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ABSTRACT

MEDINA, G. A. The Banach-Mazur game and products of Baire spaces. 2021. 128 p. Dis-
sertacdo (Mestrado em Ciéncias — Matematica) — Instituto de Ciéncias Matematicas e de Computa-
¢do, Universidade de Sao Paulo, Sao Carlos — SP, 2021.

In this work we study Baire spaces and analyze the problem of product of Baire spaces. Then
we present some conditions using the Banach-Mazur game to show that the Baire property is
preserved in the product. Then we analyze the difference of the infinite product of Baire spaces,
between the box product and Tychonoff product. We also present a multiboard version for this

problem. Finally we present some open problems regarding the product of Baire spaces.

Keywords: Baire spaces, Banach-Mazur game, Product of Baire spaces, Multiboard topological

games.






RESUMO

MEDINA, G. A. O jogo de Banach-Mazur e produto de espacos de Baire. 2021. 128 p. Dis-
sertacdo (Mestrado em Ciéncias — Matematica) — Instituto de Ciéncias Matematicas e de Computa-
¢do, Universidade de Sao Paulo, Sao Carlos — SP, 2021.

Neste trabalho, estudamos os espagos de Baire e analisamos o problema do produto de espagos
de Baire. Logo, apresentamos algumas condi¢des usando o jogo Banach-Mazur para mostrar
que o produto de espacos Baire € preservado. Analisamos a diferenca do produto infinito dos
espacos de Baire, entre o produto box e produto Tychonoff. Também apresentamos uma versao
de um jogo topolégico com varios tabuleiros para esse problema. Finalmente, apresentamos

alguns problemas em aberto relacionados ao produto dos espacos de Baire.

Palavras-chave: Espacos de Baire, jogo de Banach-Mazur, Produto de espagos de Baire, Jogos

topoldgicos com multiplos tabuleiros.
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INTRODUCTION

A topological space is a Baire space provided that countable collections of dense open
subsets have a dense intersection. Baire spaces constitute an important class in various branches
of mathematics, this is the case in such well-known theorems as the Closed Graph Theorem, the
Open Mapping Theorem and the Uniform Boundedness Theorem. In a sense, the Baire property

is one of the weakest forms of topological completeness.

The problem of whether a product of a family of Baire spaces is Baire is an old one and
is also well known that the answer to the problem is negative, even with fairly strong hypothesis.
Indeed:

e In 1961, assuming the Continuum Hypothesis (CH), Oxtoby constructed the first example
of a Baire space whose square is not Baire.

e In 1974, Krom, showed that if there exists a Baire space whose square is not Baire, then

there exists a Baire metric space whose square is not Baire.

e Later, in 1976, using forcing techniques, Paul Cohen showed that only the usual axioms of
Set Theory are needed to prove the existence of Baire spaces whose product is not Baire.
That is, it is not necessary to add any set theoretic hypothesis to be able to construct two

Baire spaces whose product is not Baire.

e Also, in 1986, Jan van Mill and Roman Pol showed that there are two normed Baire spaces

whose product is not Baire.

However, there are several cases when products (finite, countable or arbitrary) of Baire

spaces are again Baire. Some cases can be described in terms of games.

The Banach-Mazur game is the first infinite positional game of perfect information
studied by mathematicians. The game was proposed in 1935 by the Polish mathematician
Stanislaw Mazur and recorded in the Scottish Book (MAULDIN, 2015). The game, its solution
and its importance went far beyond the Baire category classification. In fact, Baire spaces can be
characterized via the Banach—-Mazur game, then it is not surprising that topological games have

been applied to attack the Baire product problem.

Therefore, one of our objectives in this work is, in addition to presenting results on the
Baire product, to see when the product of Baire spaces is still Baire, giving conditions with the

Banach-Mazur game (or some variation of it) over the spaces.
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For this reason, we have structured the text as described below.

In the first chapter, we briefly review basic results of general topology, set theory and

forcing. Along with that, we present the Baire spaces and basic results about them.

In the second chapter, we introduce the Banach-Mazur game and some of its applications,

we also present some of its modifications.

In the third chapter, we present the problem of product of Baire spaces. In the first section,
we present the examples of Cohen, Krom and Fleissner. These are some counterexamples of
Baire spaces whose product is not Baire. In the second section, we present results of when the
finite product of some Baire spaces is Baire. In the third section, we present the difference of
phenomenon of being Baire in the infinite product (box product and Tychonoff product) of Baire

spaces.

In the fourth chapter, we introduce multiboard games, these emerge as a possible solution

to the problem of the infinite product of Baire spaces and we present some of its variations.

Finally, in the fifth chapter, we present some open problems related to the problem of the

product of Baire spaces.
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CHAPTER

PRELIMINARY RESULTS

In this chapter we will introduce the basic tools of topology, set theory and forcing to
understand the Banach-Mazur game and some of its applications. We are going to start with
some basic results in topology. For this part we follow the books of (WILLARD, 1970) and
(WALDMANN, 2014) as main references.

1.1 Topology
1.1.1 Some definitions and basic facts
For this section we fix X a topological space.

Definition 1.1 (7-base). A family .2 of non-empty open subsets of a topological space X is said
to be a m-base (or pseudo-base) if for each non-empty open subset U of X there is an element
VePBsuchthatV CU.

Note that every base of a topological space is a 7-base.

Definition 1.2. A 7-base 4 is called locally countable if each member of % contains only
countably many members of .

Note that every second countable space has a locally countable 7-base.

Definition 1.3. A subset A of X is a Gg-set if it is a countable intersection of open sets and it is

an Fg if it is a countable union of closed sets.

Proposition 1.4.

(i) The complement of a G is an F and vice versa.
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(i1) An Fgs can be written as the union of an increasing sequence F; C F, C --- of closed sets.

(Hence, a G can be written as a decreasing intersection of open sets.)

(iii) A closed set in a metric space is a Gg (hence, an open set is an Fg.)

1.1.1.1 The Continuum Hypothesis for Gg Sets

In this section we will show that G sets in the real line satisfy the kind of continuum
hypothesis in the sense that every G set is either countable or has cardinality ¢. This sets will be
of great importance later because we will see how the Banach-Mazur game works in the real

line, specifically with this type of sets.

Definition 1.5. A set A C R is called

e closed if every limit point'of A isin A, i.e. if A’ C A;
e dense-in-itself if every point of A is a limit point of A, i.e. if A C A’;
e perfect if it is both closed and dense-in.itself, i.e., if A = A’.

Definition 1.6. A family J = (J, : u € U, 2") is called a Cantor system if for each u €
Unew 2"

1. J, is a bounded proper closed interval, i.e., J,, = [a, b] for some a < b;
2. J0o 01 ©Jus
3. Jur‘\o ﬂJuAI - @;

4. Foreach b € 29,
lim é(-]bfn) =0,

n—oo

where /(1) denotes the length of the interval /.

Definition 1.7. The set generated by the Cantor system J = (J,, : u € U, 2") is the set P of
real numbers defined by the condition:

x € P if and only if there exists b € 2% such that x € ﬂ Jbin
ncw
Definition 1.8 (Generalized Cantor Sets). A set is called a generalized Cantor set (or a Cantor-

like set) if it is generated by some Cantor system.

Theorem 1.9. Every non-empty dense-in-itself Gg set E contains a generalized Cantor set and
so there is an injective @ : 2% — E with @(2?) being a perfect set. In particular, every non-empty

dense-in-itself G5 set has cardinality c.

I' x € Ris a limit point of A if for each € > 0, (B‘,(;C> \ {x})NA # 0, where BY = {yeR:|x—yl <e}
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Proof. The complete proof of this theorem can be found in (DASGUPTA, 2014), Theorem
1048. O

Corollary 1.10. A non-empty perfect set in R has cardinality c.

Corollary 1.11. The set QQ of rational numbers is not a G5 set, and hence the set of irrational

numbers is not an Fg set.

We now have the result that the Gg sets, and therefore the closed sets, satisfy the

continuum hypothesis.

Corollary 1.12. Every uncountable G5 set contains a generalized Cantor set and hence has

cardinality c.

Proof. The complete proof of this corollary can be found in (DASGUPTA, 2014), Corollary
1051. O

Corollary 1.13. Any uncountable closed subset of R contains a generalized Cantor set and

hence has cardinality c.

Note that a set contains a generalized Cantor set if and only if it contains a non-empty

perfect set. Hence we make the following definition.

Definition 1.14 (The Perfect Set Property). A set is said to have the perfect set property if it is
either countable or contains a perfect set (or equivalently, contains a generalized Cantor set). A
collection of sets is said to have the perfect set property if every set in the family has the perfect

set property.
For example closed sets and G sets have the perfect set property.

1.1.1.2 Metric spaces and Gg-sets

Definition 1.15. A sequence (x,) in a metric space (M,d) is Cauchy if for each € > 0, there is

some positive integer N such that d(x,,x,,) < € whenever m,n > N.

Definition 1.16. A metric space (M,d) is complete if every Cauchy sequence in M converges in
M. We also say d is a complete metric for M. A topological space X is completely metrizable if
there is a complete metric for X which generates its topology. Thus X is completely metrizable

if it is homeomorphic to some complete metric space.

Note that while completeness is a property of metric spaces, complete metrizability is a
property of topological spaces. For example, |0, 1] with the usual metric is not a complete metric
space (consider the sequence (%)) but is completely metrizable since it is homeomorphic to the

complete space R.
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Definition 1.17. Metric spaces (M,d) and (N,d’) are isometric if there is a one to one function
f of M onto N such that d'(f(x), f(y)) = d(x,y), for all x,y € M. The mapping f is called an

isometry.

A well known result of metric spaces mentions that every metric space can be completed

in such a way that it is dense in the new space.

Theorem 1.18. Every metric space M can be isometrically embedded as a dense subset of a
complete metric space. The resulting completion is unique up to isometry and is called the

completion of M.
Proof. A complete proof of the theorem can be found in (WILLARD, 1970), Theorem 24.4. []

We are now ready for the subspace theorem. Both are classical results from the 1920’s.
The first part is due to Alexandroff, the second to Mazurkiewicz. The full proof of these two
theorems can be found in (WILLARD, 1970), Theorems 24.12 and 24.13.

Theorem 1.19. A Gg-set in a complete metric space is completely metrizable. Conversely, if a

subset A of a metric space M is completely metrizable, then it is a Gg-set.

Theorem 1.20. For a metric space X the following are equivalent:

(1) X is completely metrizable,

(i) X is a Gg in its completion X.
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1.1.2 A little bit of Descriptive set theory

We begin this section by studying some new topological spaces and special sets, which
can help us with examples for the Banach-Mazur game. For this part we follow the books of
(KECHRIS, 1995) and (SRIVASTAVA, 1998).

1.1.2.1 Polish spaces

For the classic examples of Polish spaces we will need the following :

Proposition 1.21. A metrizable space is second countable if and only if it is separable.

Proof. A proof of this proposition can be found in (WILLARD, 1970), Theorem 16.11. U

Proposition 1.22. The product of any countable family of metrizable (resp. completely metriz-

able) spaces is a metrizable (resp. completely metrizable) space.

Proof. The complete proof of this proposition can be found in (WILLARD, 1970), Theorem
24.11. ]

Definition 1.23 (Polish space). A separable completely metrizable space is called Polish.

Proposition 1.24.

1) A closed subspace of a Polish space is Polish.

i1) The product of a countable sequence of Polish spaces is Polish.

Proof. For the first part, remember that a closed subspace contained in a complete metric space
is complete. For the second part, let E be the product of a countable family (E,),cq of Polish
spaces. By Proposition 1.22, E is completely metrizable. Furthermore, if %, is a countable basis
for E,, the topology of E is generated by the countable basis consisting of the finite intersections
of open sets of the form [],,c., X, where X,, = E,, except for a finite number of indices, for which
X, € A,. Therefore E is Polish. l

Example 1.

1) R,C,R",C",R® C? are Polish.

2) The space A?®, viewed as the product of infinitely many copies of A with the discrete

topology, is completely metrizable and if A is countable it is Polish.

3) Of particular importance are the cases A =2 = {0,1} and A = ®. We call € = 2? the

Cantor space and @® the Baire space.



24 Chapter 1. Preliminary Results

Theorem 1.25. Let X be a Polish space. Then there is a closed set F C @® and a continuous
bijection f : F — X. In particular, if X is non-empty, there is a continuous surjection g : ®“ — X

extending f.
Proof. A proof of this theorem can be found in (KECHRIS, 1995), Theorem 7.9. ]

Now we will give a characterization of the Baire space ®®.

Definition 1.26. A topological space X is connected if there is no partition X =U UV, UNV =0
where U,V are non-empty open sets. Or equivalently, if the only clopen (i.e., open and closed)

sets are @ and X.

Definition 1.27. A topological space X is zero-dimensional if it is Hausdorff and has a basis

consisting of clopen sets.

For example, the space A? is zero-dimensional since the standard basis ([s])sca<o consists

of clopen sets.

Definition 1.28. A Lusin scheme on a set X is a family {A;};cp<o of subsets of X such that

i) Ag-iNAg-;=0,if s € 0<? i+# jin ;
i) A, C Ay ifs€ 0<%, i€ .

Definition 1.29. If (X,d) is a metric space and {A;};c <o is a Lusin scheme on X, we say that

{As}sc@<o has a vanishing diameter if lim,,_,.. diam(A,},) = 0, for all x € ®®. In this case if

D={xecn?: ﬂAx[n#(b]q

ncw

define
f D — X

X — ﬂnewa[n = {f(x)}
We call f the associated map.

Proposition 1.30. Let {A;}cq<o be a Lusin scheme on a metric space (X,d) that has vanishing
diameter. If f : D — X is the associated map, then

1) f is injective and continuous.
ii) If (X,d) is complete and each Ay is closed, then D is closed.

i) If each Ay is open then f is an embedding.

Proof. A complete proof of this proposition can be found in (KECHRIS, 1995), Proposition
7.6. [
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Theorem 1.31 (Alexandrov-Urysohn). The Baire space @® is the unique, up to homeomorphism,

non-empty Polish zero-dimensional space for which all compact subsets have empty interior.

Proof. A proof of this theorem can be found in (KECHRIS, 1995), Theorem 7.7. O]
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1.1.2.2 Borel sets

Definition 1.32. An algebra on a set X is a collection .7 of subsets of X such that

(1) X € o,
(ii) whenever A belongs to .o/ so does X \ A; i.e., &7 is closed under complements;
(iii) .7 is closed under finite unions.

Definition 1.33. An algebra closed under countable unions is called a o-algebra on X.

Note that @ € &7 if o/ is an algebra and the intersection of a non-empty family of

o-algebras on a set X is a o-algebra on X.

Definition 1.34. A measurable space is an ordered pair (X,.o/) where X is a set and </ a

o-algebra on X. Sets in &7 are called measurable.

Definition 1.35. Let ¢ be any family of subsets of a set X. Let . be the family of all o-algebras
containing ¢. Note that .% contains the discrete o-algebra &?(X) and hence is not empty. Let
0 (%) be the intersection of all members of .. Then 6(¥) is the smallest c-algebra on X
containing ¢. 6(¥) is called the c-algebra generated by ¢ or ¢ is a generator of 6(¥).

Let 7 C Z(X)and Y C X. We set
Dy ={BNY :B<€ P}.

Let (X, %) be a measurable space and Y C X. Then A|y is a c-algebra on Y, called the trace of
ABonY.

If X is any metric space, or more generaly any topological space, the c-algebra generated
by the family of open sets in X is called the Borel c-algebra on X and is denoted by Hy. Its

members are called Borel sets.

Definition 1.36. Let (X, .<7) and (Y, %) be measurable spaces. A map f : (X, o) — (Y, %) is
called measurable if f~!(B) € </ for every B € .

Definition 1.37. A measurable function f: (X, %x) — (Y, %y) is called Borel measurable, or

simply Borel.

Proposition 1.38. If X and Y are topological spaces, then every continuous function f: X — Y

is Borel.

Proof. Remember that f is continuous iff f~!(U) is open in X for every open U C Y. ]
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1.1.2.2.1 The Hierarchy of Borel sets

Let X be a set and .# a family of subsets of X. We put

ﬁG:{UAn:Aneﬁ}

ncw

and

%:{ﬂAn:Aneff}

new

So, Zs(Fg) is the family of countable unions (resp. countable intersections) of sets in
7. The family of finite unions (finite intersections) of sets in .# will be denoted by .%; (resp.
Fs). Finally, .7 = {A CX : X\ A € F}. Note that .Z; C Z5, ¥, C Fg, F6=—((—F)s)
and F5 = =((—~F)q).

Let X be a metrizable space. For ordinals ¢, & < @, we define the following classes by

transfinite induction:

(X)) ={U C X : U open}

T (X) = {F C X : F closed}

forl < a < wy,

Te(X) = | U Mp(x)

B<a o
M) = | U Z(X)
B<a s

Finally, for every 1 < o < oy,
Ag(X) = Zg(X) NTTg(X)
Note that
e AJ(X) is the family of all clopen subsets of X;

e X9(X) is the set of all Fi subsets of X; and

e TT9(X) is the set of all G sets in X.
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The families %, (X ), 1% (X) and A (X) are called additive, multiplicative, and ambigu-
ous classes respectively. A set A € X%, (X) is called an additive class o set. Multiplicative class

a sets and ambiguous class o sets are similarly defined.

Some elementary facts.
(i) Additive classes are closed under countable unions, and multiplicative ones under countable
intersection.

(i1) All the additive, multiplicative, and ambiguous classes are closed under finite unions and

finite intersections.

(i) Forall1 < a < oy,
Y9 = —T1Y (equivalently, TS, = —x%)

(iv) Forax > 1, Ag is an algebra.
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1.1.2.3 Analytic sets

Definition 1.39. Let X be a Polish space. A set A C X is called analytic if there is a Polish space
Y and a continuous function f: Y — X with f(Y) = A.

The empty set is analytic, by taking ¥ = 0.

By Theorem 1.25, we can take in this definition ¥ = @® if A # 0. The class of analytic
sets in X is denoted by X1 (X). The classical notation is A(X).

Proposition 1.40. Let X be a Polish space and A C X. The following statements are equivalent.

(i) A is analytic.
(ii) There is a continuous map f : ®® — X whose range is A.

(ii1)) There is a Polish space Y and a Borel set B C X x Y whose projection is A, that is,
A = projx(B).

(iv) There is a closed subset C of X x @® whose projection is A, that is, A = projx(C).

(v) For every uncountable Polish space Y there is a G5 set B in X X Y whose projection is A,
that is, A = projx(B).

Proof. A proof of this proposition can be found in (SRIVASTAVA, 1998), Proposition 4.1.1. [

Theorem 1.41. Every uncountable analytic set contains a homeomorphic copy of the Cantor set

and hence has cardinality c.

Proof. A complete proof of this theorem can be found in (SRIVASTAVA, 1998), Theorem
4.35. ]

We can find a relationship between Borel and analytic sets. For this we need the following

Theorem 1.42 (Lusin-Souslin). Let X be Polish and A C X be Borel. There is a closed set
F C @® and a continuous bijection f : F — A. In particular, if A # 0, there is also a continuous

surjection g : @® — A extending f.

Proof. A proof of this theorem can be found in (KECHRIS, 1995), Theorem 13.7. O]

Corollary 1.43. Zy C X1(X).
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1.1.3 Baire spaces

There are two approaches to study Baire spaces: one of them is to use first and second
category sets and the other way is to use open and dense sets. In this first part we will discuss
some results of the first approach of the Baire spaces, as they will help us later to characterize

them using a modification of the Banach-Mazur game. Later we will use the second.

For this part we follow the books of (WALDMANN, 2014), (SINGH, 2013) and (HA-
WORTH; MCCQY, 1977).

Let X be a topological space, we start with some definitions and properties.
Definition 1.44. A set A C X is nowhere dense in X if Int(A) =0

Proposition 1.45. Let N be a subset of a space X. Then the following are equivalent:

(i) N is nowhere dense in X.
(i) X \ N is dense in X.

(111) For each non-empty open set U in X there exists a non-empty open set V such that V C U
and VNN =0.

Proof. (i = ii) Let W be any open subset of X. Since Int(N) = 0, then WN (X \ N) # 0.
(ii = iii) Consider V = U N (X \N).
(iii = i) If Int(N) # 0, let x € Int(N), so there exists an non-empty open set A such that

x €A CN, in particular x € N. Then ANN # 0, contradiction.

]

Proposition 1.46. Let Y be a subspace of X, and let N be a subset of Y. If N is nowhere dense
in Y, then N is nowhere dense in X. Conversely, if ¥ is open (or dense) in X and N is nowhere

dense in X, then N is nowhere dense in Y.

Proof. Suppose that N is nowhere dense in Y. Let U be a non-empty open subset of X. If
U NY = 0 we are through, so suppose that U intersects Y. Then there exists a non-empty open
set V,openinY, such that V CUNY and VNN = (. Now there is a set W, open in X, such that
V=WnNY.Thus, W CU and W NN = 0, therefore N is nowhere dense in X.

Now suppose that Y is open in X and that N is nowhere dense in X. Let V be a non-empty
open set in Y. Then V is open in X. Therefore, there exists a non-empty set U, open in X, such
that U CV and U NN = 0. Thus, N is nowhere dense in Y since U is also openin Y.

]
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Definition 1.47. A set A C X is meager (or of first category) in X if A = U A,, where each

A, is nowhere dense in X. A topological space X is called meager in itself 1f it can be written as

a countable union of closed sets with empty interior.

The following proposition collects some basic properties of meager subsets:

Proposition 1.48. Let X be a topological space.

(i) A subset of a nowhere dense subset is again nowhere dense.
(i1) A finite union of nowhere dense subsets is again nowhere dense.
(iii) A subset of a meager subset is again meager.

(iv) A countable union of meager subsets is again meager.

Proof. A proof of this proposition can be found in (WALDMANN, 2014), Proposition 7.1.3. [

Corollary 1.49. Let X be a topological space and A1,A3,--- ,A, C X be open and dense subsets.
Then also A1 NA>N---NA, is open and dense.

Proposition 1.50. Let X be a topological space. Then the following statements are equivalent:

(1) Any countable union of closed subsets of X without interior points has no interior points.
(i1) Any countable intersection of open dense subsets of X is dense.
(i11)) Every non-empty open subset of X is not meager.

(iv) The complement of every meager subset of X is dense.

Proof. A proof of this proposition can be found in (WALDMANN, 2014), Proposition 7.1.5. [

Proposition 1.51. In a topological space X, the union of any family of meager open sets is

meager.

Proof. A complete proof of this proposition can be found in (HAWORTH; MCCQY, 1977),
Theorem 1.6. ]

Theorem 1.52. Let A be a subset of the space X, and suppose that for every non-empty open set
U, there exists a non-empty open set V contained in U such that V N A is of first category in X.

Then A is of first category in X.

Proof. A complete proof of this theorem can be found in (HAWORTH; MCCQOY, 1977), Theo-
rem 1.7. u
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Now we will focus on the second approach, which will be of more importance in order

to introduce the Banach-Mazur game.

Definition 1.53 (Baire space). Let X be a topological space. Then X is called a Baire space if

the intersection of each countable family of dense open sets in X is dense.

As we mentioned earlier, usually the categorical version of Baire spaces is part (iii) of
Proposition 1.50, so we see that these are equivalent. Also note that a Baire space is not meager

in itself.

We collect now some properties of Baire spaces:

Proposition 1.54. Let X be a non-empty Baire space.

(i) Let {A,},ce be a countable closed cover of X. Then at least one A, has non-empty interior,
Int(A,) # 0.

(i) Let A C X be a non-empty open subset. Then A (with the subspace topology) is a Baire

space again.

(iii) Let B C X be a meager subset. Then X \ B (with the subspace topology) is a Baire space

again.

Proof. A complete proof of this proposition can be found in (WALDMANN, 2014), Proposition
7.1.8. [

In contrast, not every closed subspace of a Baire space is a Baire space, as can be seen by
taking the space R?\ {(x,0) : x € R\ Q}. Note that {(x,0) : x € R\ Q} is nowhere dense in R?,
so by Proposition 1.54, (iii), R?\ {(x,0) : x € R\ Q} is a Baire space. Also the closed subspace
{(x,0) : x € Q} is meager in itself. Therefore {(x,0) : x € Q} is not a Baire space.

This motivates the following definition.

Definition 1.55 (Hereditarily Baire space). A Baire space X is hereditarily Baire” if every
closed subspace of X is a Baire space.

For example, every complete metric space is hereditarily Baire. In a Baire space, the

complement of any set of first category is called a residual (or comeager) set.

Proposition 1.56 (Oxtoby). In a Baire space X, a set E is residual if and only if E contains a
dense G4 subset of X.

2 Some authors use ‘completely Baire’ instead of ‘hereditarily Baire’.
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Proof. Suppose B =, Gn, Where each G, is open, is a dense G subset of E. Then each G,
isdense, and X \ E C X \ G = U, ,(X \ G,) is of first category, so X \ E is of first category.

Conversely, if X \ E = U< o An € U, < o An» Where A,, is nowhere dense, let B= ), ,(X \
A,). Then B is a Gg set contained in E, also each X \ A, is dense. As X is Baire, it follows that B

is dense. O]

Corollary 1.57. Let E be a subset of R. Then E contains a dense G5 subset of R if and only if

E is residual.

We finalize this section defining productively Baire spaces. Later we will study the

problem of the product of Baire spaces which is related to this last definition.

Definition 1.58. A Baire space X is productively Baire if X x Y is Baire for every Baire space
Y.
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1.2 Set theory

In this section we will introduce some basic concepts of set theory, which will help us
later for some examples of product Baire spaces. For this part we follow the books of (JECH,
2003), (CIESIELSKI, 1997), (SCHIMMERLING, 2011) and JUST; WEESE, 1997).

1.2.1 Some facts about ordinal and cardinal numbers

We begin with some results on cardinal arithmetic.

