• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Thèse de Doctorat
DOI
https://doi.org/10.11606/T.55.2020.tde-10062020-134739
Document
Auteur
Nom complet
Cirilo Gonçalves Júnior
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Carlos, 2020
Directeur
Jury
Borges Filho, Herivelto Martins (Président)
Arakelian, Nazar
Carvalho, Cícero Fernandes de
Tafazolian, Saeed
 
Titre en anglais
On Fq3 -Frobenius nonclassical curvces of type Yq2+q+1 = f (X) and the Hasse-Witt invariant for a class of Kummer extension
Mots-clés en anglais
α-number
Automorphism group
Frobenius nonclassical curves
Hasse-Witt invariant
Hyperelliptic curves
Resumé en anglais
Inserted in the context of algebraic curves defined over finite fields, this work presents several results in two different topics. First, it gives a complete characterization of the Fq3 -Frobenius nonclassical curves of type Yq2+q+1 = f (X), and it provides an explicit computation of the following birational invariants: genus, automorphism group, Hasse-Witt invariant and a-number. The number of Fq3 -rational points is computed as well. Second, this work provides an extensive study of the Hasse-Witt invariant of the curves Ym +Xn +1 = 0 and Ym +Xn +X = 0. A combinatorial formula for this invariant is presented in the general case, and explicit closed formulas are provided for special values of m and n.
 
Titre en portugais
Sobre curvas Fq3 -Frobenius não-clássicas do tipo Yq2+q+1 = f (X) e o invariante de Hasse-Witt para uma classe de extensões de Kummer
Mots-clés en portugais
α-number
Curvas Frobenius não-classicas
Curvas hiperelípticas
Grupo de automorfismo
Invariante de Hasse-Witt
Resumé en portugais
Inserido no contexto de curvas algébricas definidas sobre corpos finitos, este trabalho apresenta vários resultados em dois tópicos diferentes. Primeiro, ele apresenta uma caracterização completa das curvas Fq3 -Frobenius não-clássicas do tipo Yq2+q+1 = f (X) e fornece um cálculo explícito dos seguintes invariantes birracionais: gênero, grupo automorfismo, invariante de Hasse-Witt e anumber. O número de pontos Fq3 -racionais também é calculado. Segundo, este trabalho fornece um extensivo estudo do invariante de Hasse-Witt das curvas Ym +Xn +1 = 0 e Ym +Xn +X = 0. Uma fórmula combinatória para esse invariante é apresentada no caso geral, e fórmulas fechadas explícitas são fornecidas para valores especiais de m e n.
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Date de Publication
2020-06-10
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs.
CeTI-SC/STI
© 2001-2024. Bibliothèque Numérique de Thèses et Mémoires de l'USP.