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ABSTRACT

FALQUETO, A. D. On k-folding map-germs and hidden symmetries of curves in the
euclidean plane. 2023. 70 p. Dissertação (Mestrado em Ciências – Matemática) – Instituto de
Ciências Matemáticas e de Computação, Universidade de São Paulo, São Carlos – SP, 2023.

The aim of this work is to study the local singularities of germs of k-folds for k ≥ 3 and
derive from them hidden symmetries of curves in the Euclidean plane. We used the Complete
Transversal Method in order to classify the A -simple singularities of map-germs C,0 → C2,0.
We then prove that all the simple singularities of such germs can be realised by k-folding maps
and that any k-folding map-germ can have an A -simple singularity. This does not occur in the
case of surfaces, as proved in (PEÑAFORT SANCHIS; TARI, 2023). Finally, we proved that the
singularities of k-folding map-germs reveal information about the local symmetry of the curve.

Keywords: Germs, K-folding maps, Singularities, Symmetries.





RESUMO

FALQUETO, A. D. Germes de aplicações k-dobras e simetrias ocultas de curvas no plano
euclidiano. 2023. 70 p. Dissertação (Mestrado em Ciências – Matemática) – Instituto de
Ciências Matemáticas e de Computação, Universidade de São Paulo, São Carlos – SP, 2023.

O objetivo deste trabalho é estudar as singularidades locais dos germes de aplicações k-dobras
para k ≥ 3 e derivar delas simetrias ocultas de curvas no plano euclidiano.

Primeiramente, utilizamos o Método da Transversal Completa para classificar as singularidades
A -simples dos germes C,0 → C2,0. Em seguida, provamos que todas estas singularidades
podem ser realizadas pelas aplicações k-dobras e que qualquer aplicação k-dobra pode ter
uma singularidade A -simples, o que não ocorre no caso de superfícies, conforme provado em
(PEÑAFORT SANCHIS; TARI, 2023). Por fim, provamos que as singularidades dos germes de
k-dobras revelam informações a respeito da simetria da curva.

Palavras-chave: Germes, K-dobras, Singularidades, Simetrias.
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CHAPTER

1
INTRODUCTION

The 2-folding map-germs, also called folding map-germs, have been studied by Bruce
and Wilkinson in order to describe some geometric features of surfaces in R3. In (PEÑAFORT
SANCHIS; TARI, 2023), the authors generalised that work by considering k-folding maps on
surfaces in R3 with k ≥ 3. They recovered many known geometrical features of surfaces and also
discovered new ones.

In (TARI, 1990), it was shown how a family of 2-folding map-germs, also called folding
map-germs, on a plane curve can be used to study the local singularities of the duals of symmetry
sets of plane curves and families of such curves, that is, the infinitesimal axes of symmetry.
Given a plane curve (or a family of plane curves) and a family of folding-maps on it, since the
dual of the symmetry set can be identified as a part of the bifurcation set of the family of folding
maps, it was shown in (TARI, 1990) that:

• the dual of an ordinary inflexion on the symmetry set is a cusp;

• for a generic 1-parameter family of curves, the dual of a higher inflexion on the symmetry
set undergoes swallowtail transitions;

• for a generic 1-parameter families of curves the dual of the symmetry set when the
bitangent circle is biosculating undergoes lips or beaks transitions;

• at an ordinary vertex on the curve, the dual of the symmetry set is a curve with an ending
point;

• at a higher vertex on the curve, the dual of the symmetry set is some sections of the product
of (t2, t5) by a line.

In this work, we consider k-folding map-germs on plane curves, for k ≥ 3. We show that
some singularities of k-folding maps reveal information about the hidden symmetries of plane
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curves. Since those symmetries cannot be viewed in the real case, which is why we call them
"hidden", we consider the curve in the complex plane or, in the case where the curve is in R2, we
complexify the curve if it is analytic or a certain jet of its parametrization.

In Chapter 2, we give a brief introduction to the Singularity Theory, showing concepts
used in this work.

In Chapter 3, we give the proof and correct some misprints of the classification of A -
simple singularities of germs C,0 → C2,0 given by C.G. Gibson and C. A. Hobbs in (GIBSON;
HOBBS, 1983), using the Complete Transversal Method.

Chapter 4 is dedicated to the study of the k-folding map-germs on plane curves and
their local singularities. We proved that all A -simple singularities can be realised by k-folding
map-germs and that all k-folding map-germs can have A -simple singularities. We use the result
to obtain information about the hidden local symmetry of a plane curve. We observe that the
results in Chapter 4 are original.

Finally, we give in the Appendix some results in Singularity Theory applied to the
geometry of curves.
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CHAPTER

2
BASIC RESULTS IN SINGULARITY THEORY

We give in this chapter some results in Singularity Theory which we used in Chapter 3
for classifying the A -simple singularities of germs C,0 → C2,0.

In what follows, K denotes C or R. All the maps are considered smooth (if K= R) or
holomorphic (if K = C). Our main reference is the most recent book to date on Singularity
Theory (MOND; NUÑO-BALLESTEROS, 2020).

2.1 Action of Lie groups

Definition 2.1.1. (GIBSON, 1979) A Lie group G is a group which is a smooth manifold and the
group operations of multiplication G×G → G, given by (g1,g2) 7→ g1g2 and inversion G → G−1,
given by g 7→ g−1 are smooth maps.

Definition 2.1.2. (GIBSON, 1979) Let G be a group and M ̸= /0 be a set. An action of G on M is
a map φ : G×M → M, given by φ(g,x) = g · x, such that

(a) 1 · x = x, where 1 is the identity of G;
(b) (gh) · x = g · (h · x),∀x ∈ M,∀g,h ∈ G.

Example 2.1.3. The general linear group Gl(n) is a Lie group (see for example (GIBSON,
1979)). Indeed, Gl(n) is a group with multiplication of matrices. Moreover, since it can be
identified as the group of non-singular real n× n matrices, it is an open subset of the vector
space M(n) of all real n×n matrices. Thus, Gl(n) is a smooth manifold. The group operation of
multiplication is smooth since the multiplication of matrices in M(n) is a polynomial mapping.
Matrix inversion in Gl(n) is a rational mapping with nonzero denominator, hence, smooth.

Given an action of a group G on M, we can define an equivalence relation in M. For
x,y ∈ M, we say that x is equivalent to y if there exists g ∈ G such that y = g · x. The equivalence



22 Chapter 2. Basic Results in Singularity Theory

classes of this relation are called orbits. Given x ∈ M, the orbit of x is the set

G · x = {g · x,g ∈ G}.

Definition 2.1.4. (GIBSON, 1979) Let G be a Lie group acting on a smooth manifold M. We
say that φ : G×M → M is a smooth action if φ is smooth.

Theorem 2.1.5. (GIBSON, 1979) Let G be a Lie group acting smoothly on a manifold M. Then
the orbits are immersed submanifolds in M.

In the study of actions of Lie groups on smooth manifolds it is useful to know the tangent
space to an orbit at a point. The next proposition shows how this tangent space can be described.

Proposition 2.1.6. (GIBSON, 1979) Let φ : G×M → M be a smooth action of a Lie group G

on a smooth manifold M. Suppose that all the orbits are smooth submanifolds of M. Then for
any point x ∈ M the natural mapping φx : G → G · x given by g → g · x is a submersion.

Proof. First, we show that rank(Dφx(h)) = rank(Dφx(1)), for all h ∈ G. Let h ∈ G and consider
the following diagram:

G G · x
φx

//

G

G

θh

��

G G · xφx // G · x

G · x

θ̄h

��

where θh(g) = h ·g and θ̄h(y) = h ·y. Observe that θh and θ̄h are diffeomorphisms since (θh)
−1 =

θh−1 and (θ̄h)
−1 = θ̄h−1 . Also, the diagram above commutes. Indeed,

(θ̄h ◦φx)(g) = h · (g · x) = (hg) · x = (φx ◦θh)(g).

This comuting diagram gives rise to the comuting diagram of differentials

ThG Th·xG · x
Dφx(h)

//

T1G

ThG

Dθh(1)

��

T1G TxG · x
Dφx(1) // TxG · x

Th·xG · x

Dθ̄h(x)

��

The vertical arrows in the diagram of differentials are linear isomorphisms since θh and θ̄h are
diffeomorphisms. Therefore,

rank(Dφx(1)) = rank(Dφx(h)), for all h ∈ G.

According to Sard’s Theorem (GOLUBITSKY; GUILLEMIN, 1973), the set of regular values
of the map φx is dense. So, there exists x0 such that φx(x0) is a submersion. Since rank(Dφx) is
constant and equal to rank(Dφx0), the map Dφx is surjective. Hence, φx is a submersion for all
x ∈ M.
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Corollary 2.1.7. If G is a Lie group acting on a smooth manifold M and suppose that the orbits
are smooth submanifolds. Then dimG · x ≤ dimG for all x ∈ M.

Lemma 2.1.8. (Mather’s Lemma, (MOND; NUÑO-BALLESTEROS, 2020)) Suppose the Lie
group G acts smoothly on the manifold M, and that N ⊂ M is a smooth connected submanifold.
Then a necessary and sufficient condition for N to be contained in a single orbit is that

1. for all p ∈ N,TpN ⊂ TpG · p;
2. the dimension of TpG · p is the same, for all p ∈ N.

Proof. See (MOND; NUÑO-BALLESTEROS, 2020).

2.2 Map-germs Kn,0 →Kp,0

Definition 2.2.1. (MOND; NUÑO-BALLESTEROS, 2020) Consider f :U →Kp and g :V →Kp

maps defined on neighbourhoods U and V of a point q ∈Kn. We say that f and g are equivalent
if and only if there exists a neighbourhood W of q, with W ⊂U ∩V , such that f ↾W= g ↾W . An
equivalent class of such maps is called a germ of mapping or map-germ at q.

Notation: f : Kn,x →Kp,y, where y = f (x).

Remark 2.2.2. (MOND; NUÑO-BALLESTEROS, 2020) The set of all germs Kn,0 →Kp is
denoted by O(n, p). When p = 1, this set is denoted by On and it is a local ring with maximal
ideal Mn, where Mn = { f ∈ On; f (0) = 0}.

There are some special groups that act on MnO(n, p). They are called the Mather’s
groups.

2.3 Mather’s Groups and Tangent Spaces

Definition 2.3.1. (MOND; NUÑO-BALLESTEROS, 2020) The group R is the group of the
germs of diffeomorphisms Kn,0 →Kn,0. The group L is the group of the germs of diffeomor-
phisms Kp,0 →Kp,0 and A is the direct product R×L . The actions of the above groups on
MnO(n, p) are given by

h · f = f ◦h−1,h ∈ R

k · f = k ◦ f ,k ∈ L

(h,k) · f = k ◦ f ◦h−1,(h,k) ∈ A ,

where f ∈ MnO(n, p). The R (respectively, L ) is also called the groups of germs of changes of
coordinates in the source (respectively, target).
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Definition 2.3.2. (MOND; NUÑO-BALLESTEROS, 2020) The group C is the group of germs of
diffeomorphisms H :Kn×Kp,0→Kn×Kp,0 such that H(x,y) = (x,H ′(x,y)) with H ′(x,0) = 0
for x ∈Kn close to the origin. The action of C on MnO(n, p) is given by

H · f (x) = H(x, f (x)),H ∈ C , f ∈ MnO(n, p).

The group K , also called the contact group, is the group of the germs of diffeomorphisms
H : Kn ×Kp,0 →Kn ×Kp,0 given by H(x,y) = (h(x),H ′(x,y)), where h ∈ R, H ′(x,0) = 0 for
x ∈Kn close to the origin. The action of K on MnO(n, p) is given by

H · f (x) = H(h−1(x), f (h−1(x))),H ∈ K , f ∈ MnO(n, p).

Definition 2.3.3. The groups R,L ,A ,C and K are called Mather’s groups.

If G is a Lie group acting smoothly on a manifold M, the orbits are immersed sub-
manifolds and the tangent spaces are the image of the differential of the orbit map. However,
the Mather’s groups are not finite dimensional and the orbits are not manifolds. In that case,
the tangent space to an orbit is defined by considering derivatives of paths (MOND; NUÑO-
BALLESTEROS, 2020).

Definition 2.3.4. (MOND; NUÑO-BALLESTEROS, 2020) Let f ∈ O(n, p), TKn and TKp the
tangent bundle of Kn and Kp, respectively. Consider π1 : TKn → Kn and π2 : TKp → Kp the
germs of natural projections. A vector field ζ along f is a germ such that π2 ◦ ζ = f , where
ξ : (Kn,0)→ TKp.

The set of all vector fields along f is denoted by θ f .

Remark 2.3.5. The set of the germs of vector fields in Kn at the identity is denoted by θn = θ1Kn .
Analogously, θp = θ1Kp defines the set of vector fields in Kp at the identity.

Consider the maps
t f : θn → θ f

φ 7→ d f ◦φ

and
w f : θp → θ f

ψ 7→ ψ ◦ f

The map w f is induced by
f ∗ : Op → On

α 7→ α ◦ f .

One can identify θ f as O(n, p). The following definition gives the tangent spaces to an
orbits of an action of a Mather group on MnO(n, p) in that case.
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Definition 2.3.6. (IZUMIYA et al., 2015) Let f ∈ MnO(n, p) and G be one of the Mather’s
Group. The tangent space to the orbit G · f is defined as:

TL · f = f ∗(Mp) · {e1, ...,ep},

TR · f = Mn{
∂ f
∂x1

, · · · , ∂ f
∂xn

},

TA · f = TR · f +TL · f ,

TC · f = f ∗(Mp) ·On · {e1, ...,ep},
TK · f = TR · f +TC · f ,

where e1, ...,ep are the elements of the standard basis of Kp(considered as elements of O(n, p).

By allowing the vector fields involved in the definition of the tangent space not to fix the
origin, the extended tangent spaces are given as follows

TLe · f = f ∗(Op) · {e1, ...,ep},

TRe · f = On{
∂ f
∂x1

, · · · , ∂ f
∂xn

},

TAe · f = TRe · f +TLe · f ,

TCe · f = f ∗(Mp) ·On · {e1, ...,ep},
TKe · f = TRe · f +TCe · f .

Definition 2.3.7. (IZUMIYA et al., 2015) The G -codimension of f is defined by

G − cod( f ) = dimK
Mn ·O(n, p)

TG · f
.

and its extended codimension is defined by

Ge − cod( f ) = dimK
O(n, p)
TeG · f

.

2.4 Jet space

Definition 2.4.1. (MOND; NUÑO-BALLESTEROS, 2020) Denote by Jk(n, p) the space of
p-tuples of polynomials of degree less than or equal to k in n variables with no constant term. A
map-germ f : (Kn,0)→ (Kp,0) determines a germ of a map jk f : (Kn,0)→ Jk(n, p), the k-jet
extension of f , defined by

jk f (x) = degree k Taylor polynomial of f at x, without its constant term.

Definition 2.4.2. (MOND; NUÑO-BALLESTEROS, 2020) The subspace Hk+1(n, p) of Jk+1(n, p)

is the subspace of the p-tuples of homogeneous polynomials of degree k+1 in n variables.