Proposition 1.59. If k is an infinite cardinal and |X,| < x for all @ < Kk then

U Xa

a<K

<x

Proof. A proof of this proposition can be found in (CIESIELSKI, 1997), Corollary 5.2.7. [J

Let A and k be cardinals. We define

A= A%

<K

For example, for a set A let A<® = |J,,., A". Thus A< is the set of all finite sequences

with values in A.
Corollary 1.60. If x is an infinite cardinal, then |K<?| = k.

Theorem 1.61. If A and K are cardinal numbers such that A > @ and 2 < k < A then k* = 2*.

In particular, A* = 2% for every infinite cardinal number A.

Proof. A proof of this theorem can be found in (CIESIELSKI, 1997), Theorem 5.2.12. ]
Proposition 1.62. For every infinite set X and nonzero cardinal k¥ < |X|
[X]°] = |[X]=%] = X .
Proof. A proof of this proposition can be found in (CIESIELSKI, 1997), Proposition 5.2.14. [
In particular |[R]?| = (29)? =29 =.
Definition 1.63. If y is any limit ordinal, then the cofinality of y is
cf(y) =min{type(X): X CyAsup(X)="v},

where type(X) is the unique @ € ON such that (X, €) = («, €).
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Definition 1.64. Let y be an ordinal number. y is regular if ¢ f(y) =y and singular if ¢ f(y) <
Y.

Definition 1.65. Let k be a cardinal. The least cardinal A > « is called the cardinal sucessor of
K, abbreviated by k. A cardinal k is called a sucessor cardinal if there is some cardinal u < k

with k = [,LJ“; otherwise x is called a limit cardinal.

Proposition 1.66. For every infinite cardinal number k, k' is regular. In particular ¢* is regular.

Proof. A complete proof of this proposition can be found in (SCHIMMERLING, 2011), Lemma
4.32. O

Definition 1.67. Let ¥ be an ordinal number. A subset C of ¥ is called club if it is closed (in
the order topology of x) and unbounded. A subset A of ) is called stationary in y if A has

non-empty intersection with every C club in %.
Example2. (i) If a < ), then {B < @, : o < B}isaclubin w;.
(ii) {o < o; : a is a limit ordinal} is a club in .
Let k be an uncountable regular cardinal. We have the following remarks:
1. A stationary set is unbounded in k. Indeed, let ¥ < k. Note that [y+ 1, k[ is a club in K,
then SN [y+ 1, k[# 0, so there is & € Ssuchthat y < y+1 <E.

2. There are stationary sets that are not club in k. In fact, consider the set S = k\ {w}. We
claim that S is stationary, otherwise, there is a club C in k such that SNC = (k\ {@})NC =
0 so C C {w} which is bounded in x, contradiction. Note that S is not closed, because
® C S and sup(®) = @ ¢ S. Thus, S is a stationary set that is not a club.

3. Also note that if S is stationary in k, and S C T C k, then T is stationary in K.

Proposition 1.68. Suppose that x is a regular uncountable cardinal. If A and B are club in K,
then AN B is club in k.

Proof. A complete proof of this proposition can be found in (CUNNINGHAM, 2016), Theorem
9-3 .7- D

In particular, if K is an uncountable regular cardinal. Then, every club set is stationary in
K, because the intersection of two clubs in x is a club in k.

Proposition 1.69. Let k be an uncountable regular cardinal. If 6 < k and (Cy : 0t < 0) is a

sequence of club subsets of k, then the set

ﬂ{Ca:a<9}

is aclubin .
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Proof. A complete proof of this proposition can be found in (JECH, 2003), Theorem 8.3. [

Proposition 1.70. Let x be an uncountable regular cardinal and f : kK — k be a function. Then
{a<x: flo] Ca}isaclubin k.

Proof. Denote C = {a < k: fla] C a}. We will first show that C is closed in k. Indeed, let
o < k with CNa # 0. Note that sup(CN @) < K, because k is regular. Let B < sup(CNa) =
U(CNa), so there exists Y € CN o such that B < 7, in particular f[y] C v < a then f(B) € 7,
so flsup(CNa)] Csup(CNa).

Now we will show that C is unbounded in k. Let o < k. First, consider sup(f[c]) =
sup{f(B) : B < o}, since K is regular, sup(f[c])+ 1,0+ 1 € k. Then

Bo :=max{oc + 1,sup(f[o])+1} < x

Assume that the monotone strictly increasing sequence (f; : j < n) with B, < Kk is already
defined. Define

Bur1 == max{B, + 1,sup(f[B]) + 1} <

Note that, for each n € @, we have f(f,) C B,+1. As Kk is uncountable regular, we have
B =sup{B,:n€ w} < k, and we obtain that

fB1 = fIU{B:n € o} = J{fIBi] : n € @} S| J{Bur1:n < @} = B.

Thus B € C and o < B, therefore C is unbounded in k.

[]

Lemma 1.71. Let x be a regular uncountable cardinal and let & € k. If § is stationary in K, then
S\ «a is stationary in k.

Proof. Let C be a club in k. Note that [+ 1, k[ is a club in k then CN[o + 1, k[ is a club in Kk
so there exists Y € (CN [+ 1,x[) NS. Therefore y € (S\ a)NC. O

Finally, the following example of stationary set will be of vital importance later, as it will

help us build examples of Baire spaces whose product is not Baire.

Definition 1.72. Cy ¥ is the subset of ¥ of ordinals of cofinality @. That is,

Cox =1{B <x:cf(B) = o}

Lemma 1.73. If x is uncountable and regular, then C, Y is stationary.



1.2. Set theory 37

Proof. Let Abe aclubin Y. As y is regular and A is unbounded, |[A| = . Let (aq)q<y be an
enumeration of A in strictly increasing order. As A is closed, agp = sup{a, : n € @} € A; then
Cf(aw) = . Thus Ay - wa and wa ﬁA ?A 0 D

Theorem 1.74 (Solovay). If ¥ >  is a regular cardinal, then any stationary subset of ) can be

split into ¥ many disjoint stationary subsets of .

Proof. A complete proof of this theorem can be found in (JECH, 2003), Theorem 8.10. L]

Lemma 1.75. If ¥ > o is regular, the union of less than ¥ many nonstationary sets is nonsta-

tionary.

Proof. Assume that { Ny, : @ <y} are nonstationary sets, where y < x. By definition, there exist
club sets {Cq : @ <y} such that Ny NCq =0 (¢ <7). Set N = Ug<y Na, C = Ng<yCa- By
Proposition 1.69, C is a club. Also note that CNN = 0, so N is non-stationary, as claimed. [

Corollary 1.76. Suppose that k is a regular uncountable cardinal and that y € k. Let (Sy, : &t € 7)
be a y-sequence of subsets of k. Suppose that the set (JycySq 18 stationary in k. Then Sq is

stationary, for some o € 7.

Theorem 1.77 (Pressing Down Lemma or Fodor’s Lemma). Let k be a regular uncountable
cardinal, S C K be a stationary set and let f : § — « be such that f(y) <y for every y € S (such
a function is called a regressive function). Then there exists an o < & such that f~!({a}) is

stationary.

Proof. A complete proof of this theorem can be found in (JUST; WEESE, 1997), Theorem
21.12. D

When cf()) > o, we can define a map x : y® — Jx, where *(f) = f* is the least
greater than f(n) for all n € .

Proposition 1.78. Let ¥ > @ be regular. If K C y® is closed, and W = {f* : f € K} is stationary,
then there is C club in ) such that CNCypx C W

Proof. Let 6 € x<® and Wg = {f*: 0 C f € K}. Consider £ = {0 : Wy is stationary }. By
hypothesis X # 0, because @ € X.

Claim 1.78.1. Using the Pressing Down Lemma one can build a function 0 : ¥ x y — X such
that

(i) c C0(o,a);

(i) 6(o,0) & Uece "
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Proof. Indeed, let o € |, X" and & < . Consider P =W, \ . By Lemma 1.71, P is stationary

in ). Define
& @ P —
[T — &) =f(n),
where n = min{n € @ : f(n) > o}. Note that g5(f*) < f*, for all f* € P, so by the Pressing

Down Lemma (Theorem 1.77), there is ¥ <  such that g5 ' ({y}) = {f* € P: g6 (f*) = f(n) =7}
is stationary. Note that ¥ > «. Finally, define

hog' (7)) — o
[ = () =n,

where 1 € @ is such that g (f*) = f(n). Note that g5' ({¥}) = U,ee ' ({n}). Then, by Corol-
lary 1.76, there is an m € @ such that A~ ({m}) = {f* € g5 ({y}) : h(f*) =m} = {f* € P:
f(m) = v} is stationary.

If m € dom(o), then 6(0,0) = 0. In this case 6(0,a) & U,cqe @", because o(m) =
fm)=y=>a.
If m ¢ dom(o), som > |o|. We claim the following

Claim 1.78.2. There are a finite sequence of stationary sets (Sp,- - ,Sm,|0|,1> and a finite
sequence of ordinals (Bo, -, B—|o|—1) such that So C S and, for i <m —|o|—1, then S;11 C S;
and if f* € S; then f(i+ |o|) = B

Proof. In fact, for i = 0, consider

g S — X
[ — go(f*) = f(lo]) < s,
where S = {f* € P: f(m) = y}. By the Pressing Down Lemma, there exists y < x such that
g ' ({Bo}) = So.
For 0 <i<m—|o|—1, consider
g  Si-1 — X
o= &) =f(ol+i) < f7,

By the Pressing Down Lemma, there exists B; < x such that g; ' ({B;}) = S; C S;_1. Note that, if
f* €8y, then f(i+]o]) = B -

Now we will build 8 € y"*!. Let 0||5) = 0 and 8(m) = v. Then, if |o| <i < m, define
6 (i) = Bi_||- Finally, note that S,,,_ |51 € Wp. In fact, let f* € S, 5|1, in particular, 6 C f € K
and f(m) =vy. By Claim 1.78.2, f(i+ |o|) = Bi fori <m— |c| — 1, so f € Wj. O

Consider C={y < x: 0[(ENYy~?) x 7] C y=?}. We claim that C is a club in ). Indeed,
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e (s closed.
Let y € C', we will show that 8[(ZNy<?) x y] C y<®. Let (0,a) € (ZNY~?) x 7, so
there is ng € @ such that o € ¥™. Consider m = max{o(nyp— 1),a} < ¥; then there exists
B €lm,y+1[N(C\{y}),soa < B <yand o € <2, then (0, ) € O[(ENP<?) x B] C
B=® C y=®. Therefore C' C C, that is, C is closed.

e C is unbounded.
For this, define

fx — x
y — f(y)=sup{6*(c,a): 0 € ZNy~? a <y},

where 6% (o, o) =sup(ran(6(o,a))). Note that f is well defined, that is, f(y) = sup{6*(o,a):
o EXLNY<? o <y} < g, because  is an uncountable regular cardinal.

By Proposition 1.70, {y < x : f[y] C v} isaclubin x. Then
C = {y < x: yis alimit ordinal and f[y] C y}

is a club in x. Note that C C C. Indeed, let y € C and let (6,a) € (ENy<?) x 7. As y
is a limit ordinal, there is o < B < ¥ such that ¢ € B<%; then 6*(c, ) < f(B) < ¥, so
0(o,a) € y=°.

Finally, note that CNCgpx C W. Indeed, let y € CNCgpx. Then cf(y) = o, so there exists
a strictly increasing function g : @ — ¥ whose range is cofinal in 7, that is, sup{g(n) :n € @} =7y
and O[(ZNy=?) x 7] C y=®. The main idea is to iterate 6, and g will help us keep going up to .

So inductively build a sequence o, as follows:

(i) 00 :=6(0,5(0)) and

(il) 0,41 :=0(0n,8(n)).

Note that 6, € 2N y<? and for each n € ®, 6, C 6,11 = 6(0,,g(n)). Consider

f=1 on

ncw

We claim that f € y® and f* = 7. In fact,

o dom(f)=w

Note that for each n € @, dom(o,) € ® then dom(f) C ®. Also dom(f) is infinite, other-
wise, dom(f) is finite. Then consider B = max{f(n) : n € dom(f)}. As g is cofinal, there
exists m €  such that B < g(m). Also consider 6,1 = 6(0Om,g(m)) & g(m)<® so there
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exists m’ € dom(6,,11) C dom(f) such that g(m) < 6,1 (m') = f(m') so B < g(m) <
f(m'), contradiction. Therefore dom(f) is infinite, so dom(f) is unbounded in ®. Then
® C dom(f). Indeed, let m € @, then there exists n € dom(f) such that m < n € dom(f)
som € dom(f).

o f*=sup{f(m):mea}=7y
Let B € v, as ran(g) is cofinal in 7, there is m € @ such that f < g(m). By construc-
tion, Gyr1 = 0(0m,g(m)) C f and Opiy & g(mM)<® = U,cp &(m)", then there exists
n € dom(Oyy1) C dom(f) such that B < Gpy1(n). Otherwise, Gy € (B+1)<¢ C
(g(m))<®, contradiction. Therefore, B < G,,11(n) = f(m). On the other hand, note that
sup{f(m) :m € o} C y, because o;, € Yy~ for each m € @.

Finally, note that f € K. Indeed, for each n € w we have that o, € X, that is, W,
is stationary. In particular Wi, # 0, so there exists f, € K such that o, C f,. We claim that
fo =5 fin x®. In fact, let f € Ny = {h € x? :s C h} where s = (s(0),--- ,s(ns— 1)) € x<°.
Ass C f,ng—1 € dom(f) =,ecqedom(oy) then there exists mg € @ such that s C o,,,. Then,
if m > my, f,, € Ng therefore f, o, f.

]

We have a generalization for finite products and the proof is similar to that of Lemma
1.78.

Corollary 1.79. Let m < w and k > ® be a regular cardinal. If K C (k®)™ is closed and
W={a:a=fy=-=fu1and (fo,-, fu-1) €K}

is stationary, then there is a club set C in k such that CNCpk C W.
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1.2.2 Combinatorial set theory

In this part we will see some consequences of Martin’s axiom concerning the G5 and

meager subsets of the real line.

Definition 1.80. A family A is called a A-system if there is a set r such that a M b = r whenever
a,b € Aanda##b.

Theorem 1.81. (A-System Lemma) Let x and A be infinite cardinals such that A is regular and
the inequality v<* < A holds for all v < A. If B is a set of cardinality at least A such that |b| < K
for all b € B, then there exists a A-system A C B with [A| = 1.

Proof. A complete proof of this theorem can be found in (JUST; WEESE, 1997), Theorem
(16.3). [

The following theorem is the most used version of the A-system lemma and it is a

consequence of Theorem 1.81.

Theorem 1.82. Every uncountable family of finite sets contains an uncountable A-system.
Proof. A proof of this theorem can be found in (JUST; WEESE, 1997), Theorem (16.1). ]

For this basic part we will use the first version, later for applications with the Banach-

Mazur game and the infinite products of Baire spaces we will use the second version.

Definition 1.83. Let (P, <) be a partially ordered set. A subset D C P is dense if
VpePIqgeD(¢<p).
Definition 1.84. A subset F of a partially ordered set (P, <) is a filter in P if

(F1) forevery p,q € F thereis an r € F such that r < p and r < ¢, and

(F2) ifge F and p € Pare suchthatg < pthen p € F.

Note that a simple induction argument shows that condition (F1) is equivalent to the

following stronger condition.

(F1') For every finite subset Fy of F there exists an r € F such that r < p for every p € F.

Definition 1.85. If X is a non-empty set, then a filter on X is a subfamily .%# of %2 (X) such that

e .7 is closed under supersets, i.e.,

VWYeFNZCX(YCZ—ZeF);
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e .7 is closed under finite intersections, i.e., (VH € .% for all non-empty H € [.%]|<%.

Note that if we consider (Z?(X),C) and . C (X)), this definition is a particular case
of the previous definition in a partially ordered set.

Definition 1.86. Let (IP, <) be a partially ordered set, and let & be a family of dense subsets of
[P. We say that a filter F in P is - generic if FND # @ forall D € &.

Theorem 1.87 (Rasiowa—Sikorski lemma). Let (P, <) be a partially ordered set and p € P. If
is a countable family of dense subsets of [P then there exists a Z-generic filter F in P such that
peF.

Proof. A proof of this theorem can be found in (CIESIELSKI, 1997), Theorem 8.1.2. ]

Definition 1.88. Let (P, <) be a partially ordered set.

e x,y € P are comparable if either x <y or y < x. Thus a chain in P is a subset of P of

pairwise-comparable elements.

e x,y € P are compatible (in PP) if there exists a z € P such that z < x and z < y. In particular,
condition (F1) from the definition of a filter says that any two elements of a filter F are

compatible in F.

e x,y € P are incompatible if they are not compatible. In this case we denote this fact by

xly.

e A subset A of P is an antichain (in IP) if every two distinct elements of A are incompatible.
An antichain is maximal if it is not a proper subset of any other antichain. An elementary
application of the Hausdorff maximal principle shows that every antichain in IP is contained

in some maximal antichain.

e A partially ordered set (IP, <) is ccc (or satisfies the countable chain condition) if every

antichain of P is at most countable.

Consider the following axiom, known as Martin’s axiom and usually abbreviated by MA.

Martin’s axiom : Let (P, <) be a ccc partially ordered set. If & is a family of dense
subsets of P’ such that |Z| < ¢, then there exists a Z-generic filter in PP.

Note that the Continuum Hypothesis implies Martin’s axiom. Now we will see some

consequences of Martin’s axiom in topology.

Theorem 1.89. Assume MA. If X € [R]<¢ then every subset ¥ of X is a G subset of X, that is,
there exists a Gg set G C Rsuchthat GNX =Y.
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Proof. Let X € [R]<“and fix ¥ C X. We will show thatY isa Gg in X. Let Z = {B, : n < o}

be a countable base for R.

First notice that it is enough to find a set A C o such that for every x € X

x €Y <= x € B, for infinitely many n from A (%)

To see why, define for every k < @ an open set Gy = J{B,:n € A A n > k} and put
G = (k<o Gk- Then G is a G set and for every x € X we have

e if x €Y, by (%), x € B, for infinitely many n from A. Then for each k < @ there exists
m € A such that x € B,, and m > k, so x € G\Vk < .

e if x € G for all k < o then for each k < ® there is my, € A such that my, > k and x € By,

that is, x € B, for infinitely many n from A.

In summary, for every x € X we have

xeY <= xeGiforallk < w

We define the partially ordered set (P, <) by putting P = [@]<® x [X \ Y]<® and for
(A1,C1), (Ao, Cp) € P we define
(A1,C1) < (Ao, Cy)

provided
(i) A; DAp, C; DCpand
(ii)) ¢ € By, forallm € Ay \ Ag and ¢ € Cp.
Now fory € Y,k < w and z € X \ Y, define the following subsets of P

DE={(A,C) €eP:3me A (m>k A y€By)}

and
E.={(A,C)eP:z€C}.

We will use Martin’s axiom to find a Z-generic filter for

.@:{D’y‘:er Nk<w}U{E;:z€X\Y}.

To use Martin’s axiom, we have to check whether its assumptions are satisfied.
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1. Pis ccc.

Indeed, suppose that there is {(A¢,C¢) : & < @; } an uncountable antichain. Since [®]<® is
countable, there are A € [@0]~? and { < § < @ such that A; = A = A¢. Then (Ag,Cg) =
(A,Ce) and (A, C;) = (A,C¢) are compatible, since (A,Cg UC;) extends them both, as
condition (ii) is satisfied vacuously. Contradiction.

2. 2 is a family of dense subsets of P.

a) ForallycY. k< o, D’y‘ is dense in P.

Indeed, take (A,C) € P. Notice that there exist infinitely many basic open sets B,
such that
y € By, and CN B, = 0. (%)

Take m > k satisfying (+), and notice that (AU {m},C) € D} extends (A,C).
b) Forallz € X \Y, E; is dense in PP.
Indeed, take (A,C) € P and notice that (A,CU{z}) € E; extends (A,C).
3. 2| <.
Note that |7| < |X|+ o < c.

Now apply Martin’s axiom to find a Z-generic filter F in P, and define
A= J{A:(A,C) e F}.
We will show that A satisfies (*). So let x € X.

If x € Y then for every k < @ there exists (A,C) € F N DX. In particular there exists
my € A C A with my > k such that x € By, So x € B, for infinitely many m from A.

If x € X \ Y then there exists (Ag,Cp) € F NE,. In particular, x € Cp. It is enough to prove
that x & By, for every m € A\ Ao, because this implies that {m € A : x € B,,} is a finite set. So take
m € A\ Ag. By the definition of A there exists (A,C) € F such that m € A. But, by the definition
of a filter, there exists (A],C;) € F extending (A,C) and (Ao, Cp). Now (A1,C;) < (Ao,Co),
meACA, m¢gAgand x € Cy. Hence, by (ii), x € B,. O

Finally, if MA holds, we have control over the meager sets of the real line.

Theorem 1.90. If MA holds then a union of less than continuum many meager subsets of R is

meager in R.

Proof. A proof of this theorem can be found in (CIESIELSKI, 1997), Theorem (8.2.6). O

Corollary 1.91 (MA). Let A be a subset of the real line with |[A| < c. Then A is meager.

Proof. Remember that for x € R, {x} is nowhere dense, therefore meager. O
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1.3 Forcing

In this section we will introduce some basic concepts of forcing. Since Cohen was the
first to demonstrate, using forcing and without adding any more hypothesis (for example CH),
that there are Baire spaces whose product is not Baire, we will study this example later. For the
fundamental part of forcing and its properties we follow the books (KUNEN, 1980), (JECH,
2003) and (BELL, 2011).

Definition 1.92. We say that (£?, <) or simply & is a partially ordered set (p.o) if:

e p<pVpe?

e (p<qandq<p—p=q),Vp,qe P

e (p<gandq<r—p<r)Vp,qre?

e there is an element in &, denoted by 1, such that p < 1,Vp € £.

Definition 1.93. We say that p | g (p incompatible with g) if there is no r < p,q. A partially
ordered set & is a forcing if for each p,q € & such that ¢ £ p, there exists p’ < g such that

P Lp.

Suppose .# is a countable standard transitive model of Zermelo-Fraenkel set theory
(ZFC) and let & be a partially ordered set. We denote by .# |G| the smallest model extending

/ and containing G as an element. We collect below some well-known facts.

The elements of the p.o. set & are often called conditions. We say that a condition p
forces a sentence A (to be true in the model .#[G)) if A holds in .#[G] whenever G contains p.
In symbols this is written p |- A.

Theorem 1.94 (Fundamental theorem of forcing). A sentence A is satisfied in .2 [G] if and only
if there is a condition p € G such that p I- A.

Proof. A proof of this theorem can be found in (KUNEN, 1980), Lemma IV.2.24. O]

From properties of generic subsets and the fundamental theorem of forcing it follows
that, to prove that A holds in .Z[G], it suffices to prove that {p : p IF A} is a dense subset of P.

Definition 1.95. Let & be a partially ordered set and let p € &2. A set D C &7 is dense below
p if for every g < p there exists ad € D such thatd < g.

Lemma 1.96. Let G be an ./ -generic subset of &, and @ be a sentence such that p I- @. If D
is dense below p then DN G # 0.
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Proof. Consider D' = DU{q : q is incompatible with p}. Note that D’ is dense in PP, so there
isre D'NG. If r € {q : qis incompatible with p}, we have a contradiction, because G is an
M -generic filter. Therefore DN G # 0. O]

Proposition 1.97. The basic properties of the forcing relation are as follows.

(1) plF—Aif and only if no ¢ < p forces A;
We note that p I- —=—A is equivalent to p I A, therefore,

(1" plFAif and only if no g < p forces —A;

(2) plFAAB if and only if p IF A and p I B;

(3) plFAVBif and only if (Vg < p)(3r < g)[rIF A or r I B];

(4) plFVxA(x) if and only if (Vx € . )[p IF A(x)];

(5) plF 3xA(x) if and only if (Vg < p)(Tr < q)(Ix € A )[r - A(x)].
An important property of the forcing relation is the following:

(6) for any sentence A and any p € P

(3g < p)[gIFAorql-—A].

Proof. A complete proof of this proposition can be found in (KUNEN, 1980), Lemma IV.2.30.
O

If a formula A(x, - - - ,y) is satisfied in a model ., we write

M A(x, - y).

In this notation the fundamental theorem of forcing can be written as follows: .Z[G] It
A(x,---,y)ifand only if (3p € G)[pIF A(x,---,y)]. If #[G]IF A(x,--- ,y) for any generic subset
G of p.o. set P, we write .Z% IF A(x,---,y).

An important class of forcings are those that, instead of any partial order, are given by a
Boolean algebra in their usual order. In fact, it is possible to show that, given any partial order, it

can be “immersed” in a “good way” in a complete Boolean algebra.

The present general version of the method of forcing, which uses the Boolean-valued
models, is due to Solovay, Scott (SCOTT, 1967).

We present only one result on this new forcing point of view, as we will use it later.

Lemma 1.98. Let u be a nonzero element of B. For any partition {u; : i € I} of u (i.e., Y ;cju; = u
and u;.u; = 0 for i # j) and any set {; : i € I} of elements of .Z B there exists t € .#® such that
u <“t=tforalliel,
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Proof. A complete proof of this lemma can be found in (JECH, 1986), Lemma 49. [

1.3.1 Product forcing

If &7 and 2 are partially ordered sets, then the cartesian product P x Q may be partially

ordered pointwise to obtain a partially ordered set & x 2

(Po,q0) < (p1,q1) < po < p1ANgo < q1

It easily seen that &2 x 2, considered as a topological space, with the order topology, is

homeomorphic to the product of topological spaces & and 2.
Lemma 1.99. Let & and 2 be two notions of forcing in .# and let G C &, H C 2. The
following statements are equivalent.

(a) G x H is & x 2-generic over ./ .

