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Resumo

P. TEMPESTA. Symmetries in binary differential equations . 2017. 99 f. Doctoral disserta-
tion (Doctorate Candidate Program in Mathematics) — Instituto de Ciéncias Matematicas e de
Computagdao (ICMC/USP), Sao Carlos — SP.

O objetivo desta tese € introduzir o estudo sistemdtico de simetrias em equacdes diferenciais
bindrias (EDBs). Neste trabalho formalizamos o conceito de EDB simétrica sobre a acao de
um grupo de Lie compacto. Um dos principais resultados € uma férmula que relaciona o efeito
geométrico e dlgebrico das simetrias presentes no problema. Utilizando ferramentas da teoria
invariante e de representacao para grupos compactos deduzimos as formas gerais para EDBs
equivariantes. Um estudo sobre o comportamento das retas invariantes na configuracdo de EDBs
com coeficientes homogéneos de grau n € feito com énfase nos casos de grau 0 e 1, ainda no caso
de grau 1 sdo apresentadas suas formas normais. Simetrias de 1-formas lineares sdo também

estudadas e relacionadas com as simetrias dos seus campos tangente e ortogonal.

Palavras-chave: equacgdo diferencial bindria, simetria, 1-forma quadrdtica equivariante, grupo

de Lie compacto, teoria de representacao.






Abstract

P. TEMPESTA. Symmetries in binary differential equations . 2017. 99 f. Doctoral disserta-
tion (Doctorate Candidate Program in Mathematics) — Instituto de Ciéncias Matematicas e de
Computagdao (ICMC/USP), Sao Carlos — SP.

The purpose of this thesis is to introduce the systematic study of symmetries in binary differential
equations (BDEs). We formalize the concept of a symmetric BDE, under the linear action of
a compact Lie group. One of the main results establishes a formula that relates the algebraic
and geometric effects of the occurrence of the symmetry in the problem. Using tools from
invariant theory and representation theory for compact Lie groups we deduce the general forms
of equivariant binary differential equations under compact subgroups of O(2). A study about the
behavior of the invariant straight lines on the configuration of homogeneous BDEs of degree
n is done with emphasis on cases in which n =0 and n = 1. Also for the linear case (n = 1)
the equivariant normal forms are presented. Symmetries of linear 1-forms are also studied and

related with symmetries of tangent and orthogonal vectors fields associated with it.

Key-words: binary differential equation, symmetry, equivariant quadratic 1-form, compact Lie

group, representation theory.
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INTRODUCTION

A binary differential equation on the plane, or a BDE , is an implicit quadratic differential

equation of the form
a(x,y)dy” +2b(x,y)dxdy + c(x,y)dx* = 0, (1)

where the coefficients a,b,c are smooth real functions on R?. Let 2(R?) denote the set of
C> quadratic 1-forms @ : TR> — R of the form w(x,y,dx,dy) = a(x,y)dy*> + 2b(x,y)dxdy +
c(x,y)dx?, where TR? denote the tangent bundle. The function § : R? — R, §(x,y) = (b*> —

ac)(x,y), is the discriminant f unction and its zero set
A={(x,y) € R*: (b’ —ac)(x,y) = 0}

is the discriminant set of the BDE. At points where 6 > 0, (1) defines a pair of transversal
directions, and by the configuration associated with the BDE we mean the distribution of all

solution curves tangent to these directions.

The geometry of a BDE configuration is a subject of great interest, with important
applications in differential geometry, as the equations of lines of curvature, characteristic curves
and asymptotic curves of smooth surfaces as we can see in the survey [32] and references
therein. Conditions for local stability of positive binary differential equations (6 > 0) and
their classification are given in [22] and [23], with a description of the topological patterns that
bifurcate in one-parameter families of these equations. Singular points of a class of positive binary
equations associated with a smooth surface are also studied in [22] and [29], the coefficients of
the BDE being given in terms of the coefficients of the first and second fundamental forms of the
surface. In [19] the authors study isolated singularities of binary differential equations of degree
n, we also give a classification of phase portraits of the n-web around a generic singular point
which are totally real. Challapa in [14] introduces the definition of index for a class of equations
which coincides with the classical Hopf definition for positive BDEs. Determining models of
configurations associated with BDEs has been also addressed in many works; for example, in
[10, 11, 12, 13, 15, 18, 24, 30, 31] the classification of BDEs is performed up to topological,

formal, analytic or smooth equivalences.

This thesis is motivated by the recognition of symmetries in most normal forms that
appear in the works mentioned above. Symmetries are transformations that take solutions of the
equation into solutions and are, therefore, directly associated with an invariant property of the

configuration associated with the BDE. We assume that the set I' of all these elements, with the
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composition operation, is a compact Lie group whose structure is described by group representa-
tion theory. We remark that, in the linear case, for example, namely when the coefficients of (1)
are linear functions, the symmetry group is necessary nontrivial; in fact, we have that the minus
identity is always an element of this group, that tells us which groups are not symmetry groups
of a linear BDE.

(a) (b) )

ly, x, -y) (y, 1/4x, -y) (y, -x, -y)
Figure 1 — Configurations of symmetric BDEs. In (a) and (b) the symmetry group is Z, x Z, and in (c) the symmetry

group is Dg.

To remark on evidences of occurrence of symmetries in configurations associated with
BDEs, let us consider the configurations that appear in [10, 29], which are generic topological
structures of principal direction fields at umbilic points of surfaces on Euclidean spaces. The nor-
mal forms are given as triples (a,b,c) for ¢ = %ain (1) and their configurations are reproduced
in Fig. 1, the so-called (a) lemon, (b) monstar and (c) star, also called Darbouxians. The solution
curves determine two foliations on the plane distinguished by blue dashed lines and magenta
solid lines, and the black point is the discriminant set. The pictures clearly suggest an invariance
of the three configurations under reflection with respect to the x-axis. There is another invariance
with respect to the y-axis, which is given by this operation followed by a change of colour. As a
consequence, the composition of these two elements (minus identity) must be a symmetry which
interchanges colour. In fact, we should recognize a priori minus identity in the set of symmetries
of all these cases by their linearity, as mentioned above. The third picture has also six rotational
symmetries, three of which are colour-preserving and the other three are colour-interchanging.
In fact, the full symmetry group of pictures (a) and (b) is Z; x Z,, generated by the reflections
across the axes, and the full symmetry group of picture (c) is the dihedral group Dg, generated
by a reflection and a rotation of order six. As these examples illustrate, the group action must be
defined taking colour changes into consideration at the region on the plane where (1) defines a

bivalued direction field.

This thesis introduces the systematic study of symmetries in binary differential equations

and it is organized as follows:

In Chapter 1 we introduce the notion of symmetries in a BDE, namely when the equation
is invariant under the linear action of a subgroup I of the orthogonal group O(2). We formalize
the concept using group representation theory on the tangent bundle on which the associated
quadratic 1-form is defined. The main result is Theorem 1.1.5, which establishes a formula
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that reveals the effect of a symmetry in the configuration geometry in simple algebraic terms.
For BDEs whose coefficients do not vanish simultaneously at any point we define a surface
associated with it and, via an induced action (Proposition 1.2.3) it is possible to observe the
interchange of foliations of the configuration by a permutation of disjoint components of the
surface. We also make an investigation of symmetries of linear 1-forms. This chapter finishes
raising an attempt to relate symmetries of quadratic 1-form with symmetries of its associated

pair of linear 1-forms, which is an open question by now.

Chapter 2 is dedicated to find the general forms of symmetric quadratic 1-forms. The
investigation of occurrence of symmetries is converted in purely algebraic terms: the set of
equivariant quadratic 1-forms is identified with the spaces of equivariant matrix-valued mappings,
which is a finitely generated module over the ring of invariant functions. Then, the problem
to find the general forms is translated to the problem to find generators for a module. In this
chapter we generalize the symbolic algorithm developed by Antoneli er.al. in [5] and use this
generalization to deduce the general forms of equivariant quadratic 1-forms under any compact
subgroup of the orthogonal group O(2). For each case we illustrate with an example and at the

end we present a summarizing table.

In Chapter 3 we study BDEs whose coefficients are homogeneous polynomial functions
of degree n. This particular class of BDEs has the property that the symmetry group is always
nontrivial. We see that the invariant straight lines that can occur have different behavior depending
on parity of the degree of the coefficients. Indeed, if n is even the invariant straight line belongs
to one foliation, whereas, if n is odd it splits into pieces on the two foliations and on the
discriminant set. A special attention is given to constant and linear cases, namely when the
coefficient functions have degree 0 and 1, respectively, to which, in addition of the invariant
straight lines, we characterize the groups that can be realizable as a symmetry group in both
cases.

The aim of Chapter 4 is to obtain the normal forms of BDEs whose coefficients are linear
functions. We define the I'-equivalence between such equations, and deduce the normal forms
for each group that can be realizable as a symmetry group of this type of binary differential
equations. The results are summarized in a table at the end of the chapter. Some normal forms

present a modal parameter, which does not occur when the symmetries are not taken into account.

In the end of the thesis we present some open questions that we intend to address as

future works.
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CHAPTER

SYMMETRIC QUADRATIC 1-FORMS

In this chapter we formalize the concept of a symmetric binary differential equation, under the
linear action of a compact Lie subgroup I of the orthogonal group O(2) via group representation
theory on the tangent bundle. The main result in this chapter is Theorem 1.1.5 which establishes
a formula that reveals the effect of a symmetry on the geometry configuration in simple algebraic
terms. We also relate the symmetries of the discriminant set to the symmetries of the quadratic
I-form. The combination of this information gives us a way to detect the symmetry group of a

BDE through its associated configuration (Remark 1.1.4).

In Section 1.2, for a quadratic 1-form whose the coefficients do not vanish at any point,
we induce an action on surface M associated with the BDE (Definition 1.2.1). The interchange of
foliations observed in it configuration is translated into a permutation of the disjoints components
of the surface. Finally, in Section 1.3 we discuss the symmetries of a linear 1-form. We prove
that the tangent and orthogonal vector fields associated with a symmetric linear 1- form inherit
its symmetries but in different way, as we can see in Propositions 1.3.2 and 1.3.3. Although
the connection between the symmetries of the linear 1-form and the associated vectors field is
well-established, the relation of symmetries of a quadratic 1-form and the pair of tangent vector

fields associated with it is not obvious, as is shown in the Subsection 1.3.1.

1.1 The symmetry group of a binary differential equation

Consider a BDE of the form
a(x,y)dy* +2b(x,y)dxdy + c(x,y)dx* =0, (1.1)

where the coefficients a, b, ¢ are smooth real functions on R2. We mention that all that is done in

this work holds equality for BDEs defined on an open set of R.
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The function § : R> = R, §(x,y) = (b> —ac)(x,y), is the discriminant function and its
zero set A = {(x,y) € R?: (b*> —ac)(x,y) = 0} is the discriminant set of the BDE. Let 2(R?)
denote the set of real C* quadratic differential 1-forms on R2, @ : TR? = R,

@(x,y,dx,dy) = a(x,y)dy* +2b(x,y)dxdy + c(x,y)dx*, (1.2)

with a,b,c¢ C* functions on R?. The BDE (1.1) is so given by the equation @ = 0.

Let I' be a compact Lie group acting linearly on R?. This induces an action of I" on the
tangent bundle 7R? = {((x,y), (X,Y)) : (x,y),(X,¥) € R?},

I'x TR? — TR?

) (KF) = 7 (0). () = (o) @), %), O

where, (dY) ) (X,Y) is in fact simply y(X,Y) by the linearity of the action.

The symmetry group of a binary differential equation @ = 0 is a subgroup of O(2) that
leaves invariant the configuration of its integral curves. Now, there is an action of T on 2(R?)
given by (y®)(X) = o(y 'X), X € TR?. For each y € T, we have that y® = 4+, since the only
nontrivial one-dimensional representation of a compact Lie group is the sign representation.
This representation on R is then defined as 1 : I' — Z, = {41} by requiring that n(y)® = yo.
In a geometrical point of view, the tangent space at (x,y) is divided into cones Cy such that
®(X) > 0 (respectively < 0) on the interior of C; (respectively C_). We change sign when
tangent cones are mapped to opposite sign cones by 7. Of course, the foliations (determined by
cone bounderies) do not depend on sign, which is why we can use a bigger group of symmetries.
We then define:

Definition 1.1.1. Let I" be a compact Lie group acting linearlyon R> andn : T — Z, = {1}
a one-dimensional representation of 1'. An element ® € Q(Rz) is I'-equivariant if, for all y € T,

o(y- (x,y,dx,dy)) = n(y)o(x,y,dx,dy). (1.4)

If @ is I'-equivariant, then the equation @ = 0 is I'-invariant or, as we shall also say, I
is the symmetry group of the BDE. We denote by 2[I",n7] the set of ['-equivariant quadratic
1-forms. The group of symmetries of a BDE generally admits, by its nature, an index-2 normal
subgroup, which is precisely the case when the group homomorphism 7 in Definition 1.1.1 is

nontrivial.

Proposition 1.1.2. Let o € 2[T',n]. The discriminant function § : R* — R of ® is invariant
under the action of T, that is, 6(y(x,y)) = 6(x,y), Vy €T.

Proof. : Observe that % = 1, so by (1.4) the result follows. U
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Definition 1.1.3. The symmetry group of a set W C R? is the subgroup L(W) of O(2) that leaves

W setwise invariant, that is
yweW, YweW, Vye Z(W).

Remark 1.1.4. Let X(A) < O(2) denote the group of symmetries of the discriminant set A of
o € 2[I',n]. Then

' <X(A). (1.5)

In other words, symmetries of a BDE are at most the symmetries of the discriminant set. This
can be of practical use when detecting the symmetry group of the equation if we know the shape
of A. Clearly the equality in (1.5) is not always true: in the example where the configuration is

given by Figure I(a), the discriminant set is the origin, so X(A) = O(2) whereas I = Z, X Z,,.

It is not obvious whether 1(7y) = 1 or —1 for each Y in the symmetry group of a BDE.
As we shall see in Theorem 1.1.5, this depends not only whether y preserves or interchanges
foliations, but also whether it preserves or inverts orientation on the plane. This theorem is the
main result of this chapter.

Solutions of (1.1) are nonoriented curves, associated with direction fields. At the region
on the plane where the discriminant function is positive, these form a pair of foliations .#; and

Z,. This pair is, in turn, associated with the vector fields
Fi(xy) = (a(x,y),=b(x,y) +(=1)'\/8(x,y)), i=1.2, (1.6)

To state the result, we introduce another homomorphism: consider the open region on
the plane

Q={(xy) €R* : 8(x,y) >0and a(x,y) # 0}, (1.7)
and consider the restriction of the action of I" on Q. This is well-defined since the discriminant

set A is [-invariant and by the equality (1.4) if a(x,y) # 0 then a(y(x,y)) so is. For BDEs (1.1)
for which Q is not empty, we introduce the homomorphism A : T" — Z, = {£1},

1, Y(%F)=%

Aly) = (;) P (1.8)
_17 ’}/(Jél)zjja.]?éla

i,j € {1,2}. It follows directly from this definition that the subgroup of symmetries of each

foliation .%;, i = 1,2, is X(.%;) = ker L.

Theorem 1.1.5. Let 1, A : I — Z, be the two group homomorphisms of Definition 1.1.1 and
of (1.8). Then, forall y € T,

A(y) = det(y) n(v)-
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Proof. At (x,y) € Q consider the pair of tangent vectors given in (1.6), that are also transversal
since & is positive and a # 0. From the definition of the action I" on TIR?, the pair of tangent

vectors to the two solution curves at y(x,y) is given by
YFi(x,y), i =1,2.

On the other hand, from the equivariance of @ under I, the vectors

vi=(M(1)alx,y), =N (1)blx,y) +(=1)'v/8(x.y)), i=1.2,

are also tangent vectors to the two solution curves at y(x,y). By symmetry it follows that these
two pairs must be parallel, i.c., there exists a nonzero o such that, for i # j € {1,2},

av;,, ifA(y)=1

1.9
avj, ifA(y)=—1. (12

YEi(x,y) = {

Also, by the orthogonality of the action, we have & = +=1. Now, consider the two matrices M|
and M, whose columns are the vectors yFy, yF> and vy, v, both calculated at (x,y), respectively,
that is,

n(y)a n(y)a ) |
—N(Yb—V8s —-n(nb+V$

MlZ(?’Fl YF ),Mzz <
From (1.9) it follows that
det(M)) = o’ A(y)det(M>) = A(y)det(M>).
Finally, det(M;) = det(y) 2aV/$8, and det(M>) = n(y)2a+/8. Hence,

det(y) = n(v)A(7),

which implies the result since these are all group homomorphisms I' — Z, = {+1} and the
det(M,),det(M;) not vanish at any (x,y) € Q. O

Corollary 1.1.6. I[fker A Nkern is finite, then it is a cyclic subgroup of T.

Proof. Let y € kerA Nkern, so det(y) = 1. Hence ker A Nkern C SO(2), thus, by the finitude
of the intersection the result holds. O

This corollary gives a simple way to determine the existence, or nonexistence, of a
BDE with a given pair of a group and a homomorphism 7). For instance, there is no BDE with
symmetry group D,,, n even, for which the subgroup D,, /, preserves foliations, i.e. kerA =D, s,
if kern =D,,.

