
U
N

IV
ER

SI
D

A
D

E 
D

E 
SÃ

O
 P

AU
LO

In
st

itu
to

 d
e 

Ci
ên

ci
as

 M
at

em
át

ic
as

 e
 d

e 
Co

m
pu

ta
çã

o

The Banach-Mazur game and products of Baire spaces

Gabriel Andre Asmat Medina
Dissertação de Mestrado do Programa de Pós-Graduação em
Matemática (PPG-Mat)





SERVIÇO DE PÓS-GRADUAÇÃO DO ICMC-USP

Data de Depósito:

Assinatura: ______________________

Gabriel Andre Asmat Medina

The Banach-Mazur game and products of Baire spaces

Master dissertation submitted to the Institute of
Mathematics and Computer Sciences – ICMC-USP, in
partial fulfillment of the requirements for the degree of
the Master Program in Mathematics. FINAL VERSION

Concentration Area: Mathematics

Advisor: Prof. Dr. Leandro Fiorini Aurichi

USP – São Carlos
May 2021



Ficha catalográfica elaborada pela Biblioteca Prof. Achille Bassi 
e Seção Técnica de Informática, ICMC/USP, 

com os dados inseridos pelo(a) autor(a)

                                       Bibliotecários responsáveis pela estrutura de catalogação da publicação de acordo com a AACR2: 
                                       Gláucia Maria Saia Cristianini - CRB - 8/4938 
                                       Juliana de Souza Moraes - CRB - 8/6176

A836t
Asmat Medina, Gabriel Andre
   The Banach-Mazur game and products of Baire
spaces / Gabriel Andre Asmat Medina; orientador
Leandro  Fiorini Aurichi. -- São Carlos, 2020.
   130 p.

   Dissertação (Mestrado - Programa de Pós-Graduação
em Matemática) -- Instituto de Ciências Matemáticas
e de Computação, Universidade de São Paulo, 2020.

   1. Baire spaces . 2. Banach-Mazur game . 3.
Product of Baire spaces. 4. Multiboard topological
games . I. Fiorini Aurichi, Leandro , orient. II.
Título. 



Gabriel Andre Asmat Medina

O jogo de Banach-Mazur e produto de espaços de Baire

Dissertação apresentada ao Instituto de Ciências
Matemáticas e de Computação – ICMC-USP,
como parte dos requisitos para obtenção do título
de Mestre em Ciências – Matemática. VERSÃO
REVISADA

Área de Concentração: Matemática

Orientador: Prof. Dr. Leandro Fiorini Aurichi

USP – São Carlos
Maio de 2021





This work is dedicated to all my family.





ACKNOWLEDGEMENTS

I thank Jehovah for allowing me to get here and for everything, I also thank all my family
for their great support in these years away from home.

I would also like to thank my advisor Professor Leandro Aurichi in a special way for all
his support, patience and for everything I have learned from him during this time. I also thank the
group Topologia do interior for their help and suggestions that made this work very productive.

My thanks also goes to the professors of ICMC for everything learned during the master’s
degree, in fact, they are considered a good role model for me. Also, I would also like to thank
the ICMC administrative staff and ICMC library staff for their great help and support during this
time. I also thank ICMC for the great academic atmosphere.

Also I would like to thank the great friends that I made here in São Carlos, for the great
moments that made this period here in Brazil more fun.

I would also like to thank my professors and friends of FCNM-UNAC for everything I
learned during my undergraduate degree in Peru.

Finally, I thank CAPES for the financial support to this project.









ABSTRACT

MEDINA, G. A. The Banach-Mazur game and products of Baire spaces. 2021. 128 p. Dis-
sertação (Mestrado em Ciências – Matemática) – Instituto de Ciências Matemáticas e de Computa-
ção, Universidade de São Paulo, São Carlos – SP, 2021.

In this work we study Baire spaces and analyze the problem of product of Baire spaces. Then
we present some conditions using the Banach-Mazur game to show that the Baire property is
preserved in the product. Then we analyze the difference of the infinite product of Baire spaces,
between the box product and Tychonoff product. We also present a multiboard version for this
problem. Finally we present some open problems regarding the product of Baire spaces.

Keywords: Baire spaces, Banach-Mazur game, Product of Baire spaces, Multiboard topological
games.





RESUMO

MEDINA, G. A. O jogo de Banach-Mazur e produto de espaços de Baire. 2021. 128 p. Dis-
sertação (Mestrado em Ciências – Matemática) – Instituto de Ciências Matemáticas e de Computa-
ção, Universidade de São Paulo, São Carlos – SP, 2021.

Neste trabalho, estudamos os espaços de Baire e analisamos o problema do produto de espaços
de Baire. Logo, apresentamos algumas condições usando o jogo Banach-Mazur para mostrar
que o produto de espaços Baire é preservado. Analisamos a diferença do produto infinito dos
espaços de Baire, entre o produto box e produto Tychonoff. Também apresentamos uma versão
de um jogo topológico com vários tabuleiros para esse problema. Finalmente, apresentamos
alguns problemas em aberto relacionados ao produto dos espaços de Baire.

Palavras-chave: Espaços de Baire, jogo de Banach-Mazur, Produto de espaços de Baire, Jogos
topológicos com múltiplos tabuleiros.
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INTRODUCTION

A topological space is a Baire space provided that countable collections of dense open
subsets have a dense intersection. Baire spaces constitute an important class in various branches
of mathematics, this is the case in such well-known theorems as the Closed Graph Theorem, the
Open Mapping Theorem and the Uniform Boundedness Theorem. In a sense, the Baire property
is one of the weakest forms of topological completeness.

The problem of whether a product of a family of Baire spaces is Baire is an old one and
is also well known that the answer to the problem is negative, even with fairly strong hypothesis.
Indeed:

∙ In 1961, assuming the Continuum Hypothesis (CH), Oxtoby constructed the first example
of a Baire space whose square is not Baire.

∙ In 1974, Krom, showed that if there exists a Baire space whose square is not Baire, then
there exists a Baire metric space whose square is not Baire.

∙ Later, in 1976, using forcing techniques, Paul Cohen showed that only the usual axioms of
Set Theory are needed to prove the existence of Baire spaces whose product is not Baire.
That is, it is not necessary to add any set theoretic hypothesis to be able to construct two
Baire spaces whose product is not Baire.

∙ Also, in 1986, Jan van Mill and Roman Pol showed that there are two normed Baire spaces
whose product is not Baire.

However, there are several cases when products (finite, countable or arbitrary) of Baire
spaces are again Baire. Some cases can be described in terms of games.

The Banach-Mazur game is the first infinite positional game of perfect information
studied by mathematicians. The game was proposed in 1935 by the Polish mathematician
Stanislaw Mazur and recorded in the Scottish Book (MAULDIN, 2015). The game, its solution
and its importance went far beyond the Baire category classification. In fact, Baire spaces can be
characterized via the Banach–Mazur game, then it is not surprising that topological games have
been applied to attack the Baire product problem.

Therefore, one of our objectives in this work is, in addition to presenting results on the
Baire product, to see when the product of Baire spaces is still Baire, giving conditions with the
Banach-Mazur game (or some variation of it) over the spaces.
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For this reason, we have structured the text as described below.

In the first chapter, we briefly review basic results of general topology, set theory and
forcing. Along with that, we present the Baire spaces and basic results about them.

In the second chapter, we introduce the Banach-Mazur game and some of its applications,
we also present some of its modifications.

In the third chapter, we present the problem of product of Baire spaces. In the first section,
we present the examples of Cohen, Krom and Fleissner. These are some counterexamples of
Baire spaces whose product is not Baire. In the second section, we present results of when the
finite product of some Baire spaces is Baire. In the third section, we present the difference of
phenomenon of being Baire in the infinite product (box product and Tychonoff product) of Baire
spaces.

In the fourth chapter, we introduce multiboard games, these emerge as a possible solution
to the problem of the infinite product of Baire spaces and we present some of its variations.

Finally, in the fifth chapter, we present some open problems related to the problem of the
product of Baire spaces.
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CHAPTER

1
PRELIMINARY RESULTS

In this chapter we will introduce the basic tools of topology, set theory and forcing to
understand the Banach-Mazur game and some of its applications. We are going to start with
some basic results in topology. For this part we follow the books of (WILLARD, 1970) and
(WALDMANN, 2014) as main references.

1.1 Topology

1.1.1 Some definitions and basic facts

For this section we fix X a topological space.

Definition 1.1 (π-base). A family B of non-empty open subsets of a topological space X is said
to be a π-base (or pseudo-base) if for each non-empty open subset U of X there is an element
V ∈B such that V ⊆U .

Note that every base of a topological space is a π-base.

Definition 1.2. A π-base B is called locally countable if each member of B contains only
countably many members of B.

Note that every second countable space has a locally countable π-base.

Definition 1.3. A subset A of X is a Gδ -set if it is a countable intersection of open sets and it is
an Fσ if it is a countable union of closed sets.

Proposition 1.4. sdsds

(i) The complement of a Gδ is an Fσ and vice versa.



20 Chapter 1. Preliminary Results

(ii) An Fσ can be written as the union of an increasing sequence F1 ⊆ F2 ⊆ ·· · of closed sets.
(Hence, a Gδ can be written as a decreasing intersection of open sets.)

(iii) A closed set in a metric space is a Gδ (hence, an open set is an Fσ .)

1.1.1.1 The Continuum Hypothesis for Gδ Sets

In this section we will show that Gδ sets in the real line satisfy the kind of continuum
hypothesis in the sense that every Gδ set is either countable or has cardinality c. This sets will be
of great importance later because we will see how the Banach-Mazur game works in the real
line, specifically with this type of sets.

Definition 1.5. A set A⊆ R is called

∙ closed if every limit point1of A is in A, i.e. if A′ ⊆ A;

∙ dense-in-itself if every point of A is a limit point of A, i.e. if A⊆ A′;

∙ perfect if it is both closed and dense-in.itself, i.e., if A = A′.

Definition 1.6. A family J = ⟨Ju : u ∈
⋃

n∈ω 2n⟩ is called a Cantor system if for each u ∈⋃
n∈ω 2n:

1. Ju is a bounded proper closed interval, i.e., Ju = [a,b] for some a < b;

2. Jua0,Jua1 ⊆ Ju;

3. Jua0∩ Jua1 = /0;

4. For each b ∈ 2ω ,
lim
n→∞

`(Jb�n) = 0,

where `(I) denotes the length of the interval I.

Definition 1.7. The set generated by the Cantor system J = ⟨Ju : u ∈
⋃

n∈ω 2n⟩ is the set P of
real numbers defined by the condition:

x ∈ P if and only if there exists b ∈ 2ω such that x ∈
⋂

n∈ω

Jb�n

Definition 1.8 (Generalized Cantor Sets). A set is called a generalized Cantor set (or a Cantor-
like set) if it is generated by some Cantor system.

Theorem 1.9. Every non-empty dense-in-itself Gδ set E contains a generalized Cantor set and
so there is an injective ϕ : 2ω → E with ϕ(2ω) being a perfect set. In particular, every non-empty
dense-in-itself Gδ set has cardinality c.

1 x ∈ R is a limit point of A if for each ε > 0, (B(x)
ε ∖{x})∩A ̸= /0, where B(x)

ε = {y ∈ R : |x− y|< ε}.
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Proof. The complete proof of this theorem can be found in (DASGUPTA, 2014), Theorem
1048.

Corollary 1.10. A non-empty perfect set in R has cardinality c.

Corollary 1.11. The set Q of rational numbers is not a Gδ set, and hence the set of irrational
numbers is not an Fσ set.

We now have the result that the Gδ sets, and therefore the closed sets, satisfy the
continuum hypothesis.

Corollary 1.12. Every uncountable Gδ set contains a generalized Cantor set and hence has
cardinality c.

Proof. The complete proof of this corollary can be found in (DASGUPTA, 2014), Corollary
1051.

Corollary 1.13. Any uncountable closed subset of R contains a generalized Cantor set and
hence has cardinality c.

Note that a set contains a generalized Cantor set if and only if it contains a non-empty
perfect set. Hence we make the following definition.

Definition 1.14 (The Perfect Set Property). A set is said to have the perfect set property if it is
either countable or contains a perfect set (or equivalently, contains a generalized Cantor set). A
collection of sets is said to have the perfect set property if every set in the family has the perfect
set property.

For example closed sets and Gδ sets have the perfect set property.

1.1.1.2 Metric spaces and Gδ -sets

Definition 1.15. A sequence (xn) in a metric space (M,d) is Cauchy if for each ε > 0, there is
some positive integer N such that d(xn,xm)< ε whenever m,n≥ N.

Definition 1.16. A metric space (M,d) is complete if every Cauchy sequence in M converges in
M. We also say d is a complete metric for M. A topological space X is completely metrizable if
there is a complete metric for X which generates its topology. Thus X is completely metrizable
if it is homeomorphic to some complete metric space.

Note that while completeness is a property of metric spaces, complete metrizability is a
property of topological spaces. For example, ]0,1[ with the usual metric is not a complete metric
space (consider the sequence (1

n)), but is completely metrizable since it is homeomorphic to the
complete space R.
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Definition 1.17. Metric spaces (M,d) and (N,d′) are isometric if there is a one to one function
f of M onto N such that d′( f (x), f (y)) = d(x,y), for all x,y ∈M. The mapping f is called an
isometry.

A well known result of metric spaces mentions that every metric space can be completed
in such a way that it is dense in the new space.

Theorem 1.18. Every metric space M can be isometrically embedded as a dense subset of a
complete metric space. The resulting completion is unique up to isometry and is called the
completion of M.

Proof. A complete proof of the theorem can be found in (WILLARD, 1970), Theorem 24.4.

We are now ready for the subspace theorem. Both are classical results from the 1920’s.
The first part is due to Alexandroff, the second to Mazurkiewicz. The full proof of these two
theorems can be found in (WILLARD, 1970), Theorems 24.12 and 24.13.

Theorem 1.19. A Gδ -set in a complete metric space is completely metrizable. Conversely, if a
subset A of a metric space M is completely metrizable, then it is a Gδ -set.

Theorem 1.20. For a metric space X the following are equivalent:

(i) X is completely metrizable,

(ii) X is a Gδ in its completion X̂ .
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1.1.2 A little bit of Descriptive set theory

We begin this section by studying some new topological spaces and special sets, which
can help us with examples for the Banach-Mazur game. For this part we follow the books of
(KECHRIS, 1995) and (SRIVASTAVA, 1998).

1.1.2.1 Polish spaces

For the classic examples of Polish spaces we will need the following :

Proposition 1.21. A metrizable space is second countable if and only if it is separable.

Proof. A proof of this proposition can be found in (WILLARD, 1970), Theorem 16.11.

Proposition 1.22. The product of any countable family of metrizable (resp. completely metriz-
able) spaces is a metrizable (resp. completely metrizable) space.

Proof. The complete proof of this proposition can be found in (WILLARD, 1970), Theorem
24.11.

Definition 1.23 (Polish space). A separable completely metrizable space is called Polish.

Proposition 1.24. text

i) A closed subspace of a Polish space is Polish.

ii) The product of a countable sequence of Polish spaces is Polish.

Proof. For the first part, remember that a closed subspace contained in a complete metric space
is complete. For the second part, let E be the product of a countable family (En)n∈ω of Polish
spaces. By Proposition 1.22, E is completely metrizable. Furthermore, if Bn is a countable basis
for En, the topology of E is generated by the countable basis consisting of the finite intersections
of open sets of the form ∏n∈ω Xn, where Xn = En except for a finite number of indices, for which
Xn ∈Bn. Therefore E is Polish.

Example 1. text

1) R,C,Rn,Cn,Rω ,Cω are Polish.

2) The space Aω , viewed as the product of infinitely many copies of A with the discrete
topology, is completely metrizable and if A is countable it is Polish.

3) Of particular importance are the cases A = 2 = {0,1} and A = ω . We call C = 2ω the
Cantor space and ωω the Baire space.
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Theorem 1.25. Let X be a Polish space. Then there is a closed set F ⊆ ωω and a continuous
bijection f : F→ X . In particular, if X is non-empty, there is a continuous surjection g : ωω → X

extending f .

Proof. A proof of this theorem can be found in (KECHRIS, 1995), Theorem 7.9.

Now we will give a characterization of the Baire space ωω .

Definition 1.26. A topological space X is connected if there is no partition X =U∪V , U∩V = /0
where U,V are non-empty open sets. Or equivalently, if the only clopen (i.e., open and closed)
sets are /0 and X .

Definition 1.27. A topological space X is zero-dimensional if it is Hausdorff and has a basis
consisting of clopen sets.

For example, the space Aω is zero-dimensional since the standard basis ([s])s∈A<ω consists
of clopen sets.

Definition 1.28. A Lusin scheme on a set X is a family {As}s∈ω<ω of subsets of X such that

i) Asai∩Asa j = /0, if s ∈ ω<ω , i ̸= j in ω;

ii) Asai ⊆ As, if s ∈ ω<ω , i ∈ ω .

Definition 1.29. If (X ,d) is a metric space and {As}s∈ω<ω is a Lusin scheme on X , we say that
{As}s∈ω<ω has a vanishing diameter if limn→∞ diam(Ax�n) = 0, for all x ∈ ωω . In this case if

D = {x ∈ ω
ω :

⋂
n∈ω

Ax�n ̸= /0},

define
f : D −→ X

x −→
⋂

n∈ω Ax�n = { f (x)}.

We call f the associated map.

Proposition 1.30. Let {As}s∈ω<ω be a Lusin scheme on a metric space (X ,d) that has vanishing
diameter. If f : D→ X is the associated map, then

i) f is injective and continuous.

ii) If (X ,d) is complete and each As is closed, then D is closed.

iii) If each As is open then f is an embedding.

Proof. A complete proof of this proposition can be found in (KECHRIS, 1995), Proposition
7.6.
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Theorem 1.31 (Alexandrov-Urysohn). The Baire space ωω is the unique, up to homeomorphism,
non-empty Polish zero-dimensional space for which all compact subsets have empty interior.

Proof. A proof of this theorem can be found in (KECHRIS, 1995), Theorem 7.7.
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1.1.2.2 Borel sets

Definition 1.32. An algebra on a set X is a collection A of subsets of X such that

(i) X ∈A ;

(ii) whenever A belongs to A so does X ∖A; i.e., A is closed under complements;

(iii) A is closed under finite unions.

Definition 1.33. An algebra closed under countable unions is called a σ -algebra on X .

Note that /0 ∈ A if A is an algebra and the intersection of a non-empty family of
σ -algebras on a set X is a σ -algebra on X .

Definition 1.34. A measurable space is an ordered pair (X ,A ) where X is a set and A a
σ -algebra on X . Sets in A are called measurable.

Definition 1.35. Let G be any family of subsets of a set X . Let S be the family of all σ -algebras
containing G . Note that S contains the discrete σ -algebra P(X) and hence is not empty. Let
σ(G ) be the intersection of all members of S . Then σ(G ) is the smallest σ -algebra on X

containing G . σ(G ) is called the σ -algebra generated by G or G is a generator of σ(G ).

Let D ⊆P(X) and Y ⊆ X . We set

D |Y = {B∩Y : B ∈D}.

Let (X ,B) be a measurable space and Y ⊆ X . Then B|Y is a σ -algebra on Y , called the trace of
B on Y .

If X is any metric space, or more generaly any topological space, the σ -algebra generated
by the family of open sets in X is called the Borel σ -algebra on X and is denoted by BX . Its
members are called Borel sets.

Definition 1.36. Let (X ,A ) and (Y,B) be measurable spaces. A map f : (X ,A )→ (Y,B) is
called measurable if f−1(B) ∈A for every B ∈B.

Definition 1.37. A measurable function f : (X ,BX)→ (Y,BY ) is called Borel measurable, or
simply Borel.

Proposition 1.38. If X and Y are topological spaces, then every continuous function f : X → Y

is Borel.

Proof. Remember that f is continuous iff f−1(U) is open in X for every open U ⊆ Y .
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1.1.2.2.1 The Hierarchy of Borel sets

Let X be a set and F a family of subsets of X . We put

Fσ =

{⋃
n∈ω

An : An ∈F

}

and

Fδ =

{⋂
n∈ω

An : An ∈F

}

So, Fσ (Fδ ) is the family of countable unions (resp. countable intersections) of sets in
F . The family of finite unions (finite intersections) of sets in F will be denoted by Fs (resp.
Fδ ). Finally, ¬F = {A ⊆ X : X ∖A ∈F}. Note that Fs ⊆Fσ , Fd ⊆Fδ , Fσ = ¬((¬F )δ )

and Fδ = ¬((¬F )σ ).

Let X be a metrizable space. For ordinals α , α < ω1, we define the following classes by
transfinite induction:

Σ
0
1(X) = {U ⊆ X : U open}

Π0
1(X) = {F ⊆ X : F closed}

for 1 < α < ω1,

Σ
0
α(X) =

 ⋃
β<α

Π0
β
(X)


σ

Π0
α(X) =

 ⋃
β<α

Σ
0
β
(X)


δ

Finally, for every 1≤ α < ω1,

∆
0
α(X) = Σ

0
α(X)∩Π0

α(X)

Note that

∙ ∆0
1(X) is the family of all clopen subsets of X ;

∙ Σ0
2(X) is the set of all Fσ subsets of X ; and

∙ Π0
2(X) is the set of all Gδ sets in X .
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The families Σ0
α(X),Π0

α(X) and ∆0
α(X) are called additive, multiplicative, and ambigu-

ous classes respectively. A set A ∈ Σ0
α(X) is called an additive class α set. Multiplicative class

α sets and ambiguous class α sets are similarly defined.

Some elementary facts.

(i) Additive classes are closed under countable unions, and multiplicative ones under countable
intersection.

(ii) All the additive, multiplicative, and ambiguous classes are closed under finite unions and
finite intersections.

(iii) For all 1≤ α < ω1,
Σ

0
α = ¬Π0

α (equivalently, Π0
α = ¬Σ

0
α )

(iv) For α ≥ 1, ∆0
α is an algebra.
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1.1.2.3 Analytic sets

Definition 1.39. Let X be a Polish space. A set A⊆ X is called analytic if there is a Polish space
Y and a continuous function f : Y → X with f (Y ) = A.

The empty set is analytic, by taking Y = /0.

By Theorem 1.25, we can take in this definition Y = ωω if A ̸= /0. The class of analytic
sets in X is denoted by Σ1

1(X). The classical notation is A(X).

Proposition 1.40. Let X be a Polish space and A⊆ X . The following statements are equivalent.

(i) A is analytic.

(ii) There is a continuous map f : ωω → X whose range is A.

(iii) There is a Polish space Y and a Borel set B ⊆ X ×Y whose projection is A, that is,
A = pro jX(B).

(iv) There is a closed subset C of X×ωω whose projection is A, that is, A = pro jX(C).

(v) For every uncountable Polish space Y there is a Gδ set B in X×Y whose projection is A,
that is, A = pro jX(B).

Proof. A proof of this proposition can be found in (SRIVASTAVA, 1998), Proposition 4.1.1.

Theorem 1.41. Every uncountable analytic set contains a homeomorphic copy of the Cantor set
and hence has cardinality c.

Proof. A complete proof of this theorem can be found in (SRIVASTAVA, 1998), Theorem
4.3.5.

We can find a relationship between Borel and analytic sets. For this we need the following

Theorem 1.42 (Lusin-Souslin). Let X be Polish and A ⊆ X be Borel. There is a closed set
F ⊆ ωω and a continuous bijection f : F → A. In particular, if A ̸= /0, there is also a continuous
surjection g : ωω → A extending f .

Proof. A proof of this theorem can be found in (KECHRIS, 1995), Theorem 13.7.

Corollary 1.43. BX ⊆ Σ1
1(X).
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1.1.3 Baire spaces

There are two approaches to study Baire spaces: one of them is to use first and second
category sets and the other way is to use open and dense sets. In this first part we will discuss
some results of the first approach of the Baire spaces, as they will help us later to characterize
them using a modification of the Banach-Mazur game. Later we will use the second.

For this part we follow the books of (WALDMANN, 2014), (SINGH, 2013) and (HA-
WORTH; MCCOY, 1977).

Let X be a topological space, we start with some definitions and properties.

Definition 1.44. A set A⊆ X is nowhere dense in X if Int(A) = /0

Proposition 1.45. Let N be a subset of a space X . Then the following are equivalent:

(i) N is nowhere dense in X .

(ii) X ∖N is dense in X .

(iii) For each non-empty open set U in X there exists a non-empty open set V such that V ⊆U

and V ∩N = /0.

Proof. (i⇒ ii) Let W be any open subset of X . Since Int(N) = /0, then W ∩ (X ∖N) ̸= /0.

(ii⇒ iii) Consider V =U ∩ (X ∖N).

(iii⇒ i) If Int(N) ̸= /0, let x ∈ Int(N), so there exists an non-empty open set A such that
x ∈ A⊆ N, in particular x ∈ N. Then A∩N ̸= /0, contradiction.

Proposition 1.46. Let Y be a subspace of X , and let N be a subset of Y . If N is nowhere dense
in Y , then N is nowhere dense in X . Conversely, if Y is open (or dense) in X and N is nowhere
dense in X , then N is nowhere dense in Y .

Proof. Suppose that N is nowhere dense in Y . Let U be a non-empty open subset of X . If
U ∩Y = /0 we are through, so suppose that U intersects Y . Then there exists a non-empty open
set V , open in Y , such that V ⊆U ∩Y and V ∩N = /0. Now there is a set W , open in X , such that
V =W ∩Y . Thus, W ⊆U and W ∩N = /0, therefore N is nowhere dense in X .

Now suppose that Y is open in X and that N is nowhere dense in X . Let V be a non-empty
open set in Y . Then V is open in X . Therefore, there exists a non-empty set U , open in X , such
that U ⊆V and U ∩N = /0. Thus, N is nowhere dense in Y since U is also open in Y .
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Definition 1.47. A set A ⊆ X is meager (or of first category) in X if A =
∞⋃

n=1
An, where each

An is nowhere dense in X . A topological space X is called meager in itself if it can be written as
a countable union of closed sets with empty interior.

The following proposition collects some basic properties of meager subsets:

Proposition 1.48. Let X be a topological space.

(i) A subset of a nowhere dense subset is again nowhere dense.

(ii) A finite union of nowhere dense subsets is again nowhere dense.

(iii) A subset of a meager subset is again meager.

(iv) A countable union of meager subsets is again meager.

Proof. A proof of this proposition can be found in (WALDMANN, 2014), Proposition 7.1.3.

Corollary 1.49. Let X be a topological space and A1,A2, · · · ,An ⊆ X be open and dense subsets.
Then also A1∩A2∩·· ·∩An is open and dense.

Proposition 1.50. Let X be a topological space. Then the following statements are equivalent:

(i) Any countable union of closed subsets of X without interior points has no interior points.

(ii) Any countable intersection of open dense subsets of X is dense.

(iii) Every non-empty open subset of X is not meager.

(iv) The complement of every meager subset of X is dense.

Proof. A proof of this proposition can be found in (WALDMANN, 2014), Proposition 7.1.5.

Proposition 1.51. In a topological space X , the union of any family of meager open sets is
meager.

Proof. A complete proof of this proposition can be found in (HAWORTH; MCCOY, 1977),
Theorem 1.6.

Theorem 1.52. Let A be a subset of the space X , and suppose that for every non-empty open set
U , there exists a non-empty open set V contained in U such that V ∩A is of first category in X .
Then A is of first category in X .

Proof. A complete proof of this theorem can be found in (HAWORTH; MCCOY, 1977), Theo-
rem 1.7.
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Now we will focus on the second approach, which will be of more importance in order
to introduce the Banach-Mazur game.

Definition 1.53 (Baire space). Let X be a topological space. Then X is called a Baire space if
the intersection of each countable family of dense open sets in X is dense.

As we mentioned earlier, usually the categorical version of Baire spaces is part (iii) of
Proposition 1.50, so we see that these are equivalent. Also note that a Baire space is not meager
in itself.

We collect now some properties of Baire spaces:

Proposition 1.54. Let X be a non-empty Baire space.

(i) Let {An}n∈ω be a countable closed cover of X . Then at least one An has non-empty interior,
Int(An) ̸= /0.

(ii) Let A⊆ X be a non-empty open subset. Then A (with the subspace topology) is a Baire
space again.

(iii) Let B⊆ X be a meager subset. Then X ∖B (with the subspace topology) is a Baire space
again.

Proof. A complete proof of this proposition can be found in (WALDMANN, 2014), Proposition
7.1.8.

In contrast, not every closed subspace of a Baire space is a Baire space, as can be seen by
taking the space R2 ∖{(x,0) : x ∈ R∖Q}. Note that {(x,0) : x ∈ R∖Q} is nowhere dense in R2,
so by Proposition 1.54, (iii), R2 ∖{(x,0) : x ∈ R∖Q} is a Baire space. Also the closed subspace
{(x,0) : x ∈Q} is meager in itself. Therefore {(x,0) : x ∈Q} is not a Baire space.

This motivates the following definition.

Definition 1.55 (Hereditarily Baire space). A Baire space X is hereditarily Baire2 if every
closed subspace of X is a Baire space.

For example, every complete metric space is hereditarily Baire. In a Baire space, the
complement of any set of first category is called a residual (or comeager) set.

Proposition 1.56 (Oxtoby). In a Baire space X , a set E is residual if and only if E contains a
dense Gδ subset of X .

2 Some authors use ‘completely Baire’ instead of ‘hereditarily Baire’.
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Proof. Suppose B =
⋂

n<ω Gn, where each Gn is open, is a dense Gδ subset of E. Then each Gn

is dense, and X ∖E ⊆ X ∖G =
⋃

n<ω(X ∖Gn) is of first category, so X ∖E is of first category.

Conversely, if X ∖E =
⋃

n<ω An⊆
⋃

n<ω An, where An is nowhere dense, let B=
⋂

n<ω(X ∖
An). Then B is a Gδ set contained in E, also each X ∖An is dense. As X is Baire, it follows that B

is dense.

Corollary 1.57. Let E be a subset of R. Then E contains a dense Gδ subset of R if and only if
E is residual.

We finalize this section defining productively Baire spaces. Later we will study the
problem of the product of Baire spaces which is related to this last definition.

Definition 1.58. A Baire space X is productively Baire if X×Y is Baire for every Baire space
Y .
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1.2 Set theory
In this section we will introduce some basic concepts of set theory, which will help us

later for some examples of product Baire spaces. For this part we follow the books of (JECH,
2003), (CIESIELSKI, 1997), (SCHIMMERLING, 2011) and (JUST; WEESE, 1997).

1.2.1 Some facts about ordinal and cardinal numbers

We begin with some results on cardinal arithmetic.

Proposition 1.59. If κ is an infinite cardinal and |Xα | ≤ κ for all α < κ then

∣∣∣∣∣⋃
α<κ

Xα

∣∣∣∣∣≤ κ

Proof. A proof of this proposition can be found in (CIESIELSKI, 1997), Corollary 5.2.7.

Let λ and κ be cardinals. We define

λ
<κ =

⋃
α<κ

λ
α .

For example, for a set A let A<ω =
⋃

n<ω An. Thus A<ω is the set of all finite sequences
with values in A.

Corollary 1.60. If κ is an infinite cardinal, then |κ<ω |= κ .

Theorem 1.61. If λ and κ are cardinal numbers such that λ ≥ ω and 2≤ κ ≤ λ then κλ = 2λ .

In particular, λ λ = 2λ for every infinite cardinal number λ .

Proof. A proof of this theorem can be found in (CIESIELSKI, 1997), Theorem 5.2.12.

Proposition 1.62. For every infinite set X and nonzero cardinal κ ≤ |X |

|[X ]κ |= |[X ]≤κ |= |X |κ .

Proof. A proof of this proposition can be found in (CIESIELSKI, 1997), Proposition 5.2.14.

In particular |[R]ω |= (2ω)ω = 2ω = c.

Definition 1.63. If γ is any limit ordinal, then the cofinality of γ is

c f (γ) = min{type(X) : X ⊆ γ∧ sup(X) = γ},

where type(X) is the unique α ∈ ON such that (X ,∈)∼= (α,∈).
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Definition 1.64. Let γ be an ordinal number. γ is regular if c f (γ) = γ and singular if c f (γ)<

γ.