(b) Gis &-generic over .# and H is 2-generic over .Z [G].

Proof. A complete proof of this lemma can be found in (JECH, 2003), Lemma 15.9. [

Corollary 1.100. Under the conditions of the previous lemma, then the following are equivalent:

1. GxHis & x 2-generic over ./ .
2. Gis P-generic over .4 and H is 2-generic over .Z[G].

3. H is Z-generic over . and G is &?-generic over .Z [H|.

Futhermore, if (1-3) hold, then .Z[G][H| = .# [H][G].

Lemma 1.101. If &2 and 2 are forcings then the following are equivalent.

(a) & x 2isBairein . Z.

(b) & is Baire in ., and whenever G is &?-generic over .# , then 2 is Baire in .Z[G].

Proof. First, suppose that & x 2 is Baire in .# and G is a &?-generic filter over .Z. Let H be
a Z-generic filter over .# [G] and let a function f : @ — Ord € (.#[G])[H]. By Lemma 1.100,
feH|GxH|=(A|G))[H],so fe |G|

Now, let F be a & x 2-generic over .# and f : @ — Ord € .Z[F]. By Lemma 1.100,
F = G x H, where G is &?-generic over . and H is 2-generic over .Z [G|. As 2 is Baire in
M |G| and f € A |F| = (#[G])[H], we have that f € .#|G] and as & is Baire in .#, then
fe.

O
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CHAPTER

THE BANACH-MAZUR GAME

In this chapter we will study the topological game of Banach-Mazur and its applications.
We will also analyze some of its variations. For the basic part of topological games we follow
the article (AURICHI; DIAS, 2019) and the book (KECHRIS, 1995).

2.1 Definitions about topological games

In all of the games considered :

e there will be two players, Player I and Player II, playing against each other;

o there will be ® many innings — meaning that the innings will be numbered 0,1,2,3,-- -,

and that for each n € @ there will be an n-th inning in the play;

e at the end of each complete play of the game, either Player I or Player II will be the winner

— there are no draws.

Here we are assuming that the game at hand is a game of perfect information, meaning
that, whenever a player must define their next move, it is assumed that they know all the previous

moves made so far in the play.

Definition 2.1. Assume that G is an infinite positional game of perfect information, where Player

I and Player II alternately choose some objects (e.g., points, sets, functions).

A strategy of a player is a function defined for those partial plays of G whose last move
was made by the opponent. (Without loss of generality we may assume that the strategy is defined
for the opponent’s partial plays only, because the strategy determines uniquely the omitted moves

of the player.)
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Intuitively, a strategy is a way of playing the game. This means that a fixed strategy for
one of the players must inform what decision should be taken for each possible situation that this

player might encounter during a play of the game.

Definition 2.2 (Winning strategies). A winning strategy for a player is a strategy that wins the
game, no matter how well the other player plays. In general, one player not having a winning

strategy does not imply that the other player has one.

If Player (I or II) is a player of a game G, we denote by
[TGorllTG

the fact that Player (I or II) has a winning strategy in G, and by Player ¥ G the fact that Player (I

or IT) does not have a winning strategy in G.

Definition 2.3. A game G is

e determined if either I T G or II 1 G;
¢ undetermined otherwise —i.e. if [ /G and I /G
Definition 2.4. Two games G and G’ are dual if
e Player 1 G <= PlayerI1 1 G/
and
e Player 11 G <= PlayerI1 G/
Definition 2.5. Two games G and G’ are equivalent if
e PlayerI1 1 G <= Player 11 G’
and

e Player 11 G <= Player Il 1 G’
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2.2 The Banach-Mazur game

Definition 2.6. The Banach-Mazur game on a topological space X, denoted by BM(X), is played
as follows: Players I and II play an inning per positive integer. In the n-th inning Player I chooses
a nonempty open set A,; Player Il responds with a nonempty open set B,, C A,,. Player I must
also obey the rule that for each n, A,+1 C B,,. A play Ag,Bo,--A,, By, -+ is won by Player II if
Mnew Bn 7# 0; otherwise, Player I wins.

An important observation, that will be of great importance later, is the following. Let %
be a 7-base for the topology of the space X. Then the Banach-Mazur game on X is equivalent to
the Z-Banach-Mazur game on X, the latter being defined by the same rules as the former, with
the extra restriction that both Player I and Player II must necessarily choose elements from % in

their moves.

2.2.1 Applications of the Banach-Mazur game

We start with the game-theoretic characterization of the Baire spaces.

Theorem 2.7. A nonempty topological space X is a Baire space if and only if Player I has no

winning strategy in the Banach-Mazur game BM(X).

Proof. First suppose that Player I has no winning strategy in BM(X). We will show that X is
a Baire space. Note that this is equivalent to proving that if X is not Baire then Player I has a

winning strategy in BM(X).

Therefore, suppose that X is not a Baire space. Then there is a sequence (D), : n € ®) of
open dense sets in X such that (1, D, is not dense, that is, there is a non-empty open set U
such that U N(),,ce, Dn = 0. Now, let us build a winning strategy o for Player I in BM(X).

Indeed, in the first inning Player I plays o(({ )) = U, so Player II responds By. In the
second inning, Player I plays o({By)) = DoNU. Note that this is a valid move, because D, is
open and dense for each n € @, so Player II responds B;. Then, in the inning n € w, Player I
plays 6((Bo,- - ,By—1)) = (DopN---ND,_1) NB,_1. Note that this is a valid move, by Corollary
1.49, so Player II responds B, and so on. Then (,,c, Bn C (e PnNU =0, so ¢ is a winning
strategy for Player I.

Now, suppose that X is a Baire space. We will show that Player I does not have a winning
strategy in BM(X). For this let ¢ be a strategy for Player I. We will construct a nonempty pruned
subtree T C dom(o) and in T we will find a play in which Player I does not win.

Claim 2.7.3. Let o be a strategy for Player I in BM(X). If r = (Bo,--- ,B,) is a sequence of
open sets in the domain of ¢, then there exists a maximal family %; of open sets contained in

o(t) such that {c(t"V) :V € %} is a family of pairwise disjoint non-empty open sets.
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Proof. Lett € dom(o) and consider the family

F={BCo(t):{c(t"V):V € A} is a family of pairwise disjoint non-empty open sets }.

Note that (.#,C) is a partially ordered set, and .% # 0, because {o(7)} € .Z. Also, if
¢ C 7 is a chain, then |J% € .% is an upper bound for €. Then, by the Kuratowski-Zorn

Lemma, .# has a maximal element. We will call this element by %,, for eacht € dom(c). O

To construct 7 we determine inductively which sequences from dom(c) of length n we

putin7 :

e ()ET
o ift€T,thent”V €T if and only if V € ;.

Claim 2.7.4. Uy 4, 06(t"V) is open and dense in & (t), forallt € T

Proof. Suppose otherwise, that is, there exists a non-empty open set W C o (¢) such that
Uveg o(t"V)NW = 0. Note that W ¢ %, and 6(t"W) C W. Then %, U{W} violates the
maximality of %;. O

For each n € w, define 7, = {t € T : [t| =n} and A, = ;e 7, O(1).

Claim 2.7.5. For each n € @, A, is open and dense in Ag = &(( )).

Proof. Suppose by induction hypothesis that A,, is open and dense in o (( )). We will show that
Ap+1 is open and dense in o(( )). In fact, let A C 6(( )) a non-empty open set. So @ # A, NA,
then there exists ¢ € o7, such that @ # o(r) NA. By Claim 2.7.4, there is V € %, such that
0#0c(t"V)NA C A, NA, because 17V € o, . O

Note that, if € o7, and s € .27, |, for some n € @ and (1) N o (s) # 0. Then s =1~V for
some V € %,. Indeed, note that o(¢) N o(s) is a non-empty open set in o(¢), so by Claim 2.7.4,
there isaV € %, such that 0 # (1" V)N o(s). As 0[] is pairwise disjoint, o(t"V) = o (s).
Also 1™V = s, because otherwise there is an ng < n such that s,, # (t"V),, and 0 # o(1"V) =
0(s) C o (Slng+1) Mo ((t7V)|ny+1) = 0, contradiction.

Finally, as X is a Baire space, we have that the non-empty open subspace ¢(()) = U
is Baire. As (A, : n € w) is a sequence of open dense sets in Ag = 6(({)) = U. Then ()¢, An
is dense in Ag. In particular, there is x € (,c,An, 0 x € 6(()) = U. By the last observation,
there is only one Vy € % such that x € 6({Vp)), also, x € Aj. Again by the last observation,
there is only one Vi € #y,, such that x € 6((Vo,V1)), and so on. Then there exists a run
(o(()),V0,0({Vo)),V1,---) such that (V,, : n € @) € T and x € (,,c, Vi, that is, Player II wins
this run. Then o is not a winning strategy. Therefore, Player I has no winning strategy in
BM(X). O
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Theorem 2.8. In every complete metric space X, Player II has a winning strategy in BM(X).

Proof. Let X be a complete metric space, we are going to build a winning strategy  for Player
IT in BM(X). Indeed, in the first inning Player I plays Uj a non-empty open set. Let xo € Uy and
ro < 1 such that ngO) ={y € X :d(xo,y) <ro} C Up. Then Player II plays 6((Up)) = B%O). In
the second inning Player I plays U; C B%O). Letx; €¢Ujand r| < % such that BS)I”) C U;. Then
Player II plays 6((Uo,U)) = Bgfl). In the inning n € , if Player I plays U, let x,, € U,, and
I < rh%] such that Bﬁf”) C U,. Then Player II plays 6 ((Up,--- ,U,)) = Bgf”), and so on. Note

that (x,),ce is @ Cauchy sequence. Indeed, let € > 0 and ng € @ such that nolﬁ < €. Then, if

m,n > ng, d(xXm,x,) < €.

As X is a complete metric space, there exists x € X such that (x,),ce converges to x.

We claim that x € BY":"), for all 1 € w. Indeed, suppose that x € Bﬁf’fll). We will show that

n+1 2

XEB,1»= Bgfgﬁ. Note that B, is closed. Consider the sub-sequence (xx)i>n+2 C Bp+2, and
note that (Xg)g>n+2 C B2 also converges to x € By, y2. Then x € )¢ wBEf”) and therefore 0 is a

winning strategy for Player II in BM(X). U

Corollary 2.9. Every complete metric space is Baire.

Proof. Let X be a complete metric space. As Player II has a winning strategy in BM(X), we
have that Player I has no winning strategy in BM(X). Therefore, by Theorem 2.7, X is a Baire
space. [

Proposition 2.10. Let X be a topological space and let D be a G5 and dense subset of X. Then
Player II has a winning strategy in the game BM(X) if and only if Player II has a winning strategy
in BM(D).

Proof. Let D =, Dy be dense Gg set, note that D, is dense for each n € . Let d be a

winning strategy for Player IT in BM(X). Now we are going to build a winning strategy &’ for
Player II in BM(X).

Indeed, in the first inning in D, Player I plays A N D, where A is open in X. Now in X,
in the first inning, Player I plays A N Dy, then Player II responds 8 ((A° N Dy)) = B'. Then in D,
Player II responds 6'((A° D)) = B'ND.

In the second inning in D, Player I plays A> N D. Now in X, in the second inning, Player I
plays (A>NB')N Dy, so Player I responds § ((A° N Dy, (A>NB'YND;)) = B>. Then in D, Player
1T responds 8'((A°ND,A>N D)) = B>ND, and so on.
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BM (D)
Player | | Player Il
AND

B'nD
A’ND
B*ND

BM(X)
P(I)ayer I Player Il
AN Dy
8((a%) =B
(A2NB")ND;

5((A°N Dy, (A>NBYYND,)) =B

As 0 is a winning strategy in X, then (), , B" # 0. Choose x € (), B". In particular
x € D, therefore (), ,(B"ND) # 0. So &’ is a winning strategy for Player II in D.

Now suppose that Player II has a winning strategy 6’ in BM(D). We will show that

Player II has a winning strategy 6 in BM(X).

Indeed, in the first inning in X, Player I plays Ag. Now in D, in the first inning, Player
I plays Ag N D, then Player II responds 6'((Ao N D)) = By N D. Then in X, Player II responds

5(<A0>) = B NAy.

In the second inning in X, Player I plays A>. Now in D, in the second inning, Player
I plays A, N D, next Player II responds 6((Ao N D,A; N D)) = B3N D. Then in X, Player II
responds 6'((Ag,A2)) = B3 NA,, and so on.

BM (X)
Player | | Player Il
Ap
B NAy
Az
B3NA,>

BM(D)
Player | | Player Il
AoND

BiND
AxND
B;ND

As § is a winning strategy for Player Il in BM(D), then 0 # (), B2n+11D C ,co B2ns1N

Ay, Threfore § is a winning strategy for Player IT in BM(X),

]
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Definition 2.11. A topological space X is defined to be Choquet if Player II has a winning
strategy in the Banach-Mazur game BM(X).

Choquet spaces were introduced in 1975 by White who called them weakly a-favorable

spaces. Note that every Choquet space is a Baire space this follows from Theorem 2.7.

Now we present the result of Oxtoby (OXTOBY, 1980), which gives us a characterization

for metrizable Choquet spaces.

Theorem 2.12 (Oxtoby). A metrizable space X is Choquet if, and only if, it contains a dense

completely metrizable subspace.

Proof. First, suppose that X contains a dense completely metrizable subspace G. By Theorem
1.19, G is a Gg-set and dense in X. Consider X, the completion of X. In particular X is a Baire
space, because it is a complete metric space. Note that G is also a Gg-set and dense in X. Put

G = e Gn- Note that G, is open and dense in X, for each € ®.

As X is a complete metric space, it follows that Player IT has a winning strategy in BM(X).
Also, by Proposition 2.10, we have that Player II has a winning strategy 6’ in BM(G), as G is a
G5 dense subset of X. Again by Proposition 2.10, Player II has a winning strategy in BM(X).
Then X is Choquet.

Now, suppose that X is Choquet. We will show that X contains a dense completely
metrizable subspace. Consider X, the completion of X. Let § be a winning strategy for Player I
in BM(X). We start with some claims.

Claim 2.12.6. If § is a winning strategy for Player II in BM(X), then there exists a winning
strategy 0’ for Player II in BM(X) such that for each t = (U, - - ,U,) € dom(8’) we have that

(i) &(t) =V,NX, where V, is a non-empty open set in X with diam(V,) < 2" and such that
if U, =V, NX then V,, C V,;;

(i) also, if 1"U, 1 € dom(8'), that is, 8'(t U, 1) = V41 NX. Then V, | CV,.

Proof. We will build &’ as follows:

In the first inning, if Player I plays Uy = Vo N X, where Vj is a non-empty open set in X,
then Player I plays 8((Up)) = WoNX. Let xo € Vo' Wy NX and rg < 4 such that B € Won Vg
and set &' ((U)) = B,%“) N X. In the second inning, if Player I plays U =V, NX C B%O) NXa
non-empty open set in X, then Player I plays & ((Uo,U1)) = W1 NX. Consider the non-empty set
Vinw, HB%O), let x; € ViNW, DB%O) and r| < %1 be such that Bgfl) cCVvinw OB%O) and set
&' ((Uy,Un)) = Bg)f') N X. In the inning n € o, if Player I plays U, = V,,NX C Bgff_ll) N X, then
Player II plays 6 ((Up,- - - ,U,)) = W,NX. Choose x,, € V,NW, ﬂB&f’:‘) and r, < # be such

that Bﬁi‘") CV,NW, ﬂBﬁfﬁ’l') and set 6'((Up,---,Uy,)) = Bsf”) N X, and so on.
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As § is a winning strategy for Player II, there exists x € (),co WaNX = NyecoUn C

(x

ﬂnewBrn”) NX. Then &’ is a winning strategy for Player II in BM(X). O

Claim 2.12.7. Let 6’ and § as above. If s = (U, -+ ,U,_1) € dom(J), then there is a maximal
family %, contained in &' (s) such that, if V, N X = §'(s"B), where B € %y, then ¥, = {V, : B €

Ay} is a family of pairwise disjoint open sets in X.
Proof. Lett € dom(0) and consider the family

F ={B C8(s):{6'(s"B) : B€ A} is a family of pairwise disjoint non-empty open sets }

Note that (.%,C) is a partially ordered set, and .# # 0, because {U,_} € .%. Also,
if ¢ C . is a chain, then % € .% is an upper bound for . Then, by the Kuratowski-Zorn

Lemma, .# has a maximal element, we will call this element %, for each s € dom(9). O

Also, by construction we have that diam(V,,) < 27" for all V, € 7.

Now we are going to build a subtree S C dom(8’) consisting of sequences of the form
(Uo, Vo, U1,\71 oo Uy, Vn), where U; are non-empty open sets in X and V; are non-empty open in
X. Also by Claim 2.12.6, we have that Vo D V| D --- and if V; = V; N X, the run (Up, Vo, Uy, V4, - - )
is compatible with 6.

To construct S we determine inductively which sequences from dom(J’) of length n we

putin S :

o {(U):U € Ay} €S, where A is the maximal family of open sets of Claim 2.12.7.
e if s € S, then s”B € S if and only if B € H,.

Claim 2.12.8. U7 = U{V, : s € S} is dense in V,,_y, for all s = (U, --- ,U,_) € S.

Proof. Suppose otherwise, that is, there exists a non-empty open set W C V,_; such that |J % N
W = 0. Note that W N X ¢ %, therefore AS {WNX} violates the maximality of %. O
For each n > 1, we define #,, = {s € S: |s| = n} and W,, = U{V,, : s € S}.

Claim 2.12.9. For each n > 1, W, is open and dense in X.

Proof. Suppose by induction hypothesis that W, is open and dense in X. We will show that W, | |
is open and dense in X. In fact, let A be a non-empty open set in X. So @ # W, NA and there
exists s € S such that @ # V, NA. By Claim 2.12.8, [J{V,,11 : s € S} is dense in V,,, then there
exists s’ € S,|s'| =n+ 1 such that 0 # V.1 N (V,NA) C W, NA. O

Claim 2.12.10. >, W, C X
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Proof. Let x € (1,1 Wy, in particular x € W;. By Claim 2.12.7, there exists a unique Vi and
there exists U; non-empty open in X such that x € V; and &' ((U;)) = Vi NX. As x € Wy, again
by Claim 2.12.7, there exists a unique V> and there is U, non-empty open in X such that x € V,
and &' ((U1,U,)) = V2N X, and so on. Then there exists a unique (Uy),>1 € S C dom(8') such
that x € (> V. By construction, diam(V,) < 27", therefore {x} = 1,5 V. Also, as §' is a
winning strategy for Player II, we have that @ # (> Vi = (> V,NX,thenx € X. ]

As X is Baire, we have that W = My>1 Wa is dense in X.So W is dense in X and is a
Gs-set, by Theorem 1.19, W is completely metrizable. Then X contains a dense completely

metrizable subspace W.

]

Corollary 2.13. Let X be a dense subset of the real line. Then X is Choquet if, and only if, X is

residual in R.

Proof. By Theorem 2.12, X contains a dense completely metrizable subspace D. Note that
D is dense completely metrizable in R, by Theorem 1.19, D is a Gg-set in R. Therefore, by
Proposition 1.56, X is residual in R. O]

Our motivation for this part is to characterize the spaces in which the Banach-Mazur

game is undetermined.

Definition 2.14. Let X be a topological space. We say that X is an undetermined space if the

Banach-Mazur game played on X is undetermined.

Lemma 2.15. Let X C R be a dense Baire space. Then GN X is dense for each dense Gg-set G
in R.

Proof. Let G =(),c, Gn be a dense Gg-set, so G, is open and dense for each n € @. Note that
G,NX is open and dense in X for each n € @. As X is a Baire space then GNX = ,,c, (GnNX)

is adense setin X. O

Theorem 2.16. If X C R is a dense undetermined space then GNX # 0 and GN(R\ X) # 0
for every dense Gg-set G C R.

Proof. Let G be a dense Gg set. By Lemma 2.15, we have that GNX is dense. In particular,
GNX # 0. Now, by Proposition 2.10, there exists d; be a winning strategy for Player II in the
game BM(G). We will build a strategy 5 for Player II in BM(X).

Indeed, in the first inning in X, Player I plays Ao N X, where Ag is open in R. Now in
G, in the first inning, Player I plays Ao N G. Then Player II responds 6({AgoNG)) = B NG,

then in X, Player II responds 6 ({(AgNX)) = B; N (GNX). In the second inning in X, Player I
plays A; N X. Now in G, in the second inning, Player I plays (A, N B;) NG, so Player II responds
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06((AoNG,(A2NB1)NG)) = B3NG. Then in X, Player II responds ({49 NX,AyNX)) =
B NG, and so on.

BM(X) BM(G)
Player | Player II Player | Player II
AgNX AoNG
5((AgNX)) =B N(GNX) 8¢((A0NG)) =B NG
AryNX (AzﬂBl)ﬂG
B3ﬂ(GﬁX) 56(<A()ﬂG,(A2ﬁBl)ﬂG>) =B3NG

As 8¢ is a winning strategy for Player II, then there exists z € (.o Bu+1NG. If z€ X
then & is a winning strategy for Player II in BM(X), contradiction. Therefore z ¢ X, then
z€ GN(R\X). O

Corollary 2.17. If X C R is a dense undetermined space then GN X is dense in X and GN (R '\
X) # 0 for every dense Gg-set G C R.

Finally, joining the characterizations via games with Baire and Choquet spaces in the

real line we have the following:

Corollary 2.18. Let X a dense subset of the real line. Then X is undetermined if, and only if, X

is Baire and is not residual.

Later we will see an explicit example of an undetermined space on the real line this will
be a Bernstein set. Furthermore, we will see that a Baire space that is not productively Baire is
an undetermined space. In particular, the counterexamples mentioned in the introduction to this

thesis are examples of undetermined spaces.
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Theorem 2.19. If f is a continuous, open mapping of X onto Y, and X is Choquet, then Y is
Choquet.

Proof. Let dx be a winning strategy for Player IT in BM(X). We are going to build a winning
strategy Oy for Player II in BM(Y).

Indeed, in the first inning in Y, Player I plays Uy a non-empty open set in Y. Consider the
non-empty open set f 1 (Up) C X. In X, in the first inning, Player I plays f~!(Up) and Player IT
responds Ox ((f~!(Up))) = Vo. Then, in Y, Player II plays 8y ((Up)) = f(&y ((Up))) = f(V).

In the second inning, in Y, Player I plays U; C f(Vp). Consider the non-empty open set
f~Y(U1)NVy. In X, Player I plays f~!(U;) NV and Player I responds 8x ((f~!(Up), £~ (U1)N
Vo)) = V) and, in Y, Player II responds &y ((Uy,U;)) = f(V1).

In the inning n €  in Y, if Player I plays U,_; C f(V,—2), consider the non-empty
open set f~!(U,_1) NV, 5. In X, Player I plays f~!(U,_1) NV,_, and Player II responds
Sx({f~Y(Uo),-+, f N (Uy_1)NV,_2)) =V,_1 and, in Y, Player I responds 8y ((Up, - - - ,U,_1)) =
S(Va1).

BM(Y) BM(X)
Player | Player I Player | Player I
Uo (o)
oy ((Uo)) = f(Vo) ox ((AoNG)) = Vo
U; f_l(Ul)ﬂV()
S ((Uo,Un)) = (V1) S ((f ' (Uo), f~1 (U1 NW)) = Vi

As Oy is a winning strategy then there exists x € (), Va, therefore f(x) € N, f(Va),
that is, dy is a winning strategy for Player II in BM(Y).

O

Corollary 2.20. Let {X; : i € I} is a family of topological spaces such that [];c; X; is a Choquet
space, then X; is Choquet for each i € I.
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Theorem 2.21. Every Choquet metric space (X,d) without isolated points' contains a subspace

homeomorphic to the Cantor set.

Proof. We are going to build a system % = {U; : s € 2<®} on X such that

1. Uy is open non-empty;

. d .
2. diam(Uy) < TS

3. Fors €2<®and i€ {0,1}, Us~; C U such that

o U oNUs~1 =03

: d
b dlam<US’\i) S ols|+1+

We will use the Banach-Mazur game to build this family. Indeed, in the first inning
Player I plays any open ball Uy of diameter d. Then Player II plays Vp such that Vj is an open
non-empty set and Vj C Up. In the second inning, inside Vi we build two open non-empty disjoint
sets Ug), U(1) such that Uy NU(;) = 0 and diam(U(g,),diam(U(y) < % Player I can play any
of the open sets U(q), Uy). Then Player II gives the respective responses V(q), V(1) for any move

by Player I.
Player I | Player II
U(O) V(O) where V(O) g U(O)
U(l) V(l) where V(l) g U(l)

Justification. Note that there is x € Vj and as Vp is open there is an 6 > 0 such that

ng) C Vp and ng) - BE;C} C Vp. As X does not have isolated points, ng) NX\ {x} #0.

That is, there is y € B(;) C Vp such that x # y and as X is Hausdorff, there are two
open disjoint sets Ag,A; such that x € Ag and y € A, so x € AgNVp and y € A NV then
there are two open balls such that Bg)) CApN ng) CAyNVpand Bg) CAIN BESX) CA NVy,so

. (x) . ) . . diam(Bg;)) diam(sty))
0< dzam(B(s0 ),dzam(851 ) < diam(Up). Consider ro = —;— and r; = ——;—. Note that
0< diam(ng)),diam(Bg)) < %.

Finally, we define Uy = B%) and Uy = Bg’). Note that U(q), Uy are open and non-
empty sets, Ug) Uy = 0 and diam(U g)),diam(U(y)) < 521.

In the inning |s|, having defined Uy, we define U;—g,Us—~; C Us. In fact, suppose that

Player I plays U; then Player II responses V;. Again (as in the initial case) inside Vs we build two

open non-empty disjoint sets Uy, Us~; such that diam(Us—¢),diam(Us—~;) < ﬁ. Player

I can play any of the open sets U(,—g),U(;~1) then Player II gives the respective responses

' A topological space without isolated points is the same as dense-in-itself space
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Vi—0, Vs~ for any move by Player I. Finally take % = {Us : s € 2<®} and that is our family
sought.

