we prove, in Subsection 7.1.1,
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the existence and uniqueness of a solution of a Volterra-Stieltljes integral equation. The results
obtained here generalize those presented in [10].

7.1.1 Volterra-Stieltjes integral equations

The main goal of this subsection is to prove that the following linear VS integral equation

y(t) =
∫ t

t0
d[A(s)]y(s)+h(t), t ∈ [t0,v], (7.4)

admits a unique solution, where X and Y are Banach spaces, L(X ,Y ) is the Banach space of
continuous linear mappings T : X → Y , J ⊂ R is an interval containing [t0,v], A : J → L(X ,Y ),
h : J → X and the integral in (7.4) is in the sense of Perron-Stieltjes.

We start by proving the following auxiliary result.

Theorem 7.1.1. Let v ∈ J and A : J → L(X ,Y ) be locally of bounded variation. Then, the
mapping T : BV ([t0,v],X)→ BV ([t0,v],X) given by

Ty(t) =
∫ t

t0
d[A(s)]y(s), t ∈ [t0,v]

is well-defined and it is a bounded compact linear operator on BV ([t0,v],X).

Proof. At first, we notice that the existence of the Perron-Stieltjes
∫ t

t0 d[A(s)]y(s) is guaranteed
by Proposition B.0.8 and, by linearity of the Perron-Stieltjes integral, T is linear. Let us prove
that Ty ∈ BV ([t0,v],X).

By Theorem A.0.4 and Proposition B.0.7, for every division d = (ti) of [t0,v] and every
y ∈ BV ([t0,v],X), we have

|d|

∑
i=1

‖Ty(ti)−Ty(ti−1)‖ =
|d|

∑
i=1

∥∥∥∥∫ ti

t0
d[A(s)]y(s)−

∫ ti−1

t0
d[A(s)]y(s)

∥∥∥∥
=

|d|

∑
i=1

∥∥∥∥∫ ti

ti−1

d[A(s)]y(s)
∥∥∥∥

Prop.B.0.7
≤

|d|

∑
i=1

varti
ti−1

A‖y‖∞

Th.A.0.4
= varv

t0A‖y‖∞,

where ‖y‖∞ = sups∈[t0,v] ‖y(s)‖. Taking the supremum over all divisions d = (ti) of [a,b], we
obtain

varv
t0Ty ≤ varv

t0A‖y‖∞. (7.5)

Moreover,

‖y(s)‖ ≤ ‖y(s)− y(t0)‖+‖y(t0)‖ ≤ vars
t0y+‖y(t0)‖ ≤ varv

t0y+‖y(t0)‖,
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for all s ∈ [t0,v] and, hence,

‖y‖∞ = sup
s∈[t0,v]

‖y(s)‖ ≤ varv
t0y+‖y(t0)‖. (7.6)

Replacing (7.6) into (7.5), we obtain

varv
t0Ty ≤ varv

t0A‖y‖∞ ≤ varv
t0A(‖y(t0)‖+varv

t0y) = varv
t0A‖y‖BV < ∞, (7.7)

which shows that Ty : [t0,v]→ X is of bounded variation on [t0,v], for all y ∈ BV ([t0,v],X) and,
consequently, T is well-defined.

Moreover, T is bounded once, ‖Ty(t0)‖= 0 and, by (7.7), we have

‖Ty‖BV = ‖Ty(t0)‖+varv
t0Ty < varv

t0A‖y‖BV .

We target to prove that T is compact. Let {yk}k∈N be a uniformly bounded sequence
in BV ([t0,v],X), that is, there exists C > 0 such that ‖yk‖ ≤C for all k ∈ N. By Helly’s Choice
Theorem (see Theorem A.0.6), the sequence {yk}k∈N contains a subsequence {ykl}kl∈N which
converges pointwisely to a function y0 ∈ BV ([t0,v],X). To simplify the notation, we denote the
subsequence {ykl}kl∈N by {yk}k∈N. For all k ∈ N, define zk : [t0,v]→ X by

zk(s) = yk(s)− y0(s), s ∈ [t0,v].

Then, zk ∈ BV ([t0,v],X) and
lim
k→∞

zk(s) = 0, s ∈ [t0,v]. (7.8)

Define z : [t0,v]→ X by

z(t) =
∫ t

t0
d[A(s)]y0(s), s ∈ [t0,v].

By Theorem A.0.4 and Proposition B.0.7, z ∈ BV ([t0,v],X) and, for every division d = (ti) of
[t0,v], we have

|d|

∑
i=1

‖Tyk(ti)− z(ti)− [Tyk(ti−1)− z(ti−1)]‖ =
|d|

∑
i=1

∥∥∥∥∫ ti

ti−1

d[A(s)]yk(s)−
∫ ti

ti−1

d[A(s)]y0(s)
∥∥∥∥

=
|d|

∑
i=1

∥∥∥∥∫ ti

ti−1

d[A(s)](yk(s)− y0(s))
∥∥∥∥

=
|d|

∑
i=1

∥∥∥∥∫ ti

ti−1

d[A(s)]zk(s)
∥∥∥∥

≤
|d|

∑
i=1

varti
ti−1

A‖zk‖∞

= varv
t0A‖zk‖∞

and, hence,
varv

t0(Tyk − z)≤ varv
t0A‖zk‖∞. (7.9)
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By equations (7.8) and (7.9), we can conclude

lim
k→∞

‖Tyk − z‖BV = lim
k→∞

‖Tyk(t0)− z(t0)‖+ lim
k→∞

varv
t0(Tyk − z)

= lim
k→∞

varv
t0(Tyk − z) = 0.

Therefore, {Tyk}k∈N converges to z in BV ([t0,v],X) and the operator T is compact.

The next result is known as the Fredholm alternative for linear operators defined in
Banach spaces and will be essential in the proof of the existence of solutions of the linear VS
integral equation (7.4). For a proof of it, see [19, page 609].

Theorem 7.1.2 (Fredholm alternative). Let X be a Banach space, T ∈ L(X), x ∈ X and λ ∈ R
with λ ̸= 0. If T is compact, then the equation T x−λx = y has a solution for every y ∈ X if and
only if the equation T x = λx has only the trivial solution.

In the sequel, we present a result on the existence and uniqueness of solution of the linear
VS integral equation (7.4)

Theorem 7.1.3. Let v ∈ J and A : J → L(X ,Y ) be locally of bounded variation on J and left-
continuous. Then, the linear VS integral equation (7.4) admits a unique solution in BV ([t0,v],X),
for each given h ∈ BV ([t0,v],X).

Proof. We start by proving that the homogeneous linear VS integral equation

y(t) =
∫ t

t0
d[A(s)]y(s), t ∈ [t0,v] (7.10)

admits only the trivial solution in BV ([t0,v],X).

Let x : [t0,v]→ X be a solution of (7.10) and define

C = {t ∈ [t0,v];‖x(t)‖= 0}.

Then, C is a non-empty set, since t0 ∈C, and it is upper bounded.

Let c = supC. Then, for all t ∈ [t0,c), ‖x(t)‖= 0 and, by Theorem B.0.6 and Proposition
B.0.7, we have

‖x(c)‖ =

∥∥∥∥∫ c

t0
d[A(s)]x(s)

∥∥∥∥
≤ lim

τ→c−

∥∥∥∥∫ τ

t0
d[A(s)]x(s)

∥∥∥∥+‖A(c)−A(c−)‖‖x(c)‖

≤ lim
τ→c−

(
varτ

t0A sup
s∈[t0,τ]

‖x(s)‖

)
+‖A(c)−A(c−)‖‖x(c)‖= 0,

since A is left-continuous. Therefore, ‖x(c)‖= 0.

Let us show that c = v. Assume that c < v and consider two cases.
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Case 1: A is right-continuous at c.

In this case, define V : [t0,v]→ X by

V (t) = vart
t0A, for all t ∈ [t0,v].

Thus, by hypothesis, V is well-defined. It is also nondecreasing and satisfies

V (t)−V (s) = vart
sA, for all s, t ∈ [t0,v], s ≤ t.

Since A is continuous at c, V is also continuous at c and, hence, there exists t ∈ (c,v] such that

V (t)−V (c) = vart
cA <

1
2
. (7.11)

By Proposition B.0.7, for all s1,s2 ∈ [c, t], s1 < s2, we have

‖x(s2)− x(s1)‖=
∥∥∥∥∫ s2

s1

d[A(s)]x(s)
∥∥∥∥≤ vars2

s1
A sup

s∈[s1,s2]

‖x(s)‖. (7.12)

On the other hand,

‖x(s)‖ ≤ ‖x(s)− x(c)‖+‖x(c)‖ ≤ vart
cx, for all s ∈ [s1,s2] and

vars2
s1

A = vart
cA−varc

s1
A−vart

s2
A <

1
2
.

Then, (7.12) becomes

‖x(s2)− x(s1)‖ ≤
1
2
‖x‖BV ([c,t],X)

which implies

‖x‖BV ([c,t],X) ≤
1
2
‖x‖BV ([c,t],X) and ‖x‖BV ([c,t],X) = 0.

Consequently, ‖x(t)‖= 0, for all t ∈ [c, t], which contradicts the fact that c = supC. Therefore,
c = v and x(t) = 0, for all t ∈ [t0,v].

Case 2: A is not right-continuous at c.

Define Ã : [t0,v]→ X by

Ã(t) =

{
A(t), t ∈ [t0,c],

A(t)−A(c+)+A(c), t ∈ (c,v].

Then, Ã is continuous at c. By Theorem B.0.6 and by the fact that ‖x(c)‖= 0, for all t ≥ c, we
have ∥∥∥∥∫ t

c
d[A(s)]x(s)

∥∥∥∥ ≤
∥∥∥∥ lim

τ→c+

∫ t

τ

d[A(s)]x(s))
∥∥∥∥+‖A(c+)−A(c)‖‖x(c)‖

≤
∥∥∥∥ lim

τ→c+

∫ t

τ

d[A(s)−A(c+)+A(c)]x(s))
∥∥∥∥

+

∥∥∥∥ lim
τ→c+

∫ t

τ

d[A(c+)−A(c)]x(s)
∥∥∥∥

=

∥∥∥∥ lim
τ→c+

∫ t

τ

d[Ã(s)]x(s)
∥∥∥∥= ∥∥∥∥∫ t

c
d[Ã(s)]x(s)

∥∥∥∥ .
(7.13)
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Define Ṽ : [t0,v]→ X by
Ṽ (t) = vart

t0Ã, for all t ∈ [t0,v].

Thus,
vart

cÃ ≤ vart
cA, for all t ≥ c

and, hence, Ṽ is well-defined. Moreover, Ṽ is nondecreasing and satisfies

Ṽ (t)−Ṽ (s) = vart
sÃ, for all s, t ∈ [t0,v] s ≤ t.

Once Ã is continuous at c, Ṽ is also continuous at c. Then, there exists t ∈ (c,v] such that

Ṽ (t)−Ṽ (c) = vart
cÃ <

1
2
.

By Proposition B.0.7 and equation (7.13), for all s1,s2 ∈ [c, t], s1 < s2, we have

‖x(s2)− x(s1)‖=
∥∥∥∥∫ s2

s1

d[A(s)]x(s)
∥∥∥∥≤ ∥∥∥∥∫ s2

s1

d[Ã(s)]x(s)
∥∥∥∥≤ vars2

s1
Ã sup

s∈[s1,s2]

‖x(s)‖

and, analogously to Case 1, we conclude that ‖x(t)‖= 0, for all t ∈ [c,v]. Therefore, c = v.

From Cases 1 and 2, the only solution of (7.10) is the trivial one.

Now, since equations (7.4) and (7.10) are equivalent to

y−Ty = h and y−Ty = 0 (7.14)

respectively, and T is a compact operator (see Theorem 7.1.1), the existence of the solutions
of the linear VS integral equation (7.4) is guaranteed by Theorem 7.1.2 with λ = 1. In order to
prove the uniqueness, assume that there exist two solutions y1 : [t0,v]→ X and y2 : [t0,v]→ X of
(7.4) and define z(t) = y1(t)− y2(t), for all t ∈ [t0,v]. Then,

z(t) =
∫ t

t0
d[A(s)]y1(s)−

∫ t

t0
d[A(s)]y2(s) =

∫ t

t0
d[A(s)][y1(s)− y2(s)] =

∫ t

t0
d[A(s)]z(s)

and, hence, z is solution of the linear VS integral equation (7.10) and z(t) = 0, for all t ∈
[t0,v].

We end this subsection by presenting a version of Theorem 7.1.3 for finite dimensional
Banach spaces, where we consider T be defined in the larger space of regulated functions instead
of the space of bounded variation functions. Its proofs is analogous to the proof of Theorem
7.1.3 and, therefore, we omit it here and we refer the interested reader to [5, Theorem 4.5] for
more details.

Theorem 7.1.4. Let v ∈ J and A : J → L(Rn,Y ) be locally of bounded variation on J and left-
continuous. Then, the linear VS integral equation (7.4) admits a unique solution in G([t0,v],Rn),
for each given h ∈ G([t0,v],Rn).
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7.1.2 Dynamic equations

In this subsection, we consider homogeneous and nonhomogeneous linear dynamic
equations on time scales, whose functions are Perron ∆-integrable and we prove the existence
and uniqueness of their solutions (see Theorem 7.1.12). Moreover, we give a relation between
the solutions of our dynamic equations and the solutions of the VS integral equation (7.10) (see
Theorem 7.1.13).

Throughout this subsection, X is a Banach space equipped with a norm ‖ · ‖, L(X) is the
Banach space of continuous linear mappings T : X → X , T is a time scale, T0 = [t0,+∞)∩T,
where t0 ∈ T and G0(T0,X) is the vector space described in Definition D.0.3. Moreover, we
consider the following norm

‖ f‖T0 = sup
s∈T0

e−(s−t0)‖ f (s)‖,

for all f ∈ G0(T0,X).

Consider the nonhomogeneous linear dynamic equation

x∆ = a(t)x+ f (t) (7.15)

and its corresponding homogeneous linear dynamic equation

x∆ = a(t)x (7.16)

on a time scale T, where both functions a : T → L(X) and f : T → X satisfy the following
conditions:

(T1) the Perron ∆-integrals ∫ t2

t1
f (s)∆s and

∫ t2

t1
a(s)y(s)∆s

exist for all t1, t2 ∈ T0, whenever y : T0 → X is regulated;

(T2) there is a locally Perron ∆-integrable function L : T0 → R such that∥∥∥∥∫ t2

t1
a(s)[z(s)− y(s)]∆s

∥∥∥∥≤ ‖z− y‖T0

∫ t2

t1
L(s)∆s,

for all z,y ∈ G0(T0,X) and all t1, t2 ∈ T0;

(T3) there is a locally Perron ∆-integrable function K : T0 → R such that∥∥∥∥∫ t2

t1
f (s)∆s

∥∥∥∥≤ ∫ t2

t1
K(s)∆s,

for all t1, t2 ∈ T0.

In what follows, we present a definition of a solution for the dynamic equations (7.15)
and (7.16).
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Definition 7.1.5. Let t0 ∈ T and T0 = [t0,+∞)∩T. We say that a function x : T0 → X is a
solution of the nonhomogeneous dynamic equation (7.15) with initial condition x(t0) = x0 ∈ X ,
if it is satisfies

x(t) = x0 +
∫ t

t0
a(s)x(s)∆s+

∫ t

t0
f (s)∆s, for all t ∈ T0.

Moreover, a function x : T0 → X is said to be a solution of the homogeneous dynamic equation

(7.16) with initial condition x(t0) = x0 ∈ X , if the equality

x(t) = x0 +
∫ t

t0
a(s)x(s)∆s

holds for all t ∈ T0.

The next result gives an interesting property of the solutions of the dynamic equations
(7.15) and (7.16).

Theorem 7.1.6. The solutions of the dynamic equations (7.15) and (7.16) are rd-continuous.

Proof. Let x : T0 → X be a solution of the nonhomogeneous dynamic equation (7.15). By
Definition 7.1.5, for all t ∈ T0, we have

x(t) = x(t0)+
∫ t

t0
a(s)x(s)∆s+

∫ t

t0
f (s)∆s.

By Theorem D.0.10, the Perron-Stieltjes integrals
∫ t

t0 a*(s)x*(s)dg(s) and
∫ t

t0 f *(s)dg(s) exist for
all t ∈ T0, where g(t) = t* for all t ∈ T*

0. Moreover,∫ t

t0
a*(s)x*(s)dg(s) =

∫ t

t0
a(s)x(s)∆s and

∫ t

t0
f *(s)dg(s) =

∫ t

t0
f (s)∆s,

for all t ∈ T0.