Definition 1.65. Let κ be a cardinal. The least cardinal λ > κ is called the cardinal sucessor of
κ , abbreviated by κ+. A cardinal κ is called a sucessor cardinal if there is some cardinal µ < κ

with k = µ+; otherwise κ is called a limit cardinal.

Proposition 1.66. For every infinite cardinal number κ , κ+ is regular. In particular c+ is regular.

Proof. A complete proof of this proposition can be found in (SCHIMMERLING, 2011), Lemma
4.32.

Definition 1.67. Let χ be an ordinal number. A subset C of χ is called club if it is closed (in
the order topology of χ) and unbounded. A subset A of χ is called stationary in χ if A has
non-empty intersection with every C club in χ .

Example 2. (i) If α < ω1, then {β < ω1 : α < β} is a club in ω1.

(ii) {α < ω1 : α is a limit ordinal} is a club in ω1.

Let κ be an uncountable regular cardinal. We have the following remarks:

1. A stationary set is unbounded in κ . Indeed, let γ < κ . Note that [γ +1,κ[ is a club in κ ,
then S∩ [γ +1,κ [̸= /0, so there is ξ ∈ S such that γ < γ +1≤ ξ .

2. There are stationary sets that are not club in κ . In fact, consider the set S = κ ∖{ω}. We
claim that S is stationary, otherwise, there is a club C in κ such that S∩C = (κ ∖{ω})∩C =

/0 so C ⊆ {ω} which is bounded in κ , contradiction. Note that S is not closed, because
ω ⊆ S and sup(ω) = ω ̸∈ S. Thus, S is a stationary set that is not a club.

3. Also note that if S is stationary in κ , and S⊆ T ⊆ κ , then T is stationary in κ .

Proposition 1.68. Suppose that κ is a regular uncountable cardinal. If A and B are club in κ ,
then A∩B is club in κ .

Proof. A complete proof of this proposition can be found in (CUNNINGHAM, 2016), Theorem
9.3.7.

In particular, if κ is an uncountable regular cardinal. Then, every club set is stationary in
κ , because the intersection of two clubs in κ is a club in κ .

Proposition 1.69. Let κ be an uncountable regular cardinal. If θ < κ and ⟨Cα : α < θ⟩ is a
sequence of club subsets of κ , then the set⋂

{Cα : α < θ}

is a club in κ .
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Proof. A complete proof of this proposition can be found in (JECH, 2003), Theorem 8.3.

Proposition 1.70. Let κ be an uncountable regular cardinal and f : κ → κ be a function. Then
{α < κ : f [α]⊆ α} is a club in κ .

Proof. Denote C = {α < κ : f [α] ⊆ α}. We will first show that C is closed in κ . Indeed, let
α < κ with C∩α ̸= /0. Note that sup(C∩α)< κ , because κ is regular. Let β < sup(C∩α) =⋃
(C∩α), so there exists γ ∈C∩α such that β < γ , in particular f [γ]⊆ γ < α then f (β ) ∈ γ ,

so f [sup(C∩α)]⊆ sup(C∩α).

Now we will show that C is unbounded in κ . Let σ < κ . First, consider sup( f [σ ]) =

sup{ f (β ) : β < σ}, since κ is regular, sup( f [σ ])+1,σ +1 ∈ κ . Then

β0 := max{σ +1,sup( f [σ ])+1}< κ

Assume that the monotone strictly increasing sequence ⟨β j : j≤ n⟩with βn < κ is already
defined. Define

βn+1 := max{βn +1,sup( f [βn])+1}< κ

Note that, for each n ∈ ω , we have f (βn)⊆ βn+1. As κ is uncountable regular, we have
β = sup{βn : n ∈ ω}< κ , and we obtain that

f [β ] = f [
⋃
{βn : n ∈ ω}] =

⋃
{ f [βn] : n ∈ ω} ⊆

⋃
{βn+1 : n < ω}= β .

Thus β ∈C and σ < β , therefore C is unbounded in κ .

Lemma 1.71. Let κ be a regular uncountable cardinal and let α ∈ κ . If S is stationary in κ , then
S∖α is stationary in κ .

Proof. Let C be a club in κ . Note that [α +1,κ[ is a club in κ then C∩ [α +1,κ[ is a club in κ

so there exists γ ∈ (C∩ [α +1,κ[)∩S. Therefore γ ∈ (S∖α)∩C.

Finally, the following example of stationary set will be of vital importance later, as it will
help us build examples of Baire spaces whose product is not Baire.

Definition 1.72. Cω χ is the subset of χ of ordinals of cofinality ω . That is,

Cω χ = {β < χ : c f (β ) = ω}.

Lemma 1.73. If χ is uncountable and regular, then Cω χ is stationary.
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Proof. Let A be a club in χ . As χ is regular and A is unbounded, |A|= χ . Let (aα)α<χ be an
enumeration of A in strictly increasing order. As A is closed, aω = sup{an : n ∈ ω} ∈ A; then
c f (aω) = ω . Thus aω ∈Cω χ and Cω χ ∩A ̸= /0.

Theorem 1.74 (Solovay). If χ > ω is a regular cardinal, then any stationary subset of χ can be
split into χ many disjoint stationary subsets of χ .

Proof. A complete proof of this theorem can be found in (JECH, 2003), Theorem 8.10.

Lemma 1.75. If χ > ω is regular, the union of less than χ many nonstationary sets is nonsta-
tionary.

Proof. Assume that {Nα : α < γ} are nonstationary sets, where γ< χ . By definition, there exist
club sets {Cα : α < γ} such that Nα ∩Cα = /0 (α < γ). Set N =

⋃
α<γNα , C =

⋂
α<γCα . By

Proposition 1.69, C is a club. Also note that C∩N = /0, so N is non-stationary, as claimed.

Corollary 1.76. Suppose that κ is a regular uncountable cardinal and that γ ∈ κ . Let ⟨Sα : α ∈ γ⟩
be a γ-sequence of subsets of κ . Suppose that the set

⋃
α∈γ Sα is stationary in κ . Then Sα is

stationary, for some α ∈ γ .

Theorem 1.77 (Pressing Down Lemma or Fodor’s Lemma). Let κ be a regular uncountable
cardinal, S⊆ κ be a stationary set and let f : S→ κ be such that f (γ)< γ for every γ ∈ S (such
a function is called a regressive function). Then there exists an α < κ such that f−1({α}) is
stationary.

Proof. A complete proof of this theorem can be found in (JUST; WEESE, 1997), Theorem
21.12.

When c f (χ) > ω , we can define a map * : χω → χ , where *( f ) = f * is the least α

greater than f (n) for all n ∈ ω .

Proposition 1.78. Let χ > ω be regular. If K ⊆ χω is closed, and W = { f * : f ∈K} is stationary,
then there is C club in χ such that C∩Cω χ ⊆W

Proof. Let σ ∈ χ<ω and Wσ = { f * : σ ⊆ f ∈ K}. Consider Σ = {σ : Wσ is stationary}. By
hypothesis Σ ̸= /0, because /0 ∈ Σ.

Claim 1.78.1. Using the Pressing Down Lemma one can build a function θ : Σ×χ → Σ such
that

(i) σ ⊆ θ(σ ,α);

(ii) θ(σ ,α) ̸∈
⋃

n∈ω αn.
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Proof. Indeed, let σ ∈
⋃

n∈ω χn and α < χ . Consider P=Wσ ∖α . By Lemma 1.71, P is stationary
in χ . Define

gσ : P −→ χ

f * −→ gσ ( f *) = f (n),

where n = min{n ∈ ω : f (n) ≥ α}. Note that gσ ( f *) < f *, for all f * ∈ P, so by the Pressing
Down Lemma (Theorem 1.77), there is γ < χ such that g−1

σ ({γ})= { f * ∈P : gσ ( f *)= f (n)= γ}
is stationary. Note that γ ≥ α . Finally, define

h : g−1
σ ({γ}) −→ ω

f * −→ h( f *) = n,

where n ∈ ω is such that gσ ( f *) = f (n). Note that g−1
σ ({γ}) =

⋃
n∈ω h−1({n}). Then, by Corol-

lary 1.76, there is an m ∈ ω such that h−1({m}) = { f * ∈ g−1
σ ({γ}) : h( f *) = m} = { f * ∈ P :

f (m) = γ} is stationary.

If m ∈ dom(σ), then θ(σ ,α) = σ . In this case θ(σ ,α) ̸∈
⋃

n∈ω αn, because σ(m) =

f (m) = γ ≥ α .

If m ̸∈ dom(σ), so m > |σ |. We claim the following

Claim 1.78.2. There are a finite sequence of stationary sets ⟨S0, · · · ,Sm−|σ |−1⟩ and a finite
sequence of ordinals ⟨β0, · · · ,βm−|σ |−1⟩ such that S0 ⊆ S and, for i < m−|σ |−1, then Si+1 ⊆ Si

and if f * ∈ Si then f (i+ |σ |) = βi.

Proof. In fact, for i = 0, consider

g0 : S −→ χ

f * −→ g0( f *) = f (|σ |)< f *,

where S = { f * ∈ P : f (m) = γ}. By the Pressing Down Lemma, there exists β0 < χ such that
g−1

0 ({β0}) = S0.

For 0 < i < m−|σ |−1, consider

gi : Si−1 −→ χ

f * −→ gi( f *) = f (|σ |+ i)< f *,

By the Pressing Down Lemma, there exists βi < χ such that g−1
i ({βi}) = Si ⊆ Si−1. Note that, if

f * ∈ Si, then f (i+ |σ |) = βi.

Now we will build θ ∈ χm+1. Let θ ||σ | = σ and θ(m) = γ . Then, if |σ | ≤ i < m, define
θ(i)= βi−|σ |. Finally, note that Sm−|σ |−1⊆Wθ . In fact, let f * ∈ Sm−|σ |−1, in particular, σ ⊆ f ∈K

and f (m) = γ . By Claim 1.78.2, f (i+ |σ |) = βi for i < m−|σ |−1, so f ∈Wθ .

Consider C = {γ < χ : θ [(Σ∩ γ<ω)× γ]⊆ γ<ω}. We claim that C is a club in χ . Indeed,
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∙ C is closed.

Let γ ∈ C′, we will show that θ [(Σ∩ γ<ω)× γ] ⊆ γ<ω . Let (σ ,α) ∈ (Σ∩ γ<ω)× γ , so
there is n0 ∈ ω such that σ ∈ γn0 . Consider m = max{σ(n0−1),α}< γ ; then there exists
β ∈]m,γ +1[∩(C∖{γ}), so α < β < γ and σ ∈ β<ω , then θ(σ ,α)∈ θ [(Σ∩β<ω)×β ]⊆
β<ω ⊆ γ<ω . Therefore C′ ⊆C, that is, C is closed.

∙ C is unbounded.

For this, define

f : χ −→ χ

γ −→ f (γ) = sup{θ *(σ ,α) : σ ∈ Σ∩ γ<ω ,α < γ},

where θ *(σ ,α)= sup(ran(θ(σ ,α))). Note that f is well defined, that is, f (γ)= sup{θ *(σ ,α) :
σ ∈ Σ∩ γ<ω ,α < γ}< χ , because χ is an uncountable regular cardinal.

By Proposition 1.70, {γ < χ : f [γ]⊆ γ} is a club in χ . Then

C̃ = {γ < χ : γ is a limit ordinal and f [γ]⊆ γ}

is a club in χ . Note that C̃ ⊆C. Indeed, let γ ∈ C̃ and let (σ ,α) ∈ (Σ∩ γ<ω)× γ . As γ

is a limit ordinal, there is α < β < γ such that σ ∈ β<ω ; then θ *(σ ,α)≤ f (β )< γ , so
θ(σ ,α) ∈ γ<ω .

Finally, note that C∩Cω χ ⊆W . Indeed, let γ ∈C∩Cω χ . Then c f (γ) = ω , so there exists
a strictly increasing function g : ω→ γ whose range is cofinal in γ , that is, sup{g(n) : n∈ω}= γ

and θ [(Σ∩ γ<ω)× γ]⊆ γ<ω . The main idea is to iterate θ , and g will help us keep going up to γ .
So inductively build a sequence σn as follows:

(i) σ0 := θ( /0,g(0)) and

(ii) σn+1 := θ(σn,g(n)).

Note that σn ∈ Σ∩ γ<ω and for each n ∈ ω , σn ⊆ σn+1 = θ(σn,g(n)). Consider

f =
⋃

n∈ω

σn.

We claim that f ∈ χω and f * = γ . In fact,

∙ dom( f ) = ω

Note that for each n ∈ ω , dom(σn) ∈ ω then dom( f )⊆ ω . Also dom( f ) is infinite, other-
wise, dom( f ) is finite. Then consider β = max{ f (n) : n ∈ dom( f )}. As g is cofinal, there
exists m ∈ ω such that β < g(m). Also consider σm+1 = θ(σm,g(m)) ̸∈ g(m)<ω so there
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exists m′ ∈ dom(σm+1) ⊆ dom( f ) such that g(m) ≤ σm+1(m′) = f (m′) so β < g(m) ≤
f (m′), contradiction. Therefore dom( f ) is infinite, so dom( f ) is unbounded in ω . Then
ω ⊆ dom( f ). Indeed, let m ∈ ω , then there exists n ∈ dom( f ) such that m < n ∈ dom( f )

so m ∈ dom( f ).

∙ f * = sup{ f (m) : m ∈ ω}= γ

Let β ∈ γ , as ran(g) is cofinal in γ , there is m ∈ ω such that β < g(m). By construc-
tion, σm+1 = θ(σm,g(m)) ⊆ f and σm+1 ̸∈ g(m)<ω =

⋃
n∈ω g(m)n, then there exists

n ∈ dom(σm+1) ⊆ dom( f ) such that β < σm+1(n). Otherwise, σm+1 ∈ (β + 1)<ω ⊆
(g(m))<ω , contradiction. Therefore, β < σm+1(n) = f (m). On the other hand, note that
sup{ f (m) : m ∈ ω} ⊆ γ , because σm ∈ γ<ω for each m ∈ ω .

Finally, note that f ∈ K. Indeed, for each n ∈ ω we have that σn ∈ Σ, that is, Wσn

is stationary. In particular Wσn ̸= /0, so there exists fn ∈ K such that σn ⊆ fn. We claim that
fn

n→∞−−−→ f in χω . In fact, let f ∈ Ns = {h ∈ χω : s⊆ h} where s = (s(0), · · · ,s(ns−1)) ∈ χ<ω .
As s⊆ f , ns−1 ∈ dom( f ) =

⋃
m∈ω dom(σm) then there exists m0 ∈ ω such that s⊆ σm0 . Then,

if m > m0, fm ∈ Nσ therefore fn
n→∞−−−→ f .

We have a generalization for finite products and the proof is similar to that of Lemma
1.78.

Corollary 1.79. Let m < ω and κ > ω be a regular cardinal. If K ⊆ (kω)m is closed and

W = {α : α = f *0 = · · ·= f *m−1 and ( f0, · · · , fm−1) ∈ K}

is stationary, then there is a club set C in k such that C∩Cωk ⊆W .
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1.2.2 Combinatorial set theory

In this part we will see some consequences of Martin’s axiom concerning the Gδ and
meager subsets of the real line.

Definition 1.80. A family A is called a ∆-system if there is a set r such that a∩b = r whenever
a,b ∈ A and a ̸= b.

Theorem 1.81. (∆-System Lemma) Let κ and λ be infinite cardinals such that λ is regular and
the inequality ν<κ < λ holds for all ν < λ . If B is a set of cardinality at least λ such that |b|< κ

for all b ∈ B, then there exists a ∆-system A⊆ B with |A|= λ .

Proof. A complete proof of this theorem can be found in (JUST; WEESE, 1997), Theorem
(16.3).

The following theorem is the most used version of the ∆-system lemma and it is a
consequence of Theorem 1.81.

Theorem 1.82. Every uncountable family of finite sets contains an uncountable ∆-system.

Proof. A proof of this theorem can be found in (JUST; WEESE, 1997), Theorem (16.1).

For this basic part we will use the first version, later for applications with the Banach-
Mazur game and the infinite products of Baire spaces we will use the second version.

Definition 1.83. Let ⟨P,≤⟩ be a partially ordered set. A subset D⊆ P is dense if

∀p ∈ P ∃q ∈ D (q≤ p).

Definition 1.84. A subset F of a partially ordered set ⟨P,≤⟩ is a filter in P if

(F1) for every p,q ∈ F there is an r ∈ F such that r ≤ p and r ≤ q, and

(F2) if q ∈ F and p ∈ P are such that q≤ p then p ∈ F .

Note that a simple induction argument shows that condition (F1) is equivalent to the
following stronger condition.

(F1′) For every finite subset F0 of F there exists an r ∈ F such that r ≤ p for every p ∈ F0.

Definition 1.85. If X is a non-empty set, then a filter on X is a subfamily F of P(X) such that

∙ F is closed under supersets, i.e.,

∀Y ∈F ∀Z ⊆ X (Y ⊆ Z→ Z ∈F );
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∙ F is closed under finite intersections, i.e.,
⋂

H ∈F for all non-empty H ∈ [F ]<ω .

Note that if we consider ⟨P(X),⊆⟩ and F ⊆P(X), this definition is a particular case
of the previous definition in a partially ordered set.

Definition 1.86. Let ⟨P,≤⟩ be a partially ordered set, and let D be a family of dense subsets of
P. We say that a filter F in P is D- generic if F ∩D ̸= /0 for all D ∈D .

Theorem 1.87 (Rasiowa–Sikorski lemma). Let ⟨P,≤⟩ be a partially ordered set and p ∈ P. If D

is a countable family of dense subsets of P then there exists a D-generic filter F in P such that
p ∈ F .

Proof. A proof of this theorem can be found in (CIESIELSKI, 1997), Theorem 8.1.2.

Definition 1.88. Let ⟨P,≤⟩ be a partially ordered set.

∙ x,y ∈ P are comparable if either x ≤ y or y ≤ x. Thus a chain in P is a subset of P of
pairwise-comparable elements.

∙ x,y ∈ P are compatible (in P) if there exists a z ∈ P such that z≤ x and z≤ y. In particular,
condition (F1) from the definition of a filter says that any two elements of a filter F are
compatible in F .

∙ x,y ∈ P are incompatible if they are not compatible. In this case we denote this fact by
x⊥y.

∙ A subset A of P is an antichain (in P) if every two distinct elements of A are incompatible.
An antichain is maximal if it is not a proper subset of any other antichain. An elementary
application of the Hausdorff maximal principle shows that every antichain in P is contained
in some maximal antichain.

∙ A partially ordered set ⟨P,≤⟩ is ccc (or satisfies the countable chain condition) if every
antichain of P is at most countable.

Consider the following axiom, known as Martin’s axiom and usually abbreviated by MA.

Martin’s axiom : Let ⟨P,≤⟩ be a ccc partially ordered set. If D is a family of dense
subsets of P such that |D |< c, then there exists a D-generic filter in P.

Note that the Continuum Hypothesis implies Martin’s axiom. Now we will see some
consequences of Martin’s axiom in topology.

Theorem 1.89. Assume MA. If X ∈ [R]<c then every subset Y of X is a Gδ subset of X , that is,
there exists a Gδ set G⊆ R such that G∩X = Y .
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Proof. Let X ∈ [R]<c and fix Y ⊆ X . We will show that Y is a Gδ in X . Let B = {Bn : n < ω}
be a countable base for R.

First notice that it is enough to find a set Â⊆ ω such that for every x ∈ X

x ∈ Y ⇐⇒ x ∈ Bn for infinitely many n from Â (*)

To see why, define for every k < ω an open set Gk =
⋃
{Bn : n ∈ Â ∧ n > k} and put

G =
⋂

k<ω Gk. Then G is a Gδ set and for every x ∈ X we have

∙ if x ∈ Y , by (*), x ∈ Bn for infinitely many n from Â. Then for each k < ω there exists
m ∈ Â such that x ∈ Bm and m > k, so x ∈ Gk∀k < ω .

∙ if x ∈ Gk for all k < ω then for each k < ω there is mk ∈ Â such that mk > k and x ∈ Bmk ,
that is, x ∈ Bn for infinitely many n from Â.

In summary, for every x ∈ X we have

x ∈ Y ⇐⇒ x ∈ Gk for all k < ω

We define the partially ordered set ⟨P,≤⟩ by putting P = [ω]<ω × [X ∖Y ]<ω and for
⟨A1,C1⟩,⟨A0,C0⟩ ∈ P we define

⟨A1,C1⟩ ≤ ⟨A0,C0⟩

provided

(i) A1 ⊃ A0, C1 ⊃C0 and

(ii) c ̸∈ Bm for all m ∈ A1 ∖A0 and c ∈C0.

Now for y ∈ Y , k < ω and z ∈ X ∖Y , define the following subsets of P

Dk
y = {⟨A,C⟩ ∈ P : ∃m ∈ A (m≥ k ∧ y ∈ Bm)}

and

Ez = {⟨A,C⟩ ∈ P : z ∈C}.

We will use Martin’s axiom to find a D-generic filter for

D = {Dk
y : y ∈ Y ∧ k < ω}∪{Ez : z ∈ X ∖Y}.

To use Martin’s axiom, we have to check whether its assumptions are satisfied.
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1. P is ccc.

Indeed, suppose that there is {⟨Aξ ,Cξ ⟩ : ξ < ω1} an uncountable antichain. Since [ω]<ω is
countable, there are A ∈ [ω]<ω and ζ< ξ < ω1 such that Aζ = A = Aξ . Then ⟨Aξ ,Cξ ⟩=
⟨A,Cξ ⟩ and ⟨Aζ,Cζ⟩ = ⟨A,Cζ⟩ are compatible, since ⟨A,Cξ ∪Cζ⟩ extends them both, as
condition (ii) is satisfied vacuously. Contradiction.

2. D is a family of dense subsets of P.

a) For all y ∈ Y,k < ω , Dk
y is dense in P.

Indeed, take ⟨A,C⟩ ∈ P. Notice that there exist infinitely many basic open sets Bm

such that
y ∈ Bm and C∩Bm = /0. (**)

Take m > k satisfying (**), and notice that ⟨A∪{m},C⟩ ∈ Dk
y extends ⟨A,C⟩.

b) For all z ∈ X ∖Y , Ez is dense in P.

Indeed, take ⟨A,C⟩ ∈ P and notice that ⟨A,C∪{z}⟩ ∈ Ez extends ⟨A,C⟩.

3. |D |< c.

Note that |D | ≤ |X |+ω < c.

Now apply Martin’s axiom to find a D-generic filter F in P, and define

Â =
⋃
{A : ⟨A,C⟩ ∈ F}.

We will show that Â satisfies (*). So let x ∈ X .

If x ∈ Y then for every k < ω there exists ⟨A,C⟩ ∈ F ∩Dk
x. In particular there exists

mk ∈ A⊆ Â with mk > k such that x ∈ Bmk . So x ∈ Bm for infinitely many m from Â.

If x ∈ X ∖Y then there exists ⟨A0,C0⟩ ∈ F ∩Ex. In particular, x ∈C0. It is enough to prove
that x ̸∈ Bm for every m∈ Â∖A0, because this implies that {m∈ Â : x∈ Bm} is a finite set. So take
m ∈ Â∖A0. By the definition of Â there exists ⟨A,C⟩ ∈ F such that m ∈ A. But, by the definition
of a filter, there exists ⟨A1,C1⟩ ∈ F extending ⟨A,C⟩ and ⟨A0,C0⟩. Now ⟨A1,C1⟩ ≤ ⟨A0,C0⟩,
m ∈ A⊆ A1, m ̸∈ A0 and x ∈C0. Hence, by (ii), x ̸∈ Bm.

Finally, if MA holds, we have control over the meager sets of the real line.

Theorem 1.90. If MA holds then a union of less than continuum many meager subsets of R is
meager in R.

Proof. A proof of this theorem can be found in (CIESIELSKI, 1997), Theorem (8.2.6).

Corollary 1.91 (MA). Let A be a subset of the real line with |A|< c. Then A is meager.

Proof. Remember that for x ∈ R, {x} is nowhere dense, therefore meager.
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1.3 Forcing

In this section we will introduce some basic concepts of forcing. Since Cohen was the
first to demonstrate, using forcing and without adding any more hypothesis (for example CH),
that there are Baire spaces whose product is not Baire, we will study this example later. For the
fundamental part of forcing and its properties we follow the books (KUNEN, 1980), (JECH,
2003) and (BELL, 2011).

Definition 1.92. We say that (P,≤) or simply P is a partially ordered set (p.o) if:

∙ p≤ p,∀p ∈P

∙ (p≤ q and q≤ p→ p = q),∀p,q ∈P

∙ (p≤ q and q≤ r→ p≤ r),∀p,q,r ∈P

∙ there is an element in P , denoted by 1, such that p≤ 1,∀p ∈P .

Definition 1.93. We say that p⊥ q (p incompatible with q) if there is no r ≤ p,q. A partially
ordered set P is a forcing if for each p,q ∈P such that q ̸≤ p, there exists p′ ≤ q such that
p′ ⊥ p.

Suppose M is a countable standard transitive model of Zermelo-Fraenkel set theory
(ZFC) and let P be a partially ordered set. We denote by M [G] the smallest model extending
M and containing G as an element. We collect below some well-known facts.

The elements of the p.o. set P are often called conditions. We say that a condition p

forces a sentence A (to be true in the model M [G]) if A holds in M [G] whenever G contains p.
In symbols this is written p 
 A.

Theorem 1.94 (Fundamental theorem of forcing). A sentence A is satisfied in M [G] if and only
if there is a condition p ∈ G such that p 
 A.

Proof. A proof of this theorem can be found in (KUNEN, 1980), Lemma IV.2.24.

From properties of generic subsets and the fundamental theorem of forcing it follows
that, to prove that A holds in M [G], it suffices to prove that {p : p 
 A} is a dense subset of P.

Definition 1.95. Let P be a partially ordered set and let p ∈P . A set D⊆P is dense below
p if for every q≤ p there exists a d ∈ D such that d ≤ q.

Lemma 1.96. Let G be an M -generic subset of P , and ϕ be a sentence such that p 
 ϕ . If D

is dense below p then D∩G ̸= /0.
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Proof. Consider D′ = D∪{q : q is incompatible with p}. Note that D′ is dense in P, so there
is r ∈ D′ ∩G. If r ∈ {q : q is incompatible with p}, we have a contradiction, because G is an
M -generic filter. Therefore D∩G ̸= /0.

Proposition 1.97. The basic properties of the forcing relation are as follows.

(1) p 
 ¬A if and only if no q≤ p forces A;

We note that p 
 ¬¬A is equivalent to p 
 A, therefore,

(1′) p 
 A if and only if no q≤ p forces ¬A;

(2) p 
 A∧B if and only if p 
 A and p 
 B;

(3) p 
 A∨B if and only if (∀q≤ p)(∃r ≤ q)[r 
 A or r 
 B];

(4) p 
 ∀xA(x) if and only if (∀x ∈M )[p 
 A(x)];

(5) p 
 ∃xA(x) if and only if (∀q≤ p)(∃r ≤ q)(∃x ∈M )[r 
 A(x)].

An important property of the forcing relation is the following:

(6) for any sentence A and any p ∈ P

(∃q≤ p)[q 
 A or q 
 ¬A].

Proof. A complete proof of this proposition can be found in (KUNEN, 1980), Lemma IV.2.30.

If a formula A(x, · · · ,y) is satisfied in a model M , we write

M 
 A(x, · · · ,y).

In this notation the fundamental theorem of forcing can be written as follows: M [G] 


A(x, · · · ,y) if and only if (∃p∈G)[p
 A(x, · · · ,y)]. If M [G]
 A(x, · · · ,y) for any generic subset
G of p.o. set P, we write M P 
 A(x, · · · ,y).

An important class of forcings are those that, instead of any partial order, are given by a
Boolean algebra in their usual order. In fact, it is possible to show that, given any partial order, it
can be “immersed” in a “good way” in a complete Boolean algebra.

The present general version of the method of forcing, which uses the Boolean-valued
models, is due to Solovay, Scott (SCOTT, 1967).

We present only one result on this new forcing point of view, as we will use it later.

Lemma 1.98. Let u be a nonzero element of B. For any partition {ui : i∈ I} of u (i.e., ∑i∈I ui = u

and ui.u j = 0 for i ̸= j) and any set {ti : i ∈ I} of elements of M B there exists t ∈M B such that
ui ≤ “t = t ′′i for all i ∈ I,
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Proof. A complete proof of this lemma can be found in (JECH, 1986), Lemma 49.

1.3.1 Product forcing

If P and Q are partially ordered sets, then the cartesian product P×Q may be partially
ordered pointwise to obtain a partially ordered set P×Q

⟨p0,q0⟩ ≤ ⟨p1,q1⟩ ←→ p0 ≤ p1∧q0 ≤ q1

It easily seen that P ×Q, considered as a topological space, with the order topology, is
homeomorphic to the product of topological spaces P and Q.

Lemma 1.99. Let P and Q be two notions of forcing in M and let G ⊆P , H ⊆ Q. The
following statements are equivalent.

(a) G×H is P×Q-generic over M .

(b) G is P-generic over M and H is Q-generic over M [G].

Proof. A complete proof of this lemma can be found in (JECH, 2003), Lemma 15.9.

Corollary 1.100. Under the conditions of the previous lemma, then the following are equivalent:

1. G×H is P×Q-generic over M .

2. G is P-generic over M and H is Q-generic over M [G].

3. H is Q-generic over M and G is P-generic over M [H].

Futhermore, if (1-3) hold, then M [G][H] = M [H][G].

Lemma 1.101. If P and Q are forcings then the following are equivalent.

(a) P×Q is Baire in M .

(b) P is Baire in M , and whenever G is P-generic over M , then Q is Baire in M [G].

Proof. First, suppose that P×Q is Baire in M and G is a P-generic filter over M . Let H be
a Q-generic filter over M [G] and let a function f : ω → Ord ∈ (M [G])[H]. By Lemma 1.100,
f ∈M [G×H] = (M [G])[H], so f ∈M ⊆M [G].

Now, let F be a P×Q-generic over M and f : ω → Ord ∈M [F ]. By Lemma 1.100,
F = G×H, where G is P-generic over M and H is Q-generic over M [G]. As Q is Baire in
M [G] and f ∈M [F ] = (M [G])[H], we have that f ∈M [G] and as P is Baire in M , then
f ∈M .
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CHAPTER

2
THE BANACH-MAZUR GAME

In this chapter we will study the topological game of Banach-Mazur and its applications.
We will also analyze some of its variations. For the basic part of topological games we follow
the article (AURICHI; DIAS, 2019) and the book (KECHRIS, 1995).

2.1 Definitions about topological games

In all of the games considered :

∙ there will be two players, Player I and Player II, playing against each other;

∙ there will be ω many innings — meaning that the innings will be numbered 0,1,2,3, · · · ,
and that for each n ∈ ω there will be an n-th inning in the play;

∙ at the end of each complete play of the game, either Player I or Player II will be the winner
— there are no draws.

Here we are assuming that the game at hand is a game of perfect information, meaning
that, whenever a player must define their next move, it is assumed that they know all the previous
moves made so far in the play.

Definition 2.1. Assume that G is an infinite positional game of perfect information, where Player
I and Player II alternately choose some objects (e.g., points, sets, functions).

A strategy of a player is a function defined for those partial plays of G whose last move
was made by the opponent. (Without loss of generality we may assume that the strategy is defined
for the opponent’s partial plays only, because the strategy determines uniquely the omitted moves
of the player.)
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Intuitively, a strategy is a way of playing the game. This means that a fixed strategy for
one of the players must inform what decision should be taken for each possible situation that this
player might encounter during a play of the game.

Definition 2.2 (Winning strategies). A winning strategy for a player is a strategy that wins the
game, no matter how well the other player plays. In general, one player not having a winning
strategy does not imply that the other player has one.

