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RESUMO

SANTOS,I. C. Congruências de retas e planos do ponto de vista da teoria de singularidades.
2023. 122 p. Tese (Doutorado em Ciências – Matemática) – Instituto de Ciências Matemáticas e
de Computação, Universidade de São Paulo, São Carlos – SP, 2023.

Esta tese é dedicada ao estudo de congruências de retas e planos. Congruências de retas (resp.
de planos) nada mais são que famílias parametrizadas de retas (resp. famílias parametrizadas
de planos). No que diz respeito às congruências de retas, estudamos o caso a 3-parâmetros
em R4 e classificamos as singularidades genéricas das congruências (caso geral), bem como
as singularidades das congruências normais e normais Blaschke, neste último caso fornecendo
uma resposta positiva para a conjectura apresentada por Izumiya, Saji e Takeuchi em 2003.
Motivados pelo estudo das congruências normais Blaschke, também iniciamos o estudo de
frontais sob o ponto de vista da geometria afim, generalizando a ideia de estrutura equiafim
para frontais, definindo o campo Blaschke para frontais, fornecendo exemplos e um teorema
fundamental para a teoria equiafim apresentada. Levando em conta o aspecto mais geométrico
das congruências de retas apresentado na teoria introduzida por Ernst Kummer para o caso
regular, estudamos congruências de retas nas quais a superfície diretora é um frontal, obtendo
resultados que generalizam a teoria dada por Kummer. Além disso, considerando famílias
parametrizadas de planos, apresentamos um teorema de classificação genérica das singularidades
destas congruências, seguindo o método utilizado para o caso das famílias de retas.

Palavras-chave: Geometria diferencial, Geometria diferencial afim, Frontal, Congruência de
retas, Congruência de planos.





ABSTRACT

SANTOS,I. C. Line and plane congruences from a singularity theory viewpoint. 2023. 122
p. Tese (Doutorado em Ciências – Matemática) – Instituto de Ciências Matemáticas e de
Computação, Universidade de São Paulo, São Carlos – SP, 2023.

This thesis is devoted to the study of line and plane congruences. Line congruences (resp.
plane congruences) are nothing but parametric families of lines (resp. parametric families of
planes). We study the case of 3-parameter line congruences in R4 in order to classify their
generic singularities (general case) and the singularities of normal and Blaschke affine normal
congruences, in this last case, providing a positive answer to the conjecture presented by Izumiya,
Saji and Takeuchi in 2003. Motivated by the study of Blaschke line congruences, we study
frontals from the differential affine geometry viewpoint, generalizing the idea of equiaffine
structure, defining the Blaschke vector field of a frontal, providing examples and a fundamental
theorem for the theory stated here. Taking into account Kummer’s theory for line congruences
in the regular case, we generalize some results to the case of line congruences for which the
director surface is a frontal. Moreover, considering parametrized families of planes, we provide a
classification of their generic singularities by using the same approach used for the case of lines.

Keywords: Differential geometry, Affine differential geometry, Frontal, Line congruence, Plane
congruence.
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CHAPTER

1
INTRODUCTION

Line congruences arose as a method of transforming one (hyper)-surface to another
using lines. Then, a line congruence in Rn is a n−1-parameter family of (straight) lines, usually
given by a pair {x,ξξξ}, where x : U → Rn and ξξξ : U → Rn ∖{0} are smooth maps and U is an
open subset of Rn−1. A classical example of line congruence is that given by the normal lines
to a regular surface, called exact normal congruence. The first record about line congruences
appeared in “Mémoire sur la Théorie des Déblais et des Remblais" (1776,1784) where Gaspard
Monge seeks to solve a minimizing cost problem of transporting an amount of land from one
place to another, preserving the volume (see (GHYS, 2012) for historical notes). After Monge,
Ernst Eduard Kummer in (KUMMER, 1859) was the first to deal with the general theory of line
congruences. This theory is currently known as Kummer theory of line congruences and details
can be found in (EISENHART, 1909) or (OGURA, 1916).

In recent years, the subject achieved an important development with contributions by
(BARAJAS; CRAIZER; GARCIA, 2020), (CRAIZER; GARCIA, 2022a), (HONDA; IZUMIYA;
TAKAHASHI, 2019), (IZUMIYA; SAJI; TAKEUCHI, 2003), (LOPES; RUAS; SANTOS, 2022)
among others. From the singularity theory viewpoint, we look at a line congruence as a map
F(x,ξξξ ) : U × I → Rn, where U is an open subset of Rn−1 and I is an open interval thus, locally, a
line congruence is a map from Rn to Rn. The case with n = 3 is studied in (IZUMIYA; SAJI;
TAKEUCHI, 2003), where the authors classify the generic singularities of 2-parameter line
congruences in R3, showing that these singularities are folds, cusps and swallowtails. They also
show that the singularities which appear in generic normal line congruences are the Lagrangian
stable ones (see table 1). Furthermore, considering the affine normal vector field (or Blaschke
vector field) of a non-degenerate regular surface, the case of equiaffine normal congruences
is studied and the authors present a conjecture which asserts that the generic singularities
of Blaschke exact normal congruences are Lagrangian stable. More recently in (CRAIZER;
GARCIA, 2022b), using the existence of an equiaffine pair defining a generic line congruence,
the authors provide a geometric description of the singularities which appear in the classification
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given in (IZUMIYA; SAJI; TAKEUCHI, 2003).

From the affine differential geometry viewpoint, there is a particular interest in the
Blaschke affine normal congruences, for instance, in (BARAJAS; CRAIZER; GARCIA, 2020)
the authors study the affine principal lines on surfaces in 3-spaces near affine umbilic points.
Taking into account equiaffine line congruences, i.e., line congruences for which the director
surface is given by an equiaffine vector field transversal to the reference surface, in (CRAIZER;
GARCIA, 2022a) the authors discuss the behavior of the curvature lines associated to this type
of line congruence at isolated umbilic points.

Motivated by the results present in (IZUMIYA; SAJI; TAKEUCHI, 2003), in chapter
4, taking into account the case of 3-parameter line congruences in R4 we classify the generic
singularities of 3-parameter line congruences and 3-parameter normal congruences in theorems
4.2.1 and 4.3.2, respectively. The comparison of these two theorems shows that the singularities
of 3-parameter line congruences are different from the singularities of normal congruences.
Furthermore, we show that singularities of corank 2 appear generically in both cases and the
proof of theorem 4.2.1 relies on a refinement of 𝒦-orbits by 𝒜-orbits of 𝒜e-codimension 1.
We also take a closer look at the case of Blaschke normal congruences, showing that their
generic singularities are Lagrangian stable in corollary 4.4.1, providing a positive answer to the
conjecture presented in (IZUMIYA; SAJI; TAKEUCHI, 2003). These results are part of a joint
work with Débora Lopes and Maria Aparecida Soares Ruas and can also be found in (LOPES;
RUAS; SANTOS, 2022).

The study of surfaces with singularities from the affine differential geometry viewpoint
has not been much explored, mainly due to the difficulties which arise at singular points.
Motivated by the classification of the singularities of Blaschke normal congruences, we explore
this viewpoint in chapter 5, where we work with a special class of singular surfaces called
frontals. If we take a surface S and we think of light as particles which propagate at unit speed
in the direction of the normals of S, then at a given time t, this particles provide a new surface
S′. We call S′ the wave front of S. The notion of frontals arises as a generalization of wave
fronts, when considering the case of hypersurfaces. In recent years, many papers are dedicated
to the study of these singular surfaces, among them, see (FUKUNAGA; TAKAHASHI, 2019),
(ISHIKAWA, 2018), (ISHIKAWA, 2020), (MARTINS et al., 2016), (MEDINA-TEJEDA, 2020),
(MEDINA-TEJEDA, 2022b), (MEDINA-TEJEDA, 2022a), (SAJI; TERAMOTO, 2021), (SAJI;
UMEHARA; YAMADA, 2009). Other references can be found in the survey paper (ISHIKAWA,
2018).

In chapter 5, our goal is to extend the study of properties invariant under equiaffine
transformations to the case of frontals, defining equiaffine structure on frontals, equiaffine
transversal vector fields and the associated conormal vector field. With this, we seek to understand
when it is possible to define a vector field along a frontal that, at regular points, plays the same
role as the classical Blaschke vector field, then we define the Blaschke vector field of a frontal
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and we give, in theorem 5.2.1, necessary and sufficient conditions that a frontal needs to satisfy
to have a Blaschke vector field. Furthermore, we obtain a version for frontals of the fundamental
theorem of affine differential geometry for regular surfaces in a way that its proof relies on
assuming the integrability conditions in the regular case (see theorem 5.3.1). In order to do this,
we use the same approach applied in (MEDINA-TEJEDA, 2022a). These results are also in
(SANTOS, 2022).

For a more geometric aspect of the line congruences we go back to Kummer’s theory,
which is briefly reviewed in chapter 3 section 3.3. The best-known results in Kummer’s theory
are formulated for congruences {x,ξξξ} where x is a regular surface and ξξξ is an immersion.
For instance, we discuss in Proposition 3.3.4 a nice way of defining lines of curvature using
line congruences: lines of curvature on a smooth non-parabolic surface are those curves whose
surfaces of congruence SC are developable. Since the definition of line congruences admits pairs
{x,ξξξ}, where x and ξξξ may have singularities, a natural question appears: what happens to the
results of Kummer’s theory when we have ξξξ being a frontal, for instance? In chapter 6 we extend
this theory to the case of line congruences {x,ξξξ} where x is a smooth map and ξξξ is a proper
frontal, in order to answer this question. These results are part of a joint work with Débora
Lopes, Maria Aparecida Soares Ruas and Tito Alexandro Medina Tejeda and can also be found
in (LOPES et al., 2022).

When working in R4 it seems natural to consider not only families of straight lines, but
also families of planes over surfaces. The family of normal planes to a regular surface in R4 is a
classical example of plane congruence and in this case it is not difficult to show that the generic
singularities are the Lagrangian stable, since we can look at the plane congruence as a Lagrangian
map associated to the family of distance squared functions, which is generically 𝒫-ℛ+-versal
(see example 7.2.1). The classification of the generic singularities of plane congruences arises as
a natural generalization of the results for the case of lines. We start chapter 7 with a more general
case, taking into account r-surfaces in Rn (in the sense of (LIMA, 2004), chapter 7) and families
of n− r-planes, where n−1 > r > 1, then we classify the generic singularities for the case n = 4,
r = 2 in theorem 7.2.1. In this case we also have singularities of corank 1 and 2 and the proof
relies on a refinement of 𝒦-orbits by 𝒜-orbits of 𝒜e-codimension less than or equal to 2.
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CHAPTER

2
PRELIMINARIES FROM SINGULARITY

THEORY

In this chapter, we present some basic results in singularity theory which help us in the
next chapters. More details can be found in (GIBSON, 1979), (MOND; NUÑO-BALLESTEROS,
2020), (IZUMIYA et al., 2016) and (WALL, 1981) .

2.1 Germs of smooth mappings

Let U,V ⊂ Rn be two open subsets of Rn containing a point p ∈ Rn and f : U → Rp

and g : V → Rp be two smooth maps. We say that f is equivalent to g if there is an open set
W ⊂ U ∩V containing p such that f|W = g|W . This relation is an equivalence relation and an
equivalent class is called a germ at p of a smooth map. A map-germ at p is denoted by

f : (Rn, p)→ Rp.

Let ℰn denote the set of germs, at the origin 0 in Rn, of smooth functions (Rn,0)→ Rn,

ℰn = { f : (Rn,0)→ R : f is the germ of a smooth function}.

With the addition and multiplication operations, ℰn becomes a commutative ring with a unit.
This ring is a local ring with maximal ideal, denoted by ℳn, given by

ℳn = { f ∈ ℰn : f (0) = 0}.

Sometimes it is important to look at the kth-power of ℳn, where k is a positive integer. This
is the set of all f ∈ℳn with zero partial derivatives of order less than or equal to k−1 at the
origin.
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The set of all smooth map-germs f : (Rn,0)→ Rp, denoted by ℰn,p, is a free ℰn-module
given by

ℰn,p = ℰn ×·· ·×ℰn︸ ︷︷ ︸
p

= (ℰn)
p.

Note that given a germ f : (Rn,0)→ (Rp,0) we obtain a mapping f * : ℰp → ℰn, called
induced algebra homomorphism, given by f *(λ ) = λ ∘ f . It is possible to show that if p = n

then f * is an isomorphism if and only if f is invertible. For details, see chapter 4 in (GIBSON,
1979) or chapter 2 in (MOND; NUÑO-BALLESTEROS, 2020).

2.2 Mather’s groups

Let ℛ denote the group of germs of diffeomorphisms (Rn,0)→ (Rn,0). We refer to ℛ
as the “group of right equivalences” and this group acts smoothly on ℰ(n, p) by

h · f = f ∘h−1,

for all h ∈ℛ and f ∈ ℰ(n, p).

The group ℒ of germs of diffeomorphisms (Rp,0)→ (Rp,0) acts smoothly on ℳnℰn,p

by

k · f = k ∘ f ,

for all k ∈ ℒ and f ∈ℳnℰn,p. We refer to ℒ as the “group of left equivalences”.

The “left-right” group 𝒜 is given by the direct product of ℛ and ℒ, i.e., 𝒜 =ℛ×ℒ.
This group acts smoothly on ℳnℰn,p by

(h,k) · f = k ∘ f ∘h−1,

for all (h,k) ∈𝒜 and f ∈ℳnℰn,p.

The group 𝒦 is called the contact group and it is given by the germs of diffeomorphism
(Rn ×Rp,0)→ (Rn ×Rp,0) which can be written in the form H(x,y) = (h(x),H1(x,y)) such
that h ∈ ℛ and H1(x,0) = 0 for x near to 0. The group 𝒦 acts on ℳnℰn,p as follows. Given
f ,g ∈ℳnℰn,p and (h,H) ∈𝒦, g = (h,H) · f if and only if

(x,g(x)) = H(h−1(x), f ∘h−1(x)).

Given map germs f ,g ∈ℳnℰn,p, if there is h ∈ℛ, such that h*( f *(ℳp)) = g*(ℳp), where
h*( f *(ℳp)) is the ideal generated by the coordinate functions of f ∘h and g*(ℳp) is the ideal
generated by the coordinate functions of g, we have that f and g are 𝒦-equivalent, denoted by,
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f ∼
𝒦

g (see section 4.4 in (MOND; NUÑO-BALLESTEROS, 2020) for details). Let Jk(n, p) be

the k-jet space of map germs from Rn to Rp. For any jk f (0), we set

𝒦k( jk f (0)) = { jkg(0) : f ∼
𝒦

g},

for the 𝒦-orbit of f in the space of k-jets Jk(n, p).

The Mather groups are not Lie groups and ℰ(n, p) is not a finite dimensional manifold,
but in order to define the tangent space to an orbit of one of the Mather’s groups, we proceeded as
follows (for details and more information, see section 3.5 in (IZUMIYA et al., 2016) or chapters
3 and 4 in (MOND; NUÑO-BALLESTEROS, 2020)). Let π : TRp → Rp be the tangent bundle
over Rp, thus a map-germ ξ : (Rn,0)→ TRp is said to be a germ of vector field along f ∈ ℰn,p

if π ∘ξ = f . The tangent space θ f to ℰn,p at f is defined to be the ℰn-module of germs of vector
fields along f .

Let θn = θid(Rn,0)
and θp = θid(Rp,0)

, where id(Rn,0) and id(Rp,0) denote the germs of the
identity maps on (Rn,0) and (Rp,0), respectively. Note that θn is nothing but the set of germs of
the vector fields on Rn at the origin. Define the maps

t f : θn → θp

φ ↦→ d f ∘φ

ω f : θp → θ f

ψ ↦→ ψ ∘ f .

Note that θn is a free module over ℰn and θp is a free module over ℰp with structure given by the
homomorphism f * : ℰp → ℰn, defined by f *(ψ) = ψ ∘ f . Let f *(ℳp) denote the pullback of
the maximal ideal in ℰp. The tangent spaces L𝒢 · f to the 𝒢-orbits of f at the germ f are defined
as by:

Lℛ · f = t f (ℳn ·θn) Lℒ · f = ω f (ℳp ·θp) L𝒜 · f = Lℛ · f +Lℒ · f

L𝒦 · f = Lℛ · f + f *(ℳp) ·θ f

If we choose a system of coordinates (y1, · · · ,yp) in Rp then the germs of vector fields along f(
∂

∂y1

)
∘ f , · · · ,

(
∂

∂yp

)
∘ f form a free basis of θ f . Then, θ f can be identified canonically with

ℰn,p, that is, θ f is a free ℰn-module of rank p and we have

Lℛ · f =ℳn

{
∂ f
∂x1

, · · · , ∂ f
∂xn

}
Lℒ · f = f *(ℳp){e1, · · · ,ep}

f *(ℳp) ·θ f = f *(ℳn) ·ℰn,p

where e1, · · · ,ep are the standard basis vectors of Rp consider as elements of ℰn,p and (x1, · · · ,xn)

is a coordinate system in (Rn,0).
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When studying deformations, the singularity can move away from the origin and because
of this, the extended tangent spaces are defined as follows, considering local coordinates,

Leℛ · f = ℰn

{
∂ f
∂x1

, · · · , ∂ f
∂xn

}
Leℒ · f = f *(ℰp){e1, · · · ,ep}

Le𝒦 · f = Leℛ · f + f *(ℳp) ·ℰn,p

For any of the groups 𝒢 =ℛ,ℒ,𝒜,𝒦, the codimension of the orbit of f is defined by

cod( f ,𝒢) = dimR

(
ℳnℰn,p

L𝒢 · f

)
and the codimension of the extended orbit of f is defined by

code( f ,𝒢) = dimR

(
ℰn,p

Le𝒢 · f

)

2.3 Unfoldings

Definition 2.3.1. Let f ∈ ℰ(n, p). A r-parameter unfolding (r,F) of f is a map-germ

F : (Rn ×Rr,(0,0))→ (Rp ×Rr,(0,0))

in the form F(x,y) = ( f̃ (x,y),y) with f̃ (x,0) = f (x). The family of map-germs f̃ is called a
r-parameter deformation of f and we denote, for a fixed y0, f̃y0(x) = f̃ (x,y0).

Definition 2.3.2. Let 𝒢 be a Mather group and I the identity in 𝒢.

a) A morphism between two unfoldings (a,F) and (b,G) is a pair (α,ψ) : (a,F)→ (b,G)

with α : (Ra,0)→ (𝒢, I), ψ : (Ra,0)→ (Rb,0), such that

f̃y = α(y) · g̃ψ(y).

The unfolding (a,F) is then said to be induced from (b,G) by (α,ψ).

b) Two unfoldings (a,F) and (b,G) are 𝒢-equivalent if there exists a morphism (α,ψ) :
(a,F)→ (b,G) where ψ is invertible (so, a = b).

c) An unfolding (a,F) of a map-germ f is said to be 𝒢-versal if any unfolding (b,G) of f

can be induced from (a,F).

d) An unfolding (a,F) of f is said to be 𝒢-trivial if it is 𝒢-equivalent to the constant unfolding
(a, f ).

Now, using definition 2.3.2 and the definition of codimension, we can define stability
and infinitesimally stability.
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Definition 2.3.3. A map-germ f is 𝒢-stable (resp. 𝒢e-stable) if all of its unfoldings are 𝒢-trivial
(resp. 𝒢e-trivial).

Theorem 2.3.1. A map-germ f is 𝒢-stable (resp. 𝒢e-stable) if and only if cod( f ,𝒢) = 0 (resp.
code( f ,𝒢) = 0).

Definition 2.3.4. Let f : (N,x0)→ (P,yo) be a map germ between manifolds. An unfolding of f

is a triple (F, i, j) of map germs, where i : (N,x0)→ (N′,x′0), j : (P,y0)→ (P′,y′0) are immersions
and j is transverse to F , such that F ∘ i = j∘ f and (i, f ) : N →{(x′,y)∈ N′×P : F(x′) = j(y)} is
a diffeomorphism germ (see the associated diagram in figure 1). The dimension of the unfolding
is dim(N′)−dim(N).

Figure 1 – Associated diagram

Remark 2.3.1. The above definition of unfolding is locally equivalent to the usual parametrized
one given in definition 2.3.1. For details, see chapter 3 in (GIBSON et al., 2006).

Lemma 2.3.1. ((IZUMIYA; SAJI; TAKEUCHI, 2003), Lemma 3.1) Let F : (Rn−1×R,(0,0))→
(Rn,0) be a map germ with components Fi(x, t), i = 1,2, · · · ,n, i.e.

F(x, t) = (F1(x, t), · · · ,Fn(x, t)).

Suppose that
∂Fn

∂ t
(0,0) ̸= 0. We know by the Implicit Function Theorem that there is a germ of

function g : (Rn−1,0)→ (R,0), such that

F−1
n (0) = {(x,g(x)) : x ∈ (Rn−1,0)}.

Let us consider the immersion germs i : (Rn−1,0) → (Rn,(0,0)), given by i(x) = (x,g(x)),
j : (Rn−1,0)→ (Rn,(0,0)), given by j(y) = (y,0) and a map germ f : (Rn−1,0)→ (Rn−1,0),
given by f (x) = (F1(x,g(x)), · · · ,Fn−1(x,g(x))). Then the triple (F, i, j) is a one-dimensional
unfolding of f .

For a map germ f : (Rn ×Rr,0)→ (Rp,0), we define

jk
1 f : (Rn ×Rr,0)→ Jk(n, p)

(x,y) ↦→ jk
1 f (x,y),

where jk
1 f (x,y) indicates the k-jet with respect to the first variable.
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Lemma 2.3.2. ((IZUMIYA; TAKEUCHI, 2001), Lemma 3.3) Let F : (Rn ×Rr,0) → (Rp ×
Rr,0) be an unfolding of f0 of the form F(x,y) = ( f (x,y),y). If jk

1 f is transverse to 𝒦k( jk f0(0))
for a sufficiently large k, then F is infinitesimally 𝒜-stable.

Let us denote by C∞(M,Rn) the space of smooth maps between the manifold M and Rn

endowed with the so-called Whitney C∞-topology (for more details on this topology see chapter
5 in (MOND; NUÑO-BALLESTEROS, 2020)).

Definition 2.3.5. Let 𝒢 be one of Mather’s subgroups of 𝒦 and ℬ a smooth manifold. A family
of maps F : Rn ×ℬ → Rk, given by F(x,y) = fy(x), is said to be locally 𝒢-versal if for every
(x,y) ∈ Rn ×ℬ, the germ of F at (x,y) is a 𝒢-versal unfolding of fy at x.

With notation as above, let g : M → Rn be an immersion, where M is a smooth manifold,
and denote by φg : M×ℬ → Rk the map given by

φg(z,y) = F(g(z),y).

Denote by Imm(M,Rn) the subset of C∞(M,Rn) whose elements are proper C∞-immersions
from M to Rn.

Theorem 2.3.2. ((MONTALDI, 1991), Theorem 1) Suppose F :Rn×ℬ→Rk as above is locally
𝒢-versal. Let W ⊂ Jr(M,Rk) be a 𝒢-invariant submanifold, where M is a manifold and let

RW = {g ∈ Imm(M,Rn) : jr
1φg tW}.

Then RW is residual in Imm(M,Rn). Moreover, if ℬ is compact and W is closed, then RW is open
and dense.

Lemma 2.3.3. ((GOLUBITSKY; GUILLEMIN, 2012), Lemma 4.6)(Basic Transversality Lemma)
Let X , B and Y be smooth manifolds with W a submanifold of Y . Consider j : B →C∞ (X ,Y )

a non-necessarily continuous map and define Φ : X ×B → Y by Φ(x,b) = j(b)(x). Suppose Φ

smooth and transversal to W , then the set

{b ∈ B : j(b) tW}

is a dense subset of B.