Since g|T0 is the identity function, is it clear that g|T0 is right-continuous and, by Lemma
D.0.9, g is rd-continuous on T*

0. Then, by Theorem B.0.17, the functions

t ∋ T*
0 ↦→

∫ t

t0
a*(s)x*(s)dg(s) and t ∋ T*

0 ↦→
∫ t

t0
f *(s)dg(s)

are rd-continuous on T*
0 which, in turn, imply that x is rd-continuous.

The proof of the fact that the solution of homogeneous dynamic equation (7.16) is
rd-continuous is analogous and, therefore, we omit it here.

In the following remark, we show that the sets G0(T*
0,X) and G0(T0,X) can be related,

where G0(T*
0,X) is given in Definition A.0.22-(iv)

Remark 7.1.7. Let y ∈ G0(T*
0,X). Since T0 ⊂ T*

0 we have

‖y‖T0 = sup
s∈T0

e−(s−t0)‖y(s)‖ ≤ sup
s∈T*

0

e−(s−t0)‖y(s)‖= ‖y‖T*
0
< ∞.

Therefore, y|T0 ∈ G0(T0,X).
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We target to prove that the solutions of the dynamic equations (7.15) and (7.16) are
related to solutions of a linear VS integral equations.

Define A : T*
0 → L(G0(T*

0,X),X) by

A(t)y =
∫ t

t0
a*(s)y(s)dg(s), (7.17)

for all t ∈ T*
0 and all y ∈ G0(T*

0,X), where g(s) = s* for every s ∈ T*
0, the integral in (7.17)

is in the sense of Perron-Stieltjes and L(G0(T*
0,X),X) denotes the space of linear continuous

mappings defined from G0(T*
0,X) into X .

Notice that, by Remark 7.1.7, z = y|T0 belongs to G0(T0,X) for all y ∈ G0(T*
0,X) and,

by condition (T1), the Perron ∆-integral
∫ t

t0 a(s)z(s)∆s exists for all t ∈ T0. By Theorem D.0.10,
the Perron-Stieljes integral

∫ t
t0 a*(s)z*(s)dg(s) =

∫ t
t0 a*(s)y(s)dg(s) also exists for all t ∈ T*

0.
Therefore, A is well-defined. Moreover, the next result shows that A is locally of bounded
variation on T*

0.

Lemma 7.1.8. Assume that a :T→L(X) satisfies condition (T2). Then, A :T*
0 →L(G0(T*

0,X),X),
defined by (7.17), is locally of bounded variation on T*

0.

Proof. By the definition of G0(T*
0,X), ‖y‖T*

0
< ∞ for all y ∈ G0(T*

0,X) (see Remark 7.1.7).
Then, by condition (T2), for every a,b ∈ T*

0 and every division d = (si) of [a,b], we have

|d|

∑
i=1

‖A(si)y−A(si−1)y‖ =
|d|

∑
i=1

∥∥∥∥∫ si

t0
a*(s)y(s)dg(s)−

∫ si−1

t0
a*(s)y(s)dg(s)

∥∥∥∥
Th.D.0.12

=
|d|

∑
i=1

∥∥∥∥∫ s*i

t0
a(s)y(s)∆s−

∫ s*i−1

t0
a(s)y(s)∆s

∥∥∥∥
=

|d|

∑
i=1

∥∥∥∥∥
∫ s*i

s*i−1

a(s)y(s)∆s

∥∥∥∥∥
(A3)
≤

|d|

∑
i=1

(
‖y‖T0

∫ s*i

s*i−1

L(s)∆s

)

= ‖y‖T0

(
|d|

∑
i=1

∫ s*i

s*i−1

L(s)∆s

)
Rem.7.1.7

≤ ‖y‖T*
0

(
|d|

∑
i=1

∫ s*i

s*i−1

L(s)∆s

)
= ‖y‖T*

0

∫ b*

a*
L(s)∆s < ∞.

Taking the supremum over all divisions d = (si) of [a,b], we obtain varb
aA < ∞ and the proof is

complete, since the statement holds for all a,b ∈ T*
0.

The next result ensures the existence of the Perron-Stieltjes integral of y with respect to
A, whenever y is a regulated function defined on a closed interval.
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Theorem 7.1.9. Let v ∈T*
0 and A : T*

0 → L(G0(T*
0,X),X) be given by (7.17). If y ∈ G([t0,v],X),

then the Perron-Stieltjes integral ∫ v

t0
d[A(s)]y(s)

exists.

Proof. Consider X̂ = L(G0(T*
0,X),X) and Ŷ = X = Ẑ. Then, X̂ ,Ŷ and Ẑ are Banach spaces once

G0(T*
0,X) and X are Banach spaces (see Proposition A.0.23). Define B : X̂ × Ŷ → Ẑ by

B(F,x) = Fzx,

where zx : T*
0 → X is given by zx(t) = x for all t ∈ T*

0. It is clear that zx ∈ G0(T*
0,X) and

B = (X̂ ,Ŷ , Ẑ) is a bilinear triple. Moreover, by Lemma 7.1.8, varv
t0A < ∞ and, by Proposition

B.0.8, the Perron-Stieltjes integral
∫ v

t0 d[A(s)]y(s) exists for all y ∈ G([t0,v],X).

In the sequel, we present a relation between the Perron-Stieltjes integral
∫

d[A(s)]y(s)

and the Perron-Stieltjes ∆-integral
∫

a(s)y(s)∆s. Its proof follows the same ideas as in [21,
Theorem 4.7].

Theorem 7.1.10. Let A : T*
0 → L(G0(T*

0,X),X) be given by (7.17). If v ∈ T*
0, then∫ t

t0
d[A(s)]y(s) =

∫ t*

t0
a(s)y(s)∆s,

for all t ∈ [t0,v] and all y ∈ G([t0,v],X).

Proof. We start by proving that if v ∈ T*
0 and ϕ : [t0, t]→ X is a step function, then∫ t

t0
d[A(s)]ϕ(s) =

∫ t*

t0
a(s)ϕ(s)∆s,

for all t ∈ [t0,v]. By Remark A.0.8, ϕ is regulated on [t0,v] and, by Proposition B.0.8, the Perron-
Stieltjes integral

∫ t
t0 d[A(s)]ϕ(s) exists for all t ∈ [t0,v]. Let t ∈ [t0,v] be fixed. Since ϕ is a step

function, there exists a division d = (si) of [t0, t] and c1, . . . ,c|d| ∈ X such that

ϕ(s) = ci, for every s ∈ (si−1,si).

Thus, by the definition of A, if i ∈ {1, . . . , |d|} and si−1 < t1 < t2 < si, we have∫ t2

t1
d[A(s)]ϕ(s) =

∫ t2

t1
d[A(s)]ci = A(t2)ci −A(t1)ci

=
∫ t2

t1
a*(s)cidg(s) =

∫ t2

t1
a*(s)ϕ(s)dg(s).

(7.18)

By Theorem B.0.17, we get

lim
ξ→s+i−1

∫
ξ

si−1

a*(s)ϕ(si−1)dg(s) = a*(si−1)ϕ(si−1)∆
+g(si−1) (7.19)
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and

lim
ξ→s+i−1

∫
τ

ξ

a*(s)ϕ(s)dg(s) =
∫

τ

si−1

a*(s)ϕ(s)dg(s)−a*(si−1)ϕ(si−1)∆
+g(si−1), (7.20)

for all τ ∈ (si−1,si).

Equation (7.19) together with equation (7.20), imply

lim
ξ→s+i−1

(∫
τ

ξ

a*(s)ϕ(s)dg(s)+
∫

ξ

si−1

a*(s)ϕ(si−1)dg(s)
)
=
∫

τ

si−1

a*(s)ϕ(s)dg(s), (7.21)

or all τ ∈ (si−1,si). Moreover, by Theorem B.0.6, if τ ∈ (si−1,si), then∫
τ

si−1

d[A(s)]ϕ(s) = lim
ξ→s+i−1

(∫
τ

ξ

d[A(s)]ϕ(s)+A(ξ )ϕ(si−1)−A(si−1)ϕ(si−1)

)
= lim

ξ→s+i−1

(∫
τ

ξ

d[A(s)]ϕ(s)+
∫

ξ

si−1

a*(s)ϕ(si−1)dg(s)
)

(7.18)
= lim

ξ→s+i−1

(∫
τ

ξ

a*(s)ϕ(s)dg(s)+
∫

ξ

si−1

a*(s)ϕ(si−1)dg(s)
)

(7.21)
=

∫
τ

si−1

a*(s)ϕ(s)dg(s).

Therefore, ∫
τ

si−1

d[A(s)]ϕ(s) =
∫

τ

si−1

a*(s)ϕ(si−1)dg(s), (7.22)

for all i ∈ {1, . . . , |d|} and all τ ∈ (si−1,si).

Analogously, ∫ si

τ

d[A(s)]ϕ(s) =
∫ si

τ

a*(s)ϕ(si−1)dg(s), (7.23)

for all i ∈ {1, . . . , |d|} and all τ ∈ (si−1,si). By (7.22) and (7.23), we obtain∫ si

si−1

d[A(s)]ϕ(s) =
∫ si

si−1

a*(s)ϕ(s)dg(s), for all i ∈ {1, . . . , |d|}. (7.24)

Therefore, by (7.24) and Theorem D.0.12, we conclude

∫ t

t0
d[A(s)]ϕ(s) =

|d|

∑
i=1

∫ si

si−1

d[A(s)]ϕ(s) =
|d|

∑
i=1

∫ si

si−1

a*(s)ϕ(s)dg(s)

=
∫ t

t0
a*(s)ϕ(s)dg(s) =

∫ t*

t0
a(s)ϕ(s)∆s.

(7.25)

In order to prove the assertion to regulated functions, we consider y ∈ G([t0,v],X) and a
sequence of step functions ϕk : [t0,v]→ X , k ∈ N such that

lim
k→∞

‖ϕk(s)− y(s)‖∞ = 0, (7.26)
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where the existence of such a sequence is guaranteed by Theorem A.0.9. By equation (7.25), we
get ∫ t

t0
d[A(s)]ϕk(s) =

∫ t*

t0
a(s)ϕk(s)∆s, for all k ∈ N (7.27)

and, by Theorem B.0.5, we have

lim
k→∞

∫ t

t0
d[A(s)]ϕk(s) =

∫ t

t0
d[A(s)]y(s). (7.28)

Combining (7.27) with (7.28), we obtain

lim
k→∞

∫ t*

t0
a(s)ϕk(s)∆s = lim

k→∞

∫ t

t0
d[A(s)]ϕk(s) =

∫ t

t0
d[A(s)]y(s).

We conclude the proof by showing

lim
k→∞

∫ t*

t0
a(s)ϕk(s)∆s =

∫ t*

t0
a(s)y(s)∆s. (7.29)

At first, notice that the functions ϕ̂k, ŷ : T*
0 → X defined by

ϕ̂k(t) =

{
ϕk(t), t ∈ [t0,v]

ϕk(v) t ∈ T*
0 ∖ [t0,v]

and

ŷ(t) =

{
y(t), t ∈ [t0,v]

y(v) t ∈ T*
0 ∖ [t0,v]

belong to G0(T*
0,X) and

‖ϕ̂k − ŷ‖T0 ≤ ‖ϕ̂k − ŷ‖T*
0
≤ ‖ϕ̂k − ŷ‖∞ = ‖ϕk − y‖∞.

Moreover, condition (T2) implies∥∥∥∥∫ t*

t0
a(s)ϕk(s)∆s−

∫ t*

t0
a(s)y(s)∆s

∥∥∥∥ =

∥∥∥∥∫ t*

t0
a(s)[ϕ̂k(s)− ŷ(s)]∆s

∥∥∥∥
≤ ‖ϕ̂k − ŷ‖T0

∫ t*

t0
L(s)∆s

≤ ‖ϕk − y‖∞

∫ t*

t0
L(s)∆s,

(7.30)

and, hence, (7.29) follows by (7.26) and (7.30).

In the next result, we prove the existence and uniqueness of a solution of a linear VS
integral equation with which the dynamic equations (7.15) and (7.16) will be related to.

Theorem 7.1.11. Let v ∈ T*
0 and A : T*

0 → L(G0(T*
0,X),X) be given by (7.17). Then, the linear

VS integral equation

y(t) =
∫ t

t0
d[A(s)]y(s)+h(t), t ∈ [t0,v], (7.31)

admits a unique solution in BV ([t0,v],X), for any h ∈ BV ([t0,v],X).
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Proof. Once g|T0 is the identity function, Lemma D.0.9 ensures that g is left-continuous on T*
0

and, by Theorem B.0.17, A is left-continuous. Therefore, the statement follows by Theorem 7.1.3
and Lemma 7.1.8.

In what follows, we prove the existence and uniqueness of a solution for the dynamic
equations (7.15) and (7.16). We point out that we do not require the rd-continuity of the functions
involved and, for this reason, this result is more general than the ones found in the literature.
See [3, 10, 11, 37], for example.

Theorem 7.1.12. Assume that a : T→ L(X) and f : T→ X satisfy conditions (T1), (T2) and
(T3). Then, the dynamic equations (7.15) and (7.16) admit unique solutions.

Proof. We start by proving the existence and uniqueness of a solution of the nonhomogeneous
dynamic equation (7.15).

Define h̃ : T*
0 → X by

h̃(t) =
∫ t

t0
f *(s)dg(s), for all t ∈ T*

0,

where g(s) = s* for all s ∈ T*
0. By condition (T1) and Theorem D.0.10, the Perron-Stieltjes

integral
∫ t

t0 f *(s)dg(s) exists for all t ∈ T*
0 and, consequently, h̃ is well-defined. Moreover, by

Theorem D.0.12 and condition (T3), we have

|h̃(t2)− h̃(t1)| =

∥∥∥∥∫ t2

t0
f *(s)dg(s)−

∫ t1

t0
f *(s)dg(s)

∥∥∥∥
Th.D.0.12

=

∥∥∥∥∫ t*2

t0
f (s)∆s−

∫ t*1

t0
f (s)∆s

∥∥∥∥
=

∥∥∥∥∫ t*1

t0
f (s)∆s+

∫ t*2

t*1
f (s)∆s−

∫ t*1

t0
f (s)∆s

∥∥∥∥
=

∥∥∥∥∫ t*2

t*1
f (s)∆s

∥∥∥∥
Cond.(A4)

≤
∫ t*2

t*1
K(s)∆s < ∞,

(7.32)

for all t1, t2 ∈ T*
0 and, hence, h̃ ∈ BV ([a,b],X) for all [a,b]⊂ T*

0. Consequently, if x0 ∈ X , then
h : T*

0 → X , defined by

h(t) = h̃(t)+ x0,

is locally of bounded variation on T*
0.

Let v ∈ T*
0 be arbitrary. By Theorem 7.1.11, there exists a unique solution y : [t0,v]→ X

of the linear VS integral equation (7.31) in BV ([t0,v],X), that is,

y(t) = x0 +
∫ t

t0
d[A(s)]y(s)+

∫ t

t0
f *(s)dg(s), for all t ∈ [t0,v], (7.33)
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where A : T*
0 → L(G0(T*

0,X),X) is given by (7.17). By Theorems D.0.12 and 7.1.10, we have

∫ t

t0
d[A(s)]y(s) =

∫ t*

t0
a(s)y(s)∆s, for all t ∈ [t0,v] and

∫ t

t0
f *(s)dg(s) =

∫ t*

t0
f (s)∆s for all t ∈ [t0,v].

Thus,

y(t) = x0 +
∫ t*

t0
a(s)y(s)∆s+

∫ t*

t0
f (s)∆s, for all t ∈ [t0,v]. (7.34)

Consider the set

S := {y : [t0,vy]→ X ; vy ∈ T*
0 and y is a solution of (7.31) in BV ([t0,vy],X) with y(t0) = x0}.

Since (7.33) holds for every v ∈ T*
0, the set S is nonempty and T*

0 =
⋃

y∈S[t0,vy]. Moreover, if
y1,y2 ∈ S, then either [t0,vy1]⊂ [t0,vy2] or [t0,vy2]⊂ [t0,vy1]. Assume, without loss of generality,
that [t0,vy1] ⊂ [t0,vy2]. It is clear that y2|[t0,vy1 ]

∈ BV ([t0,vy1],X) and, by the uniqueness of a
solution (see Theorem 7.1.3), y2|[t0,vy1 ]

= y1. Therefore,

y1(t) = y2(t), for all t ∈ [t0,vy1 ]∩ [t0,vy2] and all y1,y2 ∈ S. (7.35)

Define z : T*
0 → X by z(t) = y(t), whenever y ∈ S and t ∈ [t0,vy]. By (7.35), z is well-

defined and, by (7.34), we have

z(t) = x0 +
∫ t*

t0
a(s)z(s)∆s+

∫ t*

t0
f (s)∆s, for all t ∈ T*

0.