If Player (I or II) is a player of a game G, we denote by

I ↑ G or II ↑ G

the fact that Player (I or II) has a winning strategy in G, and by Player ̸↑ G the fact that Player (I
or II) does not have a winning strategy in G.

Definition 2.3. A game G is

∙ determined if either I ↑ G or II ↑ G;

∙ undetermined otherwise – i.e. if I ̸↑ G and II ̸↑ G

Definition 2.4. Two games G and G′ are dual if

∙ Player I ↑ G ⇐⇒ Player II ↑ G′

and

∙ Player II ↑ G ⇐⇒ Player I ↑ G′

Definition 2.5. Two games G and G′ are equivalent if

∙ Player I ↑ G ⇐⇒ Player I ↑ G′

and

∙ Player II ↑ G ⇐⇒ Player II ↑ G′
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2.2 The Banach-Mazur game

Definition 2.6. The Banach-Mazur game on a topological space X , denoted by BM(X), is played
as follows: Players I and II play an inning per positive integer. In the n-th inning Player I chooses
a nonempty open set An; Player II responds with a nonempty open set Bn ⊆ An. Player I must
also obey the rule that for each n, An+1 ⊆ Bn. A play A0,B0, · · ·An,Bn, · · · is won by Player II if⋂

n∈ω Bn ̸= /0; otherwise, Player I wins.

An important observation, that will be of great importance later, is the following. Let B

be a π-base for the topology of the space X . Then the Banach-Mazur game on X is equivalent to
the B-Banach-Mazur game on X , the latter being defined by the same rules as the former, with
the extra restriction that both Player I and Player II must necessarily choose elements from B in
their moves.

2.2.1 Applications of the Banach-Mazur game

We start with the game-theoretic characterization of the Baire spaces.

Theorem 2.7. A nonempty topological space X is a Baire space if and only if Player I has no
winning strategy in the Banach-Mazur game BM(X).

Proof. First suppose that Player I has no winning strategy in BM(X). We will show that X is
a Baire space. Note that this is equivalent to proving that if X is not Baire then Player I has a
winning strategy in BM(X).

Therefore, suppose that X is not a Baire space. Then there is a sequence (Dn : n ∈ ω) of
open dense sets in X such that

⋂
n∈ω Dn is not dense, that is, there is a non-empty open set U

such that U ∩
⋂

n∈ω Dn = /0. Now, let us build a winning strategy σ for Player I in BM(X).

Indeed, in the first inning Player I plays σ(⟨ ⟩) = U , so Player II responds B0. In the
second inning, Player I plays σ(⟨B0⟩) = D0∩U . Note that this is a valid move, because Dn is
open and dense for each n ∈ ω , so Player II responds B1. Then, in the inning n ∈ ω , Player I
plays σ(⟨B0, · · · ,Bn−1⟩) = (D0∩·· ·∩Dn−1)∩Bn−1. Note that this is a valid move, by Corollary
1.49, so Player II responds Bn, and so on. Then

⋂
n∈ω Bn ⊆

⋂
n∈ω Dn∩U = /0, so σ is a winning

strategy for Player I.

Now, suppose that X is a Baire space. We will show that Player I does not have a winning
strategy in BM(X). For this let σ be a strategy for Player I. We will construct a nonempty pruned
subtree T ⊆ dom(σ) and in T we will find a play in which Player I does not win.

Claim 2.7.3. Let σ be a strategy for Player I in BM(X). If t = (B0, · · · ,Bn) is a sequence of
open sets in the domain of σ , then there exists a maximal family Bt of open sets contained in
σ(t) such that {σ(taV ) : V ∈Bt} is a family of pairwise disjoint non-empty open sets.
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Proof. Let t ∈ dom(σ) and consider the family

F = {B ⊆ σ(t) : {σ(taV ) : V ∈B} is a family of pairwise disjoint non-empty open sets }.

Note that (F ,⊆) is a partially ordered set, and F ̸= /0, because {σ(t)} ∈F . Also, if
C ⊆F is a chain, then

⋃
C ∈F is an upper bound for C . Then, by the Kuratowski-Zorn

Lemma, F has a maximal element. We will call this element by Bt , for each t ∈ dom(σ).

To construct T we determine inductively which sequences from dom(σ) of length n we
put in T :

∙ ⟨ ⟩ ∈ T

∙ if t ∈ T , then taV ∈ T if and only if V ∈Bt .

Claim 2.7.4.
⋃

V∈Bt
σ(taV ) is open and dense in σ(t), for all t ∈ T .

Proof. Suppose otherwise, that is, there exists a non-empty open set W ⊆ σ(t) such that⋃
V∈Bt

σ(taV )∩W = /0. Note that W ̸∈ Bt and σ(taW ) ⊆W . Then Bt ∪ {W} violates the
maximality of Bt .

For each n ∈ ω , define An = {t ∈ T : |t|= n} and An =
⋃

t∈An
σ(t).

Claim 2.7.5. For each n ∈ ω , An is open and dense in A0 = σ(⟨ ⟩).

Proof. Suppose by induction hypothesis that An is open and dense in σ(⟨ ⟩). We will show that
An+1 is open and dense in σ(⟨ ⟩). In fact, let A⊆ σ(⟨ ⟩) a non-empty open set. So /0 ̸= An∩A,
then there exists t ∈ An such that /0 ̸= σ(t)∩A. By Claim 2.7.4, there is V ∈ Bt such that
/0 ̸= σ(taV )∩A⊆ An+1∩A, because taV ∈An+1.

Note that, if t ∈An and s∈An+1, for some n∈ω and σ(t)∩σ(s) ̸= /0. Then s = taV for
some V ∈Bt . Indeed, note that σ(t)∩σ(s) is a non-empty open set in σ(t), so by Claim 2.7.4,
there is a V ∈Bt such that /0 ̸= σ(taV )∩σ(s). As σ [An] is pairwise disjoint, σ(taV ) = σ(s).
Also taV = s, because otherwise there is an n0 < n such that sn0 ̸= (taV )n0 and /0 ̸= σ(taV ) =

σ(s)⊆ σ(s|n0+1)∩σ((taV )|n0+1) = /0, contradiction.

Finally, as X is a Baire space, we have that the non-empty open subspace σ(⟨ ⟩) =U

is Baire. As ⟨An : n ∈ ω⟩ is a sequence of open dense sets in A0 = σ(⟨ ⟩) =U . Then
⋂

n∈ω An

is dense in A0. In particular, there is x ∈
⋂

n∈ω An, so x ∈ σ(⟨ ⟩) = U . By the last observation,
there is only one V0 ∈B⟨ ⟩ such that x ∈ σ(⟨V0⟩), also, x ∈ A1. Again by the last observation,
there is only one V1 ∈ B⟨V0⟩ such that x ∈ σ(⟨V0,V1⟩), and so on. Then there exists a run
(σ(⟨ ⟩),V0,σ(⟨V0⟩),V1, · · ·) such that (Vn : n ∈ ω) ∈ T and x ∈

⋂
n∈ω Vn, that is, Player II wins

this run. Then σ is not a winning strategy. Therefore, Player I has no winning strategy in
BM(X).
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Theorem 2.8. In every complete metric space X , Player II has a winning strategy in BM(X).

Proof. Let X be a complete metric space, we are going to build a winning strategy δ for Player
II in BM(X). Indeed, in the first inning Player I plays U0 a non-empty open set. Let x0 ∈U0 and

r0 < 1 such that B(x0)
r0 = {y ∈ X : d(x0,y)≤ r0} ⊆U0. Then Player II plays δ (⟨U0⟩) = B(x0)

r0 . In

the second inning Player I plays U1 ⊆ B(x0)
r0 . Let x1 ∈U1 and r1 <

1
2 such that B(x1)

r1 ⊆U1. Then
Player II plays δ (⟨U0,U1⟩) = B(x1)

r1 . In the inning n ∈ ω , if Player I plays Un, let xn ∈Un and

rn <
1

n+1 such that B(xn)
rn ⊆Un. Then Player II plays δ (⟨U0, · · · ,Un⟩) = B(xn)

rn , and so on. Note
that (xn)n∈ω is a Cauchy sequence. Indeed, let ε > 0 and n0 ∈ ω such that 1

n0+1 < ε . Then, if
m,n > n0, d(xm,xn)< ε .

As X is a complete metric space, there exists x ∈ X such that (xn)n∈ω converges to x.

We claim that x ∈ B(xn+1)
rn+1 , for all n ∈ ω . Indeed, suppose that x ∈ B(xn+1)

rn+1 . We will show that

x ∈ Bn+2 = B(xn+2)
rn+2 . Note that Bn+2 is closed. Consider the sub-sequence (xk)k≥n+2 ⊆ Bn+2, and

note that (xk)k≥n+2 ⊆ Bn+2 also converges to x ∈ Bn+2. Then x ∈
⋂

n∈ω B(xn)
rn and therefore δ is a

winning strategy for Player II in BM(X).

Corollary 2.9. Every complete metric space is Baire.

Proof. Let X be a complete metric space. As Player II has a winning strategy in BM(X), we
have that Player I has no winning strategy in BM(X). Therefore, by Theorem 2.7, X is a Baire
space.

Proposition 2.10. Let X be a topological space and let D be a Gδ and dense subset of X . Then
Player II has a winning strategy in the game BM(X) if and only if Player II has a winning strategy
in BM(D).

Proof. Let D =
⋂

n<ω Dn be dense Gδ set, note that Dn is dense for each n ∈ ω . Let δ be a
winning strategy for Player II in BM(X). Now we are going to build a winning strategy δ ′ for
Player II in BM(X).

Indeed, in the first inning in D, Player I plays A0∩D, where A0 is open in X . Now in X ,
in the first inning, Player I plays A0∩D0, then Player II responds δ (⟨A0∩D0⟩) = B1. Then in D,
Player II responds δ ′(⟨A0∩D⟩) = B1∩D.

In the second inning in D, Player I plays A2∩D. Now in X , in the second inning, Player I
plays (A2∩B1)∩D1, so Player II responds δ (⟨A0∩D0,(A2∩B1)∩D1⟩) = B3. Then in D, Player
II responds δ ′(⟨A0∩D,A2∩D⟩) = B3∩D, and so on.
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BM (D)
GSλ (A,k)

Player I Player II
A0∩D

B1∩D
A2∩D

B3∩D
a
...

...

BM(X)
GSλ (A,k)

Player I Player II
A0∩D0

δ (⟨A0⟩) = B1

(A2∩B1)∩D1
δ (⟨A0∩D0,(A2∩B1)∩D1⟩) = B3

a
...

...

As δ is a winning strategy in X , then
⋂

n<ω Bn ̸= /0. Choose x ∈
⋂

n<ω Bn. In particular
x ∈ D, therefore

⋂
n<ω(B

n∩D) ̸= /0. So δ ′ is a winning strategy for Player II in D.

Now suppose that Player II has a winning strategy δ ′ in BM(D). We will show that
Player II has a winning strategy δ in BM(X).

Indeed, in the first inning in X , Player I plays A0. Now in D, in the first inning, Player
I plays A0∩D, then Player II responds δ ′(⟨A0∩D⟩) = B1∩D. Then in X , Player II responds
δ (⟨A0⟩) = B1∩A0.

In the second inning in X , Player I plays A2. Now in D, in the second inning, Player
I plays A2 ∩D, next Player II responds δ (⟨A0 ∩D,A2 ∩D⟩) = B3 ∩D. Then in X , Player II
responds δ ′(⟨A0,A2⟩) = B3∩A2, and so on.

d

BM (X)
GSλ (A,k)

Player I Player II
A0

B1∩A0
A2

B3∩A2
a
...

...

BM(D)
GSλ (A,k)

Player I Player II
A0∩D

B1∩D
A2∩D

B3∩D
a
...

...

As δ is a winning strategy for Player II in BM(D), then /0 ̸=
⋂

n∈ω B2n+1∩D⊆
⋂

n∈ω B2n+1∩
A2n. Threfore δ is a winning strategy for Player II in BM(X),
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Definition 2.11. A topological space X is defined to be Choquet if Player II has a winning
strategy in the Banach-Mazur game BM(X).

Choquet spaces were introduced in 1975 by White who called them weakly α-favorable
spaces. Note that every Choquet space is a Baire space this follows from Theorem 2.7.

Now we present the result of Oxtoby (OXTOBY, 1980), which gives us a characterization
for metrizable Choquet spaces.

Theorem 2.12 (Oxtoby). A metrizable space X is Choquet if, and only if, it contains a dense
completely metrizable subspace.

Proof. First, suppose that X contains a dense completely metrizable subspace G. By Theorem
1.19, G is a Gδ -set and dense in X . Consider X̂ , the completion of X . In particular X̂ is a Baire
space, because it is a complete metric space. Note that G is also a Gδ -set and dense in X̂ . Put
G =

⋂
n∈ω Gn. Note that Gn is open and dense in X̂ , for each n ∈ ω .

As X̂ is a complete metric space, it follows that Player II has a winning strategy in BM(X̂).
Also, by Proposition 2.10, we have that Player II has a winning strategy δ ′ in BM(G), as G is a
Gδ dense subset of X . Again by Proposition 2.10, Player II has a winning strategy in BM(X).
Then X is Choquet.

Now, suppose that X is Choquet. We will show that X contains a dense completely
metrizable subspace. Consider X̂ , the completion of X . Let δ be a winning strategy for Player II
in BM(X). We start with some claims.

Claim 2.12.6. If δ is a winning strategy for Player II in BM(X), then there exists a winning
strategy δ ′ for Player II in BM(X) such that for each t = (U0, · · · ,Un) ∈ dom(δ ′) we have that

(i) δ ′(t) = V̂n∩X , where V̂n is a non-empty open set in X̂ with diam(V̂n)≤ 2−n and such that
if Un =Vn∩X then V̂n ⊆Vn;

(ii) also, if taUn+1 ∈ dom(δ ′), that is, δ ′(taUn+1) = V̂n+1∩X . Then V̂n+1 ⊆ V̂n.

Proof. We will build δ ′ as follows:

In the first inning, if Player I plays U0 =V0∩X , where V0 is a non-empty open set in X̂ ,

then Player II plays δ (⟨U0⟩) =W0∩X . Let x0 ∈V0∩W0∩X and r0 <
1
2 such that B(x0)

r0 ⊆W0∩V0

and set δ ′(⟨U0⟩) = B(x0)
r0 ∩X . In the second inning, if Player I plays U1 =V1∩X ⊆ B(x0)

r0 ∩X a
non-empty open set in X , then Player II plays δ (⟨U0,U1⟩) =W1∩X . Consider the non-empty set

V1∩W1∩B(x0)
r0 , let x1 ∈ V1∩W1∩B(x0)

r0 and r1 <
1
4 be such that B(x1)

r1 ⊆ V1∩W1∩B(x0)
r0 and set

δ ′(⟨U0,U1⟩) = B(x1)
r1 ∩X . In the inning n ∈ ω , if Player I plays Un =Vn∩X ⊆ B(xn−1)

rn−1 ∩X , then
Player II plays δ (⟨U0, · · · ,Un⟩) =Wn∩X . Choose xn ∈Vn∩Wn∩B(xn−1)

rn−1 and rn <
1

2n+1 be such

that B(xn)
rn ⊆Vn∩Wn∩B(xn−1)

rn−1 and set δ ′(⟨U0, · · · ,Un⟩) = B(xn)
rn ∩X , and so on.
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As δ is a winning strategy for Player II, there exists x ∈
⋂

n∈ω Wn ∩X =
⋂

n∈ω Un ⊆⋂
n∈ω B(xn)

rn ∩X . Then δ ′ is a winning strategy for Player II in BM(X).

Claim 2.12.7. Let δ ′ and δ as above. If s = (U0, · · · ,Un−1) ∈ dom(δ ), then there is a maximal
family Bs contained in δ ′(s) such that, if V̂n∩X = δ ′(saB), where B ∈Bs, then V̂s = {V̂n : B ∈
Bs} is a family of pairwise disjoint open sets in X̂ .

Proof. Let t ∈ dom(δ ) and consider the family

F = {B ⊆ δ (s) : {δ ′(saB) : B ∈B} is a family of pairwise disjoint non-empty open sets}

Note that (F ,⊆) is a partially ordered set, and F ̸= /0, because {Un−1} ∈F . Also,
if C ⊆F is a chain, then

⋃
C ∈F is an upper bound for C . Then, by the Kuratowski-Zorn

Lemma, F has a maximal element, we will call this element Bs, for each s ∈ dom(δ ).

Also, by construction we have that diam(V̂n)< 2−n for all V̂n ∈ V̂s.

Now we are going to build a subtree S⊆ dom(δ ′) consisting of sequences of the form
(U0,V̂0,U1,V̂1, · · · ,Un,V̂n), where Ui are non-empty open sets in X and V̂i are non-empty open in
X̂ . Also by Claim 2.12.6, we have that V̂0⊇ V̂1⊇ ·· · and if Vi = V̂i∩X , the run (U0,V0,U1,V1, · · ·)
is compatible with δ .

To construct S we determine inductively which sequences from dom(δ ′) of length n we
put in S :

∙ {⟨U⟩ : U ∈B0} ∈ S, where B0 is the maximal family of open sets of Claim 2.12.7.

∙ if s ∈ S, then saB ∈ S if and only if B ∈Bs.

Claim 2.12.8.
⋃

V̂s =
⋃
{V̂n : s ∈ S} is dense in V̂n−1, for all s = (U0, · · · ,Un−1) ∈ S.

Proof. Suppose otherwise, that is, there exists a non-empty open set W ⊆ V̂n−1 such that
⋃

V̂s∩
W = /0. Note that W ∩X ̸∈Bs, therefore V̂s∪{W ∩X} violates the maximality of Bs.

For each n≥ 1, we define Wn = {s ∈ S : |s|= n} and Wn =
⋃
{V̂n : s ∈ S}.

Claim 2.12.9. For each n≥ 1, Wn is open and dense in X̂ .

Proof. Suppose by induction hypothesis that Wn is open and dense in X̂ . We will show that Wn+1

is open and dense in X̂ . In fact, let A be a non-empty open set in X̂ . So /0 ̸= Wn∩A and there
exists s ∈ S such that /0 ̸= V̂n∩A. By Claim 2.12.8,

⋃
{V̂n+1 : s ∈ S} is dense in V̂n, then there

exists s′ ∈ S, |s′|= n+1 such that /0 ̸= V̂n+1∩ (V̂n∩A)⊆Wn+1∩A.

Claim 2.12.10.
⋂

n≥1Wn ⊆ X
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Proof. Let x ∈
⋂

n≥1Wn, in particular x ∈W1. By Claim 2.12.7, there exists a unique V̂1 and
there exists U1 non-empty open in X such that x ∈ V̂1 and δ ′(⟨U1⟩) = V̂1∩X . As x ∈W1, again
by Claim 2.12.7, there exists a unique V̂2 and there is U2 non-empty open in X such that x ∈ V̂2

and δ ′(⟨U1,U2⟩) = V̂2∩X , and so on. Then there exists a unique (Un)n≥1 ∈ S⊆ dom(δ ′) such
that x ∈

⋂
n≥1 V̂n. By construction, diam(V̂n) < 2−n, therefore {x} =

⋂
n≥1 V̂n. Also, as δ ′ is a

winning strategy for Player II, we have that /0 ̸=
⋂

n≥1Vn =
⋂

n≥1 V̂n∩X , then x ∈ X .

As X̂ is Baire, we have that W =
⋂

n≥1Wn is dense in X̂ . So W is dense in X and is a
Gδ -set, by Theorem 1.19, W is completely metrizable. Then X contains a dense completely
metrizable subspace W .

Corollary 2.13. Let X be a dense subset of the real line. Then X is Choquet if, and only if, X is
residual in R.

Proof. By Theorem 2.12, X contains a dense completely metrizable subspace D. Note that
D is dense completely metrizable in R, by Theorem 1.19, D is a Gδ -set in R. Therefore, by
Proposition 1.56, X is residual in R.

Our motivation for this part is to characterize the spaces in which the Banach-Mazur
game is undetermined.

Definition 2.14. Let X be a topological space. We say that X is an undetermined space if the
Banach-Mazur game played on X is undetermined.

Lemma 2.15. Let X ⊆ R be a dense Baire space. Then G∩X is dense for each dense Gδ -set G

in R.

Proof. Let G =
⋂

n∈ω Gn be a dense Gδ -set, so Gn is open and dense for each n ∈ ω . Note that
Gn∩X is open and dense in X for each n ∈ω . As X is a Baire space then G∩X =

⋂
n∈ω(Gn∩X)

is a dense set in X .

Theorem 2.16. If X ⊆ R is a dense undetermined space then G∩X ̸= /0 and G∩ (R∖X) ̸= /0
for every dense Gδ -set G⊆ R.

Proof. Let G be a dense Gδ set. By Lemma 2.15, we have that G∩X is dense. In particular,
G∩X ̸= /0. Now, by Proposition 2.10, there exists δG be a winning strategy for Player II in the
game BM(G). We will build a strategy δ̃ for Player II in BM(X).

Indeed, in the first inning in X , Player I plays A0∩X , where A0 is open in R. Now in
G, in the first inning, Player I plays A0∩G. Then Player II responds δG(⟨A0∩G⟩) = B1∩G,
then in X , Player II responds δ̃ (⟨A0∩X⟩) = B1∩ (G∩X). In the second inning in X , Player I
plays A2∩X . Now in G, in the second inning, Player I plays (A2∩B1)∩G, so Player II responds
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δG(⟨A0 ∩G,(A2 ∩B1)∩G⟩) = B3 ∩G. Then in X , Player II responds δ̃ (⟨A0 ∩X ,A2 ∩X⟩) =
B1∩G, and so on.

BM(X)
GSλ (A,k)

Player I Player II
A0∩X

δ̃ (⟨A0∩X⟩) = B1∩ (G∩X)
A2∩X

B3∩ (G∩X)
a
...

...

BM(G)
GSλ (A,k)

Player I Player II
A0∩G

δG(⟨A0∩G⟩) = B1∩G
(A2∩B1)∩G

δG(⟨A0∩G,(A2∩B1)∩G⟩) = B3∩G
a
...

...

As δG is a winning strategy for Player II, then there exists z ∈
⋂

n<ω B2n+1∩G. If z ∈ X

then δ̃ is a winning strategy for Player II in BM(X), contradiction. Therefore z ̸∈ X , then
z ∈ G∩ (R∖X).

Corollary 2.17. If X ⊆ R is a dense undetermined space then G∩X is dense in X and G∩ (R∖
X) ̸= /0 for every dense Gδ -set G⊆ R.

Finally, joining the characterizations via games with Baire and Choquet spaces in the
real line we have the following:

Corollary 2.18. Let X a dense subset of the real line. Then X is undetermined if, and only if, X

is Baire and is not residual.

Later we will see an explicit example of an undetermined space on the real line this will
be a Bernstein set. Furthermore, we will see that a Baire space that is not productively Baire is
an undetermined space. In particular, the counterexamples mentioned in the introduction to this
thesis are examples of undetermined spaces.
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Theorem 2.19. If f is a continuous, open mapping of X onto Y , and X is Choquet, then Y is
Choquet.

Proof. Let δX be a winning strategy for Player II in BM(X). We are going to build a winning
strategy δY for Player II in BM(Y ).

Indeed, in the first inning in Y , Player I plays U0 a non-empty open set in Y . Consider the
non-empty open set f−1(U0)⊆ X . In X , in the first inning, Player I plays f−1(U0) and Player II
responds δX(⟨ f−1(U0)⟩) =V0. Then, in Y , Player II plays δY (⟨U0⟩) = f (δY (⟨U0⟩)) = f (V0).

In the second inning, in Y , Player I plays U1 ⊆ f (V0). Consider the non-empty open set
f−1(U1)∩V0. In X , Player I plays f−1(U1)∩V0 and Player II responds δX(⟨ f−1(U0), f−1(U1)∩
V0⟩) =V1 and, in Y , Player II responds δY (⟨U0,U1⟩) = f (V1).

In the inning n ∈ ω in Y , if Player I plays Un−1 ⊆ f (Vn−2), consider the non-empty
open set f−1(Un−1)∩Vn−2. In X , Player I plays f−1(Un−1)∩Vn−2 and Player II responds
δX(⟨ f−1(U0), · · · , f−1(Un−1)∩Vn−2⟩)=Vn−1 and, in Y , Player II responds δY (⟨U0, · · · ,Un−1⟩)=
f (Vn−1).

BM(Y )
GSλ (A,k)

Player I Player II
U0

δY (⟨U0⟩) = f (V0)
U1

δY (⟨U0,U1⟩) = f (V1)
a
...

...

BM(X)
GSλ (A,k)

Player I Player II
f−1(U0)

δX(⟨A0∩G⟩) =V0
f−1(U1)∩V0

δX(⟨ f−1(U0), f−1(U1)∩V0⟩) =V1
a
...

...

As δX is a winning strategy then there exists x ∈
⋂

n∈ω Vn, therefore f (x) ∈
⋂

n∈ω f (Vn),
that is, δY is a winning strategy for Player II in BM(Y ).

Corollary 2.20. Let {Xi : i ∈ I} is a family of topological spaces such that ∏i∈I Xi is a Choquet
space, then Xi is Choquet for each i ∈ I.
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Theorem 2.21. Every Choquet metric space (X ,d) without isolated points1 contains a subspace
homeomorphic to the Cantor set.

Proof. We are going to build a system U = {Us : s ∈ 2<ω} on X such that

1. Us is open non-empty;

2. diam(Us)≤ d
2|s|

;

3. For s ∈ 2<ω and i ∈ {0,1}, Us_i ⊆Us such that

∙ Us_0∩Us_1 = /0 ;

∙ diam(Us_i)≤ d
2|s|+1 .

We will use the Banach-Mazur game to build this family. Indeed, in the first inning
Player I plays any open ball U/0 of diameter d. Then Player II plays V/0 such that V/0 is an open
non-empty set and V/0 ⊆U/0. In the second inning, inside V/0 we build two open non-empty disjoint
sets U(0),U(1) such that U(0)∩U(1) = /0 and diam(U(0)),diam(U(1))≤ d

2 . Player I can play any
of the open sets U(0),U(1). Then Player II gives the respective responses V(0),V(1) for any move
by Player I.

Player I Player II
U(0) V(0) where V(0) ⊆U(0)
U(1) V(1) where V(1) ⊆U(1)

Justification. Note that there is x ∈ V/0 and as V/0 is open there is an δ > 0 such that

B(x)
δ
⊆V/0 and B(x)

δ
⊆ B[x]

δ
(V/0. As X does not have isolated points, B(x)

δ
∩X ∖{x} ̸= /0.

That is, there is y ∈ B(x)
δ
⊆ V/0 such that x ̸= y and as X is Hausdorff, there are two

open disjoint sets A0,A1 such that x ∈ A0 and y ∈ A1, so x ∈ A0 ∩V/0 and y ∈ A1 ∩V/0 then
there are two open balls such that B(x)

δ0
⊆ A0∩B(x)

δ
⊆ A0∩V/0 and B(y)

δ1
⊆ A1∩B(x)

δ
⊆ A1∩V/0, so

0 < diam(B(x)
δ0
),diam(B(y)

δ1
)≤ diam(U/0). Consider r0 =

diam(B(x)
δ0

)

4 and r1 =
diam(B(y)

δ1
)

4 . Note that

0 < diam(B(x)
r0 ),diam(B(y)

r1 )≤ d
2 .

Finally, we define U(0) = B(x)
r0 and U(1) = B(y)

r1 . Note that U(0),U(1) are open and non-
empty sets, U(0)∩U(1) = /0 and diam(U(0)),diam(U(1))≤ d

2 .

In the inning |s|, having defined Us, we define Us_0,Us_1 ⊆Us. In fact, suppose that
Player I plays Us then Player II responses Vs. Again (as in the initial case) inside Vs we build two
open non-empty disjoint sets Us_0,Us_1 such that diam(Us_0),diam(Us_1) ≤ d

2|s|+1 . Player
I can play any of the open sets U(s_0),U(s_1) then Player II gives the respective responses

1 A topological space without isolated points is the same as dense-in-itself space
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Vs_0,Vs_1 for any move by Player I. Finally take U = {Us : s ∈ 2<ω} and that is our family
sought.

Let r ∈ 2ω , we define

Ur :=
⋂

n∈ω

Ur�n.

Claim 2.21.11. Ur consists of exactly one point.

Proof. Note that by construction Ur ̸= /0, because Player II has a winning strategy in BM(X),
that is, /0 ̸=

⋂
n∈ω Vn ⊆Ur. Note that diam(Ur) ≤ diam(Ur�n). Suppose that Ur contains more

than one point, then diam(Ur)> 0. As

lim
n→∞

diam(Ur�n) = 0,

because diam(Ur�n)≤ d
2n ,∀n ∈ ω , then there exists n0 ∈ ω such that diam(Ur)≤ diam(Ur�n0)<

diam(Ur), contradiction.

Therefore, Ur consists of exactly one point. Let us call that point by xr, that is, {xr}=Ur.
Define

f : 2ω −→ X

by

f (r) = xr.

As 2ω is compact and X is Hausdorff it is only necessary to show that f is injective and
continuous.

Claim 2.21.12. f is injective.

Let r,s ∈ 2ω be such that r ̸= s then {n ∈ ω : r(n) ̸= s(n)} ̸= /0. Consider n0 = min{n ∈
ω : r(n) ̸= s(n)}. In particular, xr ∈Ur ⊆U⟨r0,..,rn0−1,rno⟩ and xs ∈Us ⊆U⟨r0,..,rn0−1,sno⟩, but for the
construction

U⟨r0,..,rn0−1,rno⟩∩U⟨r0,..,rn0−1,sno⟩ = /0.

Then xr ̸= xs.

Claim 2.21.13. f is continuous.

Proof. Let ε > 0 and consider B(xr)
ε , as limn→∞ diam(Ur�n) = 0 then there exists an n0 ∈ ω such

that Ur�n0 ⊆ B(xr)
ε and xr ∈Ur�n0 . Consider Vr = {s ∈ 2ω : r � n0 ⊆ s}. Note that V is open in 2ω

and if s ∈Vr then f (s) = xs ∈Ur�n0 ⊆ B(xr)
ε , so f is continuous.
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Then f is an embedding of 2ω into X , that is, f (2ω)⊆ X is homeomorphic to the Cantor
set C .

The Banach-Mazur game also has applications for productively Baire spaces. Later we
will see that it also has applications for the infinite products of Baire spaces.

Proposition 2.22 (White). Let X ,Y be Choquet spaces. Then X×Y is Choquet.

Proof. Let δX and δY be winning strategies for Player II in BM(X) and BM(Y ) respectively.
We will build a strategy δ for Player II in BM(X ×Y ). Indeed, in the first inning in X ×Y ,
Player I plays U0 a non-empty open set in X ×Y . Then there are non-empty open sets A0

X

and A0
Y in X and Y such that A0

X ×A0
Y ⊆U0. In X , Player I plays A0

X and Player II responds
δX(⟨A0

X⟩) and, in Y , Player I plays A0
Y and Player II responds δY (⟨A0

Y ⟩). Then Player II responds
δ (⟨U0⟩) = δX(⟨A0

X⟩)×δY (⟨A0
Y ⟩).

In the second inning, Player I plays U1 ⊆ δ (⟨U0⟩) = δX(⟨A0
X⟩)×δY (⟨A0

Y ⟩). As before,
there are non-empty open sets A1

X and A1
Y in X and Y such that A1

X ×A1
Y ⊆U1. In X , Player I

plays A1
X and Player II responds δX(⟨A0

X ,A
1
X⟩) and, in Y , Player I plays A1

Y and Player II responds
δY (⟨A0

Y ,A
1
Y ⟩). Then Player II responds δ (⟨U0,U1⟩) = δX(⟨A0

X ,A
1
X⟩)×δX(⟨A0

X ,A
1
X⟩), and so on.