When studying germs of functions it is important to consider also the direct product of
the group ℛ with translations, which we denote by ℛ+.

Definition 2.3.6. Two families of germs of functions F,G : (Rn ×Rr,(0,0)) → (R,0) are 𝒫-
ℛ+-equivalent if there exist a germ of diffeomorphism Φ : (Rn ×Rr,(0,0))→ (Rn ×Rr,(0,0))
of the form Φ(x,y) = (α(x,y),ψ(y) and a germ of function c : (Rr,0)→ R such that

G(x,y) = F ∘Φ(x,y)+ c(y).
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Above, the letter 𝒫 stands for parametrized, as we have a family of germs of diffeomor-
phisms α(,y) of Rn parametrized by y and the “+ ” stands for the addition of c(y).

Definition 2.3.7. We say that a deformation F : (Rn×Rr,(0,0))→ (R,0) of a germ of function
f ∈ℳn is ℛ+-versal if

Lℛe. f +R.{1, Ḟ1, · · · , Ḟr}= ℰn,

where Ḟi =
∂F
∂yi

(x,0), for i = 1, · · · ,r.

2.4 Lagrangian singularities
A skew-symmetric 2-form ω on a smooth manifold M is said to be a symplectic form if

it is closed and non-degenerate and, that is, dω = 0 and for all p ∈ M, if ωp(v,w) = 0, for all w,
then v = 0. A manifold M equipped with a symplectic form ω is called a symplectic manifold. It
follows from the definition of symplectic form that dω = 0 and ωn is a volume form for M, so
dimM = 2n for some positive integer n.

Example 2.4.1. Let N be a smooth manifold and T *N its cotangent bundle. There is a canonical
symplectic structure on T *N. The canonical 1-form (or the Liouville form, or the Tautological
form) λ on T *N is defined, at each (q,v) ∈ T *N, by λ(q,v) : T(q,v) (T *N)→ R, where

λ(q,v)(w) = v
(
dρ(q,v)(w)

)
and ρ : T *N → N is the canonical projection defined by ρ(q,v) = q. The canonical symplectic
structure on T *N is given by the 2-form ω = −dλ . Let x : U → Rn be a local system of
coordinates of N, where x = (x1, · · · ,xn). The 1-forms dxi(q) : TqN → R, i = 1, · · · ,n form a
basis of T *

q N, thus any v ∈*
q N can be written in a unique way in the form

v =
n

∑
i=1

pi(q,v)dxi(q).

Then, we obtain a local system of coordinates φ : T *U → Rn ×Rn of T *
q N, where φ(q,v) =

(x1(q), · · · ,xn(q), p1(q,v), · · · , pn(q,v)). In this system of coordinates, we have

λ =
n

∑
i=1

pidxi,

therefore,

ω =−dλ =
n

∑
i=1

dxi ∧d pi.

Definition 2.4.1. Let (M1,ω1) and (M2,ω2) be two symplectic manifolds. A symplectomorphism

between (M1,ω1) and (M2,ω2) is a diffeomorphism φ : M1 → M2 such that φ*ω2 = ω1. More
precisely, ω1(p)(v1,v2) = ω2(φ(p))(dφp(v1),dφp(v2), for any p ∈ M1 and v1,v2 ∈ TpM1.
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Definition 2.4.2. Let M be a 2n-dimensional smooth manifold and let ω be a symplectic form
on M. We say that a smooth submanifold L of M is a Lagrangian submanifold if dimL = n and
ω|L = 0

Example 2.4.2. If we consider the cotangent bundle of a smooth manifold N with the canonical
symplectic structure, given in example 2.4.1, then the fibers of ρ : T *N → N are Lagrangian
submanifolds.

Definition 2.4.3. Let π : E → N be a fiber bundle such that E is a symplectic manifold. We say
that π : E → N is a Lagrangian fibration if its fibers are Lagrangian submanifolds of E.

Example 2.4.3. It follows from example 2.4.2 that ρ : T *N → N is a Lagrangian fibration.

Definition 2.4.4. Let π : E → N and π ′ : E ′ → N′ be a Lagrangian fibrations. A symplecto-
morphism Φ : E → E ′ is said to be a Lagrangian diffeomorphism if there is a diffeomorphism
φ : N → N′ such that π ′ ∘Φ = φ ∘π .

Definition 2.4.5.

a) Let π : E → N be a Lagrangian fibration and consider a Lagrangian immersion i : L → E,
that is, i*ω = 0. The restriction of π to i(L), i.e., π ∘ i : L → N, is called a Lagrangian map.

b) The set of critical values of a Lagrangian map is said to be a caustic. We denote by C(i(L))

the caustic of the Lagrangian map π ∘ i : L → N.

c) We say that two Lagrangian maps π ∘ i : L → N and π ′ ∘ i′ : L′ → N′ are Lagrangian

equivalent if there is a Lagrangian diffeomorphism Φ : E → E ′ such that Φ(i(L)) = i′(L′).

Remark 2.4.1. If π ∘ i : L → N and π ′ ∘ i′ : L′ → N′ are Lagrangian equivalent, then the caustics
C(i(L)) and C(i′(L′)) are diffeomorphic. Also, it follows from the above proposition that if two
Lagrangian maps are Lagrangian equivalent, then they are 𝒜-equivalent.

It is known that all Lagrangian fibrations of a fixed dimension are locally Lagrangian
diffeomorphic (see theorem 5.2 in (IZUMIYA et al., 2016)), thus we can work on the cotangent
bundle π : T *Rr → Rr and all the results are valid on any Lagrangian fibration. Let (x, p) =

(x1, · · · ,xr, p1, · · · , pr) denote the canonical coordinates on T *Rr, λ the canonical 1-form and ω

the canonical symplectic form on T *Rr.

Definition 2.4.6. We say that an r-parameter family of germs of functions F : (Rn ×Rr,0)→
(R,0) is a Morse family of functions if the map germ ∆F : (Rn ×Rr,0)→ (Rn,0), given by

∆F(x,y) =
(

∂F
∂x1

, · · · , ∂F
∂xn

)
(x,y)

is not singular.
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When F is a Morse family

(CF ,0) = {(x,y) ∈ (Rn ×Rr,0) :
∂F
∂x1

(x,y) = · · ·= ∂F
∂xn(x,y)

= 0}

is a germ of smooth submanifold of (Rn ×Rr,0) of dimension r. Then, we immerse (CF ,0) in
the cotangent bundle T *Rr using the map-germ L(F) : (CF ,0)→ T *Rr defined by

L(F)(x,y) =
(

y,
∂F
∂y1

(x,y), · · · , ∂F
∂yr

(x,y)
)
.

Note that L(F)*λ = ∑
r
i=1

∂F
∂yi

dyi|CF
= dF|CF

, hence

L(F)*ω =−L(F)*dλ =−dL(F)*λ =−d(dF|CF
) =−(ddF)|CF

= 0.

As we know that dimCF = r, it follows that L(F)(CF) is a Lagrangian submanifold of T *Rr. We
call F the generating family of the germ of Lagrangian submanifold L(F)(CF).

Example 2.4.4. Let x : U → R4 be a regular hypersurface in R4, where U ⊂ R3 is open and
x(U) = M. Let D : U ×R4 → R, defined by

D(u, p) = ⟨x(u)− p,x(u)− p⟩

be the family of distance squared functions on M. The germ of D at each (u0, p0) ∈U ×R4 is a
Morse family of functions as follows. If we write u=(u1,u2,u3), x(u)= (x1(u),x2(u),x3(u),x4(u))

and p = (p1, p2, p3, p4), then

D(u, p) =
4

∑
i=1

(xi(u)− pi)
2.

We need to prove that the map

∆D : U ×R4 → R3

(u, p) ↦→
(

∂D
∂u1

,
∂D
∂u2

,
∂D
∂u3

)
is not singular. Its jacobian matrix is given by

J∆D =

a11 a12 a13 −2(x1)u1 −2(x2)u1 −2(x3)u1 −2(x4)u1

a21 a22 a23 −2(x1)u2 −2(x2)u2 −2(x3)u2 −2(x4)u2

a31 a32 a33 −2(x1)u3 −2(x2)u3 −2(x3)u3 −2(x4)u3

 ,

where ai j = 2⟨xuiu j(u),x(u)− p⟩+ 2⟨xui(u),xu j(u)⟩, i = 1,2,3. Since x is an embedding, the
rank of the matrix (x1)u1 (x2)u1 (x3)u1 (x4)u1

(x1)u2 (x2)u2 (x3)u2 (x4)u2

(x1)u3 (x2)u3 (x3)u3 (x4)u2


T
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is 3 at each point u ∈U . Then ∆D is not singular. Furthermore, the catastrophe set of D is given
by

CD = {(u, p) : p = x(u)+ tn(u), for some t ∈ R},

where n denotes the unit normal vector field of M. Then, taking this into account, the Lagrangian
immersion associated to D is given by

L(D) : (U × I,(u0, t0))→ T *R4

(u, t) ↦→ (x(u)+ tn(u),2tn(u)),

where p0 = x(u0)+ t0n(u0). Hence, the germ of Lagrangian map associated to D is F(x,n)(u, t) =

x(u)+ tn(u).

Theorem 2.4.1. ((IZUMIYA et al., 2016), Theorem 4.8 (ii)) For an open and dense set of
embeddings x : U → R4, the family D is locally 𝒫-ℛ+-versal.

Definition 2.4.7. A germ of Lagrangian immersion i : (L,u) → (T *Rr, p) (or a germ of La-
grangian map π ∘ i : (L,u)→ Rrπ(p)) is said to be Lagrangian stable if for any representative
i : V → T *Rr of i, there is a neighborhood W of i (in the Whitney C∞-topology on the subset
of Lagrangian immersions considered as a subspace of C∞(Rr,T *Rr)) and a neighborhood V

of u such that for any Lagrangian immersion j in W , there exists u′ ∈ V with π ∘ i and π ∘ j

Lagrangian equivalent, where j : (L,u′)→ (T *Rr, p′) is the germ of j at u′.

Next we see that the notion of Lagrangian stability in terms of generating families.

Theorem 2.4.2. ((IZUMIYA et al., 2016), Theorem 5.4 (1)) The Lagrangian map-germ π ∘L(F)

is Lagrangian stable if and only if F is an ℛ+-versal unfolding of f (x) = F(x,0).

Theorem 2.4.3. ((IZUMIYA et al., 2016), Theorem 5.5) Let F : (Rn×Rr,0)→ (R,0) be a Morse
family of functions. Suppose that L(F) : (C(F),0)→ T *Rr is Lagrangian stable and r ≤ 4. Then
L(F) is Lagrangian equivalent to a germ of a Lagrangian submanifold whose generating family
G(x1, · · · ,xn,y1, · · · ,yr) is one of the following germs, where Q(xk, · · · ,xn) =±x2

k ±·· ·± x2
n,

a) Q(x2, · · · ,xn)+ x3
1 + y1x1

b) Q(x2, · · · ,xn)+ x4
1 + y1x1 + y2x2

1

c) Q(x2, · · · ,xn)+ x5
1 + y1x1 + y2x2

1 + y3x3
1

d) Q(x2, · · · ,xn)+ x6
1 + y1x1 + y2x2

1 + y3x3
1 +u4x4

1

e) Q(x3, · · · ,xn)+ x3
1 + x1x2

2 + y1x1 + y2x2 + y3(x2
1 + x2

2)

f) Q(x3, · · · ,xn)+ x3
1 + x3

2 + y1x1 + y2x2 + y3x1x2
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g) Q(x3, · · · ,xn)+ x2
1x2 + x4

2 + y1x1 + y2x2 + y3x2
1 + y4x2

2.

The normal forms of the Lagrangian stable map-germs π ∘L(G) for r ≤ 4 are given in
table 1.

G singularity type π ∘L(G) singularity type Normal form
A2 Fold x2

1

A3 Cusp (x3
1 + y2x1,y2)

A4 Swallowtail (x4
1 + y2x1 + y3x2

1,y2,y3)

A5 Butterfly (x5
1 + y2x1 + y3x2

1 + y4x3
1,y2,y3,y4)

D−
4 Elliptic Umbilic (x2

1 − x2
2 + y3x1,x1x2 + y3x2,y3)

D+
4 Hyperbolic Umbilic (x2

1 + y3x2,x2
2 + y3x1,y3)

D5 Parabolic Umbilic (x1x2 + y3x1,x2
1 + x3

2 + y4x2,y3,y4)

Table 1 – Lagrangian stable singularities in Rr for r ≤ 4
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CHAPTER

3
PRELIMINARIES FROM DIFFERENTIAL

GEOMETRY

In this chapter we review some well known results which play an important role for
the understanding of this thesis. First, in section 3.1 we review some basic results on affine
differential geometry, useful in chapter 4, where we classify generic singularities of Blaschke
line congruences and chapter 5, where we generalize the idea of equiaffine structure for a special
class of singular surfaces. In section 3.2 we summarize some results from (IZUMIYA; SAJI;
TAKEUCHI, 2003) which are important in chapter 4 where we deal with the case of 3-parameter
line congruences in R4. In section 3.3 Kummer’s theory for line congruences is reviewed as
preparation for chapter 6, where we generalize some of Kummer’s results taking the director
surface of the congruence as a singular surface. Finally, in section 3.4, definitions and properties
of frontals are presented. These results are useful in chapter 5 as we want to study frontals from
an affine viewpoint and chapter 6, since the singular surfaces we consider are proper frontals.

3.1 Affine differential geometry

Let us regard Rn+1 as a n+1-dimensional affine space with volume element given by
ω(e1, · · · ,en.1) = det(e1, · · · ,en+1), where {e1, · · · ,en+1} is the standard basis of Rn+1. Let D

be the standard flat connection on Rn+1. Let U be an open subset of Rn and x : U → Rn+1 be a
regular hypersurface with x(U) = M and ξξξ : U → Rn+1 ∖{0} a vector field which is transversal
to M. We can decompose the tangent space

TpRn+1 = TpM⊕⟨ξξξ (u)⟩R,

where x(u) = p. So, it follows that given X and Y vector fields on M, we have the decomposition

DXY = ∇XY + c(X ,Y )ξξξ , (3.1)
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where ∇ is the induced affine connection and c is the affine fundamental form induced by
ξξξ , which defines a symmetric bilinear form on each tangent space of M. We say that M is
non-degenerate if c is non-degenerate which is equivalent to say that the Gaussian curvature of
M never vanishes (see chapter 3 in (NOMIZU; KATSUMI; SASAKI, 1994)). Using the same
idea, we decompose

DX ξξξ =−S(X)+ τ(X)ξξξ ,

where S is the shape operator and τ is the transversal connection form. We say that ξξξ is an
equiaffine transversal vector field if τ = 0, i.e DX ξξξ is tangent to M.

Using the volume element ω and the transversal vector field ξξξ , we induce a volume
element θ on M as follows

θ(X1, · · · ,Xn) = ω(X1, · · · ,Xn,ξξξ ),

where X1, · · · ,Xn are tangent to M.

Proposition 3.1.1. ((NOMIZU; KATSUMI; SASAKI, 1994), Proposition 1.4) We have

∇X θ = τ(X)θ , for all X ∈ TpM. (3.2)

Consequently, the following two conditions are equivalent:

(a) ∇θ = 0.

(b) τ = 0.

We say that M has a parallel volume element if there is a volume element θ on M such
that ∇θ = 0, where

∇X θ(X1,X2) = X(ω(X1,X2))−θ(X1,∇X X2)−θ(∇X X1,X2)

for X ,X1,X2 vector fields on M. Then, it follows from proposition 3.1.1 that a vector field ξξξ ,
transversal to a non-parabolic surface, is equiaffine if and only if the induced volume element is
parallel.

Given a non-degenerate hypersurface x : U →Rn+1 and a vector field ξξξ : U →Rn+1∖{0}
which is transversal to M = x(U), we take the line congruence generated by (x,ξξξ ) and the map

F(x,ξξξ ) : U × I → Rn+1

(u, t) ↦→ x(u)+ tξξξ (u),

where I is an open interval.

Definition 3.1.1. A point p=F(u, t) is called a focal point of multiplicity m> 0 if the differential
dF has nullity m at (u, t), where nullity indicates the dimension of the kernel of dF.
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The next proposition relates the shape operator S and the above definition.

Proposition 3.1.2. ((CECIL, 1994), Proposition 1) Let x : U → Rn+1 be a non-degenerate
hypersurface with transversal equiaffine vector field ξξξ . Let S be the shape operator related to
M and ξξξ . A point p = F(u, t) is a focal point of M of multiplicity m > 0 if and only if 1/t is an
eigenvalue of S with eigenspace of dimension m at u.

For each u ∈U and p ∈ Rn+1, we decompose p−x(u) into tangential and transversal
components as follows

p−x(u) = v(u)+ρp(u)ξξξ (u), (3.3)

where v(u) ∈ Tx(u)M. The real function ρp is called an affine support function associated to M

and ξξξ .

Definition 3.1.2. Let x : U →Rn+1, with x(U) = M, be a non-degenerate hypersurface and take
ξξξ : U → Rn+1 ∖{0} an equiaffine transversal vector field. Define ννν : U → Rn+1 ∖{0}, such that
for each x(u) = p ∈ M and v ∈ Tp(M)

⟨ννν(u),ξξξ (u)⟩= 1 and ⟨ννν(u),v⟩= 0. (3.4)

Each ννν(u) is called the conormal vector of x relative to ξξξ at p. The map ννν is called the conormal

map of x relative to ξξξ .

Remark 3.1.1. Using (3.3) and (3.4), we obtain

ρp(u) = ⟨p−x(u),ννν(u)⟩,

where ρp is the affine support function.

Proposition 3.1.3. ((CECIL, 1994), Proposition 2) Let x : U → Rn+1 be a non-degenerate
hypersurface and ξξξ an equiaffine transversal vector field. Then

a) The affine support function ρp has a critical point at u if and only if p−x(u) is a multiple
of ξξξ (u).

b) If u is a critical point of ρp, then the Hessian of ρp at u has the form

H(X ,Y ) = c(X ,(I −ρp(u)S)Y ), X , Y ∈ Tx(u)M.

c) A critical point u of the function ρp is degenerate if and only if p is a focal point of M.

Given a non-degenerate hypersurface x(U) = M, we know that the affine fundamental
form c is non-degenerate, then it can be treated as a non-degenerate metric (not necessarily
positive-definite) on M.
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Definition 3.1.3. Let x : U →Rn+1 be a non-degenerate hypersurface. A transversal vector field
ξξξ : U → Rn+1 ∖{0} satisfying

a) ξξξ is equiaffine.

b) The induced volume element θ coincides with the volume element ωc of the non-
degenerate metric c.

is called the Blaschke normal vector field of M.

Remark 3.1.2. Given a non-degenerate hypersurface x(U) = M, its Blaschke vector field is
unique up to sign and is given by

ξξξ (u) = |K(u)|1/n+2 N(u)+Z(u), (3.5)

where K is the Gaussian curvature of M, N its unit normal and Z is a vector field on M, such that

II(Z,X) =−X(|K|1/n+2),∀X ∈ T M (3.6)

where II denotes the second fundamental form of M (for details, see page 45 item (5) in
(NOMIZU; KATSUMI; SASAKI, 1994)). Using (3.6) we can also write the vector field Z in
terms of the coefficients of the second fundamental form and the partial derivatives of |K|1/n+2.
If we take the case n = 2, then Z = axu1 +bxu2 , where(

a

b

)
=

(
e f

f g

)−1(
−(|K|1/4)u1

−(|K|1/4)u2

)
. (3.7)

Moreover, from (3.5) it follows that the conormal vector relative to the Blaschke vector field of a
non-degenerate hypersurface in Rn+1 is given by

ννν(u) = |K(u)|−1/n+2 N(u) (3.8)

3.2 2-parameter line congruences in R3

Here, we summarize some results from (IZUMIYA; SAJI; TAKEUCHI, 2003) which
are generalized in chapter 4 to the case of 3-parameter line congruences in R4. We state in this
section the conjecture 3.2.1 from (IZUMIYA; SAJI; TAKEUCHI, 2003), for which we give a
positive answer in chapter 4. Along this section, U denotes an open subset of R2.

Definition 3.2.1. A 2-parameter line congruence in R3 is a 2-parameter family of lines in R3.
Locally, we write 𝒞 = {x(u),ξξξ (u)} and the line congruence is given by a smooth map

F(x,ξξξ ) : U × I → R3

(u, t) ↦→ F(u, t) = x(u)+ tξξξ (u),

where
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∙ x : U → R3 is smooth and it is called a reference surface of the congruence;

∙ ξξξ : U → R3 ∖{0} is smooth and it is called the director surface of the congruence.

When there is no risk of confusion, we denote the line congruence just by F instead of
F(x,ξξξ ).

Lemma 3.2.1. The singular points of a line congruence F(x,ξξξ ) are the points (u, t) such that

t2⟨ξξξ ,ξξξ u1
∧ξξξ u2

⟩+ t⟨ξξξ ,xu1 ∧ξξξ u2
+ξξξ u1

∧xu2⟩+ ⟨ξξξ ,xu1 ∧xu2⟩= 0.

Proof. The jacobian matrix of F is

JF =
(

xu1 + tξξξ u1
xu2 + tξξξ u2

ξξξ

)
.

As we know, (u, t) is a singular point of F if, and only if, detJF(u, t) = 0, thus the result follows
from

detJF(u, t) = ⟨ξξξ ,(xu1 + tξξξ u1
)∧ (xu2 + tξξξ u2

)⟩= 0.

Definition 3.2.2. We say that y(u) = x(u)+ t(u)ξξξ (u) is a focal hypersurface of the line congru-
ence F(x,ξξξ ) if

⟨ξξξ (u),yu1 ∧yu2⟩= 0. (3.9)

If y(u) = x(u)+ t(u)ξξξ (u) is a focal hypersurface of the line congruence F(x,ξξξ ) then

t2⟨ξξξ ,ξξξ u1
∧ξξξ u2

⟩+ t⟨ξξξ ,xu1 ∧ξξξ u2
+ξξξ u1

∧xu2⟩+ ⟨ξξξ ,xu1 ∧xu2⟩= 0.

3.2.1 2-parameter line congruences from the singularity theory view-
point

In (IZUMIYA; SAJI; TAKEUCHI, 2003) the authors seek to classify the singularities
of 2-parameter line congruences in R3. In order to do this, they consider some classes of
congruences, like general line congruences, i.e., those for which there are no restrictions on x
and ξξξ , normal congruences and Blaschke affine normal congruences. First, the singularities of a
general line congruence are classified in the following theorem.

Theorem 3.2.1. ((IZUMIYA; SAJI; TAKEUCHI, 2003), Theorem 1.2) There exists an open
dense subset 𝒪 ⊂C∞(U,R3 ×R3 ∖{0}) such that the germ of the line congruence F(x,ξξξ ) at any
point (u0, t0) ∈U × I is an immersive germ, or 𝒜-equivalent to the fold, the cuspidal edge or the
swallowtail for any (x,ξξξ ) ∈𝒪.

Here, the fold is the map germ defined by (x,y,z) ↦→ (x,y,z2), the cuspidal edge is
the map germ defined by (x,y,z) ↦→ (x,y,z3 + xz) and the swallowtail is defined by (x,y,z) ↦→
(x,y,z4 + xz+ yz2).
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An important and natural class of line congruence is the class of normal congruences,
defined as follows.