Moreover, owing to the fact that t* = t for all t ∈ T0, we have

z(t) = x0 +
∫ t

t0
a(s)z(s)∆s+

∫ t

t0
f (s)∆s, for all t ∈ T0.

Consequently, x : T0 → X , defined by x = z|T0 , is a solution of the dynamic equation (7.15)
with initial condition x(t0) = x0. The uniqueness of x follows directly from the uniqueness of a
solution of (7.31).

The proof for the homogeneous dynamic equation (7.16) follows by taking h(t) = x0, for
all t ∈ T*

0 and, therefore, we omit it here.

As a direct consequence of the proof of Theorem 7.1.12, we have the following result.

Theorem 7.1.13. Let A : T*
0 → L(G0(T*

0,X),X) be given by (7.17) and x0 ∈ X . Assume that
a :T→ L(X) and f :T→X satisfy conditions (T1), (T2) and (T3). Then, the following statements
holds.
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(i) If y : T*
0 → X is a function such that the equality

y(t) = x0 +
∫ t

t0
d[A(s)]y(s)+

∫ t

t0
f *(s)dg(s) (7.36)

holds for all t ∈ T0, then x := y|T0 is the solution of the nonhomogeneous dynamic
equation (7.15) with initial condition x0. Conversely, if x : T0 → X is the solution of the
nonhomogeneous dynamic equation (7.15) with initial condition x0, then x = y|T0 , where
y is given by (7.36).

(ii) If the function y : T*
0 → X satisfies

y(t) = x0 +
∫ t

t0
d[A(s)]y(s), (7.37)

for all t ∈ T, then x := y|T0 is the solution of the homogeneous dynamic equation (7.16)
with initial condition x0. Reciprocally, if x : T0 → X is the solution of the homogeneous
dynamic equation (7.16) with initial condition x0, then x = y|T0 , where y is given by (7.37).

In the sequel, we present a version of Theorem 7.1.12 when X = Rn. We highlight that,
in this case, condition (T3) is not required.

Theorem 7.1.14. Assume that X =Rn and let A : T*
0 → L(G0(T*

0,X),X) be given by (7.17) and
x0 ∈ X . If a : T → L(X) and f : T → X satisfy conditions (T1) and (T2), then there exists a
unique solution of the nonhomogeneous dynamic equation (7.15).

Proof. By condition (T1) and Theorems B.0.17 and D.0.12, for all v ∈ T*
0, the function h :

[t0,v]→ X , given by

h(t) =
∫ t

t0
f *(s)dg(s), t ∈ [t0,v],

where g(s) = s* for all s ∈ T*
0 is well-defined and h ∈ G([t0,v],X). Then, by Theorem 7.1.4,

Lemma 7.1.8 and by the fact that A : T*
0 → L(G0(T*

0,X),X), defined by (7.17), is left-continuous,
we conclude that for all x0 ∈ X , there exists a unique function y : [t0,v]→ X for which

y(t) = x0 +
∫ t

t0
d[A(s)]y(s)+h(t), t ∈ [t0,v].

By Theorems D.0.12 and 7.1.10, we have

y(t) = x0 +
∫ t*

t0
a(s)y(s)∆s+

∫ t*

t0
f (s)∆s, t ∈ [t0,v].

Using the same ideas as in the proof of Theorem 7.1.12, we obtain a unique function
z : T*

0 → X such that

z(t) = x0 +
∫ t*

t0
a(s)z(s)∆s+

∫ t*

t0
f (s)∆s, t ∈ T*

0

and, consequently, x = z|T0 is a solution of the nonhomogeneuous dynamic equation (7.15) with
initial condition x(t0) = x0.
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7.2 Variation-of-constant formula

This section is devoted to establish a variation-of-constant formula for the nonhomo-
geneuous dynamic equation (7.15). At first, we need some auxiliary results.

Theorem 7.2.1. Let v ∈ T*
0 and A : T*

0 → L(G0(T*
0,X),X) be given by (7.17). Assume that

Φ ∈ BV ([t0,v],L(X)), then the Perron-Stieltjes integral∫ v

t0
d[A(s)]Φ(s)

exists.

Proof. Consider X̂ = L(G0(T*
0,X),X) and Ŷ = L(X) = Ẑ. Since G0(T*

0,X) and X are Banach
spaces (see Proposition A.0.23), X̂ ,Ŷ and Ẑ are also Banach spaces. Define B : X̂ × Ŷ → Ẑ by

B(F,G) = G∘F.

It is clear that B = (X̂ ,Ŷ , Ẑ) is a bilinear triple and, by Lemma 7.1.8, varv
t0A < ∞. Therefore, by

Proposition B.0.7, the Perron-Stieltjes integral
∫ v

t0 d[A(s)]Φ(s) exists for all Φ ∈ G([t0,v],L(X)),
in particular,

∫ v
t0 d[A(s)]Φ(s) exists for all Φ ∈ BV ([t0,v],L(X)).

Henceforward, we denote by I ∈ L(X) the identity operator. Using similar arguments as
in Theorem 7.1.3, we obtain the following result.

Theorem 7.2.2. Let v ∈ T*
0 and A : T*

0 → L(G0(T*
0,X),X) be given by (7.17). Then, for a given

s ∈ [t0,v], the equation

Φ(t) = I +
∫ t

s
d[A(s)]Φ(s), t ∈ [t0,v], (7.38)

admits at least one nontrivial solution in BV ([t0,v],L(X)).

The next result ensures the existence of a fundamental operator associated to the dynamic
equation (7.16).

Theorem 7.2.3. Assume that a : T → L(X) and f : T → X satisfy conditions (T1), (T2) and
(T3). Then, there exists a unique operator U : T0 ×T0 → L(X), called fundamental operator

of the homogeneous linear dynamic equation (7.16), such that U(t, t) = I, for all t ∈ T0, and
if x : T0 → X is a solution of the homogeneous dynamic equation (7.16) with initial condition
x(t0) = x0 ∈ X , then

x(t) =U(t, t0)x0,

for all t ∈ T0.
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Proof. By Theorem 7.2.2, the set S, defined by

S := {Φi : [t0,vi]→ L(X); vi ∈ T*
0 and Φi is a solution of (7.38) in BV ([t0,vi],L(X))},

is nonempty. Define Φ : T*
0 → L(X) by Φ(t) = Φi(t), where Φi ∈ S and t ∈ [t0,vi]. Notice that

Φ is well-defined since T*
0 =

⋃
Φi∈S[t0,vi] and, by the uniqueness of a solution of (7.38), if

Φi,Φ j ∈ S with i ̸= j, then Φi(t) = Φ j(t) for all t ∈ [t0,vi]∩ [t0,v j]. Thus, for all t ∈ T*
0, we have

Φ(t) = I +
∫ t

t0
d[A(s)]Φ(s) (7.39)

and Φ is locally of bounded variation on T*
0.

Define V : T*
0 ×T*

0 → L(X) by

V (t,τ) = I +
∫ t

τ

d[A(s)]Φ(s), for all t,τ ∈ T*
0. (7.40)

Then, V (t, t0) = Φ(t) and V (t, t) = I for all t ∈ T*
0.

Define y : T*
0 → X by y(t) =V (t, t0)x0 for all t ∈ T*

0. Then,∫ t

t0
d[A(s)]y(s) =

∫ t

t0
d[A(s)]V (s, t0)x0

=

(∫ t

t0
d[A(s)]Φ(s)

)
x0

= (Φ(t)− I)x0 = (V (t, t0)− I)x0

= y(t)− x0

and, by Theorem 7.1.13-(i), x := y|T0 is the solution of the homogeneous dynamic equation
(7.16) with initial condition x0. Therefore, the statement follows by defining U :=V |T0×T0 .

In what follows, we present some properties of the operator V : T*
0 ×T*

0 → L(X) defined
by (7.40). Their proofs can be found in [16, Theorem 4.3].

Theorem 7.2.4. Let s ∈ T*
0 and V (·,s) : T*

0 → L(X) be defined by

V (t,s) = I +
∫ t

s
d[A(r)]Φ(r), for all t ∈ T*

0,

where Φ is given by (7.39). Then, V satisfies the following properties:

(i) for all t,τ ∈ T*
0, we have

V (t,τ) = I +
∫ t

τ

d[A(r)]V (r,τ);

(ii) V (t, t) = I for all t ∈ T*
0;

(iii) V (t,τ) =V (t,r)V (r,τ) for all t,τ,r ∈ T*
0;
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(iv) there exists [V (t,τ)]−1 ∈ L(X) and [V (t,τ)]−1 =V (τ, t) for all t,τ ∈ T*
0;

(v) V (·,τ) and V (τ, ·) belongs to BV ([a,b],L(X)) for all [a,b]⊂ T*
0 and all τ ∈ T*

0;

(vi) for every compact set [a,b]⊂ T*
0, there exists a constant M > 0 such that

‖V (t,τ)‖ ≤ M, for all t,τ ∈ [a,b].

Using similar ideas as in the proof of Theorem 7.1.10 and, by Theorem 7.2.4, we obtain
the next result.

Theorem 7.2.5. Assume that a : T → L(X) and f : T → X satisfy conditions (T1), (T2) and
(T3). Then, the fundamental operator of the homogeneous linear dynamic equation (7.16)
U : T0 ×T0 → L(X) given in Theorem 7.2.3, satisfies the following properties:

(i) for all s,r ∈ T0, we have

U(s,r) = I +
∫ s

r
a(τ)U(τ,r)∆τ;

(ii) U(t, t) = I for all t ∈ T0;

(iii) U(t,τ) =U(t,r)U(r,τ) for all t,τ,r ∈ T0;

(iv) there exists [U(t,τ)]−1 ∈ L(X) and [U(t,τ)]−1 =U(τ, t) for all t,τ ∈ T0;

(v) U(·,τ) and U(τ, ·) are regulated on [a,b]T, for all [a,b]T ⊂ T0 and all τ ∈ T0;

(vi) for every compact set [a,b]T ⊂ T0, there exists a constant M > 0 such that

‖U(t,τ)‖ ≤ M, for all t,τ ∈ [a,b]T.

The next result is a variation-of-constant formula for a nonhomogeneous linear VS
integral equation. Its proof is similar to the proof of [16, Theorem 4.10] and, therefore, we omit
it here.

Theorem 7.2.6. Let A : T*
0 → L(G0(T*

0,X),X) be given by (7.17) and h : T*
0 → X be a function

such that h ∈ BV ([a,b],X) for all [a,b]⊂ T*
0. If y : T*

0 → X is a function such that the equality

y(t) = y(t0)+
∫ t

t0
d[A(s)]y(s)+h(t)

holds for all t ∈ T*
0, then

y(t) =V (t, t0)y(t0)+h(t)−h(t0)−
∫ t

t0
ds[V (t,s)](h(s)−h(t0)), t ∈ T*

0,

where V : T*
0 ×T*

0 → L(X) is given by

V (t,τ) = I +
∫ t

τ

d[A(s)]V (s,τ), t,τ ∈ T*
0.
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Using Theorem 7.2.6 and the relation between the solution of the nonhomogeneous
dynamic equation (7.15) and the solution of a linear VS integral equation, given in Theorem
7.1.13, we obtain a variation-of-constant formula for the dynamic equation (7.15).

Theorem 7.2.7. Let A : T*
0 → L(G0(T*

0,X),X) be given by (7.17) and x0 ∈ X . Assume that
a : T→ L(X) and f : T→ X satisfy conditions (T1), (T2) and (T3). Then, the solution of the
dynamic equation (7.16), with initial condition x0, is given by

x(t) =U(t, t0)x0 +
∫ t

t0
U(t,s) f (s)∆s, s ∈ T0,

where U : T0 ×T0 → L(X) is given in Theorem 7.2.3.

Proof. Let x0 ∈ X . By Theorem 7.1.13-(i), if x : T0 → X is the unique solution of the dynamic
equation (7.16) with initial condition x0, then x = y|T0 , where y : T*

0 → X is given by

y(t) = x0 +
∫ t

t0
d[A(s)]y(s)+

∫ t

t0
f *(s)dg(s), t ∈ T*

0.

For all t ∈ T*
0, consider h(t) =

∫ t
t0 f *(s)dg(s), where g(s) = s* for all s ∈ T*

0. Then, by
Theorem D.0.12 and condition (T3), h is locally of bounded variation on T*

0 (see (7.32)) and, by
Theorem 7.2.6, we have

y(t) =V (t, t0)x0 +h(t)−h(t0)−
∫ t

t0
ds[V (t,s)](h(s)−h(t0)), t ∈ T*

0, (7.41)

where V : T*
0 ×T*

0 → L(X) is given by

V (t,τ) = I +
∫ t

τ

d[A(s)]V (s,τ), t,τ ∈ T*
0.

By Theorems B.0.9 and 7.2.4, for all t ∈ T*
0, we have∫ t

t0
ds[V (t,s)](h(s)−h(t0)) =

∫ t

t0
ds[V (t,s)]h(s)

Th.B.0.9
= V (t, t)h(t)−V (t, t0)h(t0)

−
∫ t

t0
V (t,s) f *(s)dg(s)

Th.7.2.4
= h(t)−

∫ t

t0
V (t,s) f *(s)dg(s).

(7.42)

Thus, by (7.41), (7.42) and Theorem D.0.12, we obtain

y(t) =V (t, t0)x0 +
∫ t*

t0
V (t,s) f (s)∆(s), for all t ∈ T*

0.

Therefore,

x(t) =U(t, t0)x0 +
∫ t

t0
U(t,s) f (s)∆(s), for all t ∈ T0,

since x = y|T0 , U =V |T0×T0 and t* = t for all t ∈ T0.
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Our next goal is to show that our main results, namely Theorems 7.1.12 and 7.2.7,
generalize [10, Theorems 5.8 and 5.24], [3, Theorem 3.1] and [11, Theorem 2.1]. To this end,
we prove, in the next result, that if A : T→ Rn×n and f : T→ Rn are rd-continuous, then A and
f satisfy conditions (T1), (T2) and (T3).

Lemma 7.2.8. Let T be a time scale and T0 = [t0,+∞)∩T, with t0 ∈ T. If f : T → Rn and
A : T→ Rn×n are rd-continuous, then conditions (T1), (T2), (T3) are satisfied.

Proof. At first, we notice that since A is rd-continuous, for all regulated function y : T0 → Rn,
the product Ay : T0 →Rn, given by A(s)y(s) for all s ∈T0, is also a regulated function. Moreover,
every rd-continuous function is a regulated function, then f is also regulated and, by Proposition
D.0.13, condition (T1) is satisfied.

Before proving condition (T2), we notice that the function T0 ∋ t ↦→ ‖A(t)‖et−t0 is
regulated. Thus, by Proposition D.0.13, the Perron ∆-integral∫ t2

t1
‖A(s)‖es−t0∆s

exists for all t1, t2 ∈ T0.

Let t1, t2 ∈ T0 be fixed and y,z ∈ G0(T0,X). Once the equality∫ t2

t1
A(s)[y(s)− z(s)]∆s =−

∫ t1

t2
A(s)[y(s)− z(s)]∆s

holds, we may assume that t1 < t2.

By the definition of the Perron ∆-integral, for all ε > 0, there exists a ∆-gauge δ on
[t1, t2]T such that∥∥∥∥∥ |d|

∑
i=1

A(τi)[y(τi)− z(τi)](si − si−1)−
∫ t2

t1
A(s)[y(s)− z(s)]∆s

∥∥∥∥∥< ε and

|d|

∑
i=1

‖A(τi)‖eτi−t0(si − si−1)< ε +
∫ t2

t1
‖A(s)‖es−t0∆s,

provided dT = (τi, [si−1,si]T) is a δ -fine tagged division of [t1, t2]T. Then,∥∥∥∥∫ t2

t1
A(s)[y(s)− z(s)]∆s

∥∥∥∥ ≤

∥∥∥∥∥
∫ t2

t1
A(s)[y(s)− z(s)]∆s−

|d|

∑
i=1

A(τi)[y(τi)− z(τi)](si − si−1)

∥∥∥∥∥
+

∥∥∥∥∥ |d|

∑
i=1

A(τi)[y(τi)− z(τi)](si − si−1)

∥∥∥∥∥
si>si−1
≤ ε +

|d|

∑
i=1

‖A(τi)‖‖y(τi)− z(τi)‖(si − si−1)

= ε +
|d|

∑
i=1

‖A(τi)‖‖y(τi)− z(τi)‖e−(τi−t0)e(τi−t0)(si − si−1)
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≤ ε +‖y− z‖T0

|d|

∑
i=1

‖A(τi)‖e(τi−t0)(si − si−1)

≤ ε(1+‖y− z‖T0)+‖y− z‖T0

∫ t2

t1
‖A(s)‖es−t0∆s.