Let r € 2%, we define
Ur:= () Urpn-

ncw

Claim 2.21.11. U, consists of exactly one point.

Proof. Note that by construction U, # 0, because Player II has a winning strategy in BM(X),
that is, 0 # (N,ece Va € U,. Note that diam(U,) < diam(U,,). Suppose that U, contains more
than one point, then diam(U,) > 0. As

lim diam(U,,) =0,

n—soo

because diam(U,,) < Z%,Vn € , then there exists ny € ® such that diam(U,) < diam(Uy,,) <
diam(U,), contradiction.

]

Therefore, U, consists of exactly one point. Let us call that point by x,, that is, {x,} = U,.
Define

22 —X
by
fr) =x.
As 2% is compact and X is Hausdorff it is only necessary to show that f is injective and
continuous.

Claim 2.21.12. f is injective.

Let ;s € 2% be such that r # s then {n € @ : r(n) # s(n)} # 0. Consider ny = min{n €

o : r(n) # s(n)}. In particular, x, € U, C Ulrysstmg 1m0 and x; € Uy C Ulrg,eerng 1,00 but for the
construction

<r07"7rn0—]arno> m U<r07"7rl10—lvsng> =
Then x, # x;.

Claim 2.21.13. f is continuous.

Proof. Let € > 0 and consider ng’), as lim,_,e diam(U,},) = O then there exists an ng € @ such
that Uy, C B‘(gx’) and x, € U,,,. Consider V, = {s € 2% : r [ ng C s}. Note that V is open in 2
and if s € V. then f(s) = x5 € Uy, Béx’), so f is continuous. [
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Then f is an embedding of 2% into X, that is, f(2?) C X is homeomorphic to the Cantor
set &.

]

The Banach-Mazur game also has applications for productively Baire spaces. Later we

will see that it also has applications for the infinite products of Baire spaces.

Proposition 2.22 (White). Let X,Y be Choquet spaces. Then X x Y is Choquet.

Proof. Let 8x and Jy be winning strategies for Player II in BM(X) and BM(Y) respectively.
We will build a strategy 6 for Player IT in BM(X x Y). Indeed, in the first inning in X x Y,
Player I plays Uy a non-empty open set in X X Y. Then there are non-empty open sets Ag)(
and A(} in X and Y such that Ag)( X A?, C Up. In X, Player I plays A(})( and Player II responds
8x((A%)) and, in Y, Player I plays A and Player II responds 8y ((A%)). Then Player II responds
5((Uo)) = 8x((A9)) x 8 ((AD)).

In the second inning, Player I plays U; C §({Up)) = 8x ((A%)) x 8y ((AY)). As before,
there are non-empty open sets A)l( and A,l/ in X and Y such that A}( X A,l, CU;. In X, Player I
plays A} and Player II responds 8x ((A%,AL)) and, in ¥, Player I plays A} and Player II responds
Sy ((AY,AL)). Then Player II responds & ((Uy,U;)) = 8x ((A%,AL)) x 8x ((A%,AL)), and so on.

As 8y and 8y are winning strategies, we have that 0 # (,ce Ox((AY, - ,A%)) and
0 # Nhcw8((AY, -+ ,A})). then

necw ncw ncw
Therefore § is a winning strategy for Player II in BM(X x Y), that is, X x Y is a Choquet
space. ]

Proposition 2.23. Let X a Choquet topological space and let Y be a Baire space. Then X x Y is
a Baire space. In other words Choquet spaces are productively Baire.

Proof. Suppose otherwise, that is, X X Y is not Baire. Then by Theorem 2.7, 1 1 BM(X xY),
let us call this strategy for Player I in BM(X x Y) by 6. We can assume that ¢ only gives basic

open sets. Set p a winning strategy for Player II in BM(X'). We will build a winning strategy ¢
for Player I in BM(Y).

Indeed, in the first inning in X x Y, Player I plays o (()) = Uy x Vo, where Uy and V} are
non-empty open sets in X and Y respectively. Now in X, in the first inning, Player I plays Uy and
Player II responds p ((Up)). In Y, Player I plays ¢@(( )) = Vp then Player II responds Wy. Then in
X x Y, Player II responds p ((Up)) x Wp.
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In the second inning in X x Y, Player I plays o ({p ((Up)) x Wp)) = U; x V;. Now in X, in
the second inning, Player I plays Uy, so Player II responds p ({(Up,U;)). Then in Y, Player I plays
©((Wp)) =V and Player II responds W;. Then in X x Y, Player II responds p ((Up,Uj)) x Wj.

And so on.
BM(X xY) BM(X) BM(Y)
ol () =thx o=y | e()=V.
i e T i e
5 A u o((W0)) = Vi
i p((Un,U1)) x Wi p((Uo, 1)) W,
S oUp (W) < Wo.p (U, ) x W) =Ua xVa | U o((Wo, W) = Vs
! P((Uo, U1, Us)) x W p((Uo, U1, Us)) W,

As o and p are winning strategies for Player I and Player II, respectively, we have that
Muco P (U, ..., Uy)) x W, =0 and e P (U0, ..., Up)) # 0. Then in BM(Y') we have that

(W =0.

ncw

Then ¢ is a winning strategy for Player I in BM(X x Y) and this is a contradiction, because Y is

a Baire space. Therefore X x Y is a Baire space.

O
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2.2.2 Moadifications of the Banach-Mazur game

In this section we study some variations of the Banach-Mazur game. These will help us

characterize new spaces and also continue to study the problem of the product of Baire spaces.

2221 The MB(X) game

The game MB(X) is played like BM(X), except that now Player I wins if (,,c, B # 0,

and Player II wins otherwise.

Proposition 2.24. For a topological space X the following are equivalent:

(1) Player II has a winning strategy in MB(X),
(2) For each non-empty open U C X, Player I has a winning strategy in BM(U),

(3) No open (non-empty) subspace of X is a Baire space.

Proof. (1 =-2) Let § a winning strategy for Player IT in MB(X) and let U C X be a non-empty
open set. We are going to build a winning strategy 8y for Player I in BM(U).

Indeed, in the first inning in X, if Player I plays U, next Player II responds 6 ((U)) =V C
U.Now in U, in the first inning, Player I plays oy ({)) = Vj, then Player Il responds Wy C Vj. Then,
in X, in the second inning, if Player I plays Wy, next Player II responds 6 ((U,Wp)) = V| C W.
In the second inning in U, Player I plays 6y ((Wp)) = V1, then Player II responds W) C V, and so
on. As 6 is a winning strategy for Player II, we have that (., Vi, = 0. Note that &y is a winning
strategy for Player I in BM(U), because (,,c, Ou ((Wo, -+, Wa—1)) = Npew Vu = 0. By Theorem,
we have that (2 < 3). Now, suppose (3). We are going to build a winning strategy o for Player
I in MB(X).

Indeed, in MB(X), in the first inning, if Player I plays Ao C X, as Ay is not Baire, there
exists a winning strategy 04, for Player I in BM(Ay), so if 64,(()) = Vo C Ap. So, in MB(X),
Player II responds 0 ({Ag)) = Vp. In the second inning, in MB(X), if Player I plays A; C Vj.

Next, in BM(Ap), in the first inning, if Player II plays A, and, in the second inning, in
BM(Ap), Player I responds 64,((A1)) = Vi C Aj. Then, in the second inning, in MB(X), Player
I plays 6(<A0,A1>) =Vi.

In MB(X), in the third inning, if Player I plays A, C Vi, So, in the second inning, in
BM(Ap), Player II plays A,. Next, in the third inning, in BM(Ay), Player I responds 64,((A1,A2)) =
Vo, C A,. Then, if Player I plays A;, next Player II, and so on.
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MB(X) BM(4o)

I 11 I 11

Ao 84,(()) =Vo C Ag

6((Ao)) = Vo Al

Ay 04,((A1)) =V1 C Ay
0({(Ap,A1)) =V, Ar

A 04, ((A1,A2)) =V2 C Ay
0({(Ap,A1)) =V,

As 8y, is a winning strategy for Player I, we have that (¢, V, = 0. Note that J is a winning
strategy for Player II in MB(X), because (,c¢ 04, ({40, ,An—1)) = Npew Vo = 0.

]

Theorem 2.25. For a topological space X the following are equivalent:

(1) X is meager in itself.

(2) Player II has a winning strategy in MB(X).

Proof. First suppose that X is meager in itself, that is, there is a sequence (N, : n € @) of nowhere
dense sets in X such that X = (¢ Nu» 50 0 = (,,c0 X \ Nu. We can assume that N, is closed
with empty interior, for all n € @, then X \ N, is open and dense in X. We are going to build a
winning strategy 6 for Player IT in MB(X).

Indeed, in the first inning Player I plays A( and Player IT responds 8 ((Ag)) = (X \ No) NAo.
Note that this is a valid move because X \ Ny is open dense. In the second inning, Player I plays
A1 C (X \ Nyg) NAp and Player II plays 6((Ag,A1)) = (X \N1)NAj, and so on.

In general, in the inning n € m, Player I plays A,,_| and Player Il responds 0 ({Ag, -+ ,Ap—1)) =
(X\Nn—l) NA;—1.

Then (Ve 6 ({(A0, - ,An)) = Mnew X \No) NAL € Nyew (X \ N,) = 0. Therefore 6 is a
winning strategy for Player II in MB(X).

Now suppose that Player II has a winning strategy in MB(X). By Proposition 2.24, this
is equivalent to no open (non-empty) subspace of X is a Baire space. We will show that X is

meager in itself.

Indeed, for each non-empty open subset A C X there are {B;(A),B(A),---} a countable

collection of open dense subsets in A and a non-empty open subset B(A) C A such that

() Ba(A)NB(A) =0.

neN



66 Chapter 2. The Banach-Mazur game

Let ./ be a maximal family of non-empty subsets such that {B(A) : A € </} is a pairwise

disjoint family.

Note that Ag = (Jsc.» B(A) is open dense in X. In fact, suppose otherwise, that is, there
exists a non-empty subset U C X such that U NAg =0, so B(U)NB(A) =0 for each A € /.
Note that U ¢ <7, then & C o/ U{U}, contradicting that </ is maximal.

Also, A} = Uy (B1(A)NB(A)) is open and dense. In fact, let V C X be a non-empty
set, then there exists A € &7 such that V N B(A) # 0 (because Ay is dense). As B (A) is dense in
A, we have that @ # (VN B(A)) N B (A) CVNA;. Then, for eachn € N,

An=J Ba(A)NB(A))
Aed
is open and dense for each n € N, by the same argument. Note that, B(A) NA, = B(A) NB,(A).

Therefore,

(A, =0.

new

In fact, suppose otherwise, there exists

x€BA)N((Ax) = [ (BA)NA,) = [ (B(A)NBu(A)) =0

n>0 n>0 n>0

Then X = U,c, X \ An. Therefore X is meager in itself.
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2.2.2.2 The Cantor game

The Cantor game on X, denoted by 2BM(X), is played as follows: Player I and Player II

play an inning per finite ordinal.

At the beginning, Player I plays By a non-empty open set, and then Player II responds
two non-empty open subsets ¥y = {Vo, V }, with Vy, V) C By and consider Wy = | #. Next, in
the first inning, Player I plays {By,B; } two non-empty open sets, with By C V; and B; C V; and
Player II plays 71 = {Voo, Vo1, Vi0, Vi1 } where V;; are non-empty open sets, with Vg, Vo1 C By
and V9, V11 C By, consider W; = |J 71, and so on.

2BM(X)
Player | Player I
{Bo}
Yo = {Vo,V1} with Wy = U %
{Bo,B1}

1 = {00, Vo1, V10, Vi1 } with W, = U

Player II wins the game 2BM(X) if ,,c,, Wa # 0, else Player I wins.

Note that in this variation of the game we have that if Player II has a winning strategy in

the game BM(X) then Player II has a winning strategy in 2BM(X).

Theorem 2.26. Let X be a topological space. Then I 1 BM(X) if and only if I 1 2BM(X).

Proof. Suppose that I 1 BM(X). We will show that Player I has a winning strategy ¢ in 2BM(X).
Indeed, by Theorem 2.7, X is not Baire, there exists a sequence (D, : n € @) of dense open set
and exists a non-empty open U such that (,,c,, D, NU = 0.

Then in the first inning Player I plays o(( )) = U, next Player Il responds % = {Vo, V1 },
with V; C U for i € {0, 1}. In the second inning, Player I plays o ({(#y)) = {DoNVy,Dp NV}
and Player II plays ¥1 = {Voo, Vo1, V10, V11} with Vo; € DyNVy and Vi; € DNV, fori € {0,1}.
In the third inning, Player I plays o ((%5, 71)) = {D1 N Voo,D1 NVp1,D1 NVy9,D1 NV} and
Player II responds %2 = {Vo00, Voo1, V010, Vo11, V100, Vio1, Vi10, Vi11 } with V.. € D1 NV, for all
se {0,111 and i € {0,1}

In general, in the inning n € w, Player I plays o ({(%0,- -+, %n—2)) = {D,NV :V € ¥, 1 }.
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2BM(X)

Player | Player I
o(())=U

o({%)) = {DoNVo,DoNV1}

% - {V07Vl}

71 = {0, Vo1, V10,V11}

Note that |J %) C U and for n > 1, U%, C D,, then (,c, UV, = 0. Therefore 6 is a
winning strategy for Player I in 2BM(X).

Now, suppose that Player I has a winning strategy ¢ in 2BM(X). We will show that X
is not Baire. For this, we will use Theorem 2.7, that is, we will build a winning strategy o’ for
Player I in BM(X).

Indeed, in the first inning, in 2BM(X), Player I plays o(()) = Up. Now in BM(X),
in the first inning, Player I plays o’(()) = Uy, then Player II responds Vp, then in 2BM(X),
Player II responds %5 = {Vo,Vo} = {Vb}. In the second inning, in 2BM(X), Player I plays
o ((7)) = {o0((Vo)),01((Vo)) } with 6;({Vp)) CV; fori € {0,1}. Now in BM(X), in the second
inning, Player I plays ¢’ ((Vy)) = 00({Vy)), so Player II responds V, then in 2BM(X), Player II
responds 71 = {V1,V1,01((V)), 01({(V0))} = {V1,01((V0)) } with Vi C 00({Vo))-

In the third inning, in 2BM(X), Player I plays

o ({70, 71)) = {00((Vo, V1)), 61({(Vo, V1)), 60 ({Vo, 01({V0)))), 01 ((Vo, 01 ((Vo) ) }

with O'i(<V(),V1>) C V; and Gl'(<V(), Gl(<V()>)>) - 61(<V0>) forie {0, 1}. Now in BM(X), in the
third inning, Player I plays o’((Vo, V1)) = 00({Vo, V1)), so Player Il responds V5, then in 2BM(X),
Player II responds

12 ={V2,V2,01((V0, V1)), 01((V0, V1)), 60 ((V0, V1)), 60 ((Vo, V1)), 01 ((Vo, V1)), 01 ({Vo, Vi)
with V, C op((Vo, V1)), and so on.

2BM(X)

Player | Player Il

Uo

{o0((Vo)), 01({Vo)) }

% = {Vo,Vo}

7 = {V1,V1,01((V0)),01({(Vo)) }
{60((Vo, V1)), 61({V0, V1)), 60((Vo, 61 ((Vo)))), 61 ({Vo, 01 ((V0)))) }
5 = {V2,V2,61({(Vo, V1)), 61({(V0, V1)), 60 ((Vo, V1)), 60 ({(Vo, V1)), 61 ((Vo, V1)), 61 ({Vo, V1)) }
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As o is a winning strategy for Player I, we have that (",,c, U7, = 0, note that (¢, Vi, C
U7, =0, then o’ is a winning strategy for Player I in BM(X), therefore X is not a Baire space.

BM(X)
Player | Player II
o'(()) =Uo

Vo

o' ((Vo)) = 00((Vo))
Vi

o' ((Vo, V1)) = o0 ((Vo, V1))

Vo

]

Corollary 2.27. Let X be a topological space. Then X is a Baire space if and only if Player I
does not have a winning strategy in 2BM(X)

The games 2BM and BM are not equivalent, we will see later that Bernstein sets are an

example of this.
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2.2.2.3 The *-game

Let X be a non-empty perfect’Polish space with compatible complete metric d. Fix also

a basis {V,,} of non-empty open sets for X.

Given A C X, consider the following *-game G*(A). In this game Player I starts by
playing two basic open sets of diameter < 1 with disjoint closures and Player II next picks one
of them. Then Player I plays two basic open sets of diameter < %, with disjoint closures, which
are contained in the set that II picked before, and then II picks one of them, and so on. The sets

that Player II picked define a unique x. Then I wins iff x € A.

G'(A)

Player | Player I
0”0

)

i

More specifically, Ul.(n) are basic open sets with diam(Ul-(")) <27 Uén) N Ul(n) =0,i,€{0,1},
and US"H) U Ul(nH) C Uiin). Let x € X be defined by {x} =, Ul.in). Then Player I wins iff x € A.

Theorem 2.28. Let X be a non-empty perfect Polish space and A C X. Then Player I has a

winning strategy in G*(A) iff A contains a Cantor set.

Proof. (1). Let o be a winning strategy for Player I, o induces a Cantor scheme, as follows:

e Inning 0

Player I plays 6(()) = (U(®), (1)), then Player II can respond with U®) or U(1),

e Inning 1

In any case, Player I plays o((U()) = (U, gD or c((UM)) = (U1, u(11), then
Player II can respond with U(OO), U(Ol), U10) or U(“), and so on.

2 A topological space is perfect if all its points are limit points.
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By the rules of the game, we have that for each s € 2<%\ {0}, U* is open, U OU U1 C

US, diam(U*®) < 2715l and US"0NUS"1 = 0. Then {U* : s € 2<?} is a Cantor scheme >. Also for
each x € 2%, if {p,} = N,eo U, as o is a winning strategy p, € A. Then the function

fi2° A

defined as f(x) = py is injective and continuous, so A contains a Cantor set.

Now suppose that A contains a Cantor set 4. We can find ¢ be a winning strategy for

Player I as follows :

e Inning 0

Let x € € and consider B(lx). As % is perfect, there is y € %ﬂB(lx) \ {x}. As X is Hausdorff,
2 2

it follows that there are two basic open sets Uéo) and Ué]) of diameter < 1 with disjoint

closures, such that x € Uéo) andy € Uél). Note that Uéo) N% # 0 and Uél) N% # 0. Finally

Player I plays o(()) = (U(go),Ué1> ), next Player II chooses one of them, say Uigo), with

ip € {0, 1}. Put x¢ € UiE)O) N%E.

Inning 1

By construction € N Uigo) #0.Letze€NU, 0 As % is perfect, then ¢ nBYny? \

10 % 1o
{z} #0,letwe @ ﬂB(IZ) N Uigo) \ {z}. Again as X is Hausdorff it follows that there are two
7

basic open sets Uél) and Ul(l) of diameter < % with disjoint closures, which are contained
in the set that Player II picked before. Note that € N Uél) #0and €NU 1(1) # 0. Then
Player I plays G((UI.E)O)» = (UéU?Ul(l)), next Player II chooses one of them, say Ui(ll). Put

x| € Ul-(ll) N% , and so on.

We claim that o is a winning strategy. Indeed, let x € X be defined by {x} =, Ul.in).

Note that x,, converges to x, so x € ¢ C A, then o is a winning strategy for Player I.

]

3

We can define U? = X.
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2.2.3 An undetermined space

Remember that a topological space X is an undetermined space if the Banach-Mazur
gamed played on X is undetermined.

2.2.3.1 Bernstein sets

In (BERNSTEIN, 1907) Felix Bernstein utilizes the method of transfinite recursion and
defines a subset B of R such that both sets B and R \ B meet every nonempty perfect set in R; so
both B and R\ B turn out to be non-measurable with respect to the Lebesgue measure. The above
mentioned construction is based on appropriate uncountable forms of the Axiom of Choice,
which were radically rejected by Lebesgue in that time. Namely, Bernstein utilizes the fact that

there exists a well ordering of the family of all uncountable closed subsets of R.

Our goal here is to show that Bernstein sets are Baire spaces but not Choquet, and hence

are spaces in which the Banach-Mazur game is undetermined.

Definition 2.29. Let B C R we say that B is a Bernstein set if for all uncountable closed set
F C R, we have that FNB # 0 and FNR\ B # 0.

Note that if B is a Bernstein set then R\ B is a Bernstein set.

Proposition 2.30. A set B is a Bernstein set if neither B nor its complement R \ B contains any
nonempty perfect set. In other words a set B is a Bernstein subset of R if for every non-empty
perfect set P C R both sets PN B, PN (R \ B) are non-empty.

Proposition 2.31. Let B C R a Bernstein set. Then:

(1) B has no isolated points.

(i1) Bis a dense subset of R.

Proof. (i) Suppose otherwise, that is, there are x € B\ B’ and € > 0 such that ng) NB = {x}.
Then 0 # B(;) N(R\ B) = 0, contradiction.
2

(i) Let x € R and € > 0, then @ # BN BY € BNBY. 0

£
2

As we mentioned earlier the objective is to demonstrate that the Bernstein set is an
undeterminated space for the Banach-Mazur game. For this, we will use the Cantor game. Before
starting, let us remember the following fact of the topology of the real line.

Lemma 2.32. Let (K, : n € ®) be a sequence of non-empty compact sets in R such that
Ko 2 Ki 2 Kp D ---. Then ., Ky # 0.

Theorem 2.33. Let B C R be a Bernstein set. Then Player II has a winning strategy in 2BM(X).
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Proof. Let B be a Bernstein set, we are going to build a winning strategy 6 for Player II in
2BM(X). Indeed,

In the first inning, Player I plays Up = Ao N B where Ag C R is a non-empty open set, let
aop € Ay N B, in particular there is r > 0 such that Bﬁ“") C Ap. Note that 0 # 35“0) N(R\ B), let
by € B\ n (R \ B). Then choose two non-empty open subsets V), V; such that

o V0,V C B,
o VNV =0

o diam(Vp),diam(Vy) < § and

Then Player II responds 8 (({Up})) = {Vo N B,V N B} and consider % = |Jd((Up)) and Wy =
VoUW

In the second inning, Player I plays {Uy, U, } with Uy C VyN B and U; C V; N B. For each

i € {0,1}, as in the previous case, let a;; € U; and choose r;} < 2—’2 with a; € B%’l"l) C V; and let

by € BgZ“) N (R \ B). Then choose four non-empty open subsets Voo, Vo1, V10, Vi1 such that

e Voo, Vo1 € Vp and Vi, Vi1 C V)
o {Voo,Vo1,V10, V11 } is a disjoint pairwise family and
o diam(Viy),diam(Vyy),diam(Vyg),diam(Vy1) < 7

Then Player II responds 6 ({({Up},{Uo,U1})) = {Voo N B, Vo1 NB,VioN B, Vi1 N B} and consider
Y1 =U8(({Un},{Uo,U1})) and Wy = Voo UV UV U V.

In the inning n € , if Player I plays {U; : s € 2<%, |s| = n— 1}. Suppose defined ry, a,
and b for s € 2<% with |s| = n— 1. Then, as before, let r,, < 53, a;-g,a,~; and b, b~ ;. Then

choose an open family {V,~,,V,~; : |s| =n— 1} such that

o V., CVforie{0,1};

o {V.y, Vi~ i |s| =n—1} is a pairwise disjoint family;

o diam(V),diam(V-|) < 5.

Then Player I responds 6 (({Up},{Uo, U1}, ,{Us:s €25% |s| =n—1})) = {V,,N
B,V NB:|s| =n—1} and consider ¥,_1 = US({{Up},{Uo, U1}, ,{Us : s € 259 |s| =
n—1}) and W1 = U{Vy0,Viry 1 Is| =n— 1}

Note that, for each n € @, we have that W,, C R is a compact and W,,;.; C W,,. Also, by
construction, W, C ¥;,.
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Claim 2.33.14. (,c, W, is closed and uncountable.

Proof. Let f €2%.Define D¢ =(\,c V¢l € Npew Wa- By Lemma 2.32, 0 # D ¢. As diam(V,| ) <
f new Y fln hew f fln
1> 80 Dy = {xy}. Finally, define g : 2® — (), Wy by g(f) = x7 and note that g is injective. []

Then there exist x € (),,c, Wa N B, in particular x € W, "B C ¥;,. Therefore 0 is a winning
strategy for Player II in 2BM(X).

]

Corollary 2.34. Let B C R be a Bernstein set. Then Player I has no winning strategy in 2BM(X).

In particular, B is a Baire space.

Proof. By Theorem 2.33, Player II has a winning strategy in 2BM(B). Therefore Player I has no
winning strategy in 2BM(B). So by Corollary 2.27, Player I has no winning strategy in BM(B).
Then by Theorem 2.7, B is a Baire space. ]

Proposition 2.35. Let B C R be a Bernstein set. Then Player II has no winning strategy in
BM(X).

Proof. Suppose otherwise, that is, Player II has a winning strategy in BM(B). As B has no
isolated points, by Theorem 2.21, there is a set C C B homeomorphic to the Cantor set, in
particular C is closed. Note that CN (R \ B) = 0, but as B is a Bernstein set, CN (R \ B) # 0,

contradiction. ]

Corollary 2.36. The Banach-Mazur game is undetermined when is played in a Bernstein set in

the real line.
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CHAPTER

PRODUCTS OF BAIRE SPACES

In this section we will study the problem of when the product of two spaces is Baire. We
will start with examples of Baire spaces whose product is not Baire. Then we will give conditions

on the spaces to make his product a Baire space.