Definition 3.2.3. A 3-parameter line congruence 𝒞 = {x(u),ξξξ (u)}, for u ∈U ⊂ R2, is said to
be normal if for each point u0 ∈U there is a neighborhood Ũ of u0 and a regular hypersurface,
given by y(u) = x(u)+ t(u)ξξξ (u), whose normal vectors are parallel to ξξξ (u), for all u ∈ Ũ . The
congruence is an exact normal congruence if ξξξ (u) is a normal vector at x(u), for all u ∈U .

The next proposition characterizes 2-parameter normal line congruences in R3.

Proposition 3.2.1. ((IZUMIYA; SAJI; TAKEUCHI, 2003), Proposition 5.1) A line congruence
F(x,ξξξ ) is normal if and only if

〈
xu1,

(
ξξξ

‖ξξξ‖

)
u2

〉
=

〈
xu2,

(
ξξξ

‖ξξξ‖

)
u1

〉
.

Let us denote the space of the normal congruences by N(U,R3 ×
(
R3 ∖{0}

)
) with the

Whitney C∞-topology induced from C∞
(
U,R3 ×

(
R3 ∖{0}

))
. Then, we have the following

theorem.

Theorem 3.2.2. ((IZUMIYA; SAJI; TAKEUCHI, 2003), Theorem 5.7) There exists an open
dense subset 𝒪 ⊂ N(U,R3 ×

(
R3 ∖{0}

)
) such that the germ of the normal congruence F(x,ξξξ ) at

any point (u0, t0) ∈U × I is a Lagrangian stable map germ for any (x,ξξξ ) ∈𝒪. Therefore, F(x,ξξξ )
is 𝒜-equivalent to an immersion germ, the fold, the cuspidal edge, the swallowtail, the pyramid
or the purse for any (x,ξξξ ) ∈𝒪.

Another important class of line congruences considered in (IZUMIYA; SAJI; TAKEUCHI,
2003) is the Blaschke affine line congruence, i.e., the congruence given by a regular non-
degenerate surface x : U → R3 and its Blaschke vector field ξξξ : U → R3 defined in definition
5.2.1. The authors observed that the affine evolute of a non-degenerate plane curve is the caustic
of a certain Lagrangian submanifold in T *R2. Using some results proved for normal congruences,
the authors show some relations which suggest that something similar might occur for the case
of non-parabolic surfaces (see section 6 in (IZUMIYA; SAJI; TAKEUCHI, 2003) for details).
Taking this into account, they present the following conjecture, for which we give a positive
answer in corollary 4.4.1.

Conjecture. ((IZUMIYA; SAJI; TAKEUCHI, 2003), Conjecture 6.5) Germs of generic Blaschke
affine normal congruences at any points are Lagrangian stable.
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3.3 Kummer’s theory for 2-parameter line congruences
in R3

Here, taking into account a Euclidean approach to line congruences 𝒞 = {x,ξξξ}, where
x : U →R3, ξξξ : U → S2 are smooth maps and ξξξ is an immersion, we present the theory developed
by Ernst Eduard Kummer for line congruences. More content about line congruences can be
found in (BIANCHI, 1894), (EISENHART, 1909) and (WEATHERBURN, 1955). We start by
defining two quadratic forms associated to the line congruence 𝒞.

Definition 3.3.1. Let 𝒞 = {x,ξξξ} be a line congruence defined on U , an open subset of R2

and S = x(U) a regular surface. Let α : I → S, where I is an open interval, be a regular curve
parametrized by arc length, such that α(s) = x(u1(s),u2(s)). If ξξξ (s) = ξξξ (u1(s),u2(s)), where
q = (u1(0),u2(0)) and v = u′1(0)xu1(q)+u′2(0)xu2(q) ∈ TpS, where x(q) = p, then we associate
to 𝒞 two quadratic forms, as follows:

(I) Kummer first fundamental form :

ℐp : TpS → R (3.10)

v ↦→ ℐp(v) = ℰ u′21 +2ℱu′1u′2 +𝒢 u′22 ,

where ℰ = ⟨ξξξ u1
,ξξξ u1

⟩, ℱ = ⟨ξξξ u1
,ξξξ u2

⟩ and 𝒢 = ⟨ξξξ u2
,ξξξ u2

⟩. We denote by ℐℐℐ the associated
matrix.

(II) Kummer second fundamental form:

ℐℐ p : TpS → R (3.11)

v ↦→ ℐℐ p(v) = ℒ u′21 +(ℳ1 +ℳ2)u′1u′2 +𝒩 u′22 ,

where ℒ = −⟨xu1,ξξξ u1
⟩, ℳ2 = −⟨xu1,ξξξ u2

⟩, ℳ1 = −⟨xu2,ξξξ u1
⟩ and 𝒩 = −⟨xu2,ξξξ u2

⟩ .
We denote by ℐℐℐℐℐℐ =−Dξξξ

T Dx the associated matrix.

Given a line {x(q),ξξξ (q)} of the congruence 𝒞, its spherical representation is given by
the point ξξξ (q)∈ S2. If we have a curve C on the reference surface S its spherical representation is
the curve on S2 given by the spherical representations of all the lines of the congruence through
C.

Definition 3.3.2. The lines of the congruence passing through a curve C on the reference surface
S form a ruled surface SC called surface of the congruence.

3.3.1 Limit points and Kummer principal lines

If C is given by x(t) = x ∘α(t) where α(t) = (u1(t),u2(t)) and ξξξ (t) = ξξξ ∘α(t), the
surface of the congruence SC can be written as

Y (t,w) = x(t)+wξξξ (t), t ∈ I,w ∈ R, (3.12)
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where the curve x(t) is called a directrix of SC and for each fixed t the line Lt , which pass
through α(t) and is parallel to ξξξ (t), is called a generator of the ruled surface SC. If ‖ξξξ (t)‖= 1,
we say that ξξξ (t) is the spherical representation of SC. Since ξξξ is an immersion, ‖ξξξ

′
(t)‖ ̸= 0.

Suppose ‖ξξξ (t)‖= 1, so the ruled surface considered is non-cylindrical. It is known (see section
3.5 in (CARMO, 2016)) that there exists a curve β : I → R3, contained in the ruled surface SC,
parametrized by

β (t) = x(t)+ k(t)ξξξ (t), (3.13)

where k(t) =− ⟨x′(t),ξξξ ′
(t)⟩

⟨ξξξ ′
(t),ξξξ ′

(t)⟩
, whose tangent vector satisfies

⟨β ′(t),ξξξ ′
(t)⟩= 0. (3.14)

This special curve is called striction line. The intersection point of a generator with the striction
line is called the central point of the generator. Given a generator Lt the coordinate of its central
point is k(t), given in (3.13)

Let q = (u1(0),u2(0)) and note that

k(0) =− ⟨x′(0),ξξξ ′
(0)⟩

⟨ξξξ ′
(0),ξξξ ′

(0)⟩

=−
⟨u′1(0)xu1(q)+u′2(0)xu2(q),u

′
1(0)ξξξ u1

(q)+u′2(0)ξξξ u2
(q)⟩

⟨u′1(0)ξξξ u1
(q)+u′2(0)ξξξ u2

(q),u′1(0)ξξξ u1
(q)+u′2(0)ξξξ u2

(q)⟩

=
ℒ u′21 +(ℳ1 +ℳ2)u′1u′2 +𝒩 u′22

ℰ u′21 +2ℱu′1u′2 +𝒢 u′22

=
ℐℐ p

ℐp
, where p = x(q).

If we associate to v = α ′(0) = u′1(0)xu1(q)+u′2(0)xu2(q) its coordinates (u′1(0),u
′
2(0)), then it

is possible to look at k as a function defined in TpS, i.e

𝒦p : TpS → R (3.15)

v ↦→ 𝒦p(v) =
ℐℐ p(v)
ℐp(v)

, (3.16)

which provides the coordinate of the central point of the generator L0 associated to the surface of
the congruence SC. If we restrict 𝒦p to a compact set, then this function have a maximum and a
minimum values, which we denote by 𝒦1 and 𝒦2. Note that (3.15) depends only on p and the
direction v, so we can take the restriction 𝒦p : S1 → R.

Proposition 3.3.1. The extreme values of 𝒦 : S1 → R, denoted by 𝒦1 and 𝒦2, satisfy

𝒦1 +𝒦2 =
−ℱ (ℳ1 +ℳ2)+𝒢 ℒ +ℰ 𝒩

ℰ 𝒢 −ℱ 2 (3.17a)

𝒦1𝒦2 =
4ℒ 𝒩 − (ℳ1 +ℳ2)

2

4(ℰ 𝒢 −ℱ 2)
. (3.17b)
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Proof. Suppose 𝒦0 = 𝒦p(λ0,µ0) an extreme value of

𝒦p(λ ,µ) =
ℒ λ 2 +(ℳ1 +ℳ2)λ µ +𝒩 µ2

ℰ λ 2 +2ℱλ µ +𝒢 µ2 ,

where (λ ,µ) ∈ S1. Then,

0 =
∂𝒦p

∂λ
(λ0,µ0) = λ0(−2ℒ +2𝒦0ℰ )+µ0(2𝒦0ℱ − (ℳ1 +ℳ2)) (3.18a)

0 =
∂𝒦p

∂ µ
(λ0,µ0) = λ0(−(ℳ1 +ℳ2)+2𝒦0ℱ )+µ0(2𝒦0𝒢 −2𝒩 ). (3.18b)

From (3.18), we get ∣∣∣∣∣ −2ℒ +2𝒦0ℰ 2𝒦0ℱ − (ℳ1 +ℳ2)

2𝒦0ℱ − (ℳ1 +ℳ2) 2𝒦0𝒢 −2𝒩

∣∣∣∣∣= 0,

thus,

𝒦 2
0 (ℰ 𝒢 −ℱ 2)+𝒦0(−ℰ 𝒩 −ℒ 𝒢 +(ℳ1 +ℳ2)ℱ )+ℒ 𝒩 − (ℳ1 +ℳ2)

2

4
= 0.

From the above equation, we obtain (3.17).

With notation as in proposition 3.3.1, the points on the line {x(q),ξξξ (q)}, where x(q) = p,
determined by 𝒦1 and 𝒦2 are called its limit points. They are boundaries of the segment of
the line containing all other central points, associated to different directions taken in TpS. If we
take x(s) = x(u1(s),u2(s)) a regular curve on S, such that (u′1(s),u

′
2(s)) is associated to extreme

values of 𝒦x(t), for all t ∈ I, an open interval, then from (3.18) isolating 𝒦0, we obtain the
following binary differential equation

(2ℱℒ −ℰ (ℳ1 +ℳ2))u′21 +2(𝒢 ℒ −ℰ 𝒩 )u′1u′2 +(𝒢 (ℳ1 +ℳ2)−ℱ𝒩 )u′22 = 0. (3.19)

The curves which are solutions of (3.19) are called Kummer principal lines. A direction v ∈
TpS∖{0} associated to an extreme value of 𝒦p is called a Kummer principal direction at p.

3.3.2 Focal points and developable surfaces of the congruence

Let {x,ξξξ} be a line congruence defined in U an open subset of R2, such that ‖ξξξ‖= 1.
We can also look at the surfaces of the congruence which are developable. In this case, the central
points are called focal points and the surface of the congruence is tangent to its striction line. If
we parametrize the striction line by

β (s) = x(u1(s),u2(s))+ρ(u1(s),u2(s))ξξξ (u1(s),u2(s)),

then β ′ is parallel to ξξξ . Above, ρ(u1(s),u2(s)) is the coordinate of the focal point, for each s ∈ I,
an open interval. Since ξξξ is unitary and β is parallel to ξξξ , we get that ⟨β ′,ξξξ u1

⟩= ⟨β ′,ξξξ u2
⟩= 0,

which is equivalent to

−(ℒ u′1 +ℳ1u′2)+ρ(ℰ u′1 +ℱu′2) = 0 (3.20a)

−(ℳ2u′1 +𝒩 u′2)+ρ(ℱu′1 +𝒢 u′2) = 0. (3.20b)
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Proposition 3.3.2. The coordinates of the focal points of a given line of the congruence, denoted
by ρ1 andn ρ2, satisfy:

ρ1 +ρ2 =
−ℱ (ℳ1 +ℳ2)+𝒢 ℒ +ℰ 𝒩

ℰ 𝒢 −ℱ 2 (3.21a)

ρ1ρ2 =
ℒ 𝒩 −ℳ1ℳ2

ℰ 𝒢 −ℱ 2 . (3.21b)

Proof. From (3.20), we get

−u′1(−ℒ +ρℰ ) = u′2(ρℱ −ℳ2)

−u′1(−ℳ1 +ρℱ ) = u′2(ρ𝒢 −𝒩 ),

then ∣∣∣∣∣−ℒ +ρℰ (−ℳ1 +ρℱ

ρℱ −ℳ2 ρ𝒢 −𝒩

∣∣∣∣∣= 0,

thus,

ρ
2(ℰ 𝒢 −ℱ 2)+ρ(−𝒢 ℒ −ℰ 𝒩 +ℳ1ℱ +ℳ2ℱ )+ℒ 𝒩 −ℳ1ℳ2 = 0.

From the above equation, we get (3.21).

Proposition 3.3.3. Each line of the congruence admits at most two developable surfaces of the
congruence through it.

Proof. From (3.20) we get ∣∣∣∣∣−ℒ u′1 −ℳ2u′2 −ℳ1u′1 −𝒩 u′2
ℰ u′1 +ℱu′2 ℱu′1 +𝒢 u′2

∣∣∣∣∣= 0

and form this determinant, we have the following binary differential equation

(−ℱℒ +ℰ ℳ1)u′21 +(−ℱℳ2 −𝒢 ℒ +ℰ 𝒩 +ℱℳ1)u′1u′2 +(−𝒢 ℳ2 +ℱ𝒩 )u′22 = 0.
(3.22)

Thus, through each line of the congruence, we have possibly two curves which are directrices of
developable surfaces of the congruence.

We call equation (6.13) the equation of the developable surfaces of the congruence.
It follows from proposition 3.2.1 that a 2-parameter line congruence {x,ξξξ} is normal if and
only if ℳ1 = ℳ2. Furthermore, if we compare (3.17) and (3.21), we have that, for normal
congruences, the focal points and the limit points coincide. It follows also that he same happens
to the directrices of the developable surfaces of the congruence and the Kummer principal lines,
since the equations (6.13) and (3.19) are the same for ℳ1 = ℳ2.
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Another important result from Kummer’s theory is the following one, which relates
the lines of curvature of a regular surface x : U → R3 to the Kummer principal lines, when
considering the congruence given by x and its unit normal vector field. In this case, we say that
the congruence is an exact normal congruence.

Proposition 3.3.4. Let {x,ξξξ} be an exact normal congruence. A curve C on the reference surface
parametrized by x∘α : I →R3, where α(s) = (u1(s),u2(s)) is such that (u′1,u

′
2) ̸= (0,0), is a line

of curvature if and only if the surface of the congruence Y (s,w) = x(s)+wξξξ (s) is developable.

Proof. Let SC be the surface of the congruence parametrized by Y (s,w) = x(s)+wξξξ (s). It is
known that the ruled surface SC is developable if and only if

[
x′,ξξξ ′

,ξξξ
]
= 0. We know that

‖ξξξ‖= 1 and ⟨x′,ξξξ ⟩= 0, thus
[
x′,ξξξ ′

,ξξξ
]
= 0 if and only if ξξξ

′
(s) = k(s)x′(s) and from Rodrigues’

curvature formula (see section 3.2 in (CARMO, 2016)), x(s) is a line of curvature.

3.4 Frontals
As we seek to study frontals from a differential affine geometry viewpoint in chapter 5

and generalize Kummer’s theory for line congruences {x,ξξξ}, where x : U → R3 is a smooth
map and ξξξ : U → R3 is a frontal in chapter 6, we give in this section some important no-
tions related to this special class of singular surfaces. The main references in this section are
(MEDINA-TEJEDA, 2022a) and (MEDINA-TEJEDA, 2022b). For properties of frontals and
their geometrical invariants we also refer to (ISHIKAWA, 2018), (MARTINS et al., 2016), (SAJI;
TERAMOTO, 2021) and (SAJI; UMEHARA; YAMADA, 2009). A smooth map x : U → R3 is
said to be a frontal if, for all q ∈U there is a vector field n : Uq → R3 where q ∈Uq is an open
subset of U , such that ‖n‖= 1 and ⟨xui(u),n(u)⟩= 0, for all u ∈Uq, i = 1,2. This vector field is
said to be a unit normal vector field along x. We say that a frontal x is a wave front if the map
(x,n) : U → R3 ×S2 is an immersion for all q ∈U . Here, we consider mainly proper frontals,
that is, frontals x for which the singular set Σ(x) = {q ∈U : x is not immersive in q} has empty
interior. This is equivalent to say that U ∖Σ(x) is an open dense set in U .

Definition 3.4.1. We call moving basis a smooth map ΩΩΩ : U →ℳ3×2(R) in which the columns
w1,w2 : U → R3 of the matrix ΩΩΩ =

(
w1 w2

)
are linearly independent vector fields.

Definition 3.4.2. We call a tangent moving basis (tmb) of x a moving basis ΩΩΩ = (w1,w2), such
that xu1 ,xu2 ∈ ⟨w1,w2⟩R, where ⟨ ,⟩R denotes the linear span R-vector space.

Next proposition provides a characterization of frontals in terms of tangent moving basis.

Proposition 3.4.1. ((MEDINA-TEJEDA, 2022a), Proposition 3.2) Let x : U → R3 be a smooth
map with U ⊂ R2 an open set. Then, x is a frontal if and only if, for all q ∈ U , there are
smooth maps ΩΩΩ : Uq → ℳ3×2(R) and ΛΛΛ : Uq → ℳ2×2(R) with rank(ΩΩΩ) = 2 and Uq ⊂ U a
neighborhood of q, such that Dx(q̃) = ΩΩΩΛΛΛ

T
Ω, for all q̃ ∈Uq.
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Since a tangent moving basis exist locally and we want to describe local properties, from
now on we suppose that for a given frontal we have a global tangent moving basis. Then, if a
frontal x satisfies Dx = ΩΩΩΛΛΛ

T , where ΩΩΩ is a tangent moving basis, we have that Σ(x) = λ
−1
Ω

(0),
where λΩ := detΛΛΛ.

Let x : U → R3 be a frontal, ΩΩΩ =
(

w1 w2

)
a tmb and denote by n =

w1 ×w2

‖w1 ×w2‖
the

unit normal vector field induced by ΩΩΩ. We set the matrices

IΩ := ΩΩΩ
T

ΩΩΩ =

(
EΩ FΩ

FΩ GΩ

)
=

(
⟨w1,w1⟩ ⟨w1,w2⟩
⟨w2,w1⟩ ⟨w2,w2⟩

)
, (3.23)

IIΩ :=−ΩΩΩ
T Dn =

(
eΩ f1Ω

f2Ω gΩ

)
=

(
−⟨w1,nu1⟩ −⟨w1,nu2⟩
−⟨w2,nu1⟩ −⟨w2,nu2⟩

)
, (3.24)

µµµΩ :=−IIT
ΩI−1

Ω
, (3.25)

αααΩ := µµµΩad j(ΛΛΛΩ), (3.26)

𝒯1 := (ΩΩΩT
u1

ΩΩΩ)I−1
Ω

=

(
𝒯 1

11 𝒯 2
11

𝒯 1
21 𝒯 1

21

)
, (3.27)

𝒯2 := (ΩΩΩT
u2

ΩΩΩ)I−1
Ω

=

(
𝒯 1

12 𝒯 2
12

𝒯 1
22 𝒯 1

22

)
. (3.28)

Given a frontal x : U → R3 and a tmb ΩΩΩ =
(

w1 w2

)
it follows that ⟨w1,n⟩= ⟨w2,n⟩= 0. By

taking this, we can rewrite

IIΩ =

(
⟨(w1)u1,n⟩ ⟨(w1)u2,n⟩
⟨(w2)u1,n⟩ ⟨(w2)u2,n⟩

)
. (3.29)

Remark 3.4.1. With notation as above, if ΩΩΩ is a tangent moving base of x, we have the
decomposition Dx = ΩΩΩΛΛΛ

T
Ω, then ΛΛΛΩ = DxT ΩΩΩI−1

Ω
, namely ΛΛΛΩ is completely determined by x and

ΩΩΩ, therefore from now on, it will denote this matrix valued map. Also we write TΩ = [w1,w2]R
the plane generated by w1 and w2. Note that given two tangent moving basis ΩΩΩ and Ω̃ of a proper
frontal, we have TΩ = T

Ω̃
.

Definition 3.4.3. Let x : U → R3 be a frontal and Ω a tangent moving basis of x, we define
the ΩΩΩ-relative curvature KΩ := det(µµµΩ) and the ΩΩΩ-relative mean curvature HΩ :=−1

2tr(αααΩ),
where tr() is the trace and ad j() is the adjoint of a matrix. Also we call the functions k1Ω :=
HΩ −

√
H2

Ω
−λΩKΩ and k2Ω := HΩ +

√
H2

Ω
−λΩKΩ the ΩΩΩ-relative principal curvatures.

According to (MEDINA-TEJEDA, 2020) it is possible to define smooth functions
k1,k2 : U ∖Σ(x)→R, related to k1Ω and k2Ω, which do not depend on the chosen tangent moving
basis inducing the same orientation of the normal vector field. These functions have similar
properties to the classical principal curvatures and in the case of non-degenerate singularities
coincide with those functions defined in (TERAMOTO, 2016) (equation (2.6)), via a suitable
change of coordinates.
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Given a frontal x : U → R3 with a global unit normal vector field n : U → R3, we can
also consider the matrices

I := DxT Dx =

(
E F

F G

)
=

(
⟨xu1,xu1⟩ ⟨xu1,xu2⟩
⟨xu1,xu1⟩ ⟨xu2,xu2⟩

)
, (3.30)

II :=−DxT Dn =

(
e f

f g

)
=

(
−⟨xu1 ,nu1⟩ −⟨xu1,nu2⟩
−⟨xu2,nu1⟩ −⟨xu2,nu2⟩

)
. (3.31)

If we decompose Dx = ΩΩΩΛΛΛ
T , then I = ΛΛΛIΩΛΛΛ

T and II = ΛΛΛIIΩ. Also, the classical normal
curvature at a regular point q ∈U ∖Σ(x) is given by

kq(ϑ) :=
ϑ T IIϑ

ϑ T Iϑ
, (3.32)

where ϑ ∈ R2 ∖{0} are the coordinates of a vector in the tangent plane in the basis
(

xu1 xu2

)
.

Definition 3.4.4. Let x : U → R3 be a frontal, ΩΩΩ a tangent moving basis of x, we define the
ΩΩΩ-relative normal curvature by

kΩ
q (b) :=

bT IIΩad j(ΛΛΛT
Ω)b

bT IΩb
,

where q ∈U and b ∈ R2 ∖{0} represent the coordinates in the basis ΩΩΩ of vectors in TΩ(q).

The directions defined by the vectors v ∈ TΩ represented by b in which kΩ
p (b) achieves

an extreme value are called principal directions.

Definition 3.4.5. Let x : U → R3 be a proper frontal and γ : (−ε,ε)→U a smooth curve. We
say that γ is a line of curvature of x if (x∘ γ)′(t) defines a principal direction for every t such
that (x∘ γ)′(t) ̸= 0.

The next proposition, given in (MEDINA-TEJEDA, 2022b), provides a differential
equation associated to lines of curvature.

Proposition 3.4.2. ((MEDINA-TEJEDA, 2022b), Corollary 5.1) Let x : U → R3 be a proper
frontal and ΩΩΩ a tangent moving basis of x. A smooth curve γ : (−ε,ε)→U is a line of curvature
if and only if λΩ(γ)γ

′T PαααT
Ω
(γ)γ ′ = 0 on (−ε,ε), where

P =

(
0 1
−1 0

)
.