A direct consequence of the theorem above is the following:
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Remark 1.1.7. Theorem 1.1.5 adds information to the inclusion (1.5) when detecting the
symmetry group 1" of a BDE. In fact, it provides the construction of the homomorphism 1 by
the geometrical investigation of whether each element y € T preserves the foliations (A(y) = 1)
or interchanges the foliations (A(y) = —1). To illustrate, consider the pictures in Figure 1 on
the Introduction. In (a) and (b), foliations are interchanged by «,, the reflexion with respect to
y-axis, whereas they are preserved by Ky, the reflection with respect to x-axis, and now we use
det(x,) = det(k;) = —1 to conclude by Theorem 1.1.5 that n(x,) = —n(ky) = —1. These are
the generators of the symmetry group Z, x Z, and so the homomorphism 1 is well-established
for these examples. In (c) foliations are interchanged by ¥, and rotation of w/3; since these are
orientation reserving and orientation preserving respectively, it follows that n assumes 1 and
—1, respectively. These are the generators of the symmetry group Dg, and so the homomorphism

1N is well-established.

1.2 A surface associated with the BDE

Let ® € 2(R?) be a quadratic differential 1-form with coefficient functions a, b, ¢ and suppose

a#0.SetU =QUA, Qin (1.7) and A the discriminant set. Define the functions p; : U — R,

given by

—b(x,y) +iy/6(x,y)
a(x,y)

pi(x,y) = , i=—1,1. (1.10)

Since the function a does not vanish on U, we can write the tangent vector fields to the

foliations associated to the BDE as

Fi(x,y) = (1,pi(x.y)),i=—1,1, (1.11)

In other words, the functions p; give the slopes of the tangent lines at each leaf, passing through

the point (x,y), with respect to the x-axis. Now we define ¢; : U — R3 by

¢z(x»Y):(x»yapz(x»Y))» l:_171 (112)

Definition 1.2.1. Let ® € 2(R?) be a quadratic 1-form with coefficients a,b,c and a # 0. Let
o0i,i=—1,1,asin (1.12). The surface

M=¢(U)U¢-1(U)
is called the surface of the BDE @ = Q.
A decomposition of M into disjoint components is given in the following proposition.
This good decomposition allows us to see the effect of the symmetries of the BDE on M.

Proposition 1.2.2. Let ® € 2(R?) with coefficients a,b,c and a # 0. Let ¢;,i = —1,1, as in
(1.12). The surface M of @ = 0 can be decomposed into the form

M=¢:1(Q)U¢-_1(2) Ui (A). (1.13)
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Proof. This is direct from the fact that the equality of the functions ¢;,i = —1, 1, occurs on A, so

e, 01(U) N o_1(U)=¢:1(4). O

Let 7 : R® — R? be the standard projection (x,y,z) — (x,y). By construction of the
surface M, 7 restricted to M is a double covering map of Q. Moreover, by the continuity of the

functions ¢;,i = —1, 1, ¢ (A) is a curve on M and its projection is the discriminant curve A.

It is expected that symmetries of a quadratic 1-form ® reflect on the surface M. We
investigate here the action of the symmetry group on the components ¢;(€),i = —1,1, and on
¢1(A). The configuration is I'-invariant, that is, the set of integral curves remains the same under
the action of I, so it is expected that M is also I'-invariant. Moreover, the action on M must take
into account the interchange of foliations that may occur in the configuration associated with the
BDE.

The foliations of a BDE are in a one-to-one correspondence with the vector fields
F,,i=—1,11n (1.11), which, in turn, are in one-to-one correspondence with the functions
pi,i = —1,1. By Theorem 1.1.5 we know that the homomorphism A : I' — Z, governs the
interchange of foliations at the configuration associated with the BDE. Since U is invariant under
the action of I, for each (x,y) € U and y € " we define

—b(y(x,y)) +iA(y)/6(¥(x,y))
a(y(x,y))

Y Pi(x«,Y) = pil(’)/)(’Y(xay)) =
Therefore, the action of I" on M, induced from the action on the quadratic 1-form, is given by:

Proposition 1.2.3. Let w € 2[I",n] with coefficients a,b,c and a # 0. Let M be the surface of
the equation @ =0 and ¢;,i = —1,1 as in (1.12). The mapping

I'xM - M
(v, (v, pi(xy)) = vx(ny,pi(xy) = (YY), 7 pi(x.y))

defines an action of I" on M.

Proof. The first step is prove that (y(x.y),y- pi(x,y)) € M. In fact, U is T-invariant, so ¥(x,y) €
U, and observe that

(Y(x,2), 7 Pi(x,¥)) = Gia(p (¥(x,y)), i=—1,1, (1.14)

where iA(y) = —1, 1. Thus, (y(x,y),Y'Pi(X»Y)) eM.

The second step is to show that, for 7, € I,

(7172)* (x7y7pi(x7y)) =hNhx* (’}/2* (xvyvpi(x1Y)))7 V(X,y) S U:

which holds since A is a group homomorphism, that is, A(y17%) = A(71)A (). O



1.2. A surface associated with the BDE 33

The proof of the proposition above shows us how the group acts on the components of

the surface M. This is what we present in the next corollary:

Corollary 1.2.4. From (1.14), if A(y) = 1, v leaves the components §;(Q),i = —1, 1 invariant,
whereas if A(y) = —1, Y takes 9;(Q2) into §j () (Q),i= —1,1. In other words, the homomorphism
A permutes the components ¢;(Q) of M. Moreover, from the invariance of the discriminant

Sunction the component ¢1(A) does not “feel” the action of the group.

We can see this behavior in the next two examples:

Example 1.2.5. Consider the equation
o(x,y,dx,dy) = dy* — xdx* = 0, (1.15)

which has symmetry group I = Z,(Ky), that is, the group generated by the reflection with respect
to the x-axis. The homomorphism n is trivial and ker A = {I}, by Theorem 1.1.5, that is, the
reflection K, interchanges foliations. The sets U,Q and A are: U = {(x,y) € R?> :x > 0};Q =
{(x,y) € R? : x> 0} and A= {(0,y) : y € R}. The functions p; : U — R and ¢; : U — R> are
given by pi(x,y) = i\/x and

¢i(x7y) - (xayv l\/)_C), i= _17 1.

The vector fields F; tangent to the foliations .7; are F;(x,y) = (1, pi(x,y)),i = —1, 1, respectively.
The disjoint components of M are ¢_1(Q) = {z? —x=0:x>0,z< 0}, ¢,(Q)={2—x=0:
x,z> 0} and ¢1(A) = {(0,y,0),y € R}.

(@) (b)
Figure 2 — Configuration and surface associated with the BDE (1,0, —x).

In Figure 2(a) we have the configuration of (1.15), in blue dashed lines we have the

corresponding solutions to the foliation .7\, in magenta solid lines the corresponding solutions
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to the foliation .F_\. The thick black line is the discriminant set. In Figure 2(b) we have the

surface associated with (1.15), in blue we have the component ¢;(2), in magenta the component
0_1(Q) and the thick black line represents ¢_1(A).

Example 1.2.6. Consider the equation
o(x,y,dx,dy) = dy* — y*dx* =0, (1.16)

which has symmetry group I' = 7y X Z», that is, the group generated by the reflections with
respect to the x-axis and to the y-axis. The homomorphism 1) is trivial and ker A = Zy(—I), which
means that the reflections across the axis interchange foliations. Here U = R?, A = {(x,0) : x €
R} and Q = R?\ A. The functions p; : U — R, and ¢; : U — R3 are given by p;(x,y) = i\/)ﬁ
and
9i(x,y) = (x,Yai\/)?)? i=-11

The vector fields F; tangent to the foliations F; are Fi(x,y) = (1, pi(x,y)),i = —1, 1, respectively.
The disjoint components of M are 9_1(Q) = {22 —y*=0:2< 0}, ¢;(Q)={2—»*=0:2>0}
and ¢y (A) = {(x,0,0),x € R}.

In Figure 3(a) we have the configuration associated with the BDE (1.16) and in Figure
3(b) we have the surface associated with this BDE.

()

(a) (b)
Figure 3 — Configuration and surface associated with the BDE (1,0, —y?).

The surface M is also given by the zeros of the implicit differential equation

_ &

F(x,y,p) = a(x,y)p* +2b(x,y)p+c(x,y), p= - (1.17)

Looking at M = F~!(0) the next result concerns about the regularity of M.
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Lemma 1.2.7. If the coefficient function a does not vanish, then 0 is a regular value of F if and

only if O is a regular value of the discriminant function 9.

Proof. Since a does not vanish we can suppose a = 1 and rewrite (1.17) as

dy

F(x,y,p) = p* +2b(x,y)p +c(x,y), p=_

the discriminant function being given by 8 (x,y) = b*(x,y) — c(x,y). We denote by the subscripts
x,y, p the partial derivative with respect to the variables x,y and p, respectively. By definition, O is
aregular value of F if and only if F(x,y, p), Fy(x,y, p), Fp(x,y, p) do not vanish simultaneously
for any (x,y,p) € F~1(0), where Fy(x,y,p) = 2by(x,y)p + cx(x,y), F(x,y,p) = 2by(x,y)p +
cy(x,y) and F,(x,y, p) = 2p +2b(x,y). Suppose that F,, = 0, so p = —b and the expressions of
F, and F, become

Fx(x7y7p) = _Zb(x7y)bx(x7y) +Cx(x7y) = _Sx(x>)7)7

Fy(x,y,p) = —=2b(x,y)by(x,y) 4+ cy(x,y) = —6y(x,y).

Therefore, F(x,y, p) = Fy(x,y,p) = F,(x,y, p) = 0 if and only if §,(x,y, p) = oy(x,y,p) =0. So
the result holds. Il

We remark here that Lemma 1.2.7 above is a sufficient criterion for smoothness. In fact,
in Example 1.2.6 we have &(x,y) = y?, so all points of the discriminant curve are critical points

of 8, although, A = {(x,0),x € R} is smooth.

Remark 1.2.8. The surface M as presented in (1.17) appears in the qualitative study of implicit
differential equations as it can be seen in [6] for example. Generally speaking, the technique
used to obtaining local topological models of BDEs consists of lifting the bivalued direction
field given by the BDE @ = 0 to a single valued vector field on M. See [16] for the case of
BDEs whose coefficients not vanish simultaneously at any point. For the case of BDEs whose

coefficients vanish at the origin see [10] (for c = —a) and [11] (for general case).

1.3 Symmetric linear 1-forms

Let A be a compact subgroup of O(2) acting linearly on R? and consider its induced action on
TR? given in (1.3). Let Z(R?) denote the set of real C* linear 1-forms on R? o : TR? — R,

o (x,y,dx,dy) = A(x,y)dy + B(x,y)dx, (1.18)
with A, B smooth functions. We say that o is A-equivariant if

a(y-(x,y,dx,dy)) = o(y)a(x,y,dx,dy), ¥y € A,
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where ¢ : A — Zy = {£1} is a group homomorphism. We denote by .Z[A, ] the set of

A-equivariant linear 1-forms.

We investigate, in this section, the relationship between symmetries of a linear 1-form
and symmetries of two special vector fields associated with it, namely the tangent and orthogonal

vector fields defined below.

Definition 1.3.1. Let € £ (R?). The vector fields F,G : R? — R? given by

F(x,y) = (A(x,y), —=B(x,y)) and G(x,y) = (B(x,y),A(x,y)),

are called tangent vector field associated with o and orthogonal vector field associated with o,

respectively.

We can write (1.18) as
a(x,y,dx,dy) = (G(x,y), (dx,dy)). (1.19)

To state the results we introduce the following definition. A mapping G : R? — R? is [A, 6]-
equivariant if for all y € A and (x,y) € R?,

G(y(x,y)) = o(y)YG(x,y). (1.20)

The A-equivariance of « reflects into equivariance conditions in both vector fields, F

and G, as we can see in the following two propositions.

Proposition 1.3.2. Let ot(x,y,dx,dy) = A(x,y)dy + B(x,y)dx be a linear 1-form and G : R* —
R? the orthogonal vector field associated with it. Then o, € £ |A, 6] if and only if G is [A, 0]-

equivariant.

Proof. Suppose G [A, o]-equivariant. By (1.19) we have

o (y(x,y,dx,dy)) (G(y(x,y)), y(dx,dy)) = (o (y)YG(x,y), y(dx,dy))

= o(Y)(yG(x,y),y(dx,dy)) = 6 (y)(G(x,y), (dx,dy))
= o(y)o(x,y,dx,dy),

for all y € A. Now suppose that @ € Z[A, o], then

(G(v(x,y)), v(dx,dy)) — o(7){G(x,y), (dx.dy)) = 0. (1.21)
Since (, ) is A-invariant (A C O(2)) we can rewrite (1.21) as
(Y G(y(x,y)) — 6(7)G(x,y), (dx,dy)) =0, ¥(x,y) ER*, V y € A. (1.22)

Thus, ¥ G(y(x,y)) — o(y)G(x,y) = 0, which is equivalent to

G(r(x,y)) = o(7)YG(x,y),
forall y € A, (x,y) € R, O
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Proposition 1.3.3. Let a(x,y,dx,dy) = A(x,y)dy+B(x,y)dx be a linear 1-form and F,G : R*> —
R? the tangent and orthogonal maps associated with o, respectively. Then G is [A, o]-equivariant
if and only if F is [A, E]-equivariant, where &(y) = o(y)det(y),Vy € A.

b
Proof. Suppose G [A, 0]-equivariant and write y € A as y = ( . J > , 80 G(y(x,y)) =0 (y)yYG(x,y)
C

AN aB(x,y) + bA(x,y)
»)‘“”<B<>+Muw>
Thus, F(¥(x,y)) = (A(y(x,u)), —B(¥(x,y))), that is,

< A(y(x,y)) ) ( cB(x,y) +dA(xy) ):G<7’)< d —c > ( A(x,y) )
~B(¥(x.)) —bA(x,y) ~b a ~B(xy) )

Set M = ( . Direct calculations show that M = det(y)(y~')". However, y €
F(y(x,y)) = o(y)det(y)yF (x,y) = E(V)F (x.y). (1.23)

can be written as

0(2)soy! Therefore

Suppose now that F is [A, §]-equivariant and write ¥ € A as before. The relation (1.23)
allows us to write G(¥(x,y)) = (B(¥(x,)),A(Y(x,y))) as

B(y(x.y) \ _ d —c [ Blxy) ) _ B(x,y)
(Awmw>>‘a”<—b¢z><A@w> 5mM<Amw>'
Now, M = det(y)(y~'), E(y) = o(y)det(y) and det?(y) = 1 since 7 € O(2), so we
conclude that

G(r(x,y)) = o (V)YG(x.y),
forall y € A, (x,y) € R2. O

Remark 1.3.4. A vector field that satisfies the relation (1.20) is known in the literature as a
reversible-equivariant vector field, see [5] for example. A dynamical system governed by a
reversible-equivariant vector field, that is, in the presence of symmetries (equivariances) and
reversing symmetries (reversibilities) is called reversible-equivariant system. In terms of the
dynamics, recall that both symmetries and reversing symmetries take trajectories into trajectories,
the first ones preserving direction, whereas the others revert direction. Proposition 1.3.3 gives
an interesting information about the symmetries of a vector field and its orthogonal vector field.
For instance, a vector field and its orthogonal vector field are [\, G|-equivariant if and only if
each element in A is orientation preserving. Yet, if a vector field has only symmetries (& = 1), in
order to its orthogonal vector field to have reversibilities, it is enough (and by Proposition 1.3.3

also necessery) that one element of the group to act as a time reversing (o(y) = det(7)).
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1.3.1 Quadratic 1-forms and linear 1-forms

Let ® € 2[I',n] be a quadratic 1-form with coefficients a,b and c. The solutions of @ = 0 form
a pair of transverse foliations .%# and .%, on Q. The vector fields F;,i = 1,2, given in (1.6),

tangent to these foliations can be associated with the linear 1-forms
ai(x7y7dx7dy) = a(x7y)dy - (_ b(xvy) + (_l)l V 5(x,y))dx, = 172

A natural question is what the symmetries of a pair of linear 1-forms, and consequently,
of a pair of vector fields relate with the symmetries of the quadratic 1-form generated by this

pair and vise-versa. Consider the example,
o(x,y,dx,dy) = ydy* + 2xdxdy — ydx* =0,

which has symmetry group I' = Z, x Z; and the homomorphisms n,A : ' — Z, = {£1} are
characterized by kern = Z, (k) and ker A = Z (k). The associated vector fields are

F(x,y) = (n—x+(=1)v/x2+)?), i=1,2.

The configuration of this equation is given in Fig. 1(a). Both F] and F, are [A,0]-

equivariant vector fields where A = Z, (k) and o(x;) = —1, that is,
E(Kx(x7y)) = _Kxﬁ(xay>7i =1,2.

As the picture suggests, this reflection is in fact a symmetry of the BDE. Now, the combination
of the two foliations adds symmetries to the whole picture, leading to a configuration which
is also symmetric with respect to the reflection on the y-axis. By the nature of this additional
symmetry, this element should invert foliations. In fact, we prove that Z; x Z, is the symmetry
group of the BDE.