Definition 2.4.3. (IZUMIYA et al., 2015) Let G be a Mather group. We denote by Gk the
subgroup of G of the elements of G with the identity as the k-jet. The Gk is a normal subgroup
of G .
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Remark 2.4.4. An important subgroup of A is the group A1, which is the group of the elements
of A with the identity as the 1-jet.

Definition 2.4.5. (IZUMIYA et al., 2015) The set of the k-jets of elements of G is denoted by
G (k) = G /Gk, which is a Lie group.

The action of a Mather’s group G on O(n, p) induces an action of G (k) in Jk(n, p) defined
as follows.

Proposition 2.4.6. (IZUMIYA et al., 2015) For jk f ∈ Jk(n, p) and jkh ∈ G (k), the action of G (k)

on Jk(n, p) is given by

jkh · jk f = jk(h · f )

Therefore, in order to understand the action of G on MnO(n, p) one can study the action
of G (k) on Jk(n, p).

In Singularity Theory, it is useful to classify the germs up to equivalence under the action
of a Mather’s group. By the finite determinacy, the problem of classification is reduced to a space
of finite dimension, that is, the jet space.

2.5 Finite Determinacy
Let G be a Mather group.

Definition 2.5.1. (MOND; NUÑO-BALLESTEROS, 2020) We say that f ∈ MnO(n, p) is
k−G -determined if any other germ g ∈ MnO(n, p) such that jk f = jkg is G -equivalent to f .
Also, f is finitely G -determined if it is k-determined for some k < ∞. The G - determinacy degree
of f is the lowest k such that f is k-determined.

Theorem 2.5.2. (MOND; NUÑO-BALLESTEROS, 2020) The following statements are equiva-
lent:

(a) f is finitely G -determined;

(b) for some k, M k
n O(n, p)⊂ TG · f ;

(c) for some k, M k
n O(n, p)⊂ TGe · f ;

(d) G − cod( f )< ∞;

(e) Ge − cod( f )< ∞;

In the context of finite determinacy, it is also interesting to find the degree of determinacy
of a given map-germ. This problem is solved in (BRUCE; PLESSIS; WALL, 1987). In our case,
we are going to use the group G =A . The following corollary is useful for estimating the degree
of A -determinacy of a map-germ.
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Corollary 2.5.3. (BRUCE; PLESSIS; WALL, 1987) If f ∈ MnO(n, p) satisfies

M l
nO(n, p)⊂ TK · f ;

M r+1
n O(n, p)⊂ TA1 · f +M l+r+1

n O(n, p),

then f is r−A1-determined.

2.6 Unfoldings

Given a G -finitely determined f , we can consider its deformations and study the singu-
larities that appear in such deformations. This is the idea of unfoldings.

Definition 2.6.1. (MOND; NUÑO-BALLESTEROS, 2020) Consider a germ f0 ∈ MnO(n, p).
An s-parameter unfolding of f0 is a germ F : Rn ×Rs,0 → Rp ×Rs,0 of the form

F(x,u) = ( f (x,u),u),

where f (.,0) = f0. The family f is called a deformation of f0.

Definition 2.6.2. (MOND; NUÑO-BALLESTEROS, 2020) Let F,G : Rn ×Rs,0 → Rp ×Rs,0
two s-parameter unfoldings of f0. We say that F and G are isomorphic if there exist unfoldings
of the germs of the identity

φ : Rn ×Rs,0 → Rn ×Rs,0
ψ : Rp ×Rs,0 → Rp ×Rs,0

such that F is A -equivalent to G via φ and ψ .

Remark 2.6.3. The definition of isomorphic unfoldings can be applied to any Mather group.

Given an unfolding, we can obtain another one by a change of parameter. That is the
case of induced unfoldings.

Definition 2.6.4. (MOND; NUÑO-BALLESTEROS, 2020) Consider a germ h : Rt ,0 → Rs,0.
The pull-back of F by h, denoted by h∗F , is the t-parameter unfolding given by

h∗F(x,v) = ( f (x,h(v)),v).

Definition 2.6.5. (GIBSON, 1979) Let F : Rn ×Rs,0 → Rp ×Rs and G : Rn ×Rt ,0 → Rp ×Rt

be two unfoldings of f0. We say that G is induced by F if there exists a germ h : Rt ,0 → Rs,0
such that G is isomorphic to h∗F . If h : Rs,0 → Rs,0 is a germ of a diffeomorphism and F is
isomorphic to h∗G, then F and G are called equivalent unfoldings.

Definition 2.6.6. (MOND; NUÑO-BALLESTEROS, 2020) Let F be an unfolding of the germ
f0. We say that F is a versal unfolding if any other unfolding of f0 is induced by F .
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2.7 The tangent space to the orbit of the action of G (k)

on Jk(n, p)

With the theory of unfoldings, one can describe the tangent spaces to the orbit of the
action of G (k) on Jk(n, p), for a Mather Group G . First, we need the following definition.

Definition 2.7.1. (MOND; NUÑO-BALLESTEROS, 2020) Let

F : (Kn ×K,0)→ (Kp ×K,0)
F(x, t) = ( ft(x), t)

be any origin-preserving unfolding of a germ f and η = jk f . Define a curve γ : (K,0)→ Jk(n, p)

where γ(t) = jk ft . Notice that

γ(0) = η ;
γ ′(0) = d

dt { jk ft}|t=0 = jk( d
dt ft |t=0).

Therefore, k-jets of 1-parameter unfoldings of f that preserve the origin are tangent vectors to
Jk(n, p). Conversely, any tangent vector to that space can be obtained in this way. Indeed, for
l ≥ k, consider

πk
l : Jl(n, p)→ Jk(n, p)

πk
l ( jl f ) = jk f

Since πk
l is an epimorphism and a linear map, it is a submersion when we consider the

manifold structures.

Lemma 2.7.2. (MOND; NUÑO-BALLESTEROS, 2020) For each η = jk f ∈ Jk(n, p), the orbit
G (k) ·η is a submanifold of Jk(n, p) whose tangent space at η is

Tη(G (k) ·η) = jk(TG · f )

Proof. Since this is an action of a Lie group on a manifold, the tangent space of the orbit is the
image of the differential of the orbit map, that is,

Tη(G (k) ·η) = deαη(TeG (k)),

where αη is the orbit map, given by

αη : G (k) → Jk(n, p)

αη(ψ) = ψη .

Therefore, according to Definition 2.7.1, the vectors in Tη(G (k) ·η) can be described by

deαη( jk( d
dt ψt}|t=0),

where ψt is any origin-preserving unfolding of identity in G .
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Using the linearity of the differential map and the definition of the orbit map, we obtain

deαη( jk( d
dt ψt}|t=0) = deαη(

d
dt { jkψt}|t=0) =

d
dt {αη( jkψt)}|t=0 =

d
dt { jk(ψt f ))}|t=0 = jk( d

dt (ψt f )|t=0.

The claim is that the tangent space TG · f is the set of all vector fields obtained as d
dt (ψt f )|t=0,

where ψt is an origin-preserving unfolding of the identity in G . We give the proof for G = A ;
the proof of the other groups is analogous.

Let φt and ψt be origin-preserving of the identity in Kn and Kp, respectively. According
to the definitions of the maps t f and w f , we have

d
dt {ψt ◦ f ◦φ

−1
t }|t=0 = t f ( d

dt φ
−1
t |t=0)+w f ( d

dt ψt |t=0) ∈ TA · f .

Conversely, let v∈ TA · f . Since TA · f = TR · f +TL · f , there exist ξ ∈Mnθn and η ∈Mpθp

such that v = d f ◦ξ +w◦η . Let φt and ψt be origin-preserving unfolding of identity in Kn and
Kp, respectively, such that ξ =

dφ 1
t

dt |t=0 and η = dψt
dt |t=0. Then,

v = t f (dφ
−1
t

dt |t=0)+w f (dψt
dt |t=0) =

d
dt {ψt ◦ f ◦φ

−1
t }|t=0.

2.8 Simple germs

Definition 2.8.1. (ARNOLD; GUSEIN-ZADE; VARCHENKO, 1982) The modality m of a
point x ∈ X under the action of a Lie group G on a manifold X is the least number such that
a sufficiently small neighbourhood of x may be covered by a finite number of m-parameter
families of orbits. The point x is said to be simple, if its modality is 0, that is, if its neighbourhood
intersects only a finite number of orbits.

Remark 2.8.2. The modality of a finitely determined map-germ is the modality of a sufficient
jet in the jet-space under the action of the jet-group.

Example 2.8.3. It is shown in (ARNOLD; GUSEIN-ZADE; VARCHENKO, 1982) that the
simple singularities of germs of functions are Ak (for k ≥ 1), Dk (for k ≥ 3), E6, E7, E8.

2.9 Complete Transversals
The method of complete transversals is a powerful tool for classification of singularities

of map-germs. The classification is carried out inductively on the jet level. First, we fix a k-jet
jk f and describe all G -orbits of k+1-jets which have the same k- jet as jk f using the Complete
Transversal Theorem. If the orbits are finitely determined, the process stops. Otherwise, we
continue the method describing all G -orbits of (k+2)-jets with its (k+1)-jet equal to jk+1 f and
so on.

We state the Complete Transversal’s theorem for the group A .
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Theorem 2.9.1. (BRUCE; KIRK; PLESSIS, 1997) Let f ∈ Jk(n, p) and T ⊂ Hk+1(n, p) such
that

M k+1
n O(n, p)⊂ TA1 · f +T +M k+2

n O(n, p).

Then, every g ∈ Jk+1(n, p) with jkg(0) = f is A k+1
1 -equivalent to f + β , with β ∈ T . The

subspace T is called k-complete transversal.
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CHAPTER

3
CLASSIFICATION OF A -SIMPLE

SINGULARITIES OF GERMS C,0 → C2,0

A germ of a curve parametrized by f : C,0 → C2,0 can be described as a fiber g−1(0)
of a germ of function g : C2,0 →C,0. Bruce and Gaffney related the K -singularities of g to the
A -singularities of f and obtained the following result.

Theorem 3.0.1. (BRUCE; GAFFNEY, 1982) The following are representatives of the A -simple
singularities of map-germs C,0 → C2,0:

Table 1 – A -simple singularities of germs C, 0 → C2,0

Name Singularity
A2k (t2, t2k+1), k ≥ 1
E6k (t3, t3k+1), k ≥ 1
E6k+2 (t3, t3k+2), k ≥ 1
E6k (t3, t3k+1 + t3p+2),

k ≤ p < (2k−1)
E6k+2 (t3, t3k+1 + t3p+2),

p < k ≤ (2p−1)
W12 (t4, t5)
W12 (t4, t5 + t7)
W #

1.2k−5 (t4, t6 + t2k+1),
k ≥ 3

W18 (t4, t7)
W18 (t4, t7 + t9)
W18 (t4, t7 + t13)

In this chapter, we give the proof of the classification of A -simple singularities of
germs (C,0) → (C2,0) given in Theorem 3.0.1 and also in (GIBSON; HOBBS, 1983). The
classification is carried out inductively on the jet-level using the Complete Transversal Method.
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3.1 The classification of A -simple germs C,0 → C2,0

Consider f ∈ J1(1,2). Therefore, f = (at,bt), for a,b ∈ C.

If a ̸= 0 or b ̸= 0, f is A -equivalent to (t,0). Otherwise, f is A -equivalent to (0,0).

The 1-jet (t,0)

Proposition 3.1.1. The germ g = (t,0) is 1-A -determined.

Proof. We have

M1O(1,2)⊂ TK ·g,

where TK ·g = M1[(1,0)]+g∗(M2) · {e1,e2}O1. Also,

M 2
1 O(1,2)⊂ M 2

1 [(1,0)]+g∗(M 2
2 ) · {e1,e2}+M 3

1 O(1,2).

Therefore, according to Corollary 2.5.3, the germ (t,0) is 1-A1-determined and, hence, 1-A -
determined.

The 1-jet (0,0)

Any 2-jet with 1-jet (0,0) is given by (at2,bt2), a,b ∈ C.

If a ̸= 0 or b ̸= 0, (at2,bt2) is A (2)-equivalent to (t2,0). Otherwise, it is A (2)-equivalent
to (0,0).

The 2-jet (t2,0)

Any 2k-jet with (2k−1)-jet f = (t2,0) is A (2k)-equivalent to f . Any (2k+1)-jet with
2k-jet (t2,0) is A (2k+1)-equivalent to (t2,at2k+1),a ∈ C. Indeed, the tangent space TA1 · f is
given by

TA1 · f = M 2
1 [(2t,0)]+ f ∗(M 2

2 ) · {e1,e2}.

Thus, we have

M 2k+1
1 O(1,2)⊂ TA1 · f +T +M 2k+2

1 O(1,2),

where T = C{(0, t2k+1)}. It follows by the Complete Transversal Theorem that every g ∈
J2k+1(1,2) with j2kg(0) = (t2,0) is A (2k+1)-equivalent to (t2,at2k+1), for a ∈ C. If a ̸= 0, by a
change of coordinates in the target we can prove that the germ (t2,at2k+1) is A (2k+1)-equivalent
to (t2, t2k+1). Otherwise, it is A (2k+1)-equivalent to (t2,0).

Proposition 3.1.2. The germ φ = (t2, t2k+1) is (2k+1)-A -determined.

Proof. We have

M 2
1 O(1,2)⊂ TK ·φ ,

where TK ·φ = M1[(2t,(2k+1)t2k)]+φ∗(M2) · {e1,e2}O1. Furthermore,

M 2k+2
1 O(1,2)⊂ M 2

1 [(2t,(2k+1)t2k)]+φ∗(M 2
2 ) · {e1,e2}+M 2k+4

1 O(1,2),
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Thus, by Corollary 2.5.3 the germ (t2, t2k+1) is (2k+ 1)-.A1-determined, hence (2k+ 1)- A -
determined. This germ is not p-A -determined, for p < (2k+1), since the p-jet of (t2, t2k+1) is
the same as the p-jet of (t2,0), and those germs are not A -equivalent.

The 2-jet (0,0)

Any 3-jet with 2-jet (0,0) is given by (at3,bt3), for a,b ∈ C.

If a ̸= 0 or b ̸= 0, (at3,bt3) is A (3)-equivalent to (t3,0). Otherwise, (at3,bt3) is A (3)-
equivalent to (0,0).

The 3-jet (t3,0)

Consider the p-jet with (p−1)-jet f = (t3,0).

If p = 0 mod 3, any p-jet with (p−1)-jet (t3,0) is A (p)-equivalent to (t3,0).

If p = 1 mod 3, p = 3k+1, the orbits in the p-jet are (t3, t3k+1), (t3,0).

If p = 2 mod 3, p = 3k+2, the orbits in the p-jet are (t3, t3k+2), (t3,0).

Indeed, the tangent space to the A1-orbit of f is given by

TA1 · f = M 2
1 [(3t2,0)]+ f ∗(M 2

2 ) · {e1,e2}.