Therefore, condition (T2) holds by taking ε sufficiently small and L(s) = ‖A(s)‖es−t0 for all
s ∈ T0.

Similarly, since f is regulated, ‖ f‖[t1,t2]T = supt∈[t1,t2]T ‖ f (t)‖ < ∞, for all t1, t2 ∈ T0.
Therefore, the function K : T0 → R defined by

K(s) = ‖ f (s)‖, for all s ∈ T0,

is locally Perron ∆-integrable. Moreover, given ε > 0, there exists a ∆-gauge δ on [t1, t2]T such
that ∥∥∥∥∥∥

|d|

∑
i=1

f (τi)(si − si−1)−
∫ t2

t1
f (s)∆s

∥∥∥∥∥∥< ε and

|d|

∑
i=1

‖ f (τi)‖(si − si−1)< ε +
∫ t2

t1
K(s)∆s,

provided dT = (τi, [si−1,si]T) is a δ -fine tagged division of [t1, t2]T. Then,∥∥∥∥∫ t2

t1
f (s)∆s

∥∥∥∥ ≤

∥∥∥∥∥∥
|d|

∑
i=1

f (τi)(si − si−1)−
∫ t2

t1
f (s)∆s

∥∥∥∥∥∥+
|d|

∑
i=1

‖ f (τi)‖(si − si−1)

≤ 2ε +
∫ t2

t1
K(s)∆s

which proves condition (T3).

In order to prove that Theorem 7.2.7 generalizes [10, Theorems 5.24] and [11, Theorem
2.1], we need the following auxiliary result.

Theorem 7.2.9. If f : T0 → Rn and a : T→ Rn×n are rd-continuous, then∫ t

t0
U(t,s) f (s)∆(s) =

∫ t

t0
U(t,σ(s)) f (s)∆s, for all t ∈ T0, (7.43)

where U is the fundamental operator of the homogeneous linear dynamic equation (7.16) given
in Theorem 7.2.3.

Proof. At first, we notice that, by Lemma 7.2.8, a and f satisfies all the hypotheses of Theorems
7.1.12, 7.2.5 and 7.2.7. Then, by Theorem 7.2.5, we have

U(s,r) = I +
∫ s

r
a(τ)U(τ,r)∆τ, (7.44)

for all r,s ∈ T0. Moreover,

U(t,r)U(r,s) =U(t,s), for all t,r,s ∈ T0. (7.45)
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By equations (7.44) and (7.45), we obtain

U(t, t0) = U(t,r)U(r, t0)

=

(
I +

∫ t

r
a(τ)U(τ,r)∆τ

)
U(r, t0)

= U(r, t0)+
∫ t

r
a(τ)U(τ, t0)∆τ,

(7.46)

for all t,r ∈ T0.

Denote U(t, t0) by β (t) for all t ∈ T0. By (7.46), we conclude

β (t)−β (r) =
∫ t

r
a(τ)β (τ)∆τ, for all t,r ∈ T0. (7.47)

Therefore, β is a solution of the dynamic equation

β
∆(s) = a(s)β (s). (7.48)

On the other hand, by Theorem 7.2.7, the function x : T0 → Rn, given by

x(t) =U(t, t0)x0 +
∫ t

t0
U(t,s) f (s)∆s, t ∈ T0

is the unique solution of the dynamic equation

x∆ = a(t)x+ f (t), (7.49)

with initial condition x(t0) = x0. Let y : T0 → Rn be defined by

y(t) =U(t, t0)x0 +
∫ t

t0
U(t,σ(s)) f (s)∆s, t ∈ T0.

By equation (7.45), we can rewrite y by

y(t) = β (t)α(t), t ∈ T0, (7.50)

where
α(t) = x0 +

∫ t

t0
U(t0,σ(s)) f (s)∆s, t ∈ T0.

By Theorem D.0.5, we obtain

y∆(t) = β
∆(t)α(t)+β (σ(t))α∆(t)

(7.48)
= a(t)β (t)α(t)+β (σ(t))U(t0,σ(t)) f (t)

(7.50)
= a(t)y(t)+U(σ(t), t0)U(t0,σ(t)) f (t)

(7.45)
= a(t)y(t)+U(σ(t),σ(t)) f (t)

(7.44)
= a(t)y(t)+ I f (t)

= a(t)y(t)+ f (t).

Therefore, y is a solution of the dynamic equation (7.49) with initial condition y(t0) = x0

and, by the uniqueness of a solution (see Theorem 7.1.12), we have y(t) = x(t) for all t ∈ T0.
Consequently, ∫ t

t0
U(t,s) f (s)∆s =

∫ t

t0
U(t,σ(s)) f (s)∆s,

for all t ∈ T0.
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7.3 Controllability
The main goal of this section is to establish necessary and sufficient conditions for a

nonhomogeneous linear dynamic equation to be controllable.

Let X and U be a Banach spaces and T0 = [t0,+∞)∩T, where T is a time scale and
t0 ∈ T. Consider the control system on the time scale T described by

x∆ = a(t)x+B(t)u(t), (7.51)

where B : T → L(U,X), u : T → U and a : T → L(X). Furthermore, consider the following
conditions:

(CT1) the Perron ∆-integrals ∫ t2

t1
B(s)u(s)∆s and

∫ t2

t1
a(s)y(s)∆s

exist for all t1, t2 ∈ T, whenever y : T→ X is regulated.

(CT2) there is a locally Perron ∆-integrable function L : T→ R such that∥∥∥∥∫ t2

t1
a(s)[z(s)− y(s)]∆s

∥∥∥∥≤ ‖z− y‖T0

∫ t2

t1
L(s)∆s,

for all z,y ∈ G0(T0,X) and all t1, t2 ∈ T0.

(CT3) there is a locally Perron ∆-integrable function K : T0 → R such that∥∥∥∥∫ t2

t1
B(s)u(s)∆s

∥∥∥∥≤ ∫ t2

t1
K(s)∆s,

for all t1, t2 ∈ T0.

We recall that the vector space G0(T0,X) and the norm ‖ · ‖T0 are described in Definition D.0.3.

We denote by U the space of all control functions, u : T→U, such that conditions (CT1)
and (CT3) are satisfied.

By Theorems 7.1.12 and 7.2.7, the dynamic equation (7.51) admits a unique solution
x : T0 → X with initial condition x̃ ∈ X and control u ∈ U . Moreover, x is given by

x(t) =U(t, t0)x̃+
∫ t

t0
U(t,s)B(s)u(s)∆s, s ∈ T0,

where U : T0 ×T0 → L(X) is given in Theorem 7.2.3 and we denote x(·) by x(·, x̃,u).

In the sequel, we introduce a definition of controllability for the dynamic system (7.51).

Definition 7.3.1. Let T ∈ T0 be fixed and S ⊆ X be such that 0 ∈ S, where 0 denotes the neutral
element of X . The state d ∈ S is said to be
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(i) approximately controllable at time T to a point x̃ ∈ X , if there exists a sequence {un}n∈N

in U such that x(T,d,un) goes to x̃ as n goes to ∞;

(ii) strictly controllable at time T to a point x̃ ∈ X , if there exists u ∈U such that x(T,d,u) = x̃.

The dynamic system (7.51) is approximately controllable (strictly controllable) at time T , if all
points of S are approximately controllable (strictly controllable) at time T to all points of X .

For all t ∈ T0 and all d ∈ S, define G(t) : U → X by

G(t)u =
∫ t

t0
U(t,s)B(s)u(s)∆s, (7.52)

where U : T0 ×T0 → L(X) is given in Theorem 7.2.3.

In what follows, we give necessary and sufficient conditions for the system (7.51) to be
approximately controllable (strictly controllable).

Theorem 7.3.2. Let T ∈ T0 and G(T ) : U → X be given by (7.52). Then, the following state-
ments hold.

(i) The dynamic system (7.51) is approximately controllable at time T if and only if the range
of G(T ) is everywhere dense in X .

(ii) The dynamic system (7.51) is strictly controllable at time T if and only if the mapping
G(T ) is onto.

Proof. We start by proving item (i). Let x̃ ∈ X be arbitrary. Since the dynamic system (7.51) is
approximately controllable at time T , Definition 7.3.1 yields all points in S are approximately
controllable at time T to all points of X . In particular, d = 0 is approximately controllable at
time T to x̃. Therefore, there exists a sequence {un}n∈N in U such that x(T,0,un) goes to x̃ as
n goes to ∞, that is, G(T )un goes to x̃, as n goes to ∞. Hence, the range of G(T ) is everywhere
dense in X .

Reciprocally, for arbitrary d ∈ S and x̃ ∈ X , x̃−U(T, t0)d ∈ X and, if the range of G(T )

is everywhere dense in X , then there exists a sequence {un}n∈N in U such that G(T )un goes to
x̃−U(T, t0)d as n goes to ∞, that is, x(T,d,un) goes to x̃, as n goes to ∞, which in turn, implies
that the dynamic system (7.51) is approximately controllable at time T .

As in item (i), in order to prove item (ii), we take x̃ arbitrarily and d = 0. Once the
dynamic system (7.51) is controllable at time T , there exists u ∈ U such that x(T,0,u) = x̃, that
is, G(T )u = x̃. Therefore, G(T ) is onto.

Conversely, if G(T ) is onto, then for all d ∈ S and all x̃ ∈ X , there exists u ∈ U such that
G(T )u = x̃−U(T, t0)d, which implies that x(T,d,u) = x̃. Therefore, the dynamic system (7.51)
is strictly controllable at time T .
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In the next result, we consider X =Rn, U=Rp, p < n, and use the notation M′ to denote
the transpose of a given matrix M.

Theorem 7.3.3. Let T be a time scale, t0 ∈ T and T0 = [t0,+∞)∩T0. Assume that f : T→ Rn

and a : T→ Rn×n are rd-continuous. Then, G(T ) is onto if and only if the rows of the matrix
U(t0,σ(T ))B(T ) are linearly independent, where T ∈ T0, G(T ) : U → Rn is defined by (7.52)
and U : T0 ×T0 → L(Rn) is given in Theorem 7.2.3.

Proof. Let T ∈ T0 and suppose that the rows of the matrix U(t0,σ(T ))B(T ) are linearly inde-
pendent. Then, the matrix

C (t0,T ) =
∫ T

t0
U(T,σ(s))B(T )B′(s)U ′(t0,s)∆s

is positive definite.

Let x0 ∈ Rn be arbitrary and define

u(s) = B′(s)U ′(t0,s)C−1(t0,T )x0, for all s ∈ [t0,T ]T.

By (7.52) and Theorem 7.2.9, we get

G(T )u =
∫ T

t0
U(T,σ(s))B(s)u(s)∆s = x0,

which shows that G(T ) is onto.

Conversely, if the rows of the matrix U(t0,σ(T ))B(T ) are linearly dependent, then there
exists x0 ∈ Rn, x0 ̸= 0, such that

x′0U(t0,σ(s))B(s)≡ 0, for all s ∈ [t0,T ]T. (7.53)

Once G(T ) is onto, there exists u for which G(T )u = x0. Therefore, by Theorem 7.2.9, we have

G(T )u =
∫ T

t0
U(T,σ(s))B(s)u(s)∆s = x0.

Multiplying the above equation by x′0U(t0,σ(T )), we obtain, by (7.53),

x′0U(t0,σ(T ))x0 =
∫ T

t0
x′0U(t0,σ(s))B(s)u(s)∆s = 0,

which contradicts the fact that U is the fundamental operator of the dynamic equation (7.51).

The next result is a straightforward consequence of Theorems 7.3.2 and 7.3.3. Unlike
the proofs of the results presented in [12, Theorem 4.3], [17, Theorem 2.2] and [43, Theorem 1]
which deals with the rank of some matrices, our result provides another characterization of strict
controllability and its proof uses linear dependence of a much simpler matrix.
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Corollary 7.3.4. Let T be a time scale and T0 = [t0,+∞)∩T0, with t0 ∈ T. Assume that
f : T→ Rn and a : T→ Rn×n are rd-continuous. Then, the dynamic system (7.51) is strictly
controllable at time T ∈ T0 if and only if the rows of the matrix U(t0,σ(T ))B(T ) are linearly
independent, where U : T0 ×T0 → L(Rn) is given in Theorem 7.2.3.

In the sequel, we present a definition of a regressive n×n-matrix-valued function and
some examples of fundamental operators borrowed from [10, Examples 5.9 and 5.19].

Definition 7.3.5. Let T be a time scale. An n×n–matrix–valued function A : T→Rn×n is called
regressive (with respect to T) if I +µ(t)A(t) is invertible for all t ∈ Tk.

Example 7.3.6. Let I be the identity n×n-matrix and U(·, ·) be the fundamental operator given
in Theorem 7.2.3.

(i) If T= R, then σ(t) = t for all t ∈ T. Moreover, any n×n-matrix-valued function a on T
is such that I +µ(t)a(t) is invertible for all t ∈ Tk and, hence, it is regressive. In this case,
a matrix-valued function a is rd-continuous if and only if it is continuous. Then, the initial
value problem

x∆ = a(t)x, x(t0) = x0

has a unique solution provided a is continuous. Moreover, if a is a constant n×n-matrix,
then U(t, t0) = ea(t−t0) for all t ∈ R.

(ii) If T= Z, then σ(t) = t +1 and any n×n-matrix-valued function a on T is rd-continuous.
Moreover, in order for a matrix-valued function a on T to be regressive, the matrix I+a(t)

needs to be invertible for each t ∈ Z. Furthermore, if a is a constant n× n-matrix, then
U(t, t0) = (I +a)(t−t0) for all t ∈ Z.

We end this section by presenting two examples of strictly controllable dynamic systems
on time scales.

Example 7.3.7. Let T be a time scale, t0 ∈T, T0 = [t0,+∞)∩T and U be the set of all regulated
functions u : T→ R such that ‖u‖T0 = sups∈T0

|u(s)|< c for some constant c > 0.

Consider the following control dynamic system

x∆ = ax+Bu(t) (7.54)

on the time scale T, where u ∈ U ,

a =

 − 8
45

1
30

− 1
45

− 1
30

 and
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B =

(
1
1

)
.

At first, we notice that, since a and B are real constant matrices, a and B are rd-continuous.
Then, by Lemma 7.2.8, conditions (CT1) and (CT2) are fulfilled. Moreover, by Proposition
D.0.13, we have∥∥∥∥∫ t2

t1
Bu(s)∆s

∥∥∥∥≤ ‖B‖‖u‖[t1,t2]T[g(t2)−g(t1)]≤ ‖B‖c[g(t2)−g(t1)], (7.55)

for all t1, t2 ∈ T0 and all u ∈ U , where g(t) = t* for all t ∈ T*
0. Since g|T0 is the identity function,

g is delta differentiable (see Definition D.0.4). Then, the function K : T0 → R given by

K(t) = ‖B‖cg∆(t), t ∈ T0

is well-defined and ∫ t2

t1
K(s)∆s = ‖B‖c[g(t2)−g(t1)], (7.56)

for all t1, t2 ∈ T0. By equations (7.55) and (7.56), for all t1, t2 ∈ T0, we have∥∥∥∥∫ t2

t1
Bu(s)∆s

∥∥∥∥≤ ∫ t2

t1
K(s)∆s

which proves condition (CT3).

Let us consider two cases for the time scale T.

(a) T= R.

Notice that a is continuous, since it is a real constant 2× 2-matrix. Then, by Example
7.3.6-(i), there exists a solution of the dynamic equation (7.54) and U(t, t0) = ea(t−t0). On
the other hand, it is clear that U(t0,σ(t)) is invertible, for all t ∈ T0 and, consequently, the
rows of U(t0,σ(t)) =U(t0,σ(t))B(t) are linearly independent, for all t ∈ T0. Therefore,
Corollary 7.3.4 guarantees that the dynamic system (7.54) is strictly controllable.

(b) T= Z.