As δX and δY are winning strategies, we have that /0 ̸=
⋂

n∈ω δX(⟨A0
X , · · · ,An

X⟩) and
/0 ̸=

⋂
n∈ω δ (⟨A0

Y , · · · ,An
Y ⟩), then

/0 ̸=
⋂

n∈ω

δX(⟨A0
X , · · · ,An

X⟩)×
⋂

n∈ω

δY (⟨A0
Y , · · · ,An

Y ⟩)⊆
⋂

n∈ω

δ (⟨U0, · · · ,Un⟩).

Therefore δ is a winning strategy for Player II in BM(X ×Y ), that is, X ×Y is a Choquet
space.

Proposition 2.23. Let X a Choquet topological space and let Y be a Baire space. Then X×Y is
a Baire space. In other words Choquet spaces are productively Baire.

Proof. Suppose otherwise, that is, X ×Y is not Baire. Then by Theorem 2.7, I ↑ BM(X ×Y ),
let us call this strategy for Player I in BM(X×Y ) by σ . We can assume that σ only gives basic
open sets. Set ρ a winning strategy for Player II in BM(X). We will build a winning strategy ϕ

for Player I in BM(Y ).

Indeed, in the first inning in X×Y , Player I plays σ(⟨⟩) =U0×V0, where U0 and V0 are
non-empty open sets in X and Y respectively. Now in X , in the first inning, Player I plays U0 and
Player II responds ρ(⟨U0⟩). In Y , Player I plays ϕ(⟨ ⟩) =V0 then Player II responds W0. Then in
X×Y , Player II responds ρ(⟨U0⟩)×W0.
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In the second inning in X×Y , Player I plays σ(⟨ρ(⟨U0⟩)×W0⟩) =U1×V1. Now in X , in
the second inning, Player I plays U1, so Player II responds ρ(⟨U0,U1⟩). Then in Y , Player I plays
ϕ(⟨W0⟩) =V1 and Player II responds W1. Then in X ×Y , Player II responds ρ(⟨U0,U1⟩)×W1.
And so on.

BM(X×Y ) BM(X) BM(Y )

0
I

σ(⟨ ⟩) =U0×V0 U0 ϕ(⟨ ⟩) =V0

II
ρ(⟨U0⟩)×W0 ρ(⟨U0⟩) W0

1
I

σ(⟨ρ(⟨U0⟩)×W0⟩) =U1×V1 U1 ϕ(⟨W0⟩) =V1

II
ρ(⟨U0,U1⟩)×W1 ρ(⟨U0,U1⟩) W1

2
I

σ(⟨ρ(⟨U0⟩)×W0,ρ(⟨U0,U1⟩)×W1⟩) =U2×V2 U2 ϕ(⟨W0,W1⟩) =V2

II
ρ(⟨U0,U1,U2⟩)×W2 ρ(⟨U0,U1,U2⟩) W2

...
...

...

As σ and ρ are winning strategies for Player I and Player II, respectively, we have that⋂
n∈ω ρ(⟨U0, ...,Un⟩)×Wn = /0 and

⋂
n∈ω ρ(⟨U0, ...,Un⟩) ̸= /0. Then in BM(Y ) we have that⋂

n∈ω

Wn = /0.

Then ϕ is a winning strategy for Player I in BM(X×Y ) and this is a contradiction, because Y is
a Baire space. Therefore X×Y is a Baire space.
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2.2.2 Modifications of the Banach-Mazur game

In this section we study some variations of the Banach-Mazur game. These will help us
characterize new spaces and also continue to study the problem of the product of Baire spaces.

2.2.2.1 The MB(X) game

The game MB(X) is played like BM(X), except that now Player I wins if
⋂

n∈ω Bn ̸= /0,
and Player II wins otherwise.

Proposition 2.24. For a topological space X the following are equivalent:

(1) Player II has a winning strategy in MB(X),

(2) For each non-empty open U ⊆ X , Player I has a winning strategy in BM(U),

(3) No open (non-empty) subspace of X is a Baire space.

Proof. (1⇒ 2) Let δ a winning strategy for Player II in MB(X) and let U ⊆ X be a non-empty
open set. We are going to build a winning strategy δU for Player I in BM(U).

Indeed, in the first inning in X , if Player I plays U , next Player II responds δ (⟨U⟩) =V0⊆
U . Now in U , in the first inning, Player I plays δU(⟨⟩)=V0, then Player II responds W0⊆V0. Then,
in X , in the second inning, if Player I plays W0, next Player II responds δ (⟨U,W0⟩) =V1 ⊆W0.
In the second inning in U , Player I plays δU(⟨W0⟩) =V1, then Player II responds W1 ⊆V1, and so
on. As δ is a winning strategy for Player II, we have that

⋂
n∈ω Vn = /0. Note that δU is a winning

strategy for Player I in BM(U), because
⋂

n∈ω δU(⟨W0, · · · ,Wn−1⟩) =
⋂

n∈ω Vn = /0. By Theorem,
we have that (2⇔ 3). Now, suppose (3). We are going to build a winning strategy δ for Player
II in MB(X).

Indeed, in MB(X), in the first inning, if Player I plays A0 ⊆ X , as A0 is not Baire, there
exists a winning strategy δA0 for Player I in BM(A0), so if δA0(⟨⟩) = V0 ⊆ A0. So, in MB(X),
Player II responds δ (⟨A0⟩) =V0. In the second inning, in MB(X), if Player I plays A1 ⊆V0.

Next, in BM(A0), in the first inning, if Player II plays A1, and, in the second inning, in
BM(A0), Player I responds δA0(⟨A1⟩) =V1 ⊆ A1. Then, in the second inning, in MB(X), Player
I plays δ (⟨A0,A1⟩) =V1.

In MB(X), in the third inning, if Player I plays A2 ⊆ V1, So, in the second inning, in
BM(A0), Player II plays A2. Next, in the third inning, in BM(A0), Player I responds δA0(⟨A1,A2⟩)=
V2 ⊆ A2. Then, if Player I plays A2, next Player II, and so on.



2.2. The Banach-Mazur game 65

MB(X)

GSλ (A,k)
I II

A0
δ (⟨A0⟩) =V0

A1
δ (⟨A0,A1⟩) =V1

A2
δ (⟨A0,A1⟩) =V2 a

...
...

BM(A0)

GSλ (A,k)
I II

δA0(⟨⟩) =V0 ⊆ A0
A1

δA0(⟨A1⟩) =V1 ⊆ A1
A2

δA0(⟨A1,A2⟩) =V2 ⊆ A2
a
...

...

As δA0 is a winning strategy for Player I, we have that
⋂

n∈ω Vn = /0. Note that δ is a winning
strategy for Player II in MB(X), because

⋂
n∈ω δA0(⟨A0, · · · ,An−1⟩) =

⋂
n∈ω Vn = /0.

Theorem 2.25. For a topological space X the following are equivalent:

(1) X is meager in itself.

(2) Player II has a winning strategy in MB(X).

Proof. First suppose that X is meager in itself, that is, there is a sequence ⟨Nn : n∈ω⟩ of nowhere
dense sets in X such that X =

⋃
n∈ω Nn, so /0 =

⋂
n∈ω X ∖Nn. We can assume that Nn is closed

with empty interior, for all n ∈ ω , then X ∖Nn is open and dense in X . We are going to build a
winning strategy δ for Player II in MB(X).

Indeed, in the first inning Player I plays A0 and Player II responds δ (⟨A0⟩)= (X ∖N0)∩A0.
Note that this is a valid move because X ∖N0 is open dense. In the second inning, Player I plays
A1 ⊆ (X ∖N0)∩A0 and Player II plays δ (⟨A0,A1⟩) = (X ∖N1)∩A1, and so on.

In general, in the inning n∈ω , Player I plays An−1 and Player II responds δ (⟨A0, · · · ,An−1⟩)=
(X ∖Nn−1)∩An−1.

Then
⋂

n∈ω δ (⟨A0, · · · ,An⟩) =
⋂

n∈ω(X ∖Nn)∩An ⊆
⋂

n∈ω(X ∖Nn) = /0. Therefore δ is a
winning strategy for Player II in MB(X).

Now suppose that Player II has a winning strategy in MB(X). By Proposition 2.24, this
is equivalent to no open (non-empty) subspace of X is a Baire space. We will show that X is
meager in itself.

Indeed, for each non-empty open subset A⊆ X there are {B1(A),B2(A), · · ·} a countable
collection of open dense subsets in A and a non-empty open subset B(A)⊆ A such that⋂

n∈N
Bn(A)∩B(A) = /0.
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Let A be a maximal family of non-empty subsets such that {B(A) : A ∈A } is a pairwise
disjoint family.

Note that A0 =
⋃

A∈A B(A) is open dense in X . In fact, suppose otherwise, that is, there
exists a non-empty subset U ⊆ X such that U ∩A0 = /0, so B(U)∩B(A) = /0 for each A ∈ A .
Note that U ̸∈A , then A ( A ∪{U}, contradicting that A is maximal.

Also, A1 =
⋃

A∈A (B1(A)∩B(A)) is open and dense. In fact, let V ⊆ X be a non-empty
set, then there exists A ∈A such that V ∩B(A) ̸= /0 (because A0 is dense). As B1(A) is dense in
A, we have that /0 ̸= (V ∩B(A))∩B1(A)⊆V ∩A1. Then, for each n ∈ N,

An =
⋃

A∈A
(Bn(A)∩B(A))

is open and dense for each n ∈ N, by the same argument. Note that, B(A)∩An = B(A)∩Bn(A).

Therefore, ⋂
n∈ω

An = /0.

In fact, suppose otherwise, there exists

x ∈ B(A)∩ (
⋂
n>0

An) =
⋂
n>0

(B(A)∩An) =
⋂
n>0

(B(A)∩Bn(A)) = /0

Then X =
⋃

n∈ω X ∖An. Therefore X is meager in itself.
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2.2.2.2 The Cantor game

The Cantor game on X , denoted by 2BM(X), is played as follows: Player I and Player II
play an inning per finite ordinal.

At the beginning, Player I plays B /0 a non-empty open set, and then Player II responds
two non-empty open subsets V0 = {V0,V1}, with V0,V1 ⊆ B /0 and consider W0 =

⋃
V0. Next, in

the first inning, Player I plays {B0,B1} two non-empty open sets, with B0 ⊆V0 and B1 ⊆V1 and
Player II plays V1 = {V00,V01,V10,V11} where Vi j are non-empty open sets, with V00,V01 ⊆ B0

and V10,V11 ⊆ B1, consider W1 =
⋃

V1, and so on.

2BM(X)

GSλ (A,k)
Player I Player II
{B /0}

V0 = {V0,V1} with W0 =
⋃

V0
{B0,B1}

V1 = {V00,V01,V10,V11} with W1 =
⋃

V1
a
...

...

Player II wins the game 2BM(X) if
⋂

n∈ω Wn ̸= /0, else Player I wins.

Note that in this variation of the game we have that if Player II has a winning strategy in
the game BM(X) then Player II has a winning strategy in 2BM(X).

Theorem 2.26. Let X be a topological space. Then I ↑ BM(X) if and only if I ↑ 2BM(X).

Proof. Suppose that I ↑ BM(X). We will show that Player I has a winning strategy σ in 2BM(X).
Indeed, by Theorem 2.7, X is not Baire, there exists a sequence ⟨Dn : n ∈ ω⟩ of dense open set
and exists a non-empty open U such that

⋂
n∈ω Dn∩U = /0.

Then in the first inning Player I plays σ(⟨ ⟩) =U , next Player II responds V0 = {V0,V1},
with Vi ⊆U for i ∈ {0,1}. In the second inning, Player I plays σ(⟨V0⟩) = {D0∩V0,D0∩V1}
and Player II plays V1 = {V00,V01,V10,V11} with V0i ⊆ D0∩V0 and V1i ⊆ D1∩V1 for i ∈ {0,1}.
In the third inning, Player I plays σ(⟨V0,V1⟩) = {D1 ∩V00,D1 ∩V01,D1 ∩V10,D1 ∩V11} and
Player II responds V2 = {V000,V001,V010,V011,V100,V101,V110,V111} with Vsai ⊆ D1∩Vs, for all
s ∈ {0,1}{0,1} and i ∈ {0,1}

In general, in the inning n ∈ ω , Player I plays σ(⟨V0, · · · ,Vn−2⟩) = {Dn∩V : V ∈ Vn−2}.
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2BM(X)

GSλ (A,k)
Player I Player II

σ(⟨ ⟩) =U
V0 = {V0,V1}

σ(⟨V0⟩) = {D0∩V0,D0∩V1}
V1 = {V00,V01,V10,V11}

a
...

...

Note that
⋃

V0 ⊆U and for n ≥ 1,
⋃

Vn ⊆ Dn, then
⋂

n∈ω

⋃
Vn = /0. Therefore δ is a

winning strategy for Player I in 2BM(X).

Now, suppose that Player I has a winning strategy σ in 2BM(X). We will show that X

is not Baire. For this, we will use Theorem 2.7, that is, we will build a winning strategy σ ′ for
Player I in BM(X).

Indeed, in the first inning, in 2BM(X), Player I plays σ(⟨ ⟩) = U0. Now in BM(X),
in the first inning, Player I plays σ ′(⟨ ⟩) = U0, then Player II responds V0, then in 2BM(X),
Player II responds V0 = {V0,V0} = {V0}. In the second inning, in 2BM(X), Player I plays
σ(⟨V0⟩) = {σ0(⟨V0⟩),σ1(⟨V0⟩)} with σi(⟨V0⟩)⊆Vi for i ∈ {0,1}. Now in BM(X), in the second
inning, Player I plays σ ′(⟨V0⟩) = σ0(⟨V0⟩), so Player II responds V1, then in 2BM(X), Player II
responds V1 = {V1,V1,σ1(⟨V0⟩),σ1(⟨V0⟩)}= {V1,σ1(⟨V0⟩)} with V1 ⊆ σ0(⟨V0⟩).

In the third inning, in 2BM(X), Player I plays

σ(⟨V0,V1⟩) = {σ0(⟨V0,V1⟩),σ1(⟨V0,V1⟩),σ0(⟨V0,σ1(⟨V0⟩)⟩),σ1(⟨V0,σ1(⟨V0⟩)⟩)}

with σi(⟨V0,V1⟩)⊆V1 and σi(⟨V0,σ1(⟨V0⟩)⟩)⊆ σ1(⟨V0⟩) for i ∈ {0,1}. Now in BM(X), in the
third inning, Player I plays σ ′(⟨V0,V1⟩) = σ0(⟨V0,V1⟩), so Player II responds V2, then in 2BM(X),
Player II responds

V2 = {V2,V2,σ1(⟨V0,V1⟩),σ1(⟨V0,V1⟩),σ0(⟨V0,V1⟩),σ0(⟨V0,V1⟩),σ1(⟨V0,V1⟩),σ1(⟨V0,V1⟩)}

with V2 ⊆ σ0(⟨V0,V1⟩), and so on.

2BM(X)
GSλ (A,k)

Player I Player II
U0

V0 = {V0,V0}
{σ0(⟨V0⟩),σ1(⟨V0⟩)}

V1 = {V1,V1,σ1(⟨V0⟩),σ1(⟨V0⟩)}
{σ0(⟨V0,V1⟩),σ1(⟨V0,V1⟩),σ0(⟨V0,σ1(⟨V0⟩)⟩),σ1(⟨V0,σ1(⟨V0⟩)⟩)}

V2 = {V2,V2,σ1(⟨V0,V1⟩),σ1(⟨V0,V1⟩),σ0(⟨V0,V1⟩),σ0(⟨V0,V1⟩),σ1(⟨V0,V1⟩),σ1(⟨V0,V1⟩)}

a
...

...
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As σ is a winning strategy for Player I, we have that
⋂

n∈ω

⋃
Vn = /0, note that

⋂
n∈ω Vn ⊆⋃

Vn = /0, then σ ′ is a winning strategy for Player I in BM(X), therefore X is not a Baire space.

BM(X)
GSλ (A,k)

Player I Player II
σ ′(⟨ ⟩) =U0

V0
σ ′(⟨V0⟩) = σ0(⟨V0⟩)

V1
σ ′(⟨V0,V1⟩) = σ0(⟨V0,V1⟩)

V2
a
...

...

Corollary 2.27. Let X be a topological space. Then X is a Baire space if and only if Player I
does not have a winning strategy in 2BM(X)

The games 2BM and BM are not equivalent, we will see later that Bernstein sets are an
example of this.
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2.2.2.3 The *-game

Let X be a non-empty perfect2Polish space with compatible complete metric d. Fix also
a basis {Vn} of non-empty open sets for X .

Given A ⊆ X , consider the following *-game G*(A). In this game Player I starts by
playing two basic open sets of diameter < 1 with disjoint closures and Player II next picks one
of them. Then Player I plays two basic open sets of diameter < 1

2 , with disjoint closures, which
are contained in the set that II picked before, and then II picks one of them, and so on. The sets
that Player II picked define a unique x. Then I wins iff x ∈ A.

G*(A)
GSλ (A,k)

Player I Player II
(U (0)

0 ,U (0)
1 )

i0
(U (1)

0 ,U (1)
1 )

i1
a
...

...

More specifically, U (n)
i are basic open sets with diam(U (n)

i )< 2−n, U (n)
0 ∩U (n)

1 = /0, in ∈ {0,1},
and U (n+1)

0 ∪U (n+1)
1 ⊆U (n)

in . Let x ∈ X be defined by {x}=
⋂

nU (n)
in . Then Player I wins iff x ∈ A.

Theorem 2.28. Let X be a non-empty perfect Polish space and A ⊆ X . Then Player I has a
winning strategy in G*(A) iff A contains a Cantor set.

Proof. (1). Let σ be a winning strategy for Player I, σ induces a Cantor scheme, as follows:

∙ Inning 0

Player I plays σ(⟨ ⟩) = (U (0),U (1)), then Player II can respond with U (0) or U (1).

∙ Inning 1

In any case, Player I plays σ(⟨U (0)⟩) = (U (00),U (01)) or σ(⟨U (1)⟩) = (U (10),U (11)), then
Player II can respond with U (00), U (01), U (10) or U (11), and so on.

2 A topological space is perfect if all its points are limit points.
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By the rules of the game, we have that for each s ∈ 2<ω ∖{ /0}, U s is open, U sa0∪U sa1 ⊆
U s, diam(U s)< 2−|s| and U sa0∩U sa1 = /0. Then {U s : s ∈ 2<ω} is a Cantor scheme 3. Also for
each x ∈ 2ω , if {px}=

⋂
n∈ω Ux�n, as σ is a winning strategy px ∈ A. Then the function

f : 2ω → A

defined as f (x) = px is injective and continuous, so A contains a Cantor set.

Now suppose that A contains a Cantor set C . We can find σ be a winning strategy for
Player I as follows :

∙ Inning 0

Let x ∈C and consider B(x)
1
2

. As C is perfect, there is y∈C ∩B(x)
1
2
∖{x}. As X is Hausdorff,

it follows that there are two basic open sets U (0)
0 and U (1)

0 of diameter < 1 with disjoint
closures, such that x∈U (0)

0 and y∈U (1)
0 . Note that U (0)

0 ∩C ̸= /0 and U (1)
0 ∩C ̸= /0. Finally

Player I plays σ(⟨ ⟩) = (U (0)
0 ,U (1)

0 ), next Player II chooses one of them, say U (0)
i0 , with

i0 ∈ {0,1}. Put x0 ∈U (0)
i0 ∩C .

∙ Inning 1

By construction C ∩U (0)
i0 ̸= /0. Let z ∈ C ∩U (0)

i0 . As C is perfect, then C ∩B(z)
1
4
∩U (0)

i0 ∖

{z} ≠ /0, let w ∈ C ∩B(z)
1
4
∩U (0)

i0 ∖{z}. Again as X is Hausdorff it follows that there are two

basic open sets U (1)
0 and U (1)

1 of diameter < 1
2 with disjoint closures, which are contained

in the set that Player II picked before. Note that C ∩U (1)
0 ̸= /0 and C ∩U (1)

1 ̸= /0. Then
Player I plays σ(⟨U (0)

i0 ⟩) = (U (1)
0 ,U (1)

1 ), next Player II chooses one of them, say U (1)
i1 . Put

x1 ∈U (1)
i1 ∩C , and so on.

We claim that σ is a winning strategy. Indeed, let x ∈ X be defined by {x} =
⋂

nU (n)
in .

Note that xn converges to x, so x ∈ C ⊆ A, then σ is a winning strategy for Player I.

3 We can define U /0 = X .



72 Chapter 2. The Banach-Mazur game

2.2.3 An undetermined space

Remember that a topological space X is an undetermined space if the Banach-Mazur
gamed played on X is undetermined.

2.2.3.1 Bernstein sets

In (BERNSTEIN, 1907) Felix Bernstein utilizes the method of transfinite recursion and
defines a subset B of R such that both sets B and R∖B meet every nonempty perfect set in R; so
both B and R∖B turn out to be non-measurable with respect to the Lebesgue measure. The above
mentioned construction is based on appropriate uncountable forms of the Axiom of Choice,
which were radically rejected by Lebesgue in that time. Namely, Bernstein utilizes the fact that
there exists a well ordering of the family of all uncountable closed subsets of R.

Our goal here is to show that Bernstein sets are Baire spaces but not Choquet, and hence
are spaces in which the Banach-Mazur game is undetermined.

Definition 2.29. Let B ⊆ R we say that B is a Bernstein set if for all uncountable closed set
F ⊆ R, we have that F ∩B ̸= /0 and F ∩R∖B ̸= /0.

Note that if B is a Bernstein set then R∖B is a Bernstein set.

Proposition 2.30. A set B is a Bernstein set if neither B nor its complement R∖B contains any
nonempty perfect set. In other words a set B is a Bernstein subset of R if for every non-empty
perfect set P⊆ R both sets P∩B,P∩ (R∖B) are non-empty.

Proposition 2.31. Let B⊆ R a Bernstein set. Then:

(i) B has no isolated points.

(ii) B is a dense subset of R.

Proof. (i) Suppose otherwise, that is, there are x ∈ B ∖B′ and ε > 0 such that B(x)
ε ∩B = {x}.

Then /0 ̸= B(x)
ε

2
∩ (R∖B) = /0, contradiction.

(ii) Let x ∈ R and ε > 0, then /0 ̸= B∩B(x)
ε

2
⊆ B∩B(x)

ε .

As we mentioned earlier the objective is to demonstrate that the Bernstein set is an
undeterminated space for the Banach-Mazur game. For this, we will use the Cantor game. Before
starting, let us remember the following fact of the topology of the real line.

Lemma 2.32. Let ⟨Kn : n ∈ ω⟩ be a sequence of non-empty compact sets in R such that
K0 ⊇ K1 ⊇ K2 ⊇ ·· · . Then

⋂
n∈ω Kn ̸= /0.

Theorem 2.33. Let B⊆ R be a Bernstein set. Then Player II has a winning strategy in 2BM(X).
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Proof. Let B be a Bernstein set, we are going to build a winning strategy δ for Player II in
2BM(X). Indeed,

In the first inning, Player I plays U/0 = A0∩B where A0 ⊆ R is a non-empty open set, let

a0 ∈ A0∩B, in particular there is r > 0 such that B(a0)
r ⊆ A0. Note that /0 ̸= B(a0)

r ∩ (R∖B), let

b0 ∈ B(a0)
r ∩ (R∖B). Then choose two non-empty open subsets V0,V1 such that

∙ V0,V1 ⊆ B(a0)
r ,

∙ V0∩V1 = /0

∙ diam(V0),diam(V1)≤ r
2 and

Then Player II responds δ (⟨{U/0}⟩) = {V0∩B,V1∩B} and consider V0 =
⋃

δ (⟨U/0⟩) and W0 =

V0∪V1.

In the second inning, Player I plays {U0,U1} with U0 ⊆V0∩B and U1 ⊆V1∩B. For each

i ∈ {0,1}, as in the previous case, let ai1 ∈Ui and choose ri1 <
r

22 with ai1 ∈ B(ai1)
ri1 ⊆Vi and let

bi1 ∈ B(ai1)
ri1 ∩ (R∖B). Then choose four non-empty open subsets V00,V01,V10,V11 such that

∙ V00,V01 ⊆V0 and V10,V11 ⊆V1

∙ {V00,V01,V10,V11} is a disjoint pairwise family and

∙ diam(V00),diam(V01),diam(V10),diam(V11)≤ r
22 .

Then Player II responds δ (⟨{U/0},{U0,U1}⟩) = {V00∩B,V01∩B,V10∩B,V11∩B} and consider
V1 =

⋃
δ (⟨{U/0},{U0,U1}⟩) and W1 =V00∪V01∪V10∪V11.

In the inning n ∈ ω , if Player I plays {Us : s ∈ 2<ω , |s|= n−1}. Suppose defined rs,as

and bs for s ∈ 2<ω with |s|= n−1. Then, as before, let rsan <
r

2n , asa0,asa1 and bsa0,bsa1. Then
choose an open family {Vsa0,Vsa1 : |s|= n−1} such that

∙ Vsai ⊆Vs for i ∈ {0,1};

∙ {Vsa0,Vsa1 : |s|= n−1} is a pairwise disjoint family;

∙ diam(Vsa0),diam(Vsa1)≤ r
2n .

Then Player II responds δ (⟨{U/0},{U0,U1}, · · · ,{Us : s ∈ 2<ω , |s|= n−1}⟩) = {Vsa0∩
B,Vsa1 ∩ B : |s| = n− 1} and consider Vn−1 =

⋃
δ (⟨{U/0},{U0,U1}, · · · ,{Us : s ∈ 2<ω , |s| =

n−1}⟩) and Wn−1 =
⋃
{Vsa0,Vsa1 : |s|= n−1}.

Note that, for each n ∈ ω , we have that Wn ⊆ R is a compact and Wn+1 ⊆Wn. Also, by
construction, Wn ⊆ Vn.
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Claim 2.33.14.
⋂

n∈ω Wn is closed and uncountable.

Proof. Let f ∈ 2ω . Define D f =
⋂

n∈ω Vf |n ⊆
⋂

n∈ω Wn. By Lemma 2.32, /0 ̸=D f . As diam(Vf |n)≤
r

2n , so D f = {x f }. Finally, define g : 2ω →
⋂

n∈ω Wn by g( f ) = x f and note that g is injective.

Then there exist x∈
⋂

n∈ω Wn∩B, in particular x∈Wn∩B⊆ Vn. Therefore δ is a winning
strategy for Player II in 2BM(X).

Corollary 2.34. Let B⊆R be a Bernstein set. Then Player I has no winning strategy in 2BM(X).
In particular, B is a Baire space.

Proof. By Theorem 2.33, Player II has a winning strategy in 2BM(B). Therefore Player I has no
winning strategy in 2BM(B). So by Corollary 2.27, Player I has no winning strategy in BM(B).
Then by Theorem 2.7, B is a Baire space.

Proposition 2.35. Let B ⊆ R be a Bernstein set. Then Player II has no winning strategy in
BM(X).

Proof. Suppose otherwise, that is, Player II has a winning strategy in BM(B). As B has no
isolated points, by Theorem 2.21, there is a set C ⊆ B homeomorphic to the Cantor set, in
particular C is closed. Note that C∩ (R ∖B) = /0, but as B is a Bernstein set, C∩ (R ∖B) ̸= /0,
contradiction.

Corollary 2.36. The Banach-Mazur game is undetermined when is played in a Bernstein set in
the real line.
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CHAPTER

3
PRODUCTS OF BAIRE SPACES

In this section we will study the problem of when the product of two spaces is Baire. We
will start with examples of Baire spaces whose product is not Baire. Then we will give conditions
on the spaces to make his product a Baire space.

3.1 Counterexamples

3.1.1 Two Baire spaces whose product is not Baire. An example in
ZFC with forcing.

In this first section we present the article (COHEN, 1976), in which it is shown, using
forcing, that in ZFC, there are two Baire spaces whose product is not a Baire space.

Let P = ⟨P,≤⟩ be a p.o. set. Two elements p and q of it are called compatible if there is
an r ∈P such that r ≤ p and r ≤ q; otherwise they are called incompatible. A subset D of P is
said to be dense in P if for each p ∈ P there is a d ∈ D such that d ≤ p.

Remember that a partially ordered set P = ⟨P,≤⟩ is a forcing if for each p,q ∈P such
that q ̸≤ p, there exists p′ ≤ q such that p′, p are incompatible.

We define on P a topology τ≤ by declaring each set {q : q≤ p} to be open. Note that if
the space is derived from a p.o. set as above, then any such countable intersection of open sets is
necessarily open.

Furthermore if A⊆ P then in this topology

(a) x ∈ int(A) iff ↓ x = {y ∈ P : y≤ x} ⊆ A

(b) x ∈ A iff ↓ x∩A ̸= /0

(c) A is dense in P iff (∀x ∈ P)[↓ x∩A ̸= /0]
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Now let M be any model and P any p.o. set in M , let G be an M -generic subset of
P , and M [G] the corresponding generic extension of M .

The most important connection between forcing and topology is as follows:

Lemma 3.1. (P,τ≤) is a Baire space if and only if for every M -generic subset G of P no new
ω-sequences of ordinals occur in M [G].

Proof. First, suppose that (P,τ≤) is a Baire space, and let f ∈M [G] with dom f = ω , whose
values are ordinals, as the formula f : ω → Ord is a function in M [G] is satisfied, then by
Theorem 1.94, there exists p′ ∈ G such that p′ forces it. For every n ∈ ω consider the set
Dn = {p ∈ P : (∃α ∈ Ord)(p 
 “ f (ň) = α̌ ′′)}.

Claim 3.1.15. For each n ∈ ω , Dn is open and dense below p′.

Proof. Let q ≤ p′, σ and q′ ≤ q such that q′ 
 f (n) = σ , as q′ ≤ p′, q′ 
 σ is an ordinal , so
there is a q′′ ≤ q such that q′′ 
 σ = α .

As {q : q≤ p′} is open, then it is a Baire space, so
⋂

n∈ω Dn is dense below p′. By Lemma
1.96, it follows that

⋂
n∈ω Dn is dense in P. Then G∩

⋂
n∈ω Dn ̸= /0, so let p ∈G∩

⋂
n∈ω Dn, then

for every n ∈ ω , there is an αn ∈ Ord such that p 
 “ f (ň) = α̌n
′′. Finally define ϕ(n) = αn, note

that ϕ ∈M , and p 
 “ f = ϕ̌ ′′, so f ∈M .

Now, suposse that (P,τ≤) is not a Baire space. Then there exists a sequence of open
dense subsets {Dn : n ∈ ω} and q0 ∈ P such that

⋂
n∈ω Dn∩{q : q≤ q0}= /0. For each n ∈ ω ,

there exists In = {rn
α : α < kn} be a maximal family of pairwise incompatible contained in Dn,

consider D′n = {p : (∃α < kn)(p ≤ rn
α)}, as Dn is open, we have that D′n ⊆ Dn. Also note that

D′n is open and dense. Indeed, let p ∈ P then there is a dn ∈ Dn such that dn ≤ p, note that there
is a rn

α compatible with dn, otherwise we would have a contradiction with the maximality of In,
so there is a r ∈ P such that r ≤ rn

α and r ≤ dn, so r ∈ D′n and r ≤ p, therefore D′n is open and
dense. Then

⋂
n∈ω D′n∩{q : q≤ q0} ⊆

⋂
n∈ω Dn∩{q : q≤ q0}= /0. For each n ∈ ω , consider In

and {α : α < kn}, by Lemma 1.98, there is a t ∈M B such that rn
α 
 “t = α ′′, for all α ∈ kn, that

is, rn
α 
 t(ň) = α̌ . By hypothesis, {q : q decides t(n) for all n ∈ ω} is dense, so there is q1 ≤ q0

such that q1 decides t(n) for all n ∈ ω , that is, q1 forces that t(n) is an ordinal. Then there is
n0 ∈ ω such that q1 ̸∈D′n0

, also there is α < kn0 such that q1 
 t(ň0) = α , so q1 ̸≤ rn0
α . Therefore

there is a r ≤ q1 such that r is incompatible with rn0
α , so there is a β such that rn0

β
is compatible

with r, because otherwise this would be a contradiction with the maximality of In. Therefore
there is a s≤ r,rn0

β
such that s 
 t(n0) = α and s 
 t(n0) = β , contradiction.
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3.1.1.1 The construction

We begin this part with the following facts of stationary sets of ω1 and product forcing.

