• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Dissertação de Mestrado
DOI
https://doi.org/10.11606/D.55.2020.tde-10062020-103904
Documento
Autor
Nome completo
Alexandre Carissimi
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Carlos, 2020
Orientador
Banca examinadora
Pérez, Victor Hugo Jorge (Presidente)
Borges Filho, Herivelto Martins
Dantas, Alex Carrazedo
Miranda Neto, Cleto Brasileiro
Título em português
Álgebra homológica e cohomologia de grupos
Palavras-chave em português
Extensões de grupo
Funtores Ext e Tor
Módulos projetivos e injetivos
Resumo em português
Neste trabalho abordamos conceitos básicos de teoria de categorias e aplicamos tais ideias à categoria de módulos sobre um anel. Também desenvolvemos as ferramentas necessárias para se estudar álgebra homológica, como complexos de cadeia, resoluções projetivas e injetivas, para então tratar dos funtores Ext e Tor. Em seguida, utilizamos tais construções para definir a cohomologia de um grupo G com coeficientes em um G-módulo M, calculamos alguns grupos de cohomologia nos níveis baixos e damos um procedimento padrão para se obter uma resolução projetiva do grupo abeliano dos números inteiros visto como G-módulo trivial. Finalmente, aplicamos estes conceitos para abordar o problema da extensão de grupos, dando uma caracterização das extensões de um grupo abeliano M por um grupo qualquer G usando a cohomologia de grupos.
Título em inglês
Homological algebra and group cohomology
Palavras-chave em inglês
Ext and Tor functors
Group extensions
Projective and injective modules
Resumo em inglês
In this work we approach basic concepts of category theory and apply these ideas to the category of modules over a given ring. We also develop the needed tools to study homological algebra, e.g. chain complexes and projective and injective resolutions and then we treat the Ext and Tor functors. After that, we use such constructions to define the cohomology of a group G with coefficients on a G-module M, we calculate some low level cohomology groups and give a standard procedure to obtain a projective resolution of the abelian group of the integers viewed as a trivial G-module. Finally, we apply these concepts to approach the problem of the group extensions, giving a characterization of the extensions of an abelian group M by a group G using group cohomology.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2020-06-10
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
CeTI-SC/STI
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2021. Todos os direitos reservados.