Notice that

I +a =


37
45

1
30

− 1
45

29
30


is invertible, since the determinant of I +a is not zero. Therefore, by Example 7.3.6-(ii), a

is regressive and, for all t ∈ Z, U(t, t0) = (I +a)(t−t0) and σ(t) = t +1. On the other hand,
once (I +a) is invertible, (I +a)(t−t0) is also invertible for all t ∈ T0 and, consequently,
U(σ(t), t0) = U(t + 1, t0) is invertible, for all t ∈ T0, which implies that the rows of
U(σ(t), t0) =U(σ(t), t0)B(t) are linearly independent, for all t ∈ T0. Then, by Corollary
7.3.4, we conclude that the dynamic equation (7.54) is strictly controllable.
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Example 7.3.8. Let X be a Banach space. Consider the time scale T= hZ= {hk : k ∈ Z} with
h > 0. Let t0 = h and consider the homogeneous linear dynamic equation

x∆ = a(t)x (7.57)

on the time scale T0 = [t0,+∞)∩T, where a : T→ L(X) is given by

a(t)x =

{
0, (t,x) ∈ (T∖T0)×X
x
t
, (t,x) ∈ T0 ×X .

(7.58)

Since a is regulated, for all regulated functions y : T0 → X , the product ay : T0 → X , given by
a(s)y(s) for all s ∈ T0, is also a regulated function. Then, by Proposition D.0.13, the Perron
∆-integral

∫ t2
t1 a(s)y(s)∆s exists for all t1, t2 ∈ T0 and all regulated functions y : T0 → X . This

leads to condition (CT1).

Let us prove condition (CT2). Consider y,z ∈ G0(T0,X) and define L : T0 → R by

L(s) =
es−t0

s
, for all s ∈ T0.

Let t1, t2 ∈ T0 and assume that t1 < t2. Then, by Example D.0.8-(ii), we get∥∥∥∥∫ t2

t1
a(s)[y(s)− z(s)]∆s

∥∥∥∥ =

∥∥∥∥∥∥
t2
h −1

∑
k= t1

h

a(kh)[y(kh)− z(kh)]h

∥∥∥∥∥∥
=

∥∥∥∥∥∥
t2
h −1

∑
k= t1

h

y(kh)− z(kh)
kh

h

∥∥∥∥∥∥
≤

t2
h −1

∑
k= t1

h

‖y(kh)− z(hk)‖e−(kh−t0)ekh−t0

k

≤ ‖y− z‖T0

t2
h −1

∑
k= t1

h

ekh−t0

k

= ‖y− z‖T0

t2
h −1

∑
k= t1

h

ekh−t0

kh
h

= ‖y− z‖T0

∫ t2

t1
L(s)∆s,

and, hence, condition (CT2) is fulfilled.

On the other hand, if x : T0 → X is the solution of the dynamic equation (7.57), with
initial condition x(t0) = x0, then, for all t ∈ T0, we have

x(t) = x0 +

t
h−1

∑
k= t0

h

x(kh)h
kh

= x0 +

t
h−1

∑
k= t0

h

x(kh)
k

= x0 +
t−h

∑
k=t0

x(k)h
k

.

Thus, a straightforward calculation shows that U(t, t0) = (I +h)
t−t0

h , where I ∈ L(X) is the
identity operator.
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Now, let U be a Banach space, with U⊂ X , and U be the set of all regulated functions
u : T → U such that for every interval [a,b]T ⊂ T0, there exists a constant M > 0 for which
‖u‖[a,b]T < M. Consider the nonhomogeneous dynamic system

x∆ = a(t)x+B(t)u(t), (7.59)

where B :T→ L(U,X) is defined by B(t)y= y for all y∈U and all t ∈T, a :T→ L(X) is given by
(7.58) and u∈U . Then, by Proposition D.0.13, the Perron ∆-integral

∫ t2
t1 u(s)∆s=

∫ t2
t1 B(s)u(s)∆s

exists for all t1, t2 ∈ T0 and,∥∥∥∥∫ t2

t1
u(s)∆s

∥∥∥∥≤ ‖u‖[t1,t2]T [g(t2)−g(t1)]≤ M[g(t2)−g(t1)] =
∫ t2

t1
K(s)∆s,

where K(s) = Mg∆(s) for all s ∈ T0 and g(s) = s* for all s ∈ T*
0. Therefore, condition (CT3)

holds.

In what follows, we aim to prove that the dynamic system (7.59) is strictly controllable.

Let t ∈ T0 be fixed and G(t) : U → X be given by

G(t)u =
∫ t

t0
(I +h)

t−s
h u(s)∆s.

Notice that, if x ∈ X and u : T→ U is given by

u(s) =


U(t0, t)x

t − t0
=

(I +h)
t0−t

h x
t − t0

, if s ∈ T∖T0,

U(s, t)x
t − t0

=
(I +h)

s−t
h x

t − t0
, if s ∈ T0,

then, by Theorem 7.2.5, u is well-defined and u ∈ U . Moreover,

G(t)u =
∫ t

t0
(I +h)

t−s
h
(I +h)

s−t
h

t − t0
x∆s =

∫ t

t0

x
t − t0

∆s = x

which implies that G(t) is onto and, by Theorem 7.3.2, the dynamic system (7.59) is strictly
controllable at time t ∈ T0. Since t is arbitrary, we conclude that the dynamic system (7.59) is
strictly controllable.
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APPENDIX

A
REGULATED FUNCTIONS

In this chapter, we provide the basic background material on regulated functions. In
particular, we review definitions, introduce some notations and present known results.

Throughout this chapter, X is a Banach space equipped with a norm ‖ ·‖, O ⊆ X and, for
every a,b ∈ (−∞,+∞), [a,b] denotes the corresponding compact interval of the real line.

At first, we present some auxiliary definitions.

Definition A.0.1. Let −∞ < a < b < +∞. A division of the interval [a,b] is a finite set of
points of [a,b], d = {s0,s1, . . . ,s|d|} ⊂ [a,b] , where a = s0 < s1 < .. . < s|d| = b and |d|<+∞

represents the number of subintervals of [a.b]. The set of all divisions of [a,b] is denoted by
D [a,b].

Definition A.0.2. A function f : [a,b] → O is called a step function, if there exist a division
d = {s1,s2, . . . ,s|d|} ∈ D [a,b] and ci ∈ X , i = 1, . . . , |d|, such that f (t) = ci for all t ∈ (si−1,si),
i = 1, . . . , |d|. In this case, we write f ∈ E([a,b],O).

Definition A.0.3. Let f : [a,b]→ O be a function. We define the variation of f on [a,b] by

varb
a f = sup

d∈D [a,b]

|d|

∑
i=1

‖ f (si)− f (si−1)‖.

Moreover, if varb
a f <+∞, we say that f is a function of bounded variation on [a,b] . The set of

all functions f : [a,b]→ O of bounded variation on [a,b] is represented by BV ([a,b],O).

In what follows, we present two known results about the set BV ([a,b],O). The reader
may consult [32, Theorems I.2.2 and I.2.3].

Theorem A.0.4. Let f ∈ BV ([a,b],O). Then, the following equality

varb
a f = vart

a f +varb
t f

holds for every t ∈ [a,b].
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Theorem A.0.5. The space BV ([a,b],X), equipped with the norm

‖ f‖BV = ‖ f (a)‖+varb
a f , f ∈ BV ([a,b],X),

is a Banach space.

In the sequel, we state a Helly’s choice principle for Banach space-valued functions as
presented in [33].

Theorem A.0.6 (Helly’s choice). If { fn}n∈N is a uniformly bounded sequence of functions
defined from [a,b] into X , then there exists a subsequence { fnk}nk∈N of { fn}n∈N converging
pointwisely to a function f ∈ BV ([a,b],X), that is,

lim
n→∞

fnk(t) = f (t),

for all t ∈ [a,b].

In the next lines, we present the definition of regulated functions.

Definition A.0.7. A function f : [a,b] → O is called regulated, if at any point t ∈ [a,b], it
possesses one-sided limits, that is, the limit lims→t− f (s) = f (t−) ∈ X exists for every t ∈ (a,b]

and the limit lims→t+ f (s) = f (t+) ∈ X exists for every t ∈ [a,b). We denote by G([a,b],O) the
set of all regulated functions f : [a,b]→ O .

The following statement can be found in [32, Theorem I.2.7]( or [33, Corollary I.3.4]).

Remark A.0.8. It is well-known that

E([a,b],O)⊂ G([a,b],O)

and
BV ([a,b],O)⊂ G([a,b],O).

The next results give useful properties of regulated functions defined on compact inter-
vals.

Theorem A.0.9 ( [13, Theorem 1.4], [33, Theorem I.3.1] or [44, Theorem 4.5] ). For every func-
tion f ∈ G([a,b],X) (in particular, f ∈ BV ([a,b],X)), there exists a sequence of step functions
{ϕn}n∈N ⊂ E([a,b],X) which converges uniformly to f , that is,

sup
s∈[a,b]

‖ f (s)−ϕn(s)‖
n→∞→ 0.

Corollary A.0.10 ( [44, Corollary 4.7] ). If f ∈ G([a,b],X), then for every ε > 0, the following
sets

{t ∈ [a,b) : ‖ f (t+)− f (t)‖ ≥ ε} and {t ∈ (a,b] : ‖ f (t)− f (t−)‖ ≥ ε}

are finite.
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Theorem A.0.11 ( [44, Theorem 4.3] ). If a sequence { fn}n∈N ⊂ G([a,b],X) converges uni-
formly to f , then f ∈ G([a,b],X).

Theorem A.0.12 (Moore-Osgood Theorem, [9]). If a sequence { fn}n∈N ⊂G([a,b],X) converges
uniformly to f , then

lims→t− f (s) = lim
s→t−

lim
n→+∞

fn(s) = lim
n→+∞

lim
s→t−

fn(s), t ∈ (a,b] and

lims→t+ f (s) = lim
s→t+

lim
n→+∞

fn(s) = lim
n→+∞

lim
s→t+

fn(s), t ∈ [a,b).

Proposition A.0.13 ( [28, Proposition 1.7] or [44, Corollary 4.6] ). Every regulated function is
bounded on compact intervals.

Proposition A.0.14. If Φ : X → R is a continuous function and x ∈ G([a,b],X), then Φ ∘ x

belongs to G([a,b],X).

Proof. Let x ∈ G([a,b],X) and ε > 0 be given. Since Φ is continuous, there exists δ0 > 0 such
that, if y,z ∈ X satisfy

‖y− z‖< δ0, (A.1)

then
|Φ(y)−Φ(z)|< ε. (A.2)

Let us prove that the left-hand limit of Φ exists. Indeed, let t ∈ (a,b]. Since x is regulated, for
this δ0, there exists δ > 0 such that, for all s ∈ (t −δ , t), we have

‖x(s)− x(t)‖< δ0. (A.3)

By (A.1) and (A.3), we conclude

|Φ(x(s))−Φ(x(t))|< ε, for all s ∈ (t −δ , t)

and, hence, lims→t− Φ(x(s)) exists for all t ∈ (a,b]. Similarly, we can show that lims→t+ Φ(x(s))

exists for all t ∈ [α,β ).

Lemma A.0.15. If f ∈ G([a,b],X), then

sup
s∈[a,b]

‖ f (s)‖= c,

where c = ‖ f (σ)‖ for some σ ∈ [a,b] or c = ‖ f (σ−)‖ for some σ ∈ (a,b] or c = ‖ f (σ+)‖ for
some σ ∈ [a,b).

Proof. Let c = sups∈[a,b] ‖ f (s)‖. By Proposition A.0.13, we can conclude that c <+∞ and, by
definition of the supremum, for all n ∈ N, we can choose tn ∈ [a,b] such that

0 ≤ c−‖ f (tn)‖<
1
n
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which implies

lim
n→∞

‖ f (tn)‖= c.

Once {tn}n∈N⊂ [a,b], there exists a subsequence {t ′n}n∈N⊂{tn}n∈N such that t ′n goes to σ ∈ [a,b]

as n goes to ∞. Since f is regulated, we have

c = lim
n→∞

‖ f (t ′n)‖ ∈
{
‖ f (σ)‖,‖ f (σ−)‖,‖ f (σ+)‖

}
and the proof is complete.

By Proposition A.0.13, the usual supremum norm, given by

‖ f‖∞ = sup
t∈[a,b]

‖ f (t)‖,

is well-defined for all f ∈G([a,b],X) and, in [33, Theorem I.3.6], the author proved the following
result.

Theorem A.0.16. The space G([a,b],X), equipped with the norm

‖ f‖∞ = sup
t∈[a,b]

‖ f (t)‖, f ∈ G([a,b],X),

is a Banach space.

In what follows, we recall the definition of a left-continuous function.

Definition A.0.17. A function f : [a,b]→ O is said to be left-continuous on (a,b], if

lim
s→t−

f (s) = f (t),

for every t ∈ (a,b].

Remark A.0.18. The set of all functions f : [a,b] → O such that f ∈ G([a,b],O) and it is
left-continuous on (a,b] is denoted by G−([a,b],O).

In the sequel, we present important properties of the elements of G−([a,b],R).

Proposition A.0.19 ( [13, Proposition 1.8] or [49, Proposition 10.11] ). Let f ,g ∈ G−([a,b],R)
be given. If, for every t ∈ [a,b), there exists δ (t)> 0 such that for every η ∈ (0,δ (t)), we have
f (t +η)− f (t)≤ g(t +η)−g(t), then

f (s)− f (a)≤ g(s)−g(a), s ∈ [a,b].

We borrowed the next result from [47, Exercise 19.12-page 153].
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Proposition A.0.20. Let f : [a,b]→ R be a function such that f is left-continuous on (a,b] and
sups∈[a,t] f (s)< ∞, for all t ∈ [a,b]. If g : [a,b]→ R is defined by g(t) = sups∈[a,t] f (s), then g is
nondecreasing and it is left-continuous on (a,b]. In particular, if f̃ : [a,b]→ X is left-continuous
on (a,b] and sups∈[a,t] ‖ f̃ (s)‖< ∞, for all t ∈ [a,b], then the function g̃ : [a,b]→ R, defined by
g̃(t) = sups∈[a,t] ‖ f (s)‖, is nondreasing and left-continuous on (a,b]. Moreover, by Proposition
A.0.13, we may consider f̃ ∈ G−([a,b],X).

The following result is a consequence of Proposition A.0.20. Therefore, we omit its proof
here.

Proposition A.0.21. Let f ∈ G−([a,b],R) and g : [a,b]→R be defined by g(t) = sups∈[t,b] f (s).

Then, g is non-increasing and g ∈ G−([a,b],R). In particular, if f̃ ∈ G−([a,b],X), then the
function g̃ : [a,b]→ R, defined by g̃(t) = sups∈[a,t] ‖ f (s)‖, is non-increasing and left-continuous
on (a,b].

We end this chapter by presenting certain spaces of functions defined on unbounded
intervals.

Definition A.0.22. Let [t0,+∞)⊂ R be an arbitrary interval, O ⊆ X and f : [t0,+∞)→ O be a
function. Then,

(i) f is locally of bounded variation on [t0,+∞), if f ∈ BV ([a,b],O) for all [a,b]⊂ [t0,+∞);

(ii) f belongs to G([t0,+∞),O), if f ∈ G([a,b],O) for all [a,b]⊂ [t0,+∞);

(iii) f belongs to BG([t0,+∞),O), if G([t0,+∞),O) and f is bounded;

(iv) f belongs to G0([t0,+∞),O), if f ∈ G([t0,+∞),O) and sup
s∈[t0,+∞)

e−(s−t0)‖ f (t)‖< ∞.

It is clear that BG([t0,+∞),X) endowed with the usual supremum norm is a Banach
space. Moreover, the next result shows that G0([t0,+∞),X) is a Banach space with respect to a
special norm. Its proof can be found in [13, Proposition 1.9].

Proposition A.0.23. The space G0([t0,+∞),X), equipped with the norm

‖ f‖[t0,+∞) = sup
t∈[t0,+∞)

e−(t−t0)‖ f (t)‖, f ∈ G0([t0,+∞),X),

is a Banach space.
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APPENDIX

B
VECTOR INTEGRALS

The goal of this chapter is to present a brief overview of the theory of nonabsolute
integration, due to Jaroslav Kurzweil and Ralph Henstock, for integrands taking values in Banach
spaces.

Throughout this chapter, X , Y and Z are Banach spaces and L(U,V ) is the Banach space
of continuous linear mappings T : U → V , where U,V ∈ {X ,Y,Z}. When U = V , we write
simply L(U) instead of L(U,V ).

At first, we recall the concept of a δ -fine tagged division of [a,b]⊂ R. See [49].

