• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Disertación de Maestría
DOI
https://doi.org/10.11606/D.55.2020.tde-10062020-103904
Documento
Autor
Nombre completo
Alexandre Carissimi
Dirección Electrónica
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Carlos, 2020
Director
Tribunal
Pérez, Victor Hugo Jorge (Presidente)
Borges Filho, Herivelto Martins
Dantas, Alex Carrazedo
Miranda Neto, Cleto Brasileiro
Título en portugués
Álgebra homológica e cohomologia de grupos
Palabras clave en portugués
Extensões de grupo
Funtores Ext e Tor
Módulos projetivos e injetivos
Resumen en portugués
Neste trabalho abordamos conceitos básicos de teoria de categorias e aplicamos tais ideias à categoria de módulos sobre um anel. Também desenvolvemos as ferramentas necessárias para se estudar álgebra homológica, como complexos de cadeia, resoluções projetivas e injetivas, para então tratar dos funtores Ext e Tor. Em seguida, utilizamos tais construções para definir a cohomologia de um grupo G com coeficientes em um G-módulo M, calculamos alguns grupos de cohomologia nos níveis baixos e damos um procedimento padrão para se obter uma resolução projetiva do grupo abeliano dos números inteiros visto como G-módulo trivial. Finalmente, aplicamos estes conceitos para abordar o problema da extensão de grupos, dando uma caracterização das extensões de um grupo abeliano M por um grupo qualquer G usando a cohomologia de grupos.
Título en inglés
Homological algebra and group cohomology
Palabras clave en inglés
Ext and Tor functors
Group extensions
Projective and injective modules
Resumen en inglés
In this work we approach basic concepts of category theory and apply these ideas to the category of modules over a given ring. We also develop the needed tools to study homological algebra, e.g. chain complexes and projective and injective resolutions and then we treat the Ext and Tor functors. After that, we use such constructions to define the cohomology of a group G with coefficients on a G-module M, we calculate some low level cohomology groups and give a standard procedure to obtain a projective resolution of the abelian group of the integers viewed as a trivial G-module. Finally, we apply these concepts to approach the problem of the group extensions, giving a characterization of the extensions of an abelian group M by a group G using group cohomology.
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
Fecha de Publicación
2020-06-10
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
CeTI-SC/STI
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2021. Todos los derechos reservados.