Consider now the example,
(D()C,y, dx, dy) = ydyz — 2)Cd)Cdy — ydxz = O’

which has symmetry group I' = D, kern = D3(k;,), the group generated by the reflection k, and
by the rotation of angle 27 /3, and ker AL = D3(k;) generated by the reflection k, with respect to

the x-axis and the rotation of angle 27 /3. The associated vector fields are
F(ry) = o+ (-1)'Va2+y?), i=12. (1.24)

The configuration of this equation is given in Fig. 1(c). However, both F; and F, are
not [D3(xy), o]-equivariant vector fields for any homomorphism o : D3(xy) — Z, = {£1}, as
we can see in Figure 4(a) and 4(b). Indeed, the only normal index-2 subgroup of D3(k) is the
cyclic group Zs3. Thus 6(R,y/3) must be equal to 1, but this does not occur in both vector fields,
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(a) (b)
Figure 4 — Vector fields F and F, given in (1.24), respectively.

Fi,F,. As consequence of Proposition 1.3.2, the linear 1-forms associated with the BDE are not

[D3(ky), O]-equivariant.

The examples presented in this section show how delicate is the study of symmetries of a
quadratic differential 1-form via the symmetries of a pair of associated linear 1-forms. They also
show the difficulty to realize how each element of a symmetry group should act on a quadratic
1-form @ generated by this pair, since the symmetry group of the BDE may be larger than the
symmetry group of the linear 1-forms. This is an issue that we intend to investigate in near future.
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CHAPTER

GENERAL FORMS OF SYMMETRIC
BDES

One important step in the study of equations under symmetry is to find their general forms.
The aim of this chapter is to present the algebraic forms of BDEs symmetric under compact
subgroups I of O(2) with its standard action on the plane. The results presented here are also in
[25].

We start with a brief discussion about theory of representation and the invariant theory
of polynomials. They have proved to be a powerful tool in the algebraic approach of problems
involving symmetries. For details see [8] and [21]. In Subsection 2.1.1 we generalize the results of
[5] given to I'-equivariant mappings for possibly distinct representations in the source and target.
These results allow us to deduce the general forms of invariant binary differential equations
when the homomorphism 1) is not trivial in Definition 1.1.1. If 1 is trivial we find the generators
of the model of equivariant matrix-value mappings R? — M,(R?), and project onto the space
of mappings R? — Sym,, where Sym, denotes the space of order-2 symmetric matrices, via the
projection (2.7).

The deduction of the equivariant general forms under compact subgroups of O(2) is
given from Section 2.3 to Section 2.8. At each section an example is presented to illustrate
the configuration associated with each group for distinct choices of the homomorphism 7. All
figures in this thesis have been made using a computer program written by A. Montesinos [4].
We finish the chapter presenting a table, Table 1, which summarizes the results of the previous

sections.
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2.1 Algebraic statements

Let I" be a compact Lie group acting linearly on a real vector space V of finite dimension
n. Denote by GL(n) the group of nonsingular n x n matrices over R. There is a I-invariant
inner product on V under which the associated representation p : I' — GL(n), p(y)x = ¥x, is
orthogonal, i.e. for y € T, p(y) € O(n), the group of orthogonal matrices of order n ([21, XII,
Proposition 1.3]). Hence, Lie groups in this section are the closed subgroups of O(n). We denote
by (p,V) the representation of T on V.

Definition 2.1.1. Ler (p,V) be a representation of I on V. A real function f:V — R is
I'-invariant if

flp(y)x)=f(x), VyeTl,VxeV.

The set Z(I') of I'-invariant polynomials is a ring over R. A finite set {uj,...us} of
I-invariants generating this ring is called a Hilbert basis for &2 (I"). The existence of a Hilbert
basis was proved by Weyl in 1946 (see [21, XII, Proposition 4.2]).

Definition 2.1.2. Let (p,V) and (v,W) be representations of I on V and on W, respectively. A
mapping g : V. — W is I'-equivariant if

gp(v)x) =v(y)g(x), VYeT, VxeV.

The set ﬁ(l" ) of I'-equivariant mappings (p,V) — (v, W) with polynomial entries is
a module over Z(T"). Poénaru in 1976 [21, XII, Proposition 6.8] proved that ﬁ(r) is finitely
generated over the ring 2 ().

2.1.1 Reynolds operators and algorithm
Consider a one-dimensional representation of I,
n:T—7Z,={£1}, (2.1)

which is a group homomorphism. We note that I'y = kern is a normal subgroup of I" of index 2
if n is nontrivial. The n-dual representation of (v,W), denoted by vy, is defined by the product

Y= vn(y) =ny)v(y).

Definition 2.1.3. Ler ) : " — Z; be a group homomorphism as in (2.1) and (p,V) and (v,W)
representations of I. We define the & (I')-modules of polynomial mappings

PNE)={f:VoR: f(p(v)x) =n(nfx), VYET, VxeV}

and

PND) = {g:V > W :glp(x) = n(Nv()g(x), YyeT, ¥xev}.
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Any function f € 2 (T) is [-equivariant from (p,V) to (1,R), and any polynomial mapping
g€ ﬁn(l“) is I'-equivariant from (p,V) to (v, W), so the finitude of generators for each, as
Z(I')-modules, follows by Poénaru’s theorem mentioned above.

A connection is established in [5] between the invariant theory for I"and I';. =kern. This
is done through an algebraic algorithm to compute generators of @” (T') from the knowledge
of generators of ﬁ(lﬁr), when source and target spaces are the same. In Proposition 2.1.4
and Algorithm 2.1.5 we generalize this, with a similar algorithm to compute generators of

I'-equivariants with possibly distinct source and target.

We follow the notation used in [5] to introduce the Reynolds operators R: Z(I'}.) —

PT)and K : DTy — D),

R(/)(x) = 1/2(£(x) + f(p(8)x)) and R (g)(x) = 1/2(g(x) +v(8) ' g(p(8)x),

and, the n-Reynolds operators on Z(I"|) and on ﬁ(n), S: 2(I'y) - Z(')) and K&
P(y) = P(Ty)

S(N() = 1/2(f(x) — f(p(8)x)) and S (g)(x) = 1/2(g(x) — v(8) ' g(p(8)x)),

for an arbitrary fixed 6 € I'\ T';.

Let us denote by I(r, ) and I5; - | the identity maps on Z(I'}) and on ﬁ(l}), respec-
tively.

Proposition 2.1.4. The operators above satisfy the following:
(a) They are homomorphisms of &?(I')-modules and

R+S:Igz(r+) and ﬁ%—?:lﬁ(r”.

(b) They are idempotent projections and the following direct sum decompositions of & (I')-

modules hold:
P(y) = 2(T) > PNT) and P(T,) = P()o PN, 2.2)
Proof. Analogous to Propositions 2.3 and 2.4 in [5]. Il

The Algorithm 2.1.5 is based on the decompositions (2.2) and on the projection operators
Sand § applied to a given Hilbert basis of (I} ) and a set of generators of 3(1“ +). The
procedure is:

Algorithm 2.1.5. Let I be a closed subgroup of O(n) and 1 : T — Z, a homomorphism with
kern =Ty, and let {uy,...,us} be a Hilbert basis of #(I'y) and {Hy, ...,H,} a generator set of
ﬁ(lﬁ) as a P (I'y)-module;
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1 Fix 6 € T'\TI'y arbitrary;
2 Forie{l,...s}, do i; = S(u;),ip := 1,
3 Forie{0,....s}and j€{0,....r}, do H;j = i;Hj;

4 Fori€{0,....s} and j €{0,...,r}, do H;j = ?(Hij).
Result: {H;j: 0<i<s,0<j<r}isa generator set of P (I') as a Z(I')-module.

As proved in [5], step 2 above provides a generator set of the &2(I')-module &?'(T")
(these are the anti-invariants in that paper). What we also remark at this point is that replacing
? by the projection operator ﬁ in step 4 we obtain, as expected, a direct way to compute a set
of generators for the equivariants under the whole group I" from the knowledge of equivariants

under the subgroup I';. This is formalized below:

Proposition 2.1.6. Let I" be a compact Lie group acting on V and on W and {H;; = ii;H;,0 <
i <s,0<j<r}agenerator set Ofﬁ(lﬁr) as a P (I')-module given by step 3 in Algorithm 2.1.5.
Then

{(R(H;),0<i<s50<j<r}

generates ?(F) as a & (I')-module.

Proof. Let g € ﬁ(r) C ﬁ(lﬂr). Then g = ):i’]r.pi‘,-Hi_,-, pije I),0<i<se0<j<r.
Since R isa Z(I')-homomorphism and ?(g) = g, then

g= ?(8) 4 <ipinij> = ipij?(Hij)-
i) i)

O
2.2 General forms of symmetric matrix-valued mappings
The quadratic differential 1-forms

o(x,y,dx,dy) = a(x,y)dy* + 2b(x,y)dxdy + c(x,y)dx*, (2.3)

with a, b, ¢ polynomial functions on R?, are in one-to-one correspondence with the matrix-valued

Blx.y) = < c(x,y) b(x,y) ) 24)

b(x,y) a(x,y)

where Symi; denotes the space of symmetric matrices of order 2. The quadratic 1-form (2.3) can

dx l dx
(5o (2)

mapping B : R? — Syms,

be written as
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where superscript ¢ denotes transposition. Let @ € 2[I", n7] be a [-equivariant quadratic 1-form,
and denote the representation of each y € I on R? by 7 itself. Replacing the equivariance
condition (1.4) into (2.4), the equivariance condition of B is obtained, with the action on the

target given by the homomorphism 1) and conjugacy:

B(v(x,y)) = n(y)yB(x,y)¥, ¥ yeT. (2.5)

B satisfying (2.5) is I'-equivariant, being the action of T" on Sym, given by y-M = yMYy' VM €
Symy. From now on we shall use this matricial notation to investigate symmetries in BDEs. From
this, the problem to find the general form for the 0-equibariant quadratic 1-forms is converted to
the problem of finding a set of generators for the module of I'-equivariant mappings B : R —
Sym;. These modules are ﬁ(l“) or PN (I'), depending on whether the group homomorphism
N :I' = Z, is trivial or nontrivial.

For the computations in the following sections we shall use the action of (subgroups
of) O(2) on R? ~ C as the usual semi-direct product of SO(2) and Z,(x;), using complex
coordinates,

0

0-z=¢% and xz=2, 6€]0,27], z€C.

In Sections 2.3-2.8 we derive the general forms of symmetric BDEs under all closed subgroups
I" of O(2), up to isomorphic representations, for all possible homomorphisms 7. In Subsection
2.9 we summarize the general forms in Table 1.

For a given choice of a group I" and a homomorphism 1 we use from now the notation
I'[kern] when 7 is nontrivial. This notation is motivated by the fact that the definition of 1 is
determined by the subgroup kern, which also motivates the use of the notation Z[I", kern]| for
2(T), Z[T,kern] for " (T) and 2T kern] for 2[T,1].

2.3 SO(2)-equivariant quadratic forms

Here we consider the group SO(2). The only possibility for i is to be trivial, since SO(2) does
not have one index-2 subgroup. We compute generators of ﬁ(SO(Z)) by computing generators
of . (SO(2)), the module of SO(2)-equivariant matrix-valued mappings R? — M, (R?), and
projecting onto the space of mappings R? — Sym; . In complex coordinates we write any element
of .#(SO(2)) as

w i a(z)w+ B(z)w, Yw e C?, (2.6)

for functions & = & +iop and B = By +if,, with o}, B;. j = 1,2, real functions. Associating it

M < oy + B 132—062>7
aw+p o —pi

the desired quadratic forms are obtained by the projection

with the real matrix

M~ B=(M+M)/2, 2.7)
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after imposing the SO(2)-symmetry condition. Write (2.6) as
M(z)w = Zajkzjikw+ZBjkszkW, ajk, Bjx € C.

The equivariance with respect to 8 € SO(2) gives

Mz)w =Y aje® izt 1Y Bue® 207k, (2.8)
So o = e’k and B = Bixe®V =+~ for all 6 € (0,27], and so

ajy=00uj=k and Bj =0o0u j=k+2(modn). (2.9)
A Hilbert basis for #2(SO(2)) is given in [21],

{uiz=1zz}.

Factor out zZ in (2.8) and use (2.9) to get

M@w = Y o2 w+Y Bria(22) W,
k k

where oy, B € C, to conclude that a set of generators of .#,(SO(2)) over &2(SO(2)) is given
by the elements

M (2)w=w, My(2)w=iw, Ms(2)w=2"W, My(z)w = iz*W.
We now apply the projection (2.7) to the elements above to find generators of 5(80(2)),

Bi(2)w=w, B3(z)w=22w, Bi(x)w = iz*W.
Rewriting in (x,y)-coordinates we have the generators of the SO(2)-invariant BDEs:
Theorem 2.3.1. If ® = (a,b,c) € 2[SO(2),SO(2)|, then
_ 2_ 2 _ 2_ 2 _ 22
a=pi+ (" =x)p2+2xyp3, b=2xypa+ (" —y7)p3, ¢=p1+ "=y )pa—2xyp3, (2.10)

where p; € Z(SO(2)),i=1,2,3.

We finish this section with an example of an SO(2)-invariant configuration. We choose

p1 = p2 = p3 = 1in (2.10), so that the differential form is
(1 + 92— x> 420y, ¥ —y? 4 2xy, 1422 —y* — 2xy).
The homomorphism A is trivial and the discriminant function is the O(2)-invariant given by
8(x,y) =20 +y*)2—1.

The configuration is illustrated in Fig. 5.
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Figure 5 — Configuration with symmetry SO(2).

2.4 O(2)-equivariant quadratic forms

Here we consider the group O(2), with n trivial. The case kern = SO(2) is dealt with in

Subsection 2.4.1. As in previous section, we compute generators of ?(0(2)) by computing

generators of .# (0(2)), the module of O(2)-equivariant matrix-valued mappings R? — M, (R?),

and project onto the space of mappings R? — Sym, . In complex coordinates we write any element

of #(0(2)) as in (2.6) and we write it as
M(z)w = Zocjkzjzkw—l—ZﬁjkszkW, ajk, Bjx € C.
The equivariance with respect to reflection K gives
M(z)w = Z Q2! 7w + Z Bixz! 7.

So ajk. Bjk € R. Now, the equivariance with respect to 6 gives

M(Z)W — Z ajkeie(if—k)zil’zkw 4 Z ,Bjkeig(j_k_z)ZjZkW.

So aj = e’k and B = Bre®*2) for all 6 € (0,27], and so
ajx=0o0uj=4k and Bj=0o0u j=k+2.
A Hilbert basis for #(0(2)) is given in [21],
{u1(z) = 2z}
Factor out zZ in (2.12) and use (2.13) to get

M@w = Y aj(z2)w+Y Bi(2)w,
J k

(2.11)

(2.12)

(2.13)

where @, B, € R. It follows that a set of generators of .# (0(2)) over Z(0(2)) is given by the

elements
My (2)w = w, Ma(2)w = 22w

We now apply the projection (2.7) to the elements above to find generators of ﬁ(O(Z))

By (z)w =w, and By (z)w = 2W.

Rewriting in (x,y)-coordinates we have the generators of the O(2)-invariant BDEs:
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Theorem 2.4.1. If © = (a,b,c) € 2[0(2),0(2)], then

a=p1+*—x*)p2, b=2xypr and ¢ = py + (x> —y*)pa, (2.14)

where p; € Z(0(2)),i=1,2.

An example of an O(2)-invariant configuration is given in Figure 6(a), for which we
have p; =0,pr = 1.

2.4.1 O(2)[SO(2)]-equivariant quadratic forms
In this case, kern = SO(2). From Section 2.3 we extract

Ho(2)w =w, H\(2)w = 22w and H (2)w = iz*Ww
as generators of ?(80(2)) over the ring &2 (SO(2)) whose Hilbert basis is

{ul(z) = ZZ}.

We now apply Algorithm 2.1.5:

1. Fix &, € O(2) \ SO(2);

2. Generators of Z[0(2),S0O(2)] over Z(0(2)):

i1 (z) =S(u1)(z) = E(zZ—Zz) =0.

3. Generators of 5[0(2),80(2)] over Z(S0(2)): setiip(z) =1,
Hoj(z)w =1iio(2)H;(z)w = Hj(z)w, j=0,1,2;

Hj(z)w=1ii(z)Hj(z)w=0, j=0,1,2.
So the generators are

Hoo(z)w = w, Hyy (z)w = 22w and Hop (z)w = iz>Ww.

4. Generators of 5[0(2),80(2)] over Z(0(2)):

Foo(2)w = S (Hoo)w = 0;

Hoi (2w =S (Hoy)w = 0;

HOQ(Z)W = ?(Hoz)w = izzw.
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Hence, 5[0(2),80(2)] is the Z2(0(2))-module generated by

Rewriting in (x,y)-coordinates we have the generators of the O(2)[SO(2)]-invariant BDEs:
Theorem 2.4.2. If ® = (a,b,c) € 2[0(2),SO(2)], then
a=2xyp, b=(¥—y")p, c=-2up, (2.15)

where p € Z2(0(2)).