Then, we have

M 3k+1
1 O(1,2)⊂ TA1 · f +T +M 3k+2

1 O(1,2),

where T = C{(0, t3k+1)}. It follows by Theorem 2.9.1 that every germ g ∈ J3k+1(1,2) with
j3kg(0) = (t3,0) is A (3k+1)-equivalent to (t3,at3k+1), with a ∈ C. If a ̸= 0, then (t3,at3k+1) is
A (3k+1)-equivalent to (t3, t3k+1). Otherwise, it is A (3k+1)-equivalent to (t3,0).

Also, we have

M 3k+2
1 O(1,2)⊂ TA1 · f +T +M 3k+3

1 O(1,2)

where T = C{(0, t3k+2)}. Therefore, every germ in J3k+2(1,2) with (3k)-jet (t3,0) is A (3k+2)-
equivalent to (t3,at3k+2). If a ̸= 0, it is A (3k+2)-equivalent to (t3, t3k+2). Otherwise, it is A (3k+2)-
equivalent to (t3,0).

Proposition 3.1.3. The germ g = (t3, t3k+1) is (3k+1)-A -determined, for k = 1.

Proof. Observe that

M 3
1 O(1,2)⊂ TK · f .

Also,

M 6
1 O(1,2)⊂ M 2

1 [(3t2,4t3)]+ f ∗(M 2
2 ) · {e1,e2}+M 9

1 O(1,2).

Therefore, the germ (t3, t4) is 5-A1-determined and, thus, 5-A -determined.
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Let N = {(t3, t4 +at5),a ∈ C} and G = A (5). Then, N is a connected manifold, TpN =

{(0, t5)} and

TpN ⊂ TpG · p.

Indeed, since TpG · p = J5(TA · f ) and

v1 =
(3t4

4 , t5 + 5at6

4

)
= t2

4 (3t2,4t3 +5at4) ∈ TpG · p,

v2 =
(3t4

4 + 3at5

4 ,0
)

= 3
4(t

4 +at5,0) ∈ TpG · p,

v3 =
(3at5

4 , 4at6+5a2t7

4

)
= at3

4 (3t2,4t5 +5at4) ∈ TpG · p,

we have

(0, t5 + at6

4 + 5a2t7

4 ) = v1 − v2 + v3 ∈ TpG · p.

Therefore, the first condition of Mather’s Lemma is satisfied. Also, since

TpG · p = {(t3,0),(0, t3),(t4,0),(0, t4),(t5,0),(0, t5)}

and its dimension does not depend on a, the second condition of Mather’s Lemma is also satisfied.
Then, N is contained in a unique orbit. Therefore, the germ (t3, t4) is 4-A -determined.

Proposition 3.1.4. The germ (t3, t3k+2) is (3k+2)-A -determined, for k = 1.

Proof. We have

M 3
1 O(1,2)⊂ TK · f .

Also,

M 8
1 O(1,2)⊂ M 2

1 [(3t2,5t4)]+ f ∗(M 2
2 ) · {e1,e2}+M 11

1 O(1,2).

Therefore, the germ (t3, t5) is 7-A1-determined and, thus, 7-A -determined. Actually, this germ
is 5-A -determined. Indeed, consider f = (t3, t5 + a1t6 + a2t7), with a1,a2 ∈ C. Then, f is
L -equivalent to (t3, t5 +a2t7).

We claim that (t3, t5 +a2t7) is in the same orbit as (t3, t5). Let N = {(t3, t5 +a2t7),a2 ∈
C} ⊂ J7(1,2) and G = A (7). Then, N is a connected manifold and TpN = C{(0, t7)}. Observe
that

v1 =
(3t5

5 , t7 + 7a2t9

5

)
= t3

5

(
3t2,5t4 +7a2t6) ∈ TpG · p;

v2 =
(3t5+21a2t7

5 ,0
)

= 3
5

(
t5 +7a2t7,0

)
∈ TpG · p;

v3 =
(3a2t5

5 ,a2t9 +
7a2

2t11

5

)
=

(3a2t7

5 ,
5a2t9+7a2

2t11

5

)
∈ TpG · p;

and (
0, t7 +

12a2t9+7a2
2t11

5

)
= v1 − v2 + v3 ∈ TpG · p;

Therefore, the first condition of Mather’s Lemma is satisfied. Moreover, since

TpG · p = C{(t3,0),(0, t3),(t4,0),(t5,0),(0, t5),(t6,0),(0, t6),(t7,0),(0, t7)},

the dimension of the tangent space TpG · p does not depend on a2. Therefore, the second condition
of Mather’s Lemma is also satisfied. Then, N is contained in a unique orbit.
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In what follows, we consider k > 1.

The (3k+1)-jet (t3, t3k+1)

Consider the q-jet with (q−1)-jet f = (t3, t3k+1).

If q = 2 mod 3, q = 3p+2, with k ≤ p < 2k−1, any q-jet with (q−1)-jet (t3, t3k+1) is
A (q)-equivalent to (t3, t3k+1 +at3p+2). Otherwise, the complete transversal is empty. Indeed,
the tangent space TA1 · f is described by

TA1 · f = M 2
1 [(3t2,(3k+1)t3k)]+ f ∗(M 2

2 ) · {e1,e2}.

Since we have

M 3p+2
1 O(1,2)⊂ TA1 · f +T +M 3p+3

1 O(1,2),

where T = C{(0, t3p+2)}, every germ in J3p+2(1,2) with (3p+ 1)-jet (t3, t3k+1) is A (3p+2)-
equivalent to (t3, t3k+1 +at3p+2), a ∈ C.

If a ̸= 0 and φ = (t3, t3k+1 + at3p+2), consider the change of coordinate in the source

given by h(t) = (
1
a
)

1
(3(p−k)+1) t. Then, we have

(φ ◦h)(t) =

(
t3

a
3

3(p−k)+1
,

t3k+1

a
3k+1

3(p−k)+1

+
t3p+2

a
3k+1

3(p−k)+1

)

By the change of coordinates in the target k(x,y) = (a
3

3(p−k)+1 x,a
3k+1

3(p−k)+1 y), we obtain

(k ◦φ ◦h)(t) = (t3, t3k+1 + t3p+2)

Therefore, φ is A (3p+2)-equivalent to (t3, t3k+1 + t3p+2).

Proposition 3.1.5. The germ g = (t3, t3k+1 + t3p+2), with k ≤ p < 2k − 1 is (3p + 2)-A -
determined.

Proof. We have

M 3
1 O(1,2)⊂ TK ·g,

where TK · g = M1[(3t2,(3k+ 1)t3k +(3p+ 2)t3p+1)]+ g∗(M2) · {e1,e2}O1. Moreover, we
have

M 3p+3
1 O(1,2)⊂ M 2

1 [(3t2,(3k+1)t3k +(3p+2)t3p+1)]+g∗(M 2
2 ) · {e1,e2}+M 3p+6

1 O(1,2),

since

v1 = (t3p+3,0) = (t3(p+1),0),
v2 = (0, t3p+3) = (0, t3(p+1)),

v3 =
t3p+2

3

(
3t2,(3k+1)t3k +(3p+2)t3p+1)− (0, t3(2p+1)),

v4 =
t3p−3k+4

(3k+1)

(
3t2,(3k+1)t3k +(3p+2)t3p+1)− (3t3p−3k+6

(3k+1) ,0
)
− (3p+2)

(3k+1)

(
0, t3p+4 + t6p−3k+5),

v5 =
t3p+3

3

(
3t2,(3k+1)t3k +(3p+2)t3p+1)− (0, (3k+1)t3k+3p+3

3

)
,

v6 =
t4

(3p+2)

(
3t2,(3k+1)t3k +(3p+2)t3p+1)− ( 3t6

(3p+2) ,0
)
−
(
0, (3k+1)(t3k+4+t3p+5)

(3p+2)

)



36 Chapter 3. Classification of A -simple singularities of germs C,0 → C2,0

are in TA1 ·g+M 3p+6
1 O(1,2). Hence, the germ (t3, t3k+1 + t3p+2) is (3p+2)-A1-determined,

and thus, (3p+2)-A -determined. It cannot be s-A -determined, for s< (3p+2) since the s-jet of
(t3, t3k+1+t3p+2) is the same as the s-jet of (t3, t3k+1) and those germs are not A -equivalent.

Proposition 3.1.6. The germ φ = (t3, t3k+1) is (6k−4)-A -determined.

Proof. We have

M 3
1 O(1,2)⊂ TK ·φ ,

where TK ·φ = M1[(3t2,(3k+1)t3k)]+φ∗(M2) · {e1,e2}O1. Also, we have

M 6k
1 O(1,2)⊂ M1[(3t2,(3k+1)t3k)]+φ∗(M 2

2 ) · {e1,e2}+M 6k+3
1 O(1,2),

since
(t6k,0) = (t3(2k),0),
(0, t6k) = (0, t3(2k)),

(t6k+1,0) = (t3k+(3k+1),0),
(0, t6k+1) = (0, t3k+(3k+1)),

(t6k+2,0) = (t2(3k+1),0),
(0, t6k+2) = (0, t2(3k+1))

are in TA1 ·φ +M 6k+3
1 O(1,2). It follows by Corollary 2.5.3 that the germ (t3, t3k+1) is (6k−1)-

A1-determined. Actually, this germ is (6k−4)-A -determined. Indeed, consider f = (t3, t3k+1 +

a1t6k−3+a2t6k−2+a3t6k−1), with a1,a2,a3 ∈C. Then, f is L -equivalent to (t3, t3k+1+a3t6k−1).

We claim that (t3, t3k+1 + a3t6k−1) is in the same orbit as (t3, t3k+1). Let N = {p =

(t3, t3k+1 +a3t6k−1), a3 ∈ C} ⊂ J6k−1(1,2) and G = A (6k−1). Then, N is a connected manifold
and TpN = C{(0, t6k−1)}. Observe that

v1 =
( 3t3k+1

(3k+1) , t
6k−1 + (6k−1)a3t9k−3

(3k+1)

)
= t3k−1

(3k+1)(3t2,(3k+1)t3k +(6k−1)a3t6k−2) ∈ TpG · p;

v2 =
( 3t3k+1

(3k+1) +
3a3t6k−1

(3k+1) ,0
)
= 3

(3k+1)(t
3k+1 +a3t6k−1,0) ∈ TpG · p;

v3 =
(3a3t6k−1

(3k+1) ,a3t9k−3 +
a2

3(6k−1)t12k−5

(3k+1)

)
= a3t6k−3

(3k+1) (3t2,(3k+1)t3k +(6k−1)a3t6k−2) ∈ TpG · p;

and (
0, t6k−1 +

( (6k−1)a3
(3k+1) +a3

)
t9k−3 +

a2
3(6k−1)t12k−5

(3k+1)

)
= v1 − v2 + v3 ∈ TpG · p.

Hence, the first condition of Mather’s Lemma is satisfied. Moreover, TpG · p is generated by
(t3,0),(0, t3), (t6,0), (0, t6), ...,(t6k−3,0), (0, t6k−3), (t5,0), (t8,0), (0, t3k+1),(0, t3k+1), (t3k+2,0),
(t3k+4,0),(0, t3k+4), (t3k+5,0), (t6k−2,0), (0, t6k−2), (t6k−1,0) and (0, t6k−1) and its dimension
does not depend on a3. Therefore, the second condition of Mather’s Lemma is also satisfied.
Then, N is contained in a unique orbit.

Remark 3.1.7. In (GIBSON; HOBBS, 1983), the A -singularities (t3, t3k+1 + t3p+2), with
k ≤ p < 2k were classified as A -simple singularities. However, since the germ (t3, t3k+1) is
(6k−4)-A -determined, only the singularities (t3, t3k+1 + t3p+2), with k ≤ p < 2k−1 should be



3.1. The classification of A -simple germs C,0 → C2,0 37

considered rather than (t3, t3k+1 + t3p+2), with k ≤ p < 2k. Our classification agrees with that of
(BRUCE; GAFFNEY, 1982).

The (3k+2)-jet (t3, t3k+2)

Consider the q-jet with (q−1)-jet f = (t3, t3k+2).

If q = 1 mod 3, q = 3p+1, with k < p ≤ 2k−1, any q-jet with (q−1)-jet (t3, t3k+2) is
A (3p+1)-equivalent to (t3, t3k+2+at3p+1). Otherwise, the complete transversal is empty. Indeed,
the tangent space TA1 · f is given by

TA1 · f = M 2
1 [(3t3,(3k+2)t3k+1)]+ f ∗(M 2

2 ) · {e1,e2}.

Hence, we have

M 3p+1
1 O(1,2)⊂ TA1 · f +T +M 3p+2

1 O(1,2),

where T = C{(0, t3p+1)}. Therefore, every germ in the (3p+ 1)-jet with 3p-jet (t3, t3k+2) is
A (3p+1)-equivalent to (t3, t3k+2 +at3p+1). If a ̸= 0, (t3, t3k+2 +at3p+1) is A (3p+1)-equivalent
to (t3, t3k+2 + t3p+1). Otherwise, it is A (3p+1)-equivalent to (t3, t3k+2).

Proposition 3.1.8. The germ g = (t3, t3k+2 + t3p+1), with k < p ≤ 2k − 1 is (3p + 1)-A -
determined.

Proof. We have

M 3
1 O(1,2)⊂ TK ·g,

where TK ·g = M1[(3t2,(3k+2)t3k+1 +(3p+1)t3p)]+g∗(M2) · {e1,e2}O1. Moreover,

M 3p+2
1 O(1,2)⊂ M 2

1 [(3t2,(3k+2)t3k+1 +(3p+1)t3p)]+g∗(M 2
2 ) · {e1,e2}+M 3p+5

1 O(1,2),

since

v1 = t3p(3t2,(3k+1)t3k+1 +(3p+1)t3p)− (0,(3p+1)t6p),

v2 = t3(p−k)+1(3t2,(3k+2)t3k+1 +(3p+1)t3p)− (0,(3p+1)t3p+2 +(3p+1)t6p−3k+1),

v3 = (t3p+3,0) = (t3(p+1),0),
v4 = (0, t3p+3) = (0, t3(p+1)),

v5 = t3p+2(3t2,(3k+2)t3k+1 +(3p+1)t3p)− (0,(3k+2)t3p+3k+3),

v4 = (0, t3p+4) = t4(3t2,(3k+2)t3k+1 +(3p+1)t3p)− (0,(3k+2)t3k+5 +(3k+2)t3p+4)

are in TA1 · g+M 3p+5
1 O(1,2). Therefore, the germ (t3, t3k+2 + t3p+1), with k < p ≤ 2k− 1

is (3p+ 1)-A1-determined, then, (3p+ 1)-A -determined. It cannot be s-A -determined, for
s < (3p+1), since the s-jet of (t3, t3k+2 + t3p+1) is the same as the s-jet of (t3, t3k+2) and those
germs are not A -equivalent.