3.1 Counterexamples

3.1.1 Two Baire spaces whose product is not Baire. An example in
ZFC with forcing.

In this first section we present the article (COHEN, 1976), in which it is shown, using

forcing, that in ZFC, there are two Baire spaces whose product is not a Baire space.

Let & = (P, <) be a p.o. set. Two elements p and ¢ of it are called compatible if there is
an r € & such that r < p and r < g; otherwise they are called incompatible. A subset D of &7 is
said to be dense in &2 if for each p € P thereis ad € D such that d < p.

Remember that a partially ordered set &2 = (P, <) is a forcing if for each p,q € & such
that ¢ £ p, there exists p’ < g such that p’, p are incompatible.

We define on P a topology T< by declaring each set {g : ¢ < p} to be open. Note that if
the space is derived from a p.o. set as above, then any such countable intersection of open sets is

necessarily open.

Furthermore if A C P then in this topology

(@) xeint(A)iff fJx={yeP:y<x}CA
(b) xCAiff | xNA#O

(c) Aisdensein P iff (Vx € P)[L xNA # 0]
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Now let .# be any model and & any p.o. set in .Z, let G be an . -generic subset of
P, and ./ |G| the corresponding generic extension of .Z .

The most important connection between forcing and topology is as follows:

Lemma 3.1. (P, 7<) is a Baire space if and only if for every .# -generic subset G of P no new

w-sequences of ordinals occur in .Z[G].

Proof. First, suppose that (P, 7<) is a Baire space, and let f € .#[G| with domf = ®, whose
values are ordinals, as the formula f : @ — Ord is a function in .Z|[G] is satisfied, then by
Theorem 1.94, there exists p’ € G such that p’ forces it. For every n € @ consider the set
D,={peP:(3acOrd)(pl-<f(it)=a&")}.

Claim 3.1.15. For each n € o, D,, is open and dense below p’.

Proof. Let g < p’, 0 and ¢’ < g such that ¢’ I+ f(n) = 0, as ¢ < p/, ¢’ I o is an ordinal , so
there is a ¢’ < g such that ¢’ IF 0 = «. O

As {q:q < p'} is open, then it is a Baire space, so ()¢, Dn is dense below p’. By Lemma
1.96, it follows that ()¢ Dy is dense in P. Then GN(,c, Dn # 0, so let p € GN (e Dn then
N/

for every n € w, there is an o, € Ord such that p IF “f(7i) = &," . Finally define ¢(n) = o, note
that p € #,and pl-“f=@",s0 fe ..

Now, suposse that (P, 7<) is not a Baire space. Then there exists a sequence of open
dense subsets {D, : n € ®} and go € P such that (,c, DnN{q:¢q < qo} =0. For each n € o,
there exists I, = {r}, : & < k,} be a maximal family of pairwise incompatible contained in D,
consider D), = {p: (3a < k,)(p < %)}, as D, is open, we have that D!, C D,,. Also note that
D), is open and dense. Indeed, let p € P then there is a d,, € D,, such that d,, < p, note that there
is a rj, compatible with d,,, otherwise we would have a contradiction with the maximality of 1,
so there is a r € P such that r < 7% and r < d,, so r € D), and r < p, therefore D/, is open and
dense. Then N,coDhN{q:9¢< 90} € MpcoDnN{q:q<qo} =0.For each n € w, consider I,
and {o : o <k, }, by Lemma 1.98, there is at € .#® such that 7% I- “t = o, for all & € k,, that
is, ¥l IF 1(71) = &. By hypothesis, {q : g decides #(n) for all n € w} is dense, so there is g; < qo
such that ¢g; decides ¢(n) for all n € w, that is, ¢ forces that 7(n) is an ordinal. Then there is
no € @ such that g; & D), , also there is & < ky, such that g I (rp) = @, so g1 % ry. Therefore

no?
there is a r < g; such that r is incompatible with g, so there is a 8 such that rgo is compatible
with r, because otherwise this would be a contradiction with the maximality of 7,,. Therefore

thereisas <r, rgo such that s I #(ng) = o and s I+ ¢(ng) = B, contradiction. O
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3.1.1.1 The construction
We begin this part with the following facts of stationary sets of @, and product forcing.
Proposition 3.2. The intersection of countably many club sets is a club set.

Lemma 3.3 (Banach). There are two disjoint stationary subsets of ;.

Proof. Let {xq : @ < @y} be a set of irrationals, where x¢ # xg for distinct o, B < @;. For each
rational ¢, let S,(0) = {&t € @ 1 xo < ¢} and Sy(1) = {0 € @1 : xo > g}

Suppose that for all ¢ € Q, there is iy, € {0, 1} such that S,(i,) contains a club in @;.

Then, by Proposition 3.2,

C= ﬂ Sq(ig)

q€Q

contains a club, so C is uncountable, while |C| < 1, contradiction.

Therefore, there is a ¢ € Q such that S,(0) and S,(1) do not contain any club. In particular,
S4(0) and S, (1) are disjoint stationary sets.

]

Now from a stationary set S of @; we construct a p.o. set &g of conditions:

e acondition p € Py is a countable subset of S that is closed in the order topology of ®;. In
particular each member p of &g has a maximum.

Ps={pCS:|p| < Xpand pisclosed in w; }
o If p,g € Hs, then
p<q iff gCpand(p\g)nJg=0,

which is equivalent to the fact that o« > 3 forall o € p\ g and 8 € gq.

Claim 3.3.16. s is a forcing.

Proof. Let p,q € &5 and suppose that ¢ £ p. Then p Z g or (¢\ p)NUp # 0. Choose B €
S\ U(pUgq) this is possible because S is stationary.

In the first case, let o € p\ ¢. Consider r = g U {fB }. Note that r < g. Suppose that r and
p are compatible. Then there is a s € g such that s < r, p. Note that a < 8 < |Jr therefore,
o € (s\r)NJr =0, contradiction. Then r are p are not compatible.

In the second case, let a € (¢ \ p) NJ p. We claim that ¢ and p are incompatible. Indeed,
suposse otherwise, there is a s < p,q. Note that o € (s\ p) N{J p, contradiction.

]
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Claim 3.3.17. In any generic extension .# [G] by means of an .# -generic subset G of &g no

new sequences of ordinals appear.

Proof. Lett be a function in . [G] from ® to Ord then there is a p € G such that plF7: ® —
Ord is a function. In order to finish the proof we need only show that there is a ¢ < p such that
glF-t(n) foralln € .

We define by induction Ry and 1 as follows :

|

1. {Ne: o < w} isacontinuous’ increasing sequence of countable ordinals.

2. {Rq : o < m;} is a continuous increasing sequence of countable subsets of .
3. Ry C{re Ps:rCngAr<p}

4. (Vr €Ry)(Vn € @)(3s € Ryy1)[s <rAsC ngAs decides t(n)]

Now, consider C = {ng : & is a limit ordinal}. Note that C is a club in ®;. Indeed, as
|C| = @1, we have that C is unbounded. Now, let g, < Ny <+ <Tg, <-+(§ <) be a
sequence of elements of C, of length y < @, then sup{n% <yt = U§<yna§ = Msup{og:E<7}-
Then there is a limit ordinal ¢ < @; such that Ng € CNS. As @ < @y is a limit ordinal, there is

an strictly increasing sequence (o, : n € @) which converges to .

Now, let ry € Rg,. By Condition 4, there is sg € Rq,+1 such that so < rg, so C ¢, and
s01F2(0). As ap+ 1 < @, we have that sy € Ry, so there is a 51 € Ry, 41 such that s; < so and
s1 I-¢(1), and so on. Then we have a decreasing sequence (s, : n € @) such that s, € Ry, +1,
Sn C Ng, and s, I-1(n).

Consider g = {ng } UU{sn : n € ®}. Note that g < s,, for all n € @. Indeed, let n € @
and suppose that there is a x € (¢ \ s,) NUs,. In particular, there is an a € s, such that x € a.
Then x = g, or there is a N € @ such that x € sy. In the first case, by construction it follows
that a € Ng,, SO Ng = x < a < Ng, < Na, contradiction. In the other case, note that n < N, in
particular sy \ s, NUs, = 0, so x &€ [Jsy,, contradiction. Then ¢ < s, for all n € @. Therefore ¢
decides #(n) for every n € @, thent € .# .

O

Therefore Y is a Baire space. Also we have that:

Claim 3.3.18. In .#[G] the set S contains an uncountable closed subset.

Proof. Indeed, our candidate is | JG € .Z[G]. We have that:

' A sequence of ordinals (¥, : & € Ord) is continuous, if for every limit &, Yo = sup{y: : § < at}
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e |JG C S. For this, let x € |JG, there is a g € G such that x € g, as G C g, g € K, S0
xes.

e [JG is unbounded. For this, note that for each o0 < @y, the set {p € Ps: maxp > o} is
dense. Indeed, let s € Hg, if maxs < o+ 1, consider p = sU{a+ 1}, so p < s. Finally let
o < @, as {p:maxp > o} isdense, thereisax € GN{p:maxp > a},so o < maxx € x.

Then | G is unbounded, so it is uncountable.

e JGis closed. Indeed, let B € |JG. Then thereis ax €| BN G, so there exists p € G C Ps
such thatx €/ BN p,so B € p. As pisclosed, B € p. Then B € JG.

O

Thus, in the generic extension by means of &5 no new @-sequences of ordinals appear,

but a new uncountable subset of ; contained in S occurs.

By Lemma 3.3, take two disjoint stationary subsets S; and S in @; and we have two p.o
sets P, and Hs, defined like g above. Then

Claim 3.3.19. &5, x Hs, is not Baire.

Proof. Suppose that P, x s, is Baire in .#. By Lemma 1.100, let G = G| x G be a P,
Hs,-generic over .4, where G| C P, is P, -generic over 4 and G, C P, is Ps,-generic
over ./#[G], also G| is Ps,-generic over . (G| and A |G| = (A [G1))[G1] = (A [G1])[G2].
We know that g, and s, are Baire spaces in .Z. As G| is P, -generic over .4, by Lemma
1.101, Hs, is Baire in 4 [G1]. As G, is Ps,-generic over .# [G1], we have that no new sequences
of ordinals appear in (.#[G1])[G2]. Also in .#[G] we have that there is a closed uncountable
set A; contained in Sy, therefore A is closed uncountable in (.#[G])[G]. Indeed,

e Ay is closed in (.#[G])[G>]. Otherwise, there is a x € A; \ A|. As o is first countable,
there is a (};, : n € @) C A; such that %, — x. Note that (¥, : n € ®),x € .# |G| therefore
x € Ay, because A is closed in .# |G ]. Contradiction.

e A is uncountable in (.#|G|])[G,]. Otherwise, there is an injection f : @ — Aj, so
f € .#|Gi] and A| € .#|G1]. Then A; is countable in .#[G], contradiction.

Also Y, x P, is Baire, similarly as before there exists a closed uncountable A, C S
in (#]G,))[G1]. Then in (.#[G1])[G2] we have that there are closed uncountable sets A} C S|
and Ay C 5. By Proposition 3.2, Aj N A; is a club, in particular @ ZA; NA; C S NS, =0,

contradiction. ]

Finally collecting all of the above we have the following

Theorem 3.4 (Cohen). There are two Baire spaces whose product is not a Baire space.
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3.1.2 Two metric Baire spaces whose product is not Baire.

Assuming that there are two Baire topological spaces whose product is not Baire, Krom
showed that there are two Baire metric spaces whose product is also not Baire. For this Krom
associated a ultrametric space with a topological space. Unlike the previous example we will use
the Banach-Mazur game to demonstrate the basic properties of this new metric space. In this
part we study the article (KROM, 1974).

3.1.2.1 The Krom space

Definition 3.5. For any sets S,7 and for n € @\ {0} let 5T be the set of all functions from S
into 7 and let "T be the set of all functions from {0,...,n — 1} into T'. For a set S of sets and
ne(w\{0})U{w} let

LS ={oe"S|o(h)Co(h—1) forall 0<h<n}

Definition 3.6 (Krom space). For any topological space X and base % for X such that 0 ¢ 2,

the associated countable sequence space 7 (X) is defined by

new

Hp(X) = {0‘ €l®%: () o) #(Z)},

and the topology is that given by the Baire metric, for 6 # p the distance d(o,p) = n_il where
n is the least integer in {h € @ : 6(h) # p(h)}.

Let X, % and % (X) be as indicated. For any 6 € .7 (X) C |®%Z and n € o\ {0} let
B'(o)={pe X (X):0[,=p [s}, consider #* = {B"(0):0 € .#(X),nc w\{0}}. Note
that #* is a base for J# (X).

Put differently, a base for %" (X) is the family of all sets [f], f € U,en 4% where, if
n<and f €l"%, then

f1={¢ge X (X):gl=f}

Proposition 3.7. 2 = {[f]: f € U,en 1B} is a base for 7 (X).

Proof. Note that each member of % is an open set in % (X). Now, if U is an open subset of
2 (X) and p € U, then there exists r > 0 such that BEP ) C U. By the Archimedean property,

there is a ny € @ such that ﬁ < r;then [p [,,] C ng) cUu. O

Corollary 3.8. Let X be a topological space with a countable base %. Then % (X) is a second

countable metric space.
Proof. 1t follows from U,,cy "# C Uen"#B = <2 and | B~°| = | 2| = 0. O

Now we will see an application of the Banach-Mazur game and the Krom space.
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Theorem 3.9 (Krom). For any topological spaces X,Y and any base # for X, X x Y is a Baire
space if and only if # (X) x Y is a Baire space where .# (X) is the countable sequence space
associated with X and #.

Proof. Assume that X x Y is not Baire, then I 1 BM(X x Y); call o this strategy. We will build a
winning strategy ¢’ for Player I in BM(.#Z (X) x Y). Indeed,

e Inning 0

In BM(X x Y), Player I plays o({ )) = Ao X By. Then, in BM(.#'(X) x Y), Player I plays
o’'({)) = [(Ag)] x By, where oy = (Ag) €].'%. Next Player II responds [8y] x Vo, with
Oy €M% and oy C &, so Player Il plays 8(no — 1) x Vj.

e Inning 1

Player I plays o((8y(ng — 1) x Vp)) = A; x By. Then in BM(# (X) x Y), Player I plays
o’ ({[8] x Vo)) = [01] x By, where 61 = 89~ A; €/, So Player II responds [81] x V1,
with 6; €/M% and o C 6y, also we can suppose that n; — 1 > ng. Then in BM(X x Y),
Player II plays &;(n; — 1) x V.

e Inning 2

Player I plays o ((0p(ng — 1) x Vo, 80(n; — 1) x V1)) = Ay X By. Then in BM(# (X) X Y),
Player I plays o’({[d] x Vo, [81] x V1)) = [02] X B2, where 0> = 6;"A; elmtlz. So
Player II responds [&] x V2, with &, €/™% and 0, C &. Again we can suppose that
ny — 1 > ny. Then in BM(X x Y), Player II plays & (n, — 1) x V,, and so on.

BM(X x7Y) BM(Z (X) xY)
Player | Player I Player | Player Il
o(()) =40 xBy o’(()) = [o0] X Bo

Oo(nop—1) xV [80] x Vo
Ay X Bj [01] X By

51(”1—1)><V] [61]><V1
Az X B (03] X By

O (ny—1)x Vs (8] x Vs
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Claim 3.9.20. Ny, (8] X Vi =0

Proof. Suppose otherwise, that is, there exists (h,y) € [6] X Vi, Vk € . In particular h €
MkewlOk]- Now let us see what happens in X x Y. As o is a winning strategy, we have that
Mkcw O(nxk — 1) x Vi = 0. As h € # (X), we have that (¢, h(k) # 0. Put x € h(k),Vk € o.
In particular, for each k € @, & C h and therefore x € h(n; — 1) = &(ny — 1), then (x,y) €
Mkew Ok (nx — 1) x Vi, contradiction. O

Then ¢’ is a winning strategy for Player I in the game BM (¢ (X) x Y), therefore
J(X) x Y is not a Baire space.

Now assume that J# (X) x Y is not a Baire space, so I 1 BM(_#(X) x Y). Let be 6’ be a
winning strategy for Player I in BM(_# (X) x Y). We build a winning strategy o for Player I in
BM(X x Y). Indeed,

e Inning 0
In BM(.# (X) xY), Player I plays ¢’({)) = [0p] x By, with 6y €]"0.Z. Then, in BM(X x
Y), Player I plays o(( )) = op(ng — 1) x By. Next Player II responds Wy x Vp, so Player II
plays [8] x Vi, where 8y = op" Wy €)1,

e Inning 1

Player [ plays o’({[d0] x Vo)) = [o1] X By, with 61 €| 98. Note that we can suppose that
ny —1 > ng. Then in BM(X x Y), Player I plays o((Wy x Vp)) = o1(n; — 1) x B;. Next
Player II plays W; x B;. Then Player II plays [;] x V;, where §; = 0" W; | +1.4.

e Inning 2

Player [ plays 6’ ({[80] x Vo, [61] x V1)) = [02] x B,, with 6, €]"2%8. Again we can suppose
that ny — 1 > ny. Then in BM(X x Y), Player I plays o((Wy x Vo, W) X V1)) = 02 (np —
1) X B;. Next, Player II plays W, x B,. Then Player I plays [0,] x V>, where 6, = 6,"Wa |
m+1g2 and so on.

BM(# (X) xY) BM(X x7Y)
Player | Player Il Player | Player I
o’(()) = [o0] x By o(()) = oo(no—1) x By

[80] x Vo Wo x Vo
[G]]XB] G](I’l]—l)XBl

[01] x V; Wy x Vy
[02] X By O2(np—1) x By

[62] X V2 Wy x V3
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Claim 3.9.21. ey Wi X Vi = 0

Proof. Suppose otherwise, that is, there exists (x,y) € Wy x Vi, Vk € ®. Define p = e Ok-
Note that p € J#(X) C|®Z, because x € (e Wi- Then (p,y) € Nicw[Sk] X Vi, and this is a
contradiction. ]

Therefore 6’ is a winning strategy for Player I in BM(X x Y), therefore X x Y is a Baire
space.

]

Corollary 3.10. Any topological space is a Baire space if and only if all of its associated
countable sequence spaces are Baire.

Proof. Consider the trivial one element space Y = {y} in the Theorem 3.9. [

Corollary 3.11. Let X be a topological space and let (X ) be an associated countable sequence
space. Then I 1 BM(X) if and only if I 1 BM(.# (X)).

Proposition 3.12. Let X be a topological space with base % and % (X) its associated Krom
space. Then II T BM(X) if and only if Il 1 BM(.# (X)).

Proof. Let 6 be a winning strategy for Player II in BM(X). We are going to build a winning
strategy &’ for Player II in BM(.#"(X)). Indeed,

e Inning 0
In BM(.# (X)), Player I plays [op, with oy €]0%. Then, in BM(X), Player I plays

0o (no — 1). Next Player II responds & ((op(no — 1))) = Vo, so Player II plays 8 ({[op])) =
[G()AV()].

e Inning 1

Player I plays [0} ], with o1 €}" %, with 6y~ V) C 07. Also we can suppose that n; — 1 > ny.
Then in BM(X), Player I plays o (n; — 1). Next Player II responds & ({cy(ng—1),01(n; —
1))) = V1. Then in BM(#' (X)), Player II plays &' ({[oo], [01])) = [01"V1].

e Inning 2

Player I plays [0], with 0, €)™, with 61"V C 0, and again we can suppose that
ny— 1> ny. Then in BM(X), Player I plays 6,(ny — 1). Next Player II responds 8 ({0 (rnp —
1),01(n;—1),02(n, —1))) = V5. Then in BM(# (X)), Player Il plays &' ({[0v], [01],[02])) =
[0," V5], and so on.
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BM(X) BM(# (X))
Player | Player Il Player | Player Il
oo(no—1) [00]
6((oo(no—1))) = Vo &'({[o0])) = [00" V]
(o] (n1 — 1) [Gl]
Vi [Glﬁvl]
62(n2 — 1) [62]
Va (027 V2]

As 6 is a winning strategy for Player II then (¢, Vi 7# 0. Choose x € (e Vi- Consider
P = Ukew 0r" Vi Note that p € 7 (X), because x € e Vi- Then (Niee [0k~ Vi] # 0. Then &
is a winning strategy for Player II in the game BM (7 (X)).

Now assume that Player II has a winning strategy 8’ in the game BM(.#"(X)). We build
a winning strategy 6 for Player II in BM(X). Indeed,

e Inning 0, in BM(X), Player I plays Ag € %; then, in BM(.# (X)), Player I plays [(A)].
Next Player II responds 6'({[{(Ao)])) = [0o], with & €]"0.%Z and (Ag) C 8. Then Player II
plays 6({Ag)) = 8o(np—1).

e Inning 1, Player I plays A| € %. Then, in BM(J# (X)), Player I plays [8)"A;]. Next

Player II responds &’ ({[{Ao)], [00"A1])) = [01], with &) €}".Z and &"A; C J;. Note that
we can suppose n; — 1 > ng. Then Player II plays 6 ((Ag,A1)) = 8;(n; —1).

e Inning 2, then Player I plays A, € 4 so, in BM(2 (X)), Player I plays [0;"A;]. Next
Player II responds &'({[(A0)], [60"A1],[61"A2])) = [8], with &, €% and §,"A, C &,
note that we can suppose n, — 1 > nj. Then Player II plays 6({(Ag,A1,A2)) = d2(np — 1),

and so on.
BM(.# (X)) BM(X)
Player | Player II Player | Player Il
[(A0)] Ao
&'({[(A0)])) = [&] 6((Ao)) = bo(no—1)

(60" A1] A

[61] 61(n —1)
[617A] A

[62] &(n2—1)
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Again as ¢’ is a winning strategy for Player II in BM(# (X)). Then i 0] # 0.
Choose f € [&],Vk € w. In particular, there exists x € (e, f (k). Also note that for each k € o,
x € f(ng—1) = 8(np—1). Then x € (N 8 (ny — 1), therefore o is a winning strategy for Player
IT in the game BM(. %" (X)). O

In other words,

Corollary 3.13. Let X be a topological space with base % and % (X) its associated Krom space.
Then the games BM(.# (X)) and BM(X) are equivalents.

Corollary 3.14. Let X be a topological space. The following are equivalent:

(a) X is productively Baire;
(b) for each base A for X, its associated Krom space .#%(X) is Baire;

(c) there exists a base & for X such that its associated Krom space .#z(X) is Baire.

Finally we present the result of Krom, commented at the beginning of this section.

Theorem 3.15. There are two ultrametric Baire spaces such that their Cartesian product is not a

Baire space.

Proof. By Cohen’s Theorem (Theorem 3.4) there are two Baire spaces X,Y such that X x Y
is not Baire. For each of these spaces we associate respective Krom spaces . (X ) and J# (Y).
Then, by Theorem 3.9, we have that % (X) x Y is not a Baire. Again by Theorem 3.9, we have
that Z (X) x 2 (Y) is not a Baire space. O
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3.1.2.2 A counterexample with Cge™

Finally we present an example of a Baire space whose square is not a Baire space. This
example appears in the article (FLEISSNER; KUNEN, 1978). Also for this part we follow the

notation and results of the Section 1.2.1.

Remember that C,hc™ is the subset of ¢ of ordinals of cofinality @. Also, as ¢* is a
regular uncountable cardinal, then Cy,c™ is stationary. So by Solovay’s theorem (Theorem 1.74),

Cpc™ can be split into many ¢ many mutually disjoint stationary subsets of ¢

So let {Ay : x € 2°} be mutually disjoint stationary subsets of Cc™. Let M = 2% x
(¢T)®. Our space is
Y={(x.f)eM:[" €Ay}

Proposition 3.16. Y is a Baire space.

Proof. Let 2 ={D;:i € @} be a family of dense open sets of M and let V be a non-empty open
set of M. Let
W={f":(x.f)evn(\2}.

Claim 3.16.22. W is a stationary setin c*.

Proof. Let C be a club in ¢*. As V is a non-empty open set of M, there is a basic’open
set By := Ny, Xx N;, €V, where sp € 2<% and 19 € (¢*)<?. Define s; = 50" (s0)* € 2= and
f1 =to " ap € (¢7)<?, where ag = min{x € C : x > 1p*}. Then define B; := N5, X N;, C By. Also
Do N By is a non-empty open set of M, then choose B, := Ny, X N;, € DoN By with 51 C s and
t1 Cty. Define s3 =527 (s2)* € 2<% and 13 =1, " ay € (¢7)<?, where a; = min{x € C: x > 1,*},
then define B3 := Ny, X N;; € By, and so on. Note that (B,,),c( is a decreasing sequence of non-
empty open sets, such that By C V and By, 12 C D,, for all n € @. Note that x := (J,,c, 5n € 2¢
and f := Upcqtn € Jo+- Also f* = sup{ay, : n € o} € C, because C is closed in ¢*. Then
%, f) €MheoBr CSVNNZ,s0 f*cCNW. O

Now for (¥,f) €M, h:® — w, and i € , let B(), f,h,i) be the ball of radius 2~"()
around (Y, f). Explicity,
B(x,f.h,i) ={(x'.f") e M:x [ h(i) = x" [ h(i), f [ h(i) = f' T h(D)}.
Let
Wy = {ff:re Kxh}a

where

Kyn=A{f€Jer :B(x,f,h,i) CD;NV forall i c m}.

2 Remember that the standard basis for the topology of A® consists of the sets Ny = {x € A<? : s C x},
where s € A<® and A is endowed with the discrete topology.
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Claim 3.16.23. We have the following properties:

@) W=U{Wyn:x € r,h€ 0®};
(b.) Ky is closed in J.+;

(c.) There are y € J, and h € @® such that Wy is a stationary set.

Proof. (a.) Note that U{W,,: x € h,h€ @®} CW.

On the other hand, let f* € W, so (x,f) € VN[ Z. Let i € ®. By definition (), f) €
V ND;. As VN D; is non-empty open set, then there are s; € 2<% and t; € ¢™=® such that
(x,f) € Ns, xN,, CVND,.