We finish with examples of O(2)-invariant and O(2)[SO(2)]-invariant configurations,
respectively. For O(2), we considered p; =0, p» = 1 in (2.14), so the differential form is

(3 — 2%, 20y, 0% — 7).

The homomorphism A is such that kerA = SO(2) and the discriminant function is the O(2)-

invariant given by
§(x,y) = (o +y*)%

This is illustrated in Fig. 6(a).

The configuration in Fig. 6(b) is O(2)[SO(2)] symmetric, whose quadratic 1-form has
been chosen by taking p = 1 in (2.15), that is,

(ny,x2 _yZ’ _2xy)
The homomorphism A is trivial and the discriminant function is the O(2)-invariant given by

8(x,y) = (¥ +y*)*.

(b)
Figure 6 — Configurations with symmetry (a) O(2) and (b) O(2)[SO(2)].
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2.5 Z,-equivariant quadratic forms

Here we consider the cyclic group Z,, n > 3, with 1 trivial. We compute generators of ﬁ(Zn)
by computing generators of .#(Z,), the module of Z,-equivariant matrix-valued mappings
R? — M,(IR?), and projecting onto the space of mappings R? — Sym,, as is done in Section 2.3.
Write (2.6) as

M(z)w = Zajkzjikw-i- Zﬁjkzjzkw, o, Bjr € C.

The equivariance with respect to 6 € Z,, gives
M(z)w =Y aje®U Mzt w 1+ Y Bue® 207k, (2.16)
So atj = ojie’®Uk) and By = Bre’®Uk=2) for @ = 2km/n, k=1,...,n, and so
ajr=0ou j=k(modn) and Bj =0ou j=k+2(modn). 2.17)
A Hilbert basis for #(Z,) is given in [17]
{u1(z) =z2z,u2(z) ="+ 7" us3(2) = i(Z" - 7") }.
Factor out zZ in (2.16) and use (2.17) to get

MEw = ) ap(@) T wt ) o) 7w+ Y Bu(22) v+

J=k j<k >k
+ Zﬁjk(zz)jfk_jw =Y ey, (22) ) ll"w-l—Zc (22)/72"w +
j<k

+ chl’; ZZ k l3n+2W+ZC ZZ jZl4n 2

where, ' € C,l, eN,t=1,....4, I1,l,13 > 0and I > 1. We now use the identities

Zln — (Zn +Zn)Z(l_1)n _ (ZZ)nZ(Z—Z)n
Zln — (Zn _|_Zn)—(1—1)n _ (ZZ)”Z(I_Z)n
Zln-‘r2 — (Zn + —n)z(l—l)n-I-Z _ (Zz)nz(l—Z)n-‘rZ
Fin—2 — (Zn + —n)—(l—l)n—Z _ (ZZ)”Z(I_Z)n_Z
F _ (Zn + —n) e
Zn-|-2 — (Zn 4 —n)ZZ _ (ZZ)2Zn—2
Z(l+1)n—2 (Zln _|_Zln)zn—2 _ (ZZ)n 22(l 1)n+2
to conclude that a set of generators of .#,(Z,) over Z(Z,) is given by the elements

Mi(2)w = w, Ma(2)w = iw, M3(2)w = 22W, My(2)w = iz>Ww, Ms(z)w = 7" >,

Ms(2)w = iZ" 2w, Mq(2)w = 2"w, Mg(2)w = iz"w.

We now apply the projection (2.7) to the elements above to find generators of ﬁ(Zn)

Bi(2)w =w, B3(z)w = 2°W, B4(z)w = iz>W, Bs(z)w = 7""2W, Be(z2)w = i7" >w.

Rewriting in (x,y)-coordinates we have the generators of the Z,-invariant BDEs:
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Theorem 2.5.1. If ® = (a.b,c) € 2[Z,,Z,), then

a=p|+ (y2 —xz)Pz +2xyp3 — A1 ps —Azps,
b=2xyps+ (x* —y*)p3 +A1ps — Axpa, (2.18)
¢ =p1+ (2 —y*)pr—2xyp3 + A1 ps+Ayps,

where p; € P (Z,),i=1,...,5, A| = Re(z""?) and Ay = Im(Z"~?).

An example of an O(2)-invariant configuration is given in Figure 7(a), for which n = 5,

Pr=p2=ps=land p3=ps=ps=0.

2.5.1 Z,[Z,),])-equivariant quadratic forms, for n > 4 even
In this case, kern = Z, ;. From the preceding subsection we extract
Ho(2)w = w, H (2)w = 22, Ha (2)w = iz2W, H3 (z)w = 22, Hy(2)w = iZ"/* 2w
as generators of ﬁ(Zn /2) over the ring #(Z,, ;) whose Hilbert basis is
{u1(z) = Z,up () ="+ 2% u3(2) = i(2* = 27)},

We now apply Algorithm 2.1.5:

1. Fix § = ¢*™i/n ¢ Z,\7,)5;
2. Generators of 2[Z,,Z,,,] over P (Zy,):

1 (2) = () (2) = 5 (@~ (E7/72) (¢727/72)) 0.

fin (2) = S(ua) (2) = %(Zn/Z L3R (T2 g mign/2y /2 a2,
(2) = S(13)(2) = S — 2P2) (P — P il ).
3. Generators of ﬁ[Zn,Zn/Q] over Z(Z,/2): setiip(z) =1,
Hyj(z)w =iio(z)Hj(z)w = Hj(z)w, j=0,....4;

Hj(z)w=1ii1(2)Hj(z)w =0, j=0,....4;
Hao(2)w = ity (2)Ho(z)w = ("> +2'/*)w;
Hy (2)w = iy () Hy (2)w = (2722 + (22)°2"2 %)
Hy(2)w = iy (2)Ho (2)w = i(2"* 17 + (22)22"/% 2w

Hys(2)w = i (2)Hs (2)w = (2272 + (22)"/ 2222w
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Hos(2)w = ita(2)Ha(2)w = i(Z> 72 + (22)"> 22w
H3o(z)w = il3(2)Ho(z)w = i(z"/2 . —n/2)w.

Hsi (2)w = i3 (2)Hy ()w = i(Z/*? = (22)22Y> 2w

Hy (2)w = ii3(2)Ho (2)w = (=212 + (22)22"> 2w,

Ha3(2)w = ii3(2) Ha (2)w = i(—2" 2 + (22)"> 22w
Has(2)w = ii3(2)Ha(2)w = (272 — (22)"* 22w,

which, as an intermediate step, we simplify to the reduced list

w

Hoo(2)w = w, Hoy (2)w = 22, Hoo (2)w = iz W, Hos (2)w = 222w,

Hou(2)w = i2/2=2%, Hao (2)w = (/% — 22w, Hoy (2)w = 222, Hon (2)w
Hys(z2)w = 2" %W, Hoa(2)w = i2" 2w, Hyo(2)w = i(2"* — 7'/ )w.
4. Generators of ﬂ[Zn,Zn 2] over Z(Zy):
Hyo(2)w = Hyy (z)w = Hop (z)w = 0;
Ho3(z)w = 7'/2 2w,
Hou(z)w = iz > 2w
Hyo(2)w = (27 ‘”/2)w;
Flzl (Z) n/2+2 -
sz(z)w n/2+2w;
Hy3(z)w = Hy(z)w = 0;
Hyo()w =i(z"> = 2w,
where Ai; = S (Hy) for i =0,1,2 and Hso = S (Hz).
Therefore, ﬁ[ln, Z,),] is the #(Z,)-module generated by
Bi(2)w =222, Bo(2)w = i/, By(2)w = (22 + 2w,

E4(Z) n/2+2 B ( ) n/2+2w B6( ) l-(zn/2_zn/2)w.

iZn/2+2W,

Rewriting in (x,y)-coordinates we have the generators of the Z,[Z, ,]-invariant BDEs:

Theorem 2.5.2. If © = (a,b,c) € 2[Z,,Z,)5], then
a= —A3p| —Aypr +Asp3s — A7ps+Agps + AePe,
b= —A4p1 +A3pr +Agps +A7ps,
¢ =A3p1 +A4pr +Asp3 +A7ps —Agps +Agpe,

where p; € P(Zy),i=1,...,6, A3 =Re(2"/*72), Ay = Im(7"/*72),As = Re("/?),
Re("/**?) and Ag = Im(z"/*1?).

(2.19)

A6 :Im(Zn/z), A7 =
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We finish with examples of Z,-invariant and Z,[Z, ]-invariant configurations, respec-

tively.

(a) (b)
Figure 7 — Configurations with symmetry group given by (a) Zs and (b) Z4[Z,] .

We consider n = 5, taking p; = p, = ps = 1 and p3 = py = ps =0 in (2.19). The
differential form is

2

(1+y — 2 =3y 2y 07 =302 1 4+ 42 —y2+3x2y—y3).

The homomorphism A is necessarily trivial. The discriminant function is the Zs-invariant given
by
8(x,y) = ( 4+ +10x"y =207 +2y° + (P +y*)* — 1.
The picture for this case is shown in Fig. 7(a). The star shape of the discriminant set is in fact
Zs-symmetric without reflectional symmetries, as it is easily checked by direct calculation.
Fig. 7(b) is a Z4[Z,] case, considering p; = py = ps = ps = 1 and p3 = pg =01in (2.19),
so that the differential form is

(—x* +6x2y? —y* +4xy — 4y’ xF — 6x2y? + 9 +axdy — 4wy xt — 6x%y? + 9t — A’y +4xy?).

The homomorphism A must be such that ker A = Z;. The discriminant set is the origin, given by
the zero set of (the O(2)-invariant)

8(x,y) =2(x* +y)*.

2.6 D,-equivariant quadratic forms, for n > 3

Consider the dihedral group D,,,n > 3, generated by the rotation of angle 27t /n and the reflection
K, with respect to the x-axis. Here the homomorphism 1) is trivial and the other possibilities
for kern are dealt with in following subsections. The technique is the same used for computing
the generators of E”}(Zn) We compute the generators of .# (D, ), the module of D,-equivariant
matrix-valued mappings R?> — M, (R?), and project onto the space of mappings R? — Syms .
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Golubitsky et. al. in ([21, XIV,§3]) give a set of generators of .# (D) over & (D,,),
My (2)w =w, My (2)w = 22w, M3(2)w = 7" >Ww, My(2)w = "w.
We now apply the projection (2.7) to the elements above to find generators of ﬁ(Dn),

Bi(z)w =w, Ba(z)w =W, and B3 (z)w = 2" 2w

Rewriting in (x,y)-coordinates the generators of the D, -invariant BDEs are:
Theorem 2.6.1. If ® = (a,b,c) € 2[D,,D,], then
a=pi+ (" —x*)pa—Aips. b=2xypy—Asps, c=p1+(—y)pr+Aips,  (2.20)

where p; € 2(D,),i=1,2,3,A; = Re(z"?) and Ay = Im(7"~?).

An example of an Ds-invariant configuration is given in Figure 8(a), for which p; =

szp3El.

2.6.1 D,[Z,]-equivariant quadratic forms, for n > 3
In this case, kern = Z,,n > 3. From Section 2.5 we extract

Ho(2)w = w,H1(2)w = 22w, Ha (2)w = iz>W, H3(z)w = 7" 2w, Hy(2)w = i7" W
as generators of ﬁ(Zn) over the ring #?(Z,) whose Hilbert basis is

{u1(2) = 22w (z) ="+ 7" u3(z) = i(" — 7"},

We now apply Algorithm 2.1.5:

I. Fix ky € D\ Zy;
2. Generators of Z[D,,Z,] over Z(D,):
i (z) = S(u1)(z2) = 5 (22— 22) = 0.

i (2) = S(u) (2) = %(zuz" _ (@) =0,

i3(2) = S(us) (z) = %(i(z"‘ L) i@ — ) = (" — 7).

3. Generators of ﬁ[Dn,Zn] over Z(Z,): set iip(z) = 1,
H()j(Z)W = IZ()(Z)H]'(Z)W = Hj(Z)W, Jj= 0,....,4;

Hj(2)w=Hyj(z)w =0, j=0,....4



2.6. Dy-equivariant quadratic forms, forn >3 55

Hyo(z)w =ii3(z)Ho(2)w = i(Z" —Z")w;
Hs1(2)w = i3 (2)Hy (2)w = i(2"1? = (22)°2" 2w
Hy (2)w = i3 () Ha (2w = (=212 + (22)°27"%)w;
Hy3(2)w = i3 (2)H3 (2)w = i(=2" 2+ (22)" 22w,
Hyu(2)w = i3 (2)Ha(2)w = (272 = ()" 2 )w.

We use now the identities

Zn+2 — (Zn +Zn)Z2 _ (Zz)zzn—z
i’ = i+ —i(2)*
ZZn—Z — (Zn +Zn)fn_2 _ (Zz)n—zzz
Z-ZZn—Z — i(zn +Z”)Z"‘2 _ (Zz)n—zzz

to conclude that the generators of ﬁ[Dn, Z,) over #(Z,) are
Hoo(z)w = w, Ho1 (z)w = 22w, Hoo (2)w = iz? W, Ho3 (2)w = 2* 2w,
Hou(2)w = i7"~ 2w and Hzo(2)w = i(Z" — 7")w.
4. Generators of ﬁ[Dn,Zn] over Z(D,):
Hoyo(z)w = Hoy (z2)w = Hoz(z)w = 0;
Hoo (2)w = iz,
Hou(2)w = i7" 2w,
Hy(2)w=i(" —7")w.
Therefore, 5[Dn, Z,] is the Z(D,)-module generated by

B\ (2)w = iz*W, By(z)w = i7" %W and B3(z2)w = i(z" — 7")w.
Rewriting in (x,y)-coordinates we have the generators of the D, [Z,]-invariant BDEs:
Theorem 2.6.2. If ® = (a,b,c) € 2[D,,Z,], then

a=2xyp1 —Ayps+Aopz, b= (> —Y*)p1 +A1pa, ¢ = —2xyp1 +Arpa+Aops,  (2.21)
where p; € 2(D,,),i=1,2,3, A| = Re("?), Ay = Im(z"?) and Ay = Im(Z").

An example of a Dg[Zg]-invariant configuration is given in Figure 8(b), for which we
choose p; = p» =1 and p3 =0.
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2.6.2 Dy[D,)(Ky)]-equivariant quadratic forms, for n > 4 even

Here kern =D, />(k;),n > 4, the dihedral group generated by the rotation of angle 47/n and

the reflection k. From Section 2.6 we extract
Ho(z)w=w, H|(z)w = 22w and H(z2)w = 7"/
as generators of ﬁ(Dn /2(Ky)) over the ring &(D,, »(ky)) whose Hilbert basis is
(11 (z) = 22, ur(z) = 2> +7'%}
We now apply Algorithm 2.1.5:
1. Fix § = &*™/" € D, \ D, 5 (K);

2. Generators of Z[Dy, D, /»(k;)] over &(Dy):

i (2) = S(u1)(2) = 5 (2 () (I =

1 . .
i (z) = S(up)(2) = E(z"/2 472 — (M e T2 = M2 72

3. Generators of ?[Dn,Dn/z(Kx)] over Z(D,/2(ky)): set iip(z) = 1,
Hoj(z)w = iio(z)H;(z)w = Hj(z)w, j=0,1,2;
Hij(z)w=1i(z2)Hj(z)w=0, j=0,1,2;
Hao(2)w = o () Ho(2)w = (2" +2"/%)w;
Hy (2)w = o (Q)Hy (2)w = (272 4 (22)°2"2 %)y
H (2)w = 2 (2) Ha (2)w = (27772 + (22)">22%)w,
which, as an intermediate step, we simplify to the reduced list
Hoo(2)w = w, Ho1 (2)w = 22w, Hyp (2)w = 2272w,
Hoo(2)w = (2% + 2w, Hoy (2)w = 27> 2, Hop (2)w = 27> 2.
4. Generators of ﬁ[Dn,Dn /2(kx)] over Z(Dy):
Hoo(2)w = Ho1 (z)w = Hn(2)w = 0;
Hyy(2)w =72,
Hoo(2)w = (2> +7")w;

Hy (D)w =",
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Therefore, ﬁ[Dn,Dn /2(Ky)] is the &(D,)-module generated by

Bl(Z)W = Zn/2—2‘,7;’ BZ(Z)W = (Zn/Z +Zn/2)w’ and Eg(Z)W _ Zn/2+2w.

Rewriting in (x,y)-coordinates we have the generators of the D,,[D,, /> (k;)]-invariant BDEs:
Theorem 2.6.3. [f 0 = (a,b,c) € 2Dy, D, ], then
a=—A3p1+Aspy —Arp3, b= —Aipi+Agp3 ¢ =A3p1+Aspr+Arps, (2.22)

where p;€ 2 (D,),i=1,2,3, A3 =Re(z"/2*2),A4 :Im(z”/2*2)7A5 :Re(z’i/z),A7 =R6(Z"/2+2)
and Ag = Im(z"/**2).

We finish with examples of Ds-invariant, Dg[Z¢] and Dg[D3(k)]-invariant configurations,

respectively.