Proposition 3.1.9. The germ g = (t3, t3k+2) is (6k−2)-A -determined.
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Proof. We have

M 3
1 O(1,2)⊂ TK ·g,

where TK ·g = M1[(3t2,(3k+2)t3k+1)] + g∗(M2) · {e1,e2}O1. Also, we have

M 6k+2
1 O(1,2)⊂ M 2

1 [(3t2,(3k+2)t3k+1)]+g∗(M 2
2 ) · {e1,e2}+M 6k+5

1 O(1,2),

since
v1 = (t6k+2,0) = (t3k+(3k+2),0),
v2 = (0, t6k+2) = (0, t(3k+2)+3k),

v3 = (t6k+3,0) = (t3(2k+1),0),
v4 = (0, t6k+3) = (0, t3(2k+1)),

v5 = (t6k+4,0) = t6k+2

3

(
3t2,(3k+2)t3k+1)− (0, (3k+2)t21k+5

3(3k+2)

)
,

v6 = (0, t6k+4) = t3k+3

(3k+2)

(
3t2,(3k+2)t3k+1)− ( 3t3k+5

(3k+2) ,0
)

are in TA1 ·g+M 6k+5
1 O(1,2). Therefore, the germ (t3, t3k+2) is (6k+1)-A1-determined, and

hence, (6k+1)-A -determined. Actually, this germ is (6k−2)-A -determined. Indeed, consider
f = (t3, t3k+2 + a1t6k−1 + a2t6k + a3t6k+1), with a1,a2,a3 ∈ C. Then, f is L -equivalent to
(t3, t3k+2 +a3t6k+1).

We claim that (t3, t3k+2 + a3t6k+1), for a3 ∈ C is in the same orbit as (t3, t3k+2). Let
N = {p = (t3, t3k+2+a3t6k+1),a3 ∈C} ⊂ J6k+1(1,2) and G = A (6k+1). Then, N is a connected
manifold and TpN = C{(0, t6k+1)}. Observe that

u1 =
( 3t3k+2

(3k+2) , t
6k+1 + (6k+1)a3t9k

(3k+2)

)
= t3k

(3k+2)(3t2,(3k+2)t3k+1 +a3(6k+1)t6k) ∈ TpG · p;

u2 =
( 3t3k+2

(3k+2) +
3a3t6k+1

(3k+2) ,0
)

= 3
(3k+2)

(
t3k+2 +a3t6k+1,0

)
∈ TpG · p;

u3 =
(3a3t6k+1

(3k+2) ,a3t9k +
(6k+1)a2

3t12k−1

(3k+2)

)
= a3t6k−1

(3k+2)

(
3t2,(3k+2)t3k+1 +a3(6k+1)t6k) ∈ TpG · p;

and (
0, t6k+1 + (9k+3)a3t9k

(3k+2) +
(6k+1)a2

3t12k−1

(3k+2)

)
= u1 −u2 +u3 ∈ TpG · p.

Therefore, the first condition of Mather’s Lemma is satisfied. Moreover, the tangent space TpG · p

is generated by (t3,0), (0, t3),...,(t6k,0), (0, t6k), (t4,0), ...,(t6k+1,0), (t5,0), (0, t5),...,(t6k−1,0)
and (0, t6k−1). Since the dimension of TpG · p is a constant, the second condition of Mather’s
Lemma is also satisfied. Then, N is contained in a unique orbit, that is (t3, t3k+2 +a3t6k+1) is in
the same orbit as (t3, t3k+2).

Remark 3.1.10. In (GIBSON; HOBBS, 1983), the A -singularities (t3, t3k+2 + t3p+1), with
k < p ≤ 2k were classified as A -simple singularities. However, since the germ (t3, t3k+2) is
(6k− 2)-A -determined, only the singularities (t3, t3k+2 + t3p+1), with k < p ≤ 2k− 1 should
be considered rather than (t3, t3k+2 + t3p+2), k < p ≤ 2k. Our classification agrees with that of
(BRUCE; GAFFNEY, 1982).

The 3-jet (0,0)
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Any 4-jet with 3-jet (0,0) is given by (at4,bt4),a,b ∈ C.

If a ̸= 0 or b ̸= 0, (at4,bt4) is A (4)-equivalent to (t4,0). Otherwise, it is A (4)-equivalent
to (0,0).

The 4-jet (t4,0)

• Any 5-jet with 4-jet f = (t4,0) is A (5)-equivalent to (t4,at5),a ∈ C. We have

TA1 · f = M 2
1 [(4t3,0)]+ f ∗(M 2

2 ) · {e1,e2}.

Then, we have

M 5
1 O(1,2)⊂ TA1 · f +T +M 6

1 O(1,2),

with T = C{(0, t5)}. According to Theorem 2.9.1, any 5-jet with 4-jet (t4,0) is A (5)-equivalent
to (t4,at5), a∈C. If a ̸= 0, (t4,at5) is A (5)-equivalent to (t4, t5). Otherwise, it is A (5)-equivalent
to (t4,0).

• Any 6-jet with 5-jet f = (t4,0) is A (6)-equivalent to (t4,at6), for a ∈ C. We have

M 6
1 O(1,2)⊂ TA1 · f +T +M 7

1 O(1,2),

where T = C{(0, t6)}. Therefore, every g ∈ J6(1,2), with j5g(0) = (t4,0) is A (6)-equivalent to
(t4,at6), a ∈ C. If a ̸= 0, (t4,at6) is A (6)-equivalent to (t4, t6). Otherwise, it is A (6)-equivalent
to (t4,0).

• Any 7-jet with 6-jet f = (t4,0) is A (7)-equivalent to (t4,at7). We have

M 7
1 O(1,2)⊂ TA1 · f +T +M 8

1 O(1,2),

where T = C{(0, t7)}. Therefore, every germ in J7(1,2) with 6-jet (t4,0) is A (7)-equivalent
to (t4,at7), for a ∈ C. If a ̸= 0, (t4,at7) is A (7)-equivalent to (t4, t7). Otherwise, it is A (7)-
equivalent to (t4,0).

The 5-jet (t4, t5)

• Any 6-jet with 5-jet f = (t4, t5) is A (6)-equivalent to (t4, t5 +at6), for a ∈ C. Indeed,
the tangent space TA1 · f is given by

TA1 · f = M 2
1 [(4t3,5t4)]+ f ∗(M 2

2 ) · {e1,e2}.

Then, we have

M 6
1 O(1,2)⊂ TA1 · f +T +M 7

1 O(1,2),

where T = C{(0, t6}. It follows by Theorem 2.9.1 that every g ∈ J6(1,2), with j5g(0) = (t4, t5)

is A (6)-equivalent to (t4, t5 +at6), for a ∈ C.

We will show that (t4, t5+at6) is in the same orbit as (t4, t5), using Mather’s Lemma. Let
N = {p=(t4, t5+at6),a∈C}⊂ J6(1,2). Then, N is a connected manifold and TpN =C{(0, t6)}.
Consider G = A (6). Thus,

TpN ⊂ TpG · p
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Indeed, it follows by Lemma 2.7.2 that the tangent space TpG · p is J6(TA · p). Notice that (0, t6)

is in TpG · p. We have

v1 =
t2

5 [(4t3,5t4 +6at5)] ∈ TpG · p;

v2 =
1
5(4t5,0) = 1

5(4t5 +4at6,0)− at3

5 (4t3,5t4 +6at5) ∈ TpG · p;

and

(0, t6 + 6at7

5 ) = v1 − v2 ∈ TpG · p.

So, the first condition of Mather’s Lemma is satisfied. Since

TpG · p = C{(t4,0),(0, t4),(t5,0),(0, t5),(t6,0),(0, t6)},∀p ∈ N,

the tangent space TpG · p is a 6-dimensional subspace. Thus, the second condition of Mather’s
Lemma is also satisfied. Therefore, (t4, t5 +at6) and (t4, t5) are in the same orbit, for all a ∈ C.

• Any 7-jet with 6-jet f = (t4, t5) is A (7)-equivalent to (t4, t5+at7), for a ∈C. We have

M 7
1 O(1,2)⊂ TA1 · f +T +M 8

1 O(1,2),

where T = C{(0, t7)}. According to Complete Transversal’s Theorem, every germ in J7(1,2)
with 6-jet (t4, t5) is A (7)-equivalent to (t4, t5 +at7), a ∈ C.

If a ̸= 0, we obtain that g = (t4, t5 + at7) is A (7)-equivalent to (t4, t5 + t7). Indeed,
consider the maps h(t) = t√

a and k(x,y) = (a2x,(
√

a)5y). Then, we have

(k ◦g◦h)(t) = (t4, t5 + t7).

If a = 0, (t4, t5 +at7) is A (7)-equivalent to (t4, t5).

Proposition 3.1.11. The germ φ = (t4, t5 + t7) is 7-A -determined.

Proof. Observe that

M 4
1 O(1,2)⊂ TK ·φ ,

where TK ·φ = M1[(4t3,5t4 +7t6)]+φ∗(M2) · {e1,e2}O1. Also, we have

M 8
1 O(1,2)⊂ TA1 ·φ +M 12

1 O(1,2).

It follows by Corollary 2.5.3 that the germ (t4, t5 + t7) is 7-A1-determined. Hence, it is
7-A -determined.

Proposition 3.1.12. The germ φ = (t4, t5) is 7-A - determined.

Proof. We have

M 4
1 O(1,2)⊂ TK ·φ ,
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where TK ·φ = M1[(4t3,5t4)]+φ∗(M2) · {e1,e2}O1. Moreover, we have

M 8
1 O(1,2)⊂ TA1 ·φ +M 12

1 O(1,2).

According to Corollary 2.5.3, the germ (t4, t5) is 7-A1-determined. Therefore, it is 7-A -
determined.

The 6-jet (t4, t6)

• If p = 0 mod 2, p = 2k, with k ≥ 3, any p-jet with (p− 1)-jet f = (t4, t6) is A (p)-
equivalent to (t4, t6).

• If p = 1 mod 2, p = 2k + 1, with k ≥ 3, any p-jet with (p− 1)-jet f = (t4, t6) is
A (p)-equivalent to (t4, t6 +at2k+1), a ∈ C. Indeed, the tangent space TA1 · f is given by

TA1 · f = M 2
1 [(4t3,6t5)]+ f ∗(M 2

2 ) · {e1,e2}.

Moreover, we have

M 2k+1
1 O(1,2)⊂ TA1 · f +T +M 2k+3

1 O(1,2),

with T = C{(0, t2k+1)}. Therefore, every p-jet with (p− 1)-jet (t4, t6) is A (p)-equivalent to
(t4, t6 + at2k+1). If a ̸= 0, (t4, t6 + at2k+1) is A -equivalent to (t4, t6 + t2k+1). Otherwise, it is
A -equivalent to (t4, t6).

Proposition 3.1.13. The germ g = (t4, t6 + t2k+1) is (2k+1)- A -determined.

Proof. Since

M 4
1 O(1,2)⊂ TK ·g,

where TK ·g = M1[(4t3,6t5 +(2k+1)t2k)]+g∗(M2) · {e1,e2}O1 and

M 2k+4
1 O(1,2)⊂ TA1 ·g+M 2k+8

1 O(1,2),

the germ (t4, t6+t2k+1) is (2k+3)-A1-determined. Actually, this germ is (2k+1)-A -determined.
Indeed, by the action of group L1, we can prove that any (2k+2)-jet with (2k+1)-jet (t4, t6 +

t2k+1) is A (2k+2)-equivalent to (t4, t6 + t2k+1). Also, any (2k+3)-jet with (2k+2)-jet (t4, t6 +

t2k+1) is A (2k+3)-equivalent to (t4, t6 + t2k+1 +at2k+3), for a ∈ C, which by Mather’s Lemma
is in the same orbit as (t4, t6 + t2k+1).

The 7-jet (t4, t7)

• If p = 8 or p = 12 any p-jet with (p−1)-jet f = (t4, t7) is A (p)-equivalent to f .

• Any 9-jet with 8-jet f = (t4, t7) is A (9)-equivalent to (t4, t7+at9), for a ∈C. We have

TA1 · f = M 2
1 [(4t3,7t6)]+ f ∗(M 2

2 ) · {e1,e2}.
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Thus, we have

M 9
1 O(1,2)⊂ TA1 · f +T +M 10

1 O(1,2),

and the complete transversal T = C{(0, t9)}. It follows by Theorem 2.9.1 that every germ in
J9(1,2) with 8-jet (t4, t7) is A (9)-equivalent to (t4, t7 +at9), a ∈ C.

If a ̸= 0, we can prove that the germ (t4, t7 +at9) and (t4, t7 + t9) are A (9)-equivalent.
Otherwise, it is A (9)-equivalent to (t4, t7).

• Any 10-jet with 9-jet f = (t4, t7) is A (10)-equivalent to (t4, t7). Since we have

M 10
1 O(1,2)⊂ TA1 · f +T +M 11

1 O(1,2),

the complete transversal is the subspace C{(0, t10)}. Therefore, every germ g ∈ J10(1,2) with
j9g(0) = (t4, t7) is A (10)-equivalent to (t4, t7 +at10), with a ∈ C.

We claim that (t4, t7 +at10) is in the same orbit as (t4, t7).

Let N = {p = (t4, t7 +at10),a ∈ C} ⊂ J10(1,2). Then, N is a connected manifold and
TpN = C{(0, t10)}. Consider G = A (10). It follows by Lemma 2.7.2 that the tangent space
TpG · p is J10(TA · p). Observe that

v1 = t4(4t3,7t6 +10at9) ∈ TpG · p;
v2 = t7(4t3,7t6 +10at9) ∈ TpG · p;
v3 = (t7 +at10,0) ∈ TpG · p;

and (
0, t10 + 3at13

7 + 10a2t16

7

)
= 1

7v1 − a
7v2 − 4

7v3 ∈ TpG · p.

Therefore, (0, t10) ∈ TpG · p and TpN ⊂ TpG · p, that is, the first condition of Mather’s Lemma is
satisfied. Also, we have

TpG · p = C{(t4,0),(0, t4),(t5,0),(t7,0),(0, t7),(t8,0),(0, t8),(t9,0),(0, t10),(t10,0)}

Then, the dimension of the tangent space TpG · p is a constant. Since it does not depend on a, the
second condition of Mather’s Lemma is satisfied. Thus, N is contained in a unique orbit, that is,
(t4, t7 +at10) is in the same orbit as (t4, t7).

• Any 11-jet with 10-jet f = (t4, t7) is A (11)-equivalent to f , since the 11-complete
transversal is empty.

• Any 13-jet with 12-jet f = (t4, t7) is A (13)-equivalent to (t4, t7 +at13), for a ∈ C. We
have

M 13
1 O(1,2)⊂ TA1 · f +T +M 14

1 O(1,2),

where T = C{(0, t13)}. It follows by Theorem 2.9.1 that every germ in J13(1,2) with 12-jet
(t4, t7) is A (13)-equivalent to (t4, t7 + at13), a ∈ C. If a ̸= 0, the germ (t4, t7 + at13) is A (13)-
equivalent to (t4, t7 + t13), by changes of coordinates in the source and in the target. Otherwise,
it is A (13)-equivalent to (t4, t7).
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Proposition 3.1.14. The germ g = (t4, t7 + t9) is 9-A -determined.