Define i : @ — w as h(i) = max{dom(s;),dom(t;) }. Note that B(), f,h,i) C Ns, x N;, C
D;NV, forall i € . Then f € Ky, and so f* € Wy,

(b.) We will show that J.+ \ Ky, is open. Let f € J.+ \ K),. Then there exists ip € @
such that B(, f,h,ip) € Di,NV,sothereis a (', ') € B(x, f,h,io) such that (', /') & D;,NV.
Note that N,y € Je+ \ Ky, otherwise there is a g € Ny such that B(x,g,h,i) C VN
D; forall i € @. In particular B(},g,h,io) CV ND;,. But (¥, f') € B(x.,g,h,io), contradiction.

(c.) Otherwise W, is non-stationary for all x € J, and h € ®®. By part (a.), W is the
union of ¢ non-stationary sets. But by Claim 3.16.22, W is a stationary subset of ¢*. This is a

contradiction with Lemma 1.75.

]

Finally, by part (c.) of Claim 3.16.23 and by Proposition 1.78, there is a club C such that
CNCyct C Wy Note that 0 # CNA, CCNCect C Wy, Then, Ay NW,;, # 0. So there is a
(x,f) eYNVNNZ,andY is Baire.

]

Theorem 3.17. Y2 is meager in itself
Proof. Consider

Di:{<<%7f>7<X’»f’>>€Y2:%%X " }

min(f*,(f)*) > max(f(i), f (i)
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Claim 3.17.24. For all i € w, D; is open and dense in Y 2,

Proof. Fix i € m, we have the following facts.

e D; is open.

Let ((x,f),(x'.f")) € D;. Then there is j € @ such that x [ j=x' [ jand y; # x}. Call

st=7 lj+1 and sy =" [j1. Also max(f(i), f'(i)) < min(f*,(f')*) < f*,(f')". Then
there are nj,ny; € @ such that max{f(i),g(i)} < f(n1),g(n2). Consider k; = max{i +
L +1,m+1}, pi=f [y, and 6; = g [

Finally, note that
()50 f)) € [(N5, X Np,) x (Nyy x Np)]NY? C Dy
e D, is dense.
Let ({x1, f1), {x2, f>)) € Y. Consider the non-empty basic open set

[(le i X Nflf ) X (Nxzfiz XNfz Fj2>] myz'

1 1

Consider k = max(iy, i) and define

and

Note that x', x> € 2? and x' # x°.

Consider m; = max(j1,i+ 1) and my = max(j,,i+ 1), then define

fl = (fl [rm)/\max((fl rm1>*7 (f2 [mz)*)Amin{x 6Ax' txX > max((fl rml)*7 (f2 [mz)*)}

and

2= (2 ln) "max((fi tm)"s (f2 Tny) ™) “min{x € Ay 2 x > max((fi Imy)*, (f2 Imn)*)}-

Note that f1, f2 € J.+,s0 (f1)* €A1 and (f)* € A2, also max(f' (i), f2(i)) = max(f1 (i), f>(i)) <
(f1)%, (f?)* then max(f' (i), 2 (i)) < min((f')*,(f*)*), therefore

(' 1), 2 17)) € [N, X Nyyp, ) X (Nayr,, X Npyp, )INY? N D;
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Claim 3.17.25. (;c,, Di = 0.

Proof. Otherwise, there exists ((x, ), (x’, f')) € D;, for all i € @. Then x # x’ and min(f*, (f')*) >
max(f (i), f'(i)), for all i € @. By definition, as ¥ # x’ then f* # (f')*. Note that for all i € ®,
we have that £ (i), f'(i) < max(f(i), f'(i)) <min(f*,(f')"). Then f, f* <min(f*,(f")*) < f, f",

so f = f*, contradiction. ]

Note that by the previous claims, Y2 is meager in itself, in particular Y2 is not Baire.

]
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3.2 Conditions for the product to be a Baire space.

As we have seen before, there are examples of Baire spaces whose product is not Baire
and whose product is even meager in itself. Now we present conditions on one of the spaces,

which makes your product a Baire space.

Lemma 3.18. Let X,Y be Baire spaces with ¥ having a countable 7-base. Then for every
sequence G1,Ga,--- of open dense subsets of X x ¥ we have that (,,c, G 7 0.

Proof. Let % ={U,:n € @} be a countable m-base of Y. Consider the projection 7y : X x Y — X.
Note that 7y is open and continuous. Let m,n € ®, and define U (m,n) = nx[G,, N (X x Uy,)].

Claim 3.18.26. U (m.n) is open and dense in X, for each m,n € .

Proof. As G, N (X x U,) is open, then U(m,n) = mx[G, N (X x U,)] is open. Now, let O be
a non-empty open set in X, so O x U, is a non-empty open set in X x Y. Then there is a
(x,y) €GN (0O xUy,),s0x € U(m,n)NO. O

As X is Baire, we have that (), ,c, U(m,n) is dense in X. In particular, there is a
X0 € (\mneeU (m,n). For each m € @, we define H,, = {y € Y : (x0,y) € G}

Claim 3.18.27. For each m € w, H,, is open and dense in Y.

Proof. H,, is open. Indeed, let y € H,,, so (xp,y) € G, then there is a basic non-empty open set
U xV in X x Y such that (xg,y) € U xV C G, theny € V C H,,. Now, we will show that H,,, is
dense in Y. Indeed, let U, € % be a non-empty open set of Y. As xo € U(m,n) = mx[G,, N (X X
U, )], therefore there is a y € Y such that (xg,y) € G,y N (X x Uy,), then y € H, NU,. O

AsY is Baire, we have that (,,,c,, Hy, is dense in Y. In particular, there is a yo € (,, Hy-
Finally, note that (xo,y0) € (ew Gm-

]

Theorem 3.19. The Cartesian product X x Y of a Baire space X and a Baire space Y having a
countable 7-base is a Baire space.

Proof. Let (G, : n € m) be a sequence of open dense sets in X x Y. We will show that ", Gn
is dense in X x Y. For this, let U x V be a basic non-empty open set in X X Y we must show
that (,,c Gn N (U x V) # 0. Indeed, note that U is Baire, because is open in X, also V C Y is
second countable, so consider the sequence (G, N (U x V) : n € ) of open dense sets in U X V.
By Lemma 3.18, we have that @ # (¢, Gn N (U X V).

]
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Corollary 3.20. If X is a second countable Baire space and Y is a Baire space, then X x Y is

Baire.

In particular, if B C R is a Bernstein set, remember that B is a second countable Baire

space, then B is productively Baire.

Also, remember the following proposition that was proved in the applications part of the

section on the Banach-Mazur game.

Proposition 3.21. Let X be a Choquet topological space and let Y a Baire space. Then X x Y is
a Baire space.

Remark 1. The converse is not true, because Bernstein sets are productively Baire but Player II

has no winning strategy in the game BM.

Now we present a result due to Moors (MOORS, 2006) that, together with the hereditary
spaces, Baire provides us with information about the product of two Baire spaces. We will also

use the Banach-Mazur game to prove it.

Lemma 3.22. Let X be a topological space, let (Y,d) be a metric space and let O be a dense
open subset of X X Y. Then given any finite subset Z of Y, € > 0 and non-empty open subset of
U of X, there exist a finite subset Y’ of ¥ and a non-empty open subset V of U such that

(i) for each z € Z there exists ay € Y’ with d(y,z) < € and

(i) VxY'Co.

Proof. We will demonstrate this result through a direct induction argument about the number of
elements of Z.

In fact, firstly suppose that Z = {z} C Y, let € >0 and U C X as above. Consider the
non-empty open set U x Bg) in X x Y. So there is a (u,y') € (U x Bg)) N O. Then there are
non-empty open sets V and W in X and Y respectively such that (u,y') € V. xW C (U x B‘(gz)) No.

Finally, consider Y' = {y'} and V C U. Notice that these sets satisfy (i) and (ii).

Now suppose that Z = {z1,z2} CY,let e > 0and U C X as before. Applying the previous
case to {z; } we have that there is a finite subset ¥; of ¥ and a non-empty open subset V| of U
satisfying (i) and (ii). In particular, there is y; € ¥ with d(z1,y;) < €. Consider the non-empty
open set V| x B,(SZZ) , so there is (ap,by) € (V) x BS”) N O and a non-empty basic open set V| x W,
such that (az,by) € V] x Wa C (V} x B‘(QZZ)) N O. Finally, consider Y/ = {y;,b>} and V = V|. Note

that these new sets also satisfy (i) and (i1).

Suppose the result is valid for finite sets of cardinality n € @, and let Z = {z1,- - ,zp+1}»
let e > 0and U C X as before. Consider Z' = {z;, - ,24}, s0 Z = Z' U{z,41 }. By the inductive
hypothesis for Z’ there exists a finite Y” and a non-empty open subset V' of U such that
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(i) forall j € {1, ---,n}, there exists ay; € Y with d(zj,y;) < € and

(i) V' xY" C 0.

Also, by construction, we can suppose that there are non-empty open sets Wy, --- W,
such that V' x W; C O, for all j € {1,---,n}. Consider the non-empty open set V' x Bg”“).
So there is (ay+1,bpr1) € (V' % BS"“)) N O and a non-empty basic open set V' x W, ;1 such
that (a1 1,bpe1) €V x W, C (V' % BS"*I)) NO. Finally, consider Y’ = {yy,-- ,yn,bp+1 } and

V =V”. Note that these new sets also satisfy (i) and (ii).

]

Remember that every complete metric space is productively Baire (Theorem 2.8 and
Proposition 2.23), also every complete metric space is hereditarily Baire. The following theorem

generalizes these facts.

Theorem 3.23 (Moors). Let X be a Baire space and let (Y,d) be a hereditarily Baire metric

space. Then X x Y is a Baire space.

Proof. Let (O, : n € ®) be a sequence of open dense sets in X x Y. Note that we can assume
that the sequence is decreasing. We will show that (¢, O, is dense in X x Y. Indeed, let U and

V be non-empty open sets in X and Y respectively, we will show that @ # (,,c, On N (U X V).

Let us define a strategy ¢ for Player I in the Banach-Mazur game played on X to build a
strategy o for Player I.

In the first inning, let (x,y) € O; N (U x V). Then there are O} and O non-empty
open sets in X and Y respectively such that (x,y) € O] x O} C O, N (U x V), so (UNOY}) x
{y} C 0Ol x 0} C 0. Define Uy = U N O}, ¥y = {y} and Zy = {y} = ¥;. Finally Player I plays
o(())=Up.Let A] C Uy be the answer of Player II.

In the second inning, consider the space A x V. Note that O, N (A; X V) is open dense
in X x V. Also consider the finite set Zp = {y} CV , € = % and the same open A;. Then by
Lemma 3.22, there exists a finite set ¥4y C V, and a non-empty open Uj4,) € A; such that

(i) foreachz € Zp thereisay € Y4,y with d(y,z) < % and
(ll) U(Al) XY(A]) - Ozﬂ(X X V) - 02.

Then Player I plays 0((A1)) = U4,)C A1. Let Ay C Uy, ) be the answer of Player II.

In the third inning, consider the space A, x V. Note that O3 N (A, x V) is open dense
in Ay XV, also consider the finite set Z(, ) = Y(4,) UZp, € = % and the open A,. Then by Lemma
3.22, there exists a finite set ¥4, 4,) € V, and a non-empty open U4, 4,) C A2 such that

(i) foreachz € Z(y,) thereis y € Y4, 4,) with d(y,2) < J and
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(ll) U(A17A2) X Y(A17A2) - O3ﬂ(X X V) - 03.

Then Player I plays 6 ({A1,A2)) = U4, 4,)C A2 and let A3 C Uy, 4, be the answer of Player II.

Finally, in the n-th inning, consider the space X x V, and suppose that the finite subsets
YA, A)) and Ziay - A of V, the non-empty open subset Uy, of A, and ¢ have been
defined for each (Ay,---,A;) of length j with 1 < j < (n—1) so that:

(i) foreachz€Zy, .. 4, ) thereisy € Yy, .. 4,) With d(y,z) < ﬁ and

Then Player I plays 6 ((A1,--A,)) = Uy, ... a,) and Player Il responds A,,. Define Z(4 ... 5) =
Yy ) V20 a00)

This completes the definition of the strategy ¢ for Player I in BM(X). Note that Zy C
Zia) S 2140 S LA May) & EV.

As X is a Baire space, then by Theorem 2.7, ¢ is not a winning strategy for Player I. That
is, there is a sequence (4, : n € ®) of open sets in X such that (,c, A, # 0. Let x € (,,cqAn-
Note that x € A, C Uy, .4, ) CUp CU.

Let n 6 0), 80 X E An g U(Alf"vAnfl). By ConStIUCtion, U(A17"'7An71) X Y(A17"'7An71) g On.
Define W, = iy [({x} x Y) N O,]. We claim that W, is open in Y. Indeed, let w € W,,, so (x,w) €
O,, as O, is open, there are non-empty open sets B' and B* in X and Y respectively with

(x,w) € B! x B> C O,,. Finally note that w € B> C W,,.

Then, for each n € @, we have defined the open set W,, C Y such that {x} x W, =
({x} xY)N O,. Note that for each n € @, we have that W,,;.; C W,,.

Consider Z = U{Z(Alv“'7An—1) :n€w} CV CY.AsY is hereditarily Baire, Z is Baire.

Claim 3.23.28. For eachn € w, W,NZ is dense in Z.

Proof. Letn € . We will show that Z C W,,NZ. Indeed, let z € Z. Then there is a k € @ such
thatz € Zy, ... a, ,)- By construction, thereisay € ¥4, ... 4,) € Z(a, ... 4,) € Z with d(y,z) < k—+l
Also (x,y) € U, ... o) X Y4, .4, € Oks1- Then (x,) € Opp1 N ({x} X Y) = {x} x Wiy q, s0
Y € Wiyt

Now, let € > 0. We must show that 0 # BS) N(W,NZ).Let j € ® such that % < e. We

have the following cases:

(a) ifn <k, soy e Wi CW,, also we have the sub-cases,

e j<k.Sod(y,z) < k% < &, therefore y € ij) N(W,NZ).

® k< j Notethatze€Zy, .4, ) € Za,, ., ) By construction, there exists y e

1)

YA, a;) Withd(y',2) < Jﬁ < €. Note that y' € Wi C W, theny’ € BE?Z) N(W,NZ).



94 Chapter 3. Products of Baire spaces

(b) if k < n, we have that z € Z4, ... 4, ) € Z(a,, a, ) and there exists Y’ € Y4, ... 4,) C

n

Zia,ay S Z withd(y',2) < nl? Note that y' € W,,.; CW,.
o j<nsod(y,z)< ﬁ < &g, therefore y € BS) N(W,NZ).
e n<j. Notethatz € Z4, .. 4, ;) € Za, . A, ,)- By construction, there exists " €
Ya, ;) With d(y",2) < 717 < €. Note that y € Wy C W, theny” € BE 1(W, 1)
Z).

Finally, in any case we have shown that () # Bgz) N (W,NZ), therefore Z C W, NZ. Then
WnﬂZZ:WnﬂZﬂZ:Z,thatis, W,NZ is dense in Z. ]

Also for each n € @, we have that Z C W,NZ C W,,NZ. Then (W, NZ:n € o) is a
sequence of open dense sets in Z. Since Z is Baire, we have that (., W, N Z is dense in Z. In
particular, since V NZ is a non-empty open set in Z, there is a y € (,,c,(Wn N Z) NV. Therefore
for each n € @, (x,y) € ({x} xY)N Oy, then (x,y) € Nyec OnN (U X V).

]
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3.3 Infinite products of Baire spaces

In this part we will see how the property of being Baire can change when we consider
the infinite products in the usual topology and in the box topology.

Remember some basic definitions and properties of infinite products. Let {X) : A € A}

be a family of topological spaces and put X =[], ca X

The Tychonoff product topology on X is the topology having the collection of sets of

the form

[Turx 1 Xu

reM LEA\M
where U, is an open set in X, for each A € M and M is a finite subset of A, as a base. We will
denote this topological space by [T1cx X - In the case that |[A| = k and X; = X forall A € A we
denote []ycp X, by X¥.

The box topology on X is the topology having the collection of sets of the form

[T

AEA

where U, is an open set in X; for each A € A, as a base. If U, is an open subset of X for each
A, then []; A U, is called a box in []; cp X3 . We will denote this topological space by (1) X .
In the case that |A| = x and X;, = X for all L € A we denote [y o X by OO*X.

Lemma 3.24. Let % be a m-base of X and let k a cardinal, then the set of products of k elements

chosen from 4 is a w-base for (J¥XX.

Also let us fix a notation for a base we have a base for the countable Tychonoff power.
Let 7*(X) be the family of all nonempty open sets of a space X, and let [t*(X)]<® be the family
of all finite subsets of 7*(X). For each % = {Uy, - ,U,—1} € [7%(X)]<?, let

n—1
(%)= [y, ,Upi] := [JU; x X®\"
j=0

be the basic open set in X® defined by % in this particular order. If ¥ = {Vp,---,V,_1} €
[T*(X)]<? is disjoint from {Uy, ..., U,_1} , then [Uy, - -+ ,U,—1, 7] is defined by

n—1 m—1
[Uo,-.- ,Un,l,”//] = HU]X HVkXXw\(nUm).
j=0 k=0

Furthermore, we put

BXC)={[#]: % €T X))~}

Also remember that, for each u € A, the map 7, : [[jcp X3 — Xy, defined by the relation
7y ((x)aea) = Xy is called the projection on X,,. Each 7, is continuous and an open map in

both Tychonoff and box topologies.
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3.3.1 Counterexamples with infinite products of Baire spaces.

In this first part we present the example of a Baire X space whose Tychonoff power X®
is meager in itself and its finite power X" is Baire, for all n € @. This example appears in the
article (FLEISSNER; KUNEN, 1978).

Let {Ay :y € ®®} be disjoint stationary subsets of Cee™. Let
Cy=|J{Ay 1y € ®® and y'(0) # y(0)}.

Let
X={(0f) €0®xJu: f*€C}.

Theorem 3.25. X® is meager in itself .

Proof. To se this, for any i, j,k < @ let us define D;j; C X by

Diji = {{{yo. fo),+--) € X :min(ff, f7) > max(fi(k), f;(k))}-
In addition, for each [ < @, we define E; C X® by

E; = {{(yo, fo), =) €X?: 1 C {y0(0), -+ ,ym(0)} for some m < w}.

Claim 3.25.29. D; i, E; C X® are open and dense sets, for all i, j,/,k < ®.
Proof. Fixi,j,l,k < o.

e D;j is open.
Let ((y0,f0),-*) € Diji, so max(f (i), (i) <min(f*,(f)*) < f*,(f")*. Then there are
ni,ny € @ such that max{f(i),g(7)} < f(n1),g(n2). Consider k; = max{i+1,n; +1,n, +
1}, pi=f I, and 6; = g [x;.
Finally, note that

(30, 0), ) € [(Joo X T+ ) X -+ X (Jop X Np,) X+ -+ X (Jp X Ngi,) X (Jop X Je+) X -+ ]NX? C D;.

e D;j is dense.

Let ((vo, fo), ", (Ym—1,fm-1)) € X"™. By definition f € A, and f7 € Ay’j for some A,
AyS, with y4(0) # y;(0) and y}(0) # y;(0). Consider the non-empty basic open set

m—1

[T, XNy, ) X (o % J )V nx©.
p=0

Define k; = max(k+ 1,t;), k; = max(k+ 1,¢;) 3 and consider
Fr=(fi )™ (max((f; Te)*s (f 1))~ min{x €Ay x>max((fi 1k)"s (fj Tk;)")}

Note that we could have the case where 7, j € m. In this case k; = k; = k+ 1.

3
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and

F7=(f 1i,) ™ (max((f; Te)"s (f 1x,)%)) " min{x €Ay x> max((fi 1), (f 1)) }-
Note that f' € N filk, NX and f/ €N filk, M X. Finally, note that
m—1

H(NV/)F\'I, Xprrz,,) X (J(D XJC‘F)w\m ﬂXw
p=0

<<y07f0>7"' 7<yi7fi>7"' 7<yj>f]>7> 6Dijkm

e Ejisopen. Let ((yo, fo),---) € E;. Then there exists m < @ such that/ C {yy(0),--- ,y,(0)}.
Define s; =y; [ forall j <m+ 1. Note that

m+1
[H (N, % Je+) % (Jo x Jer )2V NX® C Ey.

J=0

e E is dense. Consider the non-empty basic open set

m—1
[H (Ng; X Ny;) X (Joo X T )V nx®.

j=0

Let ((yo, fo), ) € [HT:_OI (Ng; X Ni;) X (Jop X Jc+)“’\’"] NX®. For each p < [, consider
(cp,8p) € X, where cp(n) = p and gp(n) = x, €A, foralln € o.

+1°

Finally note that ((yo, 0}, Vm—1, fin—1)5 (0,800 s (C1_1,81-1)s Omst> fns1), -+ ) €
T2 (N X Ny) % (T % e )7 0 X9 N E

Claim 3.25.30. mi7_j7l7k<wDijk NE =0

Proof. Otherwise, let ((yo, fo),-) € N j1k<w Pijk NE;. Note that fi = f'=--- =y € Copc™. In-
deed, let i, j < @. Then f;(k), f(k) < max(fi(k), f;(k)) <min(f;, f}) for every k € @, therefore
5= min(fy 1) = £ S
Also, by definition y € Cy, for all n < @, in particular there exists z € J, such that y € A,.
We claim that z(0) # y,(0) for all n < m, otherwise, suppose that 3p < @ such that
z(0) = y(0). Note that y € C,, NA;; then, there exists y' € Jg such that z(0) = y'(0) # y,(0),
contradiction. In particular, z(0) & {y,(0) : n < ®}.

On the other hand, by the definition of the E;’s, we have that @ = {y,(0) : n < w}. This

a contradiction, therefore we have the result. OJ

Note that by the previous claims, X® is meager in itself , in particular X is not Baire.

]
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Now let us show the second part of the initial statement.

Theorem 3.26. Let n < w, then X" is a Baire space.

Proof. Let 2 ={D;:i € w} be a family of dense open sets in (®® x J.+)" and V a non-empty
open subset in (@® x J+)". Put

W={a<c a=f5=-=fyand (o, /o), -, (yu1,/u1)) €V [] Di}
<o

Claim 3.26.31. W is a stationary subset of ¢

Proof. LetCbe aclubin ¢t. As V is a non-empty open set of (Jg X J.+)", there is a basic open
set By := ’};éNSQ X N,y CV, where s(j)- € o<® and t? € (¢h)<®, forall j < n.
J J

Define s} = s(}A(s?)* € 0<® and t} = t;)Aao € (¢)<®, where ag = min{x € C: x >
max{(t}))* : j <n}}, for all j < n. Then define By := H;f;éNs} X Nt} C By. Also DypN By is
a non-empty open set of (Jg X J.+)". Then choose B, := H’]’.;é Ns§ X thg CV C DyNB; with
s}. C s% and tjl- C t12~, for all j < n.

Define s? = s?h(s?)* € 0<® and t]3. = tjz-f\az € (¢)<®, where ap = min{x € C: x >
max{(tjz-)* : j < n}}, for all j < n. Then define B3 := Ny, X N;; C Bp, and so on. We have

that (B, )ncw 18 a decreasing sequence of non-empty open sets, such that By CV and By, 1» C
D,, for all n € ®. Note that, for each j < n, we have that x) = UmewST € 0® and fj =
Uncot]' € Je+, also o = (f1)" = sup{az, : n € @} € C, because C is closed in ¢*. Then
(O, ), L) € Macw B SVNNZ, 50 0 € COW.

]

For a point p = ({y0,f0), "~ s (¥a—1,fu-1)) € (Jo X Je+)" and h € ®® and an i € o,
B(p, 2_h(i)) denotes the ball centered at p with the radius 2-h) e,

<<y077‘0>7 B <yn—177n71>> € B<p727h(i))

if and only ifyj rh(i): Vj rh(i)’ 71- rh(i): fi [h(i) for all j < n.
For each y = (yo,- - ,yn—1) € (Jo)" and h € @® define

W= {a<ctia=fy=-=fiand £ = (fo fu1) € Kyn},

where

Ky ={f € (Je+)": B(p},27"D) C DinV forall i € 0},

where p)} = <<)’0,f0>7‘ e 7<yn—l7fn—l>> € (Ja) X-Ic+)n-
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Claim 3.26.32. We have the following properties:

(a) W= U{Wyh y € Jo,h € 0?};
(b.) Ky is closed in (J.+)"™;

(c.) There are y € Jy, and h € ®® such that Wy, 18 a stationary set.

Proof. (a.) Note that U{W,;,:y € J,h € @®®} CW.

On the other hand, let & € W, so there exists p? = ((Vo, fo)s s Yn—1,fn=1)) €V N
NiceDi With & = f5 = --- = fr_,. We have that for any i € @, V N D; is a non-empty open
subset of (@® x J.+)". Then, there are sq, - ,s,—1 € ®~® and 19, ,1,—1 € (¢7)<? such that
pff € [(Nsy X Nyy) X +-- %X (N5,_, xN;,_,)] € VND,. Consider s = max{dom(sy) : k < n} and
t = max{dom(ty) : k < n}, then define h : @ — o as h(i) = max{s,t}. Note that B(p?,Z_h(i)) -
D;NV, forall i € ®. Then f € Ky, and so f* € Wy,.

(b.) We will show that (J.+)" \ Ky, is open. Let f € (Jo+)" \ Ky, Then there exists ip € ®
such that B(p}}az_h(i())) g Dio NV, so there is <<y0770>7 T 7<yn—1 77n—1>> € B(p}}az_h(l)) such
that ((¥o, fo), > Fu—1>fn1)) & DiyNV. Note that N7 tntio) < % N7 i) € (Jet )"\ Kyps
otherwise there is g = (g1, -+ ,8n—1) € Nfo“}(io) X oo X anfﬁh(io) su_ch that B(p(yg,2_*h(’)) C
VND;forall i € @. In particular B(py,27"0)) C VN Dy, but (5o, fo)s s Fuet1sSut1)) €
B(py,2 ")), Contradiction.