(a) (b) (©)
Figure 8 — Configurations with symmetry groups Ds, Dg[Z¢| and Dg[D3 (K )]-

We consider D5, with p; = p» = p3 = 1 in (2.20) so that the differential form is
(14 —x* = 4+ 307, 2xy = 3%y + >, 1 —y* +2° +x° — 3x)°).
In this case, ker A = Zs and the discriminant function is the Ds-invariant given by
8(x,y) = (* +y*) +2x° — 20}y + 100y* + (* +y?)> — 1.

The configuration is illustrated in Fig. 8(a).

We now consider Dg[Zg] choosing p; = p, = 1 and p3 =0 in (2.21), so that the form is

2 xt -6y oyt —2xy +ax’y — 4xy).

(2xy — 4%y +dxy’ 2 —y
In this case A is trivial and the discriminant function is Dg-invariant and given by

8(x,y) = (2 +y?)  +2x° — 30xy? +30x%y* +2)0 + (2 +?)2.

The picture is given in Fig. 8(b).
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We now turn to Dg[D3(ky)] taking p; = 1 and p, = p3 =0 in (2.22), so that the form is
(—x. —yx).
In this case, ker A = D3(k,) and the discriminant set is the origin, given by the zero set of
S(x,y) = x% +y%

The picture is given in Fig. 8(c).

2.7 Z,-equivariant quadratic forms

Let Z, be the group generated by the reflection x, on the x-axis. First we consider 1 : Z, (k) —
Z, trivial. Imposing the Z,-equivariance to the matrix-valued mapping B : R? — Sym, in (2.4)

(c(x,—w b(x,—y>>:< (x.y) —b(x,y>>.
b(x,—y) alx,~y) —b(x,y) alxy)

Thus, a and c are Z; -invariant and b is Z-equivariant. Therefore, by [21, XIV §3] the generators
of ﬁ(Zz) under #(Z,) are

10 00 0y
(w)H(O O):(LY)H<O 1>,(x>y)H<y 0)-

It follows that the generators of Z;-invariant BDEs are:

we have

Theorem 2.7.1. If ® = (a,b,c) € 2[Z,,Z,), then
a=pi, b=yp» c=p3 (2.23)

where p; € P (1r),i=1,...,3.
An example of a Z-invariant configuration is given in Figure 9(a), for which p; = p; =
p3 = 1.
2.7.1 Z;[1]-equivariant quadratic forms
Assume now 7 nontrivial, so kern = 1. Imposing the Z, [1]-equivariance to (2.4) gives
C()C, _y) b(xv _y) _ —c(x,y) b(xay)
b(x7 _y) a(xa _y) b(xay) _a(x7y)
Hence b is Z-invariant and the functions a and ¢ are Z,-equivariant. Therefore, the generators
for ﬁ(Zz, 1) under & (Z,) are

(22 v ) o (27)

It follows that the generators of the Z;[1]-invariant BDEs are:
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Theorem 2.7.2. If ® = (a,b,c) € 2[Z,,1], then
a=yp1, b=py c=yps, (2.24)
where p; € P (Ls),i=1,...,3.

We finish with examples of Z,-invariant and Z,[1]-invariant configurations, respectively.

We consider Z;, and take p; = p, = p3 = 1 in (2.23), so that the form is

(Ly1).

We have ker A = {1} and the discriminant function is Z,-invariant and given by

S(xy) =y —1.
See the configuration of this case in Fig. 9(a).

Fig. 9(b) is a Z;[1] case, for which we have chosen p; = p, = 1 and p3 = —1 in (2.24),
so that the form is

(ya lv_y)'

The homomorphism A is trivial and the discriminant function is Z,-invariant and given by

(a) (b)
Figure 9 — Configurations with symmetry groups Z, and Z[1].

2.8 7, x Z,-equivariant quadratic forms

Let Z, x Z, be the group generated by the reflections &y and k, on the x-axis and y-axis,
respectively. First we consider 1 : Zy X Z, — Z; trivial. In ([21, XIV,§3]) we have a set of
generators of the matrix-valued mapping M : R — .7 (R?).

10 00 0 xy 0 0
(LWH(O 0>,(x,y)H<O 1>,(x,y)H<0 O)Jm)H(w 0)'
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Therefore, by the projection (2.7) the generators of ﬁ(Zz X Zp) under P(Zy x 1, [Z,(—1)]) are

10 0 0 0 xy
s (g o) (5 V) e (5 7))

It follows that the generators of the Z, x Z,-invariant BDEs are:
Theorem 2.8.1. If © = (a,b,c) € 2[Zy x 1,7, X 1], then

a=py, b=xyp; c=p3, (2.25)
where p; € P (Ly x1),i=1,...,3.

An example of an Z, x Z,-invariant configuration is given in Figure 10(a), for which

pi=p2=1land p3=—1.

2.8.1 7, x17Z,[Z,(—1I)|-equivariant quadratic forms

Assume here 7 nontrivial with kern = Z,(—I), the cyclic group generated by minus identity.
Imposing the Z, x Z[Z,(—1I)]-equivariance to (2.4) gives the following condition on functions
a,b and c: b is Z, x Zy-invariant; a and ¢ are Zy x Z,[Z,(—1)]-equivariant. Therefore, the
generators for @)(Zz X Zo[Zy(—1)]) under P (Zy x Z,) are

mm(’g g>,(x,y>~>(? (‘)>,<x,y>~><g 0y>

It follows that the generators of the Z, x Z;[Z,(—I)]-invariant BDEs are:
Theorem 2.8.2. If ® = (a,b,c) € 2[Zy x L, Z,(—1)], then
a=2xypi, b=pa, c=xyps, (2.26)
where p; € P (Lo X 1Ly),i =1,...,3.

An example of an Z, x Z,[Z,(—1I)]-invariant configuration is given in Figure 10(b), for

which py =p, =1and p3 = —1.

2.8.2 7, x7,[Z)(xy)]-equivariant quadratic forms

Finally, we assume 1) nontrivial with kern) = Z,(k;), the cyclic group generated by the reflection
on x-axis. Imposing the Z x Z;[Z,(x;)]-equivariance to (2.4) gives the following condition on
functions a,b and c: b is [Z,,Z; (%, )]-equivariant, whereas a and ¢ are [Z,,Z;(x,)]-equivariant.
Therefore, the generators for ﬁ(Zz X 7|7, (xy)]) under P (Zy x 1) are

mw(g g),mm(;’ g),wm(g 0)

It follows that the generator of the Z; x Z;[Z,(k)]-invariant BDEs are:
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Theorem 2.8.3. If ® = (a.b,c) € Z[Zy x Ly, Zy(—1)], then
a=xpi, b:yp27 C = Xp3, (227)

where p; € P (Lo x1n),i=1,...,3.

We finish with examples of Z, x Z,-invariant, Zy X Z;[Z,(—I)]-invariant and Z; x

7, [Z,(xy)-invariant configurations, respectively.

©
Figure 10 — Configurations with symmetry groups Zy X Zo,Zy X Zo[Zy(—1)] and Zy x Zo[Zy (k)]

For Z, x Z, in (2.25), we take p; = p» = 1 and p3 = —1, so that the differential form is
(1,xy,—1).
In this case ker A = Z; and the discriminant function is the Z; x Z,-invariant given by
S(x,y) =x3y* +1.
This is illustrated in Fig. 10(a).

We now consider Z, x Z,[Z,(—1)] choosing p; = p, = 1 and p3 = —1 in (2.26), so that

the form is
(xya 1: —Xy)

In this case A is trivial and the discriminant function is Z; x Z,-invariant and given by
S(x,y) =x2y* + 1.

The picture is given in Fig 10(b).

Finally, consider Z; x Z;[Z, (k)] taking p; = p2» = p3 = 1 in (2?), so that differential
form is

(x,y,x).
In this case ker A = Z,(k,) and the discriminant function is given by

8(x,y) =y* —x%.

See the illustration of this case in Fig. 10(c).
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2.9 Summarizing table and conclusions

In this section we list the general forms of symmetric quadratic differential 1-forms
deduced in the previous sections. Table 1 shows each group I'" with all possible values of kern,
denoted by I'[kern]. Following the previous notation, when 7 is trivial the group is denoted
simply by I'. Also, D,,(k,) and D, (k) shall denote the dihedral groups generated by the rotation

of angle 27 /n and by the reflections with respect to the x-axis or y-axis, respectively.

['[kern] ker A General form
a=pi+(y* —x%)pz + 2xyps:
$0(2) SO(2) | b="2xyp2+ (x> —y*)p3:

¢ = p1+ (x> —y?)p2 — 2xyps,
pi € Z(80(2)),i=1,2,3.

0(2) SO(2) |a=pi+ (7 —x")pa b="2xypy;
c=p1+(2=y)p2, pi € 2(0(2)),i=1,2.
a = 2xyp;
0(2)[SO(2)] 0(2) |b=(—-y)p;

c=—2xyp,p € 2(0(2)).
a=p;+ (7 —x*)py+2xyp3 — A1 ps — Aaps;
Z,, Z, b =2xyps+ (x> —y*)p3 +A1ps — Ao pas;
n=3 ¢ =p1+ (& —y*)pa — 2xyp3 + A1 pa + Ao ps,
pi € P(Zy),i=1,...,5.
a= —A3p1 —Aqpr +Asp3 — A7ps +Agps + Agpe;
Z,[Z,)), Z,), b= —A4p1+A3pr+Asps+A7ps;
n >4 even ¢ =A3p1+A4pr+Asps+Ajps —Agps +Aespe,
pi € @(Zn),i: 1,...,6.
a=p1+ (> —x")pr —A1p3;

D,, Z, b =2xyp, —Asp3;
n>3 c=p1+ (> —=y)pr+A1p3, pi € 2(D,),i=1,2,3.
a=2xyp1 —Axp2 +Ayps;
D, [Z,], D, b= (x*—y")p1+Apa;
n>3 c = —=2xyp1 +Axpr +Agp3, pi € Z(Dy),i=1,2,3.

a=—A3pi +Aspr —A7ps;
Du[D,jo(x0)], | Dypa(y)] | b=—Aapi +Asps;

n >4 even c=A3p1+Aspr+Aips, pi€ Z(D,),i=1,2,3.

7, 1 a=pi;b=ypy, c=p3, pi€ P(Z1y),i=1,2,3.

7,(1] 7, a=yp1; b=py; c=yp3, pi € #(24p),i=1,2,3.
7, x7» Zz(—]) a=pi; b=xypy; c = p3, pl‘GgZ(ZQXZQ),iZI,L&

Zy X T2y ()| | ZyxZy | a=xyp1; b= pa; c =xyp3,pi € P(Ly x1Ly),i=1,2,3.
7y x17)(xy)] | Zo(xy) | a=xpi;s b=ypr; c=xp3,pi € P(Lyx1y),i=1,23.
A1 =Re(2"72), Ay =Im(z"2), A3 =Re(2*72), Ay =Im("/>72), A5 = Re(/?).

Ag =Im(2"/?), A7 =Re(2/*1?), Ag = Im(z/*12), Ag = Im(Z").

Table 1 — General forms of equivariant quadratic differential 1-forms on the plane under closed subgroups of O(2).

Remark 2.9.1. The symmetry group of the configuration shown in Fig.1(c) is Dg[D3(ky)]. Whose
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quadratic form (y,x,—y) appears in Table 1 by interchanging the variables x and y and taking
p1 = 1 and py = p3 =0 in the general form for the group Dg[D3(Ky)]. Similarly, the symmetry
group of the configurations in Fig. 1(a) and (b) is Zy x Z,[Z,(x,)], whose quadratic forms
appear from the data for 7, x 7,[Z,(xy)] in Table 1 by interchanging x and y and taking
pi=m=l,ps=—lLandp, =1,p, = ‘—l‘,p3 = —1, respectively.

In [11] the authors consider BDEs whose discriminant function is of Morse type. In this
case, the discriminant set is a pair of transversal straight lines by the origin or the origin itself.
They prove that these BDEs are topologically equivalent to their linear part. We remark that
all the normal forms they obtain must be equivariant under a finite symmetry group. In fact,
it follows from Table 1 that there are no BDEs with linear coefficients with infinite group of
symmetries. As it appears in [11], the Morse condition is given in terms of the coefficients of the
linear part of the smooth functions a,b and c. More precisely, if we write a = ayx+ azy +0(2),
b =bix+Dbyy+0(2) and ¢ = c1x+ c2y +0(2), then the condition is

(c2a1 — c1a2)? — 4(baay — b1az)(c2by — c1b2) # 0. (2.28)
From Table 1, the possible symmetry groups of BDEs whose linear parts satisfy (2.28) are
73, 76[73], D3,D3[Z3], Dg[D3] (2.29)

or
Zz, Z2 [1], Z2 X Zz [Zz(KX)]. (230)

Recall from Remark 1.1.4 that the set of all symmetries of a BDE is at most the symmetry
group L(A) of the discriminant set. Hence, for the Morse cases it follows that if A is the origin,
then the possible nontrivial symmetry groups are all the ones listed in (2.29) and (2.30), whereas
when the discriminant set is a pair of transversal straight lines, the possible groups are only the
groups listed in (2.30). We also point out that the finiteness of the symmetry group also holds
for equations with constant coefficients. A classification of these two types of BDEs is done in
Chapter 3, including an analysis of the corresponding group of symmetries of the equation with

possible number of invariant lines in the associated configuration.
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CHAPTER

BDES WITH HOMOGENEOUS
COEFFICIENTS

This chapter is dedicated to study of binary differential equations whose coefficients are
homogeneous polynomial functions of any degree. This special class of BDEs has the property
that the symmetry group is always nontrivial, and furthermore, if the degree of the coefficient
functions is odd, then there exists an element in the symmetry group that interchanges foliations.
This is the statement of Theorem 3.1.2.

The problem to find the number of invariant straight lines on polynomial differential
systems is a known issue on the literature, as we can see in [7]. An analysis of the number of
invariant lines in the configuration associated with a homogeneous BDE, just as the study of its
behavior, is done in Section 3.2. In Section 3.3 we present the closed subgroups of O(2) realized
as symmetry groups of BDEs with coefficients of degree 0. In Section 3.4 we characterize BDEs

with coefficients of degree 1, via the number of invariant straight lines.

3.1 Algebraic structure

Let @ : TR? — R be a quadratic 1-form,
o(x,y,dx,dy) = a(x,y)dy* +2b(x,y)dxdy + c(x,y)dx?, (3.1)
with a,b and ¢ C*-functions.

Definition 3.1.1. A homogeneous quadratic 1-form ® of degree n is a quadratic 1-form whose
coefficients a,b and c are homogeneous polynomial functions of degree n. The BDE ® = 0 is

called a homogeneous BDE of degree n.

Theorem 3.1.2. If @ = 0 is a homogeneous BDE of degree n, then the symmetry group I is

nontrivial.
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Proof. Let B : R*? — Sym, be a matrix-valued mapping associated with . If I denotes the
identity matrix of order 2, then

B(—I(x.y)) = B(—x,—y) = (—=1)"B(x,y) = (= 1)"(-D)B(x.y)(-1I)". (3.2)

Hence, —I € T"and n(—I) = —1 if nis odd and n(—I) = 1 if n is even. O

As direct consequences we have:
Corollary 3.1.3. [f n is odd, then the homomorphisms M and A are not trivial.
Corollary 3.1.4. If n is odd, the group I' can be decomposed as

I'=kern U—Ikern =kerA U—TlkerA.

The above results say that the configuration associated with a homogeneous BDE always
is symmetric with respect to the origin. Moreover, if n is odd then minus identity interchanges
foliations while if n is even, it preserves foliations. Hence, the symmetry group of a homogeneous
BDE of degree odd always admits an index-2 normal subgroup. As a consequence of this fact,
there is no homogeneous BDE Z,,-equivariant with n odd. This fact also be deduced from Table
1.

Remark 3.1.5. Theorem 3.1.2 and its consequences hold for a larger class of BDEs than the
homogeneous ones. In fact, from (3.2), it is enough that the matrix-valued mapping B : R* — Sym,
to satisfy

B(—x,—y) = (=1)"B(x,y) (3.3)
Jfor some natural number n. For example, in Figure 11(a) we have the configuration associated
with (y3,—x/2,y) that satisfies the relation (3.3) with n = 1, kern = Z (k) and ker A = Z (k).
In Figure 11(b) we have the configuration associated with (1,0,x* —y?) that satisfies the relation
(3.3) with n = 2, the homomorphism 1 is trivial so ker A = Zp(—1).

(y? -1/2x,y) (1,0, x*-y?)

() (d)
Figure 11 — Configurations with symmetry groups (a) Zy x Zs[Z>(k)| and (b) Z x Z,, respectively.

The discriminant function & (x,y) = (b*> —ac)(x,y) of a homogeneous BDE of degree

n,n > 1, is a homogeneous function of degree 2n, so it is an invariant function under the action
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of —I. Consequently, the set A is not empty, (8(0,0) = 0) and, by Remark 1.1.4, it is symmetric

with respect to the origin.

3.2 Invariant straight lines

Consider a regular parametrization r : R — R? of a straight line through the origin

r(t) = (ux(t), Bx(1)), (3.4)
where 1, € R and , x : R — R is a smooth function with x(¢) = 0 if and only if # = 0 and

x'(t) #0, Vt € R.