Proposition 3.2. The intersection of countably many club sets is a club set.

Lemma 3.3 (Banach). There are two disjoint stationary subsets of ω1.

Proof. Let {xα : α < ω1} be a set of irrationals, where xα ̸= xβ for distinct α,β < ω1. For each
rational q, let Sq(0) = {α ∈ ω1 : xα < q} and Sq(1) = {α ∈ ω1 : xα > q}.

Suppose that for all q ∈Q, there is iq ∈ {0,1} such that Sq(iq) contains a club in ω1.

Then, by Proposition 3.2,
C =

⋂
q∈Q

Sq(iq)

contains a club, so C is uncountable, while |C| ≤ 1, contradiction.

Therefore, there is a q∈Q such that Sq(0) and Sq(1) do not contain any club. In particular,
Sq(0) and Sq(1) are disjoint stationary sets.

Now from a stationary set S of ω1 we construct a p.o. set PS of conditions:

∙ a condition p ∈PS is a countable subset of S that is closed in the order topology of ω1. In
particular each member p of PS has a maximum.

PS = {p⊆ S : |p| ≤ℵ0 and p is closed in ω1}

∙ If p,q ∈PS, then
p≤ q iff q⊆ p and (p∖q)∩

⋃
q = /0,

which is equivalent to the fact that α > β for all α ∈ p∖q and β ∈ q.

Claim 3.3.16. PS is a forcing.

Proof. Let p,q ∈PS and suppose that q ̸≤ p. Then p ̸⊆ q or (q ∖ p)∩
⋃

p ̸= /0. Choose β ∈
S∖
⋃
(p∪q) this is possible because S is stationary.

In the first case, let α ∈ p∖q. Consider r = q∪{β}. Note that r ≤ q. Suppose that r and
p are compatible. Then there is a s ∈PS such that s ≤ r, p. Note that α < β ≤

⋃
r therefore,

α ∈ (s∖ r)∩
⋃

r = /0, contradiction. Then r are p are not compatible.

In the second case, let α ∈ (q∖ p)∩
⋃

p. We claim that q and p are incompatible. Indeed,
suposse otherwise, there is a s≤ p,q. Note that α ∈ (s∖ p)∩

⋃
p, contradiction.



78 Chapter 3. Products of Baire spaces

Claim 3.3.17. In any generic extension M [G] by means of an M -generic subset G of PS no
new sequences of ordinals appear.

Proof. Let t be a function in M [G] from ω to Ord then there is a p ∈ G such that p 
 t : ω →
Ord is a function. In order to finish the proof we need only show that there is a q≤ p such that
q 
 t(n) for all n ∈ ω .

We define by induction Rα and ηα as follows :

1. {ηα : α < ω1} is a continuous1 increasing sequence of countable ordinals.

2. {Rα : α < ω1} is a continuous increasing sequence of countable subsets of PS.

3. Rα ⊆ {r ∈PS : r ⊆ ηα ∧ r ≤ p}

4. (∀r ∈ Rα)(∀n ∈ ω)(∃s ∈ Rα+1)[s < r∧ s⊆ ηα ∧ s decides t(n)]

Now, consider C = {ηα : α is a limit ordinal}. Note that C is a club in ω1. Indeed, as
|C| = ω1, we have that C is unbounded. Now, let ηα0 < ηα1 < · · · < ηαξ

< · · ·(ξ < γ) be a
sequence of elements of C, of length γ < ω1, then sup{ηαξ

: ξ < γ}=
⋃

ξ<γ ηαξ
= ηsup{αξ :ξ<γ}.

Then there is a limit ordinal α < ω1 such that ηα ∈C∩S. As α < ω1 is a limit ordinal, there is
an strictly increasing sequence ⟨αn : n ∈ ω⟩ which converges to α .

Now, let r0 ∈ Rα0 . By Condition 4, there is s0 ∈ Rα0+1 such that s0 < r0, s0 ⊆ ηα0 and
s0 
 t(0). As α0 +1≤ α1, we have that s0 ∈ Rα1 , so there is a s1 ∈ Rα1+1 such that s1 < s0 and
s1 
 t(1), and so on. Then we have a decreasing sequence ⟨sn : n ∈ ω⟩ such that sn ∈ Rαn+1,
sn ⊆ ηαn and sn 
 t(n).

Consider q = {ηα}∪
⋃
{sn : n ∈ ω}. Note that q≤ sn, for all n ∈ ω . Indeed, let n ∈ ω

and suppose that there is a x ∈ (q ∖ sn)∩
⋃

sn. In particular, there is an a ∈ sn such that x ∈ a.
Then x = ηα , or there is a N ∈ ω such that x ∈ sN . In the first case, by construction it follows
that a ∈ ηαn , so ηα = x < a < ηαn ≤ ηα , contradiction. In the other case, note that n ≤ N, in
particular sN ∖ sn∩

⋃
sn = /0, so x ̸∈

⋃
sn, contradiction. Then q≤ sn, for all n ∈ ω . Therefore q

decides t(n) for every n ∈ ω , then t ∈M .

Therefore PS is a Baire space. Also we have that:

Claim 3.3.18. In M [G] the set S contains an uncountable closed subset.

Proof. Indeed, our candidate is
⋃

G ∈M [G]. We have that:

1 A sequence of ordinals ⟨γα : α ∈ Ord⟩ is continuous, if for every limit α , γα = sup{γξ : ξ < α}
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∙
⋃

G ⊆ S. For this, let x ∈
⋃

G, there is a g ∈ G such that x ∈ g, as G ⊆PS, g ∈PS, so
x ∈ S.

∙
⋃

G is unbounded. For this, note that for each α < ω1, the set {p ∈PS : max p > α} is
dense. Indeed, let s ∈PS, if maxs < α +1, consider p = s∪{α +1}, so p≤ s. Finally let
α < ω1, as {p : max p > α} is dense, there is a x∈G∩{p : max p > α}, so α < maxx∈ x.
Then

⋃
G is unbounded, so it is uncountable.

∙
⋃

G is closed. Indeed, let β ∈
⋃

G. Then there is a x∈↓ β ∩
⋃

G, so there exists p∈G⊆PS

such that x ∈↓ β ∩ p, so β ∈ p. As p is closed, β ∈ p. Then β ∈
⋃

G.

Thus, in the generic extension by means of PS no new ω-sequences of ordinals appear,
but a new uncountable subset of ω1 contained in S occurs.

By Lemma 3.3, take two disjoint stationary subsets S1 and S2 in ω1 and we have two p.o
sets PS1 and PS2 defined like PS above. Then

Claim 3.3.19. PS1×PS2 is not Baire.

Proof. Suppose that PS1×PS2 is Baire in M . By Lemma 1.100, let G = G1×G2 be a PS1×
PS2-generic over M , where G1 ⊆PS1 is PS1-generic over M and G2 ⊆PS2 is PS2-generic
over M [G1], also G1 is PS1-generic over M [G2] and M [G] = (M [G2])[G1] = (M [G1])[G2].
We know that PS1 and PS2 are Baire spaces in M . As G1 is PS1-generic over M , by Lemma
1.101, PS2 is Baire in M [G1]. As G2 is PS2-generic over M [G1], we have that no new sequences
of ordinals appear in (M [G1])[G2]. Also in M [G1] we have that there is a closed uncountable
set A1 contained in S1, therefore A1 is closed uncountable in (M [G1])[G2]. Indeed,

∙ A1 is closed in (M [G1])[G2]. Otherwise, there is a x ∈ A1 ∖A1. As ω1 is first countable,
there is a ⟨γn : n ∈ ω⟩ ⊆ A1 such that γn→ x. Note that ⟨γn : n ∈ ω⟩,x ∈M [G1] therefore
x ∈ A1, because A1 is closed in M [G1]. Contradiction.

∙ A1 is uncountable in (M [G1])[G2]. Otherwise, there is an injection f : ω → A1, so
f ∈M [G1] and A1 ∈M [G1]. Then A1 is countable in M [G1], contradiction.

Also PS2×PS1 is Baire, similarly as before there exists a closed uncountable A2 ⊆ S2

in (M [G2])[G1]. Then in (M [G1])[G2] we have that there are closed uncountable sets A1 ⊆ S1

and A2 ⊆ S2. By Proposition 3.2, A1 ∩A2 is a club, in particular /0 ̸= A1 ∩A2 ⊆ S1 ∩ S2 = /0,
contradiction.

Finally collecting all of the above we have the following

Theorem 3.4 (Cohen). There are two Baire spaces whose product is not a Baire space.
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3.1.2 Two metric Baire spaces whose product is not Baire.

Assuming that there are two Baire topological spaces whose product is not Baire, Krom
showed that there are two Baire metric spaces whose product is also not Baire. For this Krom
associated a ultrametric space with a topological space. Unlike the previous example we will use
the Banach-Mazur game to demonstrate the basic properties of this new metric space. In this
part we study the article (KROM, 1974).

3.1.2.1 The Krom space

Definition 3.5. For any sets S,T and for n ∈ ω ∖{0} let TS be the set of all functions from S

into T and let Tn be the set of all functions from {0, ...,n− 1} into T . For a set S of sets and
n ∈ (ω ∖{0})∪{ω} let

↓ Sn = {σ ∈ Sn | σ(h)⊆ σ(h−1) for all 0 < h < n}

Definition 3.6 (Krom space). For any topological space X and base B for X such that /0 /∈B,
the associated countable sequence space K (X) is defined by

KB(X) =

{
σ ∈ ↓ Bω :

⋂
n∈ω

σ(n) ̸= /0

}
,

and the topology is that given by the Baire metric, for σ ̸= ρ the distance d(σ ,ρ) = 1
n+1 where

n is the least integer in {h ∈ ω : σ(h) ̸= ρ(h)}.

Let X ,B and K (X) be as indicated. For any σ ∈K (X) ⊆ ↓ Bω and n ∈ ω ∖ {0} let
Bn(σ) = {ρ ∈K (X) : σ �n= ρ �n}, consider B* = {Bn(σ) : σ ∈K (X),n ∈ ω ∖ {0}}. Note
that B* is a base for K (X).

Put differently, a base for K (X) is the family of all sets [ f ], f ∈
⋃

n∈N ↓ Bn where, if
n < ω and f ∈↓ Bn , then

[ f ] = {g ∈K (X) : g �n= f}.

Proposition 3.7. B̃ = {[ f ] : f ∈
⋃

n∈N ↓ Bn } is a base for K (X).

Proof. Note that each member of B̃ is an open set in K (X). Now, if U is an open subset of
K (X) and ρ ∈U , then there exists r > 0 such that B(ρ)

r ⊆U . By the Archimedean property,
there is a n0 ∈ ω such that 1

n0+1 < r; then [ρ �n0]⊆ B(ρ)
r ⊆U .

Corollary 3.8. Let X be a topological space with a countable base B. Then K (X) is a second
countable metric space.

Proof. It follows from
⋃

n∈N ↓ Bn ⊆
⋃

n∈N Bn = B<ω and |B<ω |= |B|= ω .

Now we will see an application of the Banach-Mazur game and the Krom space.
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Theorem 3.9 (Krom). For any topological spaces X ,Y and any base B for X , X×Y is a Baire
space if and only if K (X)×Y is a Baire space where K (X) is the countable sequence space
associated with X and B.

Proof. Assume that X×Y is not Baire, then I ↑ BM(X×Y ); call σ this strategy. We will build a
winning strategy σ ′ for Player I in BM(K (X)×Y ). Indeed,

∙ Inning 0

In BM(X×Y ), Player I plays σ(⟨ ⟩) = A0×B0. Then, in BM(K (X)×Y ), Player I plays
σ ′(⟨ ⟩) = [⟨A0⟩]×B0, where σ0 = ⟨A0⟩ ∈↓ B1 . Next Player II responds [δ0]×V0, with
δ0 ∈↓ Bn0 and σ0 ⊆ δ0, so Player II plays δ0(n0−1)×V0.

∙ Inning 1

Player I plays σ(⟨δ0(n0−1)×V0⟩) = A1×B1. Then in BM(K (X)×Y ), Player I plays
σ ′(⟨[δ0]×V0⟩) = [σ1]×B1, where σ1 = δ0

_A1 ∈↓ Bn0+1 . So Player II responds [δ1]×V1,
with δ1 ∈↓ Bn1 and σ1 ⊆ δ1, also we can suppose that n1−1≥ n0. Then in BM(X ×Y ),
Player II plays δ1(n1−1)×V1.

∙ Inning 2

Player I plays σ(⟨δ0(n0−1)×V0,δ0(n1−1)×V1⟩) = A2×B2. Then in BM(K (X)×Y ),
Player I plays σ ′(⟨[δ0]×V0, [δ1]×V1⟩) = [σ2]×B2, where σ2 = δ1

aA2 ∈↓ Bn1+1 . So
Player II responds [δ2]×V2, with δ2 ∈↓ Bn2 and σ2 ⊆ δ2. Again we can suppose that
n2−1≥ n1. Then in BM(X×Y ), Player II plays δ2(n2−1)×V2, and so on.

BM(X×Y )
GSλ (A,k)

Player I Player II
σ(⟨ ⟩) = A0×B0

δ0(n0−1)×V0
A1×B1

δ1(n1−1)×V1
A2×B2

δ2(n2−1)×V2
...

...

BM(K (X)×Y )
GSλ (A,k)

Player I Player II
σ ′(⟨ ⟩) = [σ0]×B0

[δ0]×V0
[σ1]×B1

[δ1]×V1
[σ2]×B2

[δ2]×V2
...

...
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Claim 3.9.20.
⋂

k∈ω [δk]×Vk = /0

Proof. Suppose otherwise, that is, there exists (h,y) ∈ [δk]×Vk,∀k ∈ ω . In particular h ∈⋂
k∈ω [δk]. Now let us see what happens in X ×Y . As σ is a winning strategy, we have that⋂
k∈ω δk(nk− 1)×Vk = /0. As h ∈K (X), we have that

⋂
k∈ω h(k) ̸= /0. Put x ∈ h(k),∀k ∈ ω .

In particular, for each k ∈ ω , δk ⊆ h and therefore x ∈ h(nk− 1) = δk(nk− 1), then (x,y) ∈⋂
k∈ω δk(nk−1)×Vk, contradiction.

Then σ ′ is a winning strategy for Player I in the game BM(K (X)×Y ), therefore
K (X)×Y is not a Baire space.

Now assume that K (X)×Y is not a Baire space, so I ↑ BM(K (X)×Y ). Let be σ ′ be a
winning strategy for Player I in BM(K (X)×Y ). We build a winning strategy σ for Player I in
BM(X×Y ). Indeed,

∙ Inning 0

In BM(K (X)×Y ), Player I plays σ ′(⟨ ⟩) = [σ0]×B0, with σ0 ∈↓ Bn0 . Then, in BM(X×
Y ), Player I plays σ(⟨ ⟩) = σ0(n0−1)×B0. Next Player II responds W0×V0, so Player II
plays [δ0]×V0, where δ0 = σ0

aW0 ∈↓ Bn0+1 .

∙ Inning 1

Player I plays σ ′(⟨[δ0]×V0⟩) = [σ1]×B1, with σ1 ∈↓ Bn1 . Note that we can suppose that
n1− 1 ≥ n0. Then in BM(X ×Y ), Player I plays σ(⟨W0×V0⟩) = σ1(n1− 1)×B1. Next
Player II plays W1×B1. Then Player II plays [δ1]×V1, where δ1 = σ1

aW1 ↓ Bn1+1 .

∙ Inning 2

Player I plays σ ′(⟨[δ0]×V0, [δ1]×V1⟩) = [σ2]×B2, with σ2 ∈↓ Bn2 . Again we can suppose
that n2− 1 ≥ n1. Then in BM(X ×Y ), Player I plays σ(⟨W0×V0,W1×V1⟩) = σ2(n2−
1)×B2. Next, Player II plays W2×B2. Then Player II plays [δ2]×V2, where δ2 = σ2

aW2 ↓
Bn2+1 , and so on.

BM(K (X)×Y )
GSλ (A,k)

Player I Player II
σ ′(⟨ ⟩) = [σ0]×B0

[δ0]×V0
[σ1]×B1

[δ1]×V1
[σ2]×B2

[δ2]×V2
...

...

BM(X×Y )
GSλ (A,k)

Player I Player II
σ(⟨ ⟩) = σ0(n0−1)×B0

W0×V0
σ1(n1−1)×B1

W1×V1
σ2(n2−1)×B2

W2×V2
...

...
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Claim 3.9.21.
⋂

k∈ω Wk×Vk = /0

Proof. Suppose otherwise, that is, there exists (x,y) ∈Wk×Vk,∀k ∈ ω . Define ρ =
⋃

k∈ω σk.
Note that ρ ∈K (X)⊆↓ Bω , because x ∈

⋂
k∈ω Wk. Then (ρ,y) ∈

⋂
k∈ω [δk]×Vk, and this is a

contradiction.

Therefore σ ′ is a winning strategy for Player I in BM(X×Y ), therefore X×Y is a Baire
space.

Corollary 3.10. Any topological space is a Baire space if and only if all of its associated
countable sequence spaces are Baire.

Proof. Consider the trivial one element space Y = {y} in the Theorem 3.9.

Corollary 3.11. Let X be a topological space and let K (X) be an associated countable sequence
space. Then I ↑ BM(X) if and only if I ↑ BM(K (X)).

Proposition 3.12. Let X be a topological space with base B and K (X) its associated Krom
space. Then II ↑ BM(X) if and only if II ↑ BM(K (X)).

Proof. Let δ be a winning strategy for Player II in BM(X). We are going to build a winning
strategy δ ′ for Player II in BM(K (X)). Indeed,

∙ Inning 0

In BM(K (X)), Player I plays [σ0], with σ0 ∈↓ Bn0 . Then, in BM(X), Player I plays
σ0(n0−1). Next Player II responds δ (⟨σ0(n0−1)⟩) =V0, so Player II plays δ ′(⟨[σ0]⟩) =
[σ0
aV0].

∙ Inning 1

Player I plays [σ1], with σ1 ∈↓ Bn1 , with σ0
aV0⊆σ1. Also we can suppose that n1−1≥ n0.

Then in BM(X), Player I plays σ1(n1−1). Next Player II responds δ (⟨σ0(n0−1),σ1(n1−
1)⟩) =V1. Then in BM(K (X)), Player II plays δ ′(⟨[σ0], [σ1]⟩) = [σ1

aV1].

∙ Inning 2

Player I plays [σ2], with σ2 ∈↓ Bn2 , with σ1
aV1 ⊆ σ2 and again we can suppose that

n2−1≥ n1. Then in BM(X), Player I plays σ2(n2−1). Next Player II responds δ (⟨σ0(n0−
1),σ1(n1−1),σ2(n2−1)⟩)=V2. Then in BM(K (X)), Player II plays δ ′(⟨[σ0], [σ1], [σ2]⟩)=
[σ2
aV2], and so on.
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BM(X)

GSλ (A,k)
Player I Player II

σ0(n0−1)
δ (⟨σ0(n0−1)⟩) =V0

σ1(n1−1)
V1

σ2(n2−1)
V2

...
...

BM(K (X))

GSλ (A,k)
Player I Player II
[σ0]

δ ′(⟨[σ0]⟩) = [σ0
aV0]

[σ1]
[σ1
aV1]

[σ2]
[σ2
aV2]

...
...

As δ is a winning strategy for Player II then
⋂

k∈ω Vk ̸= /0. Choose x ∈
⋂

k∈ω Vk. Consider
ρ =

⋃
k∈ω σk

aVk. Note that ρ ∈K (X), because x ∈
⋂

k∈ω Vk. Then
⋂

k∈ω [σk
aVk] ̸= /0. Then δ ′

is a winning strategy for Player II in the game BM(K (X)).

Now assume that Player II has a winning strategy δ ′ in the game BM(K (X)). We build
a winning strategy δ for Player II in BM(X). Indeed,

∙ Inning 0, in BM(X), Player I plays A0 ∈B; then, in BM(K (X)), Player I plays [⟨A0⟩].
Next Player II responds δ ′(⟨[⟨A0⟩]⟩) = [δ0], with δ0 ∈↓ Bn0 and ⟨A0⟩ ⊆ δ0. Then Player II
plays δ (⟨A0⟩) = δ0(n0−1).

∙ Inning 1, Player I plays A1 ∈ B. Then, in BM(K (X)), Player I plays [δ0
aA1]. Next

Player II responds δ ′(⟨[⟨A0⟩], [δ0
aA1]⟩) = [δ1], with δ1 ∈↓ Bn1 and δ0

aA1 ⊆ δ1. Note that
we can suppose n1−1≥ n0. Then Player II plays δ (⟨A0,A1⟩) = δ1(n1−1).

∙ Inning 2, then Player I plays A2 ∈B so, in BM(K (X)), Player I plays [δ1
aA2]. Next

Player II responds δ ′(⟨[⟨A0⟩], [δ0
aA1], [δ1

aA2]⟩) = [δ2], with δ2 ∈↓ Bn2 and δ1
aA2 ⊆ δ2,

note that we can suppose n2−1≥ n1. Then Player II plays δ (⟨A0,A1,A2⟩) = δ2(n2−1),
and so on.

BM(K (X))

GSλ (A,k)
Player I Player II
[⟨A0⟩]

δ ′(⟨[⟨A0⟩]⟩) = [δ0]
[δ0
aA1]

[δ1]
[δ1
aA2]

[δ2]
...

...

BM(X)

GSλ (A,k)
Player I Player II

A0
δ (⟨A0⟩) = δ0(n0−1)

A1
δ1(n1−1)

A2
δ2(n2−1)

...
...
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Again as σ ′ is a winning strategy for Player II in BM(K (X)). Then
⋂

k∈ω [δk] ̸= /0.
Choose f ∈ [δk],∀k ∈ ω . In particular, there exists x ∈

⋂
k∈ω f (k). Also note that for each k ∈ ω ,

x ∈ f (nk−1) = δk(nk−1). Then x ∈
⋂

k δk(nk−1), therefore σ is a winning strategy for Player
II in the game BM(K (X)).

In other words,

Corollary 3.13. Let X be a topological space with base B and K (X) its associated Krom space.
Then the games BM(K (X)) and BM(X) are equivalents.

Corollary 3.14. Let X be a topological space. The following are equivalent:

(a) X is productively Baire;

(b) for each base B for X , its associated Krom space KB(X) is Baire;

(c) there exists a base B for X such that its associated Krom space KB(X) is Baire.

Finally we present the result of Krom, commented at the beginning of this section.

Theorem 3.15. There are two ultrametric Baire spaces such that their Cartesian product is not a
Baire space.

Proof. By Cohen’s Theorem (Theorem 3.4) there are two Baire spaces X ,Y such that X ×Y

is not Baire. For each of these spaces we associate respective Krom spaces K (X) and K (Y ).
Then, by Theorem 3.9, we have that K (X)×Y is not a Baire. Again by Theorem 3.9, we have
that K (X)×K (Y ) is not a Baire space.
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3.1.2.2 A counterexample with Cωc
+

Finally we present an example of a Baire space whose square is not a Baire space. This
example appears in the article (FLEISSNER; KUNEN, 1978). Also for this part we follow the
notation and results of the Section 1.2.1.

Remember that Cωc
+ is the subset of c+ of ordinals of cofinality ω . Also, as c+ is a

regular uncountable cardinal, then Cωc
+ is stationary. So by Solovay’s theorem (Theorem 1.74),

Cωc
+ can be split into many c+ many mutually disjoint stationary subsets of c+.

So let {Aχ : χ ∈ 2ω} be mutually disjoint stationary subsets of Cωc
+. Let M = 2ω ×

(c+)ω . Our space is
Y = {⟨χ, f ⟩ ∈M : f * ∈ Aχ}

Proposition 3.16. Y is a Baire space.

Proof. Let D = {Di : i ∈ ω} be a family of dense open sets of M and let V be a non-empty open
set of M. Let

W = { f * : ⟨χ, f ⟩ ∈V ∩
⋂

D}.

Claim 3.16.22. W is a stationary set in c+.

Proof. Let C be a club in c+. As V is a non-empty open set of M, there is a basic2open
set B0 := Ns0 ×Nt0 ⊆ V , where s0 ∈ 2<ω and t0 ∈ (c+)<ω . Define s1 = s0

_(s0)
* ∈ 2<ω and

t1 = t0_a0 ∈ (c+)<ω , where a0 = min{x ∈C : x > t0*}. Then define B1 := Ns1×Nt1 ⊆ B0. Also
D0∩B1 is a non-empty open set of M, then choose B2 := Ns2×Nt2 ⊆ D0∩B1 with s1 ⊆ s2 and
t1 ⊆ t2. Define s3 = s2

_(s2)
* ∈ 2<ω and t3 = t2_a2 ∈ (c+)<ω , where a2 = min{x ∈C : x > t2*},

then define B3 := Ns3×Nt3 ⊆ B2, and so on. Note that (Bn)n∈ω is a decreasing sequence of non-
empty open sets, such that B0 ⊆V and B2n+2 ⊆ Dn, for all n ∈ ω . Note that x :=

⋃
n∈ω sn ∈ 2ω

and f :=
⋃

n∈ω tn ∈ Jc+ . Also f * = sup{a2n : n ∈ ω} ∈ C, because C is closed in c+. Then
⟨x, f ⟩ ∈

⋂
n∈ω Bn ⊆V ∩

⋂
D , so f * ∈C∩W .

Now for ⟨χ, f ⟩ ∈M, h : ω → ω , and i ∈ ω , let B(χ, f ,h, i) be the ball of radius 2−h(i)

around ⟨χ, f ⟩. Explicity,

B(χ, f ,h, i) = {⟨χ ′, f ′⟩ ∈M : χ � h(i) = χ
′ � h(i), f � h(i) = f ′ � h(i)}.

Let
Wχh = { f * : f ∈ Kχh},

where

Kχh = { f ∈ Jc+ : B(χ, f ,h, i)⊆ Di∩V for all i ∈ ω}.

2 Remember that the standard basis for the topology of Aω consists of the sets Ns = {x ∈ A<ω : s⊆ x},
where s ∈ A<ω and A is endowed with the discrete topology.
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Claim 3.16.23. We have the following properties:

(a.) W =
⋃
{Wχh : χ ∈ J2,h ∈ ωω};

(b.) Kχh is closed in Jc+;

(c.) There are χ ∈ J2 and h ∈ ωω such that Wχh is a stationary set.

Proof. (a.) Note that
⋃
{Wχh : χ ∈ J2,h ∈ ωω} ⊆W .

On the other hand, let f * ∈W , so ⟨χ, f ⟩ ∈ V ∩
⋂

D . Let i ∈ ω . By definition ⟨χ, f ⟩ ∈
V ∩Di. As V ∩Di is non-empty open set, then there are si ∈ 2<ω and ti ∈ c+

<ω such that
⟨χ, f ⟩ ∈ Nsi×Nti ⊆V ∩Di.

Define h : ω → ω as h(i) = max{dom(si),dom(ti)}. Note that B(χ, f ,h, i)⊆ Nsi×Nti ⊆
Di∩V, for all i ∈ ω . Then f ∈ Kχh and so f * ∈Wχh.

(b.) We will show that Jc+ ∖Kχh is open. Let f ∈ Jc+ ∖Kχh. Then there exists i0 ∈ ω

such that B(χ, f ,h, i0) ̸⊆Di0 ∩V , so there is a ⟨χ ′, f ′⟩ ∈ B(χ, f ,h, i0) such that ⟨χ ′, f ′⟩ ̸∈Di0 ∩V .
Note that N f ′�h(i0) ⊆ Jc+ ∖Kχh, otherwise there is a g ∈ N f ′�h(i0) such that B(χ,g,h, i) ⊆ V ∩
Di for all i ∈ ω . In particular B(χ,g,h, i0)⊆V ∩Di0 . But ⟨χ ′, f ′⟩ ∈ B(χ,g,h, i0), contradiction.

(c.) Otherwise Wχh is non-stationary for all χ ∈ J2 and h ∈ ωω . By part (a.), W is the
union of c non-stationary sets. But by Claim 3.16.22, W is a stationary subset of c+. This is a
contradiction with Lemma 1.75.

Finally, by part (c.) of Claim 3.16.23 and by Proposition 1.78, there is a club C such that
C∩Cωc

+ ⊆Wχh. Note that /0 ̸=C∩Aχ ⊆C∩Cωc
+ ⊆Wχh. Then, Aχ ∩Wχh ̸= /0. So there is a

⟨χ, f ⟩ ∈ Y ∩V ∩
⋂

D , and Y is Baire.

Theorem 3.17. Y 2 is meager in itself

Proof. Consider

Di =

{
⟨⟨χ, f ⟩,⟨χ ′, f ′⟩⟩ ∈ Y 2 :

χ ̸= χ
′ and

min( f *,( f ′)*)> max( f (i), f ′(i))

}
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Claim 3.17.24. For all i ∈ ω , Di is open and dense in Y 2.

Proof. Fix i ∈ ω , we have the following facts.

∙ Di is open.

Let ⟨⟨χ, f ⟩,⟨χ ′, f ′⟩⟩ ∈ Di. Then there is j ∈ ω such that χ � j = χ ′ � j and χ j ̸= χ ′j. Call
s1 = χ � j+1 and s2 = χ ′ � j+1. Also max( f (i), f ′(i)) < min( f *,( f ′)*) ≤ f *,( f ′)*. Then
there are n1,n2 ∈ ω such that max{ f (i),g(i)} < f (n1),g(n2). Consider ki = max{i +
1,n1 +1,n2 +1}, ρi = f �ki and σi = g �ki .

Finally, note that

⟨⟨χ, f ⟩,⟨χ ′, f ′⟩⟩ ∈ [(Ns1×Nρi)× (Ns1×Nρi)]∩Y 2 ⊆ Di.

∙ Di is dense.

Let ⟨⟨x1, f1⟩,⟨x2, f2⟩⟩ ∈ Y 2. Consider the non-empty basic open set

[(Nx1�i1
×N f1� j1

)× (Nx2�i2
×N f2� j2

)]∩Y 2.

Consider k = max(i1, i2) and define

x1 = (x1 �k)
_0

and
x2 = (x2 �k)

_1.

Note that x1,x2 ∈ 2ω and x1 ̸= x2.

Consider m1 = max( j1, i+1) and m2 = max( j2, i+1), then define

f 1 = ( f1 �m1)
_max(( f1 �m1)

*,( f2 �m2)
*)_min{x ∈ Ax1 : x > max(( f1 �m1)

*,( f2 �m2)
*)}

and

f 2 = ( f2 �m2)
_max(( f1 �m1)

*,( f2 �m2)
*)_min{x ∈ Ax2 : x > max(( f1 �m1)

*,( f2 �m2)
*)}.

Note that f 1, f 2 ∈ Jc+ , so ( f 1)* ∈Ax1 and ( f 2)* ∈Ax2 , also max( f 1(i), f 2(i))=max( f1(i), f2(i))<

( f 1)*,( f 2)* then max( f 1(i), f 2(i))< min(( f 1)*,( f 2)*), therefore

⟨⟨x1, f 1⟩,⟨x2, f 2⟩⟩ ∈ [(Nx1�i1
×N f1� j1

)× (Nx2�i2
×N f2� j2

)]∩Y 2∩Di.
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Claim 3.17.25.
⋂

i∈ω Di = /0.

Proof. Otherwise, there exists ⟨⟨χ, f ⟩,⟨χ ′, f ′⟩⟩ ∈Di, for all i∈ω . Then χ ̸= χ ′ and min( f *,( f ′)*)>

max( f (i), f ′(i)), for all i ∈ ω . By definition, as χ ̸= χ ′ then f * ̸= ( f ′)*. Note that for all i ∈ ω ,
we have that f (i), f ′(i)≤max( f (i), f ′(i))< min( f *,( f ′)*). Then f , f *≤min( f *,( f ′)*)≤ f , f *,
so f = f *, contradiction.

Note that by the previous claims, Y 2 is meager in itself, in particular Y 2 is not Baire.
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3.2 Conditions for the product to be a Baire space.