Definition B.0.1. A tagged division of [a,b], with division points a = s0 ≤ s1 ≤ . . .≤ s|d| = b

and tags ξi ∈ [si−1,si], i = 1,2, . . . , |d|, is any finite collection of point-interval pairs (ξi, [si−1,si]).
In this case, we write d = (ξi, [si−1,si]) ∈ T D[a,b], where T D[a,b] denotes the set of all tagged
divisions of [a,b]. Any subset of a tagged division of [a,b] is a tagged partial division of [a,b]
and the set of all tagged partial divisions of [a,b] is denoted by T PD[a,b].

Given a positive function δ : [a,b]→ (0,+∞), called a gauge on [a,b], a tagged division
d = (ξi, [si−1,si]) of [a,b] is called δ -fine, whenever

[si−1,si]⊂ (ξi −δ (ξi),ξi +δ (ξi)), i = 1,2, . . . , |d|.

The following result deals with the existence of at least one δ -fine division. A proof of
this fact can be found in [49, Lemma 1.4].

Lemma B.0.2 (Cousin’s Lemma). Given a gauge δ on [a,b], there is a δ -fine tagged division of
[a,b].

In what follows, we recall the definition of a bilinear triple of Banach spaces.



176 APPENDIX B. Vector integrals

Definition B.0.3. A triple of Banach spaces X ,Y and Z is bilinear, if there exists a bilinear
mapping B : X ×Y → Z such that

‖B(x,y)‖ ≤ ‖x‖‖y‖, for all (x,y) ∈ X ×Y.

We denote by B(X ,Y,Z) the set of all bilinear triples.

It is not difficult to see that B = (L(X ,Y ),X ,Y ), with B : L(X ,Y )×X → Y defined by
B(F,x) = Fx ∈ Y , is a bilinear triple. Another bilinear triple is B = (L(X ,Y ),L(Y,Z),L(X ,Z))

with B : L(X ,Y ),×L(Y,Z)→ L(X ,Z) given by the composition G∘F ∈ L(X ,Z) of the operators
F ∈ L(X ,Y ) and G ∈ L(Y,Z).

In the sequel, we present the definition of the abstract Perron-Stieltjes integral. See,
e.g., [31, 38, 40, 49–51].

Definition B.0.4. Let B = (X ,Y,Z) be a bilinear triple. For given functions f : [a,b]→ X and
g : [a,b]→ Y and a tagged division d = (ξi, [si−1,si]) of [a,b], we define

S( f ,dg,d) =
|d|

∑
i=1

f (ξi)(g(si)−g(si−1)) and

S(d f ,g,d) =
|d|

∑
i=1

[ f (si)− f (si−1)]g(ξi).

We say that I ∈ Z is the Perron-Stieltjes integral of f with respect to g, if for every ε > 0, there
exists a gauge δ on [a,b] such that

‖S( f ,dg,d)− I‖< ε,

for all δ -fine tagged division d = (ξi, [si−1,si]) of [a,b]. Similarly J ∈ Z is the Perron-Stieltjes

integral of g with respect to f , if for every ε > 0, there exists a gauge δ on [a,b] such that

‖S(d f ,g,d)− J‖< ε,

for all δ -fine tagged division d = (ξi, [si−1,si]) of [a,b]. In these cases, we write

I =
∫ b

a
f (s)dg(s) and J =

∫ b

a
d[ f (s)]g(s).

Moreover, we use the conventions∫ b

a
f (s)dg(s) =−

∫ a

b
f (s)dg(s) and

∫ b

a
d[ f (s)]g(s) =−

∫ a

b
d[ f (s)]g(s),

whenever a ≤ b.

The integrals defined above are linear and additive with respect to intervals. For more
details, see [50, Proposition 6].

In the next lines, we exhibit the uniform convergence theorem for Perron-Stieltjes
integrals. Its proof can be found in [50, Theorem 11].
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Theorem B.0.5. Let B = (X ,Y,Z) be a bilinear triple and f : [a,b] → X be a function. If
x : [a,b] → Y is the uniform limit of a sequence {ϕn}n∈N ⊂ E([a,b],X) such that the Perron-
Stieljtes integral

∫ b
a d[ f (s)]ϕn(s) exists for all n ∈ N, then the integral

∫ b
a d[ f (s)]x(s) exists

and ∫ b

a
d[ f (s)]x(s) = lim

n→∞

∫ b

a
d[ f (s)]ϕn(s).

The following result shows that the indefinite Perron-Stieltjes integral is not continuous
in general. The reader may consult [50, Theorem 17 and Remark 18] for a proof.

Theorem B.0.6. Assume that B = (X ,Y,Z) is a bilinear triple and the functions f : [a,b]→ X

and g : [a,b]→ Y are such that the integral
∫ b

a d[ f (s)]g(s) exists. If c ∈ [a,b], then

lim
s→c−

(∫ s

a
d[ f (s)]g(s)− f (s)g(c)+ f (c)g(c)

)
=
∫ c

a
d[ f (s)]g(s)

and

lim
s→c+

(∫ b

s
d[ f (s)]g(s)+ f (s)g(c)− f (c)g(c)

)
=
∫ b

c
d[ f (s)]g(s).

The next two results were borrowed from [50]. They relate the Perron-Stieltjes integral
with the variation of its integrand.

Proposition B.0.7 ( [50, Proposition 10] ). Assume that B = (X ,Y,Z) is a bilinear triple. If the
functions f : [a,b]→ X and g : [a,b]→Y are such that the Perron-Stieltjes integral

∫ b
a d[ f (s)]g(s)

exists and varb
a f < ∞, then ∥∥∥∥∫ b

a
d[ f (s)]g(s)

∥∥∥∥≤ varb
a f‖g‖∞,

where ‖g‖∞ = sups∈[a,b] ‖g(s)‖.

Proposition B.0.8 ( [50, Proposition 15] ). Assume that B = (X ,Y,Z) is a bilinear triple and
f : [a,b] → X is such that varb

a f < ∞. If g ∈ G([a,b],Y ), then the Perron-Stieltjes integral∫ b
a d[ f (s)]g(s) exists.

In what follows, we present an integration-by-parts theorem for Perron-Stieltjes integrals.
Its proof can be found in [13, Theorem 1.57] or [34, Theorem 1.15].

Theorem B.0.9. Let f : [a,b]→ X be such that the integral
∫ b

a f (s)ds exists. If f̃ : [a,b]→ X

is given by f̃ (t) =
∫ t

a f (s)ds and α ∈ BV ([a,b],L(X ,Y )), then the integrals
∫ b

a d[α(s)] f̃ (s) and∫ b
a α(s) f (s)ds exist and the following equality∫ b

a
d[α(s)] f̃ (s) = α(b) f̃ (b)−α(a) f̃ (a)−

∫ b

a
α(s) f (s)ds

holds.
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The result below represents a Gronwall-type inequality for the Perron-Stieltjes integral.
A proof of it can be found in [49, Corollary 1.43].

Theorem B.0.10. Let g : [a,b]→ [0,+∞) be a nondecreasing left-continuous function, k > 0
and l ≥ 0. Assume that f : [a,b]→ [0,+∞) is bounded and satisfies

f (t)≤ k+ l
∫ t

a
f (s)dg(s), for all t ∈ [a,b].

Then,
f (t)≤ kel|g(t)−g(a)|, for all t ∈ [a,b].

In what follows, we present another definition of integral, introduced by Jaroslav
Kurzweil, which will be crucial in the theory of generalized ordinary differential equations.

Definition B.0.11. A function U : [a,b]× [a,b]→ X is said to be Kurzweil integrable over [a,b],
if there is an element I ∈ X such that, given ε > 0, there exists a gauge δ on [a,b] such that for
every δ -fine tagged division d = (ξi, [si−1,si]) of [a,b], we have

‖S(U,d)− I‖< ε,

where S(U,d) = ∑
|d|
i=1[U(ξi,si)−U(ξi,si−1)]. In this case,

I =
∫ b

a
DU(τ, t).

Furthermore, we use the convention
∫ a

b DU(τ, t) =−
∫ b

a DU(τ, t), whenever a ≤ b.

The Kurzweil integral has the usual properties of uniqueness, linearity, additivity and
integrability on subintervals. Moreover, we can extend the Kurzweil integral to unbounded
intervals of R by defining δ -neighborhoods of −∞ and +∞. When X is an abstract Banach space,
the interested reader may consult [13, Section 1.2] for more details or [49] for the particular case
when X = Rn.

In the sequel, we point out that the Kurzweil integral, given by Definition B.0.11, and
the Perron-Stieltjes integrals, described in Definition B.0.4, can be related.

Remark B.0.12. Consider the bilinear triple B = (L(Y,X),Y,X) and let f : [a,b]→ L(Y,X) and
g : [a,b]→ Y be given functions. If U(τ, t) = f (τ)g(t), then the Kurzweil integral of U exists if
and only if the Perron-Stieltjes integral of f with respect to g exists. In this case,∫ b

a
DU(τ, t) =

∫ b

a
f (s)dg(s).

Similarly, if U(τ, t) = f (t)g(τ), then∫ b

a
DU(τ, t) =

∫ b

a
d[ f (s)]g(s),

provided the integrals exist.
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The following statement provides a useful tool in the theory of Kurzweil integral. For
a proof, see [13, Lemma 1.7] when X is an infinite dimensional space or [49, Lemma 1.13]
whenever X is a finite dimensional space.

Lemma B.0.13 (Saks-Henstock Lemma). Let U : [a,b]× [a,b]→ X be Kurzweil integrable over
[a,b]. Given ε > 0, let the gauge δ on [a,b] be such that∥∥∥∥∥ k

∑
i=1

[U(ξi,si)−U(ξi,si−1)]−
∫ b

a
DU(τ, t)

∥∥∥∥∥< ε,

for every δ -fine d = (ξi, [si−1,si]) ∈ T D[a,b] of [a,b]. If d′ = (ηi, [ti−1, ti]) ∈ T PD[a,b] is δ -fine,
that is,

ηi ∈ [ti−1, ti]⊂ [ηi −δ (ηi),ηi +δ (ηi)], i = 1,2, . . . , |d′|.

Then, ∥∥∥∥∥ k

∑
i=1

[U(ηi, ti)−U(ηi, ti−1)]−
∫ ti

ti−1

DU(τ, t)

∥∥∥∥∥< ε.

As a consequence of the Saks-Henstock Lemma, we have the next result. A proof of it
can be found in [13, Corollary 2.8].

Corollary B.0.14. Let U : [a,b]× [a,b]→ X be Kurzweil integrable over [a,b]. Given ε > 0,
there exists a gauge δ on [a,b] such that if [γ,v] is a closed subinterval of [a,b], then

(i) (v− γ)< δ (γ) implies
∥∥∥∥U(γ,v)−U(γ,γ)−

∫ v

γ

DU(τ, t)
∥∥∥∥< ε;

(ii) (v− γ)< δ (v) implies
∥∥∥∥U(v,v)−U(v,γ)−

∫ v

γ

DU(τ, t)
∥∥∥∥< ε.

The result below concerns the Cauchy extension for the Kurzweil integral and it is also
known as Hake-type theorem for this integral. Its proof follows the same ideas of the proofs
of [49, Theorems 1.14 and 1.16] with easy changes for Banach space-valued functions.

Theorem B.0.15. Let U : [a,b]× [a,b] → X be Kurzweil integrable over [a,b] and c ∈ [a,b].
Then,

lim
s→c−

[∫ s

a
DU(τ, t)−U(c,s)+U(c,c)

]
=
∫ c

a
DU(τ, t),

lim
s→c+

[∫ b

c
DU(τ, t)+U(c,s)−U(c,c)

]
=
∫ b

c
DU(τ, t)

and
lim
s→c

[∫ s

a
DU(τ, t)−U(c,s)+U(c,c)

]
=
∫ c

a
DU(τ, t).

Remark B.0.16. Theorem B.0.15 shows that the indefinite Kurzweil integral of U , defined by

[a,b] ∋ s ↦→
∫ s

a
DU(τ, t),
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may not be continuous and it is continuous at a point c ∈ [a,b] if and only if the function
U(c, ·) : [a,b]→ X is continuous at c.

The next result is a particular case of Theorem B.0.15 and it is known as Hake-type
theorem for the Perron-Stieltjes integral.

Theorem B.0.17. Consider functions f : [a,b]→ X and g ∈ G([a,b],R) such that the Perron-
Stieltjes integral

∫ b
a f (s)dg(s) exists. Then, the functions

h(t) =
∫ t

a
f (s)dg(s), t ∈ [a,b] and k(t) =

∫ b

t
f (s)dg(s), t ∈ [a,b],

are regulated on [a,b] and satisfy

h(t+) = h(t)+ f (t)∆+g(t), k(t+) = k(t)− f (t)∆+g(t), t ∈ [a,b),

h(t−) = h(t)− f (t)∆−g(t), k(t−) = k(t)+ f (t)∆−g(t), t ∈ (a,b],

where ∆+g(t) = g(t+)−g(t) and ∆−g(t) = g(t)−g(t−).
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APPENDIX

C
GENERALIZED ODES

This chapter is devoted to the fundamental properties and results of generalized ordinary
differential equations for functions taking values in Banach spaces. We use the short form
“generalized ODEs” to refer to these equations.

Let X be a Banach space, O ⊆ X be an open set, I ⊂ R be an interval, Ω = O × I and
F : Ω → X be a function.

Definition C.0.1. We say that x : I → X is a solution of the generalized ODE

dx
dτ

= DF(x, t) (C.1)

on the interval I, whenever (x(t), t) ∈ Ω and

x(s2)− x(s1) =
∫ s2

s1

DF(x(τ),s), for all s1,s2 ∈ I, (C.2)

where the integral on the right-hand side of (C.2) has to be understood as the Kuzweil integral
(see Definition B.0.11).

We sometimes refer the generalized generalized ODE (C.1) as homogeneous nonlinear

generalized ODE. Moreover, we point out that any generalized ODE is a type of integral equation
and the notation in equation (C.1) does not mean that x is differentiable with respect to τ .
For example, if r : [0,1] → R is a continuous function which is nowhere differentiable and
F(x, t) = r(t), then ∫ s2

s1

DF(x(τ),s) = r(s2)− r(s1)

and the function x : [a,1] → R, given by x(s) = r(s) for all s ∈ [0,1], is a solution of the
generalized ODE

dx
dτ

= DF(x, t) =
dx
dτ

= Dr(t)

and it does not have a derivative at any point in [0,1]. See [49, Remark 3.2].



182 APPENDIX C. Generalized ODEs

In the sequel, we describe a class of functions F : Ω → X for which it is possible to get
useful informations about the Kurzweil integral of F and the solutions of the generalized ODE
(C.1).

Definition C.0.2. Let h : I → R be a nondecreasing function and ω : [0,+∞) → [0,+∞) be
a continuous and increasing function such that ω(0) = 0. We say that a function F : Ω → X

belongs to the class F (Ω,h,ω) if, for all (x,s2),(x,s1),(y,s1),(y,s2) ∈ Ω, we have

‖F(x,s2)−F(x,s1)‖ ≤ |h(s2)−h(s1)|, and (C.3)

‖F(x,s2)−F(x,s1)−F(y,s2)+F(y,s1)‖ ≤ ω(‖x− y‖)|h(s2)−h(s1)|. (C.4)

When ω : [0,+∞)→ [0,+∞) is the identity function, we write F (Ω,h) instead of F (Ω,h,ω).

Next, we present sufficient conditions for the existence of the Kurzweil integral of F

belonging to the class F (Ω,h).

Theorem C.0.3 ( [13, Theorem 4.7] ). Let F ∈F (Ω,h) and [a,b]⊂ I. If y : [a,b]→X is uniform
limit of a sequence {yn}n∈N ⊂ E([a,b],X) such that (y(t), t) ∈ Ω and (yn(t), t) ∈ Ω for all
t ∈ [a,b] and all n ∈ N, then the Kurzweil integrals

∫ b
a DF(y(τ),s) and

∫ b
a DF(yn(τ),s), n ∈ N,

exist and ∫ b

a
DF(y(τ),s) = lim

n→∞

∫ b

a
DF(yn(τ),s).

Combining Theorems A.0.9 and C.0.3, the following result can be immediately obtained.

Corollary C.0.4. Let [a,b] ⊂ I and F ∈ F (Ω,h). If y : [a,b] → X is a regulated function
(in particular, y ∈ BV ([a,b],X)) and (y(t), t) ∈ Ω for all t ∈ [a,b], then the Kurzweil integral∫ b

a DF(y(τ),s) exists.

The next two results give important estimates for the integral in (C.2).