Definition 3.2.1. Let o € 2(R?) be a quadratic 1-form. We say that r in (3.4) is an invariant
straight line of the BDE @ = 0 if

o(r(t),”(t)) =0, Vt € R. (3.5)

To state the next results, given a homogeneous BDE @ = 0 we write the coefficients a, b

and c in the form

n

Zax” . b(x,y) ben iy and c(x,y) Zcx W (3.6)
i=0

where a;,b;,c; e Rji=1,...,n

Proposition 3.2.2. Let @ = 0 be a homogeneous BDE of degree n with coefficients a,b and c as
in (3.6). If a, # 0 or co # 0, then the number of invariant straight lines through the origin is at

most n—+ 2.

Proof. From (3.5) we have

(Za, pux(n)" (Bx(1))’ ) BH(x'(1))* +2 (Z bi(uX(t)>”‘i(l3X(t))i> HB(X'(1))*+

(ch ux(n)"~ (Bx(r ))) K(1)?=0 =

(x(t))”(x’(t))2 <iaiﬁi+2.un_i+2i.un_i+lbiﬁi+l + ici“n—i+2ﬁi> — 0
i=0 i=0 i=0

n
anB"™ 4 (2bu+an )BT + Y (ai o +2bi 1+ ci) PRI (20 +c ) B+ cou =0,
i=2
3.7

The last equality holds since r is regular. Therefore, the number of zeros of (3.7) is precisely
the number of invariant straight lines through the origin. Hence, if a,, # 0 or ¢y # 0 the result
follows. O
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The equation (3.7) is called equation of the invariant straight lines. As a direct conse-
quence of the previous proposition we have:

Corollary 3.2.3. The configuration associated with a homogeneous BDE has 0,1,2, ...,
n—+ 2 or infinite invariant straight lines through the origin, depending on the values of the

coefficients a;,b;,ci,i=1,...,n.

Remark 3.2.4. It is important to note that the deduction of the equation of the invariant straight
lines (3.7) does not take into account whether the invariant straight lines are solutions of
the discriminant function. Because of this, the invariant straight lines that can be seen in the

configuration are those that are contained in Q = {(x,y) € R: §(x,y) > 0}.

Consider w € 2[I',n| a I'-equivariant homogeneous quadratic 1-form of degree n.
Depending on the parity of the degree we have different behaviors of the straight lines. In fact, if
n is odd, then —I interchanges foliations, so an invariant straight line splits into peaces in the
two foliations and on the discriminant set, whereas if n is even, then —1I preserves foliation, so

the invariant straight line splits in peaces into the same foliation.

Now, if the group I contains a rotation R distinct from the identity or the minus identity
and if there exists one invariant straight line, then by the linearity of the action, the rotation
forces the existence of other invariant straight lines in the configuration. More precisely, since —I
belongs to I and the rotation R & {I,—I}, then we must have Z, C T, for £ > 4 even. Moreover,
if there is one invariant straight line r, —/ leaves r setwise invariant, that is, —I/r = r. So, by
symmetry there exist at least #/2 invariant straight lines. From this argumentation, the next two

propositions follow:

Proposition 3.2.5. Let o € 2[Z;,n] and { > 4 even. If there exists an invariant straight line in

the configuration associated with @ = 0, then there exist at least £ /2 invariant straight lines.

Proposition 3.2.6. Let ® € 2[Dy(ky),n] and ¢ > 4 even. If there exists an invariant straight
line in the configuration associated with @ = 0, then there exist at least {2 invariant straight

lines.

We finish this section with an example that illustrates the results exposed here.
Example 3.2.7. Consider the homogeneous BDE of degree 4 with coefficients,
(—2x y + 6xy*, 2x* — 6x%y2, 26y — 6xy?)

whose symmetry group is Dg(Ky)[Zs] and A is trivial, i.e., there is no interchange of foliations.

The discriminant function is given by

§(x.y) = 4x° (2% +)%) (2 = 3y%)%.
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The discriminant set is the union of three straight lines, x = 0 x = 4=+/3y. The equation that gives

the invariant straight lines is

2up (3p* — 104> B +3u*) =0,

so there are 6 invariant straight lines, x =0, y =0, x = £v/3y and x = ++/3y /3. Three of them

belongs to the discriminant set, as we can see in Figure 12.

Figure 12 — Configuration of (—2x%y + 6xy3, 2x* — 6x%y?, 23y — 6xy?).

3.3 BDEs with coefficients of degree O

Here we consider a binary differential equation of the form @ = (a,b,c) where a,b,c € R, which
we shall call the constant case. The discriminant function § = b> — ac is constant and we have
only two possibilities for the discriminant set: either the empty set (if > 0 or § < 0) or the
whole plane (if 6 = 0). So, in this section, we shall consider b* —ac > 0.

Proposition 3.3.1. For the constant case with b> — ac > 0, the number of invariant straight lines

through the origin in its configuration is always equal to 2.

Proof. From equation (3.7) the number of invariant straight lines through the origin is given by

the number of zeros of
aP? +2buf +cu’ =0, (3.8)

where i, B € R. If the coordinate axes are not invariant lines of the BDE, that is, a 7 0 or ¢ # 0,

then we can write (3.8) as
ap®+2bp+c=0 or a+2bg+cqg’ =0, p=B/u, q=p/B, (3.9)

which has two distinct roots since b* —ac > 0. If a = 0 or ¢ = 0, one of the invariant straight
lines is a coordinate axis while the other one is (x, —cx/2b) or (x, —2bx/a), respectively. When
b =0 we have ac < 0 and the straight lines are (x,+£+/c/ay). O
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We use the standard representation of O(2) on R? for Ry € SO(2) of angle 8 € [0,27]

and the reflexion x; with respect to the x-axis. We have:
0) —sin(0 1 0
Ry = [ €O5(0) —sin(0) 4 = . (3.10)
sin(B)  cos(0) 0 —1
From the condition of equivariance given in (2.5), if ¥ € O(2) belongs to the symmetry

group I, the matrix-valued mapping B : R? — Sym;, associated with the BDE, that in this case is

a constant matrix, must satisfy

B=n(y)yBY,VyeT, (3.11)

where 1(y) = £1. The next result uses (3.10) and the relation (3.11) to explicitly calculate the
admissible symmetry groups of a BDE with constant coefficients, namely groups of some binary

differential equation.
Theorem 3.3.2. The admissible symmetry groups of a BDE with constant coefficients are

Zz(—]), Z2XZ2, ZQXZQ[ZQ(—I)], Z4[Z2(—1)], D4(Kx)[D2(Kx)].

Proof. Let B be the matrix-valued mapping associated with @ = 0 and consider Ry € SO(2). If
N(Rg) = 1, the relation
B =RyBRj,

is satisfied for @ = 0, 7, for all a, b, ¢ with b*> —ac > 0. If n(Rg) = — 1, the relation
B = —RyBR),

is satisfied for 6 = 7/2,37/2 and ¢ = —a. Now, for the reflection k, we have that the equivariant
conditions are satisfied for n(x;) = 1 if and only if » = 0 and, for (k) = —1 if and only if

a=c=0.

So, we conclude that the admissible groups are: Z,(—1), with 1 trivial; Z, x Z,, with
kern =Z,(—1) and a = ¢ =0; Z, x Z, with n = trivial and b = 0; Z4 with kern = Z,(—1I) and
¢ = —a and Dy(x;) with kern =D, (k;), » =0and ¢ = —a. O

We organize the results of Theorem 3.3.2 in Table 2. In Figure 13 we present an example
of each case of Table 2.

3.4 BDEs with coefficients of degree 1

In this section we consider quadratic 1-forms @ = (a, b, c) where the coefficients a, b, c : R> — R

are linear functions

a(x,y) = apx+ary, b(x,y) =box+biy c(x,y) = cox+cuy,
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I'kern] kerA | General form
Z,(-1I) Z,(-1) | (a,b,c), b*—ac>0.
7o x 7, 7Z>(—1) | (a,0,c), ac <O.
Z2 XZZ[Zz(—I)] Z2 ><Z2 (O b 0) b7£0.
Z4[Z,(-1)] | Zo(=1) | (a,b,—a), a#0.
Dy (ko) [Da(k)] | Zo(—1) | (a,0 a)» a#0.
Table 2 — General form of BDEs with constant coefficients.
PR
(1,2,3) 0, 1,0)
(a) (b) (© (d)
Figure 13 — Configurations associated with BDEs with constant coefficients and their symmetry group (a) Z,(—1I),

(b) Zo xZy, (¢) Zy x Zo[Zy(—1)], (d) Z4[Z>(—1)] and (e) D4 (k) [D2 (k)]

aij,bj,c; € R,i =0, 1. The discriminant function

8(x,y) = x*(b§ — agco) +xy(2boby — ajco — agey) +y* (b —ajcy)

is a homogeneous function of degree 2, so it is an invariant function under the action of —I.

Consequently, the discriminant set A = §~!(0) is not empty (8(0,0) = 0) and symmetric with
respect to the origin. Thus we have 3 possibilities: A is either a point (the origin), a straight line

through the origin or a pair of transversal straight lines through the origin.

(a) (b) (c)

Figure 14 — Configurations of discriminant set of BDE with linear coefficients

From Remark 1.1.4, in Figure 14(a) the symmetry group must be O(2), in 14(b) either

7, or Z; X Z, and in 14(c) either Z;, x Z, or D4, depending on the position of the lines in the

plane. By using the same technique used in the proof of Theorem 3.3.2, we have:

Theorem 3.4.1. The admissible symmetry groups of a BDE with linear coefficients are

Zy(=D], Zy x Zo[Z(%:)], Zs[Z3], Do(1:)[D3 (k)]

Proof. The result follows from applying Ry and K in the equivariance condition (2.5). Imposing

B(Rg(x,y)) = N(Rg)ReB(x,y)(Re)" we have
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° ifn(Rg)Zl
0=0,Va;,bj,cie R,i=0,1.
0 =2x/3 and 6 =471 /3,by = —ay, by =ap, co = —ap, ¢ = —ay, Va; € R,i=0,1.

° ifn(Rg)Z—l
0=m, Va;,b,ce R,i=0,1.
0 :77.7/3 and 6 :571'/3,b0: —ay, by =aqy, co=—ag, c; =—a;, Va; € R,i=0,1.

Imposing B(k,(x,y)) = (k) k:B(x,y) (k)
o if N(Ryky) =1
0=0,ay=>b; =co=0anday, by, c; €R.
0=m, a =by=c; =0andag, by, cp €R.
0 =2 and 0 = *Z by = —ay, by =ay, co=—aop, c; =—ar, Va; € R,i=0,1.
0 =12, co=—ay, bo=—by, c; = —ap,a;, b, c; ER,i=0,1.

3 .
6 = =%, co = ay, bo = by, c1 = ao, aj, b, ¢; €R,i=0,1.

o if N(RyKy) =—1
0=0,a =by=cy=0andag, by, ¢y € R.
0=m, a0=>b; =cyp=0anday, by, c; €R.
6 =Z%and 6 = 2% by = —ay, by =ap, co=—aop, c; =—a, Va; € R,i=0,1.
6=1%,co=ai, bo=hby, c; =ap,a;, b, c; eR,i=0,1.
6= 37”, co = —ay, b =—by, cy = —ay,a;, b;, c; e R,i=0,1.

Then, we have the result. O

The general forms obtained in Theorem 3.4.1 are organized in Table 3.

I'kern] ker A General form
Z,(—1)[1] 1 (apx+ayy,box + b1y, cox+c1y), ai,bi,ci € R,i=0,1.
7> %<7, [Zz(l(x)] Zz(Ky) (aox,bly, C()x), ap,by,co € R.
Z|Z;) 7, (—apx — ayy,a1x — agy,apx+ayy), ap,a ER,a%—Fa% #£0.
De(x:)[D3(%)] | D3(x) (—apx, —agy,apx), ag #0.

Table 3 — General form of BDEs with linear coefficients.
From equation (3.7) the number of invariant straight lines through the origin on a
configuration associated with a BDE with linear coefficients is given by the zeros of the cubic
B3ai + uPB?(2b1 +ap) + u?B(2bo 4 c1) + cout. (3.12)

So, the number of invariant straight lines that can occur is 0, 1,2, 3 or infinite, depending on the

values of the coefficients a;,b;,c;,i = 1,2. Moreover, let r(¢) be an regular parametrization of an
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invariant straight line. Since —T interchanges foliations, if () € %, t > Othenr(t) € F;, t <0
fori=# j.
We present now a characterization of such BDEs according to the number of invariant

straight lines trough the origin that appear on its configuration.

1. Infinite straight lines:
This is only possible if a; = ag+2b; = 2bg + ¢1 = co = 0, which implies that the discrim-
inant set is a straight line. The general form for this case is

(—=2b1x,box + b1y, —2boy),

where b;, € R*,i = 1,2. The symmetry group is Z,(—1)[1]. We can see an example in
Figure 15(a), for by = by = 1.

2. No straight lines:
Here we must have a; = 0,2b| +ag # 0 and (2bg + ¢1)? — 4¢o(2b; +ap) < 0. The dis-
criminant set A can be any of the forms in Figure 14, depending on the choice of the
coefficients. The symmetry group is Zy(—1)[1] or Zy x Z;[Z,(k,)|. The general form of
the BDEs under each group is, respectively,

(apx + a1y, box + b1y, cox + c1y) and (apx, by, cox),
where a;,b;, c; € R. For the group Z,(—1)[1] we can see an example in Figure 15(b).

3. 1 or 2 straight lines:
In either case, A can be any of the forms as in Figure 14, depending on the choice of the
coefficients. The existence of only one or two invariant straight lines and Theorem 3.4.1
implies that the symmetry group can be Z,(—I)[1] or Z; x Z;[Z,(xy)], respectively. The
general form of the BDEs for each group is, respectively,

(agx + ayy. box + b1y, cox+c1y) and (agx,2byy, cox),

where a;, b;,c; € R. For 1 straight line we can see examples in Figure 15(c), and in Figure
15(d) for 2 straight lines. In the last case one of them coincide with the discriminant set.

4. 3 straight lines:
Here, the discriminant set A also can be any of the forms as in Fig.14. When A is the origin,
and only in this case, the groups Zg[Z3] and Dg (K )[D3(ky)] can appear. The general forms

for these last groups are, respectively,
(—aox —ary,a1x — agy,aox +ay), and (—apx, —aoy, dox),

where a; € R*,i = 1,2. We illustrate the cases in Figure 15(e) and 15(f). In the first one
the symmetry group is Z, X Z;[Z, (k)] and in the second one is Dg(k;)[D3 (k)]
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(a) (b) ()

(y, 1\4x, -y)

(e)
Figure 15 — Configurations with (a) infinity, (b) zero, (c) one, (d) two and (e)-(f) three invariant straight lines through
the origin.



75

CHAPTER

EQUIVARIANT LINEAR NORMAL
FORMS

A normal form of a (germ of) a mapping, generally speaking, is a simplified expression obtained
by defining a notion of equivalence between them (often a change of coordinates), that is
considered to preserve its essential features. Our class of objects is the set of I'-equivariant
matrix-valued mappings associated with a BDE and the equivalence relation must preserve the
symmetry group. In section 4.1 we define the I'-equivalence between I'-equivariant quadratic
I-forms with linear coefficients (Definition 4.1.1).

The purpose of this chapter is to obtain the normal forms, namely representatives of the
classes of the equivalence relation, for BDEs with linear coefficients, that is when a,b and ¢ are
linear functions. The deduction, for each closed subgroup of O(2) given in Theorem 3.4.1 is
presented. We highlight the Subsections 4.1.3 and 4.1.4, where some of the equivariant normal
forms obtained present a modal parameter, which does not happen when the symmetries are not
taken into account. The modal parameter is associated with the slop of the invariant straight lines
in the configuration associated with the BDE. Section 4.2 finishes the chapter summarizing the
results in Table 4.

4.1 TI'-equivalence

Let I" be a compact subgroup of O(2) and consider the action induced on the tangent bundle
TR? as in (1.3). The set of I-equivariant linear diffeomorphism is denoted by % (I,

2(1“) :={¢ : R? = R? linear difeomorphism : ¢ (y(x,y)) = 79 (x,y), Vy € I,V(x,y) € R?}.

Definition 4.1.1. Ler 0y, @, € 2[I',n] be I'-equivariant quadratic 1-forms with linear coeffi-
cients. They are '-equivalent if there exist a linear diffeomorphism ¢ = (¢, ¢,) : R? - R? e
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% (T) such that
= ¢ oy, 4.1)

that s, 0y (x,y,dx,dy) = @1 (1 (x,y), 62(x,7). 401 (x.). dbs(x. 7)), where ( 0 ) — d ( ax )

(053

Let 5” I') denote the submodule ﬁ" I') of the I'-equivariant matrix-valued mappings

whose entries are hnear functions. Definition 4.1. 1 induces an action of ﬁ ) on 52 (I') given

by
#T)x PNT) - 2(I)

(¢,B) — (¢-B) = (do~")YB(¢p~")(dp™"). 4.2)

The action is well defined, since ¢ € %(F) implies that ¢! € ﬁ(l“) and (d9)y(xy)¥ =
Y(d9)(xy)- In fact, for all y € " and (x,y) € R? we have

(@-B)(r(x,y)) = (d9™")y B (Y(x )P )yayy
= Y(d¢™") Y B~ ey do ") ¥
= Y(do™") ) Y N(NYBO~ ()Y V(d9 ™) ()Y
= N1 ), B (x.3)(d ) ry)¥

= n(y)y(¢-B)(x,y)Y.