Proof. We have

M 4
1 O(1,2)⊂ TK ·g,

where TK ·g = M1[(4t3,7t6 +9t8)]+g∗(M2) · {e1,e2}O1 and

M 11
1 O(1,2)⊂ TA1 ·g+M 15

1 O(1,2),

according to Corollary 2.5.3, the germ (t4, t7 + t9) is 10-A1-determined. Actually, this germ is
9-A -determined, since any 10-jet with 9-jet (t4, t7+t9) is A (10)-equivalent to (t4, t7+t9+at10),
for a ∈ C, which is in the same orbit as (t4, t7 + t9) by Mather’s Lemma.

Proposition 3.1.15. The germ g = (t4, t7 + t13) is 13- A -determined.

Proof. We have

M 4
1 O(1,2)⊂ TK ·g,

where TK ·g = M1[(4t3,7t6 +13t12)]+g∗(M2) · {e1,e2}O1. Also, we have

M 14
1 O(1,2)⊂ TA1 ·g+M 18

1 O(1,2).

Therefore, by Corollary 2.5.3, the germ (t4, t7 + t13) is 13-A1-determined. Hence, 13-A -
determined.

Proposition 3.1.16. The germ g = (t4, t7) is 13-A -determined.

Proof. Notice that

M 4
1 O(1,2)⊂ TK ·g,

where TK ·g = M1[(4t3,7t6)]+g∗(M2) · {e1,e2}O1. Also, we have

M 14
1 O(1,2)⊂ TA1 ·g+M 8

1 O(1,2).

It follows by the Corollary 2.5.3 that the germ (t4, t7) is 13-A -determined, hence, 13-A -
determined.

Remark 3.1.17. The 8-jet (t4,0) leads to none-simple germs. Also, the 4-jets (0,0) leads to
none-simple germs.(See Lemma 3.1 in (BRUCE; GAFFNEY, 1982)).
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CHAPTER

4
k-FOLDING MAPS

In this chapter, we consider k-folding map-germs on plane curves, for k ≥ 3. We first
study the A -simple singularities of k-folding map-germs. We then relate the singularities of
k-folding map-germs to the local geometry of the curve and show that they reveal information
about the hidden symmetries of the curve.

4.1 Introduction

Definition 4.1.1. The k-folding map-germ is the map-germ C,0 → C2,0 of the form ωk(x,y) =
(x,yk). It "folds" the plane C2 along the line y = 0, gluing the points (x,y),(x,ξ y), ...,(x,ξ k−1y),
where ξ = e2πi/k is a primitive k-th root of unity. Observe that Fix(ωk) = {y = 0}.

We focus on the study of the local geometry of curves, so given a point on a curve and a
line in C2, we take the curve locally as the graph of a function f parametrized by γ : C,0 →C2,0
with γ(t) = ( f (t), t). The k-folding map ωk in Definition 4.1.1 restricted to γ is the map-germ
Fk : C,0 → C2,0 given by

Fk(t) = ( f (t), tk).

We shall call Fk the k-folding map (meaning the restriction of ωk to γ).

Remark 4.1.2. Since the k-folding map-germ Fk is constructed by the map ωk, which is related
to the k-th roots of unity, we need to consider γ : C,0 → C2,0, i.e., as a curve in the complex
plane. In the case of γ : R,0 →R2,0, we consider γ an analytic curve and complexify it. However,
the results also hold for smooth curves γ : R,0 → R2,0, by complexifying a certain jet of its
parametrization.

Proposition 4.1.3. Consider a curve γ : C,0 → C2,0. The k-folding map-germ Fk is singular if
and only if γ ′(0) is in the kernel of dωk, i.e., γ ′(0) is parallel to the vector (0,1). Equivalently,
the orthogonal direction to Fix(ωk) is a normal direction to γ at t = 0.
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Proof. Since γ is an analytic curve, we can write γ(t) = ( f (t), t), with f (t) = ∑
∞
j=0 a jt j a

convergent power series. The Jacobian matrix of the k-folding map ωk(x,y) = (x,yk) is given by(
1 0
0 kyk−1

)

Thus, ker Jωk(0,0) = C · (0,1). Since the jacobian matrix of k-folding map-germ Fk is given by(
f ′(t)

ktk−1

)
, Fk is singular at the origin if and only if f ′(0) = 0. Then, γ ′(0) = (0,1), which is in

the kernel of Jωk.

Example 4.1.4. The folding map-germ on a curve glues the points (x,y) and (x,−y). After
restricting the folding map-germ to it, we obtain a singular curve, as shown in the following
figure.

Figure 1 – The folding map-germ restricted to a curve

We consider next the A -simple singularities of the k-folding map-germ Fk. For that we
need the following auxiliary result.

Lemma 4.1.5. (GRADSHTEYN; RYZHIK, 2007) Let g(z) = ∑
∞
n=0 anzn be a power series with

a0 ̸= 0. Then, for every k ∈ N, h(z) = (∑∞
j=0 a jz j)k = ∑

∞
j=0 c jz j, with

c0 = (a0)
k,

cm = 1
ma0

∑
m−1
j=0 [k(m− j)− j]am− jc j,m ≥ 1.

Proof. It follows by differentiation that h′(z) = k(g(z))k−1g′(z). Therefore,

g(z)h′(z) = kg′(z)(g(z))k = kg′(z)h(z). (4.1)

Write g(z)h′(z) = ∑
∞
j=0 d jz j and g′(z)h(z) = ∑

∞
j=0 e jz j. Then by the formula for the

product of the power series (NETO, 2008) we have

dm = ∑
m
j=0( j+1)am− jc( j+1),

em = ∑
m
j=0(m− j+1)c jam− j+1.
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Using (4.1), we get by considering the coefficients of zm−1,

∑
m
j=1 jam− jc j = k ∑

m−1
j=0 (m− j)c jam− j,∀m ≥ 1.

Therefore,

mcma0 = ∑
m−1
j=0 (k(m− j)− j)am− jc j.

The coefficient c0 can be determined using the fact that h(0) = (a0)
k = c0.

4.2 A -simple singularities of a k-folding map-germ

In (PEÑAFORT SANCHIS; TARI, 2023), the authors proved that k-folding map-germs
on surfaces do not have A -simple singularities for k ≥ 5. In the case of k-folding map-germs on
plane curves, we obtain a different result.

We take γ : C,0 → C2,0, γ(t) = ( f (t), t) with f (t) = a1t + a2t2 + a3t3 +O(4). From
Proposition 4.1.3 if a1 ̸= 0, Fk is an immersion at the origin, so from now on, we set a1 = 0.

Suppose that a2 ̸= 0. Then, Fk(t) = (a2t2(1+ a3
a2

t + a4
a2

t2+O(3)), tk). Let T = tg(t), with

g(t) =
(

1
a2t2 f (t)

) 1
2

and consider the function H(t,T ) = tg(t)−T . We have ∂H
∂ t (0,0) = g(0) ̸= 0, so by the Implicit

Function Theorem we can write t = h(T ) for some germ of an analytic function h. We write

h(T ) = T ∑
∞
j=0 b jT j, where b j =

h( j+1)(0)
( j+1)! . Observe that b0 = h′(0) = −

∂H(0,0)
∂T

∂H(0,0)
∂ t

= −1 ̸= 0. By

Lemma 4.1.5, (h(T ))k = T k(∑∞
j=0 b jT j)k = T k

∑
∞
j=0 c jT j, where

c0 = (b0)
k,

cm =
1

mb0
∑

m−1
j=0 k(m− j)bm− jc j,m ≥ 1.

We have Fk(h(T )) = (T 2,(h(T ))k) = (T 2,T k
∑

∞
j=0 c jT j).

In order to determine the singularity type of Fk when a1 = 0 and a2 ̸= 0, we need the
following results.

Lemma 4.2.1. Let n be an even number. Suppose that the even-order derivatives of h up to
order n−2 are equal to zero at the origin and assume h(l)(0)g(h(0)) =−lg(l−1)(h(0))(h′(0))l ,
for l even, with 2 ≤ l ≤ n− 2. Then, for p odd, with 1 ≤ p ≤ n− 3, (g ◦ h)(p)(0) = 0 and
(g◦h)(n−1)(0) = g(n−1)(0)(h′(0))n−1.

Proof. By Faà di Bruno’s formula (ROMAN, 1980) which generalizes the chain rule

∂ p(g◦h)(T )
∂T p = ∑

p!
j1! j2!... jp!g

( j)(h(T ))(h′(T )) j1(h”(T )
2! ) j2...(h(p)(T )

p! ) jp ,
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where the sum is over none-negative integers j1, j2, ..., jp satisfying j1 + j2 + ...+ jp = j and
j1 +2 j2 + ...+ p jp = p.

Consider p odd, p ≤ n−1. Since the derivatives of even order of h up to n−2 are zero
at the origin and all j′is are such that i ≤ p ≤ n−1, we can take ji = 0, for all i even. Then, if j

is even, we have
j1 + j3 + j5 + ...+ jp = j,

j1 +3 j3 +5 j5 + ...+ p jp = p.

Subtracting the two equations, gives

2 j3 +4 j5 + ...+(p−1) jp = p− j.

The term 2 j3 +4 j5 + ...+(p−1) jp is a sum of even numbers, so it is even. Since p is odd and j

is even, p− j is odd. Therefore, for j even, the terms of the form (g( j)(h(0))) are multiplied by
some derivative of even order of h at the origin, which is zero.

If j is odd, it follows by the hypothesis and by the fact that even order derivatives of h up
to order n−2 are zero at the origin that g( j)(h(0)) = 0 for all j odd, with 1 ≤ j ≤ n−3.

Thus, by Faà di Bruno’s formula, (g ◦ h)(p)(0) = 0, for p odd ,1 ≤ p ≤ n− 3. More-
over, for j = p = n− 1, that is, for j1 = p and j2 = ... = jp = 0, we obtain (g ◦ h)(n−1)(0) =
g(n−1)(h(0))(h′(0))n−1.

We need the following formula, generalizing the product rule.

Lemma 4.2.2. Consider h(T )g(h(T )) = T . It follows by the generalization of the product rule,
also called Leibniz Rule (ROMAN, 1980) that, for p ≥ 2(

h(T )g(h(T ))
)(p)

=
(p

0

)
h(p)(T )

(
g(h(T ))

)
+
(p

1

)
h(p−1)(T )

(
g(h(T ))

)′
+(p

2

)
h(p−2)(T )

(
g(h(T ))

)′′
(T )+ ...+

(p
p

)(
g(h(T ))

)(p)h(T ) = 0.

Theorem 4.2.3. Let n be an even number and suppose that h(2p)(0) = 0, for 0 ≤ p < n−1
2 . Then,

h(n)(0)g(0) =−ng(n−1)(0)(h′(0))n.

Proof. It follows by Lemma 4.2.2 that

h′(T )g(h(T ))+g′(h(T ))h′(T )h(T ) = 1.

and

h′′(T )g(h(T ))+2g′(h(T ))(h′(T ))2 +g′′(h(T ))(h′(T ))2h(T )+h′′(T )h(T )g′(h(T )) = 0.

Since h(0) = 0, h′′(0)g(0) =−2g′(0)(h′(0))2. Therefore, the statement holds for n = 2.

Let n > 2 be an even number. Suppose that h(l)(0)g(0) = −lg(l−1)(0)(h′(0))l , for l =

2,4, ....,n− 2 and that the derivatives of h of even order up to n− 2 are zero at the origin.
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According to Lemma 4.2.2,(n
0

)
h(n)(0)

(
g(h(0))

)
+
(n

1

)
h(n−1)(0)

(
g◦h

)′
(0)+

(n
3

)
h(n−3)(0)

(
g◦h

)(3)
(0)+ ...+( n

n−1

)
h′(0)

(
g◦h

)(n−1)
(0)+

(n
n

)(
g◦h

)(n)
(0)h(0) = 0.

It follows by Lemma 4.2.1 and from the fact that h(0) = 0 that(n
0

)
h(n)(0)

(
g(h(0))

)
= −

( n
n−1

)
h′(0)

(
g◦h

)(n−1)
(0)

= −nh′(0)(g(n−1)(0))(h′(0))n−1

= −ng(n−1)(0)(h′(0))n.

Hence,
(n

0

)
h(n)(0)(g(0)) =−ng(n−1)(0)(h′(0))n.

Theorem 4.2.4. Let n be an odd integer. Suppose that n = 1 or g(i)(0) = 0, for 1 ≤ i ≤ n−2,
with i odd. Then

g(n)(0) =
n!an+2

2a2g(0)
.

Proof. We have (g(t))2 = 1
a2

∑
∞
n=2 antn−2. Then, 2g(t)g′(t) = 1

a2
∑

∞
n=3 an(n−2)tn−3 and conse-

quently 2(g′(0))g(0) =
a3

a2
.

Let n ≥ 3 be an odd integer and suppose g(i)(0) = 0, for 1 ≤ i ≤ n−2. Let y(t) = g2(t) =
1
a2

∑
∞
n=0 antn−2, t ∈ C,0. Since g is analytic, the function y is analytic and y(n)(0) = n!an+2

a2
.

By the generalization of the product rule, y(n)(0) = (g ·g)(n) = ∑
n
j=0
(n

j

)
g( j)(0)g(n− j)(0)

and using the hypothesis we get y(n)(0) = 2g(n)(0)g(0). It follows that g(n)(0) =
n!an+2

2a2g(0)
.

We can now prove the following result.

Theorem 4.2.5. If a1 = 0 and a2 ̸= 0, the k-folding map has an Ak+2p-singularity if and only if
a1 = a3 = ...= a2p+1 = 0 and a2p+3 ̸= 0, when k is even. When k is odd, the k-folding map has
an Ak−1-singularity.

Proof. If k is odd, it is enough to consider the coefficients c j with even indices, since those with
odd indices can be eliminated by changes of coordinates in the target, i.e, using the action of the
left group L .

Since c0 = (b0)
k ̸= 0, it follows that Fk(T ) is A -equivalent to (T 2,T k) and has an

Ak−1-singularity.

If k is even, we consider the coefficients with odd indices, since for j even, k+ j is even
and the coefficients ck+ j can be eliminated by a change of coordinates in the target.

• Case 1: b1 ̸= 0

It follows by Lemma 4.1.5 that c1 =
kb1c0

a0
̸= 0, so the map-germ Fk is A -equivalent to

(T 2,T k+1), that is, Fk has an Ak-singularity.
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• Case 2: b1 = 0

We claim that if m is an odd number and b2i+1 = 0, for i = 0, ..., m−3
2 , then c2i+1 = 0, i =

0, ..., m−3
2 and cm = kbmc0

b0
.

For m = 3, it follows by Lemma 4.1.5 that

c3 =
1

3b0

(
3kb3c0 +(2k−1)b2c1 +(k−2)b1c2

)
.

Since c1 = 0, c3 =
kb3c0

b0
.