Lemma C.0.5 ( [13, Lemma 4.5] ). Assume that F : Ω → X satisfies condition (C.3) and let
[a,b]⊂ I. If y : [a,b]→ X is such that y(t) ∈ O for all t ∈ [a,b] and if the integral

∫ b
a DF(y(τ),s)

exists, then ∥∥∥∥∫ s2

s1

DF(y(τ),s)
∥∥∥∥≤ |h(s2)−h(s1)|,

for all s1,s2 ∈ [a,b]. Moreover, the function

t ↦→
∫ t

a
DF(y(τ),s)

is continuous at every point that the function h is continuous, is of bounded variation on [a,b],
and, hence, also regulated.
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Lemma C.0.6 ( [13, Lemma 4.6] ). Let [a,b]⊂ I and F : Ω → X be such that F ∈ F (Ω,h,ω)

with Ω = O × I. If y,z ∈ G([a,b],O), then∥∥∥∥∫ b

a
D[F(y(τ),s)−F(z(τ),s)]

∥∥∥∥≤ ∫ b

a
ω(‖y(s)− z(s)‖)dh(s), (C.5)

where the integral on the right-hand side of (C.5) has to be understood as the Perron-Stieltjes
integral. See Definition B.0.4.

As a consequence of Corollary C.0.4 and Lemma C.0.5, we have the following result.

Lemma C.0.7. Let [a,b]⊂ I , y ∈ G−([a,b],X) and F : Ω → X be such that F ∈ F (Ω,h), with
Ω = O × I. If h : I → R is left-continuous on (a,b], then the function f : [a,b]→ X given by

f (t) = y(t)+
∫ t

a
DF(y(τ),s), t ∈ [a,b]

belongs to G−([a,b],X).

Proof. At first, notice that f is well-defined, since G−([a,b],X)⊂ G([a,b],X) and the existence
of the Kurzweil intregral

∫ t
a DF(y(τ),s) is ensured by Corollary C.0.4. Once y ∈ G([a,b],X), by

Proposition A.0.13, there exists M > 0 such that

sup
t∈[a,b]

‖y(t)‖< M.

From this fact and Lemma C.0.5, for all t1, t2 ∈ [a,b], we have

‖ f (t2)− f (t1)‖ ≤ ‖y(t2)− y(t1)‖+ |h(t2)−h(t1)| ≤ ‖y(t2)‖+‖y(t1)‖+ |h(t2)−h(t1)|
≤ 2M+ |h(t2)−h(t1)|.

Thus, f ∈ BV ([a,b],X)⊂ G([a,b],X) (see Remark A.0.8).

On the other hand, let c ∈ (a,b]. Since y and h are left-continuous on (a,b], there exists
δ > 0 such that, if t ∈ (c−δ ,c) then,

‖y(t)− y(c)‖< ε

2
and |h(t)−h(c)|< ε

2
.

Consequently,

‖ f (t)− f (c)‖ ≤ ‖y(t)− y(c)‖+ |h(t)−h(c)|< ε, for all t ∈ (c−δ ,c)

which implies that f is left-continuous on (a,b] and the proof is complete.

The next result describes how the solutions of the generalized ODE (C.1) inherit the
properties of the function F : Ω → X . In particular, if F is continuous with respect to the second
variable, then any solution of the generalized ODE (C.1) is a continuous function. For a proof,
see [13, Theorem 4.4] when X is an arbitrary Banach space or [49, Proposition 3.6] whenever
X = Rn.
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Theorem C.0.8. Let F ∈ F (Ω,h), [a,b]⊂ I and x : [a,b]→ X be a solution of the generalized
ODE (C.1). Then, for every σ ∈ [a,b],

lim
s→σ

[x(s)−F(x(σ),s)+F(x(σ),σ)] = x(σ).

The result below exhibits an important property of the solutions of the generalized ODE
(C.1), when the function F : Ω → X satisfies (C.3) (in particular, if F ∈ F (Ω,h)). Its proof can
be found in [13, Lemma 4.9] when X is an arbitrary Banach space or [49, Lemma 3.10] whenever
X = Rn.

Lemma C.0.9. Let F ∈ F (Ω,h), [a,b]⊂ I and x : [a,b]→ X be a solution of the generalized
ODE (C.1). Then,

‖x(s2)− x(s1)‖ ≤ |h(s2)−h(s1)|

for every s1,s2 ∈ [a,b]. Moreover, x is of bounded variation on [a,b] and it is continuous at every
point that h is continuous.

In what follows, we present another useful property of the solutions of the generalized
ODE (C.1).

Remark C.0.10. If x : [a,b]→ X is a solution of the generalized ODE (C.1), then,

x(s+)− lim
σ→s+

∫
σ

a
DF(x(τ), t) = lim

σ→s+

(
x(σ)−

∫
σ

a
DF(x(τ), t)

)
= lim

σ→s+

(
x(a)+

∫
σ

a
DF(x(τ), t)−

∫
σ

a
DF(x(τ), t)

)
= x(a) = x(s)−

∫ s

a
DF(x(τ), t).

We target at addressing the existence and uniqueness of solutions of the generalized ODE
(C.1). Toward this end, we consider

ΩF =
{
(y, t) ∈ Ω : y+F(y, t+)−F(y, t) ∈ O

}
, (C.6)

where F(y, t+) = lims→t+ F(y,s).

The following result gives sufficient conditions for the existence and uniqueness of
a local solution for an initial value problem of the generalized ODE (C.1). For a proof of it,
see [13, Theorem 5.1]. The reader may also consult [49, Theorem 4.2] for the finite dimensional
case.

Theorem C.0.11 (Local existence and uniqueness). Let [a,b] ⊂ I and F ∈ F (Ω,h), where
h : I → R is a nondecreasing and left-continuous function. If (x0,s0) ∈ ΩF , then there exists
∆ > 0 and a function x : [s0,s0 +∆]→ X which is the unique solution of the generalized ODE
(C.1) with x(s0) = x0.
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Our next goal is to present results which guarantee that the unique solution of the
generalized ODE (C.1), whose existence is ensured by Theorem C.0.11, can be extended to
intervals containing [s0,s0 +∆] up a maximal interval of existence. In order to do this, we
consider I = [t0,+∞)⊂ R and, for all (x0,s0) ∈ Ω, we denote by Ss0,x0 the set of all solutions,
x : Ix → X , of the generalized ODE (C.1) with x(s0) = x0, where Ix ⊂ I is an interval with left
endpoint s0, that is, Ix = [s0,ω), Ix = [s0,ω] or Ix = [s0,+∞) for some ω ∈ [s0,+∞). At first, we
recall the definition, introduced in [21] , of a prolongation of solutions of the generalized ODE
(C.1).

Definition C.0.12 (Prolongation of solutions). Let (x0,s0) ∈ Ω and x : Ix → X be such that
x ∈ Ss0,x0 . A solution of the generalized ODE (C.1), y : Iy → X , is called a prolongation to the

right of x, if y ∈ Ss0,x0 , Ix ⊂ Iy and x(t) = y(t) for all t ∈ Ix. Whenever Ix $ Iy, y is said to be a
proper prolongation of x to the right.

Remark C.0.13. Given x,y ∈ Ss0,x0 , we say that x is smaller or equal to y (x 4 y) if and only
if Ix ⊂ Iy and y(t) = x(t) for all t ∈ Ix. Moreover, 4 defines a partial order relation in Ss0,x0 .
See [21, Proposition 3.4].

Based on Definition C.0.12, the next result ensures the prolongation of a solution of the
generalized ODE (C.1). For a proof, see [21, Theorem 3.1].

Theorem C.0.14. Let F ∈ F (Ω,h), where h : I → R is a nondecreasing and left-continuous
function. Assume that x : [a,b)→ X and y : Iy → X are solutions of the generalized ODE (C.1)
on [a,b) and Iy respectively, where [a,b)⊂ I and Iy ∈ {[b,ω], [b,ω), [b,+∞);ω ∈ (b,+∞)}. If
the limit limt→b− x(t) exists and limt→b− x(t) = y(b), then the function z : [a,b)∪ Iy → X defined
by

z(t) =

{
x(t), if t ∈ [a,b),

y(t), if t ∈ Iy,

is a solution of the generalized ODE (C.1) on [a,b)∪ Iy.

The next definition was borrowed from [21].

Definition C.0.15 (Maximal solution). Let (x0,s0) ∈ Ω. We say that x is a maximal forward

solution or simply maximal solution of the generalized ODE (C.1), with x(s0) = x0, if x ∈ Ss0,x0

and there is no proper prolongation of x to the right.

Remark C.0.16. When x : Ix → X is a maximal solution of the generalized ODE (C.1) and
sup Ix =+∞, x is also known as a global forward solution on Ix.

The result below brings up sufficient conditions for the existence and uniqueness of a
maximal solution of the generalized ODE (C.1). A version of such a result when Ω = Bc× (a,b),
with Bc = {x ∈ Rn : ‖x‖ < c} and (a,b) ⊂ R, can be found in [49, Proposition 4.3]. For the
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infinite dimensional case, the reader may consult [13, Theorems 5.11 and 5.12] or [21, Theorems
3.9 and 3.10].

Theorem C.0.17. Let F ∈ F (Ω,h), where h : I → R is a nondecreasing and left-continuous
function. For every (x0,s0) ∈ ΩF , there exists a unique maximal solution x : [s0,ω(s0,x0))→ X

of the generalized ODE (C.1) with x(s0) = x0 and ω(s0,x0)≤+∞.

Assuming the existence of a global forward solution of the generalized ODE (C.1), we
obtain informations about the range of this solution. See [13, Theorem 5.13] or [21, Theorem
3.11].

Theorem C.0.18. Let F ∈ F (Ω,h), where h : I → R is a nondecreasing and left-continuous
function. Suppose that (x0,s0) ∈ ΩF and x : [s0,+∞) → X is the global forward solution of
the generalized ODE (C.1) with x(s0) = x0. Then, for every compact set K ⊂ Ω, there exists
tK ∈ [s0,ω) for which (x(t), t) /∈ K for all t ∈ (tk,ω), where ω ≤+∞.

In view of the previous theorem, the next result ensures that if the maximal solution of
the generalized ODE (C.1) is taking values in a compact subset of O , then it is defined on an
unbounded interval, that is, the maximal solution is a global forward solution. Its proof follows
from Theorems C.0.17 and C.0.18 and can be found in [13, Corollary 5.14] or [21, Corollary
3.12].

Corollary C.0.19. Let F ∈ F (Ω,h), where Ω = O × I and h : I → R is a nondecreasing and
left-continuous function. Suppose that (x0,s0) ∈ ΩF and x : [s0,ω(s0,x0))→ X is the maximal
solution of the generalized ODE (C.1) with x(s0) = x0. If x(t) belongs to a compact N ⊂ O for
all t ∈ [s0,ω(s0,x0)), then ω(s0,x0) = +∞.

The next two results show that, when we consider a special Ω, we obtain the existence of
a global forward solution of the generalized ODE (C.1).

Corollary C.0.20 ( [13, Corollary 5.14] or [21, Corollary 3.14 ] ). If Ω=X×I and F ∈F (Ω,h),
where h : I → R is a nondecreasing and left-continuous function, then for every (x0,s0) ∈ Ω,
there exists a unique global forward solution x : [s0,+∞)→ X of the generalized ODE (C.1) with
x(s0) = x0.

Corollary C.0.21. Let Ω = N× I and F ∈F (Ω,h), where N ⊂ X is a compact set and h : I →R
is a nondecreasing and left-continuous function. Then, for every (x0,s0)∈Ω, there exists a unique
global forward solution x : [s0,+∞)→ X of the generalized ODE (C.1) with x(s0) = x0.

Proof. For every (x0,x0) ∈ ΩF , Theorem C.0.17 guarantees the existence of a maximal solution
x : [t0,ω(s0,x0)) → X of the generalized ODE (C.1) with x(s0) = x0, and, by the definition
of a solution, (x(t), t) ∈ Ω for every t ∈ I. Then, by Corollary C.0.19, ω(s0,x0) = +∞ and,
consequently, x is a global forward solution.
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The topic of the next results is the continuous dependence, with respect to initial condi-
tions, of solutions of the generalized ODEs.

Theorem C.0.22 ( [13, Theorem 7.2] or [49, Theorem 8.1] ). Let h : [s0,+∞)→ R be a nonde-
creasing and left-continuous function and Ω = O × [s0,+∞). Assume that Fk : Ω → X belongs
to the class F (Ω,h) for k = 0,1, . . . and

lim
k→+∞

Fk(x, t) = F0(x, t),

for all (x, t) ∈ Ω. Moreover, for each k = 0,1,2, . . ., assume that the integral
∫ t

t0 DFk(xk(τ),s)

exists, where xk : [s0,+∞)→ X are functions such that limk→+∞ xk(s) = x0(s). Then,

lim
k→+∞

∫ t

s0

DFk(xk(τ),s) =
∫ t

s0

DF0(x0(τ),s).

Proposition C.0.23. Let Ω = O × [s0,+∞) and h : [s0,+∞)→ R be a nondecreasing and left-
continuous function. Assume that Fk : Ω → X belongs to the class F (Ω,h) for k = 0,1, . . . and

lim
k→+∞

Fk(x, t) = F0(x, t), (C.7)

for each (x, t)∈Ω. Let xk : [s0,+∞)→ X be the unique global forward solution of the generalized
ODE 

dx
dτ

= DFk(x, t), k = 1,2, . . . ,

xk(s0) = vk.
(C.8)

Assume that {vk}k∈N converges to a point v0 ∈ X . Then, there is a unique global forward solution
x0 : [s0,+∞)→ X of the generalized ODE

dx
dτ

= DF0(x, t),

x0(s0) = v0

(C.9)

such that limk→+∞ xk(s) = x0(s) for all s ∈ [s0,+∞).

Proof. We starting by the existence and uniqueness of a maximal solution of the generalized
ODE (C.9). By Theorem C.0.17, it is enough to prove that (s0,v0) ∈ ΩF , that is,

v0 +F0(v0,s+0 )−F0(v0,s0) ∈ O.

Since Fk ∈ F (Ω,h) for all k ∈ N, by (C.4), we have

‖Fk(vk,s+0 )−Fk(vk,s0)+Fk(v0,s0)−Fk(v0,s+0 )‖ ≤ ‖vk − v0‖|h(s+0 )−h(s0)|.

which implies

lim
k→+∞

(
Fk(vk,s+0 )−Fk(vk,s0)+Fk(v0,s0)−Fk(v0,s+0 )

)
= 0. (C.10)
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Combing (C.10) with (C.7) and the fact that {vk}k∈N converges to v0 we obtain

v0 +F0(v0,s+0 )−F0(v0,s0) = lim
k→+∞

(
vk +Fk(v0,s+0 )−Fk(v0,s0)

)
= lim

k→+∞

(
vk +Fk(vk,s+0 )−Fk(vk,s0)

− Fk(vk,s+0 )+Fk(vk,s0)+Fk(v0,s+0 )−Fk(v0,s0)
)

(C.10)
= lim

k→+∞

(
vk +Fk(vk,s+0 )−Fk(vk,s0)

)
= lim

k→+∞
xk(s+0 ),

(C.11)

where the last equality follows from Theorem C.0.8, since xk is a solution of a generalized ODE
for all k ∈ N.

Let z0 = limk→+∞ xk(s+0 ), then given ε > 0, there exists k0 ∈ N such that

‖z0 − xk(s+0 )‖< ε, for all k > k0. (C.12)

Take k > k0 be fixed. By the definition of the right-hand limit of xk, there exists δ0 > 0 such that
if t ∈ (s0,s0 +δ0), then

‖xk(t)− xk(s
+
0 )‖< ε. (C.13)

Let t0 ∈ (s0,s0 +δ0) be fixed. By the definition of the solution of a generalized ODE, xk(t0) ∈ O

and, since O is an open set, there exists δ > 0 such that if z ∈ X satisfies

‖z− xk(t0)‖< δ ,

then z ∈ O . By equations (C.12) and (C.13),

‖z0 − xk(t0)‖ ≤ ‖z0 − xk(s
+
0 )‖+‖xk(s

+
0 )− xk(t0)‖< ε.

Since ε was taken arbitrarily, we conclude that z0 ∈ O and, by (C.11), (v0,s0) ∈ ΩF .

Then, by Theorem C.0.17, there exists a unique maximal solution, x0 : [s0,ω(s0,v0))→X ,
of the generalized ODE (C.9) with x0(s0) = v0. It remains to show that x0(t) = limk→+∞ xk(t)

for all t ∈ [s0,ω(s0,v0)) and ω(s0,v0) = +∞.