3.4.1 Frontals with extendable Gaussian curvature

Now, taking into account the results in (MEDINA-TEJEDA, 2022b), we investigate some
classes of frontals for which the Gaussian curvature admits a smooth extension. These classes
play an important role in chapter 5, where we define the Blaschke vector field of a frontal. Other
important references for the study of Gaussian curvature are (MARTINS et al., 2016) and (SAJI;
UMEHARA; YAMADA, 2009).
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3.4.1.1 Frontals with extendable normal curvature

Let x : U → R3 be a proper frontal with extendable normal curvature. It follows from corollary
3.1 in (MEDINA-TEJEDA, 2022b) that if x : (U,0)→ (R3,0) is a frontal with extendable normal
curvature and 0 a singularity of rank 1, then its Gaussian curvature has a smooth extension.
Furthermore, this extension is non-vanishing if and only if x ∼ n, where n is the unit normal
vector field of x and ∼ indicates that there are ΩΩΩ1 and ΩΩΩ2 tmb of x and n, respectively and

a smooth matrix valued map B : U → GL(2,R), such that ΛΛΛ2 = ΛΛΛ1B, where Dx = ΩΩΩ1ΛΛΛ
T
1 and

Dn = ΩΩΩ2ΛΛΛ
T
2 . The next theorem characterizes proper frontals of rank 1 with extendable normal

curvature.

Theorem 3.4.1. ((MEDINA-TEJEDA, 2022b), Theorem 3.2) Let x : (U,0) → (R3,0) be a
proper frontal with extendable normal curvature and 0 a singularity of rank 1, then after a rigid
motion and a change of coordinates on a neighborhood of 0, x can be represented by the formula:

y = (u1,b(u1,u2),
∫ u2

0

(∫ t2

0
h(u1, t1)bu2(u1, t1)dt1

)
bu2(u1, t2)dt2 +

∫ u2

0

(∫ u1

0
l(t1)dt1

)
bu2(u1, t2)dt2

(3.33)

+
∫ u1

0

(∫ t2

0
l(t1)dt1

)
bu1(t2,0)dt2 +

∫ u1

0

(∫ t2

0
r(t1)dt1

)
dt2),

where b,h, l,r are smooth function on neighborhoods of the origin in each case.

3.4.1.2 Wave fronts with extendable Gaussian curvature

If we look at a germ of wave front x : (U,0)→ (R3,0), such that 0 ∈ Σ(x) and rankDx(0) = 1,
then it follows from remark 4.1 in (MEDINA-TEJEDA, 2022b) that up to an isometry, x is
ℛ-equivalent to

y = (u1,−hu2(u1,u2),
∫ u1

0
(hu1(t,u2)−u2hu2u1(t,u2))dt −

∫ u2

0
thu2u2(0, t)dt). (3.34)

Note that Dy has decomposition Dy = ΩΩΩΛΛΛ
T , where

ΩΩΩ =

 1 0
0 1
g1 u2

 and ΛΛΛ
T =

(
1 0

bu1 bu2

)
, (3.35)

for h, g1 and b smooth functions such that g1 = hu1 and −b = hu2 . From this, we obtain that

KΩ =
−hu1u1

(1+h2
u1
+u2

2)
2 and λΩ =−hu2u2. (3.36)

From corollary 4.3 in (MEDINA-TEJEDA, 2022b), it follows that if h in (3.34) satisfies the
equation hu1u1 + c(u1,u2)hu2u2 = 0, where c(u1,u2) is a smooth function, then y is a wave front
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of rank 1 with extendable Gaussian curvature. Furthermore, using this information in (3.36) and

taking into account that in U ∖Σ(x) the Gaussian curvature is K =
KΩ

λΩ

, we get, by the density of

U ∖Σ(x), that its extension is given by

K =
−c(u1,u2)

(1+h2
u1
+u2

2)
2 . (3.37)

Thus, if c(u1,u2) is a non-vanishing function, we obtain a wave front of rank 1 for which the
Gaussian curvature has a non-vanishing extension. It follows from proposition 3.4 in (MEDINA-
TEJEDA, 2022b) that a wave front does not admit a smooth extension for its normal curvature,
hence this class has no intersection with the class 3.4.1.1.

Remark 3.4.2. Note that the second order linear PDE

hu1u1 + c(u1,u2)hu2u2 = 0 (3.38)

is an important step in order to obtain frontals with extendable non-vanishing Gaussian curvature.
If c(u1,u2) = 1, then the equation (3.38) is the two dimensional Laplace equation (an elliptic
equation), which was discovered by Euler in 1752. This PDE has been useful in many areas, like
gravitational potential, propagation of heat, electricity and magnetism (for more information see
chapter 7 in (GONZALEZ-VELASCO, 1996)). On the other hand, if we take c(u1,u2) =−a2,
where a ̸= 0 is a constant, then (3.38) is the one-dimensional wave equation (a hyperbolic
equation). The wave equation governs the dynamics of some physical systems, for instance, the
guitar string, the longitudinal vibrations of an elastic bar, propagation of acoustic, fluid, and
electromagnetic waves (see chapter 5 in (GONZALEZ-VELASCO, 1996)). Note in (3.36) that
the sign of K is determined by the sign of c(u1,u2), but this sign also identifies if the PDE (3.38)
is hyperbolic or elliptic.
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CHAPTER

4
SINGULARITIES OF 3-PARAMETER LINE

CONGRUENCES IN R4

Here, we deal with three parameter families of lines in R4, i.e., 3-parameter line con-
gruences in R4. More content about line congruences can be found in (BIANCHI, 1894),
(EISENHART, 1909) and (WEATHERBURN, 1955). Our approach here is motivated by (IZU-
MIYA; SAJI; TAKEUCHI, 2003). Our goal is to classify generic singularities of 3-parameter
line congruences, normal line congruences and Blaschke affine normal line congruences, in this
last case, providing an answer to the conjecture presented in (IZUMIYA; SAJI; TAKEUCHI,
2003). Along this chapter, U denotes an open subset of R3

4.1 3-parameter line congruences in R4

Definition 4.1.1. A 3-parameter line congruence in R4 is a 3-parameter family of lines in R4.
Locally, we write 𝒞 = {x(u),ξξξ (u)} and the line congruence is given by a smooth map

F(x,ξξξ ) : U × I → R4

(u, t) ↦→ F(u, t) = x(u)+ tξξξ (u),

where

∙ x : U → R4 is smooth and it is called a reference hypersurface of the congruence;

∙ ξξξ : U → R4 ∖{0} is smooth and it is called the director hypersurface of the congruence.

When there is no risk of confusion, we denote the line congruence just by F instead of
F(x,ξξξ ).
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Lemma 4.1.1. The singular points of a line congruence F(x,ξξξ ) are the points (u, t) such that

t3⟨ξξξ ,ξξξ u1
∧ξξξ u2

∧ξξξ u3
⟩+ t2⟨ξξξ ,xu1 ∧ξξξ u2

∧ξξξ u3
+ξξξ u1

∧xu2 ∧ξξξ u3
+ξξξ u1

∧ξξξ u2
∧xu3⟩+

+ t⟨ξξξ ,xu1 ∧xu2 ∧ξξξ u3
+xu1 ∧ξξξ u2

∧xu3 +ξξξ u1
∧xu2 ∧xu3⟩+ ⟨ξξξ ,xu1 ∧xu2 ∧xu3⟩= 0.

Proof. The jacobian matrix of F is

JF =
[
xu1 + tξξξ u1

xu2 + tξξξ u2
xu3 + tξξξ u3

ξξξ
]
.

As we know, (u, t) is a singular point of F if, and only if, detJF(u, t) = 0, thus the result follows
from

detJF(u, t) = ⟨ξξξ ,(xu1 + tξξξ u1
)∧ (xu2 + tξξξ u2

)∧ (xu3 + tξξξ u3
)⟩= 0.

Definition 4.1.2. We say that y(u) = x(u)+ t(u)ξξξ (u) is a focal hypersurface of the line congru-
ence F(x,ξξξ ) if

⟨ξξξ (u),yu1 ∧yu2 ∧yu3⟩= 0. (4.1)

If y(u) = x(u)+ t(u)ξξξ (u) is a focal hypersurface of the line congruence F(x,ξξξ ) then

t3⟨ξξξ ,ξξξ u1
∧ξξξ u2

∧ξξξ u3
⟩+ t2⟨ξξξ ,xu1 ∧ξξξ u2

∧ξξξ u3
+ξξξ u1

∧xu2 ∧ξξξ u3
+ξξξ u1

∧ξξξ u2
∧xu3⟩+

+ t⟨ξξξ ,xu1 ∧xu2 ∧ξξξ u3
+xu1 ∧ξξξ u2

∧xu3 +ξξξ u1
∧xu2 ∧xu3⟩+ ⟨ξξξ ,xu1 ∧xu2 ∧xu3⟩= 0.

4.1.1 Ruled surfaces of the congruence

There is a geometric interpretation related to definition 4.1.2, when x is an embedding
and ξξξ is an immersion, as follows. Let {x(u),ξξξ (u)} be a 3-parameter line congruence and C

a regular curve on the reference hypersurface x. If we restrict the director hypersurface ξξξ to
this curve, we obtain a ruled surface associated to the 1-parameter family of lines {x(s),ξξξ (s)},
where s is the parameter of C, x(s) = x(u(s)) and ξξξ (s) = ξξξ (u(s)). The line obtained by fixing
s is called a generator of the ruled surface. These kind of ruled surfaces are called surfaces of

the congruence and since ξξξ
′
(s) ̸= 0, it is possible to define its striction curve (see section 3.5

in (CARMO, 2016) for details). In the special case where this ruled surface is developable, the
points of contact of a generator with the striction curve are called focal points. Let us write
α(s) = x(u(s))+ρ(u(s))ξξξ (u(s)) as the striction curve, where ρ(u(s)) denotes the coordinate of
the focal point relative to ξξξ (u(s)). Suppose α ′(s) ̸= 0 for all s, then it is possible to show that α ′

is parallel to ξξξ and assuming ‖ξξξ‖= 1, α ′ is perpendicular to ξξξ ui
, i = 1,2,3, thus

u′1(h11 +ρg11)+u′2(h21 +ρg12)+u′3(h31 +ρg13) = 0

u′1(h12 +ρg12)+u′2(h22 +ρg22)+u′3(h32 +ρg23) = 0

u′1(h13 +ρg13)+u′2(h23 +ρg23)+u′3(h33 +ρg33) = 0,
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where gi j = ⟨ξξξ ui
,ξξξ u j

⟩ and hi j = ⟨xui,ξξξ u j
⟩. As we want to find a non-trivial solution for the above

system, we obtain the cubic equation∣∣∣∣∣∣∣
h11 +ρg11 h21 +ρg12 h31 +ρg13

h12 +ρg12 h22 +ρg22 h32 +ρg23

h13 +ρg13 h23 +ρg23 h33 +ρg33

∣∣∣∣∣∣∣= 0,

from which we obtain the coordinates ρi of the focal points, i = 1,2,3. Hence, related to each line
of the congruence we have (possibly) three focal points. We define a focal set of the congruence

as

yyyi(u) = x(u)+ρi(u)ξξξ (u), i = 1,2,3.

Thus, for every u0, yyyi(u0) is a focal point and there is a curve in this focal set (striction curve)
α(s) = x(u(s))+ρi(u(s))ξξξ (u(s)), such that α(s0) = yyyi(u0) and α ′(s0) is parallel to ξξξ (u0), then

⟨ξξξ (u0),yiu1 ∧yiu2 ∧yiu3⟩= 0. (4.2)

Therefore, the focal points are located at the focal hypersurfaces defined 4.1.2.

4.2 Singularities of 3-parameter line congruences in R4

In this section we use methods of singularity theory to obtain the generic singularities
of 3-parameter line congruences in R4. Our approach is the same as in (IZUMIYA; SAJI;
TAKEUCHI, 2003), but here we are dealing with the case of 3 parameters in R4. Let F(x,ξξξ )
be a line congruence and take xi and ξi, i = 1,2,3,4, as the coordinate functions of x and ξξξ ,
respectively, thus we have

F(x,ξξξ )(u, t) = (x1(u)+ tξ1(u),x2(u)+ tξ2(u),x3(u)+ tξ3(u),x4(u)+ tξ4(u)) .

If (u0, t0) ∈ U × I and ξ4(u0) ̸= 0 then there exists U4 ⊂ U an open subset given by {u ∈ U :
ξ4(u) ̸= 0}. Let us define

c4(u) =−x4(u)−a0

ξ4(u)
, (4.3)

where u ∈U4 and a0 = x4(u0)+ t0ξ4(u0). Therefore,

F(x,ξξξ )(u, t) = x(u)+ c4(u)ξξξ (u)+(t − c4(u))ξξξ (u)

= x(u)+ c4(u)ξξξ (u)+ t̃ξξξ (u), where t̃ = t − c4(u).

Then, if we look at F̃(x,ξξξ )(u, t̃) = x(u)+ c4(u)ξξξ (u)+ t̃ξξξ (u) we can see that its fourth coordinate,
which is denoted by F̃4, is x4(u)+ c4(u)ξ4(u)+ t̃ξ4(u) = a0 + t̃ξ4(u), by (4.3). Furthermore,
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F̃−1
4 (a0) = {(u,0) : u ∈U4} and via the Implicit Function Theorem and lemma 2.3.1, the germ

of F̃(x,ξξξ ) at (u0,0) is an one-dimensional unfolding of

f̃ (u) = π̃4 ∘ F̃(x,ξξξ )(u,0) = (x1(u)+ c4(u)ξ1(u),x2(u)+ c4(u)ξ2(u),x3(u)+ c4(u)ξ3(u)) ,

where π̃4(y1,y2,y3,y4) = (y1,y2,y3).

Lemma 4.2.1. Let F(x,ξξξ ) : U × I → R4 be a line congruence. With notation as above, the
singularity of f̃ at u0 is determined by π̃4 ∘x.

Proof. Let us suppose ξξξ 4(u0) ̸= 0 (other cases are analogous), (u0, t0) = (0,0) ∈ U × I and
ξξξ (0) = (0,0,0,1). Using the above notation, c4(0) = 0, thus the jacobian matrix of f̃ at 0 is
equal to the jacobian matrix of π̃4 ∘x at 0.

The above lemma is important because it shows that the singularity of f̃ , and therefore
the unfolding F̃ , is determined by π̃4 ∘ξξξ : U → R3.

Lemma 4.2.2. Let W ⊂ Jk(3,3) be a submanifold. For any fixed map germ ξξξ : U → R4 ∖{0}
and any fixed point (u0, t0) ∈U × I with ξ4(u0) ̸= 0, the set

T ξξξ

4,W,(u0,t0)
=
{

x ∈C∞(U,R4) : jk
1

(
π̃4 ∘ F̃(x,ξξξ )

)
tW at (u0, t0)

}
is a residual subset of C∞

(
U,R4).

Proof. We proceed as in (IZUMIYA; SAJI; TAKEUCHI, 2003), lemma 4.1. Let us identify
C∞(U,R4)×C∞(U,R4 ∖{0}) = C∞(U,R4 ×R4 ∖{0}) and take the C∞-Whitney Topology in-
duced on C∞(U,R4)×{ξξξ}. Let us take {C j}∞

j=1 a countable open cover for W , such that C j is
compact. Define

T ξξξ

4,W,(u0,t0),C j
=
{

x : jk
1

(
π̃4 ∘ F̃(x,ξξξ )

)
tW, with jk

1

(
π̃4 ∘ F̃(x,ξξξ )

)
(u0, t0) ∈C j

}
.

The idea here is to show that T ξξξ

4,W,(u0,t0),C j
is an open subset of C∞

(
U,R4). Note that the map

ĵk : C∞
(
U4,R4)→C∞

(
U4 × I,Jk(3,3)

)
,

defined by ĵk(x) = jk
(

π̃4 ∘ F̃(x,ξξξ )
)

is continuous, as follows. It is known that the k-jet map

jk : C∞
(
U4 × I,R3)→C∞

(
U4 × I,Jk(3,3)

)
and the maps

s : C∞
(
U4,R4)×C∞ (U4,R)×C∞ (I,R)→C∞

(
U4 × I,R4)

(x,c4, t̃) ↦→ x+ c4ξξξ + t̃ξξξ

π4 : C∞
(
U4 × I,R4)→C∞

(
U4 × I,R3)

( f1, f2, f3, f4) ↦→ ( f1, f2, f3) .
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are continuous, then as we have ĵk = jk ∘π4 ∘ s, the continuity follows.

Define

𝒪W,C j =
{

g ∈C∞

(
U4 × I,Jk(3,3)

)
: g tW at (u0, t0),g(u0, t0) ∈C j

}
,

which is open (see page 52 in (GOLUBITSKY; GUILLEMIN, 2012)). Considering that the
restriction map

res
∣∣
U4

: C∞
(
U,R4)→C∞

(
U4,R4)

is continuous, it follows that

T ξξξ

4,W,(u0,t0),C j
=
(

res
∣∣
U4

)−1
∘
(

ĵk
)−1 (

𝒪W,C j

)
is open. If we are able to show that T ξξξ

4,W,(u0,t0),C j
is a dense subset of C∞

(
U,R4), then we have

T ξξξ

4,W,(u0,t0)
=
⋂
j∈N

T ξξξ

4,W,(u0,t0),C j

residual.

It is enough to show that

T ξξξ

4,W,(u0,t0),C j,U4
=
{

x ∈C∞
(
U4,R4) : jk

1

(
π̃4 ∘ F̃(x,ξξξ )

)
tW in (u0, t0),

jk
1

(
π̃4 ∘ F̃(x,ξξξ )

)
(u0, t0) ∈C j

}
is a dense subset of C∞

(
U4,R4).

Let us write

P(3,3,k) = {(p1, p2, p3) : pi is a polynomial with pi(0) = 0 and deg(pi)≤ k}.

Given x ∈C∞
(
U4,R4) and ppp = (p1, p2, p3) ∈ P(3,3,k), we define the map f(x,ppp) : U4 × I → R3

by

f(x,ppp)(u, t) = (x1(u)+ p1(u)+ c4(u)ξ1(u)+ tξ1(u),x2(u)+ p2(u)+

+ c4(u)ξ2(u)+ tξ2(u),x3(u)+ p3(u)+ c4(u)ξ3(u)+ tξ3(u)).

We also define

Φ : U4 × I ×P(3,3,k)→ Jk(3,3)

(u, t,(p1, p2, p3)) ↦→ jk
1 f(x,ppp)(u, t) = jk f(x,ppp,t)(u).

Since we can look at P(3,3,k) as RN , we identify P(3,3,k) with Jk(3,3), and their tangent
spaces. Thus, we have that Φ is a submersion at any point and it follows that Φ t W . Using
lemma 2.3.3, we have that

{p = (p1, p2, p3) ∈ P(3,3,k) : Φp tW at (u0, t0),such that Φp(u0, t0) ∈C j}
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is dense in P(3,3,k). Thus, there is a sequence pn = (p1, p2, p3)n in P(3,3,k) such that pn →
(0,0,0) with Φpn tW in C j, for all n ∈ N.

Note that x̃ = x+((p1, p2, p3)n ,0) ∈ T ξξξ

4,W,(u0,t0),C j,U4
, ∀ n ∈ N, because

jk
1

(
π̃4 ∘ F̃(r̃,ξξξ )

)
= jk

1
(

f(x,pn)

)
= Φ tW.

Furthermore, limn→∞ x+((p1, p2, p3)n ,0) = x and T ξξξ

4,W,(u0,t0),C j,U4
is dense in C∞

(
U4,R4).

If ξ j(u0) ̸= 0, j = 1,2,3, we can define the set

T ξξξ

j,W,(u0,t0)
=
{

x ∈C∞(U,R4) : jk
1

(
π̃ j ∘ F̃(x,ξξξ )

)
tW at (u0, t0)

}
, j = 1,2,3

where π̃ j is the projection in the coordinates different than j. Thus, the above lemma holds for
the sets T ξξξ

j,W,(u0,t0)
, j = 1,2,3,4.

Remark 4.2.1. Define

𝒪1 =
{

ξξξ ∈C∞
(
U,R4 ∖{0}

)
: ξξξ u1

∧ξξξ u2
∧ξξξ ̸= 0, or ξξξ u1

∧ξξξ u3
∧ξξξ ̸= 0,

or ξξξ u2
∧ξξξ u3

∧ξξξ ̸= 0,∀ u ∈U
}

Then, 𝒪1 is a residual subset of C∞
(
U,R4 ∖{0}

)
as follows. If we denote by Σi = {σ ∈ J1(4,4) :

kernel rank(σ) = i}, where kernel rank(σ) indicates the dimension of the kernel of σ , then
J1(4,4)∖𝒪1 = Σ4 ∪Σ3 ∪Σ2. It is known that Σi is a submanifold of J1(4,4) of codimension i2

thus, since U ⊂R3 is open, if we take ξξξ such that j1ξξξ t Σi, then j1ξξξ (U)∩Σi = /0, i = 2,3,4 what
happens if and only if ξξξ ∈𝒪1. Therefore, by Thom’s Transversality Theorem, 𝒪1 is residual.
Note above that we are denoting j1ξξξ (u) = [ξξξ (u) ξξξ u1

(u) ξξξ u2
(u) ξξξ u3

(u)].

Finally, it follows from lemma 4.2.2 that

T̃4,W,(u0,t0) =
{
(x,ξξξ ) : jk

1

(
π̃4 ∘ F̃(x,ξξξ )

)
tW at (u0, t0),ξξξ ∈𝒪1

}
is residual.

Now, we are able to prove our first main theorem, which provides a classification of the
generic singularities of 3-parameter line congruences in R4.

Theorem 4.2.1. There is an open dense set 𝒪 ⊂C∞
(
U,R4 × (R4 ∖{0})

)
, such that:

a) For all (x,ξξξ ) ∈𝒪, the germ of the line congruence F(x,ξξξ ) at any point (u0, t0) ∈U × I is
stable;

b) For all (x,ξξξ ) ∈ 𝒪, the germ of the line congruence F(x,ξξξ ) at any point (u0, t0) ∈ U × I

is a 1-parameter versal unfolding of a germ f : (R3,u0)→ R3 at t = t0. Then, F(x,ξξξ ) is
𝒜-equivalent to one of the normal forms below
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∙ (x,y,z,w) ↦→ (x,y,w,z2) (Fold).

∙ (x,y,z,w) ↦→ (x,y,w,z3 + xz) (Cusp).

∙ (x,y,z,w) ↦→ (x,y,z3 +(x2 ± y2)z+wz,w) (Lips/Beaks).

∙ (x,y,z,w) ↦→ (x,y,w,z4 + xz+ yz2) (Swallowtail).

∙ (x,y,z,w) ↦→ (x,y,w,z4 + xz± y2z2 +wz2).

∙ (x,y,z,w) ↦→ (x,y,w,z5 + xz+ yz2 +wz3) (Butterfly).

∙ (x,y,z,w) ↦→ (z,x2 + y2 + zx+wy,xy,w) (Hyperbolic Umbilic).

∙ (x,y,z,w) ↦→ (z,x2 − y2 + zx+wy,xy,w) (Elliptic Umbilic).

Proof. We first prove item (a). Given f ∈ ℰ3,3 and z = jk f (0), define

𝒦k(z) = { jkg(0) : g ∼
𝒦

f}.

For a sufficiently large k, define

Πk(3,3) = { f ∈ Jk(3,3) : code(𝒦, f )≥ 5}.

Consider
Σ

i = {σ ∈ J1(3,3) : kernel rank(σ) = i} ⊂ J1(3,3),

which is a submanifold of codimension i2.