Suppose by induction that the claim holds for all c j, with j odd and j ≤ m and suppose
that b2i+1 = 0, i = 0, ..., m−1

2 .

According to Lemma 4.1.5, the coefficient cm+2 is given by

cm+2 =
1

(m+2)b0

(
k(m+2)bm+2c0 +

m+1

∑
j=1

(k(m+2− j)− j)bm+2− jc j
)
. (4.2)

If j ≥ 1 is odd, by the induction hypothesis, we obtain c j =
kb jc0

b0
for j ≤ m. Therefore,

for j < m + 2, (k(m + 2 − j)− j)bm+2− jc j = 0, since the b j’s are zero. If j is even, with
j ≥ 2 , the coefficient bm+2− j is zero since (m+ 2− j) is odd and (m+ 2− j) ≤ m. Thus,
(k(m+2− j)− j)bm+2− jc j) = 0. It follows by (4.2), that cm+2 =

kbm+2c0
b0

.

Now if b1 = ...= bm = 0 and bm+2 ̸= 0, for m odd, then c1 = ...= cm = 0 and cm+2 ̸= 0.
Consequently, Fk is A -equivalent to (T 2,T k+(m+2)), that is, it has an Ak+m+1-singularity.

By Lemma 4.2.1, Lemma 4.2.2, Theorem 4.2.3 and Theorem 4.2.4 it follows that the
conditions on b′js are equivalent to a3 = ...= am+2 = 0 and am+4 ̸= 0. Setting m = 2p−1 for
some p, we have Fk is A -equivalent to (T 2,T k+2p+1) if and only if a3 = ... = a2p+1 = 0 and
a2p+3 ̸= 0.

Now suppose that a1 = a2 = 0 and a3 ̸= 0. Then, Fk(t) = (a3t3(1+ a4
a3

t+ a5
a3

t2+O(3)), tk).
We change coordinates so that Fk(T ) = (T 3,(h(T ))k). For that we set T = tg(t) with

g(t) =
(

1
a3t3 f (t)

) 1
3
.

In order to determine the singularity type of Fk in this case we need the following results.

Proposition 4.2.6. If l is an integer such that 3 ∤ l and ci = 0, with 1 ≤ i ≤ l − 1, 3 ∤ i, then
cl =

kblc0
b0

. Also, c1 =
kb1c0

b0
.

Proof. It follows by Lemma 4.1.5 that c1 =
kb1c0

b0
.

Now consider l an integer such that 3 ∤ l. Then, l = 3p+1 or l = 3p+2, for some p.

If l = 1 mod 3, for l = 4 and c1 = c2 = 0, it follows by Lemma 4.1.5 that c4 =
kb4c0

b0
.
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Suppose that ci =
kbic0

b0
, for 1 ≤ i ≤ l such that 3 ∤ i and consider ci = 0, with 1 ≤ i ≤ l+1,

3 ∤ i. According to Lemma 4.1.5,

cl+3(l +3)b0 = k(l +3)bl+3c0 +(k(l +2)−1)bl+2c1 + ...+(k− (l +2))b1cl+2

= k(l +3)bl+3c0 +(kl −3)blc3 + ...+(k− (l +2))b1cl+2.

Since m+n = l+3, with m and n the indices of b and c, respectively, and m = 1mod 3, 1 ≤ m ≤ l,
by the induction hypothesis we have cm = kbmc0

b0
= 0. Therefore, such b′ms are zero and, hence,

cl+3 =
kbl+3c0

b0
.

If l = 2 mod 3, following Lemma 4.1.5, the statement holds for l = 2.

Suppose that ci =
kbic0

b0
, for 1 ≤ i ≤ l, and 3 ∤ i. Consider ci = 0, with 1 ≤ i ≤ l +2, 3 ∤ i.

Then,

cl+3(l +3)b0 = k(l +3)bl+3c0 +(k(l +2)−1)bl+2c1 + ...+(k− (l +2))b1cl+2

= k(l +3)bl+3c0 +(kl −3)blc3 + ...+(k− (l +2))b1cl+2.

Since m+n = l +3, with m and n indices of b and c, respectively, and m = 2 mod 3, 1 ≤ m ≤ l,
by the induction hypothesis we have cm = kbmc0

b0
= 0. Then, such b′ms are zero and, hence,

cl+3 =
kbl+3c0

b0
.

Proposition 4.2.7. Let p be a positive integer. Suppose that h(i)(0) = 0, with i ̸= 1mod 3 and
0 ≤ i < 3p+ l, for l = 0 or 2. Then, h(3p+l)(0)g(0) =−(3p+ l)(h′(0))3p+lg(3p+l−1)(0).

Proof. Consider l = 0. If p = 1, suppose h(i)(0) = 0, for i ̸= 1 mod 3, with 0 < i < 3. According
to Leibniz Rule,(3

0

)
h(3)(0)g(0)+

(3
1

)
h′′(0)

(
g◦h

)′
(0)+

(3
2

)
h′(0)

(
g◦h

)′′
(0) = 0.

Since h′′(0) = 0 and
(
g◦h

)′′
(0) = g′′(0)(h′(0))2 +h′′(0)g′(0), we obtain(3
0

)
h(3)(0)g(0) = −

(3
2

)
(h′(0))3g′′(0).

h(3)(0)g(0) = −3(h′(0))3g′′(0).

Suppose that the statement holds up to the order 3p, that is, h(3i)(0)g(0) =−3i(h′(0))3ig(3i−1)(0),
for i ≤ p. We also suppose h(i)(0) = 0, for i ̸= 1 mod 3 and 0 < i < 3p+3. It follows by Leibniz
Rule that(3p+3

0

)
h(3p+3)(0)g(0)+

(3p+2
1

)
h(3p+2)(0)

(
g◦h

)′
(0)+ ...+

(3p+3
3p+2

)
h′(0)

(
g◦h

)(3p+2)
(0)

+
(3p+3

3p+3

)
h(0)

(
g◦h

)(3p+3)
(0) = 0.

Since h(i)(0) = 0, for i ̸= 1 mod 3, 0 ≤ i < 3p+ 3, the expression above can be rewritten as
follows(3p+3

0

)
h(3p+3)(0)g(0)+

(3p+1
2

)
h(3p+1)(0)

(
g◦h

)′′
(0)+ ...+

(3p−2
5

)
h(3p−2)(0)

(
g◦h

)(5)
(0)

+...+
(3p+3

3p+2

)
h′(0)

(
g◦h

)(3p+2)
(0) = 0.
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We need to consider the derivatives
(
g◦h

)(3 j+2)
(0), for 0 ≤ j ≤ p. By Faà di Bruno’s Formula,

∂ 3 j+2(g◦h)(T )
∂T

= ∑
(3 j+2)!

m1!m2!...m3 j+2!g
(m)(h(T ))(h′(T ))m1(h”(T )

2! )m2...(h(3 j+2)(T )
(3 j+2)! )m3 j+2,

where the sum is over none-negative integers m1,m2, ...,m3 j+2 satisfying m1+m2+ ...+m3 j+2 =

m and m1 +2m2 + ...+(3 j+2)m3 j+2 = 3 j+2. Since h(i)(0) = 0, for i ̸= 1mod 3 and 1 < i <

3p+3, we can take mi = 0 zero for all i satisfying those conditions. Then,(
g◦h

)(3 j+2)
(0) = ∑

(3 j+2)!
m1!m2!...m3 j+2!g

(m)(0)(h′(0))m1(h(4)(0))m4...(h(3 j+1)(0))m3 j+1,

where
m1 +m4 + ...+m3 j+1 = m

m1 +4m4 + ...+(3 j+1)m3 j+1 = 3 j+2.

Subtracting the two equations, we obtain

3m4 + ...+3m3 j+1 = 3 j+2−m.

Notice that 3m4 + ...+3m3 j+1 is a multiple of three. Then, 3 | (3 j+2−m), that is, m = 2 mod
3. According to the induction hypothesis, h(3i)(0)g(0) =−3i(h′(0))3ig(3i−1)(0), with 1 ≤ i ≤ p.
Since h(i)(0) = 0, for 0 ≤ i < 3p+3 and i ̸= 1 mod 3, g(3i−1)(0) = 0, where 1 ≤ i ≤ p. Then,
g(3(i−1)+2)(0) = 0, with 1 ≤ i ≤ p. It follows by Faà di Bruno’s formula that

(
g◦h

)(3 j+2)
(0) = 0,

for 0 ≤ j ≤ p−1.

For j = p, since m = 2 mod 3, with m ≤ 3p+2 and g(3 j+2)(0) = 0, for 0 ≤ j ≤ p−1,
according to Faà di Bruno’s formula, we are going to consider m = 3p+2. Then, it follows by

m1 +m4 + ...+m3p+1 = 3p+2
m1 +4m4 + ...+(3p+1)m3p+1 = 3p+2

that

3m4 + ...+3pm3p+1 = 0.

Since mi ≥ 0, we have mi = 0, for 4 ≤ i ≤ 3p+1, i = 1 mod 3. Then, m1 = 3p+2 and,(
g◦h

)(3p+2)
(0) = g(3p+2)(0)(h′(0))3p+2.

Thus, (3p+3
0

)
h(3p+3)(0)g(0) = −

(3p+3
3p+2

)
(h′(0))3p+3g(3p+2)(0)

h(3p+3)(0)g(0) = −(3p+3)(h′(0))3p+3g(3p+2)(0).

Now consider l = 2. If p = 0, it follows by h(T )g(h(T )) = T that

h′(T )g(h(T ))+g′(h(T ))(h′(T ))h(T ) = 1

and
h′′(T )g(h(T ))+g′(h(T ))(h′(T ))2 +g′′(h(T ))(h′(T ))2h(T )+

g′(h(T ))h′′(T )h(T )+g′(h(T ))(h′(T ))2 = 0.
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Since h(0) = 0, we get h′′(0)g(0) =−2g′(0)(h′(0))2.

Suppose that the statement holds up to p, that is,

h(3 j+2)(0)g(0) =−(3 j+2)(h′(0))3 j+2g(3 j+1)(0),

with j ≤ p. Consider h(i)(0) = 0, for i < 3p+5 and i ̸= 1 mod 3. Notice that(3p+5
0

)
h(3p+5)(0)g(0)+

(3p+5
1

)
h(3p+4)(0)

(
g◦h

)′
(0)+ ...+

(3p+5
3p+3

)
h′′(0)

(
g◦h

)(3p+3)
(0)

+
(3p+5

3p+4

)
h′(0)

(
g◦h

)(3p+4)
(0)+

(3p+5
3p+5

)
h(0)

(
g◦h

)(3p+5)
(0) = 0.

Since h(i)(0) = 0 for 0 ≤ i < 3p+5, with i ̸= 1 mod 3,(3p+5
0

)
h(3p+5)(0)g(0)+

(3p+5
1

)
h(3p+4)(0)

(
g◦h

)′
(0)+ ...+

(3p+5
3p+4

)
h′(0)

(
g◦h

)(3p+4)
(0) = 0.

By Faà di Bruno’s formula,(
g◦h

)(3 j+1)
(0) = ∑

(3 j+1)!
m1!...m3 j+1!g

(m)(0)(h′(0))m1(h(4)(0))m4...(h(3 j+1)(0))m3 j+1,

where
m1 +m4 + ...+m3 j+1 = m

m1 +4m4 + ...+3 j+1m3 j+1 = 3 j+1.

Subtracting the two equations, we obtain

3m4 + ...+3 jm3 j+1 = 3 j+1−m

and, thus, m = 1mod 3.

It follows by the induction hypothesis and h(i)(0) = 0, for i ̸= 1 mod 3 with 0≤ i< 3p+5
that g(3 j+1)(0) = 0 for 0 ≤ j ≤ p. Then, since m = 1 mod 3, we can consider m = 3p+4.

By Faà di Bruno’s formula,
(
g ◦ h

)(3 j+1)
(0) = 0, with 0 ≤ j ≤ p. For j = p+ 1, we

obtain
m1 +m4 + ...+m3 j+1 = 3p+4

m1 +4m4 + ...+3 j+1m3 j+1 = 3p+4.

Then, m4 = ...= m3m+1 = 0 and m1 = 3p+4.

According to Faà di Bruno’s formula,(
g◦h

)(3p+4)
(0) = g(3p+4)(0)(h′(0))3p+4.

Then, (3p+5
0

)
h(3p+5)(0)g(0) = −

(3p+5
3p+4

)
g(3p+4)(0)(h′(0))3p+5

h(3p+5)(0)g(0) = −(3p+5)g(3p+4)(0)(h′(0))3p+5.

Theorem 4.2.8. Consider n = 1 mod 3. If n ̸= 1, suppose that g(m)(0) = 0, for 1 ≤ m < n, with

3 ∤ m. Then, g(n)(0) =
n!an+3

3a3(g(0))2 . Also, g′(0) =
a4

3a3(g(0))2 .
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Proof. Let y(t) = g3(t) =
1
a3

∑
∞
j=0 a j+3t j, t ∈C,0. It follows by the analyticity of y that y(n)(0) =

n!an+3

a3
. In particular, y′(0) = 3(g(0))2g′(0) =

a4

a3
.

Also, according to Leibniz Rule, y(n)(0) = (g2 ·g)(n)(0) = ∑
n
j=0
(n

j

)
(g2)( j)(0)g(n− j)(0),

and since n = 1 mod 3, we get g(n− j)(0) = 0, for 3 | j, with j > 0 or j = 2 mod 3. Then, it is
sufficient to consider the cases when j = 1 mod 3 and when j = 0. Firstly, consider j < n.

For j = 1 mod 3, it follows by Leibniz Rule that (g2)( j)(0) = ∑
j
i=0
( j

i

)
g(i)(0)g( j−i)(0).

a) For 3 | i, we have ( j− i) = 1 mod 3. Since j− i ≤ j < n, we obtain g( j−i)(0) = 0.

b) Let i = 1 mod 3. Since i ≤ j < n, it follows by the hypothesis that g(i)(0) = 0.

c) If i = 2 mod 3, it follows by i ≤ j < n that g(i)(0) = 0.

Therefore, for j < n, (g2)( j)(0) = 0.

For j = n :

a) If 3 ∤ i and i < n, it follows by the hypothesis that g(i)(0) = 0.

b) If 3 | i and i > 0, since ( j− i)< n and ( j− i) = 1 mod 3 we have g( j−i)(0) = 0.

c) If i= 0 or i= n, according to Leibniz Rule, we have
(n

0

)
g(0)g(n)(0) and

(n
n

)
g(n)(0)g(0).

Thus, for j = n, we have (g2)(n)(0) =
(n

0

)
g(0)g(n)(0) +

(n
n

)
g(n)(0)g(0).

For j = 0, we obtain
(n

0

)
g2(0)g(n)(0). Therefore,

y(n)(0) =
(n

0

)
g2(0)g(n)(0)+

(n
n

)
(g2)(n)g(0)

=
(n

0

)
g2(0)g(n)(0)+

(n
n

)
g(0)[

(n
0

)
g(0)g(n)(0)+

(n
n

)
g(0)g(n)(0)]

= 3g2(0)g(n)(0).