As we have seen before, there are examples of Baire spaces whose product is not Baire
and whose product is even meager in itself. Now we present conditions on one of the spaces,
which makes your product a Baire space.

Lemma 3.18. Let X ,Y be Baire spaces with Y having a countable π-base. Then for every
sequence G1,G2, · · · of open dense subsets of X×Y we have that

⋂
m∈ω Gm ̸= /0.

Proof. Let U = {Un : n∈ω} be a countable π-base of Y . Consider the projection πX : X×Y→X .
Note that πX is open and continuous. Let m,n ∈ ω , and define U(m,n) = πX [Gm∩ (X×Un)].

Claim 3.18.26. U(m.n) is open and dense in X , for each m,n ∈ ω .

Proof. As Gm ∩ (X ×Un) is open, then U(m,n) = πX [Gm ∩ (X ×Un)] is open. Now, let O be
a non-empty open set in X , so O×Un is a non-empty open set in X ×Y . Then there is a
(x,y) ∈ Gm∩ (O×Un), so x ∈U(m,n)∩O.

As X is Baire, we have that
⋂

m,n∈ω U(m,n) is dense in X . In particular, there is a
x0 ∈

⋂
m,n∈ω U(m,n). For each m ∈ ω , we define Hm = {y ∈ Y : (x0,y) ∈ Gm}.

Claim 3.18.27. For each m ∈ ω , Hm is open and dense in Y .

Proof. Hm is open. Indeed, let y ∈ Hm, so (x0,y) ∈ Gm, then there is a basic non-empty open set
U×V in X×Y such that (x0,y) ∈U×V ⊆Gm, then y ∈V ⊆Hm. Now, we will show that Hm is
dense in Y . Indeed, let Un ∈U be a non-empty open set of Y . As x0 ∈U(m,n) = πX [Gm∩ (X×
Un)], therefore there is a y ∈ Y such that (x0,y) ∈ Gm∩ (X×Un), then y ∈ Hm∩Un.

As Y is Baire, we have that
⋂

m∈ω Hm is dense in Y . In particular, there is a y0 ∈
⋂

m Hm.
Finally, note that (x0,y0) ∈

⋂
m∈ω Gm.

Theorem 3.19. The Cartesian product X×Y of a Baire space X and a Baire space Y having a
countable π-base is a Baire space.

Proof. Let ⟨Gn : n ∈ ω⟩ be a sequence of open dense sets in X×Y . We will show that
⋂

n∈ω Gn

is dense in X ×Y . For this, let U ×V be a basic non-empty open set in X ×Y we must show
that

⋂
n∈ω Gn∩ (U ×V ) ̸= /0. Indeed, note that U is Baire, because is open in X , also V ⊆ Y is

second countable, so consider the sequence ⟨Gn∩ (U×V ) : n ∈ ω⟩ of open dense sets in U×V .
By Lemma 3.18, we have that /0 ̸=

⋂
n∈ω Gn∩ (U×V ).
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Corollary 3.20. If X is a second countable Baire space and Y is a Baire space, then X ×Y is
Baire.

In particular, if B⊆ R is a Bernstein set, remember that B is a second countable Baire
space, then B is productively Baire.

Also, remember the following proposition that was proved in the applications part of the
section on the Banach-Mazur game.

Proposition 3.21. Let X be a Choquet topological space and let Y a Baire space. Then X×Y is
a Baire space.

Remark 1. The converse is not true, because Bernstein sets are productively Baire but Player II
has no winning strategy in the game BM.

Now we present a result due to Moors (MOORS, 2006) that, together with the hereditary
spaces, Baire provides us with information about the product of two Baire spaces. We will also
use the Banach-Mazur game to prove it.

Lemma 3.22. Let X be a topological space, let (Y,d) be a metric space and let O be a dense
open subset of X×Y . Then given any finite subset Z of Y , ε > 0 and non-empty open subset of
U of X , there exist a finite subset Y ′ of Y and a non-empty open subset V of U such that

(i) for each z ∈ Z there exists a y ∈ Y ′ with d(y,z)< ε and

(ii) V ×Y ′ ⊆ O.

Proof. We will demonstrate this result through a direct induction argument about the number of
elements of Z.

In fact, firstly suppose that Z = {z} ⊆ Y , let ε > 0 and U ⊆ X as above. Consider the
non-empty open set U ×B(z)

ε in X ×Y . So there is a (u,y′) ∈ (U ×B(z)
ε )∩O. Then there are

non-empty open sets V and W in X and Y respectively such that (u,y′)∈V ×W ⊆ (U×B(z)
ε )∩O.

Finally, consider Y ′ = {y′} and V ⊆U . Notice that these sets satisfy (i) and (ii).

Now suppose that Z = {z1,z2}⊆Y , let ε > 0 and U ⊆ X as before. Applying the previous
case to {z1} we have that there is a finite subset Y1 of Y and a non-empty open subset V1 of U

satisfying (i) and (ii). In particular, there is y1 ∈ Y1 with d(z1,y1)< ε . Consider the non-empty
open set V1×B(z2)

ε , so there is (a2,b2)∈ (V1×B(z2)
ε )∩O and a non-empty basic open set V ′1×W2

such that (a2,b2) ∈V ′1×W2 ⊆ (V1×B(z2)
ε )∩O. Finally, consider Y ′ = {y1,b2} and V =V ′1. Note

that these new sets also satisfy (i) and (ii).

Suppose the result is valid for finite sets of cardinality n ∈ ω , and let Z = {z1, · · · ,zn+1},
let ε > 0 and U ⊆ X as before. Consider Z′ = {z1, · · · ,zn}, so Z = Z′∪{zn+1}. By the inductive
hypothesis for Z′ there exists a finite Y ′′ and a non-empty open subset V ′ of U such that
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(i) for all j ∈ {1, · · · ,n}, there exists a y j ∈ Y ′′ with d(z j,y j)< ε and

(ii) V ′×Y ′′ ⊆ O.

Also, by construction, we can suppose that there are non-empty open sets W1, · · · ,Wn

such that V ′×Wj ⊆ O, for all j ∈ {1, · · · ,n}. Consider the non-empty open set V ′×B(zn+1)
ε .

So there is (an+1,bn+1) ∈ (V ′×B(zn+1)
ε )∩O and a non-empty basic open set V ′′×Wn+1 such

that (an+1,bn+1)∈V ′′×Wn+1 ⊆ (V ′×B(zn+1)
ε )∩O. Finally, consider Y ′ = {y1, · · · ,yn,bn+1} and

V =V ′′. Note that these new sets also satisfy (i) and (ii).

Remember that every complete metric space is productively Baire (Theorem 2.8 and
Proposition 2.23), also every complete metric space is hereditarily Baire. The following theorem
generalizes these facts.

Theorem 3.23 (Moors). Let X be a Baire space and let (Y,d) be a hereditarily Baire metric
space. Then X×Y is a Baire space.

Proof. Let ⟨On : n ∈ ω⟩ be a sequence of open dense sets in X ×Y . Note that we can assume
that the sequence is decreasing. We will show that

⋂
n∈ω On is dense in X×Y . Indeed, let U and

V be non-empty open sets in X and Y respectively, we will show that /0 ̸=
⋂

n∈ω On∩ (U×V ).

Let us define a strategy σ for Player I in the Banach-Mazur game played on X to build a
strategy σ for Player I.

In the first inning, let (x,y) ∈ O1 ∩ (U ×V ). Then there are O1
1 and O1

2 non-empty
open sets in X and Y respectively such that (x,y) ∈ O1

1×O1
2 ⊆ O1 ∩ (U ×V ), so (U ∩O1

1)×
{y} ⊆ O1

1×O1
2 ⊆ O1. Define U/0 =U ∩O1

1, Y/0 = {y} and Z /0 = {y}= Y/0. Finally Player I plays
σ(⟨ ⟩) =U/0. Let A1 ⊆U/0 be the answer of Player II.

In the second inning, consider the space A1×V . Note that O2∩ (A1×V ) is open dense
in X ×V . Also consider the finite set Z /0 = {y} ⊆ V , ε = 1

2 and the same open A1. Then by
Lemma 3.22, there exists a finite set Y(A1) ⊆V , and a non-empty open U(A1) ⊆ A1 such that

(i) for each z ∈ Z /0 there is a y ∈ Y(A1) with d(y,z)< 1
2 and

(ii) U(A1)×Y(A1) ⊆ O2∩ (X×V )⊆ O2.

Then Player I plays σ(⟨A1⟩) =U(A1)⊆ A1. Let A2 ⊆U(A1) be the answer of Player II.

In the third inning, consider the space A2×V . Note that O3∩ (A2×V ) is open dense
in A2×V , also consider the finite set Z(A1) =Y(A1)∪Z /0, ε = 1

3 and the open A2. Then by Lemma
3.22, there exists a finite set Y(A1,A2) ⊆V , and a non-empty open U(A1,A2) ⊆ A2 such that

(i) for each z ∈ Z(A1) there is y ∈ Y(A1,A2) with d(y,z)< 1
3 and
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(ii) U(A1,A2)×Y(A1,A2) ⊆ O3∩ (X×V )⊆ O3.

Then Player I plays σ(⟨A1,A2⟩) =U(A1,A2)⊆ A2 and let A3 ⊆U(A1,A2) be the answer of Player II.

Finally, in the n-th inning, consider the space X×V , and suppose that the finite subsets
Y(A1,··· ,A j) and Z(A1,··· ,A j) of V , the non-empty open subset U(A1,··· ,A j) of An and σ have been
defined for each (A1, · · · ,A j) of length j with 1≤ j ≤ (n−1) so that:

(i) for each z ∈ Z(A1,··· ,An−1) there is y ∈ Y(A1,··· ,An) with d(y,z)< 1
n+1 and

(ii) U(A1,··· ,An)×Y(A1,··· ,An) ⊆ On+1∩ (X×V )⊆ On+1.

Then Player I plays σ(⟨A1, · · ·An⟩) =U(A1,··· ,An) and Player II responds An. Define Z(A1,··· ,An) =

Y(A1,··· ,An)∪Z(A1,··· ,An−1).

This completes the definition of the strategy σ for Player I in BM(X). Note that Z /0 ⊆
Z(A1) ⊆ Z(A1,A2) ⊆ Z(A1,A2,A3) ⊆ ·· · ⊆V .

As X is a Baire space, then by Theorem 2.7, σ is not a winning strategy for Player I. That
is, there is a sequence ⟨An : n ∈ ω⟩ of open sets in X such that

⋂
n∈ω An ̸= /0. Let x ∈

⋂
n∈ω An.

Note that x ∈ An ⊆U(A1,··· ,An−1) ⊆U/0 ⊆U .

Let n ∈ ω , so x ∈ An ⊆U(A1,··· ,An−1). By construction, U(A1,··· ,An−1)×Y(A1,··· ,An−1) ⊆ On.
Define Wn = πY [({x}×Y )∩On]. We claim that Wn is open in Y . Indeed, let w ∈Wn, so (x,w) ∈
On, as On is open, there are non-empty open sets B1 and B2 in X and Y respectively with
(x,w) ∈ B1×B2 ⊆ On. Finally note that w ∈ B2 ⊆Wn.

Then, for each n ∈ ω , we have defined the open set Wn ⊆ Y such that {x}×Wn =

({x}×Y )∩On. Note that for each n ∈ ω , we have that Wn+1 ⊆Wn.

Consider Z =
⋃
{Z(A1,··· ,An−1) : n ∈ ω} ⊆V ⊆ Y . As Y is hereditarily Baire, Z is Baire.

Claim 3.23.28. For each n ∈ ω , Wn∩Z is dense in Z.

Proof. Let n ∈ ω . We will show that Z ⊆Wn∩Z. Indeed, let z ∈ Z. Then there is a k ∈ ω such
that z∈ Z(A1,··· ,Ak−1). By construction, there is a y∈Y(A1,··· ,Ak)⊆ Z(A1,··· ,Ak)⊆ Z with d(y,z)< 1

k+1 .
Also (x,y) ∈U(A1,··· ,Ak)×Y(A1,··· ,Ak) ⊆ Ok+1. Then (x,y) ∈ Ok+1∩ ({x}×Y ) = {x}×Wk+1, so
y ∈Wk+1.

Now, let ε > 0. We must show that /0 ̸= B(z)
ε ∩ (Wn∩Z). Let j ∈ ω such that 1

j < ε . We
have the following cases:

(a) if n≤ k, so y ∈Wk+1 ⊆Wn, also we have the sub-cases,

∙ j ≤ k. So d(y,z)< 1
k+1 < ε , therefore y ∈ B(z)

ε ∩ (Wn∩Z).

∙ k < j. Note that z ∈ Z(A1,··· ,Ak−1) ⊆ Z(A1,··· ,A j−1). By construction, there exists y′ ∈
Y(A1,··· ,A j) with d(y′,z)< 1

j+1 < ε . Note that y′ ∈Wj+1⊆Wn, then y′ ∈ B(z)
ε ∩(Wn∩Z).
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(b) if k < n, we have that z ∈ Z(A1,··· ,Ak−1) ⊆ Z(A1,··· ,An−1) and there exists y′ ∈ Y(A1,··· ,An) ⊆
Z(A1,··· ,An) ⊆ Z with d(y′,z)< 1

n+1 . Note that y′ ∈Wn+1 ⊆Wn.

∙ j ≤ n. so d(y′,z)< 1
n+1 < ε , therefore y′ ∈ B(z)

ε ∩ (Wn∩Z).

∙ n < j. Note that z ∈ Z(A1,··· ,An−1) ⊆ Z(A1,··· ,A j−1). By construction, there exists y′′ ∈
Y(A1,··· ,A j) with d(y′′,z)< 1

j+1 < ε . Note that y′′ ∈Wj+1 ⊆Wn, then y′′ ∈ B(z)
ε ∩ (Wn∩

Z).

Finally, in any case we have shown that /0 ̸= B(z)
ε ∩ (Wn∩Z), therefore Z ⊆Wn∩Z. Then

Wn∩ZZ
=Wn∩Z∩Z = Z, that is, Wn∩Z is dense in Z.

Also for each n ∈ ω , we have that Z ⊆Wn∩Z ⊆Wn∩Z. Then ⟨Wn ∩ Z : n ∈ ω⟩ is a
sequence of open dense sets in Z. Since Z is Baire, we have that

⋂
n∈ω Wn∩Z is dense in Z. In

particular, since V ∩Z is a non-empty open set in Z, there is a y ∈
⋂

n∈ω(Wn∩Z)∩V . Therefore
for each n ∈ ω , (x,y) ∈ ({x}×Y )∩On, then (x,y) ∈

⋂
n∈ω On∩ (U×V ).
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3.3 Infinite products of Baire spaces
In this part we will see how the property of being Baire can change when we consider

the infinite products in the usual topology and in the box topology.

Remember some basic definitions and properties of infinite products. Let {Xλ : λ ∈ Λ}
be a family of topological spaces and put X = ∏λ∈Λ Xλ .

The Tychonoff product topology on X is the topology having the collection of sets of
the form

∏
λ∈M

Uλ × ∏
µ∈Λ∖M

Xµ ,

where Uλ is an open set in Xλ for each λ ∈M and M is a finite subset of Λ, as a base. We will
denote this topological space by ∏λ∈Λ Xλ . In the case that |Λ|= κ and Xλ = X for all λ ∈ Λ we
denote ∏λ∈Λ Xλ by Xκ .

The box topology on X is the topology having the collection of sets of the form

∏
λ∈Λ

Uλ

where Uλ is an open set in Xλ for each λ ∈ Λ, as a base. If Uλ is an open subset of Xλ for each
λ , then ∏λ∈ΛUλ is called a box in ∏λ∈Λ Xλ . We will denote this topological space by �λ∈ΛXλ .
In the case that |Λ|= κ and Xλ = X for all λ ∈ Λ we denote �λ∈ΛXλ by �κX .

Lemma 3.24. Let B be a π-base of X and let κ a cardinal, then the set of products of κ elements
chosen from B is a π-base for �κX .

Also let us fix a notation for a base we have a base for the countable Tychonoff power.
Let τ*(X) be the family of all nonempty open sets of a space X , and let [τ*(X)]<ω be the family
of all finite subsets of τ*(X). For each U = {U0, · · · ,Un−1} ∈ [τ*(X)]<ω , let

[U ] = [U0, · · · ,Un−1] :=
n−1

∏
j=0

U j×Xω∖n

be the basic open set in Xω defined by U in this particular order. If V = {V0, · · · ,Vm−1} ∈
[τ*(X)]<ω is disjoint from {U0, . . . ,Un−1} , then [U0, · · · ,Un−1,V ] is defined by

[U0, · · · ,Un−1,V ] :=
n−1

∏
j=0

U j×
m−1

∏
k=0

Vk×Xω∖(n∪m).

Furthermore, we put
B(Xω) := {[U ] : U ∈ [τ*(X)]<ω}.

Also remember that, for each µ ∈Λ, the map πµ : ∏λ∈Λ Xλ → Xµ defined by the relation
πµ((xλ )λ∈Λ) = xµ is called the projection on Xµ . Each πµ is continuous and an open map in
both Tychonoff and box topologies.
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3.3.1 Counterexamples with infinite products of Baire spaces.

In this first part we present the example of a Baire X space whose Tychonoff power Xω

is meager in itself and its finite power Xn is Baire, for all n ∈ ω . This example appears in the
article (FLEISSNER; KUNEN, 1978).

Let {Ay : y ∈ ωω} be disjoint stationary subsets of Cωc
+. Let

Cy =
⋃
{Ay′ : y′ ∈ ω

ω and y′(0) ̸= y(0)}.

Let
X = {⟨y, f ⟩ ∈ ω

ω × Jc+ : f * ∈Cy}.

Theorem 3.25. Xω is meager in itself .

Proof. To se this, for any i, j,k < ω let us define Di jk ⊆ Xω by

Di jk = {⟨⟨y0, f0⟩, · · · ⟩ ∈ Xω : min( f *i , f *j )> max( fi(k), f j(k))}.

In addition, for each l < ω , we define El ⊆ Xω by

El = {⟨⟨y0, f0⟩, · · · ⟩ ∈ Xω : l ⊆ {y0(0), · · · ,ym(0)} for some m < ω}.

Claim 3.25.29. Di jk,El ⊆ Xω are open and dense sets, for all i, j, l,k < ω .

Proof. Fix i, j, l,k < ω .

∙ Di jk is open.

Let ⟨⟨y0, f0⟩, · · · ⟩ ∈ Di jk, so max( f (i), f ′(i))< min( f *,( f ′)*)≤ f *,( f ′)*. Then there are
n1,n2 ∈ ω such that max{ f (i),g(i)}< f (n1),g(n2). Consider ki = max{i+1,n1+1,n2+

1}, ρi = f �ki and σi = g �ki .

Finally, note that

⟨⟨y0, f0⟩, · · · ⟩ ∈ [(Jω×Jc+)×·· ·×(Jω×Nρi)×·· ·×(Jω×Nσi)×(Jω×Jc+)×·· · ]∩Xω ⊆Di.

∙ Di jk is dense.

Let ⟨⟨y0, f0⟩, · · · ,⟨ym−1, fm−1⟩⟩ ∈ Xm. By definition f *i ∈ Ay′i
and f *j ∈ Ay′j

for some Ay′i
,

Ay′j
with y′i(0) ̸= yi(0) and y′i(0) ̸= yi(0). Consider the non-empty basic open set

[
m−1

∏
p=0

(Nyp�sp
×N fp�tp )× (Jω × Jc+)

ω∖m

]
∩Xω .

Define ki = max(k+1, ti), k j = max(k+1, t j)
3 and consider

f i = ( fi �ki)
_(max(( fi �ki)

*,( f j �k j)
*))_min{x ∈ Ay′i

: x > max(( fi �ki)
*,( f j �k j)

*)}
3 Note that we could have the case where i, j ̸∈ m. In this case ki = k j = k+1.
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and

f j = ( f j �k j)
_(max(( fi �ki)

*,( f j �k j)
*))_min{x ∈ Ay′j

: x > max(( fi �ki)
*,( f j �k j)

*)}.

Note that f i ∈ N fi�ki
∩X and f j ∈ N f j�k j

∩X . Finally, note that

⟨⟨y0, f0⟩, · · · ,⟨yi, f i⟩, · · · ,⟨y j, f j⟩, · · · ⟩ ∈Di jk∩

[
m−1

∏
p=0

(Nyp�sp
×N fp�tp )× (Jω × Jc+)

ω∖m

]
∩Xω .

∙ El is open. Let ⟨⟨y0, f0⟩, · · · ⟩ ∈El . Then there exists m<ω such that l⊆{y0(0), · · · ,ym(0)}.
Define s j = y j �1 for all j < m+1. Note that

[
m+1

∏
j=0

(Ns j × Jc+)× (Jω × Jc+)
ω∖m+1

]
∩Xω ⊆ El.

∙ El is dense. Consider the non-empty basic open set[
m−1

∏
j=0

(Ns j ×Nt j)× (Jω × Jc+)
ω∖m

]
∩Xω .

Let ⟨⟨y0, f0⟩, · · · ⟩ ∈
[
∏

m−1
j=0 (Ns j ×Nt j)× (Jω × Jc+)ω∖m

]
∩Xω . For each p < l, consider

⟨cp,gp⟩ ∈ X , where cp(n) = p and gp(n) = xp ∈ Acp+1 , for all n ∈ ω .

Finally note that ⟨⟨y0, f0⟩, · · · ,⟨ym−1, fm−1⟩,⟨c0,g0⟩, · · · ,⟨cl−1,gl−1⟩,⟨ym+l, fm+l⟩, · · · ⟩ ∈[
∏

m−1
j=0 (Ns j ×Nt j)× (Jω × Jc+)ω∖m

]
∩Xω ∩El.

Claim 3.25.30.
⋂

i, j,l,k<ω Di jk∩El = /0

Proof. Otherwise, let ⟨⟨y0, f0⟩, · · · ⟩ ∈
⋂

i, j,l,k<ω Di jk∩El . Note that f *0 = f *1 = · · ·= γ ∈Cωc
+. In-

deed, let i, j < ω . Then fi(k), f j(k)≤max( fi(k), f j(k))< min( f *i , f *j ) for every k ∈ ω , therefore
f *i , f *j = min( f *i , f *j ) = f *i , f *j .

Also, by definition γ ∈Cyn for all n < ω , in particular there exists z ∈ Jω such that γ ∈ Az.

We claim that z(0) ̸= yn(0) for all n < ω , otherwise, suppose that ∃p < ω such that
z(0) = yp(0). Note that γ ∈Cyp ∩Az; then, there exists y′ ∈ Jω such that z(0) = y′(0) ̸= yp(0),
contradiction. In particular, z(0) ̸∈ {yn(0) : n < ω}.

On the other hand, by the definition of the El’s, we have that ω = {yn(0) : n < ω}. This
a contradiction, therefore we have the result.

Note that by the previous claims, Xω is meager in itself , in particular Xω is not Baire.
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Now let us show the second part of the initial statement.

Theorem 3.26. Let n < ω , then Xn is a Baire space.

Proof. Let D = {Di : i ∈ ω} be a family of dense open sets in (ωω × Jc+)n and V a non-empty
open subset in (ωω × Jc+)n. Put

W = {α < c+ : α = f *0 = · · ·= f *n−1 and ⟨⟨y0, f0⟩, · · · ,⟨yn−1, fn−1⟩⟩ ∈V ∩
⋂
i<ω

Di}

Claim 3.26.31. W is a stationary subset of c+.

Proof. Let C be a club in c+. As V is a non-empty open set of (Jω × Jc+)n, there is a basic open
set B0 := ∏

n−1
j=0 Ns0

j
×Nt0

j
⊆V , where s0

j ∈ ω<ω and t0
j ∈ (c+)<ω , for all j < n.

Define s1
j = s0

j
_
(s0

j)
* ∈ ω<ω and t1

j = t0
j
_a0 ∈ (c+)<ω , where a0 = min{x ∈ C : x >

max{(t0
j )
* : j < n}}, for all j < n. Then define B1 := ∏

n−1
j=0 Ns1

j
×Nt1

j
⊆ B0. Also D0 ∩B1 is

a non-empty open set of (Jω × Jc+)n. Then choose B2 := ∏
n−1
j=0 Ns2

j
×Nt2

j
⊆ V ⊆ D0∩B1 with

s1
j ⊆ s2

j and t1
j ⊆ t2

j , for all j < n.

Define s3
j = s2

j
_
(s2

j)
* ∈ ω<ω and t3

j = t2
j
_a2 ∈ (c+)<ω , where a2 = min{x ∈ C : x >

max{(t2
j )
* : j < n}}, for all j < n. Then define B3 := Ns3 ×Nt3 ⊆ B2, and so on. We have

that (Bn)n∈ω is a decreasing sequence of non-empty open sets, such that B0 ⊆V and B2n+2 ⊆
Dn, for all n ∈ ω . Note that, for each j < n, we have that x j :=

⋃
m∈ω sm

j ∈ ωω and f j :=⋃
m∈ω tm

j ∈ Jc+ , also α = ( f j)
*
= sup{a2n : n ∈ ω} ∈ C, because C is closed in c+. Then

⟨⟨x0, f 0⟩, · · · ,⟨xn−1, f n−1⟩⟩ ∈
⋂

n∈ω Bn ⊆V ∩
⋂

D , so α ∈C∩W.

For a point p = ⟨⟨y0, f0⟩, · · · ,⟨yn−1, fn−1⟩⟩ ∈ (Jω × Jc+)n and h ∈ ωω and an i ∈ ω ,
B(p,2−h(i)) denotes the ball centered at p with the radius 2−h(i), i.e.,

⟨⟨y0, f 0⟩, · · · ,⟨yn−1, f n−1⟩⟩ ∈ B(p,2−h(i))

if and only if y j �h(i)= y j �h(i), f j �h(i)= f j �h(i) for all j < n.

For each y = (y0, · · · ,yn−1) ∈ (Jω)
n and h ∈ ωω define

Wyh = {α < c+ : α = f *0 = · · ·= f *n−1 and f = ( f0, · · · , fn−1) ∈ Kyh},

where

Kyh = { f ∈ (Jc+)
n : B(py

f ,2
−h(i))⊆ Di∩V for all i ∈ ω},

where py
f = ⟨⟨y0, f0⟩, · · · ,⟨yn−1, fn−1⟩⟩ ∈ (Jω × Jc+)n.
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Claim 3.26.32. We have the following properties:

(a.) W =
⋃
{Wyh : y ∈ Jω ,h ∈ ωω};

(b.) Kyh is closed in (Jc+)n;

(c.) There are y ∈ Jω and h ∈ ωω such that Wyh is a stationary set.

Proof. (a.) Note that
⋃
{Wyh : y ∈ Jm,h ∈ ωω} ⊆W .

On the other hand, let α ∈W , so there exists py
f = ⟨⟨y0, f0⟩, · · · ,⟨yn−1, fn−1⟩⟩ ∈ V ∩⋂

i<ω Di with α = f *0 = · · · = f *n−1. We have that for any i ∈ ω , V ∩Di is a non-empty open
subset of (ωω × Jc+)n. Then, there are s0, · · · ,sn−1 ∈ ω<ω and t0, · · · , tn−1 ∈ (c+)<ω such that
py

f ∈ [(Ns0 ×Nt0)× ·· · × (Nsn−1 ×Ntn−1)] ⊆ V ∩Di. Consider s = max{dom(sk) : k < n} and
t = max{dom(tk) : k < n}, then define h : ω → ω as h(i) = max{s, t}. Note that B(py

f ,2
−h(i))⊆

Di∩V, for all i ∈ ω . Then f ∈ Kyh and so f * ∈Wyh.

(b.) We will show that (Jc+)n ∖Kyh is open. Let f ∈ (Jc+)n ∖Kyh. Then there exists i0 ∈ ω

such that B(py
f ,2
−h(i0)) ̸⊆ Di0 ∩V , so there is ⟨⟨y0, f 0⟩, · · · ,⟨yn−1, f n−1⟩⟩ ∈ B(py

f ,2
−h(i)) such

that ⟨⟨y0, f 0⟩, · · · ,⟨yn−1, f n−1⟩⟩ ̸∈ Di0 ∩V . Note that N f 0�h(i0)
×·· ·×N f n−1�h(i0)

⊆ (Jc+)n ∖Kyh,
otherwise there is g = (g1, · · · ,gn−1) ∈ N f 0�h(i0)

× ·· · ×N f n−1�h(i0)
such that B(py

g,2−h(i)) ⊆
V ∩Di for all i ∈ ω . In particular B(py

g,2−h(i0)) ⊆ V ∩Di0 , but ⟨⟨y0, f 0⟩, · · · ,⟨yn−1, f n−1⟩⟩ ∈
B(py

g,2−h(i0)). Contradiction.

(c.) Otherwise Wyh is non-stationary for all y ∈ Jω and h ∈ ωω . Now, by Claim 3.26.31,
W is a stationary subset of c+. By part (a.), W is the union of c non-stationary sets. This is a
contradiction with Lemma 1.75.

Now by part (c.) of Claim 3.26.32 and by Lemma 1.79, there is a club C such that
C∩Cωc

+ ⊆Wyh.

Choose ŷ ∈ (n+1)ω ⊆ Jω = ωω such that ŷ(0) ̸∈ {y0(0), · · · ,yn−1(0)}. Then by defini-
tion of Cyi’s, we have Aŷ ⊆Cyi for all i < n.

Note that /0 ̸=C∩Aŷ⊆C∩Cωc
+⊆Wyh, let β ∈C∩Aŷ =C∩Aŷ∩Cωc

+⊆Aŷ∩Wyh. Then
there exists a point ( f0, · · · , fn−1) ∈ (Jc+)n such that ⟨⟨y0, f0⟩, · · · ,⟨yn−1, fn−1⟩⟩ ∈ V ∩

⋂
i∈ω Di

and f *0 = · · ·= f *n−1 = β . Since f *i ∈ Aŷ ⊆Cyi for all i < n, we have (yi, fi) ∈ X for all i < n. It
follows that

⟨⟨y0, f0⟩, · · · ,⟨yn−1, fn−1⟩⟩ ∈V ∩
⋂
i∈ω

Di∩Xn,

which implies that
⋂

i∈ω Di∩Xn is dense in Xn, and thus Xn is a Baire space.
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3.3.2 Conditions for infinite product of Baire spaces to be Baire.

In this part we will give conditions on a topological space X so that their infinite powers,
in the box and Tychonoff product topology, are Baire. Again the Banach-Mazur game will be
of great importance to demonstrate some of these results. It is important to mention that the
phenomenon of being Baire in product can change depending on which topology we choose
(box or Tychonoff).

3.3.2.1 Tychonoff products

Theorem 3.27 (Choquet). Tychonoff products of Choquet spaces are Choquet and therefore
they are Baire.

Proof. Let {Xα : α ∈ Λ} be a family of Choquet spaces and let δα a winning strategy for Player
II in BM(Xα ). We will build a winning strategy δ for Player II in BM(∏α∈Λ Xα ). Indeed,

∙ Inning 0

Player I plays U0 = ∏α∈A0 U0
α ×∏α ̸∈A0 Xα where A0 is a finite subset of Λ and U0

α is a
non-empty open subset of Xα . Next, Player II responds δ (⟨U0⟩) = ∏α∈A0 δα(⟨U0

α⟩)×
∏α ̸∈A0 Xα .

∙ Inning 1

Player I plays U1 = ∏α∈A1 U1
α ×∏α ̸∈A1 Xα ⊆ δ (⟨U0⟩) where A1 ⊇ A0 is a finite subset

of Λ and U1
α is a non-empty open subset of Xα . Next, Player II responds δ (⟨U0,U1⟩) =

∏α∈A0 δα(⟨U0
α ,U

1
α⟩)×∏α∈A1∖A0 δα(⟨U1

α⟩)×∏α ̸∈A1 Xα .