1. We look at the slice of Πk(3,3) in Σ1, i.e., f ∈ Πk(3,3) such that kernel rank(d f (0)) = 1.
Then, we are dealing with f ∈ Πk(3,3) of corank 1. Therefore, we can write f (x,y,z) =

(x,y,g(x,y,z)), where g(0,0,z) has a singularity of Ar type, for some 5 ≤ r ≤ k−1 and
we call them 𝒦-singularities of Ar-type. Note that if we regard the “good" set as the
complement of Πk(3,3) in Σ1, then its singularities are the 𝒦-singularities of A1, A2,
A3 and A4-type. Therefore, the slice Πk(3,3)∩Σ1 is a semialgebraic set of codimension
greater than or equal to 5, so it has a stratification {S1

i }
m1
i=1, with codim(S1

i )≥ 5.

2. As we did in the first case, define Πk(3,3)∩Σ2, i.e., the set of f ∈ Πk(3,3) of corank

2. We may assume that f (x,y,z) = (z,g1(x,y,z),g2(x,y,z)), where gi has zero 1-jet and
(g1(x,y,0),g2(x,y,0)) has 2-jet in H2(2,2), therefore, (g1(x,y,0),g2(x,y,0)) has 2-jet
given by one of the normal forms below (See (GIBSON, 1979) or (MOND; NUÑO-
BALLESTEROS, 2020)):

(x2 + y2,xy); (x2 − y2,xy); (x2,xy); (x2,0); (x2 ± y2,0); (0,0).

Hence, by looking at the first two normal forms and its local algebras, f is 𝒦-equivalent to
one of the forms below:
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∙ W1 :
(
z,x2 + y2 + xz,xy

)
∙ W2 :

(
z,x2 − y2 + xz,xy

)
and both of these forms have code(𝒦) = 4. The other 𝒦-orbits have code(𝒦)≥ 5. Note
that Σ2 ∖ (W1 ∪W2) is a semialgebraic set of codimension greater than or equal to 5.
Πk(3,3)∩Σ2 is a semialgebraic set contained in Σ2 ∖ (W1 ∪W2), then its codimension is
greater than or equal to 5, thus, there is a stratification {S2

i }
m2
i=1 of it, with codim(S2

i )≥ 5.
Furthermore, the “good" set contains only W1 and W2.

3. In a similar way, we define Πk(3,3)∩Σ3, i.e., the set of the k-jets f ∈ Πk(3,3) whose
corank is 3. It is well-known that Σ3 has codimension 9, so Πk(3,3)∩Σ3 is a semialgebraic
set of codimension greater than or equal to 9, hence, there is a stratification {S3

i }
m3
i=1, with

codim(S3
i )> 5.

Then, it follows that the “good" set, i.e., the set of the 𝒦-orbits of codimension less than
or equal to 4, contains the following 𝒦-orbits

∙ type Ar, for 1 ≤ r ≤ 4;

∙ type W1;

∙ type W2.

Applying lemma 4.2.2 and remark 4.2.1 to each strata of the above stratification, we
obtain that

𝒯 j =

m j⋂
i=1

T̃4,S j
i ,(u0,t0)

, j = 1,2,3

𝒯3+r = T̃4,Ar,(u0,t0), 1 ≤ r ≤ 4

𝒯7+i = T̃4,Wi,(u0,t0), i = 1,2.

are residual subsets of C∞(U,R4 × (R4 ∖{0})). Hence,

𝒪4,(u0,t0) =
9⋂

i=1

𝒯i

is residual. The same is true for the sets 𝒪 j,(u0,t0), j = 1,2,3, defined in a similar way.

Since ξξξ (u) ̸= 0 for all u ∈U , given a point (u0, t0) ∈U × I, ξ j(u0) ̸= 0, for some j, there
is a residual set 𝒪(u0,t0) ⊂C∞(U,R4 × (R4 ∖{0})), such that

(x,ξξξ ) ∈𝒪(u0,t0) ⇔ jk
1

(
π̃ j ∘ F̃(x,ξξξ )

)
t𝒜r,W1,W2, S j

i , j = 1,2,3, r = 1, · · · ,4.

It follows from what we already have done that the germ of F̃(x,ξξξ ) at (u0,0), which is equivalent
to the germ of F(x,ξξξ ) at (u0, t0), is a 1-dimensional unfolding of π̃ j ∘ F̃(u,0) and it follows
from lemma 2.3.2 that F(x,ξξξ ) is 𝒜-infinitesimally stable for all (x,ξξξ ) ∈𝒪(u0,t0). Since a germ
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𝒜-infinitesimally stable is 𝒜-stable (see (MATHER, 1969)), there is a neighborhood Uu0 × It0 of
(u0, t0) in U × I, such that F(x,ξξξ )

∣∣
Uu0×It0

is 𝒜-stable. This result holds independently of the fixed
point (u0, t0), so we can consider a countable family of points (ui, ti) ∈U × I and neighborhoods
Uui × Iti , (i = 1,2, · · ·), such that F(x,ξξξ )

∣∣
Uui×Iti

is 𝒜-stable and

U × I =
∞⋃

i=1

Uui × Iti.

Since 𝒪(ui,ti) is a residual subset of C∞(U,R4 × (R4 ∖{0})), it follows that

𝒪2 =
∞⋂

i=1

𝒪(ui,ti)

is residual. Furthermore, the germ of F(x,ξξξ ) at any point (u, t) ∈U × I is 𝒜-infinitesimally stable,
for all (x,ξξξ ) ∈𝒪2.

Since ℱ : C∞(U,R4 × (R4 ∖ {0})) → C∞(U × I,R4), defined by ℱ (x,ξξξ ) = F(x,ξξξ ), is
continuous and

S = { f ∈C∞(U × I,R4) : f 𝒜-infinitesimally stable}

is open (See (GOLUBITSKY; GUILLEMIN, 2012) p. 111), 𝒪 = ℱ−1(S) is open. By previous
arguments 𝒪2 ⊂𝒪 and 𝒪2 is dense, therefore 𝒪 is an open dense subset.

To prove (b), we refine the 𝒦-orbits of type A2 and A3 of the above stratification, by
taking the 𝒜-orbits of 𝒜e-codimension ≤ 1 inside these 𝒦-orbits. Then, the relevant strata
in this stratification are the 𝒜-orbits of stable singularities Ak, k = 1,2,3, and the 𝒜-orbits of
singularities of 𝒜e-codimension 1 of type A2, A3, A4 and D4. The complement of their union is
a semialgebraic set of codimension greater than or equal to 5.

1. 𝒦-orbit of A1 type

f (x,y,z) = (x,y,z2) which is stable, hence, we have just this 𝒜-orbit. Its suspension in R4

is the stable germ that we are looking for.

2. 𝒦-orbits of A2 type

It follows from the classification made by Marar and Tari (MARAR; TARI, 1996), that the
possible normal forms are

f (x,y,z) =
(
x,y,z3 +P(x,y)z

)
,

where P(x,y) is one of the singularities Ak, Dk, E6, E7 or E8 and code (𝒜, f ) = µ(P).

As we are looking for f which have a versal unfolding of dimension 1 that is a stable germ,
we must have P(x,y) = x or P(x,y) = x2 ± y2. Therefore, we have the 𝒜-orbits

f1(x,y,z) = (x,y,z3 + xz) (Cusp);

f2(x,y,z) = (x,y,z3 +(x2 ± y2)z) (Lips(+) / Beaks(−)),
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with code (𝒜, f1) = 0 and code (𝒜, f2) = 1. The stable germs R4,0 → R4,0 are, respec-
tively

F1(x,y,z,w) = (x,y,z3 + xz,w);

F2(x,y,z,w) = (x,y,z3 +(x2 ± y2)z+wz,w).

These germs are 𝒜-equivalent, however they are considered separately, because they are
versal unfoldings of f1 and f2, respectively, which are not 𝒜-equivalent.

3. 𝒦-orbits of A3 type

In a similar way, the possible normal forms are (see (MARAR; TARI, 1996), section 1)

(x,y,z4 + xz± ykz2),k ≥ 1. code (𝒜) = k−1;

(x,y,z4 +(y2 ± xk)z+ xz2),k ≥ 2. code (𝒜) = k.

Hence, the useful cases are those where k = 1 or k = 2 in the first type of orbit, i.e.,

f1(x,y,z) = (x,y,z4 + xz+ yz2) (Swallowtail);

f2(x,y,z) = (x,y,z4 + xz± y2z2),

with code (𝒜, f1) = 0 e code (𝒜, f2) = 1. The stable germs R4,0 → R4,0 are, respectively

F1(x,y,z,w) = (x,y,z4 + xz+ yz2,w)

F2(x,y,z,w) = (x,y,z4 + xz± y2z2 +wz2,w).

4. 𝒦-orbits of A4 type

Via (MARAR; TARI, 1996), the possible normal forms are

(x,y,z5 + xz+ yz2), code(𝒜) = 1;

(x,y,z5 + xz+ y2z2 + yz3), code(𝒜) = 2;

(x,y,z5 + xz+ yz3), code(𝒜) = 3.

Thus, the only case to be considered is

f (x,y,z) = (x,y,z5 + xz+ yz2),

whose associated stable germ is

F(x,y,z,w) = (x,y,z5 + xz+ yz2 +wz3,w).

5. 𝒦-orbits W1 and W2
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The germs

F1(x,y,z,w) = (z,x2 + y2 + zx+wy,xy,w);

F2(x,y,z,w) = (z,x2 − y2 + zx+wy,xy,w).

are, respectively, 1-parameter versal unfoldings of (see (BRUCE, 1986), section 3)

f1(x,y,z) = (z,x2 + y2 + zx,xy);

f2(x,y,z) =
(
z,x2 − y2 + zx,xy

)
,

where f1 and f2 are of the type W1 e W2, respectively and both have code(𝒜) = 1. Then,
we conclude the proof.

4.3 Normal congruences
In this section, our approach is the same as in (IZUMIYA; SAJI; TAKEUCHI, 2003) and

we seek to provide a classification of the generic singularities of 3-parameter normal congruences
in R4. For this, it is necessary to characterize normal congruences and consider some aspects of
Lagrangian singularities.

Definition 4.3.1. A 3-parameter line congruence 𝒞 = {x(u),ξξξ (u)}, for u ∈U ⊂ R3, is said to
be normal if for each point u0 ∈U there is a neighborhood Ũ of u0 and a regular hypersurface,
given by y(u) = x(u)+ t(u)ξξξ (u), whose normal vectors are parallel to ξξξ (u), for all u ∈ Ũ . The
congruence is an exact normal congruence if ξξξ (u) is a normal vector at x(u), for all u ∈U .

The next proposition characterizes 3-parameter normal line congruences in R4 and
corresponds to the Proposition 5.1 in (IZUMIYA; SAJI; TAKEUCHI, 2003).

Proposition 4.3.1. Let 𝒞 = {x(u),ξξξ (u)}, u ∈ U ⊂ R3, be a 3-parameter line congruence in
R4. 𝒞 is normal if, and only if, hi j(u) = h ji(u), i, j ∈ {1,2,3}, for all u ∈ U , where hi j =〈

xui,

(
ξξξ

‖ξξξ‖

)
u j

〉
.

Proof. Let 𝒞 be a normal congruence and S′ a hypersurface parameterized locally by y(u) =
x(u)+ t(u)ξξξ (u), whose normal vectors are parallel to ξξξ (u). Let us suppose that ‖ξξξ (u)‖ = 1.
Then, yui(u), i = 1,2,3 are orthogonal to ξξξ (u), therefore, ⟨ξξξ ,yui⟩= 0. From these expressions,
we obtain 

tu1 =−⟨xu1,ξξξ ⟩

tu2 =−⟨xu2,ξξξ ⟩

tu3 =−⟨xu3,ξξξ ⟩.

. (4.4)
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Since t is smooth, tu1u2 = tu2u1 , tu1u3 = tu3u1 and tu2u3 = tu3u2 . From tu1u2 = tu2u1 , we obtain

−⟨xu1u2,ξξξ ⟩−⟨xu1,ξξξ u2
⟩=−⟨xu1u2,ξξξ ⟩−⟨xu2,ξξξ u1

⟩

Therefore, h12 = ⟨xu1,ξξξ u2
⟩= ⟨xu2 ,ξξξ u1

⟩= h21. The other cases are analogous.

Reciprocally, suppose hi j = h ji, for i, j = 1,2,3. Taking into account the system (4.4), it
follows from hi j = h ji that tu1u2 = tu2u1 , tu1u3 = tu3u1 and tu2u3 = tu3u2 . Therefore, this system is
associated to an exact differential equation and it has a solution t. Write y(u) = x(u)+ t(u)ξξξ (u).
Note that

⟨ξξξ ,yui⟩= ⟨ξξξ ,xui⟩+ tui

= ⟨ξξξ ,xui⟩−⟨ξξξ ,xui⟩= 0.

If y is not an immersion, there is a positive real number λ such that ỹ(u) = x(u)+(t(u)+λ )ξξξ (u)

is an immersion. For the last part, it is sufficient to look at the case when yyy(u) belongs to the
focal set of the congruence.

Denote by

Emb(U,R4) = {x : U → R4 : x is an embedding}

the space of the regular hypersurfaces in R4 with the Whitney C∞-topology, and by

EN
(
U,R4 ×

(
R4 ∖{0}

))
=
{
(x,ξξξ ) : x ∈ Emb(U,R4), ξξξ (u) is normal to x at x(u)

}
the space of the exact normal congruences. So, we have the following well known theorem.

Theorem 4.3.1. There is an open dense subset O ⊂ Emb(U,R4), such that the germ of an exact
normal congruence F(x,ξξξ ) at any point (u0, t0) ∈U × I is a Lagrangian stable map germ for any
x ∈ O, i.e., ∀x ∈ O, F(x,ξξξ ) is an immersive germ, or 𝒜-equivalent to one of the normal forms in
table 2.

Singularity Normal form
Fold (x,y,w,z2)

Cusp (x,y,w,z3 + xz)
Swallowtail (x,y,w,z4 + xz+ yz2)

Butterfly (x,y,w,z5 + xz+ yz2 +wz3)

Elliptic Umbilic (z,w,x2 − y2 + zx,zy)
Hyperbolic Umbilic (z,w,x2 + zy,y2 + zx,xy)
Parabolic Umbilic (z,w,xy+ xz,x2 + y3 + yw)

Table 2 – Generic singularities of exact normal congruences
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Proof. It follows from example 2.4.4 that the germ F(x,ξξξ ) at (u0, t0), where (x,ξξξ ) ∈ EN(U,R4×
(R4 ∖{0})), is the Lagrangian map associated to the germ of family of distance squared functions
D on M = x(U), which is a Morse family of functions. Furthermore, from theorem 2.4.1 we
know that for an open and dense subset of Emb(U,R4) the family D is locally 𝒫-ℛ+-versal.
Since, F(x,ξξξ ) is Lagrangian stable if and only if D is 𝒫-ℛ+-versal (see theorem 2.4.2), we have
the result.

Now, we define a natural map P : EN
(
U,R4 ×

(
R4 ∖{0}

))
→ Emb(U,R4), given by

P(x,ξξξ ) = x. Taking into account the natural identification between x ∈ Emb(U,R4) and the pair
(x,n), where n is its unit normal vector field, it follows that this map is a retraction, so it is a
continuous open map. Then, we have the following corollary, which provides a classification of
the generic singularities of 3-parameter exact normal congruences.

Corollary 4.3.1. There is an open dense subset O ⊂ EN
(
U,R4 ×

(
R4 ∖{0}

))
, such that the

germ of an exact normal congruence F(x,ξξξ ) at any point (u0, t0) ∈U × I is a Lagrangian stable
map germ, for all (x,ξξξ ) ∈ O.

Proof. It follows from the fact that P : EN
(
U,R4 ×

(
R4 ∖{0}

))
→ Emb(U,R4) is an open

continuous map and from theorem 4.3.1.

Let us consider some aspects of Lagrangian singularities (see chapter 5 in (IZUMIYA
et al., 2016)). Take the cotangent bundle π : T *R4 → R4, whose symplectic structure is given
locally by the 2-form ω =−dλ , where λ is the Liouville 1-form, given locally by λ =∑

4
i=1 pidzi,

where (z1,z2,z3,z4, p1, p2, p3, p4) are the cotangent coordinates. For a given congruence F(x,ξξξ ),
we define a smooth map L(x,ξξξ ) : U × I → T *R4 ≃ R4 × (R4)*, given by

L(x,ξξξ )(u, t) =
(

x(u)+ t
ξξξ

‖ξξξ‖
(u),

ξξξ

‖ξξξ‖
(u)
)
.

Definition 4.3.2. We say that F(x,ξξξ ) is a Lagrangian Line Congruence if L(x,ξξξ ) is a Lagrangian
immersion.

Proposition 4.3.2. Suppose that L(x,ξξξ ) is an immersion. Then F(x,ξξξ ) is a Lagrangian congruence
if, and only if, is a normal congruence

Proof. Locally, the Liouville 1-form of T *R4 is given by λ = ∑
4
i=1 pidzi. So,

L*
(x,ξξξ )(λ ) =

4

∑
i=1

(
ξi

‖ξξξ‖
(u)dxi(u)+ t

ξi

‖ξξξ‖
(u)d

ξi

‖ξξξ‖
(u)
)
+dt,
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Therefore, being ω =−dλ , we have

−L*
(x,ξξξ )(ω) = dL*

(x,ξξξ )(λ ) =
4

∑
i=1

(
d

ξi

‖ξξξ‖
(u)∧dxi(u)+

ξi

‖ξξξ‖
(u)dt ∧d

ξi

‖ξξξ‖
(u)
)

=

(〈(
ξξξ

‖ξξξ‖

)
u1

,xu2

〉
−

〈(
ξξξ

‖ξξξ‖

)
u2

,xu1

〉)
du1 ∧du2+

+

(〈(
ξξξ

‖ξξξ‖

)
u1

,xu3

〉
−

〈(
ξξξ

‖ξξξ‖

)
u3

,xu1

〉)
du1 ∧du3+

+

(〈(
ξξξ

‖ξξξ‖

)
u2

,xu3

〉
−

〈(
ξξξ

‖ξξξ‖

)
u3

,xu2

〉)
du2 ∧du3+

+
3

∑
i=1

〈
ξξξ

‖ξξξ‖
,

(
ξξξ

‖ξξξ‖

)
ui

〉
dt ∧dui,

where x(u) = (x1(u),x2(u),x3(u),x4(u)) and ξξξ (u) = (ξ1(u),ξ2(u),ξ3(u),ξ4(u)). Thus

−L*
(x,ξξξ )(ω) =

(〈(
ξξξ

‖ξξξ‖

)
u1

,xu2

〉
−

〈(
ξξξ

‖ξξξ‖

)
u2

,xu1

〉)
du1 ∧du2+

+

(〈(
ξξξ

‖ξξξ‖

)
u1

,xu3

〉
−

〈(
ξξξ

‖ξξξ‖

)
u3

,xu1

〉)
du1 ∧du3+

+

(〈(
ξξξ

‖ξξξ‖

)
u2

,xu3

〉
−

〈(
ξξξ

‖ξξξ‖

)
u3

,xu2

〉)
du2 ∧du3.

Therefore, L*
(x,e)(ω) = 0 if, and only if,

h21 =

〈(
ξξξ

‖ξξξ‖

)
u1

,xu2

〉
=

〈(
ξξξ

‖ξξξ‖

)
u2

,xu1

〉
= h12

h31 =

〈(
ξξξ

‖ξξξ‖

)
u1

,xu3

〉
=

〈(
ξξξ

‖ξξξ‖

)
u3

,xu1

〉
= h13

h32 =

〈(
ξξξ

‖ξξξ‖

)
u2

,xu3

〉
=

〈(
ξξξ

‖ξξξ‖

)
u3

,xu2

〉
= h23.

By proposition 4.3.1, we can regard the space of the Lagrangian congruences as follows.
A line congruence F(x,ξξξ ) is a Lagrangian congruence if, and only if, there is a smooth function
t : U → R, such that x(u)+ t(u)ξξξ (u) is an immersion and the following conditions hold

tu1(u)+
〈

ξξξ

‖ξξξ‖
(u),xu1(u)

〉
= 0

tu2(u)+
〈

ξξξ

‖ξξξ‖
(u),xu2(u)

〉
= 0

tu3(u)+
〈

ξξξ

‖ξξξ‖
(u),xu3(u)

〉
= 0.

(4.5)
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So, we can define the space of the Lagrangian congruences

L(U,R4 ×
(
R4 ∖{0}

)
) = {(x, t,ξξξ ) : x(u)+ t(u)ξξξ (u) is an immersion and (4.5) holds}

with the Whitney C∞-topology. Our idea now is to show that the generic singularities of normal
congruences are the same as the generic singularities of exact normal congruences, so, let us
define the map

Trp : C∞(U,R4 ×R×
(
R4 ∖{0}

)
)→C∞(U,R4 ×

(
R4 ∖{0}

)
)

(x(u), t(u),ξξξ (u)) ↦→ (x(u)+ t(u)ξξξ (u),ξξξ (u)).

Proposition 4.3.3. Trp is an open continuous map under the Whitney C∞-topology.

Proof. For any positive k ∈ Z, the map

T k
rp : Jk(U,R4 ×R× (R4 ∖{0}))→ Jk(U,R4 × (R4 ∖{0}))

jk(x, t,ξξξ ) ↦→ jk(x+ tξξξ ,ξξξ )

is a submersion, so it is an open map. From this, follows that Trp is an open map.

Now, take

N(U,R4 ×
(
R4 ∖{0}

)
) = Trp

(
L
(
U,R4 ×

(
R4 ∖{0}

)))
⊂C∞

(
U,R4 ×

(
R4 ∖{0}

))
,

with the Whitney C∞-topology induced from C∞
(
U,R4 ×

(
R4 ∖{0}

))
. Note that we can regard

N(U,R4 ×
(
R4 ∖{0}

)
) as the space of the normal congruences. Then, we have the following

theorem.

Theorem 4.3.2. There is an open dense set O′ ⊂ N(U,R4 ×
(
R4 ∖{0}

)
), such that the germ of

normal congruence F(x,ξξξ ) at any point (u0, t0) is a Lagrangian stable germ, for any (x,ξξξ ) ∈ O′.

Proof. From Corollary (4.3.1), there is an open dense subset O ⊂ EN
(
U,R4 ×

(
R4 ∖{0}

))
,

such that the germ of exact normal congruence F(x,ξξξ ) is a Lagrangian stable germ for all
(x,ξξξ ) ∈ O at any point (u0, t0) ∈U × I. As we know, Trp is an open map, so we just need to take
O′ = Trp(O).

4.4 Blaschke normal congruences
In this section we deal with one of the most important classes of equiaffine line con-

gruences, which is the class of Blaschke normal congruences. Our goal is to provide a positive
answer to the following conjecture from (IZUMIYA; SAJI; TAKEUCHI, 2003):

Conjecture. Germs of generic Blaschke affine normal congruences at any point are Lagrangian
stable.
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Taking this into account, let us regard R4 as a four-dimensional affine space with volume
element given by ω(e1,e2,e3,e4) = det(e1,e2,e3,e4), where {e1,e2,e3,e4} is the standard basis
of R4. Let D be the standard flat connection on R4. Now, let us consider the affine support
function ρp, given in (3.3) and fix an Euclidean inner product ⟨. , .⟩ in R4, then ρp is given by

ρp(u) = ⟨p−x(u),ννν(u)⟩, (4.6)

where ννν is the conormal vector field relative to ξξξ . Thus

∂ρ

∂ pi
(u) = ννν i(u). (4.7)

Remark 4.4.1. It follows from item 5.1.4 that the catastrophe set of ρ , which is also called the
Criminant set of ρ , is

Cρ = {(u, p) : p = x(u)+ tξξξ (u), f or somet ∈ R}.