It follows that 3(g(0))2g(n)(0) =
n!an+3

a3
, so g(n)(0) =

n!an+3

3a3(g(0))2 .

Theorem 4.2.9. Consider n such that n = 2 mod 3. Suppose that g(m)(0) = 0, 1 ≤ m < n, with

3 ∤ m. Then, g(n)(0) =
n!an+3

3a3(g(0))2 .

Proof. Let y(t) = g3(t) =
1
a3

∑
∞
j=0 a j+3t j, t ∈C,0. It follows by the analiticity of y that y(n)(0) =

n!an+3

a3
.

Also, according to Leibniz Rule, y(n)(0) = (g2 ·g)(n)(0) = ∑
n
j=0
(n

j

)
(g2)( j)(0)g(n− j)(0).

Since n = 2 mod 3, it follows by the hypothesis that g(n− j)(0) = 0, for j = 1 mod 3 or j = 0
mod 3, with j > 0. We need to consider the case j = 2 mod 3 and when j = 0. According to
Leibniz Rule (g2)( j)(0) = ∑

j
i=0
( j

i

)
g(i)(0)g( j−i)(0).

For j < n and j = 2 mod 3:

a) If 3 | i, we have ( j− i) = 2 mod 3. Since j− i ≤ j < n, we obtain g( j−i)(0) = 0;
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b) If i = 1 mod 3, it follows by ( j− i) = 1 mod 3 that g( j−i)(0) = 0;

c) For i = 2 mod 3, we obtain g(i)(0) = 0, since i ≤ j < n.

Therefore, for j < n, (g2)( j)(0) = 0.

For j = n:

a) If 3 ∤ i and i < n, it follows by the hypothesis that g(i)(0) = 0;

b) If 3 | i, we have j− i < n and ( j− i) = 2 mod 3. Then, g( j−i)(0) = 0;

c) For i = 0 and i = n, we obtain
(n

0

)
g(0)g(n)(0) and

(n
n

)
g(n)(0)g(0), by the Leibniz

Rule.

Thus, for j = n,(g2)(n)(0) =
(n

0

)
g(0)g(n)(0) +

(n
n

)
g(n)(0)g(0).

For j = 0, we have
(n

0

)
(g(0))2g(n)(0). Therefore,

y(n)(0) =
(n

0

)
(g(0))2g(n)(0)+

(n
0

)
(g(0))2g(n)(0)+

(n
n

)
g(n)(0)(g(0))2

= 3(g(0))2g(n)(0).

It follows that 3(g(0))2g(n)(0) =
n!an+3

a3
, so g(n)(0) =

n!an+3

3a3(g(0))2 .

We can now prove the following result.

Theorem 4.2.10. Suppose that a1 = a2 = 0 and a3 ̸= 0. If 3 | k, say k = 3m, then the singularity
of Fk is of the type

E6(m+ j) ⇔ a4 = a5 = a7 = ...= a3 j+2 = 0, and a3 j+4 ̸= 0.
E6(m+ j)+2 ⇔ a4 = a5 = a7 = ...= a3 j+4 = 0 and a3 j+5 ̸= 0.

If k = 3m+1 (resp. k = 3m+2), then Fk has an E6m (resp. E6m+2)-singularity.

Proof. We have two cases:

• The case 3 ∤ k:

Since k is not divisible by three, we have two possibilities: k = 1 mod 3 or k = 2 mod 3.
Also, Fk(T ) = (T 3,c0T k +c1T k+1+O(k+2)), where c0 = (b0)

k = (h′(0))k ̸= 0. It follows from
the classification results in Chapter 3 that Fk is finitely A -determined.

If k= 3m+1 for some integer m, Fk is A -equivalent to (T 3,T 3m+1+T 3l+2) if c3(l−m)+1 ̸=
0 or (T 3,T 3m+1), if all the coefficients c3(l−m)+1 are zero, for m ≤ l < (2m−1). If k = 3m+2,
then Fk is A -equivalent to (T 3,T 3m+2 +T 3l+1) if c3(l−m)−1 ̸= 0 or (T 3,T 3m+2), if all the coeffi-
cients c3(l−m)−1 are zero, with m < l ≤ (2m−1).

• The case 3|k:

In this case, we can eliminate the terms of degrees divisible by three by changes of
coordinates in the target.
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Now if k = 3m for some m, Fk is A -equivalent to (T 3,T 3(m+ j)+1 +T 3l+2), with (m+

j)≤ l < 2(m+ j)−1 or (T 3,T 3(m+ j)+1) if all the coefficients c1 = c2 = c4 = ...= c3 j−1 = 0 and
c3 j+1 ̸= 0. Also, Fk is A -equivalent to (T 3,T 3(m+ j)+2+T 3l+1), with (m+ j)< l ≤ 2(m+ j)−1
or (T 3,T 3(m+ j)+2) if all the coefficients c1 = c2 = c4 = ...= c3 j+1 = 0 and c3 j+2 ̸= 0.

According to Proposition 4.2.6, the conditions on the coefficients c j’s above determine
some conditions on b′js. It follows by Proposition 4.2.7, Theorem 4.2.8 and Theorem 4.2.9 that
the conditions on b j’s are equivalent to a4 = a5 = a7 = ...= a3 j+2 = 0 and a3 j+4 ̸= 0 for E6(m+ j)-
singularity and a4 = a5 = a7 = ...= a3 j+4 = 0 and a3 j+5 ̸= 0 for E6(m+ j)+2-singularity.

Theorem 4.2.11. Suppose that a1 = a2 = a3 = 0 and a4 ̸= 0. Then, the 4-folding map-germ can
have a singularity of type

(t4, t5),(t4, t5 + t7),(t4, t6 + t2l+1),(t4, t7 + t9),(t4, t7),(t4, t7 + t13).

Proof. The statement follows by the classification results in Chapter 3 as the coefficients ai can
take any values in C.

Remark 4.2.12. If a5 = a6 = a7 = 0, the 4-folding map-germ does not have an A -simple
singularity.

Remark 4.2.13. Those singularities in Theorem 4.2.11 are of type W12,W #
1.2k−5 and W18, as

shown in Theorem 3.0.1 of Chapter 3.

Theorem 4.2.14. Suppose that a1 = a2 = a3 = 0 and a4 ̸= 0. Then, the 5-folding map-germ can
have a singularity of the form

(t4, t5 + t7) and (t4, t5).

Proof. The statement follows by the classification results in Chapter 3 as the coefficients ai can
take any values in C.

Remark 4.2.15. Those singularities in Theorem 4.2.14 are of type W12, as shown in Theorem
3.0.1 of Chapter 3.

Theorem 4.2.16. Any A -simple singularity of map-germs C,0 → C2,0 can be realised as a
singularity of a k-folding map-germ for some k ≥ 3. Also, any k-folding map-germs for k ≥ 3
can have an A -simple singularity.

Proof. The proof follows by Theorem 4.2.5, Theorem 4.2.10, Theorem 4.2.11 and Theorem
4.2.14.

Remark 4.2.17. If a1 = a2 = a3 = a4 = 0, then the singularities of the k-folding map-germs are
not A -simple, when k ≥ 5.
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4.3 k-folding map-germs on generic plane curves
The local geometry of a generic plane curve reveal aspect of the local singularities of

k-folding map-germs on it. For more details about generiticy of curves, see Appendix A.

Theorem 4.3.1. Let γ : R,0 → R2,0 be a generic plane curve (that is, in an open and dense set
of plane curves), so if the origin is an inflexion or a vertex, then it is an ordinary one.

a) If the tangent line to γ at the origin is not orthogonal to Fix(ωk) = {y = 0}, the
k-folding map is an immersion at the origin.

Suppose now that γ ′(0) is orthogonal to Fix(ωk) at t = t0.

b) If the origin is neither a vertex nor an inflexion, then the k-folding map has an Ak

singularity at the origin if k is even and an Ak−1 singularity if k is odd.

c) If γ has an ordinary vertex at the origin, then the k-folding map has an Ak−1 singularity
at the origin when k is odd and an Ak+2 singularity when k is even.

d) If γ has an ordinary inflexion at the origin and 3 ∤ k, then the k-folding map has an
E6p (resp.E6p+2) singularity at the origin, if k = 3p+1 (resp. k = 3p+2) for some p. If 3 | k,
k = 3p, for some p, the k-folding map has an E6p singularity at the origin.

Proof. We choose an appropriate system of coordinates so that γ : R,0 → R2,0 is the graph of a
function f̄ : R,0 → R, that is, γ(t) = ( f̄ (t), t). Take the l-jet of f̄ at the origin, for l high enough.
Since jl f̄ (0) = f is a polynomial function, it can be complexified and considered as a germ of
a holomorphic function f : C,0 → C,0. We can consider the curve γ : C,0 → C2,0, given by
γ(t) = ( f (t), t), with f (t) = ∑

l
j=1 a jt j, as the singularities of Fk depend only on some jet of f̄ .

a) The statement follows by Proposition 4.1.3.

For the remaining part of the proof we need the following. We suppose now that a1 = 0
so that γ ′(0) = (0,1) is orthogonal to Fix(ωk). Then, the curvature of γ is given by

κ(t) =− 2a2+6a3t+12a4t2+O(3)

((2a2t+3a3t2+4a4t3+O(4))2+1)
3
2
,

and its derivatives are given by

κ ′(t) = p1(t)

((4a4t3+3a3t2+2a2t+O(4))2+1)
3
2
− p2(t)

((4a4t3+3a3t2+2a2t+O(4))2+1)
5
2 )
,

with
p1(t) =−24a4t −6a3 +O(2)
p2(t) =−3(12a4t2 +6a3t +2a2 +O(3))2(4a4t3 +3a3t2 +2a2t +O(4)).

We have

κ ′′(t) = − p3(t)

((4a4t3+3a3t2+2a2t+O(4))2+1)
3
2
− p4(t)

((4a4t3+3a3t2+2a2t+O(4))2+1)
5
2

− p5(t)

((4a4t3+3a3t2+2a2t+O(4))2+1)
5
2
− p6(t))

((4a4t3+3a3t2+2a2t+O(4))2+1)
5
2

+ p7(t)

((4a4t3+3a3t2+2a2t+O(4))2+1)
7
2
,



58 Chapter 4. k-Folding maps

with

p3(t) = 24a4 +O(1),
p4(t) = 3(−12a4t2 −6a3t −2a2 +O(3))(12a4t2 +6a3t +2a2 +O(3))2,

p5(t) = 6(−24a4t −6a3 +O(2))(12a4t2 +6a3t +2a2 +O(3))(4a4t3 +3a3t2 +2a2t +O(4)),
p6(t) = 3(24a4t +6a3 +O(2))(−12a4t2 −6a3t −2a2 +O(3))(4a4t3 +3a3t2 +2a2t +O(4),
p7(t) =−15(12a4t2 +6a3t +2a2 +O(3))3(4a4t3 +3a3t2 +2a2t +O(4))2.

b) It follows by Definition A.1.1 that the origin is an inflexion point if and only if
κ(0) = 0, that is, a2 = 0. Moreover, also by Definition A.1.1 the origin is a vertex if and only
if κ(0) ̸= 0 and κ ′(0) = 0 , that is, a2 ̸= 0 and a3 = 0. Therefore, the origin is neither a vertex
nor an inflexion if and only if a2 ̸= 0 and a3 ̸= 0. According to Theorem 4.2.5, the k-folding
map-germ has an Ak−1-singularity for k odd and an Ak-singularity when k is even.

c) According to Definition A.1.1, if the origin is an ordinary vertex of γ , then κ(0) ̸= 0,
κ ′(0) = 0 and κ ′′(0) ̸= 0. In particular, a2 ̸= 0 and a3 = 0. Then, if k is odd, the k-folding
map-germ has an Ak−1 singularity, as proved in Theorem 4.2.5.

Now consider k even. Since for a generic plane curve only one condition is allowed, as
a3 = 0, we have a5 ̸= 0. Therefore, it follows by Theorem 4.2.5 that the k-folding map has an
Ak+2 singularity.

d) It follows by Definition A.1.1 that the ordinary inflexion at the origin occurs when
κ(0) = 0 and κ ′(0) ̸= 0, that is, if a2 = 0 and a3 ̸= 0. In this case, for 3 ∤ k, according to Theorem
4.2.10, there exist the following possibilities:

- The k-folding map-germ has an E6p-singularity, if k = 3p+1;

- The k-folding map-germ has an E6p+2-singularity, if k = 3p+2;

Now consider k = 3p, for some p. Since the curve is generic and a2 = 0, then we
have a4 ̸= 0. Therefore, it follows by Theorem 4.2.10 that the k-folding map has an E6p-
singularity.

Example 4.3.2. Consider the curve γ : C,0 → C2,0 given by γ(t) = (t2 + t3, t). Since a2 ̸= 0
and a3 ̸= 0, the origin is neither a vertex nor an inflexion. According to the Theorem 4.3.1, we
have F4(T )∼A (T 2,T 5). The following figure represents γ and the real part of F4.
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Figure 2 – 4-Folding map-germ on γ(t) = (t2 + t3, t)

4.4 k-folding map-germs and the symmetries of the curve

In this section, we use the singularities of the k-folding map-germ to study the local
symmetry of a plane curve, that is, the contact between the curve γ and its reflected curves
Rξ j ◦ γ , 1 ≤ j ≤ k−1, where Rξ j : C2,0 → C2,0 is given by Rξ j(x,y) = (x,ξ jy) and ξ = e2πi/k.
The following figure shows some reflections of the curve γ .

Figure 3 – The curve γ and its reflected curves

In what follows, we take γ : C,0 → C2,0 with γ ′(0) orthogonal to Fix(ωk). For a defini-
tion of contact between two curves see Definition A.2.1.

Theorem 4.4.1. Let γ : C,0 → C2,0 be a plane curve without an inflexion at the origin. If k is
even, then Fk has an Ak+2p-singularity if and only if γ and the curve R

ξ
k
2
◦ γ have (2p+3)-point

contact at the origin.

Proof. According to the proof of Theorem 4.2.16, for k even and γ without an inflexion, the k-
folding map has an Ak+2p-singularity if and only if a3 = ...= a2p+1 = 0 and a2p+3 ̸= 0. Suppose
that this is the case. Then, γ is given by

γ(t) = (a2t2 +a4t4 + ...+a2p+2t2p+2 +a2p+3t2p+3 +a2p+4t2p+4 +a2p+5t2p+5 +O(2p+7), t).
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For j = k
2 , we have the curve Rξ j ◦γ = ( f (t),ξ jt). We consider the contact between γ and Rξ j ◦γ .

Let g : C2,0 → C, g(x,y) = x− f (y). Then, γ = g−1(0) and the contact between the two curves
is given by the singularity of

g(Rξ j ◦ γ)(t) = f (t)− f (ξ jt)

= a2(1−ξ 2 j)t2 + ...+a2p+3(1−ξ (2p+3) j)t2p+3 +O(2p+4).

