• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Thèse de Doctorat
DOI
10.11606/T.55.2016.tde-11012016-112023
Document
Auteur
Nom complet
Ingrid Sofia Meza Sarmiento
Adresse Mail
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Carlos, 2015
Directeur
Jury
Oliveira, Regilene Delazari dos Santos (Président)
Alfaro, Jose Andres Martinez
Buzzi, Claudio Aguinaldo
Mello, Luis Fernando de Osório
Rezende, Ketty Abaroa de
Titre en portugais
A topologia de folheações e sistemas integráveis Morse-Bott em superfícies
Mots-clés en portugais
Folheações
Funções Morse-Bott
Grafo de Reeb
Integral primeira
Invariantes topológicos
Sistemas integráveis
Superfícies
Resumé en portugais
Nesta tese estudamos os sistemas integráveis definidos em superfícies compactas possuindo uma integral primeira que é uma função Morse-Bott a valores em R. Estes sistemas são aqui chamados de sistemas integráveis Morse-Bott. Classificamos as curvas fechadas e oitos associados a pontos de selas imersos em superfícies compactas. Essa classificação é aplicada ao estudo das folheações Morse-Bott em superfícies e nos permite definir um invariante topológico completo para a classificação topológica global destas folheações. Como uma aplicação desse estudo obtemos a classificação dos sistemas Morse-Bott assim como a classificação topológica das funções Morse-Bott em superfícies compactas e orientáveis. Demonstramos ainda um teorema da realização baseado em duas transformações e numa folheação geradora. Para o caso das funções Morse-Bott também obtivemos um teorema de realização. Finalmente, investigamos a generalização de alguns dos resultados anteriores para sistemas definidos em superfícies não orientáveis.
Titre en anglais
The topology of foliations and integrable Morse-Bott systems on surfaces
Mots-clés en anglais
First integral
Foliations
Integrable systems
Morse-Bott functions
Reeb graph
Surfaces
Topological invariants
Resumé en anglais
In this thesis we study integrable systems on compact surfaces with a first integral as a Morse-Bott function with target R. These systems are called here integrable Morse-Bott systems. Initially we present the classification of closed curves and eights associated to saddle points on compact surfaces. This classification is applied to the study of Morse- Bott foliations on surfaces allowing us to define a complete topological invariant for the global topological classification of these foliations. Then as an application of this study we obtain the classification of integrable Morse-Bott systems as well as the topological classification of Morse-Bott functions on compact and orientable surfaces. We also prove a realization theorem based on two transformation and a generating foliation (the foliation on the sphere with two centers). In the case of Morse-Bott functions we also obtain a realization theorem. Finally we investigate generalizations of previous results for systems defined on non-orientable surfaces.
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Date de Publication
2016-01-11
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
CeTI-SC/STI
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2021. Tous droits réservés.