Let y : [s0,+∞) → X be defined by y(t) = limk→+∞ xk(t), for all t ∈ [s0,+∞). Since
xk ∈ G([a,b],O) for all [a,b] ⊂ [s0,+∞) and all k ∈ N (see Lemma C.0.9), Theorem A.0.11
guarantees that y ∈ G([a,b],O) for all [a,b] ⊂ [s0,+∞). Moreover, by Corollary C.0.4, the
Kurzweil integral

∫ t
s0

DF0(y(τ),s) exists for all t ∈ [s0,+∞) and, by Theorem C.0.22 and by the
definition of the solution of a generalized ODE, we have

y(t) = lim
k→+∞

xk(t) = lim
k→+∞

(
vk +

∫ t

s0

DFk(xk(τ),s)
)

= v0 +
∫ t

s0

DF0(y(τ),s).

Thus, y is a solution of the generalized ODE (C.9) on [s0,+∞) with y(s0) = v0. By the uniqueness
of solution, x0(t) = y(t) for all t ∈ [t0,ω(s0,v0)) and ω(s0,v0) = +∞.
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APPENDIX

D
THE TIME SCALES CALCULUS

In this Chapter, we present basic concepts and fundamental results of the theory of time
scales. For more details, the reader may consult [10, 11].

A time scale is a closed nonempty subset T of the real line. For all t ∈ T, the forward

jump operator σ : T→ T is defined by

σ(t) = inf{s ∈ T;s > t}, (D.1)

the backward jump operator ρ : T→ T by

ρ(t) = sup{s ∈ T;s < t}, (D.2)

and the graininess function µ : T→ [0,+∞) by

µ(t) = σ(t)− t. (D.3)

In the sequel, we recall some standard definitions for the points in a given time scale.

Definition D.0.1. Let T be a time scale. Any point t ∈ T is called:

(i) right-dense, if t < supT and σ(t) = t;

(ii) right-scattered, if σ(t)> t;

(iii) left-dense, if t > infT and ρ(t) = t;

(iv) left-scattered, if ρ(t)< t.

In the next definition, we present some concepts of a function defined on a time scale T
and taking values in a Banach space X .

Definition D.0.2. Let T be a time scale. A function f : T→ X is said to be:
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(i) regulated, provided its right-sided limit exists at all right-dense points in T, and its left-
sided limit exists at all left-dense points in T;

(ii) rd-continuous, if it is regulated and continuous at right-dense points.

In what follows, we define an special set of regulated functions.

Definition D.0.3. Let T be a time scale and T0 = [t0,+∞)∩T, for some t0 ∈ T. A function
f : T0 → X belongs to G0(T,X) if f is regulated and

‖ f‖T0 = sups∈T0
e−(s−t0)‖ f (s)‖< ∞.

In order to present the definition of derivatives in the framework of time scales, we define
the set Tk by

Tk =

{
T∖ (ρ(supT)),supT], if supT< ∞,

T, if supT= ∞.

Definition D.0.4. Let T be a time scale, f : T→ X be a function and t ∈ Tk. We say that f ∆(t)

(provided it exists) is the delta derivative of f at t, if for every ε > 0, there exists δ = δ (ε)> 0
such that∥∥∥[ f (σ(t))− f (s)]− f ∆(t)[σ(t)− s]

∥∥∥≤ ε|σ(t)− s|, for all s ∈ (t −δ , t +δ )∩T.

Moreover, we say that f is delta differentiable on Tk, if f ∆(t) exists for all t ∈ Tk. In this case,
the function f ∆ : Tk → X is called the delta derivative of f on Tk.

The following result provides an useful property of delta derivatives. Its proof is a simple
adaptation of [10, Theorem 1.20] to Banach space-valued functions. Therefore, we omit it here.

Theorem D.0.5. Let T be a time scale and assume that f ,g : T→ X are delta differentiable at
t ∈ Tk. The following assertions hold.

(i) The sum f +g : T→ X is delta differentiable at t with ( f +g)∆(t) = f ∆(t)+g∆(t).

(ii) For any constant c ∈ T, c f : T→ X is delta differentiable at t with (c f )∆(t) = c f ∆(t).

(iii) The product f g :T→X is delta differentiable at t with ( f g)∆(t)= f ∆(t)g(t)+ f (σ(t))g∆(t).

(iv) If f is a constant function, that is, f (t) = c for all t ∈ T and for some constant c ∈ X , then
f ∆(t) = 0.

In the next lines, we recall the definition of a special division of [a,b]T. See [46].
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Definition D.0.6. Let T be a time scale. A division of [a,b]T is a finite sequence of points
dT = {s0,s1, . . . ,s|d|} ⊂ [a,b]T, where a = s0 < s1 < .. . < s|d| = b. We say that dT is a tagged

division of [a,b]T, whenever

a = s0 ≤ τ1 ≤ s1 ≤ . . .≤ s|d|−1 ≤ τ|d| ≤ s|d| = b,

with si > si−1, si ∈ T and τi ∈ [si−1,si]T, for 1 ≤ i ≤ |d|. We denote such tagged division by
dT = (τi, [si−1,si]T), where τi is the associated tag point in [si−1,si]T.

We say that δ = (δL,δR) is a ∆-gauge of [a,b]T, provided δL(t)> 0 on (a,b]T, δR(t)> 0
on [a,b)T, δL(a)≥ 0, δR(b)≥ 0 and δR(t)≥ µ(t) for all t ∈ [a,b)T.

If δ is a ∆-gauge on [a,b]T, then a tagged division dT = (τi, [si−1,si]T) is called δ -fine,
whenever

τi −δL(τi)≤ si−1 < si ≤ τi +δR(τi), 1 ≤ i ≤ |d|.

Notice that, similarly as in real line case, that is, when T = R, we can ensure the
existence of at least one δ -fine tagged divisions dT of [a,b]T. As a matter of fact, this result is a
generalization of the Cousin Lemma (see Lemma B.0.2) for a ∆-gauge of a time scale interval
and it can be found in [46, Lemma 1.9].

In what follows, we present a definition of ∆-integral of a function f : [a,b]T → X by
means of δ -fine tagged divisions. We refer to this integral as Perron ∆-integral. See also [46].

Definition D.0.7. Let T be a time scale. We say that f : [a,b]T → X is Perron ∆-integrable on
[a,b]T, if there is an element I ∈ X such that given ε > 0, there exists a ∆-gauge δ on [a,b]T for
which ∥∥∥∥∥ |d|

∑
i=1

f (τi)(si − si−1)− I

∥∥∥∥∥< ε,

for all δ -fine tagged division dT = (τi, [si−1,si]T) of [a,b]T. In this case, we write I =
∫ b

a f (t)∆t

which is called the Perron ∆-integral of f . Moreover, a function f : T→ X is said to be locally

Perron ∆-integrable, if the Perron ∆-integral
∫ b

a f (t)∆t exists for all [a,b]T ⊂ T.

The following example was borrowed from [10, Theorem 1.79], with obvious adaptation
to Banach space-valued functions.

Example D.0.8. Let a,b ∈ T and f : T→ X be such that the Perron ∆-integral
∫ b

a f (t)∆t exists.

(i) If T= R, then ∫ b

a
f (t)∆t =

∫ b

a
f (t)dt,

where the integral on the right-hand side is the usual Perron integral.
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(ii) If T= hZ= {hk : k ∈ Z}, where h > 0, then

∫ b

a
f (t)∆t =



b
h−1

∑
k= a

h

f (kh)h, if a < b,

0, if a = b,

−
b
h−1

∑
k= a

h

f (kh)h, if a > b.

As in [25], in order to present a relation between Perron-Stieltjes integrals and Perron
∆-integrals, we define an extension of a given time scale T by

T* =

{
(−∞,supT], if supT< ∞,

(−∞,+∞), otherwise.

Moreover, given a function f : T→ X , an extension f * : T* → X is defined by

f *(t) = f (t*), for all t ∈ T*,

where t is a real number such that t ≤ supT and t* = inf{s ∈ T;s ≥ t}. Since T is a closed set, it
is clear that t* ∈ T and, therefore, f * is well-defined.

In what follows, we present a result which shows how f * inherits some properties of f .
Its proof, when X = Rn, can be found in [52, Lemma 4] and, for arbitrary Banach space-valued
functions, see [13, Lemma 3.20].

Lemma D.0.9. Let T be a time scale, f : T→ X be a function and f * : T* → X be the extension
of f . Then, the following statements are true.

(i) If f is a regulated function on T, then f * is also regulated on T*.

(ii) If f is left-continuous on T, then f * is left-continuous on T*.

(iii) If f is right-continuous on T, then f * is right-continuous at right-dense points of T.

The next result shows that the existence of Perron ∆-integrals and Perron-Stieltjes
integrals are related. For a proof of this fact, see [13, Theorem 3.24] and, for the case when
X = Rn, see [25, Theorem 4.2].

Theorem D.0.10. Let T be a time scale and f : [a,b]T → X be a function. Define g(t) = t* for all
t ∈ [a,b]. Then, the Perron ∆-integral

∫ b
a f (t)∆t exists if and only if the Perron-Stieltjes integral∫ b

a f *(t)dg(t) exists. In this case, both integrals have the same value.

Remark D.0.11. By Theorem D.0.10 and the fact that the Perron-Stieltjes integral is linear and
additive with respect to adjacent intervals, we conclude that the Perron ∆-integral is also linear
and additive with respect to adjacent intervals. Moreover, if f : T→ X is a Perron ∆-integrable
function on a time scale T, then

∫ b
a f (s)∆s =−

∫ a
b f (s)∆s, whenever a,b ∈ T and a ≤ b.
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The next statement will be crucial to our proposes. Its proof can be found in [25, Theorem
4.1], for the case where X = Rn, and in [13, Theorem 3.15] for Banach space-valued functions.

Theorem D.0.12. Let T be a time scale and f : T → X be a function such that the Perron
∆-integral

∫ b
a f (t)∆t exists for all a,b ∈ T, a < b. Choose an arbitrary a ∈ T and define

F1(t) =
∫ t

a
f (s)∆(s), t ∈ T,

F2(t) =
∫ t

a
f *(s)dg(s), t ∈ T*,

where g(s) = s* for every s ∈ T*. Then, F2 = F*
1 .

We end this section by presenting a result which gives a sufficient condition for the
existence of a Perron ∆-integral.

Proposition D.0.13. Let T be a time scale and f : T→ X be a regulated function. Then, the
Perron ∆-integral

∫ b
a f (s)∆s exists for all a,b ∈ T, and∥∥∥∥∫ b

a
f (s)∆s

∥∥∥∥≤ ‖ f‖[a,b]T[g(b)−g(a)] (D.4)

where g(s) = s* for all s ∈ T* and ‖ f‖[a,b]T = sups∈[a,b]T ‖ f (s)‖.

Proof. Let f : T → X be a regulated function and define g(s) = s* for all s ∈ T*. Then, it is
clear that g is nondecreasing and, by Lemma D.0.9, f : T* → X is also regulated. Moreover,
by Proposition B.0.8, the Perron-Stieltjes integral

∫ b
a f *(s)dg(s) exists for all a,b ∈ T and, by

Theorem D.0.10, the Perron ∆-integral
∫ b

a f (s)∆s exists for all a,b ∈ T.

Let us prove (D.4). Since
∫ b

a f (s)∆s =−
∫ a

b f (s)∆s, for all a,b ∈ T (see Remark D.0.11),
we may assume, without loss of generality, that a < b. Let ε be given. Once the Perron ∆-integral∫ b

a f (s)∆s exists, there is a ∆-gauge δ on [a,b]T such that∥∥∥∥∥ |d|

∑
i=1

f (τi)(si − si−1)−
∫ b

a
f (s)∆s

∥∥∥∥∥< ε,

provided dT = (τi, [si−1,si]T) is a δ -fine tagged division of [a,b]T. Then,∥∥∥∥∫ b

a
f (s)∆s

∥∥∥∥ ≤

∥∥∥∥∥
∫ b

a
f (s)∆s−

|d|

∑
i=1

f (τi)(si − si−1)

∥∥∥∥∥+
∥∥∥∥∥ |d|

∑
i=1

f (τi)(si − si−1)

∥∥∥∥∥
≤ ε +

∥∥∥∥∥ |d|

∑
i=1

f (τi)(si − si−1)

∥∥∥∥∥ .
(D.5)

Furthermore, since f * is regulated, by Proposition A.0.13, we have

f (s)≤ sup
s∈[a,b]T

‖ f (s)‖ ≤ sup
s∈[a,b]

‖ f *(s)‖< ∞, for all s ∈ [a,b]T. (D.6)
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Equation (D.6) together with the fact that g|T is the identity function yield∥∥∥∥∥ |d|

∑
i=1

f (τi)(si − si−1)

∥∥∥∥∥ ≤
|d|

∑
i=1

‖ f (τi)(si − si−1)‖

≤ sup
s∈[a,b]T

‖ f (s)‖
|d|

∑
i=1

|(si − si−1)|

si>si−1
= sup

s∈[a,b]T
‖ f (s)‖

|d|

∑
i=1

g(si)−g(si−1)

= ‖ f‖[a,b]T [g(b)−g(a)]

(D.7)

Finally, by (D.5) and (D.7), we obtain∥∥∥∥∫ b

a
f (s)∆s

∥∥∥∥≤ ε +‖ f‖[a,b]T [g(b)−g(a)]

and the statement is proved once ε can be made arbitrarily small.
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approximate controllability

for dynamic equations on time scales,
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asymptotic controllability

for generalized ODEs, 86

for retarded VS integral equations, 132
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for dynamic equations on time scales,
162

Corollary

existence and uniqueness

of a global forward solution of gener-
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Delta derivative of a function, 190

Division
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of a function defined on a time scale, 192
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Function

control, 86

gauge, 175
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of bounded variation, 169

rd-continuous, 190
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regulated, 170
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Fundamental operator of a homogeneous lin-
ear dynamic equation, 154

Homogeneous

nonlinear generalized ODE, 181

retarded Volterra-Stieltjes integral equa-
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Kurzweil integral, 178

Lemma

Cousin, 175

Saks-Henstock, 179

linear dynamic equation on time scale

homogeneous, 145

nonhomogeneous, 145

Lyapunov functional

for generalized ODEs, 23

for retarded VS integral equations, 120

Norm

in BV ([a,b],X), 170

in G([a,b],X), 172

in G0([t0,+∞),X), 173
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Perron ∆-integral, 191
Perron-Stieltjes integral, 176
Perturbed generalized ODE, 25
Point

left-dense, 189
left-scattered, 189
right-dense, 189
right-scattered, 189

Point-interval pair, 175

Retarded Volterra-Stieltjes integral equation,
90

Retarded VS integral equations, 90

Set with prolongation property, 90
Solution of a perturbed retarded VS integral

equation
maximal, 92

Solution of dynamic equations on time scales,
146

Solution of generalized ODE, 181
global forward, 185
maximal, 185
prolongation to the right, 185
quasi-uniformly ultimately bounded, 72
trivial, 22
uniform ultimately bounded, 72
uniformly bounded, 72

Solution of perturbed generalized ODE, 25
asymptotically controllable, 86
quasi-uniformly ultimately bounded, 78
uniform ultimately bounded, 78
uniformly bounded, 77

Solution of perturbed retarded VS integral
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uniformly bounded, 127
Solution of retarded VS integral equation

global forward, 91
maximal, 91
trivial, 108
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regular asymptotic, 25
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uniform, 56
uniform asymptotic, 57
uniform asymptotic with respect to per-
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integral attracting, 117
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integral asymptotic, 117
stable with respect to perturbations, 113
uniform, 109
uniform asymptotic, 109
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uniform with respect to perturbations,

113

Theorem
asymptotic controllability

for generalized ODEs, 86
for retarded VS integral equations, 132

Cauchy extension
for Kurzweil, 179
for Perron-Stieltjes, 177, 180

controllability for dynamic equations,
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converse Lyapunov
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on uniform boundedness, 73, 75, 128
on uniform stability, 66, 125

existence and uniqueness
of a maximal solution of generalized

ODEs, 186
of local solution of generalized ODEs,

184
of solution of dynamic equations, 153
of solution of retarded VS integral equa-

tion, 106
of solution of VS integral equation,
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Gronwall, 178
Hake-type

for Kurzweil, 179
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Helly’s choice principle, 170
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Lyapunov-type
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122
on uniform boundedness, 72, 128
on uniform stability, 61, 121

Moore-Osgood, 171
uniform convergence

of Kurzweil integrals, 182
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variation-of-constant formula, 154
Time scale, 189
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