∙ Inning 2

Player I plays U1 = ∏α∈A1 U1
α ×∏α ̸∈A1 Xα ⊆ δ (⟨U0⟩) where A2 ⊇ A1 is a finite subset of

Λ and U2
α is a non-empty open subset of Xα . Next, Player II responds δ (⟨U0,U1,U2⟩) =

∏α∈A0 δα(⟨U0
α ,U

1
α ,U

2
α⟩)×∏α∈A1∖A0 δα(⟨U1

α ,U
2
α⟩)×∏α∈A2∖A1 δα(⟨U2

α⟩)×∏α ̸∈A2 Xα , and
so on.
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BM(∏α∈Λ Xα)

GSλ (A,k)
Player I Player II

∏
α∈A0

U0
α × ∏

α ̸∈A0

Xα

∏
α∈A0

δα(⟨U0
α⟩)× ∏

α ̸∈A0

Xα

∏
α∈A1

U1
α × ∏

α ̸∈A1

Xα

∏
α∈A0

δα(⟨U0
α ,U

1
α⟩)× ∏

α∈A1∖A0

δα(⟨U1
α⟩)× ∏

α ̸∈A1

Xα

∏
α∈A2

U2
α × ∏

α ̸∈A2

Xα

∏
α∈A0

δα(⟨U0
α ,U

1
α ,U

2
α⟩)× ∏

α∈A1∖A0

δα(⟨U1
α ,U

2
α⟩)× ∏

α∈A2∖A1

δα(⟨U2
α⟩)× ∏

α ̸∈A2

Xα

a
...

...

Note that for each α ∈
⋃

m∈ω Am, as δα is a winning strategy, there exists xα ∈ δα(⟨U0
α , · · · ,Un

α⟩)
for all n ∈ ω . Choose any point x* ∈ X and define xα = x* for α ∈ κ ∖

⋃
m∈ω Am.

Then x = (xα)α∈Λ ∈
⋂

n∈ω δ (⟨U0, · · · ,Un⟩) and therefore δ is a winning strategy for
Player II in BM(∏α∈Λ Xα), so ∏α∈Λ Xα is a Choquet space.

In this part we present a result of the article (LI; ZSILINSZKY, 2017) by Rui Li and
László Zsilinszky which generalizes Theorem 3.9 for infinite Tychonoff products.

Theorem 3.28. Let I be an index set. Then ∏i∈I Xi is a Baire space if and only if ∏i∈I KBi(Xi)

is a Baire space, for some (equivalently, for every) choice of bases Bi for Xi.

Proof. First, assume that Player I has a winning strategy σ in BM(∏i∈I Xi). We are going to
build a winning strategy σ ′ for Player I in BM(∏i∈I K (Xi)) as follows:

∙ First inning

In BM(∏i∈I Xi), if Player I plays σ(⟨ ⟩) = ∏i∈I0 V0,i×∏i ̸∈I0 Xi for some finite I0 ⊆ I and
V0,i ∈ Bi, then, in BM(∏i∈I K (Xi)), Player I plays σ ′(⟨ ⟩) = ∏i∈I0 V *0,i×∏i̸∈I0 K (Xi)

where V *0,i = [⟨V0,i⟩]. Next, Player II plays U*0 = ∏i∈J0 U*0,i×∏i ̸∈J0 K (Xi) for some finite
J0⊇ I0, and for all i∈ J0, U*0,i = [⟨U0,i(0), · · · ,U0,i(m0,i)⟩] with ⟨U0,i(0), · · · ,U0,i(m0,i)⟩ ∈↓

B
m0,i+1

i , m0,i ≥ 0 and U0,i(0) =V0,i for all i ∈ I0. Then, in BM(∏i∈I Xi), Player II plays
U0 = ∏i∈J0 U0,i(m0,i)×∏i̸∈J0 Xi.

∙ Second inning

In BM(∏i∈I Xi), Player I plays σ(⟨U0⟩) = ∏i∈I1 V1,i×∏i̸∈I1 Xi where I1 ⊇ J0 is finite,
Vi,1 ∈Bi for each i ∈ I1 and Vi,1 ⊆U0,i(m0,i) whenever i ∈ J0. Then, in BM(∏i∈I K (Xi)),
Player I plays σ ′(⟨U*0 ⟩) = ∏i∈I1 V *1,i×∏i̸∈I1 K (Xi) where
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V *i,1 =

[⟨U0,i(0), · · · ,U0,i(m0,i),Vi,1⟩] if i ∈ J0

[⟨V1,i⟩] if i ∈ I1 ∖ J0.

Next Player II plays U*1 = ∏i∈J1 U*1,i×∏i̸∈J1 K (Xi) for some finite J1 ⊇ I1, and for all

i ∈ J1, U*1,i = [⟨U1,i(0), · · · ,U1,i(m1,i)⟩] with ⟨U1,i(0), · · · ,U1,i(m1,i)⟩ ∈↓ B
m1,i+1

i . Note
that

(i) ⟨U1,i(0), · · · ,U1,i(m1,i)⟩ ⊇ ⟨U0,1(0), · · · ,U0,i(m0,i),Vi,1⟩ for i ∈ J0 and

(ii) U1,i(0) =V1,i for i ∈ I1 ∖ J0.

Then, in BM(∏i∈I Xi), Player II plays U1 = ∏i∈J1 U1,i(m1,i)×∏i̸∈J1 Xi, and so on.

BM(∏i∈I Xi)
GSλ (A,k)

Player I Player II
σ(⟨ ⟩) = ∏i∈I0 V0,i×∏i ̸∈I0 Xi

U0 = ∏i∈J0 U0,i(m0,i)×∏i ̸∈J0 Xi

∏i∈I1 V1,i×∏i̸∈I1 Xi
U1 = ∏i∈J1 U1,i(m1,i)×∏i ̸∈J1 Xi

...
...

BM(∏i∈I K (Xi))
GSλ (A,k)

Player I Player II
σ ′(⟨ ⟩) = ∏i∈I0 V *0,i×∏i ̸∈I0 K (Xi)

U*0 = ∏i∈J0 U*0,i×∏i̸∈J0 K (Xi)

∏i∈I1 V *1,i×∏i ̸∈I1 K (Xi)

U*1 = ∏i∈J1 U*1,i×∏i̸∈J1 K (Xi)
...

...

Proceeding inductively, we can define σ ′ so that whenever k < ω , and U*k = ∏i∈Jk
U*k,i×

∏i ̸∈Jk
K (Xi) is given for some finite Jk, and for all i ∈ Jk, U*k,i = [⟨Uk,i(0), · · · ,Uk,i(mk,i)⟩]

for ⟨Uk,i(0), · · · ,Uk,i(mk,i)⟩ ∈↓ B
mk,i+1

i and mk,i ≥ 0, then σ ′(⟨U*0 , · · · ,U*k ⟩) = ∏i∈Ik+1
V *k+1,i×

∏i ̸∈Ik+1
K (Xi) have been chosen, where Ik+1 ⊇ Jk is finite, and

V *k+1,i =

[⟨Uk,i(0), · · · ,Uk,i(mk,i),Vk+1,i⟩] if i ∈ Jk

[⟨Vk+1,i⟩] if i ∈ Ik+1 ∖ Jk
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is such that σ(⟨U0, · · · ,Uk⟩) = ∏i∈Ik+1
Vk+1,i×∏i ̸∈Ik+1

Xi where U j = ∏i∈J j U j,i(m j,i)×∏i̸∈J j Xi

for all j ≤ k.

As σ is a winning strategy for Player I in BM(∏i∈I Xi), we have that⋂
n∈ω

Un =
⋂

n∈ω

σ(⟨U0, · · · ,Un⟩) = /0

for each play σ(⟨ ⟩),U0,σ(⟨U0⟩),U1, · · · ,Un,σ(⟨U0, · · · ,Un⟩), · · · of BM(∏i∈I Xi).

Claim 3.28.33. σ ′ is a winning strategy for Player I in BM(∏i∈I K (Xi)).

Proof. Let σ ′(⟨ ⟩),U*0 ,σ ′(⟨U*0 ⟩),U*1 , · · · ,U*n ,σ ′(⟨U*0 , · · · ,U*n ⟩), · · · be a play of BM(K (X)) and
assume there exists f ∈

⋂
n∈ω σ ′(⟨U*0 , · · · ,U*n ⟩) =

⋂
n∈ω U*n .

Then for each i ∈ I, f (i) ∈ K (Xi), so we can pick some xi ∈
⋂

n∈ω f (i)(n). More-
over, if i ∈ Ik for a given k < ω , then xi ∈ Vk,i, so (xi)i∈I ∈∏i∈Ik

Vk,i×∏i̸∈Ik
Xi. Thus, (xi)i∈I ∈⋂

n∈ω σ(⟨U0, · · · ,Un⟩), contradiction.

Therefore ∏i∈I K (Xi) is not a Baire space.

Now assume that Player I has a winning strategy σ ′ in BM(∏i∈I K (Xi)). We are going
to build a winning strategy σ for Player I in BM(∏i∈I Xi) as follows:

∙ First inning

In BM(∏i∈I K (Xi)), if Player I plays σ ′(⟨ ⟩) = ∏i∈I0 V *0,i×∏i̸∈I0 K (Xi) for some finite
I0 ⊆ I where for all i ∈ I0, V *0,i = [⟨V0,i(0), · · · ,V0,i(m0,i)⟩]. Then, in BM(∏i∈I Xi), Player I
plays σ(⟨ ⟩) = ∏i∈I0 V0,i(m0,i)×∏i̸∈I0 Xi. Next, Player II plays U0 = ∏i∈J0 U0,i×∏i̸∈J0 Xi

for some finite J0 ⊇ I0 and U0,i ⊆V0,i(m0,i) for all i ∈ I0. Define:

U*0,i =

[⟨V0,i(0), · · · ,V0,i(m0,i),U0,i⟩] for all i ∈ I0

[⟨U0,i⟩] for all i ∈ J0 ∖ I0

Then, in BM(∏i∈I K (Xi)), Player II plays U*0 = ∏i∈J0 U*0,i×∏i ̸∈J0 K (Xi).

∙ Second inning

In BM(∏i∈I K (Xi)), Player I plays σ ′(⟨U*0 ⟩) = ∏i∈I1 V *1,i×∏i̸∈I1 K (Xi) where I1 ⊇ J0 is
finite and V *1,i = [⟨V1,i(0), · · · ,V1,i(m1,i)⟩] whenever i ∈ I1. Also note that

(i) ⟨V1,i(0), · · · ,V1,i(m1,i)⟩ ⊇ ⟨V0,i(0), · · · ,V0,i(m0,i),U0,i⟩ for i ∈ I0 and

(ii) V1,i(0) =U0,i for i ∈ J0 ∖ I0.

Then, in BM(∏i∈I Xi), Player I plays σ(⟨U0⟩) = ∏i∈I1 V1,i(m1,i)×∏i̸∈I1 Xi. Next Player II
plays U1 = ∏i∈J1 U1,i×∏i̸∈J1 Xi.
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Define:

U*1,i =

[⟨V1,i(0), · · · ,V1,i(m1,i),U1,i⟩] for all i ∈ I1

[⟨U1,i⟩] for all i ∈ J1 ∖ I1

Then, in BM(∏i∈I Xi), Player II plays U1 = ∏i∈J1 U1,i(m1,i)×∏i̸∈J1 Xi, and so on.

BM(∏i∈I K (Xi))
GSλ (A,k)

Player I Player II
σ ′(⟨ ⟩) = ∏i∈I0 V *0,i×∏i ̸∈I0 K (Xi)

U*0 = ∏i∈J0 U*0,i×∏i ̸∈J0 K (Xi)

∏i∈I1 V *1,i×∏i̸∈I1 K (Xi)

U*1 = ∏i∈J1 U*1,i×∏i ̸∈J1 K (Xi)
...

...

BM(∏i∈I Xi)
GSλ (A,k)

Player I Player II
σ(⟨ ⟩) = ∏i∈I0 V0,i(m0,i)×∏i̸∈I0 Xi

U0 = ∏i∈J0 U0,i×∏i ̸∈J0 Xi

∏i∈I1 V1,i(m1,i)×∏i ̸∈I1 Xi
U1 = ∏i∈J1 U1,i×∏i ̸∈J1 Xi

...
...

As σ ′ is a winning strategy for Player I in BM(∏i∈I K (Xi)), we have that⋂
n∈ω

U*n =
⋂

n∈ω

σ
′(⟨U*0 , · · · ,U*n ⟩) = /0

for each play σ ′(⟨ ⟩),U*0 ,σ ′(⟨U*0 ⟩),U*1 , · · · ,Un,σ
′(⟨U*0 , · · · ,U*n ⟩), · · · of BM(∏i∈I K (Xi)).

Claim 3.28.34. σ is a winning strategy for Player I in BM(∏i∈I Xi).

Proof. Let σ(⟨ ⟩),U0,σ(⟨U0⟩),U1, · · · ,Un,σ(⟨U0, · · · ,Un⟩), · · · be a play of BM(∏i∈I Xi) and
assume there exists (xi)i∈I ∈

⋂
n∈ω σ(⟨U0, · · · ,Un⟩) =

⋂
n∈ω Un.

Let k ∈ ω and i ∈ Ik then define f (i) =
⋃

k∈ω [⟨Vk,i(0), · · · ,Vk,i(mk,i)⟩]. Note that for
each i ∈ Ik and k ∈ ω , f (i) ∈K (Xi), because xi ∈

⋂
n∈ω f (i)(n). Now, if i ̸∈ I ∖

⋃
k∈ω Ik put

f (i) = ⟨Xi⟩n∈ω . Then f = ( f (i))i∈I ∈
⋂

n∈ω σ ′(⟨U*0 , · · · ,U*n ⟩), contradiction.

Therefore ∏i∈I Xi is not a Baire space.
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Now we present the result of (OXTOBY, 1961) that shows that arbitrary product of Baire
spaces with countable π-bases are Baire.

Lemma 3.29. The Tychonoff product of any countable family of spaces, each of which has a
countable π-base, has a countable π-base. Futhermore, if each space is a Baire space, then the
product is a Baire space.

Proof. The complete proof of this lemma can be found in (HAWORTH; MCCOY, 1977), Lemma
5.6.

Remember that a topological space X satisfies the countable chain condition iff every
family of disjoint open subsets of X is countable. For example every separable space has the
countable chain condition.

Lemma 3.30. The product of every family of spaces, each of which has a countable π-base, has
the countable chain condition.

Proof. The complete proof of this lemma can be found in (HAWORTH; MCCOY, 1977), Lemma
5.8.

Lemma 3.31. Let {Xα : α ∈A} be a family of Baire spaces such that the product of any countable
subcollection is a Baire space and such that ∏α∈A Xα has the countable chain condition. Then

∏α∈A Xα is a Baire space.

Proof. Let {Gn}n∈ω be a sequence of dense open subsets of X = ∏α∈A Xα . By Zorn’s lemma,
each Gn contains a maximal pairwise disjoint family of basic open sets, {Un

m : m ∈ ω}, which is
countable since X has the countable chain condition. Therefore,

Hn =
⋃

m∈ω

Un
m ⊆ Gn

is a dense open subset of X .

Note that each Un
m is of the form ∏α∈An

m
Uα ×∏α∈A∖An

m
Xα , where supp(Un

m) = An
m is a

finite subset of A. Let B =
⋃

n,m∈ω An
m. Note that B is a countable subset of A. Now each Hn is of

the form Kn×∏α∈A∖B Xα where Kn is an open subset of ∏α∈B Xα .

Since each Hn is dense in X , each Kn is dense in ∏α∈B Xα . Indeed, let V be a basic
non-empty open subset of ∏α∈B Xα , so V = ∏α∈supp(V )Vα ×∏α∈B∖supp(V )Xα . This induces the
non-empty basic open set V ′ in X , that is , V ′=∏α∈supp(V )Vα×∏α∈A∖supp(V )Xα , so Hn∩V ′ ̸= /0.
Then /0 ̸= pB(Hn∩V ′)⊆ pB(Hn)∩ pB(V ′) = Kn∩V , where pB : X →∏α∈B Xα is the projection
map.

As ∏α∈B Xα is a Baire space then
⋂

n∈ω Kn is dense in ∏α∈B Xα . Hence
⋂

n∈ω Hn is
dense in X , and, therefore

⋂
n∈ω Gn is dense in X . Indeed, let W be a non-empty basic open
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subset of X , so W = ∏α∈supp(W )Wα ×∏α∈A∖supp(W )Xα . As pB(W ) is a non-empty open set in

∏α∈B Xα , then pB(W )∩
⋂

n∈ω Kn ̸= /0. Let x = (xα)α∈B ∈ pB(W )∩
⋂

n∈ω Kn, extending x to all
A, that is, if α ∈ supp(W )∖B, put xα = yα ∈Wα , and, if α ∈ A∖ (B∪ supp(W )),xα = zα ∈ Xα ,
so (xα)α∈A ∈W ∩

⋂
n∈ω Hn.

Finally we have that

Theorem 3.32 (Oxtoby). The product of every family of Baire spaces, each of which has a
countable π-base, is a Baire space.

Proof. Let {Xα : α ∈Λ} be a family of Baire spaces, each of which has a countable π-base. Note
that by Lemma, ∏α∈Λ Xα has the countable chain condition and each product of any countable
subcollection of Λ also has the countable chain condition. Then, by Lemma, ∏α∈Λ Xα is a Baire
space.

Corollary 3.33. Any Tychonoff product of second countable Baire spaces is Baire.

Corollary 3.34. Let B⊆ R be a Bernstein set. Then, for each κ ≥ 2, the Tychonoff power Bκ is
a Baire space. Therefore I ̸↑ BM(Bκ).

Finally we present two results that appear in the article (FLEISSNER; KUNEN, 1978)
of William Fleissner and Kenneth Kunen. The first is a new application of the Banach-Mazur
game and the second again relates the cellularity and the meager in itself spaces.

Theorem 3.35 (Kunen-Fleissner). Let κ ≥ω . If Xω is Baire, then Xκ is Baire, where the powers
are considered in the Tychonoff product.

Proof. Let κ > ω , we will show that, if Xκ is not Baire then Xω is not Baire. For this, let σ be a
winning strategy for Player I in BM(Xκ). We are going to build a winning strategy σ̃ for Player
I in BM(Xω).

∙ Inning 0

In BM(Xκ), Player I plays σ(⟨ ⟩) = ∏i∈N0 U0
i ×Xκ∖N0 , where N0 = {k0

0, · · · ,k0
n0−1} is the

support of σ(⟨ ⟩). Now in BM(Xω), Player I plays σ̃(⟨ ⟩) = ∏
n0−1
j=0 Ũ0

j ×Xω∖n0 , where for
each j ∈ {0, · · · ,n0−1} we rename Ũ0

j :=U0
k0

j
. Next Player II responds ∏

m0−1
j=0 Ṽ 0

j ×Xω∖m0

with m0 ≥ n0. Now, we will rename the plays of Player II, that is, we define


V 0

k0
j

:= Ṽ 0
j if j ∈ {0, · · · ,n0−1}

V 0
k0

n0−1+1+ j
:= Ṽ 0

n0+ j if j ∈ {0, · · · ,m0−1−n0}.

Also, put M0 = N0 ∪{k0
n0−1 + 1+ j : j ∈ {0, · · · ,m0− 1− n0}}. Returning to BM(Xκ),

Player II responds ∏i∈M0 V 0
i ×Xκ∖M0 .
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∙ Inning 1

In BM(Xκ), Player I plays σ(⟨∏i∈M0 V 0
i ×Xκ∖M0⟩) = ∏i∈N1 U1

i ×Xκ∖N1 , where N1 =

M0∪{k1
0, · · · ,k1

n1−1} is the support of σ(⟨∏i∈M0 V 0
i ×Xκ∖M0⟩). We will rename the plays

of Player I, that is, we define
Ũ1

j :=U1
k0

j
if j ∈ {0, · · · ,n0−1}

Ũ1
n0+ j :=U1

k0
n0−1+1+ j

if j ∈ {0, · · · ,m0−1−n0}

Ũ1
m0+ j :=U1

k1
j

if j ∈ {0, · · · ,n1−1}.

The first two lines tell us that the Ũ’s and U’s are the same in m0 and the last line tells us
that after m0 we complete with the U’s from {k1

0, · · · ,k1
n1−1} to m0 +n1 in Xω .

Now in BM(Xω), Player I plays σ̃(⟨∏m0−1
j=0 Ṽ 0

j ×Xω∖m0⟩) = ∏
m0+n1−1
j=0 Ũ1

j ×Xω∖(m0+n1);
next Player II responds ∏

m1−1
j=0 Ṽ 1

j ×Xω∖m1 , with m1 ≥m0+n1. Again, we will rename the
plays of Player II, that is, we define

V 1
k0

j
:= Ṽ 1

j if j ∈ {0, · · · ,n0−1}

V 1
k0

n0−1+1+ j
:= Ṽ 1

n0+ j if j ∈ {0, · · · ,m0−1−n0}

V 1
k1

j
:= Ṽ 1

m0+ j if j ∈ {0, · · · ,n1−1}

V 1
k*+1+ j := Ṽ 1

m0+n1+ j if j ∈ {0, · · · ,m1−m0−1−n1}

where k* = max{k0
n0−1 +1+m0−1−n0,k1

n1−1}.

Put M1 = N1∪{k*+1+ j : j ∈ {0, · · · ,m1−m0−1−n1}}. Returning to BM(Xκ), Player
II responds ∏i∈M1 V 1

i ×Xκ∖M1 , and so on.

BM(Xκ)

GSλ (A,k)
Player I Player II
σ(⟨ ⟩) =

∏i∈N0 U0
i ×

Xκ∖N0

∏i∈M0 V 0
i ×

Xκ∖M0

∏i∈N1 U1
i ×

Xκ∖N1

∏i∈M1 V 1
i ×

Xκ∖M1

a
...

...

BM(Xω)

GSλ (A,k)
Player I Player II
σ̃(⟨ ⟩) =

∏
n0−1
j=0 Ũ0

j ×
Xω∖n0

∏
m0−1
j=0 Ṽ 0

j ×
Xω∖m0

∏
m0+n1−1
j=0 Ũ1

j ×
Xω∖(m0+n1)

∏
m1−1
j=0 Ṽ 1

j ×
Xω∖m1

a
...

...
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As σ is a winning strategy for Player I in BM(Xκ), we have that

⋂
n∈ω

∏
i∈Mn

V n
i ×Xκ∖Mn = /0

for each play σ(⟨ ⟩),∏i∈M0 V 0
i ×Xκ∖M0,σ(⟨∏i∈M0 V 0

i ×Xκ∖M0⟩),∏i∈M1 V 1
i ×Xκ∖M1, · · · of BM(Xκ ).

Claim 3.35.35. σ̃ is a winning strategy for Player I in BM(Xω ).

Proof. Let σ̃(⟨ ⟩),∏m0−1
j=0 Ṽ 0

j ×Xω∖m0, σ̃(⟨∏m0−1
j=0 Ṽ 0

j ×Xω∖m0⟩),∏m1−1
j=0 Ṽ 1

j ×Xω∖m1, · · · be a play
of BM(Xω ) and assume there exists x = (x j) j∈ω ∈

⋂
n∈ω ∏

mn−1
j=0 Ṽ n

j ×Xω∖m1 . Now define

xk0
j

:= x j if j ∈ {0, · · · ,n0−1}

xk0
n0−1+1+ j := xn0+ j if j ∈ {0, · · · ,m0−1−n0}

xk1
j

:= xm0+ j if j ∈ {0, · · · ,n1−1}

xk*+1+ j := xm0+n1+ j if j ∈ {0, · · · ,m1−m0−1−n1}, and so on.

Choose any point x* ∈ X and define xα = x* for α ∈ κ ∖ω . Then completing x ∈ Xω to x̃ =

(xα)α∈κ ∈ Xκ , we have that x̃ ∈
⋂

n∈ω ∏i∈Mn V n
i ×Xκ∖Mn , contradicting the fact that Player I

has a winning strategy in BM(Xκ). Therefore σ̃ is a winning strategy for Player I in the game
BM(Xω).

Therefore Xω is not a Baire space.

Definition 3.36. Let κ be a cardinal. A topological space X has cellularity κ if every family of
disjoint open sets of X has cardinality ≤ κ.

Theorem 3.37. Suppose for all β ∈ I, Xβ has a π-base of cardinality ≤ κ. Then if X = ∏{Xβ :
β ∈ I} is meager in itself, there is I′ ⊆ I, |I′| ≤ κ, such that ∏{Xβ : β ∈ I′} is meager in itself.

Proof. Direct from Lemmas 3.38 and 3.40.

Lemma 3.38. If each Xβ has a π-base of cardinality ≤ κ and I is finite, then X = ∏β∈I Xβ has
cellularity κ.

Proof. Let Bi be a π-base of Xi, for all i ∈ I. By hyphotesis, for each i ∈ I, |Bi| ≤ κ. Define the
π-base for X , as B = {∏i∈I Bi : Bi ∈Bi,∀i ∈ I}, note that |B| ≤ κ, because, as I is finite then
|B||I| = |B| ≤ κ.

Now, suppose otherwise that there is a family of disjoint non-empty open sets F with
|F | > κ. Then for each F ∈F , there is a BF ∈B such that BF ⊆ F , so {BF : F ∈F} ⊆B.
But |{BF : F ∈F}|> κ, contradiction.
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Corollary 3.39. If each Xβ has a π-base of cardinality ≤ κ and I is infinite, then X = ∏β∈I Xβ

has cellularity κ.

Proof. Assume towards a contradiction that {Uβ : β < κ+} is a family of pairwise disjoint,
non-empty open subsets of ∏i∈I Xi. By shrinking the Uβ ’s if necessary, we may assume that each
Uβ is a basic open set. Then Uβ depends on a finite set of coordinates, bβ ⊆ I.

Applying the ∆-system lemma (Theorem 1.81) for κ = ω and λ = κ+ we have that
there a ∆-system B ⊆ {bβ : β < κ+} with root ∆ such that |B| = κ+. Note that ∆ ⊆ I cannot
be empty, since bα ∩bβ = /0 implies that Uα ∩Uβ ̸= /0. Note that by Lemma 3.38, ∏β∈∆ Xβ has
cellularity κ. Let π[Uβ ] be the projection of Uβ onto ∏β∈∆ Xβ . Then {π[Uβ ] : β ∈ B} forms a
disjont family of non-empty sets in X = ∏β∈∆ Xβ , contradiction.

Lemma 3.40. Suppose X = ∏{Xβ : β ∈ I} has cellularity κ and is meager in itself. Then there
is a I′ ⊆ I, |I′| ≤ κ, such that ∏{Xβ : β ∈ I′} is meager in itself.

Proof. Let D = {Dn : n ∈ ω} be a family of dense open sers of X ,
⋂

D = /0. Let {Gn
β

: β ∈ Kn}
be a maximal collection of disjoint basic open subsets of Dn.

Claim 3.40.36.
⋃
{Gn

β
: β ∈ Kn} is dense open.

Proof. Suppose otherwise; then there is a non-empty open set V in X such that V ∩
⋃
{Gn

β
: β ∈

Kn}= /0. Choose W a basic non-empty open set in X such that W ⊆ Dn∩V . Then {W}∪{Gn
β

:
β ∈ Kn} is a collection of disjoint basic open subsets of Dn, contradiction.

Define D̃n :=
⋃
{Gn

β
: β ∈ Kn} and let I′ =

⋃
{supp Gn

β
: β ∈ Kn,n ∈ ω}. Consider

π : X →∏{Xβ : β ∈ I′} the projection onto ∏{Xβ : β ∈ I′}. Then {π[D̃n] : n ∈ ω} is a family
of dense open sets in ∏{Xβ : β ∈ I′}.
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3.3.2.2 Box products

Theorem 3.41. Let {Xα : α ∈ Λ} be a family of Choquet spaces. Then �α∈ΛXα is a Choquet
space.

Proof. Let α ∈ Λ and δα be a winning strategy for Player II in BM(Xα ). We are going to build a
winning strategy δ ′ for Player II in BM(�α∈ΛXα).

Indeed, in the first inning in �α∈ΛXα , Player I plays �α∈ΛU0
α , where U0

α is a non-empty
open set in Xα for all α ∈ Λ. Then Player II responds δ ′(⟨�α∈ΛU0

α⟩) =�α∈Λδα(⟨U0
α⟩). In the

second inning, Player I plays�α∈ΛU1
α ⊆�α∈Λδα(⟨U0

α⟩); next, Player II plays δ ′(⟨�α∈ΛU0
α ,�α∈ΛU1

α⟩)=
�α∈Λδα(⟨U0

α ,U
1
α⟩). In the inning n ∈ ω , if Player I plays �α∈ΛUn−1

α then Player II responds
δ ′(⟨�α∈ΛU0

α , · · · ,�α∈ΛUn−1
α ⟩) =�α∈Λδα(⟨U0

α , · · · ,Un−1
α ⟩), and so on.

For each α ∈ Λ, as δα is a winning strategy for Player II, then there exists

xα ∈
⋂

n∈ω

δα(⟨U0
α ,U

1
α , · · · ,Un

α⟩);

then

x = (xα)α∈Λ ∈
⋂

n∈ω

�α∈Λδα(⟨U0
α ,U

1
α , · · · ,Un

α⟩) =
⋂

n∈ω

δ
′(⟨�α∈ΛU0

α , · · · ,�α∈ΛUn−1
α ⟩).

Therefore δ ′ is a winning strategy for Player II in BM(�α∈ΛXα ), so �α∈ΛXα is Choquet.

Corollary 3.42. If a space is Choquet, then all powers of that space, considered in the box
product topology, are Choquet spaces.

Corollary 3.43 (White). If Player II has a winning strategy in the Banach-Mazur game on a
space, then all powers of that space, considered in the box product topology, are Baire spaces.

In the article (ZSILINSZKY, 2004) by László Zsilinszky, it is commented that by making
a slight modification in the proof of the main result the following result is obtained

Theorem 3.44 (Zsilinszky). If Xi is a Baire space having a locally countable π-base for each
i ∈ ω , then �i∈ωXi is a Baire space.

Corollary 3.45. The countable box power of a second countable Baire space is Baire.

Corollary 3.46. Let B ⊆ R be a Bernstein set. Then, for each n ≤ ω , �nB is a Baire space,
therefore I ̸↑ BM(�nB).

Also we can generalize Theorem 3.9 for infinite box products.

Theorem 3.47. Let {Xα : α ∈ Λ} be a family of topological spaces with Bα a base for Xα and
let {K (Xα) : α ∈ Λ} be their associated Krom spaces. Then �α∈ΛXα is Baire if and only if
�α∈ΛK (Xα) is Baire.
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Proof. First we will show that if �α∈ΛK (Xα) is not Baire then �α∈ΛXα is not Baire. Let σ be
a winning strategy for Player I in BM(�α∈ΛK (Xα)). We will build a winning strategy σ ′ for
Player I in BM(�α∈ΛXα ). Indeed,

∙ Inning 0

In BM(�α∈ΛK (Xα)), Player I plays σ(⟨ ⟩) = �α∈Λ[δ
α
0 ] where for each α ∈ Λ, δ α

0 ∈↓
B

nα
0

α, nα
0 ∈ ω . Then, in BM(�α∈ΛXα), Player I plays σ ′(⟨ ⟩) =�α∈Λδ α

0 (nα
0 −1), next

Player II responds�α∈ΛUα
0 . Now, in BM(�α∈ΛK (Xα)), Player II responds�α∈Λ[δ

α
0
aUα

0 ].

∙ Inning 1

In BM(�α∈ΛK (Xα)), Player I plays σ(⟨�α∈Λ[δ
α
0
aUα

0 ]⟩) = �α∈Λ[δ
α
1 ] where for each

α ∈Λ, δ α
1 ∈↓ B

nα
1

α, nα
1 ∈ω , also we can assume that δ α

1 ⊇ δ α
0
aUα

0 , in particular nα
1 −1≥

nα
0 ; then, in BM(�α∈ΛXα), Player I plays σ ′(⟨ ⟩) = �α∈Λδ α

1 (nα
1 − 1), next Player II

responds �α∈ΛUα
1 . Now, in BM(�α∈ΛK (Xα)), Player II responds �α∈Λ[δ

α
1
aUα

1 ].