Now we seek to prove that the family of affine support functions is a Morse family
of functions. In order to do this, we prove first that the conormal vector field associated to an
equiaffine vector field transversal to a non-degenerate hypersurface is an immersion.

Proposition 4.4.1. Let x : U →R4 be a non-degenerate hypersurface with transversal equiaffine
vector field ξξξ . The conormal vector field ννν : U → R4 relative to ξξξ is an immersion.

Proof. Let x(U) = M. It follows from the fact that ννν is the conormal vector field of ξξξ that
⟨ννν ,ξξξ ⟩= 1 and ⟨ννν ,v⟩= 0, for all tangent vector field v. Thus, taking the derivative we get

⟨dννν p(w),v(p)⟩=−⟨ννν(p),dvp(w)⟩=−⟨ννν(p),(∇wv)p + c(w,v)pξξξ ⟩=−c(w,v)p,

for all p = x(u) and w ∈ TpM. Then, w is a direction in the kernel of dννν p if and only if
⟨dννν p(w), w̃⟩ = ⟨000, w̃⟩ = −cp(w, w̃) = 0, for all w̃ ∈ TpM, but since x is non-degenerate it
follows that c is non-degenerate, hence w = 0 and ννν is an immersion.

Proposition 4.4.2. Let x : U →R4 be a non-degenerate hypersurface with transversal equiaffine
vector field ξξξ . Then the family of germs of functions ρ :

(
U ×R4,(u0, p0)

)
→ (R, t0), where

t0 = ρ(u0, p0) and u0 is a critical point of ρp0 is a Morse family of functions.

Proof. Let us denote (u, p) = (u1,u2,u3, p1, p2, p3, p4). From definition 2.4.6, in order to prove
that ρ is a Morse family we need to prove that the map germ ∆ :

(
U ×R4,(u0, p0)

)
→ R3, given

by

∆ρ(u, p) =
(

∂ρ

∂u1
,

∂ρ

∂u2
,

∂ρ

∂u3

)
(u, p)
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is not singular. Its jacobian matrix is given by

J(∆ρ)(u0, p0) =


∂ 2ρp0

∂u1∂u1

∂ 2ρp0

∂u1∂u2

∂ 2ρp0

∂u1∂u3
(ννν1)u1 (ννν2)u1 (ννν3)u1 (ννν4)u1

∂ 2ρp0

∂u1∂u2

∂ 2ρp0

∂u2∂u2

∂ 2ρp0

∂u2∂u3
(ννν1)u2 (ννν2)u2 (ννν3)u2 (ννν4)u2

∂ 2ρp0

∂u1∂u3

∂ 2ρp0

∂u2∂u3

∂ 2ρp0

∂u3∂u3
(ννν1)u3 (ννν2)u3 (ννν3)u1 (ννν4)u3


.

(4.8)

Since x : U → R3 is non-degenerate, it follows from proposition 4.4.1 that ννν : U → R4 is an
immersion, therefore the jacobian matrix 4.8 has rank 3 and ∆ρ is not singular.

The above proof is an alternative to that one presented in (LOPES; RUAS; SANTOS,
2022) for the same proposition.

Remark 4.4.2. It follows from the above proposition that the 4-parameter family of germs of
functions ρ :

(
U ×R4,(u0, p0)

)
→ (R, t0), where u0 is a critical point of ρp0 , is a Morse family.

Furthermore, if p0 = x(u0)+ t0ξξξ (u0) (where t0 = ρp0(u0)), the Lagrangian immersion associated
to this Morse family is L : (U ×R,(u0, t0))→ T *R4, given by

L(u, t) =
(

x(u)+ tξξξ (u),
ξξξ

‖ξξξ‖2 (u)
)
,

whose Lagrangian map associated is F(x,ξξξ ) = π ∘L(u, t) = x(u)+ tξξξ (u), where π : T *R4 → R4.

4.4.1 Blaschke Exact Normal Congruences

Here, we work with the line congruence F(x,ξξξ ) : U × I → R4, where x : U → R4 is a non-
degenerate regular surface and ξξξ : U → R4 is its Blaschke vector field (see definition 5.2.1).
Let Embng(U,R4) = {x : U → R4 : x is a non-degenerate embedding} be the space of non-
degenerate regular hypersurfaces with the Whitney C∞- topology. Define the space of the
Blaschke exact normal congruences as

BEN(U,R4 × (R4 ∖{0})) =
{
(x,ξξξ ) : x ∈ Embng(U,R4), ξξξ is the

Blaschke normal vector field of x} .

Then, we identify (with the Whitney C∞-topology) the spaces Embng(U,R4) and

Scon(U,R4 ×R4 ∖{0}) =
{
(x,ν) ∈C∞(U,R4 ×R4 ∖{0}) : x ∈ Embng(U,R4) and ννν is

the conormal of x relative to the Blaschke vector field}

Definition 4.4.1. Let x : U → R4, with x(U) = M, be a non-degenerate hypersurface. We define
the conormal bundle of M by

N*
x = {(p,v) : p ∈ M, ⟨v,w⟩= 0, ∀ w ∈ TpM} ⊂ T *R4.
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Remark 4.4.3. Note that we can look at Scon(U,R4 ×R4 ∖ {0}) as a section of the conormal
bundle of M.

Let us define the following maps

H :
(
R4 ×R4 ∖{0}

)
×R4 → R (4.9)

(A,B,C) ↦→ ⟨B,C−A⟩

g : U → R4 ×R4 ∖{0} (4.10)

u ↦→ (x(u),ννν(u)),

where g ∈ Scon(U,R4 ×R4 ∖{0}). If we fix a parameter C, HC : R4 ×R4 ∖{0}→ R is a submer-
sion, therefore, HC ∘g is a contact map. Finally, note that

ρ(u, p) = H ∘
(
g, Id

∣∣
R4

)
(u, p).

Proposition 4.4.3. For a residual subset of Embng(U,R4 ×R4 ∖ {0}) the family ρ is locally
𝒫-ℛ+-versal.

Proof. Following the identification in remark 3.1.2 and the notation in remark 4.4.3 we can
apply theorem 2.3.2 in order to show that there is a residual subset of Embng(U,R4 ×R4 ∖{0})
for which ρ is locally 𝒫- ℛ+-versal.

Theorem 4.4.1. There is a residual subset O ⊂ Embng(U,R4) such that the germ of the Blaschke
exact normal congruence F(x,ξξξ ) at any point (u0, t0) ∈U × I is a Lagrangian stable map germ for
any x ∈ O, i.e., ∀x ∈ O, F(x,ξξξ ) is an immersive germ, or 𝒜-equivalent to one of the normal forms
in table (2).

Proof. Let us take the map germ F(x,ξξξ ) : (U ×R,(u0, t0))→ (R4, p0). Thus u0 is a critical point of
ρp0 , by proposition 3.1.3. Then, ρ :

(
U ×R3,(u0, p0)

)
→ (R, t0) is a Morse family of functions.

Furthermore, by Remark 4.4.1, the Lagrangian map related to this family is F(x,ξξξ ). It is known
that if ρ is 𝒫-ℛ+-versal, then F(x,ξξξ ) is Lagrangian stable (see theorem 2.4.2), so the result
follows from proposition 4.4.3.

The map

Π : BEN
(
U,R4 ×

(
R4 ∖{0}

))
→ Embng(U,R4), (4.11)

given by Π(x,ξξξ ) = x, is open and continuous. Thus, we obtain the following corollary, which
proves the conjecture 3.2.1 given in (IZUMIYA; SAJI; TAKEUCHI, 2003).

Corollary 4.4.1. There is a residual subset 𝒪 ⊂ BEN
(
U,R4 ×

(
R4 ∖{0}

))
, such that the germ

of the Blaschke exact normal congruence F(x,ξξξ ) at any point (u0, t0)∈U ×I is a Lagrangian stable
map germ for any (x,ξξξ ) ∈𝒪, i.e., ∀(x,ξξξ ) ∈𝒪, F(x,ξξξ ) is an immersive germ, or 𝒜-equivalent to
one of the normal forms in table (2).
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4.4.2 Blaschke Normal Congruences

Let

BN(U,R4 × (R4 ∖{0})) =
{
(x,ξξξ ) : ∃ t ∈C∞(U,R), s.t.yyy(u) = x(u)+ t(u)ξξξ (u) ∈ Embng(U,R4)

andξξξ is the Blaschke normal vector fieldofyyy}

be the space of the Blaschke normal congruences. Alternatively we can look at this space as a
subspace of C∞(U,R4 ×R× (R4 ∖{0}))

BN(U,R4 ×R× (R4 ∖{0})) =
{
(x(u), t(u),ξξξ (u)) : yyy(u) = x(u)+ t(u)ξξξ (u) ∈ Embng(U,R4)and

ξξξ is the Blaschke normal vector field ofyyy}

In both cases, with the Whitney C∞-topology.

The map

Trp : C∞(U,R4 ×R×
(
R4 ∖{0}

)
)→C∞(U,R4 ×

(
R4 ∖{0}

)
)

(x(u), t(u),ξξξ (u)) ↦→ (x(u)+ t(u)ξξξ (u),ξξξ (u)),

is open and continuous (see proposition 4.3.3) in the Whitney C∞-topology. Notice that

BEN
(
U,R4 ×

(
R4 ∖{0}

))
⊂C∞(U,R4 ×R×

(
R4 ∖{0}

)
)

with the following identification

BEN
(
U,R4 ×

(
R4 ∖{0}

))
∋ (x,ξξξ )∼ (x,0,ξξξ ),

where x ∈ Embng(U,R4) and ξξξ is its Blaschke normal vector field. Furthermore, we can look at
the space of the Blaschke normal congruences as the space

B̃N(U,R4 × (R4 ∖{0})) = Trp
(
BN(U,R4 ×R× (R4 ∖{0}))

)
. (4.12)

Thus, Trp(BEN
(
U,R4 ×

(
R4 ∖{0}

))
) = B̃N

(
U,R4 ×

(
R4 ∖{0}

))
. Hence, we obtain the follow-

ing theorem.

Theorem 4.4.2. There is a residual subset 𝒪′ ⊂ B̃N(U,R4 ×
(
R4 ∖{0}

)
), such that the germ of

Blaschke normal congruence F(x,eee) at any point (u0, t0) ∈U × I is a Lagrangian stable map germ
for any (x,ξξξ ) ∈𝒪′, i.e., ∀(x,ξξξ ) ∈𝒪′, F(x,ξξξ ) is an immersive germ, or 𝒜-equivalent to one of
the normal forms in table (2).

Proof. It is known that map Trp is open and continuous and Trp(BEN
(
U,R4 ×

(
R4 ∖{0}

))
) =

B̃N
(
U,R4 ×

(
R4 ∖{0}

))
. If 𝒰 ⊂BEN

(
U,R4 ×

(
R4 ∖{0}

))
is open and dense, then its image by

Trp is an open dense subset of B̃N
(
U,R4 ×

(
R4 ∖{0}

))
. Take 𝒪 =

⋂
i∈N

𝒪i the residual subset of

BEN
(
U,R4 ×

(
R4 ∖{0}

))
given in Corollary (4.4.1). We can show that Trp(𝒪) =𝒪′ =

⋂
i∈N

𝒪′
i,

where Trp(𝒪i) =𝒪′
i, therefore 𝒪′ is residual.
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Example 4.4.1. Taking into account (LEICHTWEISS, 1989)(section 2) and (LI et al., 2015)(sec-
tion 2.2.4) it is possible to parametrize a non-degenerate hypersurface M around an elliptic point,
by considering not only ℛ-equivalence but also affine transformations of R4, as a graph of a
function h : U → R, such that

h(u) = 1/2(u2
1 +u2

2 +u2
3)+a111u1u2u3 +1/6(−a120 −a102)u3

1 +1/2a210u2
1u2

+1/2a201u2
1u3 +1/6(−a210 −a012)u3

2 +1/2a120u1u2
2 +1/2a021u2

2u3

+1/6(−a201 −a021)u3
3 +1/2a102u1u2

3 +1/2a012u2u2
3 +O(3). (4.13)

Here O(3) means functions of order higher than 3. Since the group of affine transforma-
tions is different from the group of Euclidean motions (translations and rotations) it follows that
this is not necessarily a local parametrization of M around an Euclidean umbilic point. Using
this parametrization, the Blaschke normal vector of M at the origin is given by (0,0,0,1). If we
choose a111 = a210 = a012 = a201 = 0, a120 = a102 = 1 and a021 = 2, it follows that

h(u) = 1/2(u2
1 +u2

2 +u2
3)−1/3u3

1 +1/2u1u2
2 +1/2u1u2

3 +u2
2u3 −1/3u3

3.

Using (3.5) we can compute the Blaschke normal vector field of M

ξξξ (u) =(6/5u1 +18/5u2
1 −17/5(u2

2 +u2
3)+O(3),2u2 −6u1u2 −52/5u2u3 +O(3),

2u3 −6u1u3 −26/5(u2
2 −u2

3)+O(3),1+3/5u2
1 +u2

2 +u2
3 +O(3)).

Furthermore, the congruence map F(x,ξξξ )(u, t) = x(u1,u2,u3)+ tξξξ (u1,u2,u3) has a singular point
at (0,0,0,−1/2) and its 2-jet at this point is given by

F(x,ξξξ )(u, t) = (2/5u1 −9/5u2
1 +17/10(u2

2 +u2
3)+6/5(t +1/2)u1,3u1u2 +26/5u2u3

+2(t +1/2)u2,3u1u3 +13/5u2
2 −13/5u2

3 +2(t +1/2)u3, t +1/5u2
1).

If we take λ = s+ 1
2 = t + 1

5u2
1, then it is possible to verify that F(x,ξξξ )(u,λ ) is an elliptic umbilic

singularity.

Example 4.4.2. Let us take a non-degenerate hypersurface given by the graph of

h(u) =−1/2u2
1 −1/2u2

2 +1/2u2
3 +1/6u3

1 −1/2u2
1u2

+1/2u1u2
3 +1/3u3

2 +1/2u2u2
3. (4.14)

Then, in a similar way to the last example, it is possible to verify that the map F(x,ξξξ ), where
x(u1,u2,u3) = (u1,u2,u3,h(u1,u2,u3)) and ξξξ is the Blaschke normal vector field of x, has a
hyperbolic umbilic singularity at (0,0,0,5/4).

Example 4.4.3. By taking a non-degenerate hypersurface given by the graph of

h(u) = 1/2(−u2
1 −u2

2 +u2
3)+2u1u2u3 +1/2u1u2

2 +1/2u1u2
3 +1/4u4

2 (4.15)

it follows, in a similar way to the first example, that the map F(x,ξξξ ), associated to the Blaschke
exact normal congruence, has a parabolic umbilic singularity at (0,0,0,−5/6).
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CHAPTER

5
EQUIAFFINE STRUCTURE FOR FRONTALS

In this chapter we generalize the idea of equiaffine structure to the case of frontals and
define the Blaschke vector field of a frontal. We also investigate some necessary and sufficient
conditions that a frontal needs to satisfy to have a Blaschke vector field and provide some
examples. Finally, taking the theory developed here into account a fundamental theorem, which
is a version for frontals of the fundamental theorem of affine differential geometry, is shown. The
results presented here can also be found in the paper (SANTOS, 2022), submitted for publication.
In 5.4 we briefly discuss some problems we want to deal with in future research taking into
consideration the theory developed here.

5.1 Equiaffine structure on frontals
In this section we define equiaffine transversal vector fields to a frontal similarly as

defined in (NOMIZU; KATSUMI; SASAKI, 1994) when considering regular surfaces, however
as we are dealing with frontals, we need to take into account tangent moving basis and the
limiting tangent planes.

5.1.1 The case of the unit normal vector field

Let x : U → R3 be a frontal, ΩΩΩ : U → M3×2(R) a tmb of x, where ΩΩΩ =
(

w1 w2

)
and

n : U → R3 the unit normal vector field along x. For each q ∈U we decompose

R3 = TΩ(q)⊕⟨n(q)⟩R.

Using this decomposition we get

wiu j
= 𝒯 1

i j w1 +𝒯 2
i j w2 + pi jn, (5.1)

where the symbols 𝒯 k
i j , i, j,k = 1,2 are those in (3.27) and (3.28). Note that pi j = ⟨(wi)u j ,n⟩,

thus the matrix
(

pi j

)
coincide with the matrix (3.29).
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Remark 5.1.1. If we define a bilinear form pΩ(q) : TΩ ×TΩ → R, given by pΩ(q)(wi,w j) =

pi j = ⟨wiu j
(q),n(q)⟩, then the matrix of pΩ relative to the basis ΩΩΩ is IIΩ and pΩ is non-degenerate

if and only if IIΩ is non-singular, which is equivalent to say that the ΩΩΩ-relative curvature KΩ is
non-zero (see definition 3.4.3).

Definition 5.1.1. A proper frontal is said to be a non-parabolic frontal if for some tmb ΩΩΩ the
relative curvature KΩ never vanishes.

Remark 5.1.2. It follows from corollary 3.23 in (MEDINA-TEJEDA, 2022a) that a frontal
x : U → R3 is a wavefront if and only if, (KΩ,HΩ) ̸= 0 on Σ(x), for whatever tangent moving
base ΩΩΩ. Therefore, every non-parabolic frontal is a wavefront.

Proposition 5.1.1. The notion of non-parabolicity is independent of tmb.

Proof. Via proposition 3.18 in (MEDINA-TEJEDA, 2022a) the zeros of KΩ are independent of
tmb.

The next proposition provides a representation formula for non-parabolic frontals.

Proposition 5.1.2. Let x : (U,0)→ (R3,0) be a germ of non-parabolic frontal, ΩΩΩ a tmb of x
and 0 ∈ Σ(x). Then, up to an isometry x is ℛ-equivalent to

y(u1,u2) = (a(u1,u2),b(u1,u2),
∫ u1

0
(t1au1(t1,u2)+u1bu1(t1,u2))dt1 +

∫ u2

0
t2bu2(0, t2)dt2),

where a,b are smooth functions such that au2 = bu1 .

Proof. See proposition 4.1 in (MEDINA-TEJEDA, 2022b).

5.1.2 The case of a transversal vector field

Let ξξξ : U → R3 be a vector field which is transversal to the frontal x : U → R3 i.e.
ξξξ (q) /∈ TΩ for all q ∈U , where ΩΩΩ =

(
w1 w2

)
is a tmb. Thus, for each q ∈U we can decompose

R3 = TΩ(q)⊕⟨ξξξ (q)⟩R.

In the same way that occurs with the unit normal vector field, we write

wiu j
=𝒟1

i jw1 +𝒟2
i jw2 +hi jξξξ . (5.2)

and we obtain a bilinear form hΩ(q) : TΩ ×TΩ → R, such that hΩ(q)(wi,w j) = hi j(q). We call
hΩ the relative affine fundamental form of x induced by ξξξ . In a similar way, we write

ξξξ ui
=−S1

i w1 −S2
i w2 + τiξξξ . (5.3)

Then for each q ∈U we have SΩ(q) : TΩ(q)→ TΩ(q), such that SΩ(q)(wi) = S1
i w1 +S2

i w2 and
τΩ(q) : TΩ(q)→ R, such that τΩ(q)(wi) = τi, i = 1,2. We call SΩ the relative shape operator of
ξξξ and τΩ the relative transversal connection form.
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Definition 5.1.2. The vector ξξξ defines an equiaffine structure on x (or ξξξ is equiaffine) when the
derivatives of ξξξ are in TΩ(q), for all q ∈U , i.e. when τΩ ≡ 0.

For a frontal x : U → R3 and an equiaffine transversal vector field ξξξ : U → R3 we say
that the symbols 𝒟k

i j and hi j, given in (5.2), define an equiaffine structure on x.

Definition 5.1.3. Given v1,v2 ∈ TΩ, we define

θ(v1,v2) := ω̃(v1,v2,ξξξ ),

where ω̃ is the canonical volume element in R3, that is ω̃(e1,e2,e3) = det(e1,e2,e3), for
{e1,e2,e3} the standard basis of R3. The volume element θ is called the induced volume

element.

Proposition 5.1.3. If x is a non-parabolic frontal then the relative fundamental form induced by
a transversal vector field is non-degenerate.

Proof. Let ξξξ be a transversal vector field, thus we can write

ξξξ = φn+Z,

where Z is tangent and φ : U → R∖0 is smooth. Hence,

ξξξ −Z
φ

= n

and

wiu j = 𝒯 1
i j w1 +𝒯 2

i j w2 + pi jn

= 𝒯 1
i j w1 +𝒯 2

i j w2 + pi j
ξξξ −Z

φ

=

(
𝒯 1

i j w1 +𝒯 2
i j w2 −

pi j

φ
Z
)
+

pi j

φ
ξξξ

=𝒟1
i jw1 +𝒟2

i jw2 +hi jξξξ .

Therefore, hi j =
pi j

φ
, i, j = 1,2. From this,

(
pi j

)
is non-singular if and only if

(
hi j

)
is non-

singular. As x is non-parabolic, the result follows from remark 5.1.1.

Proposition 5.1.4. Let ξξξ : U →R3 be a vector field which is transversal to a frontal x : U →R3.
Let us suppose that

ξξξ = φn+Z,

where Z(u) = a(u)w1(u)+b(u)w2(u) ∈ TΩ, ΩΩΩ =
(

w1 w2

)
and φ(u) ̸= 0, for all u ∈U . Then

hΩ and τΩ satisfy
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(a) hΩ = 1
φ

pΩ.

(b) τΩ(wi) =
1
φ
(pΩ(Z,wi)+φui).

Proof. Note that 5.1.4 was proved in proposition (5.1.3). In order to prove 6.8 let us write
BΩ =

(
bi j

)
the relative shape operator of n. We know that

ξξξ ui
=−SΩ(wi)+ τΩ(wi)ξξξ =−SΩ(wi)+ τΩ(wi)Z + τΩ(wi)φn. (5.4)

On the other hand,

ξξξ ui
(q) =−φBΩ(q)(wi)+φuin+Zui (5.5)

=
(

Z⊤
ui
−φBΩ(wi)

)
+(φui + pΩ(Z,wi))n,

where Z⊤
ui

is the tangent component of Zui . By comparing the normal components of (5.4) and
(5.5), it follows that τΩ(wi) =

1
φ
(pΩ(Z,wi)+φui).

Remark 5.1.3. Let us take x : U →R a frontal and ΩΩΩ =
(

w1 w2

)
a tmb. If ξξξ : U →R3, given

by ξξξ = φn+aw1 +bw2, is an equiaffine transversal vector field, then τΩ ≡ 0. Via proposition
5.1.4, τΩ(wi) =

1
φ
(pΩ(aw1 +bw2,wi)+φui). Since τΩ ≡ 0, we get in U ∖Σ(x)

pΩ(aw1 +bw2,w1) = apΩ(w1,w1)+bpΩ(w2,w1) = aeΩ +b f2Ω =−φu1

pΩ(aw1 +bw2,w2) = apΩ(w1,w2)+bpΩ(w2,w2) = a f1Ω +bgΩ =−φu2,

therefore, (
a

b

)
=

(
eΩ f2Ω

f1Ω gΩ

)−1(
−φu1

−φu2

)
in U ∖Σ(x). (5.6)

Since a,b ∈C∞(U,R) and U ∖Σ(x) is dense, it follows that for a point q ∈ Σ(x) we have(
a(q)

b(q)

)
= lim

u→q

(
eΩ f2Ω

f1Ω gΩ

)−1(
−φu1

−φu2

)
.

Note in remark 3.1.2 that we could write the vector field W considering a tmb ΩΩΩ =
(

w1 w2

)
instead of the usual tmb Dx =

(
xu1 xu2

)
. In this case, we would obtain an expression like (5.6)

instead of (3.7).