The orbit of the action of @(F) onB e ?? (I') is the set ﬁ(F)B ={¢p-B:¢pc ﬁ(l“)}
Mappings on the same orbit of %(F) have the same discriminant set. Indeed, if we denote by
oOp and 0y.p the discriminant function associated with B and ¢ - B, respectively, then 5(;; 113(0) =
(8500 ") 1(0) = 9(85'(0))-

From here on 2y(T",n) denotes the set of I'-equivariant quadratic 1-forms ® with
linear coefficients; the equation @ = 0 is denoted by the triple (a,b,c) where a(x,y) = apx +
ayy, b(x,y) =box+byy and c(x,y) = cox+cy. We identify % (T") with the space of I"-equivariant
2 x 2 matrices. So we can rewrite the equivalence relation (4.1) as

¢9-B=¢'(Bo9)¢. (4.3)

By using the relation (4.3) we compute, in next four subsections the normal form for
each symmetry group I" of the Table 3, namely Dg (K )[D3(Kx)], Zs|Z3], Z2 X Z1[Z; (k)] and
Z,(—I)[1]. As in the previous chapters we denote @) , (T') by ﬁ/ [[",kern]. We finish with a

table containing all the linear equivariant normal forms obtained.

4.1.1 Dg(xy)[D3(Ky)]|-equivariant normal forms

Let ¢ € ﬁ(DG(KX)). So ¢ = sl s # 0 € R, where I denotes the identity matrix.
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Let B € ﬁg D (Ky),D3(kx)]. According to the Table 3 there exists ap # 0 € R such that
XYy

¢tB(¢(x7y))¢ = S3a()B| (x,y).

B(x,y) = apB;(x,y), where Bj(x,y) = . From (4.3) we have

The discriminant function of ¢ - B is given by 8 (x,y) = s°a}(x*> +y?) so the discriminant

set is always the origin. The equation of invariant straight lines (see (3.7)) is given by
sSapu(—=3B% +u?) =0.

There are exactly 3 invariant straight lines through the origin for any ag # 0 € R, namely x =0
and (j:\/gx,x). Now, taking s = 1/ ay, that is always possible because ag =0, we have that B
is Dg (K )[D3(Ky)]-equivalent to By for all ag. Therefore, there is only one no trivial orbit of the
action of %(Dd on ﬁg(Dde) [D3(xy)]) and we conclude:

Proposition 4.1.2. Let @ € 2/(Dg(ky)[D3(xx)]) be a quadratic 1-form of the form (—aox, —agy,ay),
ag # 0. Then @ is Dg (k) [D3(Ky)]-equivalent to

(—)C, —y,)C).

In Figure 16 we illustrate the configuration associated with a Dg (k) [D3(k;)]-invariant BDE.

(=X, -y, X)

Figure 16 — D¢ (k) [D3(x;)]-equivariant linear normal form.

4.1.2 Z¢|Z3]-equivariant normal forms

Let ¢ € ﬁ(Z6) be a linear diffeomorphism, so

o=\, , |-4+D £0, A,D € R. (4.4)

Let B € ﬁg(Z@/ [Z5]). According to Table 3 there exist ag,a; € R such that aj + a7 # 0 and

B(x,y) = Gertay  aix—aoy . From (4.3) we have

alx—agy —apx—aiy

4.5)

O'B(9(x.y))0 = ( Aortdy  Avx— Aoy )

AIX —Aoy —on —Aly
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where

Ap = apA> +3a1A’D — 3ayAD? — a1 D® and A; = a1A® — 3apA’D — 3a1AD* +ayD>.  (4.6)

The discriminant function of ¢ - B is 8(x,y) = (A3 +A?)(x? 4+»?) so the discriminant
set is always the origin since we suppose A(z) +A% # 0. The equation of invariant straight lines

through the origin is given by
3 2 2 3 _
A1B° —3A0uB”+3Au B +Agu’ =0,

and has 3 real roots, since A(Q) +A% # 0. To deduce the equivariant normal forms we study the

cases apa; # 0 and apa; = 0 separately.

4.1.2.1 Case apa; =0

ayy ax

Consider ag = 0. Then B(x,y) = ( ) ,a; # 0 € R, and the coefficients Ay,A; in

ax —apy
(4.6) are: Ag = 3a1A%D — a1 D> and A| = a,A® —3a,AD?.

Setting A =0 and D = —<{/1/a; we have Ay = 1 and A| = 0. Then, from (4.5), B is

Z¢|Z5]-equivalent to
X =)y
B (X,y) = ( > :

—1/V2 1/V2
—1/V2 —1/32

Bz(X,y) _ ( X+y x-—y ) .

X—y —x-—Yy

Now, if we take y = ( ) , then (Y (B o y)y)(x,y) = Ba(x,y) where

If we suppose a; = 0, is enough to put A = {/1/ap, D = 0 and the result holds.

4.1.2.2 Case apa; #0

Take ¢ in (4.4) with D # 0. So we can see Ag and A; as polynomials in the variable p = A/D,
that is,

Ao(p) = a0p3 —|—3a1p2 —3app—a; and Ai(p) = a1p3 —3a0p2 —3ap+agp.

The cubic A| has at least one real root. Let p; be one of them, so A;(p;) = 0. Now,
the resultant of Ag,A; is R(Ag,A1) = 64(af +a?)? that is always different from zero, since
a3 +a? # 0. This means that there is no common roots between Ag(p) and A; (p) (for a reference
on the resultant of two polynomials see [20]). So, setting D = 1 and A = p; from (4.5) B is
Z¢|Zs]-equivalent to B where

[ Ao(p)x  —Ao(p1)y
B = ( —Ao(p1)y —Ao(p1)x ) .
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Now, taking y = _l/m l/m
’ —1/3/240(p1) —1/3/240(p1)

where
X+y x-—y
BZ(X7Y) - ( > .
X—y —Xx—Yy

From the discussion above we conclude that there is only one nontrivial orbit of the
action %(Z@ onB¢E ﬁg(l& [Z5]):

) , By is Z¢[Z3]-equivalent to By, via v,

Proposition 4.1.3. Let @ be a Zs|Zs3]-equivariant quadratic 1-form of the form (—apx —
ayy,aix — apy,apx+apy), a(z) + a% # 0. Then o is Zg|Z3]-equivalent to

(_x_yax—%x‘i‘}’)-

In Figure 17 we illustrate the configuration associated with a Zg[Z3]-invariant BDE.

1YY
L LAY

(-X-, X-y, X +Y)

Figure 17 — Zg[Z3]-equivariant linear normal form.

Remark 4.1.4. Consider the quadratic 1-forms
@) = (—aox, —apy,apy) and o = (ary,—aix,—ary),

where ay,a; € R*. By Proposition 4.1.3 they are Z¢[Z3|-equivalents. It is interesting to note
that they are both symmetric under the larger order-6 dihedral group, the first one being
D¢ (k) D3 (k) ]-equivariant and the second Dg (. )[D3(%,)]-equivariant.

4.1.3 7, x Z,|Z,(x)|-equivariant normal forms

A O
Let ¢ € % (Zy x Z,) be a linear diffeomorphism, so ¢ is of the form ¢ = ( o D > , AD +#

0, A,D € R. Let B € P (Zs x Zo|Za(x)]), then

Blx,y) = cox by
’ b1y aopx ’
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where ag, b1, co € R. From (4.3) we have

‘ coA3x blADzy
B = . 4.7
¢'B(¢(x,y))9 <b1AD2y aoAD2x> 4.7

The discriminant function of B is 8 (x,y) = b3y? — coapx?, then the discriminant set can be the
origin, if agbicg # 0 and coag < 0; two transversal straight lines through the origin if agb|co # 0
and coag > 0; the y-axis if agco # 0 and by = 0 or the x-axis if b; # 0 and coag = 0.

The equation of invariant straight lines is given by
colt® + B2 (2b1 +ag) =0, (4.8)

then the y-axis is always an invariant straight line and the existence of other invariant straight

lines depends on the choice of the coefficients ag,b;,co € R.

We divide the study in five cases according to the coefficients of the BDE: bh; = 0 and
apco #0; agp =0 and bico #0; ag =cop =0 and by #0; ¢o =0 and apb; # 0 and finally
aob 1€0 75 0.
4.1.3.1 Case b =0and ayco #0

Let B € %(Zz X 77> (xy)]) of the form

cox O
B(x7y)=< 0 an)-

The discriminant function is &(x,y) = —agcox?, so the discriminant set is A = {(0,y),y € R}.
From (4.8) the equation of invariant straight lines is given by

u(cou® +agB?) = 0.

So, when agco > 0 we have one invariant straight line which coincides with the discriminant set
and, when agcg < 0, we have 3 invariant straight lines, where again, one of them coincide with

the discriminant set .

Let € = sign(agco) = £1. For € = 1 setting A = 1/.3/co and D = {/J/co/ap in (4.7) then
Bis Z) x 7, [Z,(ky)]-equivalent to B; where

Bl(xvy):<; 2)

For ¢ = —1 setting A = 1/3/co and D = {/—/co/ap in (4.7) then B is Zy x Zr[Z(ky)]-

equivalent to B, where

Therefore, we conclude that:
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Proposition 4.1.5. Let @ be a 7, x Z,Z,(ky)]-equivariant quadratic 1-form of the form
(agx,0,cox). Then @ is Zy x 2|7, (x)]-equivalent to

(ex, 0, x), € =sign(apcy) = +1.

In Figure 18 we illustrate the configurations associated with the equivariant normal form of the
Proposition 4.1.5 with € = 1 and € = —1, respectively.

(x, 0, x)
(a) (b)

Figure 18 — Zy x Z,[Z,(Ky)]-equivariant normal forms.

4.1.3.2 Case ay=0and bicy# 0

Let B € ﬁg(Zz X 7|7, (x;)]) of the form

cox by
B(x,y) = ( by 0 )

The discriminant function is &(x,y) = b7y? so the discriminant set is A = {(x,0),x € R}. From

(4.8) the equation of the invariant straight lines is given by
w(cou®+2b, %) =0.

When bicy > 0 we have one invariant straight line through the origin and when bjcy < 0 we
have 3 invariant straight lines, and none of them coincide with the discriminant set .

Let € = sign(bico). Setting A = 1//co and D = \/€./co/b; in (4.7) we have that B is
Z, x 7,7, (x,)]-equivalent to B; where

Bl(xvy): (;; ?)

Proposition 4.1.6. Let ® be a Z, x Z,Z,(k,)]-equivariant quadratic 1-form of the form

We conclude that:

(0,b1y,cox). Then @ is Zo X Zo[Zo(Ky)]-equivalent to

(0, €y, x), €=sign(bicy) = =£I.

In Figure 19 we illustrate the configurations associated with Zy x Z[Z;(k;)]-invariant BDEs of
the Proposition 4.1.6 with € = 1 and € = —1, respectively.
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(b)

Figure 19 — Z; x Z;[Z,(k;)]-equivariant normal forms.

4.1.3.3 Case ay=cy=0and by #0

Let B € P4(Z x Za[Z(x2)]) with ag = co = 0 and by # 0, 50

0 by
B(x,y)=<bly 0 )

The discriminant function is & (x,y) = b?y? and the discriminant set is A = {(x,0),x € R}. From

(4.8) the equation of invariant straight lines is
2b1up? =0.

So the coordinate axes always are the invariant straight lines through the origin, and one of them

coincide with the discriminant set .

Setting A = 1/b; and D = 1 in (4.7), B is Zy X Z,[Z,(k)]-equivalent to B; where
0y
Bi(x,y) = .
1(x,y) < y 0 )

Proposition 4.1.7. Let ® be a Z, x Z,|Z,(Ky)|-equivariant quadratic 1-form of the form
(0,b1y,0). Then o is Z, x Z,|Z,(Ky)|-equivalent to

Therefore we conclude that:

(0, v, 0).

In Figure 20 we illustrate the configuration associated with the equivariant normal form in

Proposition 4.1.7.

4.1.3.4 Case co=0and apb; #0

Let B € P4(Z x Za[Za(x)]) with co = 0 and aghy # 0, 50

B(x,y) 0 by
X,y) = .
Y b1y aox
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Figure 20 — Zy x Z,|Zy(k;)]-equivariant linear normal form.

The discriminant function is 8(x,y) = b7y* and the discriminant set is A = {(x,0),x € R}. From

(4.8) the equation of invariant straight lines is
1B (2by +ag) = 0. (4.9)

So, when 2b| +ag # 0 the invariant straight lines are the coordinates axis and, when 2b| +ag =0,

we have infinity invariant straight lines through the origin.

Setting A = 1/b; and D = 1 in (4.7), B is Z, X Z,[Z,(k)]-equivalent to B; where

Biley) = ( 2 ao/yblx ) .

Now, denote B by B(ag, b1 ) to explicit the coefficients ag, b;. From (4.7), the mappings B(ag, b, )
and B(dy,b;) are equivalents if and only if there exist A,D € R, AD # 0 such that

0 vy B 0 AD?y
y ap/bix B AD*y AD?dy/bx 7

ao/b1 :do/lsl.

that is, if and only if

So we conclude that:

Proposition 4.1.8. Let @ be a 7, x 7,|Z;(K;)|-equivariant quadratic 1-form of the form
(apx,b1y,0). Then o is Zp x L |Z,(Ky)]-equivalent to

(mx,y,0), 0£meR.

According to the expression of the normal form in Proposition 4.1.8 the equation of
invariant straight lines (4.9) can be rewritten as u3%(2 +m) = 0. So, when m = —2 we have
infinite invariant straight lines through the origin, otherwise we have two straight lines, one being

the discriminant set. The foliations are given by the solutions of
mxdy?* + 2ydxdy = 0.

One foliation is given by the curves y = ¢ and In |yx*"| = ¢, for ¢ > 0 and, the curves of the
other foliation have the same equations for ¢ < 0. The parameter m is called modal parameter
or moduli. In Figure 21 we can see its geometrical effect on the configuration associated with a
Z, X 71, [Z;(x)]-invariant BDE of the form (mx,y,0).
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m=0
(d)

Figure 21 — Configurations associated with (mx,y,0), m € R.

4.1.3.5 Case a0b1c0 75 0

Let B € P4(Z x Z[Z(x)]) of the form

B(x.y) cox by
X,y) = .
Y b1y aox

We denote B by B(ag,bi,cp). The discriminant function is §(x,y) = b%y2 — apcox? and the
discriminant set is the origin if agco < 0 or two transversal straight lines through the origin if
apco > 0. Let € = sign(agco). From (4.7), if we take A = 1//co and D = |/ 8c0/a(3) we have that
B(ag,by,co) is Zy x Zo[Z>(Ky)] equivalent to B(e,eby /ap, 1).

Lemma 4.1.9. Let B(g,eb;/ag, 1), € = sign(agcy), and B(&,&b; /dg, 1), & = sign(doco). The
mappings B and B are 7o x 7|7 ()] equivalent if and only if

€=¢ and bl/a0=l~91/a~o.

Proof. From (4.7), the mappings are equivalent if and only if there exist A,D € R, AD # 0 such

that -
Adx by /agAD?y B x &by /dyy
by /agAD?y eAD*x \ &b /doy Ex '
Then A = 1, D?> = &/¢ > 0 and so the result holds. O

As the consequence of Lemma 4.1.9 we have that:



4.1. T-equivalence 85

Proposition 4.1.10. Let @ be a Z, x Z,[Z,(Ky)]-equivariant quadratic 1-form of the form
(apx,byy,cox). Then o is Zy X 2|2, (Ky)]-equivalent to

(ex,emy,x), 0Fm e R and € = sign(apcy).

According to Proposition 4.1.10 the discriminant function is
8(x,y) =m’y* —ex’,
and the equation of invariant straight lines is given by

w(u®+p2(2em+¢)) = 0.

Consider € = 1. The discriminant set is two straight lines through the origin, x = £my.
We have 1 invariant straight line trough the origin, the y-axis, if 2m+1> 0. If 2m+1 < 0 we
have 3 invariant straight lines, but from Remark 3.2.4 they appear in the configuration associated
with the BDE if and only if they are contained in Q : {(x,y) € R : d(x,y) > 0}. So, direct
calculations show us that we see three invariant straight lines except if m = —1, in whose case
two of them coincide with the discriminant set. Now, consider € = —1. Then the discriminant set
is the origin and we have 1 straight line through the origin if 2m+1 <0and 3 if 2m+1 > 0.

In Figure 22 and Figure 23 we illustrate the variation of the modal parameter m in each
case, € = =£1, respectively. In both cases the modal parameter m control the position of invariant
straight lines in the configuration associated with the BDE.

-y my-1/2
(a) (b)

Figure 22 — Configurations associated with (x,my,x) m #0 € R.

(b)
Figure 23 — Configurations associated with (—x, —my,x), m # 0 € R.
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4.1.4 7,(—I)[1]-equivariant normal forms

The I'-equivalence relation given in (4.3) when I = Z,(—1) is the linear change of coordinates
used by Bruce and Tari in [11] to do a formal reduction of a linear part of BDE with discriminant
function of Morse type. This means that the discriminant set is the origin or a pair of transversal
straight lines through the origin.