∙ Inning 2

In BM(�α∈ΛK (Xα)), Player I plays σ(⟨�α∈Λ[δ
α
0
aUα

0 ],�α∈Λ[δ
α
1
aUα

1 ]⟩) =�α∈Λ[δ
α
2 ]

where for each α ∈ Λ, δ α
2 ∈↓ B

nα
2

α, δ α
2 ⊇ δ α

1
aUα

1 , in particular nα
2 − 1 ≥ nα

1 ; then,
in BM(�α∈ΛXα), Player I plays σ ′(⟨ ⟩) = �α∈Λδ α

2 (nα
2 − 1), next Player II responds

�α∈ΛUα
2 . Now, in BM(�α∈ΛK (Xα)), Player II responds �α∈Λ[δ

α
2
aUα

2 ], and so on.

BM(�α∈ΛK (Xα))
GSλ (A,k)

Player I Player II
�α∈Λ[δ

α
0 ]

�α∈Λ[δ
α
0
aUα

0 ]
�α∈Λ[δ

α
1 ]

�α∈Λ[δ
α
1
aUα

1 ]
�α∈Λ[δ

α
2 ]

�α∈Λ[δ
α
2
aUα

2 ]
...

...

BM(�α∈ΛXα )
GSλ (A,k)

Player I Player II
σ ′(⟨ ⟩) =�α∈Λδ α

0 (nα
0 −1)

�α∈ΛUα
0

�α∈Λδ α
1 (nα

1 −1)
�α∈ΛUα

1
�α∈Λδ α

2 (nα
2 −1)

�α∈ΛUα
2

...
...

As, in BM(�α∈ΛXα ), σ is a winning strategy for Player I we have that

⋂
n∈ω

�α∈Λ[δ
α
n
aUα

n ] = /0.

Claim 3.47.37.
⋂

n∈ω�α∈ΛUα
n = /0.
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Proof. Suppose otherwise for a contradiction. There exists (xα)α∈Λ ∈
⋂

n∈ω�α∈ΛUα
n = /0, so

xα ∈Uα
n for each α ∈Λ and n∈ω . Let α ∈Λ, and consider ρα =

⋃
n∈ω [δ

α
n
aUα

n ]. Note that ρα ∈
K (X), because xα ∈

⋂
n∈ω ρα(n). Then (ρα)α∈Λ ∈

⋂
n∈ω�α∈Λ[δ

α
n
aUα

n ], contradiction.

Therefore σ ′ is a winning strategy for Player I in BM(�α∈ΛXα ), so �α∈ΛXα is not a
Baire space.

Now we will show that if �κX is not Baire then �κK (X) is not Baire. Let σ be a
winning strategy for Player I in BM(�κX), we will build a winning strategy σ ′ for Player I in
BM(�α∈ΛK (Xα)). Indeed,

∙ Inning 0

In BM(�α∈ΛXα), Player I plays σ(⟨ ⟩) =�α∈ΛUα
0 . Then, in BM(�α∈ΛK (Xα)), Player

I plays σ ′(⟨ ⟩) =�α∈Λ[⟨Uα
0 ⟩], next Player II responds �α∈Λ[δ

α
0 ] where for each α ∈ Λ,

δ α
0 ∈↓ B

nα
0

α, nα
0 ∈ ω . Now, in BM(�α∈ΛXα), Player II responds �α∈Λδ α

0 (nα
0 −1).

∙ Inning 1

In BM(�α∈ΛXα), Player I plays σ(⟨�α∈Λδ α
0 (nα

0 −1)⟩)=�α∈ΛUα
1 . Then, in BM(�α∈ΛK (Xα)),

Player I plays σ ′(⟨�α∈Λ[δ
α
0 ]⟩) = �α∈Λ[δ

α
0
aUα

1 ], next Player II responds �α∈Λ[δ
α
1 ]

where for each α ∈ κ , δ α
1 ∈↓ B

nα
1

α, nα
1 ∈ ω . Also we can assume that δ α

1 ⊇ δ α
0
aUα

1 ,
in particular nα

1 −1≥ nα
0 . Now, in BM(�α∈ΛXα), Player II responds �α∈Λδ α

1 (nα
1 −1).

∙ Inning 2

In BM(�α∈ΛXα), Player I plays σ(⟨�α∈Λδ α
0 (nα

0 − 1),�α∈Λδ α
1 (nα

1 − 1)⟩) = �α∈ΛUα
2 .

Then, in BM(�α∈ΛK (Xα)), Player I plays σ ′(⟨�α∈Λ[δ
α
0 ],�α∈Λ[δ

α
1 ]⟩)=�α∈Λ[δ

α
1
aUα

2 ],
next Player II responds �α∈Λ[δ

α
2 ] where for each α ∈ κ , δ α

2 ∈↓ B
nα

2
α, nα

2 ∈ ω . Also we
can assume that δ α

2 ⊇ δ α
1
aUα

2 , in particular nα
2 −1≥ nα

1 . Now, in BM(�α∈ΛXα), Player
II responds �α∈Λδ α

2 (nα
2 −1), and so on.

BM(�α∈ΛXα )
GSλ (A,k)

Player I Player II
�α∈ΛUα

0
�α∈Λδ α

0 (nα
0 −1)

�α∈ΛUα
1
�α∈Λδ α

1 (nα
1 −1)

�α∈ΛUα
2
�α∈Λδ α

2 (nα
2 −1)

...
...

BM(�α∈ΛK (Xα))
GSλ (A,k)

Player I Player II
σ ′(⟨ ⟩) =�α∈Λ[⟨Uα

0 ⟩]
�α∈Λ[δ

α
0 ]

�α∈Λ[δ
α
0
aUα

1 ]
�α∈Λ[δ

α
1 ]

�α∈Λ[δ
α
1
aUα

2 ]
�α∈Λ[δ

α
2 ]

...
...
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As, in BM(�α∈ΛXα ), σ is a winning strategy for Player I we have that⋂
n∈ω

�α∈Λ[δ
α
n
aUα

n ] = /0.

Claim 3.47.38.
⋂

n∈ω�α∈ΛUα
n = /0

Proof. Suppose otherwise for a contradiction. There exists (xα)α∈Λ ∈
⋂

n∈ω�α∈ΛUα
n = /0, so

xα ∈Uα
n for each α ∈Λ and n∈ω . Let α ∈Λ, and consider ρα =

⋃
n∈ω [δ

α
n
aUα

n ], note that ρα ∈
K (X), because xα ∈

⋂
n∈ω ρα(n), then (ρα)α∈Λ ∈

⋂
n∈ω�α∈Λ[δ

α
n
aUα

n ], contradiction.

Therefore σ ′ is a winning strategy for Player I in BM(�α∈ΛXα ), then �α∈ΛXα is not a
Baire space.

Corollary 3.48. Let {Xα : α ∈ Λ} be a family of topological spaces with Bα a base for Xα and
let {K (Xα) : α ∈ Λ} be their associated Krom spaces. Then I ↑ BM(�α∈ΛXα) if and only if I
↑ BM(�α∈ΛK (Xα)).

Corollary 3.49. Let κ be a infinite cardinal and let X be a topological space with B a base for
X such that /0 ̸∈B and let K (X) be its associated Krom space. Then �κX is Baire if and only if
�κK (X) is Baire.

Proposition 3.50. Let {Xα : α ∈ Λ} be a family of topological spaces with Bα a base for Xα

and let {K (Xα) : α ∈ Λ} its associated Krom spaces. Then �α∈ΛXα is Choquet if and only if
�α∈ΛK (Xα) is Choquet.

Proof. First suppose that �α∈ΛXα is Choquet, then, by Theorem 2.19, Xα is Choquet. Now
by Proposition 3.12, K (Xα) is Choquet, so, by Corollary 3.42, �α∈ΛK (Xα) is Choquet and
reciprocally.

Corollary 3.51. Let κ be a infinite cardinal and let X be a topological space with B a base for
X such that /0 ̸∈B and let K (X) be its associated Krom space. Then �κX is Choquet if and
only if �κK (X) is Choquet.

Corollary 3.52. Let κ be a infinite cardinal and let X be a topological space with B a base for
X such that /0 ̸∈B and let K (X) be its associated Krom space. Then the games BM(�α∈ΛXα)

and BM(�α∈ΛK (Xα)) are equivalent.

In the article (GALVIN; SCHEEPERS, 2016) of Fred Galvin and Marion Scheepers,
using other games and measurable cardinals the following is proved:

Theorem 3.53 (Galvin and Scheepers). If it is consistent there is a proper class of measurable
cardinals, then it is consistent that if all box powers of a space are Baire, then the space is
Choquet.
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This motivates to define the following

Definition 3.54. The theory of Galvin-Scheepers it’s simply ZFC + "if all box powers of a
space are Baire, then the space is Choquet".

In this new theory, we have the following results:

Corollary 3.55. In the theory of Galvin and Scheepers, if the all box powers of a Baire space X

are Baire spaces then its Tychonoff powers are Baire spaces.

Proof. Let X be a Baire space whose all box powers are Baire spaces. Then (in the theory of
Galvin and Scheepers), X is Choquet. Since Tychonoff products of Choquet spaces are Baire, we
have that all Tychonoff powers of X are Baire spaces.

Corollary 3.56. In the theory of Galvin and Scheepers, there are a second countable Baire space
X and a cardinal κ such that the box power �κX is not Baire.

Proof. Let B⊆ R be a Bernstein set. Remember that B is a second countable Baire space and
is not Choquet. We claim that there is a cardinal κ such that the box power �κB is not Baire.
Otherwise, all box powers of B are Baire then (in this theory), B is Choquet, contradiction.
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CHAPTER

4
MULTIBOARD TOPOLOGICAL GAMES

In this chapter we introduce the multiboard topological games. This idea emerged in the
article (GALVIN; SCHEEPERS, 2016) of Fred Galvin and Marion Scheepers and it will be used
to study infinite products of Baire spaces.

4.1 Some versions of multiboard topological games
We will see versions of multiboard topological games. Intuitively we are playing the

Banach-Mazur game simultaneously in multiple boards. Let X be a non-empty topological space
and let κ ≥ 1 be a cardinal.

Definition 4.1 (Version 1: κ-multiboard Banach-Mazur game). The Version 1 of the κ-
multiboard Banach-Mazur game is defined as follows:

Player I and Player II play an inning per finite ordinal.

∙ At the beginning, Player I first selects a sequence (B0
α)α<κ of nonempty open sets, and

then Player II responds with a sequence (B1
α)α<κ of nonempty open sets such that B1

α ⊆
B0

α ,∀α < κ .

∙ Later, in each inning n ∈ ω , Player I chooses a sequence (B2n
α )α<κ of nonempty open sets

such that B2n
α ⊆ B2n−1

α ,∀α < κ , then Player II responds with a sequence (B2n+1
α )α<κ of

nonempty open sets such that B2n+1
α ⊆ B2n

α ,∀α < κ .

Player I wins this play if there exists α < κ such that
⋂

n<ω B2n+1
α = /0. Else Player II wins.

We denote this game by BMκ
1 (X).
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We have the following simple observations:

1. Let 2≤ λ < κ be cardinal numbers, if Player I has a winning strategy in the game BMλ
1 (X)

then Player I has a winning strategy in the game BMκ
1 (X).

2. Let 2≤ λ < κ be cardinal numbers, if Player II has a winning strategy in the game BMκ
1 (X)

then Player II has a winning strategy in the game BMλ
1 (X).

3. If Player I has a winning strategy in BM(X) then Player I has a winning strategy in BMκ
1 (X)

for every cardinal κ .

4. Player II has a winning strategy in BM(X) if and only if Player II has a winning strategy
in BMκ

1 (X) for every (equivalently, some) cardinal κ .

Proposition 4.2. Let X be a topological space and κ be a cardinal. Then the games BMκ
1 (X)

and BM(�κX) are equivalent.

Proof. First suppose that Player I has a winning strategy σ in BMκ
1 (X). We will build a winning

strategy σ ′ for Player I in BM(�κX). Indeed,

∙ Inning 0

In BMκ
1 (X), Player I plays σ(⟨ ⟩) = (U0

α)α<κ where U0
α is a non-empty open subset of

X for each α < κ . Then, in BM(�κX), Player I plays σ ′(⟨ ⟩) =�α<κU0
α . Next Player II

plays �α<κV 0
α . Returning to BMκ

1 (X), Player II plays (V 0
α )α<κ .

∙ Inning 1

In BMκ
1 (X), Player I plays σ(⟨(V 0

α )α<κ⟩) = (U1
α)α<κ where U1

α is a non-empty open
subset of V 0

α for each α < κ . Then, in BM(�κX),

α-board
GSλ (A,k)

Player I Player II
U0

α

V 0
α

U1
α

V 1
α

a
...

...

BM(�κX)
GSλ (A,k)

Player I Player II
σ ′(⟨ ⟩) =�α<κU0

α

�α<κV 0
α

�α<κU1
α

�α<κV 1
α

a
...

...
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We claim that σ ′ is a winning strategy. Indeed, let

σ
′(⟨ ⟩),�α<κV 0

α ,σ
′(�α<κV 0

α ),�α<κV 1
α , · · ·

be a play in BM(�κX), and suppose that
⋂

n∈ω�α<κV n
α ̸= /0, that is, there exists (xα)α<κ ∈

�α<κV n
α for all n ∈ ω . Then for each α < κ we have that xα ∈

⋂
n∈ω V n

α , contradiction.

Now suppose that Player I has a winning strategy σ in BM(�κX). We will build a
winning strategy σ ′ for Player I in BMκ

1 (X). Indeed,

∙ Inning 0

In BM(�κX), Player I plays σ(⟨ ⟩) =�α<κU0
α where U0

α is a non-empty open subset of
X for each α < κ . Then, in BMκ

1 (X), Player I plays σ ′(⟨ ⟩) = (U0
α)α<κ . Next Player II

plays (V 0
α )α<κ . Returning to BM(�κX), Player II plays �α<κV 0

α .

∙ Inning 1

In BM(�κX), Player I plays σ(⟨ ⟩) =�α<κU1
α where U1

α is a non-empty open subset of
V 0

α for each α < κ . Then, in BMκ
1 (X), Player I plays σ ′(⟨(V 0

α )α<κ⟩) = (U1
α)α<κ . Next

Player II plays (V 1
α )α<κ . Returning to BM(�κX), Player II plays �α<κV 1

α , and so on.

BM(�Xκ )
GSλ (A,k)

Player I Player II
�α<κU0

α

�α<κV 0
α

�α<κU1
α

�α<κV 1
α

a
...

...

α-board
GSλ (A,k)

Player I Player II
σ ′(⟨ ⟩) =U0

α

V 0
α

U1
α

V 1
α

a
...

...

We claim that σ ′ is a winning strategy. Indeed, let

σ
′(⟨ ⟩),(V 0

α )α<κ ,σ
′((V 0

α )α<κ),(V 1
α )α<κ , · · ·

be a play in BM(�κX), and suppose that Player II wins, that is, for each α < κ ,
⋂

n∈ω V n
α ̸= /0,

i.e., there exists xα ∈ V n
α for all n ∈ ω . Then x = (xα)α<κ ∈

⋂
n∈ω�α<κV n

α , contradicting the
fact that σ is a winning strategy for Player I in BM(�Xκ ).
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Now we will prove the second part of equivalence. Suppose that Player II has a winning
strategy δ in BMκ

1 (X). We will build a winning strategy δ ′ for Player II in BM(�κX). Indeed,

∙ Inning 0

In BM(�κX), Player I plays �α<κU0
α where U0

α is a non-empty open subset of X for each
α < κ . Then, in BMκ

1 (X), Player I plays (U0
α)α<κ . Next Player II plays δ (⟨(U0

α)α<κ⟩) =
(V 0

α )α<κ . Returning to BM(�κX), Player II plays δ ′(⟨�α<κU0
α⟩) =�α<κV 0

α .

∙ Inning 1

In BM(�κX), Player I plays�α<κU1
α where U1

α is a non-empty open subset of V 0
α for each

α < κ . Then, in BMκ
1 (X), Player I plays (U1

α)α<κ . Next Player II plays δ (⟨(U0
α)α<κ ,(U1

α)α<κ⟩)=
(V 1

α )α<κ . Returning to BM(�κX), Player II plays δ ′(⟨�α<κU0
α ,�α<κU1

α⟩) = �α<κV 1
α ,

and so on.

α-board
GSλ (A,k)

Player I Player II
U0

α

V 0
α

U1
α

V 1
α

a
...

...

BM(�Xκ )
GSλ (A,k)

Player I Player II
�α<κU0

α

�α<κV 0
α

�α<κU1
α

�α<κV 1
α

a
...

...

We claim that δ ′ is a winning strategy. Indeed, let

�α<κU0
α ,δ

′(⟨�α<κU0
α⟩),�α<κU1

α ,δ
′(⟨�α<κU0

α ,�α<κU1
α⟩), · · ·

be a play in BM(�κX). As δ is a winning strategy, we have that for each α < κ ,
⋂

n∈ω V n
α = /0;

therefore,
⋂

n∈ω�α<κV n
α =

⋂
n∈ω�α<κδ ′(⟨�α<κU0

α , · · · ,�α<κUn
α⟩) = /0.

Now suppose that Player II has a winning strategy δ in BM(�κX), We will build a
winning strategy δ ′ for Player II in BMκ

1 (X). Indeed,

∙ Inning 0

In BMκ
1 (X), Player I plays (U0

α)α<κ where U0
α is a non-empty open subset of X for each

α < κ . Then, in BM(�κX), Player I plays�α<κU0
α . Next Player II plays δ (⟨�α<κU0

α⟩) =
�α<κV 0

α . Returning to BMκ
1 (X), Player II plays δ ′(⟨(U0

α)α<κ⟩) = (V 0
α )α<κ .
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∙ Inning 1

In BMκ
1 (X), Player I plays (U1

α)α<κ where U1
α is a non-empty open subset of V 0

α for each
α < κ . Then, in BM(�κX), Player I plays�α<κU1

α . Next Player II plays δ (⟨�α<κU0
α ,�α<κU1

α⟩)=
�α<κV 1

α . Returning to BMκ
1 (X), Player II plays δ ′(⟨(U0

α)α<κ ,(U1
α)α<κ⟩) = (V 1

α )α<κ , and
so on.

BM(�Xκ )
GSλ (A,k)

Player I Player II
�α<κU0

α

�α<κV 0
α

�α<κU1
α

�α<κV 1
α

a
...

...

α-board
GSλ (A,k)

Player I Player II
U0

α

V 0
α

U1
α

V 1
α

a
...

...

We claim that δ ′ is a winning strategy. Indeed, let

(U0
α)α<κ ,δ

′(⟨(U0
α)α<κ⟩),(U1

α)α<κ ,δ
′(⟨(U0

α)α<κ ,(U1
α)α<κ⟩), · · ·

be a play in BMκ
1 (X). As δ is a winning strategy, we have that there exists (xα)α<κ ∈

⋂
n∈ω�α<κV n

α

then xα ∈
⋂

n∈ω V n
α for each α < κ .

Finally we present a summary of the results obtained in this section

∙ I ↑ BMλ
1 (X) λ<κ

=⇒ I ↑ BMκ
1 (X)

∙ II ↑ BMκ
1 (X) λ<κ

=⇒ II ↑ BMλ
1 (X)

∙ I ↑ BM(X) =⇒ I ↑ BMκ
1 (X)

∙ II ↑ BM(X)⇐⇒ II ↑ BMκ
1 (X)

∙ I ↑ BMκ
1 (X)⇐⇒ I ↑ BM(�κX).

∙ II ↑ BMκ
1 (X)⇐⇒ II ↑ BM(�κX).
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Definition 4.3 (Version 2 : κ-multiboard Banach-Mazur game BMκ
2 (X)). The same rules of

the previous game, only that the criterion of victory changes, that is , Player II wins this game
if there exists α < κ such that

⋂
n<ω B2n+1

α ̸= /0. Else Player I wins. We denote this game by
BMκ

2 (X).

We have the following simple observations:

1. Let 2≤ λ < κ be cardinal numbers. If Player I has a winning strategy in the game BMκ
2 (X)

then Player I has a winning strategy in the BMλ
2 (X) game.

2. Let 2 ≤ λ < κ be cardinal numbers. If Player II has a winning strategy in the game
BMλ

2 (X) then Player II has a winning strategy in the BMκ
2 (X) game.

3. Player I has a winning strategy in the game BMκ
2 (X) for every (equivalently, some) cardinal

κ if and only if Player I has a winning strategy in BM(X).

4. If Player II has a winning strategy in BM(X) then Player II has a winning strategy in
BMκ

2 (X) for every cardinal κ .

Theorem 4.4. Let X be a topological space, and κ be a cardinal.

(1) If Player I has a winning strategy in BMκ
2 (X) then Player I has a winning strategy in

BM(�κX).

(2) If Player II has a winning strategy in BM(�κX), then Player II has a winning strategy in
BMκ

2 (X).

Proof. First, let σ be a winning strategy for Player I in BMκ
2 (X), we are going to build a winning

strategy σ ′ for Player I in BM(Xκ), as follows:

∙ Inning 0

Player I plays σ(⟨ ⟩) = (B0
α)α<κ , so Player I plays σ ′(⟨ ⟩) = �α<κB0

α . Next Player II
responds �α<κB1

α . This induces that Player II plays (B1
α)α<κ in BMκ

2 (X).

∙ Inning 1

In BMκ
2 (X), Player I plays σ(⟨(B1

α)α<κ⟩)= (B2
α)α<κ . Then Player I plays σ ′(⟨�α<κB1

α⟩)=
�α<κB2

α . Next, Player II responds �α<κB3
α . This induces that Player II plays (B3

α)α<κ in
BMκ

2 (X), and so on.
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BMκ
2 (X)

GSλ (A,k)
Player I Player II

σ(⟨ ⟩) = (B0
α)α<κ

(B1
α)α<κ

σ(⟨(B1
α)α<κ⟩) = (B2

α)α<κ

(B3
α)α<κ

a
...

...

BM(Xκ)

GSλ (A,k)
Player I Player II

σ ′(⟨ ⟩) =�α<κB0
α

�α<κB1
α

σ ′(⟨�α<κB1
α⟩) =�α<κB2

α

�α<κB3
α

a
...

...

As σ is a winning strategy for Player I, we have that for each α < κ ,⋂
n<ω

B2n+1
α = /0,

so ⋂
n∈ω

�α<κB2n+1
α = /0,

then σ ′ is a winning strategy for Player I in BM(Xκ).

Now let δ be a winning strategy for Player II in BM(�κX), we are going to build a
winning strategy δ ′ for Player II in BMκ

2 (X), as follows:

∙ Inning 0

Player I plays (B0
α)α<κ . This induces that Player I plays �α<κB0

α . Next, Player II re-
sponds δ (⟨ ⟩) =�α<κB1

α . This induces that Player II plays δ ′(⟨(B0
α)α<κ⟩) = (B1

α)α<κ in
BMκ

2 (X).

∙ Inning 1

In BMκ
2 (X), Player I plays (B2

α)α<κ . Then Player I plays�α<κB2
α . Next Player II responds

δ (⟨�α<κB0
α ,�α<κB2

α⟩)=�α<κB3
α . This induces that Player II plays δ ′(⟨(B0

α)α<κ ,(B2
α)α<κ⟩)=

(B3
α)α<κ in BMκ

2 (X), and so on.

BMκ
2 (X)

GSλ (A,k)
Player I Player II
(B0

α )α<κ

δ ′(⟨(B0
α )α<κ ⟩) = (B1

α )α<κ

(B2
α )α<κ

δ ′(⟨(B0
α )α<κ ,(B2

α )α<κ ⟩) = (B3
α )α<κ

a
...

...

BM(Xκ)

GSλ (A,k)
Player I Player II
�α<κ B0

α

δ (⟨ ⟩) =�α<κ B1
α

∏α<κ B2
α

δ (⟨�α<κ B0
α ,�α<κ B2

α ⟩) =�α<κ B3
α

a
...

...
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As δ is a winning strategy for Player II, we have that

⋂
n<ω

�α<κB2n+1
α ̸= /0,

so in this case, for all α < κ , ⋂
n∈ω

B2n+1
α = /0,

then δ ′ is a winning strategy for Player II in BMκ
2 (X).

Finally we present a summary of the results obtained in this section

∙ I ↑ BMκ
2 (X) λ<κ

=⇒ I ↑ BMλ
2 (X)

∙ II ↑ BMλ
2 (X) λ<κ

=⇒ II ↑ BMκ
2 (X)

∙ I ↑ BM(X)⇐⇒ I ↑ BMκ
2 (X)

∙ II ↑ BM(X) =⇒ II ↑ BMκ
2 (X)

∙ I ↑ BMκ
2 (X) =⇒ I ↑ BM(�κX)

∙ II ↑ BM(�κX) =⇒ II ↑ BMκ
2 (X)

Motivated by solving the problem of the infinite product of Baire spaces, Professor
Leandro Aurichi presented for me the next new version of the multiboard game, which is very
different from the previous ones. The motivation of this new version is by the proof that a
Bernstein set on the real line is undeterminated, because in a part of the proof we use that a
Bernstein set cannot contain a Cantor set, which has cardinality c.

Definition 4.5 (Version 3 : c-modified multiboard Banach-Mazur game). The Version 3 of
the c-multiboard Banach-Mazur game is defined as follows:

Player I and Player II play an inning per finite ordinal.

∙ At the beginning, Player I first selects (B0
α)α<c a sequence of nonempty open sets, and

then Player II responds with (B1
α)α<c a sequence of nonempty open sets such that B1

α ⊆
B0

α ,∀α < c.

∙ Later, in each inning n ∈ ω , Player I choose (B2n
α )α<c a sequence of nonempty open sets

such that B2n
α ⊆ B2n−1

α ,∀α < c then Player II responds with (B2n+1
α )α<c a sequence of

nonempty open sets such that B2n+1
α ⊆ B2n

α ,∀α < c.
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∙ For each α < c, in the α-board define Bα =
⋂

n<ω B2n+1
α . Consider

P =
⋃

α<c

Bα .

Player II wins this play if |P| ≥ c. Else Player I wins. We denote this game by mod BMc(X).

Note that if Player II has a winning strategy in mod BMc(X) then Player II has a winning
strategy in BMc

2(X).

Theorem 4.6. If the Continuum Hypothesis holds then Player II has winning strategy in
mod BMc(R).

Proof. Write R = {xα : α < ω1}. For each α ∈ ω1 consider the set Yα = {xβ : β ≥ α}. Note
that for each α ∈ ω1, Yα is a Gδ set and dense in R. As Player II has a winning strategy δ in
BM(R) then Player II has a winning strategy in BM(Yα) for each α ∈ ω1, call δα this strategy
for Player II. We will build a winning strategy for Player II in mod BMc(R). Indeed,

∙ Inning 0

Player I plays (B0
α)α<ω1 . Now at the same instant we play in BM(Yα) for each α ∈ ω1.

Player I plays B0
α ∩Yα in each BM(Yα), then Player II responds with δα(⟨B0

α ∩Yα⟩) open
non-empty in Yα , that is, there is W 1

α open in R such that δα(⟨B0
α ∩Yα⟩) =W 1

α ∩Yα . Then,
in mod BMc

2(R), Player II responds δ (⟨(B0
α)α<ω1⟩) = (W 1

α ∩B0
α)α<ω1 .

∙ Inning 1

Player I plays (B2
α)α<ω1 , with B2

α ⊆W 1
α ∩B0

α , for each α ∈ ω1. Now at the same in-
stant we play in each BM(Yα) for each α ∈ ω1. Player I plays B2

α ∩Yα , then Player II
responds δα(⟨B0

α ∩Yα ,B2
α ∩Yα⟩) open non-empty in Yα , that is, there is W 3

α open in R
such that δα(⟨B0

α ∩Yα ,B2
α ∩Yα⟩) = W 3

α ∩Yα . Then, in mod BMc
2(R), Player II responds

δ (⟨(B0
α)α<ω1,(B

2
α)α<ω1⟩) = (W 3

α ∩B2
α)α<ω1 , and so on.

α−board
GSλ (A,k)

Player I Player II
B0

α

W 1
α ∩B0

α

B2
α

W 3
α ∩B2

α

a
...

...

BM(Yα)
GSλ (A,k)

Player I Player II
B0

α ∩Yα

δα(⟨B0
α ∩Xα⟩) =W 1

α ∩Yα

B2
α ∩Yα

δα(⟨B0
α ∩Xα ,B2

α ∩Xα⟩) =W 3
α ∩Yα

a
...

...
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As Player II has a winning strategy in Yα , then⋂
n<ω

(W 2n+1
α ∩Yα) ̸= /0,∀α ∈ ω1.

Note that for each α < ω1,

Bα =
⋂

n<ω

(W 2n+1
α ∩B2n

α )⊇
⋂

n<ω

(W 2n+1
α ∩Yα) ̸= /0.

Also for each α < ω1, choose yα ∈
⋂

n<ω(W
2n+1
α ∩Yα)⊆ Bα ; then {yα : α < ω1} ⊆ P.

In particular yα ∈ Yα , then there exists α ′ < ω1 such that yα = xα ′ ∈ Yα , so α ′ ≥ α .

Claim 4.6.39. Y = {yα : α < ω1} is an uncountable set.

Proof. Otherwise, Y is countable then there are k ≤ ω and a bijection g : Y −→ k, also we have
a surjective function f : ω1 −→ Y , so there exists a surjective function h = g∘ f : ω1 −→ k, then

ω1 =
⋃
n<k

h−1(n).

Note that there is n0 < k such that |h−1(n0)|= | f−1(g−1(n0))|= ω1. Then yα is the same
for each α ∈ f−1(g−1(n0)). Also if α,β ∈ f−1(g−1(n0)) we have that there are α ′,β ′ ∈ω1 such
that α ′ ≥ α , β ′ ≥ β and xα ′ = yα = yβ = xβ ′ . Therefore α ′ = β ′. Then there is γ < ω1 such that
α < γ,∀α ∈ f−1(g−1(n0)), contradiction.

Therefore {yα : α ∈ ω1} is uncountable; then 2ω = ω1 ≤ |P|, so δ is a winning strategy
for Player II in mod BMc(R).
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CHAPTER

5
OPEN PROBLEMS

In this final part, we present some open problems about the Banach-Mazur game and
product of Baire spaces.

At the beginning of this section we present some counterexamples of Baire spaces
whose product is not Baire, in the article (HERNáNDEZ; MEDINA; TKACHENKO, 2015), the
following question arises:

Question 1 : Do there exist separable (regular, Tychonoff) Baire spaces X and Y such that the product
X×Y fails to be Baire?

As we mentioned earlier Galvin and Scheepers note that White showed that all box
powers of Choquet spaces are Baire, and then prove Theorem 3.53. That is why the following
question arises in the article (TALL, 2016).

Question 2 : Are large cardinals necessary for Theorem 3.53?

They then ask whether there are any consistent counterexamples.

Also remember that Oxtoby proved that any Tychonoff product of Baire spaces, each
with a countable π-base, in particular, each second countable, is Baire, but that a Bernstein set of
reals is Baire but not Choquet, so in the Theorem 3.53, Tychonoff powers are not enough.

Fleissner raises the question of whether, if the box product of a collection of Baire spaces
is Baire, its Tychonoff product is Baire. Note that, by Corollary 3.55, for box powers, in the
theory of Galvin and Scheepers, this is true. That is why in the article (FLEISSNER; KUNEN,
1978) the following question arises.

Question 3 : Can one prove in ZFC that if a box product of a collection of Baire spaces is Baire, then
its Tychonoff product is Baire?
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In the same article, Fleissner also asks whether the box product of Baire spaces with a
countable base is Baire. That is,

Question 4 : Is the box product of second countable Baire spaces Baire?

Note that, by Corollary 3.56, in the theory of Galvin and Scheepers, this is not true.

As we have previously noted with the Banach-Mazur game, we could not characterize the
productively Baire spaces, since the Bernstein set is productively Baire but it is an undeterminated
space. That is why we ask the following question.

Question 5 : Is there a game-theoretical characterization for the property of being productively Baire?
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