(c.) Otherwise W,y is non-stationary for all y € J, and 2 € ®®. Now, by Claim 3.26.31,
W is a stationary subset of ¢*. By part (a.), W is the union of ¢ non-stationary sets. This is a

contradiction with Lemma 1.75.

]

Now by part (c.) of Claim 3.26.32 and by Lemma 1.79, there is a club C such that
Cﬂ ch+ g Wyh.

Choose y € (n+1)? C Jp = @® such that $(0) € {yo(0),---,y,—1(0)}. Then by defini-
tion of C,’s, we have A; C C), for all i <n.

Note that @ £ CNA; C CNCypet C Wy, let B € CNAy = CﬂAyAﬁchJr C Ay Wyy,. Then
there exists a point (fo,---, fu—1) € (Jo+)" such that ((yo, fo), -, Vn—1,fn—1)) € VN Nicw Di
and fy =---= fi_, = B. Since f;* € Ay C Cy, for all i < n, we have (y;, f;) € X forall i <n. It
follows that

<<y07f0>7"' 7<yn—17fn—l>> cevVn ﬂ Dian,
i€Ew

which implies that (;c, D; N X" is dense in X", and thus X" is a Baire space. ]
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3.3.2 Conditions for infinite product of Baire spaces to be Baire.

In this part we will give conditions on a topological space X so that their infinite powers,
in the box and Tychonoff product topology, are Baire. Again the Banach-Mazur game will be
of great importance to demonstrate some of these results. It is important to mention that the
phenomenon of being Baire in product can change depending on which topology we choose
(box or Tychonoff).

3.3.2.1 Tychonoff products

Theorem 3.27 (Choquet). Tychonoff products of Choquet spaces are Choquet and therefore

they are Baire.

Proof. Let {Xy : a € A} be a family of Choquet spaces and let 8y, a winning strategy for Player
IT in BM(X). We will build a winning strategy 8 for Player I in BM(]]ycp Xo)- Indeed,

e Inning 0

Player I plays Uy = []geq, Ug X [Ioga, Xo where Ag is a finite subset of A and Ug isa
non-empty open subset of X,. Next, Player II responds 8 ((Up)) = [Tgea, 8« ((U3)) X

H(X€A0 XOC'
e Inning 1

Player I plays Uy = [Tgea, Uy % [Taga, Xa € 6((Uy)) where A D A is a finite subset
of A and U] is a non-empty open subset of X,. Next, Player II responds & ((Up,U;)) =
HaeAO 5a(<Ug, U(%t)) X H(XEA]\A() 6a(<Ué>) X Hoch] XOC'

e Inning 2

Player I plays Uy = [Tgea, Ug % [Taga, Xa € 8((Uy)) where Ay D Ay is a finite subset of
A and UZ is a non-empty open subset of X,. Next, Player II responds & ((Up, Uy, U,)) =
HQEA() 60‘ (<U(())C’ U(i’ U§>) X HaeA] \A() 6a (<U(%U U(%)) X H(ZGAQ\A] 505(<Ug£>) X Ha¢A2 XOC’ and

SO On.
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BM(HaeAXa)
Player | Player Il
[T uox ] X«
aE€A) adAg
H 5a(<U8>) X H Xo
aEAy agAg
IT Uax ] X«
aEA OC¢A1
[T 8a((Ua.Us)) x ] 8a((Us))x [T Xa
aEA) acA\Ag OgA
IT v x ] X«
acA,) (X€A2
[T 8((Ua.UaUg)) x [T 8allUa:Ua))x [T Sal(Ua))x T Xe
acA aEA] \AQ OCGAQ\A] a¢A;
Note that for each o € |J,,c Ams as ¢ is a winning strategy, there exists xo € 5o ((UY, -+ ,U%))

for all n € w. Choose any point x, € X and define xo = x, for & € K\ U,,;.coAm-

Then x = (X¢)aea € Npew 0((Vo, -+ ,Uy,)) and therefore § is a winning strategy for
Player IT in BM(JTgcp Xa ), 80 [Tgen X is a Choquet space. O

In this part we present a result of the article (LI; ZSILINSZKY, 2017) by Rui Li and

Laszl6 Zsilinszky which generalizes Theorem 3.9 for infinite Tychonoff products.

Theorem 3.28. Let / be an index set. Then [];-; X; is a Baire space if and only if [];c; #. (X;)

is a Baire space, for some (equivalently, for every) choice of bases %; for X;.

Proof. First, assume that Player I has a winning strategy ¢ in BM([];¢; X;). We are going to
build a winning strategy ¢’ for Player I in BM([[;¢; ¢ (X;)) as follows:

e First inning
In BM(IT;¢; Xo), if Player I plays o(()) = [Tics, Vo,i X [Ligs, Xi for some finite fy C 7 and
Vo.i € %, then, in BM(IT;¢; # (X;)), Player I plays o'(()) = [Tics, V&i x [Tig, H# (Xi)
where Vij; = [(Vo,i)]. Next, Player Il plays Uy = [Tics, Uy, % [Tigs, # (Xi) for some finite
Jo 2 Iy, and foralli € Jo, U(ii = [<U()7i(0), <o ,U()’,'(mo’,-)ﬂ with <U07,'(0>, cee ,U()’l'(m()7,')> Ei
mo’iﬂ%’i ,mo,; > 0and Up;(0) =V, for all i € Iy. Then, in BM(IT;c; X)), Player II plays
Uo = [Ties, Uo,i(moi) X [Tigs, Xi-

e Second inning
In BM([T;¢; X), Player I plays o((Uo)) = [1ics, V1,i X [ligs, Xi where I} 2 Jp is finite,
Vi1 € % foreachic I and Vi1 C Uy i(mg ;) whenever i € Jo. Then, in BM([T;¢; 2 (X;)),
Player I plays o' ((Uy)) = ITicr, Vi'; < [ligs, # (Xi) where
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[(U0,i(0),- -+ ,Uo,i(mo,),Vi1)] if i€Jo

[(V1,)] if iel\Jo.

Next Player II plays Uy = [Tic;, Uy; X [1igs, # (X;) for some finite J; 2 Iy, and for all
. " ’ . i+l

i €1, Uy = [(U14(0), -+, Upi(my )] with (U14(0), -+, Uy i(my ) €L %, . Note
that

i) (U1,(0),---,Uy i(m1,;)) 2 (Uo.1(0),---,Up,i(mo;), Vi) for i € Jy and
(i1) UL,'(O) =Vi foriel \Jo.

Then, in BM([T;¢; X;), Player Il plays Uy = [1;c;, Ur,i(m1,;) X [1igs, Xi> and so on.

BM(ITic; Xi)

Player | Player I
o(()) = Iies, Vo,i X TTigzry Xi

Uo = [Ticy, Uo,i(mo.i) < [Tigs, Xi
[Ticr, Vii X TTig, Xi
Ur = [liey, Ur,i(m1 ) x Tligs, Xi

BM(ITic; % (Xi))

Player | Player Il
G/(< >) — Higl() V(;kl X Hi%[() %(Xl)

Ug = Iics, Ug i x Tigesy H# (Xi)
[Ticr, Vi'i % Iligr, H# (Xi)
Ul =TITies, Ut < Tigy, H# (Xi)

Proceeding inductively, we can define 6’ so that whenever k < @, and U} =[], 73 UG %
[Tigs, # (X;) is given for some finite J, and for all i € Ji, Uy, = [(Uri(0), -+, Ug,i(my ;)]
i+l * * *
for (Uyi(0), -+, Uy i(my.;)) el AB; and my; > 0, then o' ((Uyy,---,U}")) = Micr., Viir i %
[Tigs,,, * (X;) have been chosen, where I | D Jj is finite, and

[(Uri(0),- -, Uk i(mpi), Vieyr)]  if i €Uy

Vk*—i—l.i =
[(Viet1.4)] if i €Lyr\Jk
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is such that o ((Up,--- ,Uy)) = [Ties,., Vir1i < Iligy, ,, Xi where U; = Hiejj Uji(m;;) x Hi§ZJle
for all j <k.

As o is a winning strategy for Player I in BM([];<; X;), we have that

(N Un= () o(Uo,---,Uy)) =0

ncw ncw
for cach play 6/(( ), Up, 6 ({U0)), Ut -+, Uns O ({(Up, -+ ,Un)),- - of BM(TTies Xo)-

Claim 3.28.33. ¢’ is a winning strategy for Player I in BM([[;¢; £ (X;)).

Proof. Leta'(()),Us,0’((Ug)), Ui, - Uy, 6'((Ug,- -, Uy)),- - beaplay of BM(# (X)) and
assume there exists f € (e, 0 (U5, ,Uy)) = Npeo Us-

Then for each i € I, f(i) € # (X;), so we can pick some x; € (), f(i)(n). More-
over, if i € I for a given k < @, then x; € Vi, 50 (x;)ier € [Liey, Vi,i X [Ligy, Xi- Thus, (xi)ies €
MNnew 0((Uo, -+ ,Uy)), contradiction. -

Therefore [];c; # (X;) is not a Baire space.

Now assume that Player I has a winning strategy ¢’ in BM([T;c; % (X;)). We are going
to build a winning strategy o for Player I in BM(];c; X;) as follows:

e First inning

In BM(ITic; # (Xi)), if Player I plays ' (()) = [Ties, Vo; % [Tigu, # (Xi) for some finite
Iy C I where for all i € I, VO*,i = [(V0,i(0),- -+ ,Vo,i(mo ;))]. Then, in BM([];c; X;), Player I
plays o(()) = [Tic, Vo.i(mo.i) % [Tigs, Xi- Next, Player I plays Uy = [Tics, Uo.i X [Ligs, Xi

for some finite Jy D Ip and Uy ; C Vj(myg ;) for all i € Iy. Define:
[<V(),i(0), <o ,Vo’,'(m()’i), U(),,'>] forall i€ Iy

Uy =
7l -
[(Uo.i)] forall i € Jy\ Iy

Then, in BM(IT;; # (X:)), Player Il plays Ug = Tics, Uy X Tligs, # (Xi)-

e Second inning

In BM(H[GI‘%/( )) Player I plays ¢ (( >) HlGI] Vl i HngI] ( ) where 1} 2 Jo is
finite and V|, = [(V1;(0),---, V1 ;(m1;))] whenever i € I;. Also note that

i) (V1,i(0),--- Vi i(m1;)) 2 (Vo.,i(0),- -, Vo,i(mo,), Up,;) for i € Iy and
(i1) Vl,i(O) = UO,i fori e Jy \10.

Then, in BM([T;e; Xi), Player I plays o ({Up)) = [Tics, V1,i(m1,i) % [Tigs, Xi- Next Player IT
plays Uy = [Tics, Ui X [Ligy, X,
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Define:
[<V]’i(0)7 oo ,V17,~(m17,~), U]_y,')] forall i€l

(Uy.4)] forall ie i\

Then, in BM(]ic; X;), Player Il plays Uy = [1;ey, U1,i(m1 ;) X [1igs, Xi> and so on.

BM(ITie; % (Xi))

Player | Player II
o'(()) = Iies, Vi % i, # (Xi)

Ug = Iics, Ug i * Tigsy K (Xi)
[Ticr, V' X Tign, # (Xi)
Ul =Tlies, Ul < Tigy, A (Xi)

BM(I i/ Xi)

Player | Player Il
o(()) = [Ticr, Yo,i(mo,i) X [Tigr, Xi

Uo = [ics, Uo.i X T 1igs, Xi
[Ticr, Vi.i(mi i) X [igr, X

Ui = [lics, Uri X ITigs, X

As o' is a winning strategy for Player I in BM([T;c; -# (X;)), we have that

NUi=()o'(Us,-.U;)) =0

necw ncw
for each play o/(()), U, 0" ((US)). U+ sUny &' (UG- Uy )), -+ of BM(Ties 4 (X))

Claim 3.28.34. o is a winning strategy for Player I in BM([];c; X)).

Proof. Let o(()),Uy,c({(Uo)),U1,--- Uy, ({Up,---,Uy,)), - be a play of BM(I];¢;X;) and
assume there exists (xi)icr € Npew (U0, Un)) = Nhew Un-

Let k € @ and i € I then define f(i) = Urce[(Vk.i(0), -+, Vii(my,;))]. Note that for
each i € [y and k € o, f(i) € H# (X;), because x; € (e f(i)(n). Now, if i & I'\ Urce Ik put
f(i) = (Xi)new- Then f = (f(i))ier € Npew o (U, ---,Uy)), contradiction. O

Therefore [];c; X; is not a Baire space.
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Now we present the result of (OXTOBY, 1961) that shows that arbitrary product of Baire

spaces with countable 7-bases are Baire.

Lemma 3.29. The Tychonoff product of any countable family of spaces, each of which has a
countable 7m-base, has a countable 7-base. Futhermore, if each space is a Baire space, then the

product is a Baire space.

Proof. The complete proof of this lemma can be found in (HAWORTH; MCCQY, 1977), Lemma
5.6. O

Remember that a topological space X satisfies the countable chain condition iff every
family of disjoint open subsets of X is countable. For example every separable space has the

countable chain condition.

Lemma 3.30. The product of every family of spaces, each of which has a countable 7-base, has

the countable chain condition.

Proof. The complete proof of this lemma can be found in (HAWORTH; MCCQY, 1977), Lemma
5.8. O

Lemma 3.31. Let {X, : @ € A} be a family of Baire spaces such that the product of any countable
subcollection is a Baire space and such that [],c4 X« has the countable chain condition. Then

[1aea X« 1s a Baire space.

Proof. Let {G,},co be a sequence of dense open subsets of X = [Jyeca Xo- By Zorn’s lemma,
each G, contains a maximal pairwise disjoint family of basic open sets, {U. : m € @}, which is

countable since X has the countable chain condition. Therefore,

H,= ] Uy, C G,

mecm
is a dense open subset of X.

Note that each Uy, is of the form [[gear Ua X [Igea\an Xa» Where supp(Uy,) = A7, is a
finite subset of A. Let B =J,, ;e Apy- Note that B is a countable subset of A. Now each H,, is of
the form K, X [Jgea\pXa Where Kj, is an open subset of [ [ Xo.

Since each H, is dense in X, each K, is dense in [[,-5X. Indeed, let V be a basic
non-empty open subset of [JocpXa, 50V = [Tacsupp(v) Voo X [1aep\supp(v) Xa- This induces the
non-empty basic open set V' in X, that is , V' = [Ta.csupp(v) Voo X [Taca\supp(v) Xas 0 Hya NV’ # 0.
Then 0 # pp(H,NV') C pp(H,) Npp(V') = K, NV, where pp : X — [[qcp X« is the projection

map.

AS [IgepXo is a Baire space then (), K, is dense in [],-pXy. Hence (,cq Hy 1S
dense in X, and, therefore (,c,, G, is dense in X. Indeed, let W be a non-empty basic open
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subset of X, s0 W = [Taesupp(w) Wer X Tlaca\supp(w) Xa- As pp(W) is a non-empty open set in
[TacpXa, then pp(W) N(N,ce Kn # 0. Let x = (xq)acs € p(W) NN,co Kn» extending x to all
A, that is, if o € supp(W) \ B, put xo = yq € Wy, and, if &« € A\ (BUsupp(W)),xq = za € Xa»
80 (X )aca € WNNew Hn- O

Finally we have that

Theorem 3.32 (Oxtoby). The product of every family of Baire spaces, each of which has a

countable 7-base, is a Baire space.

Proof. Let {Xy : @ € A} be a family of Baire spaces, each of which has a countable 7-base. Note
that by Lemma, [],ca Xo has the countable chain condition and each product of any countable
subcollection of A also has the countable chain condition. Then, by Lemma, [[,ca X 1s a Baire

space. ]
Corollary 3.33. Any Tychonoff product of second countable Baire spaces is Baire.

Corollary 3.34. Let B C R be a Bernstein set. Then, for each k > 2, the Tychonoff power B is
a Baire space. Therefore I ¥ BM(B¥).

Finally we present two results that appear in the article (FLEISSNER; KUNEN, 1978)
of William Fleissner and Kenneth Kunen. The first is a new application of the Banach-Mazur

game and the second again relates the cellularity and the meager in itself spaces.

Theorem 3.35 (Kunen-Fleissner). Let k¥ > . If X is Baire, then X* is Baire, where the powers

are considered in the Tychonoff product.

Proof. Let k > ®, we will show that, if X* is not Baire then X® is not Baire. For this, let ¢ be a

winning strategy for Player I in BM(X*). We are going to build a winning strategy & for Player
Lin BM(X?).

e Inning 0
In BM(X¥), , where No = {kg),--- .k} _} is the
support of &({ )). Now in BM(X®), Player I plays 6(()) = H';g)l U? x X\ where for
each j € {0,--- ,ng— 1} we rename Uj(.) = UI?Q' Next Player II responds H;@O_I VJQ x X @\mo

with mg > ng. Now, we will rename the playé of Player II, that is, we define

Vo=V if je{0,---,n9—1}
J

0 .0 oo
Vk20,1+1+j T Vn0+j if j€{0,---,my—1—np}.

Also, put Mg = No U {kgo_1 +1+j:j€{0,---,my—1—np}}. Returning to BM(X¥),
Player II responds [;em, V9 x X*<\Mo_
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e Inning 1
In BM(X™),
MOU{k(l),"' 7k1 —
of Player I, that is, we define

, where N| =

n;—11 is the support of & ({[Ticm, V0 x X*¥\Mo))_ We will rename the plays

U} ::UlQ if j€{0,---,ng—1}
Uporj = . if j€{0,---,my—1—ng}
Uposj: —U1 if j€{0,---,n; —1}.

The first two lines tell us that the U’s and U’s are the same in mg and the last line tells us
} tomp+np in X?.

Now in BM(X®), Player I plays 6 (([T}2, 1\/0 X©\moyy = HTOX”‘ 1U1
next Player II responds Hml ! V1 x X ‘”\m' w1th my > my+ny. Again, we W111 rename the

that after my we complete with the U’s from {k(l), “ee ,k,l 1

X O\(mo+n1).

plays of Player II, that is, we deﬁne

V,j? =V if j€{0,---,n9—1}
k1§30_1+1+] =V iF JE{0, - mo—1—no}
Vkl} = Voot if j€{0,---,n; —1}
Vi = Vi i1 €40, ,mi—mo—1—n1}
where k* = max{k" g1t 1+mo—1— no,k}ll_]}.

PutM; =NyU{k*+1+j:j€{0,---,m
11 responds [Tiem, V;' x X*\M1, and so on.

—my— 1 —n; }}. Returning to BM(X*), Player

®
Player | Player Il 'f'&y; ! Player Il
O —=
no—1 770
[z U; X
X(L)\n()
10
[Tiem, VY x H;"OO V X
X K\Mo X ®\mo
HTUE)H“_] Ul
X(L)\(Hl()—Hll)
HieMIVil X H’"lolvl X
XK'\M] J
X(!)\ml
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As o is a winning strategy for Player I in BM(X*), we have that

N 11 VI x XK\Mn — g

necwieM,
for each play &(( )), ITiem, V* X XM, 6 (([Tiem, Vi x X*\M0)) TTien, Vit x X¥\M1 - of BM(X¥).
Claim 3.35.35. G is a winning strategy for Player I in BM(X?).

Proof. Let &(( >),n§251 Vo xxw\mo,a(mjgglf/ﬁ xX“’\m0>),HT;0" V] xX®\m ... beaplay

of BM(X®) and assume there exists x = (X;) jew € ﬂnewn';zal Vj” x XV Now define

X0 =X iij{O,--~,n0—1}

J

X0 1) T Ko if je{0,---,mp—1—np}

xk} = Xmg+j iij{O,---,nl—l}

X414 o= Xmom+j if j€{0,---,m; —mp—1—ny}, and so on.

Choose any point x, € X and define xo = x, for o € k¥ \ @. Then completing x € X?® to ¥ =
(Xa)aex € X*, we have that X € e [Liem, V" X X ®\M» " contradicting the fact that Player I

has a winning strategy in BM(X*). Therefore & is a winning strategy for Player I in the game
BM(X©). []

Therefore X® is not a Baire space. ]

Definition 3.36. Let ¢ be a cardinal. A topological space X has cellularity s if every family of

disjoint open sets of X has cardinality < s.

Theorem 3.37. Suppose forall B €1, Xp has a 7-base of cardinality < s¢. Then if X = H{Xﬁ :
B € I} is meager in itself, there is I’ C I, |I'| < 5, such that [[{Xp : B € I'} is meager in itself.

Proof. Direct from Lemmas 3.38 and 3.40. [

Lemma 3.38. If each Xg has a 7-base of cardinality < 5 and / is finite, then X = [[g; X has

cellularity sr.

Proof. Let %; be a m-base of X;, for all i € 1. By hyphotesis, for each i € I, |%;| < . Define the
m-base for X, as Z = {[1;c; Bi : Bi € %;,Vi € [}, note that | B| < s, because, as [ is finite then
(| = || < 5.

Now, suppose otherwise that there is a family of disjoint non-empty open sets .% with
|-#| > 5. Then for each F € .Z, there is a B € % such that Br C F,so{Bp:F € #} C A.
But |{Bf : F € F }| > 5, contradiction.

]
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Corollary 3.39. If each Xg has a -base of cardinality < >z and I is infinite, then X = [J5<; X

has cellularity s.

Proof. Assume towards a contradiction that {Ug : B < »"} is a family of pairwise disjoint,
non-empty open subsets of [[;c; X;. By shrinking the Ug’s if necessary, we may assume that each

Uﬁ is a basic open set. Then Ulg depends on a finite set of coordinates, bﬁ cl.

Applying the A-system lemma (Theorem 1.81) for ¥k = @ and A = s we have that
there a A-system B C {bg : B < »"} with root A such that |[B| = »™. Note that A C I cannot
be empty, since by Nbg = O implies that Uy NUg # 0. Note that by Lemma 3.38, []gcp X has
cellularity sc. Let 7[Ug] be the projection of Ug onto [[gca Xg. Then {7[Ug] : B € B} forms a
disjont family of non-empty sets in X = [Jgca Xp. contradiction. [

Lemma 3.40. Suppose X = [[{Xp : B € I} has cellularity 5 and is meager in itself. Then there
isal’ CI, |I'| < s, such that [{Xg:B € I'} is meager in itself.

Proof. Let 9 = {D,, :n € ®} be a family of dense open sers of X, (| Z = 0. Let {Gg :B €Ky}
be a maximal collection of disjoint basic open subsets of D,,.

Claim 3.40.36. U{G% : B € K,,} is dense open.

Proof. Suppose otherwise; then there is a non-empty open set V in X such that V N U{G’;3 B e
K, } = 0. Choose W a basic non-empty open set in X such that W C D,,\V. Then {W } U {G’é ;
B € K,} is a collection of disjoint basic open subsets of D,,, contradiction. [

Define D, := U{G% : B € K,} and let I' = [J{supp Gg: B ekKyne w}. Consider
m:X — [1{Xp : B € I} the projection onto [[{Xg : B € I'}. Then {n[D,] : n € ®} is a family
of dense open sets in [[{Xg : B € I'}.

]
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3.3.2.2 Box products

Theorem 3.41. Let {X, : & € A} be a family of Choquet spaces. Then [lycp Xy is a Choquet

space.

Proof. Let oo € A and J, be a winning strategy for Player IT in BM(X). We are going to build a
winning strategy 8’ for Player Il in BM(OgepXy)-

Indeed, in the first inning in CgepXq, Player I plays CgeaUY, where U is a non-empty
open set in Xq, for all o € A. Then Player II responds &' ({(DgeaU2)) = Daeada ((UY)). In the
second inning, Player I plays Oy aUL € Ogen 8o ((US)); next, Player I plays 8’ ((DgeaUS, OgealUL)) =
Oaeabe((UY,UL)). In the inning n € o, if Player I plays (geaU% ! then Player II responds
8" ((Oqeall, -+, 0qeaUl™)) = Ogeada ((UY,--- ,UL~1)), and so on.

For each o € A, as g, is a winning strategy for Player II, then there exists

Xq € ﬂ 606(<U27U0157 7UZ>>’

ncw

then

¥ = (Xo)aca € ﬂ DO‘GAS‘X“U&U(%N'“ Ug)) = ﬂ 5/(<DaeAU2a"' ,DaeAng_I»-

new new

Therefore 8’ is a winning strategy for Player II in BM(CgcpXg), 0 OgeaXy is Choquet. [

Corollary 3.42. If a space is Choquet, then all powers of that space, considered in the box

product topology, are Choquet spaces.

Corollary 3.43 (White). If Player II has a winning strategy in the Banach-Mazur game on a

space, then all powers of that space, considered in the box product topology, are Baire spaces.

In the article (ZSILINSZKY, 2004) by Laszl6 Zsilinszky, it is commented that by making

a slight modification in the proof of the main result the following result is obtained

Theorem 3.44 (Zsilinszky). If X; is a Baire space having a locally countable 7-base for each

i € o, then U;c,X; is a Baire space.
Corollary 3.45. The countable box power of a second countable Baire space is Baire.

Corollary 3.46. Let B C R be a Bernstein set. Then, for each n < w, [J"B is a Baire space,
therefore I Y BM(J"B).

Also we can generalize Theorem 3.9 for infinite box products.