We use de results of [11] to direct our search to the equivariant normal forms in this
section. From [11, Proposition 3.2] we have the prenormal form

(y,box+byy,ey), € ==£l. (4.10)

The discriminant function is given by
8(x,y) = bix® +2bobixy + (b] — €)y*.

Let D := (2bob1)* — 4b3((b7 — €)) = 4(€b}). Since § is a conic we have that the discriminant
set is: the origin when D < 0, that is, € = —1 and by # 0; one straight line through the origin
when D = 0, that is, by = 0; two straight lines through the origin when D > 0 or (b? —€) =0,
that is, € = 1 and by # 0.

The equation of invariant straight lines is given by

B(B*+2b1 B+ u*(2by+¢)). (4.11)

Thus, the x-axis is always an invariant line and the others are given by the zeros of B2 +
2b1 B+ u?(2bo + €). Then, we obtain 2 distinct invariant straight lines when b? —2by — & =0
or 2bg + € = 0; one invariant straight lines when b% —2bo — € < 0 and 3 distinct invariant straight
lines when b% —2by—€ > 0.

The conditions discussed above give us special curves partitioning the (b, b;)-plane on
regions, which direct our search to equivariant normal form. Namely:
The curves for € =1 are
(i) bo = 0;
(i) 2bg +1=00r b3 —2by— 1 =0;

The curves for € = —1 are
(i) bo =0.
(ii) 2bg — 1 =0 or b2 —2by+ 1 = 0.

In Figure 24 we have the partition of the (bg, by )-plane for € = 1 and € = —1, respectively.
The dashed lines are the points where the discriminant set is a straight line through the origin, on
the other points the discriminant set is a point in Figure 24(a) and two straight lines in Figure
24(b). The number of invariant straight lines through the origin is explicit on the figures and on
the solid lines this number is equal to two.
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=112

(a) (d)
Figure 24 — Partition of the (bg, b1 )-plane for € = 1 and € = —1, respectively.

We denote a matrix-valued mapping B € }g(Zz(—I )[1]) associated with (4.10) by
B(bg, b ). We divide the deduction of the Z,(—1)[1]-equivaraint normal forms in three principal
cases: € = 1, € = —1 and when the pair (bg,b;) does not satisfy any of the conditions listed

above. From here, if ¢ € Q(Zz(—l )) is a linear diffeomorphism, then

a o
¢—<§ §>, (4.12)

foraé —od #0, a,8,&,0 €R.

4.1.4.1 Egquivariant normal forms of (y,box+ b1y,y)

We deduce here the Z,(—1)[1]-equivariant normal forms for the pair (bg,b;) in each one of the
conditions: by = 0, 2bg+ 1 = 0 and b2 —2by — 1 = 0.

1. Case by =0

Let B(0,b) € > ¢(Za(—I)[1]). The discriminant function in given by
5(x,y) = (b% - l)yza

so the discriminant set is the x-axis if b; # +1 and all the plane otherwise. According to

(4.11) the equation of invariant straight lines is given by

B(B*+2upBby +u’) =0.
So, we have 1 invariant straight line if —1 < b; < 1;2if by = £1 and 3 if |b| > 1.
Let ¢ € ﬁ (Zy(—1)) as in (4.12). From equivalence relation (4.3) we have

Cox+C1y Box+ By )

¢ (Bog(x,y))9 = ( Box+B1y Apx+Ary

where
Co=O(2bjat + o + %) and C) = E(2bjad + o + ),
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By=9%bEa+bod+EV+ao) and By =E(biEa+biod+EY+ao),
Ag=002bEc+E2+0%) and A; = EQ2b1Ec+E2+02).

The condition Ag = Cy = By = 0 is satisfies if and only if ¥ = 0. Now the condition
C; =A; =1 implies that ¢ = 1/a? and 0 = (—b; + /a® + b3 — 1) /. The expression

of B becomes
B, = A/ (X6+b%— 1/063,

Therefore, B(0,b;) is Zo(—1I)[1] equivalent to B(0, b ) if and only if B; = b;. Thinking of
B as a function of a we find three equivalence class: one if —1 < b} < 1, other if |b| > 1
and, if b, = 1 is enough to set ¥ =0, £ = 1/a? and 6 = (—1 £ &?)/a? and B(0,1) is
equivalent to B(0,£1).

Then we have 3 normal forms:

32y,y), (»y/2,y) and (y,y,y).

. Case2bp+1=0

Let B(—1/2,b)) € ?e(Zz(—I)[l]). The discriminant function in given by
S(x,y) = /4= bixy+ (b1 — 1)y?

so the discriminant set is the reunion of two transversal lines across the origin for all

0 # by € R. According to (4.11) the equation of invariant straight lines is given by

B> (B +2b1p) =0.

So, we have 2 invariant straight lines for all b; € R. Let ¢ € 7 (Zy(—1I)) as in (4.12). From
the equivalence relation (4.3) we have

0 (Bod(x,y))d = ( Cor+Cry BoxtBry )

Box+B1y Aopx+Apy

where
Co=0>(2bja+0) and C; = 2b Ed + Ea’ + EV% — acd,

By =1/2000 + b 9> —1/2Ea* + ab ED + EV? and
By =1/26Ea—1/206% 4+ 00b &+ E>aby + £,
Ao =2bEcO+E20 —Eac+0?® and A = E*(2bjo +&).
The condition Cy = Ap = 0 implies that ¥ = 6 = 0. The expressions of C; and A| become

Ci=Ea? and A; =&3.S0,C; =A; = 1 implies that € = 1 and &® = 1 and thus

30:—1/2 and B; = ab;.
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Therefore, the normal form in this case is

(y7 —x/2—|—my,y), m > Oa

where the modal parameter m gives the position of the invariant straight lines in the
configuration associated with the BDE.

3. Case b —2by—1=0
Let B(bg,b1) € 55(Z2(—1)[1]) with b2 — 2by — 1 = 0. The discriminant function is given

by
§(x,y) = (b7/2—1/2)%% +2b1 (b /2 — 1/2)xy + (b} — 1)y

the discriminant set is the union of two transversal lines across the origin unless b} = +1 .

According to (4.11) the equation of invariant straight lines is given by

B(B?+2uBby +u*b?) =0.

So, we have 2 invariant straight lines for all 0 # b; € R. Let ¢ € @(Zz(—l)) as in (4.12).

From equivalence relation (4.3) we have

0" (Bog(x,y))9 = ( CortCry BoxtBry )

Box+B1y Apx+Apy
where
Co= (b o+0)? and C; =blac® +2b Ead +Ea’+E8% —aod,
By=1/20000 + 1/2b3 0.6 + b 0% + 1/2Ea*b? —1/2E 0> + b1 Ead + ED? and
B =1/26Ea+1/286°b3 —1/206% +060b & +1/203Eac + E2b o+ E20,
Ag=bTEac +2b Ecd+E2 —Eac+ 620 and A =E(bo+E)%

The condition Cy = Ag = 0 implies that 4 = ¢ = 0. The expressions of C; and A| become
Ci=¢&E0? and A} =&3.S0,A| = C| = 1 implies that

Bo=1/2(b7—1) and B; = ab.
So the normal form is given by
(y, (m* = 1)x/2+my.y),m >0 and m # 1.

When b; = 1 we return for the case by = 0, and the normal form is (y,y,y).
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4.1.4.2 Equivariant normal forms of (y.box + b1y, —y)
We deduce here the Z;,(—1)[1]-equivariant normal forms for the pair (b, b;) in each one of the

conditions: by =0, 2by — 1 = 0 and b7 — 2y + 1 = 0.

1. Case by =0

Let B(0,b) € ﬁg(Zz(—I) [1]). The discriminant function in given by
8(x,y) = (b + 1)y,

so the discriminant set is the x-axis for all b; € R. According to (4.11) the equation of

invariant straight lines is given by

B(B*+2uBb; —p*) =0.
So, we have 3 invariant straight lines through the origin.

Let ¢ € % (Z(—1)) as in (4.12). From the equivalence relation (4.3) we have

C C B B
¢’<Bo¢<x,y)>¢:< oy Bov ”>,

Box+ By Aopx+Apy

where
Co=(2bjad — o +9?) and C) = E(2bjad — o + B2,

By=9(béa+bicd+EY—ao) and By =&(hEa+biod+ES —ao),
Ag=002bEc+E>—6?) and A} =E(2b Ec +E% —62).

The condition Ag = Cy = By = 0 is satisfied if and only if ¥ = 0. Now the conditions

C; =—1and A; = 1 imply that £ = 1/a? and 6 = (b +/—a®+b3+1)/a’. The

expression of B; becomes
By =—y/—at+b}+1/0,

Therefore, B(0,b;) is Z,(—1)[1] equivalent to B(0, 1) if and only if Bj = 1 which is always
possible. In fact, take & = —(1/2)v/6(32b3 +32) so By = 1 and &® = 1/2(b3 +1) < b +1,
then o is well define. We conclude that there exists only one nontrivial equivariant normal

form:

(yvyv_y)'

2. Case2byp—1=0

Let B(1/2,by) € ?(Zz(—l )[1]). The discriminant function in given by

8(x,y) = x*/4+bixy+ (b7 + 1)y,
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so the discriminant set is the origin for all 0 # b; € R. According to (4.11) the equation of

invariant straight lines is given by

B> (B +2b1p) = 0.

So, we have 2 invariant straight lines for all b; € R.

Let ¢ € ﬁ(Zz(—I )) as in (4.12). From the equivalence relation we have

0 (Bod(x.y)) = ( CortCry BoxtBry ) 7

Box+ By Aox+Apy

where
Co= 9220t + ) and Cy = 2b1Ead — Ea® + EV% + oo D,

By=—1/2000 +0b 0>+ 1/2Ea> + ab 1 EV + EV? and
By =—1/2c0Ea+1/2006% +c0b &+ E>aby +E20,
Ag=2b1EcO+E2O+Eac—o?P and Ay = E2(2bjo 4+ &).

The condition Cyp = Ap implies that % = o = 0. The expressions of C; and A; become
Ci=—-Ea? and A =&3.S0,C; = —1and A| = | implies that & = 1 and &®> = | and
thus

By=1/2 and B, = ab,.

Therefore, the normal form in this case is
(v,x/24my,—y), m >0,

where the modal parameter m gives the position of the invariants straight lines in the

configuration associated with the BDE.

3. Case bt —2by+1=0

Let B(by,b;) € ﬁg(lz(—[)[l]) with b7 —2by + 1 = 0. The discriminant function in given
by

8(x,y) = (b3/2+1/2)x* + by (b + D)xy + (b3 +1)y*
and the discriminant set is the origin for all b; € R. According to (4.11) the equation of

invariant straight lines is given by

B(B*+2uBby + u*b}) =0.

So, we have 2 invariant straight lines for all 0 # b1 € R. Let ¢ € %(Zz(—l )) as in (4.12).
From the equivalence relation (4.3) we have

0 (Bod(x,))0 = ( Cor+Cry BoxBry )

Box+Bly Apx +A1y
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where
Co=(bo+0)? and C; =blac®d +2bEad —Ea® +EV% +acd,
By =—1/2000 + 1/2b3a6 0 + 0b 9% + 1/2Ea*b? +1/2E 0> + b1 Ead +ED? and
By = —1/20Ea+1/200%h} +1/200% + c0b &+ 1/2h1E oo + E2ba+ E2 0,

Ag=bE0c +2bEcO+EO+Eao— 0?9 and A; =E (b +E)2.

The conditions Cy = Ag = 0 imply that ¥ = ¢ = 0. The expressions of C; and A become
Ci=—Ea? and A; =&3.S0,A; = 1 and C; = 1 imply that

By= (b1 +1)/2 and By = by, a*> = 1.

So the normal form is given by
(v, (m* + 1)x/2+my,—y), m > 0.

4.1.4.3 Egquivariant nornal form of (y,box+ b1y, €y)

Let B(bg,b;) € ﬁg(Zz(—[)[]]) with the pair (b, b)) does not satisfy any of the condition listed
in Subsection 4.1.4. Let ¢ € %(Zz(—l )) as in (4.12). From equivalence relation (4.3) we have

Cox+Ciy Box+Byy
¢'(Bo¢(x,y))¢ = ,
Box+B1y Aopx+Apy

where
Co = O(2boa® +2b ada’e +02) and C; =2byoo® +2b Ead + Ea’e + EB?,

By = bol o> + by + b Ead +bic8> + oec® + ED? and
By = bl o + by + b E*a+b EcS + Eaeo + E2D,
Ag =2boEac +2b Ecd+e0°9+E% and A = E(2byo? +2b1Ec +e0? +E?)

The conditions Cyp = Ag = 0 imply that % = ¢ = 0. The expressions of C; and A; becomes
Ci=E&a’e and A; =&3.S0,A; = 1 and C| = € imply that

By =bg and B| = ab,, 06221.

So the normal form is given by,

(v,nx+my,ey), (m,n) €T,
where Y = R2\ {(n,m) € R>:m > 0,n=0, 2n+€=0, m*> —2n—€ =0}.

We finish with some examples that illustrate the configurations of the linear general form
symmetric under Z,(—1).
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e \
N, \ \\\

(¥, %12 +y, y) (¥, X12 +, -y)
(d) (e)

(v, 5x +3y, y)
(g)

Figure 25 — Configurations associated with Z,(—1I)-equivariant linear BDEs.

4.2 Summarizing table

In this section we present the equivariant normal forms of symmetric quadratic differential
1-forms @ = a(x,y)dy* +2b(x,y)dxdy + c(x,y)dy? where a,b and c are linear functions. Table
4 shows each group I'[kern| and the kernel of the homomorphism A.

I'kern] kerA | General form
Do (1) D3 (k)] | D3(ky) | (—x,—y,x).

Zg Z3] Z; ( A=Y, X— y7x+y)
(ex,0,x), € =+1.
(0,€y,x), € =+£1.
(0,7,0).

(mx,y,0), m € R*.
(ex,emy,x), € = +1, m € R*.
(

(

(

(

(

L x D1 (%)) | Za(xy)

¥,29,¥).

¥,5/2,).

»,),€y), € ==*1.

y, — 8x/2—|—my,8y) m>0,e=41.

y, (m?* — €)x/2 +my,€ey), m>0,& = +1.
(y,nx+my,€y), € =+1,(m,n) €Y.
Y=R*\{(n,m) ER>:m>0,n=0, 2n+€ =0, m2—2n—e=0}.

Table 4 — Linear equivariant normal forms.

Z,(-D[1] | Zo(=1)

Remark 4.2.1. If we consider the quadratic 1-forms
o1 = (a1y,box,c1y) and @, = (c1x,boy,ax),

where ay,by,c) € R, we note that they are Z,(—I)[1]-equivalent. In fact, take ¢ in (4.12) with
a =& =0and ® = o = 1. Itis interesting to note that the first one is Zy X Z[Z(xy)]-equivariant
and the second is 1, x 1 [Z,(K;)]-equivariant.
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Remarks 4.1.4 and 4.2.1 give examples of the same ideia of the existence of a relationship
between the linear quadratic 1-forms symmetric under the same group I' but with distinct
homomorphisms 7, the relationship being an equivalence which is equivariant under a common

subgroup.
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CONCLUSION

The development of this thesis proved to be fruitful and pave ways for new research projects.
With the definition of equivariance in the space of the quadratic 1-forms and having established

the algebraic relationship that controls the interchanges of foliations, some questions arise.

Given a pair of foliations on the plane associated with a binary differential equation,
how can we relate their symmetries with the symmetries of the BDE? This pair of foliations is
associated with two linear 1-forms, whose product is a quadratic 1-form and whose symmetries
we have studied in Chapter 1 of this thesis. The classification of pairs of linear 1-forms have
been treated in [26] and [27] under the singularity theory point of view. We intend to relate our
study of symmetries of pairs of 1-forms done in Section 1.3 to this symmetries of the quadratic
I-form. As discussed at the end of this chapter this is a sensitive issue and we intend to answer

this question.

A natural continuation of the study proposed in Chapter 4 is to classify the nonlinear
I"-equivariant mappings B : R> — Sym,. For the case without symmetries we cite the paper [18],
where the author gives a classification of simple space curve singularities which are not complete
intersections. Bruce in [9] obtain a list of all simple germs of mappings of this type, under a

natural notion of equivalence, and investigate their geometry.

Another line of investigation is to relate symmetries in differential forms to pairs of
foliations of a special classes of surfaces. On this subject some questions were made to us by
Ronaldo Garcia and Kentaro Saji: for a given equivariant BDE, we ask whether this can be
realized as an equation of lines of curvatures or of asymptotic lines of a surface immersed on R”
for some n. It was also asked to us by R. Garcia, how the prior knowledge of the symmetries of

the problem can contribute.

Another line is to consider the occurrence of symmetries in n-webs. For n = 3, for
example, solutions of an cubic implicit differential equation defines three foliations on the
plane. We think that, as in the case of a pair of foliations, we can establish a relation to give the
interchange of foliations by an element of the symmetry group I'. This will correspond to the
homomorphism A : I" — Z, of this thesis. For references on webs we have been reading [28]
and also [1, 2, 3].
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