5.2 The Blaschke and the conormal vector fields of a
frontal

The Blaschke vector field and the conormal vector field associated to an equiaffine
transversal vector field play an important role when studying regular surfaces from the affine
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differential geometry viewpoint. With the Blaschke structure, for instance, we define proper
and improper affine spheres (see chapter 2 in (NOMIZU; KATSUMI; SASAKI, 1994)) and the
Blaschke line congruences (see 4.4.1 or section 6 in (LOPES; RUAS; SANTOS, 2022)). On the
other hand, the conormal vector field makes calculations with the affine support function easier,
for instance (see section 1 in (CECIL, 1994)). Taking into account the importance of these two
objects, in this section we define the Blaschke vector field of a frontal and the conormal vector
field associated to an equiaffine vector field transversal to a frontal.

5.2.1 The Blaschke vector field of a frontal

Definition 5.2.1. Let x : U → R3 be a proper frontal such that its Gaussian curvature never
vanishes in U ∖Σ(x). We say that a transversal vector field ξξξ is the Blaschke vector field of x if it
is a smooth extension of the usual Blaschke vector field defined in U ∖Σ(x).

It follows from the density of U ∖Σ(x) and from the fact that the Blaschke vector field
is unique up to sign (see (NOMIZU; KATSUMI; SASAKI, 1994)) that the above extension is
unique. Now, looking at the special affine group (or equiaffine group)

SA(3,R) = {Φ : x ↦→ Ax+b : A ∈ M3(R),detA = 1 and b is a constant vector}

we seek to show an invariance property for the Blaschke vector field defined here, in the following
sense. Given a frontal x : U → R3 and Φ ∈ SA(3,R), the Blaschke vector field of y = Φ∘x is ξξξ ,
where

ξξξ (q) = Φ*ξξξ (q), for all q ∈U.

Proposition 5.2.1. Let x : U → R3 be a proper frontal for which the Gaussian curvature has a
non-vanishing smooth extension. If there exists, the Blaschke vector field of x is an equiaffine
invariant.

Proof. Let Φ(x) = Ax+b be an equiaffine transformation, then y = Φ∘x has the same singular
set of x. Furthermore, it is known that in U ∖Σ(x) the usual Blaschke vector field of y is given
by ξξξ = Φ*ξξξ , where ξξξ is the Blaschke vector field of x. Let us keep the same notation for the
extension of ξξξ , then Φ*ξξξ is an extension of ξξξ to U , so it is the Blaschke vector field of y.

Remark 5.2.1. Note that is not always possible to obtain a smooth extension of the Blaschke
vector field. For instance, if x : U → R3 is a non-parabolic frontal, i.e., for all tmb ΩΩΩ, the ΩΩΩ-
relative curvature KΩ ̸= 0, then the Gaussian curvature is not extendable (see proposition 4.1 in
(MEDINA-TEJEDA, 2020)). It is known that the usual Blaschke vector field is given in U ∖Σ(x)
by |K|1/4n+W , where W is a tangent vector field (see remark 3.1.2), thus ⟨ξξξ ,n⟩= |K|1/4. Since
it is not possible to extend K, it follows that is not possible to extend this vector field. From this,
it follows that a necessary condition to obtain the Blaschke vector field of a frontal is that its
Gaussian curvature is extendable.
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Next, we characterize frontals for which it is possible to define the Blaschke vector field.

Theorem 5.2.1. A frontal x : U → R3 admits a Blaschke vector field if and only if its Gaussian
curvature K has a non-vanishing extension to U and there are a,b ∈C∞(U,R) such that

(
a(q)

b(q)

)
= lim

u→q

(
eΩ f2Ω

f1Ω gΩ

)−1(
−φu1

−φu2

)
, for all q ∈U , (5.7)

where ΩΩΩ =
(

w1 w2

)
is a tmb and φ = |K|1/4.

Proof. Let ξξξ = φn+ aw1 + bw2 be the Blaschke vector field of x. Then, φ ,a,b ∈ C∞(U,R)
and φ = ⟨ξξξ ,n⟩= |K|1/4 in U ∖Σ(x) (see remark 3.1.2). It follows from the density of U ∖Σ(x)
and from the smoothness of φ that φ(q) = lim

u→q
|K|1/4. From the fact that ξξξ is transversal to x,

it follows that φ ̸= 0 in U , consequently K admits a non-vanishing extension to U . As ξξξ is
equiaffine in U ∖Σ(x), it follows from remark 5.1.3 that

(
a

b

)
=

(
eΩ f2Ω

f1Ω gΩ

)−1(
−φu1

−φu2

)
in U ∖Σ(x).

Since a,b ∈C∞(U,R) and U ∖Σ(x) is dense, we obtain for a point q ∈ Σ(x) that

(
a(q)

b(q)

)
= lim

u→q

(
eΩ f2Ω

f1Ω gΩ

)−1(
−φu1

−φu2

)
.

Reciprocally, considering K the non-vanishing extension of the Gaussian curvature of x, define
φ = |K|1/4 and take a,b ∈C∞(U,R) satisfying (5.7), then it follows from definition 5.2.1 and
from remarks 3.1.2 and 5.1.3 that ξξξ is the Blaschke vector field of x.

Remark 5.2.2.

(a) Let x : U →R3 be a frontal in the class 3.4.1.1, such that its Gaussian curvature K admits a
non-vanishing extension, so in order to have a Blaschke vector field we just need to verify
the condition (5.7) in theorem 5.2.1. One can verify that Ku2 = f̃ bu2 , for a smooth function
f̃ is a sufficient condition for this to happen. For instance, with any of the choices below

∙ b = u2
2, r = 0, l = 1 and h = h(u1,u2) any smooth function (see example 5.2.1),

∙ b =
2
5

u5
2+u2

2, r = 0, l = 1 and h = h(u1,u2) any smooth function (see example 5.2.2),

we obtain x for which K admits a non-vanishing extension and condition (5.7) is verified,
hence we have a Blaschke vector field.
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(b) If x : U →R3 is a wave front given by the class 3.4.1.2, such that the Blaschke vector field
exists in the regular part U ∖Σ(x), then it is given by ξξξ = (ξξξ 1,ξξξ 2,ξξξ 3), where

ξξξ 1 =−1
4

cu1

c3/4hu1u1

, (5.8a)

ξξξ 2 =−1
4

cu2hu1u1 − cu1hu1u2

c3/4hu1u1

, (5.8b)

ξξξ 3 =
1
4
−u2cu2hu1u1 +u2cu1hu1u2 +4chu1u1 − cu1hu1

c3/4hu1u1

. (5.8c)

Note in (5.8) that is not always possible to extend ξξξ , since hu1u1(q) = 0 for all q ∈ Σ(x).
However, if we take for instance, c a smooth function such that cu1 = g̃hu1u1 , for a smooth
function g̃, then ξξξ admits an extension to the entire U . If g̃ = 0, we get c = c(u2), which is
satisfied for the case c constant, for instance (see example 5.2.3). It is worth observing that
for c constant, we get ξξξ = (0,0,ρ), for some ρ ∈ R and if we think of frontal improper
affine spheres as those frontals for which the Blaschke vector field is constant, then this
choice of c provides a class of this type of frontals. This is an important class, specially if
we seek to understand frontals from the affine viewpoint, and will be further discussed in
future works. It is also important to remark that improper affine spheres with singularities
is a topic of interest in differential geometry, see (CRAIZER; DOMITRZ; RIOS, 2020),
(ISHIKAWA; MACHIDA, 2006) (MARTÍNEZ, 2005), (MILÁN, 2013) and (NAKAJO,
2009), for instance.

5.2.2 Examples

Now, we provide some examples taking into account the classes described in 3.4.1.

Example 5.2.1. Let x : U → R3 defined by x = (u1,u2
2,4/15u1u5

2 + 1/2u3
1u4

2 + u1u2
2), where

U = (−1,1)× (−4,4) (see figure 2). This frontal is a cuspidal cross-cap obtained from a 5/2-
cuspidal edge and satisfies x ∼ n, where n is its unit normal. We decompose Dx = ΩΩΩΛΛΛ

T , where

ΩΩΩ =

 1 0
0 1

u2
2(4/15u3

2 +3/2u2
1u2

2 +1) 1/3u1
(
3u2

1u2
2 +2u3

2 +3
)
 and ΛΛΛ =

(
1 0
0 2u2

)
.

We have that λΩ = 2u2 and

KΩ =
18×104u2

(
54u1

4u2
4 +9u1

2u2
5 +4u2

6 +54u1
2u2

2 +12u2
3 +9

)
µ2 ,

where

µ = 2025u1
4u2

8 +720u1
2u2

9 +900u1
6u2

4 +64u2
10 +1200u1

4u2
5 +3100u1

2u2
6

+480u2
7 +1800u1

4u2
2 +1200u1

2u2
3 +900u2

4 +900u1
2 +900.
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Therefore, considering that at a regular point the Gaussian curvature is given by
KΩ

λΩ

, we obtain

that the extension of the Gaussian curvature is

K =
9×104 (54u1

4u2
4 +9u1

2u2
5 +4u2

6 +54u1
2u2

2 +12u2
3 +9

)
µ2 .

Then, writing φ = |K|1/4, the Blaschke vector field of x is given by ξξξ = φn+aw1 +bw2, where

a and b are obtained using (5.6). Thus, ξξξ =
1

ρ7/4

(
−3

√
3

8
ξ1,

9
√

3
8

ξ2,

√
3

240
ξ3

)
, where

ξ1 = 216u1
6u2

4 −189u1
4u2

5 +66u1
2u2

6 +16u2
7 +324u1

4u2
2

+9u1
2u2

3 +48u2
4 +108u1

2 +36u2

ξ2 =
(

216u1
4u2

4 +87u1
2u2

5 −16u2
6 +252u1

2u2
2 +24u2

3 +72
)

u2
2

ξ3 = 145800u1
8u2

8 +35721u1
6u2

9 +25326u1
4u2

10 +4896u1
2u2

11 +277020u1
6u2

6

+896u2
12 +114129u1

4u2
7 +39204u1

2u2
8 +5088u2

9 +179820u1
4u2

4 +88938u1
2u2

5

+12096u2
6 +48600u1

2u2
2 +14040u2

3 +6480

ρ = 54u1
4u2

4 +9u1
2u2

5 +4u2
6 +54u1

2u2
2 +12u2

3 +9.

Figure 2 – Frontal with extendable non-vanishing Gaussian curvature.

Remark 5.2.3. It is worth observing that the Blaschke vector field ξξξ of a frontal is also a frontal,
since ξξξ is equiaffine. In example 5.2.1, Σ(ξξξ ) is given in figure 3.

Then, the Blaschke vector field is a proper frontal and it is given in figure 4, restricting the
domain to (−1/10,1/10)× (−1/60,1/60).
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Figure 3 – Singular set Σ(ξξξ ) of the Blaschke vector field.

Figure 4 – The Blaschke vector field from example 5.2.1

Example 5.2.2. Let x : U → R3 defined by x =
(
u1,

2
5u5

2 +u2
2,u1u2

2
)
, for U = (−1,1)× (−1,1)

(see figure 8). This frontal satisfies x ∼ n, where n is its unit normal. We decompose Dx = ΩΩΩΛΛΛ
T ,

where

ΩΩΩ =

 1 0
0 u3

2 +1
u2

2 u1

 and ΛΛΛ =

(
1 0
0 2u2

)
.

We have that λΩ = 2u2 and

KΩ =
2u2(u2 +1)2(u2

2 −u2 +1)2

(u10
2 +2u7

2 +u6
2 +u4

2 +2u3
2 +u2

1 +1)2
.

Then,

K =
(u2 +1)2(u2

2 −u2 +1)2

(u10
2 +2u7

2 +u6
2 +u4

2 +2u3
2 +u2

1 +1)2
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is the extension of the Gaussian curvature to U . In a similar way to example 5.2.1, we obtain that
the Blaschke vector field of x is given by

ξξξ =
1

4(u2
2 +u2 +1)3/2(u2 +1)3/2 (3u2,0,7u3

2 +4).

Figure 5 – Frontal with extendable non-vanishing Gaussian curvature.

Example 5.2.3. Let x : R2 → R3 defined by x = (u1,−12u1
2u2 +4u2

3,u1
4 +6u1

2u2
2 −3u2

4)

(see figure 6). This is a wave front of rank 1 for which the Gaussian curvature admits a non-
vanishing extension. We decompose Dx = ΩΩΩΛΛΛ

T , where

ΩΩΩ =

 1 0
−24u1u2 1

4u3
1 +12u1u2

2 −u2

 and ΛΛΛ =

(
1 0
0 −12u2

1 +12u2
2

)
.

We have that λΩ =−12u2
1 +12u2

2 and

KΩ =
12(u1

2 −u2
2)

(16u16 −96u14u22 +144u12u24 +u22 +1)2 .

Then, the extension of the Gaussian curvature is

K =
−1

(16u16 −96u14u22 +144u12u24 +u22 +1)2 .

In a similar way to example 5.2.1, we obtain that the Blaschke vector field of x is given by
ξξξ = (0,0,1).
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Figure 6 – Wave front of rank 1 with extendable non-vanishing Gaussian curvature.

5.2.3 Conormal vector field

Definition 5.2.2. Given a frontal x : U → R3, we define the affine conormal vector field of x
relative to an equiaffine transversal vector field ξξξ as the vector field ννν : U → R3 ∖000, such that

⟨ννν(u),ξξξ (u)⟩= 1

⟨ννν(u),w⟩= 0, for all w ∈ TΩ(u),

for all u ∈U .

Remark 5.2.4. It follows from the second condition above that the conormal vector field is
always a multiple of the unit normal vector field n of x.

The next proposition shows that an important property of the conormal vector field is
still valid when we are working with the case of non-parabolic frontals.

Proposition 5.2.2. Given a frontal x : U → R3, a tmb ΩΩΩ and an equiaffine transversal vector
field ξξξ , we have that

⟨νννui,ξξξ ⟩= 0, i = 1,2.

⟨νννui,v⟩=−hΩ(v,wi), where v(u) ∈ TΩ(u) for all u ∈U , i, j = 1,2.

Furthermore, if x is non-parabolic then the conormal vector field is an immersion.

Proof. In order to simplify notation, we drop the subscript in the notation for the induced affine
fundamental form and indicate only by h. We know that ⟨ννν ,ξξξ ⟩= 1 so, differentiating and using
the fact that ξξξ is equiaffine, we get ⟨νννui,ξξξ ⟩= 0.



86 Chapter 5. Equiaffine structure for frontals

From ⟨ννν ,v⟩= 0, it follows that ⟨νννui,v⟩=−⟨ννν ,vui⟩. We can write

−vui =−v⊤ui
−h(v,wi)ξξξ ,

where v⊤ui
indicates the tangent component of vui , thus considering the properties of the conormal

vector field, we obtain

⟨νννui,v⟩=−⟨ννν ,vui⟩=−h(v,wi). (5.9)

Now, let us suppose that x is non-parabolic and that ννν is not an immersion, hence there
is (a,b) ∈ R2 ∖0 such that aνννu1 +bνννu2 = 0. Thus,

⟨aνννu1 +bνννu2,v⟩= 0.

By using (5.9) and the above expression, we get

0 =−ah(v,w1)−bh(v,w2) = h(v,−aw1 −bw2), for all v,

but this contradicts the fact that h is non-degenerate.

5.3 A fundamental theorem

In this section we provide, in theorem 5.3.1, a fundamental theorem for the theory
developed in section 5.1. This theorem is a version for frontals of the fundamental theorem
of affine differential geometry (see section 4.9 in (SIMON; SCHWENK-SCHELLSCHMIDT;
VIESEL, 1991) for the classical result for regular surfaces). Thus, taking U ⊂ R2 an open subset
and assuming the integrability conditions for the regular case are valid in an open dense subset of
U , we obtain for each q ∈U a neighborhood V ⊂U of q, a frontal x : V → R3 and an equiaffine
transversal vector field ξξξ : V → R3, in the sense of section 5.1. In order to do this, we use the
same approach applied in (MEDINA-TEJEDA, 2022a).

5.3.1 The compatibility equations

Let x : U → R3 be a proper frontal, ΩΩΩ =
(

w1 w2

)
a tmb and n = w1×w2

‖w1×w2‖ the unit

normal vector field induced by ΩΩΩ. By considering the decomposition Dx = ΩΩΩΛΛΛ
T and λΩ = detΛΛΛ,

one can get in U ∖λ
−1
Ω

(0) the following structural equations

xu1u1 = Γ
1
11xu1 +Γ

2
11xu2 + en (5.10a)

xu1u2 = Γ
1
21xu1 +Γ

2
21xu2 + f n (5.10b)

xu2u2 = Γ
1
22xu1 +Γ

2
22xu2 +gn, (5.10c)
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where e, f and g are the coefficients of the second fundamental form of x. In a similar way, if
ξξξ : U → R3 is an equiaffine transversal vector field to x, the following hold in U ∖λ

−1
Ω

(0)

xu1u1 = Γ̃
1
11xu1 + Γ̃

2
11xu2 + c11ξξξ (5.11a)

xu1u2 = Γ̃
1
21xu1 + Γ̃

2
21xu2 + c21ξξξ (5.11b)

xu2u2 = Γ̃
1
22xu1 + Γ̃

2
22xu2 + c22ξξξ (5.11c)

ξξξ u1
=−b1

1xu1 −b2
1xu2 (5.11d)

ξξξ u2
=−b1

2xu1 −b2
2xu2. (5.11e)

The symbols ci j induce a symmetric bilinear form called the affine fundamental c relative to ξξξ ,
while the symbols Γ̃k

i j are associated to the induced affine connection ∇ (see (3.1)).

Proposition 5.3.1. If we write ξξξ = φn+axu1 +bxu2 , where φ ̸= 0, then in U ∖Σ(x) we have:

(
c11 c12

c12 c22

)
=

1
φ

(
e f

f g

)
, (5.12)

Γ̃1 =

(
Γ̃1

11 Γ̃2
11

Γ̃1
21 Γ̃2

21

)
=

(
Γ1

11 Γ2
11

Γ1
21 Γ2

21

)
− 1

φ

(
ae be

a f b f

)
= Γ1 −

1
φ

(
ae be

a f b f

)
, (5.13)

Γ̃2 =

(
Γ̃1

21 Γ̃2
21

Γ̃1
22 Γ̃2

22

)
=

(
Γ1

21 Γ2
21

Γ1
22 Γ2

22

)
− 1

φ

(
a f b f

ag bg

)
= Γ2 −

1
φ

(
a f b f

ag bg

)
. (5.14)

Proof. If ξξξ = φn+axu1 +bxu2 in (5.11), then

xu1u1 = (Γ̃1
11 + c11a)xu1 +(Γ̃2

11 + c11b)xu2 +φc11n

xu1u2 = (Γ̃1
21 + c21a)xu1 +(Γ̃2

21 + c21b)xu2 +φc21n

xu2u2 = (Γ̃1
22 + c22a)xu1 +(Γ̃2

22 + c22b)xu2 +φc22n.

Hence, comparing this to (5.10) we have the result.

If we look at the basis w1,w2,n of R3, it follows from (5.1) that there are smooth
functions 𝒯 k

i j defined in U , i, j,k ∈ {1,2}, such that

w1u1 = 𝒯 1
11w1 +𝒯 2

11w2 + eΩn (5.15a)

w2u1 = 𝒯 1
21w1 +𝒯 2

21w2 + f2Ωn (5.15b)

w1u2 = 𝒯 1
12w1 +𝒯 2

12w2 + f1Ωn (5.15c)

w2u2 = 𝒯 1
22w1 +𝒯 2

22w2 +gΩn (5.15d)
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We know that w1,w2,ξξξ is a basis of R3, then from (5.2), (5.3) and from the fact that ξξξ is
equiaffine there are smooth functions 𝒟k

i j, hi j and Si
j defined in U , i, j,k ∈ {1,2}, such that

w1u1 =𝒟1
11w1 +𝒟2

11w2 +h11ξξξ (5.16a)

w2u1 =𝒟1
21w1 +𝒟2

21w2 +h21ξξξ (5.16b)

w1u2 =𝒟1
12w1 +𝒟2

12w2 +h12ξξξ (5.16c)

w2u2 =𝒟1
22w1 +𝒟2

22w2 +h22ξξξ (5.16d)

ξξξ u1
=−S1

1w1 −S2
1w2 (5.16e)

ξξξ u2
=−S1

2w1 −S2
2w2. (5.16f)

If we write ξξξ = φn+axu1 +bxu2 and ξξξ = φn+ ãw1 + b̃w2, where φ ̸= 0, then in U ∖Σ(x)(
ã

b̃

)
= ΛΛΛ

T

(
a

b

)
and

(
ãeΩ b̃eΩ

ã f2Ω b̃ f2Ω

)
=

(
aeΩ beΩ

a f2Ω b f2Ω

)
ΛΛΛ. (5.17)

Hence, taking (5.15), (5.16), (5.17) and using the method of the proof of proposition 5.3.1 one
can get the following result:

Proposition 5.3.2. If we write ξξξ = φn+ ãw1 + b̃w2, for φ , ã, b̃ ∈C∞(U,R) and φ ̸= 0, then(
h11 h12

h21 h22

)
=

1
φ

(
eΩ f1Ω

f2Ω gΩ

)
in U , (5.18)

𝒟1 = 𝒯1 −
1
φ

(
ãeΩ b̃eΩ

ã f2Ω b̃ f2Ω

)
= 𝒯1 −

1
φ

(
aeΩ beΩ

a f2Ω b f2Ω

)
ΛΛΛ in U ∖Σ(x), (5.19)

𝒟2 = 𝒯2 −
1
φ

(
ã f1Ω b̃ f1Ω

ãgΩ b̃gΩ

)
= 𝒯2 −

1
φ

(
a f1Ω b f1Ω

aeΩ beΩ

)
ΛΛΛ in U ∖Σ(x),

where 𝒟1 =

(
𝒟1

11 𝒟2
11

𝒟1
21 𝒟2

21

)
, 𝒟2 =

(
𝒟1

12 𝒟2
12

𝒟1
22 𝒟2

22

)
, 𝒯1 =

(
𝒯 1

11 𝒯 2
11

𝒯 1
21 𝒯 2

21

)
and 𝒯2 =

(
𝒯 1

12 𝒯 2
12

𝒯 1
22 𝒯 2

22

)
.

Remark 5.3.1. With notation as in proposition (5.3.2), it follows from II = ΛΛΛIIΩ (see 3.31),
from 5.12 and from (5.18) that(

ae be

a f b f

)
=

(
e e

f f

)(
a 0
0 b

)
= ΛΛΛ

(
eΩ eΩ

f2Ω f2Ω

)(
a 0
0 b

)
, (5.20)(

c11 c12

c12 c22

)
=

1
φ

(
e f

f g

)
=

1
φ

ΛΛΛ

(
eΩ f2Ω

f1Ω gΩ

)
= ΛΛΛ

(
h11 h12

h12 h22

)

in U ∖Σ(x). Furthermore, just taking the decomposition Dx = ΩΩΩΛΛΛ
T , we have that(

S1
1 S2

1

S1
2 S2

2

)
=

(
b1

1 b2
1

b1
2 b2

2

)
ΛΛΛ.
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Proposition 5.3.3. Let x : U → R3 be a proper frontal and ΩΩΩ a tmb of x. Then, in U ∖Σ(x), we
can write

𝒟1 = ΛΛΛ
−1
(

Γ̃1ΛΛΛ−ΛΛΛu1

)
,

𝒟2 = ΛΛΛ
−1
(

Γ̃2ΛΛΛ−ΛΛΛu2

)
.