Since ξ 2 j = 1, we have
(
g(Rξ j ◦ γ)

)(i)
(0) = 0, for 0 ≤ i ≤ 2p+2 and

(
g(Rξ j ◦ γ)

)(2p+3)
(0) ̸= 0.

Therefore, γ and Rξ j ◦ γ have (2p+3)-point contact at the origin.

Now suppose that for j = k
2 γ and Rξ j ◦ γ have (2p+3)-point contact at the origin. Then,(

g(Rξ j ◦ γ)
)(i)

(0) = 0 for 0 ≤ i ≤ 2p+2 and
(
g(Rξ j ◦ γ)

)(2p+3)
(0) ̸= 0. Since (1−ξ 3 j) ̸= 0, ...,

(1−ξ (2p+1) j) ̸= 0, we obtain a3 = ...= a2p+1 = 0 and a2p+3 ̸= 0. Therefore, for k even, Fk has
an Ak+2p-singularity.

Remark 4.4.2. When γ does not have an inflexion at the origin, γ and Rξ j ◦ γ have 2-point
contact at the origin, for j ̸= k

2 . Indeed,

g(Rξ j ◦ γ)(t) = f (t)− f (ξ jt) = a2(1−ξ 2 j)t2 +O(3).

Since (1−ξ 2 j) ̸= 0 and a2 ̸= 0, the two curves have clearly 2-point contact at the origin.

Figure 4 – The curve γ and its reflected curves, when Fk(T )∼A (T 2,T k+2p+1), with k even

Theorem 4.4.3. Consider γ : C,0 → C2,0 a plane curve with an ordinary inflexion at the origin.
If 3 ∤ k, then γ and all the reflected curves Rξ j ◦ γ have 3-point contact at the origin, with
1 ≤ j ≤ k−1.

Proof. Since γ has an ordinary inflexion at the origin, we have γ(t) = (a3t3+a4t4+a5t5+a6t6+

O(7), t) with a3 ̸= 0. Consider g : C2 → C given by g(x,y) = x− f (y). Then,(
g(Rξ j ◦ γ)

)
(t) = f (t)− f (ξ jt)

= a3(1−ξ 3 j)t3 +a4(1−ξ 4 j)t4 +a5(1−ξ 5 j)t5 +O(6).
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Observe that ξ 3 j = 1 if and only if k | 3 j. If 3 ∤ k, in order to have ξ 3 j = 1 we need that k | j.
But that does not hold since 1 ≤ j ≤ k−1. Therefore, γ and the reflected curves Rξ j ◦ γ , with
1 ≤ j ≤ k−1, have 3-point contact at the origin.

Theorem 4.4.4. Suppose that 3 | k, so that k = 3m for some m and suppose that γ has an ordinary
inflexion at the origin. The k-folding map-germ is A -equivalent to (t3, t3(m+ j)+1 + t3p+2), with
m+ j ≤ p < 2(m+ j)− 1 or (t3, t3(m+ j)+1), for some j, if and only if γ and Rξ m ◦ γ have
(3 j+4)-point contact at the origin.

Proof. According to the proof of Theorem 4.2.10, if 3 | k, the k-folding map-germ is A -
equivalent to (t3, t3(m+ j)+1 + t3p+2), with m+ j ≤ p < 2(m+ j)−1 or (t3, t3(m+ j)+1), for some
j, if and only if the coefficients a4 = a5 = a7 = ...= a3 j+2 = 0 and a3 j+4 ̸= 0. Suppose that this
is the case. Then, the curve γ is given by

γ(t) = (a3t3 +a6t6 + ...+a3 j+3t3 j+3 +a3 j+4t3 j+4 +O(3 j+5), t).

We have(
g(Rξ m ◦ γ)

)
(t) = f (t)− f (ξ mt)

= a3(1−ξ 3m)t3 +a6t6(1−ξ 6m)t6 + ...+a3 j+4(1−ξ (3 j+4)m)t3 j+4 +O(3 j+5)

Since k = 3m, we obtain
(
g(Rξ m ◦γ)

)(n)
(0) = 0 for 0≤ n≤ 3 j+3 and

(
g(Rξ m ◦γ)

)(3 j+4)
(0) ̸= 0.

Hence, γ and the curve Rξ m ◦ γ have (3 j+4)-point contact at the origin.

Now suppose that the curves γ and Rξ m ◦ γ have (3 j + 4)-point contact at the origin.

Then,
(
g(Rξ m ◦ γ)

)(n)
(0) = 0 for 0 ≤ n ≤ 3 j+3 and

(
g(Rξ m ◦ γ)

)(3 j+4)
(0) ̸= 0. Since(

g(Rξ m ◦ γ)
)
(t) = f (t)− f (ξ mt)

= a3(1−ξ 3m)t3 +a4(1−ξ 4m)t4 + ...+a3 j+4(1−ξ (3 j+4)m)t3 j+4 +O(3 j+5),

we obtain a4 = a5 = a7 = ...= a3 j+2 = 0 and a3 j+4 ̸= 0.

Theorem 4.4.5. Suppose that 3 | k, so that k = 3m for some m and suppose that γ has an ordinary
inflexion at the origin. The k-folding map-germ is A -equivalent to (t3, t3n+1 + t3(m+ j)+2), with
m+ j < n ≤ 2(m+ j)−1 or to (t3, t3(m+ j)+2), for some j, if and only if γ and the curve Rξ m ◦ γ

have (3 j+5)-point contact at the origin.

Proof. According to the proof of Theorem 4.2.10, for 3 | k, the k-folding map is A -equivalent to
(t3, t3n+1 + t3(m+ j)+2), with m+ j < n ≤ 2(m+ j)−1 or (t3, t3(m+ j)+2), for some j, if and only
if the coefficients of f a4 = a5 = a7 = ... = a3 j+4 = 0 and a3 j+5 ̸= 0. Suppose that this is the
case. Then, the curve γ is given by

γ(t) = (a3t3 +a6t6 + ...+a3 j+5t3 j+5 +O(3 j+6), t).
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Consider g : C,0 → C2,0, g(x,y) = x− f (y). Then, γ = g−1(0) and

(g(Rξ m ◦ γ))(t) = f (t)− f (ξ mt)

= a3(1−ξ 3m)t3 +a6(1−ξ 6m)t6 + ...+a3 j+5(1−ξ (3 j+5)m)t3 j+5 +O(3 j+6).

Since k = 3m,
(
g(Rξ m ◦ γ)

)(n)
(0) = 0, for 0 ≤ n ≤ 3 j+4 and

(
g(Rξ m ◦ γ)

)(3 j+5)
(0) ̸= 0. There-

fore, γ and the curve Rξ m ◦ γ have (3 j+5)-point contact at the origin.

Conversely, suppose that γ and Rξ m ◦γ have (3 j+5)-point contact at the origin, for some

j. Then,
(
g(Rξ m ◦ γ)

)(n)
(0) = 0, for 0 ≤ n ≤ 3 j+4 and

(
g(Rξ m ◦ γ)

)(3 j+5)
(0) ̸= 0. Since(

g(Rξ m ◦ γ)
)
(t) = f (t)− f (ξ mt)

= a3(1−ξ 3m)t3 + ...+a3 j+5(1−ξ (3 j+5)m)t3 j+5 +O(3 j+6),

we obtain a4 = a5 = a7 = ...= a3 j+4 = 0 and a3 j+5 ̸= 0.

Theorem 4.4.6. Let γ : C,0 → C2,0 be a plane curve with a second order inflexion at the origin,
that is, a2 = a3 = 0 and a4 ̸= 0. Then, the relationship between the local singularities of the
4-folding map-germ and the order of contact of γ and the reflected curves Rξ j ◦ γ , with 1 ≤ j ≤ 3
is given by:

a) If the 4-folding map-germ is A -equivalent to (t4, t5 + t7) or (t4, t5), then the curve γ

and all reflected curves Rξ j ◦ γ , 1 ≤ j ≤ 3 have 5-point contact at the origin.

b) If the 4-folding map-germ is A -equivalent to (t4, t7), (t4, t7+ t9) or (t4, t7+ t13), then
γ and all reflected curves Rξ j ◦ γ , with 1 ≤ j ≤ 3 have 7-point contact at the origin.

Proof. a) For g : C2 → C;g(x,y) = x− f (y), we obtain γ = g−1(0) and the contact between this
curve and Rξ j ◦ γ , 1 ≤ j ≤ 3 is given by the derivatives of(

g(Rξ j ◦ γ)
)
(t) = f (t)− f (ξ jt) = a4(1−ξ 4 j)t4 +a5(1−ξ 5 j)t5 +a6(1−ξ 6 j)t6 j +O(7).

If the 4-folding map-germ is A -equivalent to (t4, t5) or (t4, t5 + t7), then a5 ̸= 0.

Since ξ 4 j = 1, for all j, we obtain (1−ξ 4 j) = 0 for all j. Hence,(
g(Rξ j ◦ γ)

)(i)
(0) = 0,0 ≤ i ≤ 4 and

(
g(Rξ j ◦ γ)

)(5)
(0) ̸= 0, with 1 ≤ j ≤ 3

and the result follows.

b) Consider g : C→C2;g(x,y) = x− f (y). Then, γ = g−1(0). If the 4-folding map-germ
is A -equivalent to (t4, t7 + t9), (t4, t7 + t13) or (t4, t7), then a5 = a6 = 0 and a7 ̸= 0. Moreover,
the contact between γ and the reflected curves Rξ j ◦ γ , with 1 ≤ j ≤ 3, is given by the derivatives
of (

g(Rξ j ◦ γ)
)

= f (t)− f (ξ jt)

= a4(1−ξ 4 j)t4 +a5(1−ξ 5 j)t5 +a6(1−ξ 6 j)t6 j +a7(1−ξ 7 j)t7 +O(8).
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and for a5 = a6 = 0, a7 ̸= 0, we obtain(
g(Rξ j ◦ γ)

)(i)
(0) = 0,0 ≤ i ≤ 6 and

(
g(Rξ j ◦ γ)

)(7)
(0) ̸= 0, with 1 ≤ j ≤ 3

and the result follows.

Theorem 4.4.7. Let γ : C,0 → C2,0 be a plane curve with a second order inflexion at the origin.
If the 5-folding map-germ is A -equivalent to (t4, t5 + t7) or (t4, t5), then γ and all the curves
Rξ j ◦ γ have 4-point contact, for 1 ≤ j ≤ 4.

Proof. Denoting γ = g−1(0), with g : C → C2,g(x,y) = x− f (y). If the 5-folding map is A -
equivalent to (t4, t5 + t7) or (t4, t5), then a4 ̸= 0.

The contact between γ and Rξ j ◦ γ is given by the derivatives of(
g(Rξ j ◦ γ)

)
(t) = a4(1−ξ 4 j)t4 +a5(1−ξ 5 j)t5 +a6(1−ξ 6 j)t6 +a7(1−ξ 7 j)t7 +O(8),

and the result follows.
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CHAPTER

5
CONCLUSION

With this work, we studied k-folding map-germs on plane curves, generalising the case
k = 2. Also, we showed that all k-folding map-germs for k ≥ 3 can have all the possible A -simple
singularities and those singularities reveal information about the hidden symmetries of a plane
curve. Furthermore, we showed that inflexions and vertices of a generic plane curve can be used
to describe those singularities of a k-folding map-germ.
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APPENDIX

A

In this appendix, we enunciate some results in Singularity Theory applied to the geometry
of curves. The main reference is (BRUCE; GIBLIN, 1992).

A.1 Special points on plane curves

Definition A.1.1. Let γ : I → R2 be a regular curve and κ(t) the curvature of γ at t. Given t0 ∈ I,
we say that

(a) γ(t0) is a vertex if κ(t0) ̸= 0 and κ ′(t0) = 0. The point γ(t0) is an ordinary vertex if
furthermore κ ′′(t0) ̸= 0 and a higher vertex if κ ′′(t0) = 0.

(b) γ(t0) is an inflexion if κ(t0)= 0. The point γ(t0) is an ordinary inflexion if furthermore
κ ′(t0) ̸= 0 and a higher inflexion if κ ′(t0) = 0.

A.2 Contact between curves

Definition A.2.1. Let γ : I → Rn be a regular curve, with γ(t0) = 0 and let F : Rn → Rp be
submersion at the origin. We say that γ and F−1(0) have k-point contact at t = t0 if the function
g = F ◦ γ satisfies

g(t0) = g′(t0) = ...= g(k−1)(t0) = 0 and g(k)(t0) ̸= 0.

The contact between γ and lines or circles can be studied analyzing the derivatives of
two special functions, respectively: the height functions and the distance-squared functions.

Definition A.2.2. Let u∈Rn. The distance-squared function on γ from u is the function fd : I →R
defined by

fd(t) = ||γ(t)−u||2 = (γ(t)−u) · (γ(t)−u)

Definition A.2.3. Let u ∈ Sn−1 ⊂ Rn. The height function on γ in the direction u is the function
fh : I → R defined by

fh(t) = γ(t) ·u.



70 APPENDIX A.

Note that γ(t) ·u is the distance from γ(t) to the hyperplane through 0 perpendicular to u.

Proposition A.2.4. Let n = 2 in Definition A.2.3 and Definition A.2.2. We say that γ has k-
point contact at t = t0 with the circle centered u and passing through γ(t0) if and only if the
distance-squared function fd on γ from u satisfies f (i)d (t0) = 0, i = 1, ...,k−1 and f (k)d (t0) ̸= 0.
In particular, γ has an ordinary (resp. higher) vertex at t = t0 if and only if k = 4 (resp. some
k ≥ 5), where u = γ(t0)+ 1

κ(t0)
N(t0).

The curve γ has k-point contact at t = t0 with its tangent line at t0 if and only if the
height function fh on γ in the direction u perpendicular to the tangent vector T (t0) satisfies
f (i)h (t0) = 0, i = 1, ...,k − 1 and f (k)h (t0) ̸= 0. In particular, γ has an ordinary (resp. higher)
inflexion at t = t0 if and only k = 3 (resp. some k ≥ 4).

A.3 A word on generiticy

Definition A.3.1. We say that a property P is dense or holds for a dense set of (regular) plane
curves γ : I → R2 if there exists a neighbourhood U of 0 in some Euclidean space RN and a
family of regular plane curves γ̄ : I ×U → R2 such that:

• (a) γ̄(t,0) = γ(t);

• (b) if {un} is a sequence in U with limn→∞un = 0, then the property P holds for the
sequence of curves γn, defined by γn(t) = γ̄(t,un).

Definition A.3.2. The property P is open or holds for an open set of (regular) plane curves if
given a curve γ : I → R2 with property P and a family γ̄ : I ×U → R2 of (regular) curves γ̄u, the
property P holds for all curves γ̄u with u in some neighbourhood U of 0.

Definition A.3.3. A property P is said to be generic or to hold for a generic set of curves if it is
both dense and open.

Proposition A.3.4. In an open and dense set of regular curves γ : S1 → R2 there exist only
finitely many ordinary inflexions and ordinary vertices and no higher inflexions or higher vertices,
that is, these properties are generic.

Proof. See [(BRUCE; GIBLIN, 1992)].
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