Theorem 3.47. Let {X, : @ € A} be a family of topological spaces with %, a base for X, and
let {# (Xq) : @ € A} be their associated Krom spaces. Then [ycp Xy is Baire if and only if
Oaen# (Xq) is Baire.
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Proof. First we will show that if [Jyep 2 (Xg ) is not Baire then (g ep X, is not Baire. Let o be
a winning strategy for Player I in BM(Ugep# (X )). We will build a winning strategy ¢’ for
Player I in BM(LgecpaXg). Indeed,

e Inning 0

In BM(Ogea# (Xa)), Player I plays o(( )) = Ogea[85] where for each a € A, 65 €]
" By, n € @. Then, in BM(OgepXq), Player I plays o/ (( ) = Ogeadf(ng — 1), next
Player IT responds ClgeaUs'. Now, in BM(Hgep 2 (X)), Player Il responds Clgep 85 Ug'].

e Inning 1

In BM(Ogep# (Xq)), Player I plays o((Haea[88 " Us'])) = Oaeal0{*] where for each
aeA, 6 Gin?%’a, n{ € w, also we can assume that §* 2 85~ Ug", in particular n{ — 1 >
ng; then, in BM(OgeaXq), Player I plays o'(()) = Cgead(n{ — 1), next Player II
responds g U(Y. Now, in BM(gep# (Xq)), Player 11 responds Clgep [ U],

e Inning 2

In BM(Ogea# (Xa)), Player I plays o ((Ogeal[05 " Us ], Oaca 67 UR])) = Oaca[65]
where for each a € A, 6 Eing%a, 0y O 67 U}, in particular n§ — 1 > n{; then,
in BM(OgeaXa), Player I plays o'(()) = Ogeady(n¥ — 1), next Player II responds
OaeaUy’. Now, in BM(Ogep# (Xq)), Player II responds Clgep [85 7 UyY], and so on.

BM(Uger# (Xa)) BM(UgeaXa)
Player | Player Il Player | Player I
Daenldg] 0’'(()) = Uaendg'(ng — 1)
Oaeal8¢Ug) OaealUg
DaeA[Sla] DaeAfsla(”? - ])
DaeA[Sl(XAUm DaeAUla
Oaen[65] Daendy’ (ny —1)
Daea[657U5] Daealy

As, in BM(LygeaXg), 0 is a winning strategy for Player I we have that

M Oaeal82" U] =0.

new

Claim 3.47.37. N,co DacaUF = 0.
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Proof. Suppose otherwise for a contradiction. There exists (xg)gen € co DacaUy =0, so
xq €UZ foreach @ € Aandn € @. Let a € A, and consider po = U, [6F~UZ]. Note that py €
(X)), because xg € (Ve Pa (). Then (Pa)aca € Mico Dacal6F " UF], contradiction. [

Therefore ¢’ is a winning strategy for Player I in BM(UgepXq), 50 CgepXy is not a

Baire space.

Now we will show that if (J¥X is not Baire then [JX.#(X) is not Baire. Let ¢ be a
winning strategy for Player I in BM(CJ*X), we will build a winning strategy ¢’ for Player I in
BM(Ogea# (Xq))- Indeed,

e Inning 0

In BM(OgeaXa), Player I plays o(( )) = OgeaUg. Then, in BM(Ogep# (Xg)), Player
I plays /() = Ogea[(U§)], next Player II responds Clgep [§] where for each o € A,
oy’ el™ B, ng € ®. Now, in BM(dgepXq), Player IT responds Ogep 65 (ng —1).

e Inning 1

In BM(OgeaXq), Player I plays o ((Haead5 (ng —1))) = OgeaU*. Then, in BM(Hgep # (Xa)),
Player I plays o' ((Hgea[6])) = Daca[6 U], next Player II responds Cgep [0/
where for each « € x, 6 E¢n1 By, n{ € @. Also we can assume that 6 O 65 U/,

in particular n{ — 1 > ng. Now, in BM(OgepaXa ), Player Il responds Clgep 87 (n§f —1).

e Inning 2

In BM(OgeaXa), Player I plays 6((Hgeady' (ng —1),0aead(nf —1))) = Ogealy".
Then, in BM(Ogep# (Xq)), Player I plays 6/ ({(Cgen [0 Dag,\[(z}“m =Ugeal0 U],
next Player II responds [lyex[05°] where for each « € k, 65 el B,, ng € o. Also we
can assume that 65 O 6% Uy, in particular n§ — 1 > n{. Now, in BM({gepXq ), Player

IT responds (g ep 85 (n§ — 1), and so on.

BMUgeaXa) BM(Ogea# (Xa))

Player | Player II Player | Player Il
Haealy’ o’(()) = Uaeal(Ug")]

Daend&(ng—1) Oaeald¢]
OgeaUY Ogealds U]

Oaend®(n% —1) Doenl8]
DaeAUza DaeA[(SlomUza]

Oaeady(nf —1) Oaeal6y]
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As, in BM(UgepaXg), 0 1s a winning strategy for Player I we have that

ncw

Claim 3.47.38. ,c, JacaU% =0

Proof. Suppose otherwise for a contradiction. There exists (xg)gen € Nheco DacaUy = 0, so
xgq € U foreach @ € Aandn € w. Let @ € A, and consider pg = ¢ [0~ UZ], note that py, €
H(X), because xgq € (Nyew Pa (1), then (Pg)aea € Nncw Daeca[6F U], contradiction. O

Therefore ¢’ is a winning strategy for Player I in BM(CgepXy), then Cgep Xy is not a

Baire space.

O

Corollary 3.48. Let {X, : & € A} be a family of topological spaces with %, a base for Xy and
let {7 (Xq) : @ € A} be their associated Krom spaces. Then I T BM(OgepXy) if and only if T
T BM(DOLEA%/(X(X))-

Corollary 3.49. Let k be a infinite cardinal and let X be a topological space with Z a base for
X such that 0 € 2 and let . (X) be its associated Krom space. Then (J*X is Baire if and only if
O (X) is Baire.

Proposition 3.50. Let {X, : @ € A} be a family of topological spaces with %, a base for Xy
and let {_% (Xy) : o € A} its associated Krom spaces. Then g ep X is Choquet if and only if
Oaea (Xq) is Choquet.

Proof. First suppose that [yca Xy is Choquet, then, by Theorem 2.19, X, is Choquet. Now
by Proposition 3.12, % (X,,) is Choquet, so, by Corollary 3.42, Cycp# (Xq ) is Choquet and

reciprocally. U

Corollary 3.51. Let x be a infinite cardinal and let X be a topological space with Z a base for
X such that @ ¢ % and let .7 (X) be its associated Krom space. Then [J¥X is Choquet if and
only if (0¥ (X) is Choquet.

Corollary 3.52. Let k be a infinite cardinal and let X be a topological space with Z a base for
X such that 0 € Z and let % (X) be its associated Krom space. Then the games BM(CgeaXa)
and BM(Ogep-# (Xy)) are equivalent.

In the article (GALVIN; SCHEEPERS, 2016) of Fred Galvin and Marion Scheepers,

using other games and measurable cardinals the following is proved:

Theorem 3.53 (Galvin and Scheepers). If it is consistent there is a proper class of measurable
cardinals, then it is consistent that if all box powers of a space are Baire, then the space is

Choquet.
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This motivates to define the following

Definition 3.54. The theory of Galvin-Scheepers it’s simply ZFC + "if all box powers of a

space are Baire, then the space is Choquet"'.

In this new theory, we have the following results:

Corollary 3.55. In the theory of Galvin and Scheepers, if the all box powers of a Baire space X

are Baire spaces then its Tychonoff powers are Baire spaces.

Proof. Let X be a Baire space whose all box powers are Baire spaces. Then (in the theory of
Galvin and Scheepers), X is Choquet. Since Tychonoff products of Choquet spaces are Baire, we
have that all Tychonoff powers of X are Baire spaces. ]

Corollary 3.56. In the theory of Galvin and Scheepers, there are a second countable Baire space

X and a cardinal k such that the box power [1¥X is not Baire.

Proof. Let B C R be a Bernstein set. Remember that B is a second countable Baire space and
is not Choquet. We claim that there is a cardinal k such that the box power [J*B is not Baire.

Otherwise, all box powers of B are Baire then (in this theory), B is Choquet, contradiction. [
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CHAPTER

MULTIBOARD TOPOLOGICAL GAMES

In this chapter we introduce the multiboard topological games. This idea emerged in the
article (GALVIN; SCHEEPERS, 2016) of Fred Galvin and Marion Scheepers and it will be used

to study infinite products of Baire spaces.

4.1 Some versions of multiboard topological games

We will see versions of multiboard topological games. Intuitively we are playing the
Banach-Mazur game simultaneously in multiple boards. Let X be a non-empty topological space

and let k¥ > 1 be a cardinal.

Definition 4.1 (Version 1: x-multiboard Banach-Mazur game). The Version 1 of the k-

multiboard Banach-Mazur game is defined as follows:

Player I and Player II play an inning per finite ordinal.

e At the beginning, Player I first selects a sequence (BY)q<« of nonempty open sets, and
then Player II responds with a sequence (B(lx)OKK of nonempty open sets such that B}x -
BY Va < k.

e Later, in each inning n € @, Player I chooses a sequence (B2) <« of nonempty open sets
such that B3' C B2*~! Vo < k, then Player II responds with a sequence (B21) . of
nonempty open sets such that BZ'*! C B2 Va < k.

Player I wins this play if there exists & < & such that (), , B2"*! = 0. Else Player II wins.
We denote this game by BMT (X).
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We have the following simple observations:

1. Let2 < A < k be cardinal numbers, if Player I has a winning strategy in the game BM% (X)
then Player I has a winning strategy in the game BM} (X).

2. Let2 < A < K be cardinal numbers, if Player IT has a winning strategy in the game BM{ (X)
then Player II has a winning strategy in the game BI\/I’iL (X).

3. If Player I has a winning strategy in BM(X) then Player I has a winning strategy in BM{ (X)

for every cardinal .

4. Player II has a winning strategy in BM(X) if and only if Player II has a winning strategy
in BMJ (X) for every (equivalently, some) cardinal .

Proposition 4.2. Let X be a topological space and k be a cardinal. Then the games BM} (X)
and BM([JXX) are equivalent.

Proof. First suppose that Player I has a winning strategy ¢ in BM[ (X). We will build a winning
strategy ¢’ for Player I in BM([J*X). Indeed,

e Inning 0

In BM¥(X), Player I plays 6({ )) = (U3)g<x Where U is a non-empty open subset of
X for each & < k. Then, in BM(CJ¥X), Player I plays ¢”(( )) = (g UY. Next Player IT
plays (g« VY). Returning to BM¥(X), Player II plays (V) g<-

e Inning 1

In BM¥(X), Player I plays 6(((V9)g<x)) = (UL)q<x where U} is a non-empty open
subset of V) for each & < k. Then, in BM(OJ¥X),

o-board BM(O«X)
Player | | Player Il Player | Player Il
Ug o’(()) = Oa<xUy
1% Oa<x V3
U Da<xUl

Va Oa<kVa
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We claim that 6’ is a winning strategy. Indeed, let
o' (( >)aDa<KV37G/(Da<KV8)aD0c<KVolm e
be a play in BM(J*X), and suppose that (,c, Da<xVa # 0, that is, there exists (xg)a<k €
Ha<xV4 for all n € . Then for each a@ < k we have that xq € (,c4 Vg, contradiction.

Now suppose that Player I has a winning strategy ¢ in BM((J*X). We will build a
winning strategy ¢’ for Player I in BM (X). Indeed,

e Inning 0

In BM(OXX), Player I plays o({ )) = OgUY where UY) is a non-empty open subset of
X for each a < k. Then, in BM¥(X), Player I plays ¢’(()) = (UY))x<x. Next Player I
plays (V) q <. Returning to BM(¥X), Player II plays (g V2.

e Inning 1

In BM(OXX), Player I plays o({ )) = Og<UJ where U/, is a non-empty open subset of
VY for each a < k. Then, in BM¥(X), Player I plays ¢’ (((V))q<x)) = (U}) o<« Next
Player II plays (V,)g<«. Returning to BM(CJ¥X), Player II plays (g V,, and so on.

BM(OX*) o-board
Player | | Player Il Player | Player I
Oa<xUg o’'(()) =Ug
Da<xVe Va
Oa<xUs, Ug
Da<xVe Va

We claim that 6’ is a winning strategy. Indeed, let

&' (1), (V) a<r, 0" (V) aer)s (Vi) acrer -

be a play in BM([J*X), and suppose that Player II wins, that is, for each & < k, (,,c, V& # 0,
i.e., there exists xo € Vi for all n € @. Then x = (x¢) a<x € heo Da<k Vg, contradicting the

fact that ¢ is a winning strategy for Player I in BM(CIX).
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Now we will prove the second part of equivalence. Suppose that Player II has a winning
strategy 0 in BM{ (X). We will build a winning strategy &’ for Player II in BM(CJ*X). Indeed,

e Inning 0

In BM(OXX), Player I plays [y U$) where U is a non-empty open subset of X for each
a < k. Then, in BM¥(X), Player I plays (U3) <. Next Player II plays 8 ({(U)a<x)) =
(V) q<«. Returning to BM(XX), Player II plays 8'({(Dy<UY)) = Og VY.

e Inning 1

In BM(OXX), Player I plays [Jo - U/ where U] is a non-empty open subset of V0 for each
a < K. Then, in BM¥(X), Player I plays (U)o <. Next Player I plays 8 (((Ud) g<x, (UL a<x)) =
(V4)a<k. Returning to BM(CJ¥X), Player IT plays &' ((Hg< U, OocxUL)) = Dok V4,

and so on.

a-board BMOX¥)
Player | | Player Il Player | | Player Il
Ug Oo<xUY
Ve Da<kVe
Uk Oa<xUl
14 Da<xVa

We claim that 6’ is a winning strategy. Indeed, let
DOC<K'U27 5/(<|:]O£<KU(())C>)7 DOC<K'U(§(7 5/(<|:|OC<KU(())57 DOC<KU016>)7 e
be a play in BM(J*X). As § is a winning strategy, we have that for each & < k, ¢, Vor = 0;

therefore, (V,co Da<xVg = Mico Da<K5’(<|:Ia<KU2, c Oa<kUR)) = 0.

Now suppose that Player II has a winning strategy 6 in BM(J*X), We will build a
winning strategy 6’ for Player I in BM{ (X). Indeed,

e Inning 0

In BM¥(X), Player I plays (U3)) - where UY) is a non-empty open subset of X for each
a < K. Then, in BM(OXX), Player I plays (g <U9. Next Player II plays 8 ((Tg<UY)) =
Oe<xVY. Returning to BM¥(X), Player II plays 8" ({(U2)g<x)) = (V) o<
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e Inning 1
In BM¥(X), Player I plays (U/)y~x where U] is a non-empty open subset of V for each
« < k. Then, in BM(XX), Player I plays (g < U Next Player IT plays 8 ((Og < xUS, Oq<xUL)) =
Oa<xVa. Returning to BM¥(X), Player IT plays &' ({(UQ) a<«, (U} a<x)) = (V) <k and

SO On.

BM(OX¥) a-board
Player | | Player Il Player | | Player Il
Oa<xUg Ug

Da<kVe Va
Oa<xUyg Ug
Da<xVe Va

We claim that &’ is a winning strategy. Indeed, let

(U(())C)OK’O 5/(<(U3)OC<K‘>)7 (Ué)OKKa 6/(<(U((x))06<1<7 (Uéc)OKK))a T

be a play in BM (X). As § is a winning strategy, we have that there exists (xg ) a<x € Nnco Da<xVa
then x¢ € (,c Vg for each o < k. O

Finally we present a summary of the results obtained in this section

11 BM}(X) A<k T4 BMF(X)

I+ BMF(X) A<< IT + BM} (X)

11 BM(X) = 11 BM¥(X)

I11BM(X) < 1 T BM{(X)

[1BMf(X) <= 11 BM(O*X).

11+ BM¥(X) <= 11 1 BM(O*X).
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Definition 4.3 (Version 2 : k-multiboard Banach-Mazur game BM5 (X)). The same rules of
the previous game, only that the criterion of victory changes, that is , Player II wins this game
if there exists o¢ < K such that ﬂn<wBa"+1 # (. Else Player I wins. We denote this game by
BMZ% (X).

We have the following simple observations:

1. Let2 < A < K be cardinal numbers. If Player I has a winning strategy in the game BM5 (X)
then Player I has a winning strategy in the BI\/I% (X) game.

2. Let 2 < A < Kk be cardinal numbers. If Player II has a winning strategy in the game
BMQl (X) then Player IT has a winning strategy in the BM5 (X) game.

3. Player I has a winning strategy in the game BMX (X) for every (equivalently, some) cardinal

Kk if and only if Player I has a winning strategy in BM(X).

4. If Player II has a winning strategy in BM(X) then Player II has a winning strategy in
BM5(X) for every cardinal k.

Theorem 4.4. Let X be a topological space, and k be a cardinal.

(1) If Player I has a winning strategy in BM5(X) then Player I has a winning strategy in
BM(OO*X).

(2) If Player II has a winning strategy in BM(J*X), then Player II has a winning strategy in
BMX (X).

Proof. First, let o be a winning strategy for Player I in BM5 (X)), we are going to build a winning
strategy ¢’ for Player I in BM(X*), as follows:

e Inning 0
Player I plays (()) = (B%)q<x, so Player I plays ¢’({)) = (g BY. Next Player II
responds [l < BL,. This induces that Player II plays (B},)¢<x in BM5 (X).

e Inning 1

In BMX (X), Player I plays 6 ({(B})a<x)) = (B%)a<x. Then Player I plays ¢’ ({(1y—B)) =
Da<;<3(2x- Next, Player II responds Da<1<Bz¢- This induces that Player II plays (B?I)OKK in
BMZ%(X), and so on.
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BME(X) BM(X*)
Player | Player Il Player | Player Il
o(()) = (Ba)a<x o’(()) = Da<xBy
(Béc)OKK D(X<K‘B(Ix
o({(Be)a<x)) = (By)a<k o' ({(Da<xBy)) = Da<kBy
(B3)a<x Oo<xBy

As o is a winning strategy for Player I, we have that for each o < «x,

ﬂ B(Zx’H_l =0,

n<w

SO
ﬂ DOC<K'B%¢”+I - 07

necw

then ¢’ is a winning strategy for Player I in BM(X*).

Now let & be a winning strategy for Player II in BM(J*X), we are going to build a
winning strategy 6’ for Player IT in BM5 (X), as follows:

e Inning 0

Player I plays (BY)y«. This induces that Player I plays g B%. Next, Player II re-
sponds 8(( )) = Og<«BL,. This induces that Player II plays 8'({(BY)q<x)) = (B))a<x in
BMZS (X).

e Inning 1

In BMX(X), Player I plays (B2 )¢~ . Then Player I plays (g« B%. Next Player II responds
8((Oq<xBY, Oy <xB%)) = Og< By, This induces that Player IT plays 8'(((B)) a<x, (B ) a<x)) =
(B},) < in BMX(X), and so on.

BME (X) BM(X™)
Player | Player II Player | Player II
(B(l;t)DC(K Da<KB9x

5/(((3(&)&@()):(3&)&@( 5(( >):|:’oc<1<331
(Bit;)a(ik Ha<xB(21

5’(((3?1)0600 (Bzzx)a<r<>) = (B%x)a<1< 5(<Da<KBguDa<KB%x>) = Da<x3§z
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As 0 is a winning strategy for Player II, we have that

ﬂ DOC<K'B(2xn+1 7é 07

n<m
so in this case, for all o < «,
M B2+ =0,
new
then &’ is a winning strategy for Player II in BM% (X). O

Finally we present a summary of the results obtained in this section

11 BMX(X) A<k 11 BM4 (X)

11 + BM4 (X) A<< IT 1 BM5 (X)

e 11BM(X) <= 11 BM5(X)

111+ BM(X) = 11 t BMX(X)

11 BME(X) = 1 BM(O*X)

11+ BM(OXX) = 11 1 BMX(X)

Motivated by solving the problem of the infinite product of Baire spaces, Professor
Leandro Aurichi presented for me the next new version of the multiboard game, which is very
different from the previous ones. The motivation of this new version is by the proof that a
Bernstein set on the real line is undeterminated, because in a part of the proof we use that a

Bernstein set cannot contain a Cantor set, which has cardinality c.

Definition 4.5 (Version 3 : c-modified multiboard Banach-Mazur game). The Version 3 of

the c-multiboard Banach-Mazur game is defined as follows:

Player I and Player II play an inning per finite ordinal.

e At the beginning, Player I first selects (B )q<. a sequence of nonempty open sets, and
then Player II responds with (B/,) <. a sequence of nonempty open sets such that B}, C
BY Vo < c.

e Later, in each inning n € ®, Player I choose (B2") <. a sequence of nonempty open sets
such that B2* C B2~! Vo < ¢ then Player II responds with (B2*+!),_. a sequence of
nonempty open sets such that BZ'+! C B2 vVa < c.
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e Foreach a < ¢, in the a-board define B* =, ,B%"*!. Consider

pP=|J B~

oa<c

Player I wins this play if |P| > c. Else Player I wins. We denote this game by mod BM*(X).

Note that if Player I has a winning strategy in mod BM*(X) then Player II has a winning

strategy in BM5(X).

Theorem 4.6. If the Continuum Hypothesis holds then Player II has winning strategy in

mod BM‘(R).

Proof. Write R = {x4 : @ < o }. For each a € ®; consider the set Yy = {xg : B > a}. Note

that for each @ € wy, Yy is a G set and dense in R. As Player II has a winning strategy § in

BM(R) then Player II has a winning strategy in BM(Yy,) for each o € oy, call & this strategy

for Player II. We will build a winning strategy for Player II in mod BM*(RR). Indeed,

e Inning 0

Player I plays (BY)q-w,. Now at the same instant we play in BM(Y,,) for each o € ;.
Player I plays BY MY, in each BM(Yy), then Player II responds with 84 ((B% NYy)) open
non-empty in Yy, that is, there is W, open in R such that 8¢ ((B% NYy)) = W) N Y. Then,
in mod BMS(R), Player II responds §({(B))a<w,)) = (Wi NBY)g<w,-

e Inning 1

Player I plays (B%)q-w,, with B3, C W) N BY, for each o € @;. Now at the same in-

stant we play in each BM(Yy) for each a € w;. Player I plays B NY,, then Player I

responds &y ((BY NYy,B% NY,)) open non-empty in Yy, that is, there is W3 open in R
such that 84 ((BY NYy,B% NYy)) = W3 NY,. Then, in mod BMS(R), Player II responds

6(<(Bgc)a<w1 ) (B%C)Ot<w1>) = (Wé thzx)Ole’ and so on.

o—board BM(Yy)
Player | | Player Il Player | Player Il
B? B% NY,
WolzﬂBgc 5a(<BgcmXa>):Wolcha
B2 B2 NYy,
W2 NB2 80 ((BY N Xy, B2 NXy)) =W3NYy
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As Player II has a winning strategy in Yy, then

| W' NYy) #0,Va € 0.

n<m

Note that for each @ < wy,

B*= (Y (Wg""'nBy) 2 (| (W' NYy) #0.

n<m n<m

Also for each @ < @y, choose yg € Nye (W21 NYy) € BY; then {yq: ¢ < w0} C P.
In particular yo € Yy, then there exists o < @; such that yo, = x4 € Y, so @’ > .

Claim 4.6.39. Y = {yq : & < @; } is an uncountable set.

Proof. Otherwise, Y is countable then there are k < ® and a bijection g : Y — k, also we have

a surjective function f : @; — Y, so there exists a surjective function 7 = go f : @w; — k, then

W = U hil(n).

n<k

Note that there is ng < k such that |2~ (ng)| = | f~!(g7'(n9))| = @;. Then y, is the same
foreach o € f~1(g7 ! (ng)). Alsoif &, B € f~'(g~"(ng)) we have that there are o', 8’ € @ such
that & > o, B’ > B and xo = yo = yg = xps. Therefore o’ = 8’. Then there is ¥ < @ such that
a<yVae f~1 (g (ng)), contradiction. O

Therefore {yq : @ € @;} is uncountable; then 2° = @; < |P|, so § is a winning strategy
for Player II in mod BM®(R). O
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CHAPTER

OPEN PROBLEMS

In this final part, we present some open problems about the Banach-Mazur game and

product of Baire spaces.

At the beginning of this section we present some counterexamples of Baire spaces
whose product is not Baire, in the article (HERNANDEZ; MEDINA; TKACHENKO, 2015), the

following question arises:

Question 1 : Do there exist separable (regular, Tychonoff) Baire spaces X and Y such that the product
X x Y fails to be Baire?

As we mentioned earlier Galvin and Scheepers note that White showed that all box
powers of Choquet spaces are Baire, and then prove Theorem 3.53. That is why the following
question arises in the article (TALL, 2016).

Question 2 : Are large cardinals necessary for Theorem 3.53?

They then ask whether there are any consistent counterexamples.

Also remember that Oxtoby proved that any Tychonoff product of Baire spaces, each
with a countable 7-base, in particular, each second countable, is Baire, but that a Bernstein set of

reals is Baire but not Choquet, so in the Theorem 3.53, Tychonoff powers are not enough.

Fleissner raises the question of whether, if the box product of a collection of Baire spaces
is Baire, its Tychonoff product is Baire. Note that, by Corollary 3.55, for box powers, in the
theory of Galvin and Scheepers, this is true. That is why in the article (FLEISSNER; KUNEN,

1978) the following question arises.

Question 3 : Can one prove in ZFC that if a box product of a collection of Baire spaces is Baire, then

its Tychonoff product is Baire?
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In the same article, Fleissner also asks whether the box product of Baire spaces with a

countable base is Baire. That is,
Question 4 : Is the box product of second countable Baire spaces Baire?

Note that, by Corollary 3.56, in the theory of Galvin and Scheepers, this is not true.

As we have previously noted with the Banach-Mazur game, we could not characterize the
productively Baire spaces, since the Bernstein set is productively Baire but it is an undeterminated

space. That is why we ask the following question.

Question 5 : Is there a game-theoretical characterization for the property of being productively Baire?
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