Proof. It is known that the Christoffel symbols for the decomposition in the basis {xu1,xu2,n}
are given by Γ1 =

(
DxT

u1
Dx
)

I−1 (see section 4.3 in (CARMO, 2016)) thus, by taking (5.12), we
get

Γ̃1 = Γ1 −
1
φ

(
ae be

a f b f

)
= (DxT

u1
Dx)I−1 − 1

φ

(
ae be

a f b f

)
, from Dx = ΩΩΩΛΛΛ

T , we have

=
(
(ΛΛΛu1ΩΩΩ

T +ΛΛΛΩΩΩ
T
u1
)ΩΩΩΛΛΛ

T)(ΛΛΛT )−1IΩΛΛΛ
−1 − 1

φ
ΛΛΛ

(
aeΩ beΩ

a f2Ω b f2Ω

)

=
(
ΛΛΛu1ΩΩΩ

T
ΩΩΩ+ΛΛΛΩΩΩ

T
u1

ΩΩΩ
)
(ΩΩΩT

ΩΩΩ)−1
ΛΛΛ
−1 − 1

φ
ΛΛΛ

(
aeΩ beΩ

a f2Ω b f2Ω

)
ΛΛΛΛΛΛ

−1

=

(
ΛΛΛu1 +ΛΛΛ

(
𝒯1 −

1
φ

(
aeΩ beΩ

a f2Ω b f2Ω

)
ΛΛΛ

))
ΛΛΛ
−1, from (5.19), we have

= (ΛΛΛu1 +ΛΛΛ𝒟1)ΛΛΛ
−1,

since 𝒯1 = ΩΩΩ
T
u1

ΩΩΩ(ΩΩΩT
ΩΩΩ)−1. From this, we obtain 𝒟1 = ΛΛΛ

−1
(

Γ̃1ΛΛΛ−ΛΛΛu1

)
. Similarly, we prove

the other case.

From now on, if A ∈ Mn×n(R), we denote by A(i) the ith-row and by A( j) the jth-column
of A.

Proposition 5.3.4. Let I,IΩ,ΛΛΛ,
(

hi j

)
,
(

ci j

)
: U →M2×2(R) be arbitrary smooth maps, such that

IΩ is symmetric and i, j = 1,2. Consider also λΩ = detΛΛΛ and TΩ the principal ideal generated
by λΩ in the ring C∞(U,R). Suppose that U ∖λ

−1
Ω

(0) is an open dense set and that

I =

(
E F

F G

)
= ΛΛΛIΩΛΛΛ

T (5.21)

(ci j) =
1
φ

(
e f

f g

)
= ΛΛΛ

(
hi j

)
,

where φ ∈C∞(U,R∖0) and define in U ∖λ
−1
Ω

(0), Γ̃1 and Γ̃2 by (5.13) and (5.14), respectively.
Then,

(a) The map ΛΛΛ
−1
(

Γ̃1ΛΛΛ−ΛΛΛu1

)
: U ∖λ

−1
Ω

(0)→ M2×2(R) has a unique C∞ extension to U if
and only if,

ΛΛΛ(1)u1
IΩΛΛΛ

T
(2)−ΛΛΛ(1)IΩΛΛΛ

T
(2)u1

+Eu2 −Fu1 ∈ TΩ. (5.22)
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(b) The map ΛΛΛ
−1
(

Γ̃2ΛΛΛ−ΛΛΛu2

)
: U ∖λ

−1
Ω

(0)→ M2×2(R) has a unique C∞ extension to U if
and only if,

ΛΛΛ(1)u2
IΩΛΛΛ

T
(2)−ΛΛΛ(1)IΩΛΛΛ

T
(2)u2

+Fu2 −Gu1 ∈ TΩ.

Proof. (a) Let us suppose 𝒟1 the C∞ extension of ΛΛΛ
−1
(

Γ̃1ΛΛΛ−ΛΛΛu1

)
to U , thus

ΛΛΛ𝒟1 = Γ̃1ΛΛΛ−ΛΛΛu1

in U ∖λ
−1
Ω

(0). From (5.13), it follows that

ΛΛΛ𝒟1 = Γ1ΛΛΛ− 1
φ

(
ae be

a f b f

)
ΛΛΛ−ΛΛΛu1.

It is known that Γ1 = (1
2Iu1 +

1
2A1)I−1, where A1 =

(
0 −(Ev −Fu)

Ev −Fu 0

)
. Hence

ΛΛΛ𝒟1 = (
1
2

Iu1 +
1
2

A1)I−1
ΛΛΛ− 1

φ

(
ae be

a f b f

)
ΛΛΛ−ΛΛΛu1.

Via (5.21) we have an expression for Iu1 , then multiplying the above expression by the
right side with 2IΩΛΛΛ

T and taking into account (5.19) and (5.20), we obtain that

ΛΛΛ

(
2𝒟1IΩ − IΩu1 +

2
φ

(
ãeΩ b̃eΩ

ã f2Ω b̃ f2Ω

)
IΩ

)
ΛΛΛ

T = ΛΛΛIΩΛΛΛ
t
u1
−ΛΛΛu1IΩΛΛΛ

t +A1. (5.23)

Note that the right side of the above equation is a skew-symmetric matrix, which implies

that 2𝒟1IΩ − IΩu1 +
2
φ

(
ãeΩ b̃eΩ

ã f2Ω b̃ f2Ω

)
IΩ is a skew-symmetric matrix in U ∖λ

−1
Ω

(0), but

since U ∖λ
−1
Ω

(0) is dense, this is also true in U . So, there is ω1 ∈C∞(U,R) such that

2𝒟1IΩ − IΩu1 +
2
φ

(
ãeΩ b̃eΩ

ã f2Ω b̃ f2Ω

)
IΩ =

(
0 −ω1

ω1 0

)
.

Multiplying (5.23) by the left side with
(

1 0
)

and by the right side with
(

0 1
)T

, we
get

−ω1λΩ = ΛΛΛ(1)

(
0 −ω1

ω1 0

)
ΛΛΛ

T
(2) = ΛΛΛ(1)IΩΛΛΛ

T
(2)u1

−ΛΛΛ(1)u1
IΩΛΛΛ

T
(2)− (Eu2 −Fu1) ∈ TΩ.

Reciprocally, suppose (5.22). Since U ∖ λ
−1
Ω

(0) is a dense set, there is a unique ω1 ∈
C∞(U,R) such that

ΛΛΛ(1)u1
IΩΛΛΛ

T
(2)−ΛΛΛ(1)IΩΛΛΛ

T
(2)u1

+Eu2 −Fu1 = ω1λΩ ∈ TΩ.
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From the above expression, it follows that ΛΛΛIΩΛΛΛ
t
u1
−ΛΛΛu1IΩΛΛΛ

t +A1 = ΛΛΛ

(
0 −ω1

ω1 0

)
ΛΛΛ

T ,

since ΛΛΛIΩΛΛΛ
t
u1
−ΛΛΛu1IΩΛΛΛ

t +A1 is a skew-symmetric matrix. Define 𝒟1 : U → M2×2(R),
given by

𝒟1 =
1
2

(
IΩu1 −

2
φ

(
ãeΩ b̃eΩ

ã f2Ω b̃ f2Ω

)
IΩ +

(
0 −ω1

ω1 0

))
I−1

Ω
,

thus

ΛΛΛ

(
2𝒟1IΩ − IΩu1 +

2
φ

(
ãeΩ b̃eΩ

ã f2Ω b̃ f2Ω

)
IΩ

)
ΛΛΛ

T = ΛΛΛIΩΛΛΛ
t
u1
−ΛΛΛu1IΩΛΛΛ

t +A1.

Taking into account (5.21) and then the expression for Iu1 we show, using the above
expression, that 𝒟1 = ΛΛΛ

−1
(

Γ̃1ΛΛΛ−ΛΛΛu1

)
in U ∖ λ

−1
Ω

(0). Since 𝒟1 is smooth and U ∖
λ
−1
Ω

(0) is dense, we have the result.

Item (b) follows analogously by considering the matrix A2 :=

(
0 −(Fu2 −Gu1)

Fu2 −Gu1 0

)
.

In preparation for the Fundamental theorem, let us set the matrices W =
(

w1 w2 ξξξ

)
∈

GL(3),

D1 =

𝒟1
11 𝒟2

11 h11

𝒟1
21 𝒟2

21 h21

−S1
1 −S2

1 0

 (5.24a)

D2 =

𝒟1
12 𝒟2

12 h12

𝒟1
22 𝒟2

22 h22

−S1
2 −S2

2 0

 . (5.24b)

Then, the system (5.16) is represented byWu1 = WDT
1

Wu2 = WDT
2 .

(5.25)

It is known that the compatibility condition for the system (5.25) is WT
u1u2

= WT
u2u1

, from which
we obtain

D1D2WT +D1u2WT = D1WT
u2
+D1u2WT = D2WT

u1
+D2u1WT = D2D1WT +D2u1WT ,

that is equivalent to

(D1D2 +D1u2 −D2D1 −D2u1)WT = 000.
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Since W ∈ GL(3), we get

D1u2 −D2u1 +[D1,D2] = 000,

where [D1,D2] = D1D2 −D2D1.

We have next two auxiliary lemmas, which play an important role in the proof of theorem
5.3.1.

Lemma 5.3.1. The integrability conditions for the system
xu1 = λ11w1 +λ12w2

xu2 = λ21w1 +λ22w2

x(q) = p

(5.26)

are

∙ ΛΛΛ

(
h11 h12

h21 h22

)
is symmetric;

∙
(

0 1
)
(ΛΛΛ𝒟1 +ΛΛΛu1) =

(
1 0

)
(ΛΛΛ𝒟2 +ΛΛΛu2) .

Proof. It is known that the integrability condition for the system (5.26) is xu1u2 = xu2u1 . If we
set the matrices

Λ̃ΛΛ =

λ11 λ12 0
λ21 λ22 0
0 0 1

 and M =
(

xu1 xu2 ξξξ

)
,

then M = WΛ̃ΛΛ
T

. Hence, the integrability condition is Mu1 ĵ = Mu2 î, where {î, ĵ, k̂} is the standard
basis of R3. By using (5.25), M = WΛ̃ΛΛ

T
and Mu1 ĵ = Mu2 î, we obtain

WDT
1 Λ̃ΛΛ

T
ĵ+WΛ̃ΛΛ

T
u1

ĵ = Wu1Λ̃ΛΛ
T

ĵ+WΛ̃ΛΛ
T
u1

ĵ = Wu2Λ̃ΛΛ
T

î+WΛ̃ΛΛ
T
u2

î = WDT
2 Λ̃ΛΛ

T
î+WΛ̃ΛΛ

T
u2

î,

so, the integrability condition is equivalent to DT
1 Λ̃ΛΛ

T
ĵ+ Λ̃ΛΛ

T
u1

ĵ = DT
2 Λ̃ΛΛ

T
î+ Λ̃ΛΛ

T
u2

î. By taking each
component of this expression we have

λ11u2 −λ21u1 =𝒟1
11λ21 +𝒟1

21λ22 −𝒟1
12λ11 −𝒟1

22λ12 (5.27)

λ12u2 −λ22u1 =𝒟2
11λ21 +𝒟2

21λ22 −𝒟2
12λ11 −𝒟2

22λ12 (5.28)

λ11h12 +λ12h22 = λ21h11 +λ22h21. (5.29)

Finally, note that (5.27) and (5.28) are equivalent to
(

0 1
)
(ΛΛΛ𝒟1 +ΛΛΛu1)=

(
1 0

)
(ΛΛΛ𝒟2 +ΛΛΛu2)

and (5.29) is equivalent to say that ΛΛΛ

(
h11 h12

h21 h22

)
is symmetric.
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Lemma 5.3.2. ((MEDINA-TEJEDA, 2022a), Lemma 5.2) If we have

Λ̃ΛΛD1 = ΓΓΓ1Λ̃ΛΛ− Λ̃ΛΛu1 and Λ̃ΛΛD2 = ΓΓΓ2Λ̃ΛΛ− Λ̃ΛΛu2 ,

in which Λ̃ΛΛ,D1,D2 : U → Mn×n(R) and ΓΓΓ1,ΓΓΓ2 : U ∖λ
−1
Ω

(0)→ Mn×n(R) are smooth maps with
int(λ−1

Ω
(0)) = /0, where λΩ = detΛΛΛ. Then,

ΓΓΓ1u2 −ΓΓΓ2u1 +[ΓΓΓ1,ΓΓΓ2] = 000 is equivalent to D1u2 −D2u1 +[D1,D2] = 000 in U .

Theorem 5.3.1. Let Γ̃k
i j,b

i
j,e, f ,g,φ ∈C∞(U,R), such that φ ̸= 0. Suppose that(

E F

F G

)
=

(
λ11 λ12

λ21 λ22

)(
EΩ FΩ

FΩ GΩ

)(
λ11 λ12

λ21 λ22

)T

(5.30)

1
φ

(
e f

f g

)
=

(
λ11 λ12

λ21 λ22

)(
h11 h12

h21 h22

)
(5.31)

and (
S1

1 S2
1

S1
2 S2

2

)
=

(
b1

1 b2
1

b1
2 b2

2

)(
λ11 λ12

λ21 λ22

)
, (5.32)

where all the components above are C∞ functions defined in U , λΩ = detΛΛΛ and U ∖λ
−1
Ω

(0) is a
dense set, for ΛΛΛ =

(
λi j

)
. Suppose also that the compatibility equations for the system (5.11) are

satisfied in U ∖λ
−1
Ω

(0) and that

ΛΛΛ(1)u1
IΩΛΛΛ

T
(2)−ΛΛΛ(1)IΩΛΛΛ

T
(2)u1

+Eu2 −Fu1 ∈ TΩ (5.33a)

ΛΛΛ(1)u2
IΩΛΛΛ

T
(2)−ΛΛΛ(1)IΩΛΛΛ

T
(2)u2

+Fu2 −Gu1 ∈ TΩ, (5.33b)

where TΩ is the principal ideal generated by λΩ in the ring C∞(U,R) and IΩ =

(
EΩ FΩ

FΩ GΩ

)
.

Then,

(a) For each q ∈U , there exists a neighborhood V ⊂U of q, a frontal x : V → R3 with tmb ΩΩΩ,
such that Dx = ΩΩΩΛΛΛ

T , and an equiaffine transversal vector field ξξξ : V →R3 with associated
equiaffine structure given by

(
hi j

)
,𝒟1,𝒟2, where

𝒟1 =

(
𝒟1

11 𝒟2
11

𝒟1
21 𝒟2

21

)

𝒟2 =

(
𝒟1

12 𝒟2
12

𝒟1
22 𝒟2

22

)
,

are the unique C∞ extensions of ΛΛΛ
−1
(

Γ̃1ΛΛΛ−ΛΛΛu1

)
and ΛΛΛ

−1
(

Γ̃2ΛΛΛ−ΛΛΛu2

)
to U , respec-

tively.
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(b) If moreover, we suppose eg− f 2 ̸= 0 in V ∖λ
−1
Ω

(0) and that the condition ∇ωc = 0 is

satisfied in V ∖λ
−1
Ω

(0), where ∇ is the connection associated to the symbols
e
φ
,

g
φ
,

f
φ
, Γ̃k

i j

and ωc is the volume element induced by the affine fundamental form c, then there is a
volume element ω in R3 such that ξξξ is the Blaschke vector field of the frontal x.

(c) Let U be connected. Suppose that x̃ : U → R3 is another proper frontal, ξ̃ξξ an equiaffine
transversal vector field and Ω̃ΩΩ a tmb satisfying the same conditions that were obtained in
(a). Then, x e x̃ are affinely equivalent.

Proof.

(a) It follows from (5.33) and from proposition (5.3.4) that the maps

ΛΛΛ
−1
(

Γ̃1ΛΛΛ−ΛΛΛu1

)
and ΛΛΛ

−1
(

Γ̃2ΛΛΛ−ΛΛΛu2

)
,

defined in U ∖λ
−1
Ω

(0), admit unique C∞ extensions to U , 𝒟1 e 𝒟2, respectively. Thus, in
U ∖λ

−1
Ω

(0), we have

𝒟1 = ΛΛΛ
−1
(

Γ̃1ΛΛΛ−ΛΛΛu1

)
,

𝒟2 = ΛΛΛ
−1
(

Γ̃2ΛΛΛ−ΛΛΛu2

)
.

By using 𝒟1 and 𝒟2, we can build the matrices D1 and D2 as the matrices (5.24). Then,
using (5.24, (5.30) and (5.32) we have that

Λ̃ΛΛD1 = Γ̃ΓΓ1Λ̃ΛΛ− Λ̃ΛΛu1 and Λ̃ΛΛD2 = Γ̃ΓΓ2Λ̃ΛΛ− Λ̃ΛΛu2 ,

where

Γ̃ΓΓ1 =


Γ̃1

11 Γ̃2
11

e
φ

Γ̃1
21 Γ̃2

21
f
φ

−b1
1 −b2

1 0



Γ̃ΓΓ2 =


Γ̃1

12 Γ̃2
12

f
φ

Γ̃1
22 Γ̃2

22
g
φ

−b1
2 −b2

2 0



Λ̃ΛΛ =

λ11 λ12 0
λ21 λ22 0
0 0 1

 .
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Let us consider the following system of PDE

Wu1 = WDT
1 (5.34a)

Wu2 = WDT
2 (5.34b)

W(q) =
(

v1 v2 v3

)
, (5.34c)

where v1,v2,v3 are linearly independent vectors in R3 and q ∈ U is a fixed point. The
compatibility conditions for the system (5.11) are expressed by Γ̃ΓΓ1u2 − Γ̃ΓΓ2u1 +

[
Γ̃ΓΓ1, Γ̃ΓΓ2

]
= 000

and by hypothesis they are satisfied, so it follows from lemma 5.3.2 that D1u2 −D2u1 +

[D1,D2] = 000, which is equivalent to the compatibility conditions for the system (5.34)
(see 5.25). Thus, this system has a unique solution W : V → GL(3), where V ⊂ U is a
neighborhood of q. If W =

(
w1 w2 ξξξ

)
, it follows that the vector field ξξξ is transversal

to ⟨w1,w2⟩R and that ξξξ ui
∈ ⟨w1,w2⟩R, i = 1,2. Now, let us take the following system of

PDE 
xu1 = λ11w1 +λ12w2

xu2 = λ21w1 +λ22w2

x(q) = p,

(5.35)

for a fixed p ∈ R3. Note that(
0 1

)
(ΛΛΛ𝒟1 +ΛΛΛu1) =

(
0 1

)
Γ̃1ΛΛΛ =

(
1 0

)
Γ̃2ΛΛΛ =

(
1 0

)
(ΛΛΛ𝒟2 +ΛΛΛu2)

in λ
−1
Ω

(0)c, so, via density the equality holds in U . The above equality, together with the

fact that ΛΛΛ

(
h11 h12

h21 h22

)
is symmetric, means that the system (5.35) has a unique solution

x : Ṽ →R3, where Ṽ ⊂V is a neighborhood of q (see lemma 5.3.1). As Dx = ΩΩΩΛΛΛ
T , where

ΩΩΩ =
(

w1 w2

)
it follows that x is a frontal for which ΩΩΩ is a tmb, ξξξ is an equiaffine

transversal vector field and the equiaffine structure is the desired one.

(b) Moreover, from eg− f 2 ̸= 0 in V ∖λ
−1
Ω

(0) we obtain that c is non-degenerate in V ∖λ
−1
Ω

(0),
thus let ωc be the volume element induced by the non-degenerate metric c. Let ω1 be the
volume element in R3, so the volume element induced by the equiaffine vector field ξξξ is
θ1(v1,v2) = ω1(v1,v2,ξξξ ), where v1,v2 are tangent vectors. Since ξξξ is equiaffine, θ1 is
a parallel volume element in the regular part of x, i.e., ∇θ1 = 0 (see proposition 3.1.1).
The apolarity condition ∇ωc = 0 means that ωc = µθ1, where µ is a positive constant,
since a parallel volume element is unique up to a positive scalar multiple. If we take in
R3 the volume element ω = µω1 and the new induced volume element θ , we get ωc = θ ,
therefore, ξξξ is the usual Blaschke vector field of x in the regular part. Since ξξξ is defined in
V , it follows that ξξξ is the Blaschke vector field of x as defined in 5.2.1.
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(c) If we write ΩΩΩ =
(

w1 w2

)
and Ω̃ΩΩ =

(
w̃1 w̃2

)
, then for each q ∈U there is an isomor-

phism Lq : R3 → R3, such that

Lq(wi) = w̃i, i = 1,2.

Lq(ξξξ ) = ξ̃ξξ .

We seek to show that L is constant. It follows from the fact that x e x̃ satisfy the same
hypothesis given in item a) that both relative shape operators SΩ and S̃

Ω̃
are given by the

matrix
(

S j
i

)
, hence Lq(S(wi)) = S̃(w̃i). Thus,

−S̃(w̃i) =
∂

∂ui
ξ̃ξξ =

∂

∂ui
L(ξξξ ) =

(
∂

∂ui
L
)
(ξξξ )+L

(
∂

∂ui
ξξξ

)
=

(
∂

∂ui
L
)
(ξξξ )−L(S(wi))

=

(
∂

∂ui
L
)
(ξξξ )− S̃(w̃i),

which means that
(

∂

∂ui
L
)
(ξξξ ) = 0, i = 1,2. Furthermore,

w̃1u1 =
∂

∂u1
L(w1) =

(
∂

∂u1
L
)
(w1)+L(w1u1)

=

(
∂

∂u1
L
)
(w1)+L(𝒟1

11w1 +𝒟2
11w2 +h11ξξξ )

=

(
∂

∂u1
L
)
(w1)+ w̃1u1,

so,
(

∂

∂u1
L
)
(w1)= 0. Analogously, we show that

(
∂

∂ui
L
)
(w j)= 0, i, j = 1,2. Therefore,

L is constant and from Ω̃ΩΩ = LΩΩΩ we obtain

Dx̃ = Ω̃ΩΩΛΛΛ
T = LΩΩΩΛΛΛ

T = LDx,

that is, x̃ = Lx+a, where a is a constant vector and L : R3 → R3 is a linear isomorphism.

Remark 5.3.2. The approach used to prove item (a) in theorem 5.3.1 is the same as that applied
to prove the existence part of the fundamental theorem in (MEDINA-TEJEDA, 2022a). Then,
as we are considering here any equiaffine transversal vector field, it is possible to recover from
item (a) the existence theorem from (MEDINA-TEJEDA, 2022a), taking the unit normal as the
equiaffine vector field.

5.4 Future research
Taking into consideration the equiaffine structure on frontals stated here, we expect to

work with other problems generally discussed only for regular surfaces. For instance, the study
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of the affine normal curvature defined in (DAVIS, 2009) and its extendibility when considering
frontals. Furthermore, as improper affine spheres with singularities is a topic of interest in
differential geometry, see for instance (CRAIZER; DOMITRZ; RIOS, 2020), (ISHIKAWA;
MACHIDA, 2006), (MARTÍNEZ, 2005), (MILÁN, 2013) and (NAKAJO, 2009), we seek to
understand better the class of frontal improper affine spheres described in remark 5.2.2 (b).
We also look forward to understand how the conditions given in theorem 5.2.1 are related to
invariants associated to frontals which were not explored in this thesis.
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CHAPTER

6
A EUCLIDEAN APPROACH TO LINE
CONGRUENCES WITH A FRONTAL

DIRECTRIX SURFACE

Most of the results in Kummer’s theory (see section 3.3) are proved for congruences
{x,ξξξ}, where ξξξ : U → R3 is an immersion and U ⊂ R2 is open. Our goal is to extend this
theory to the case of line congruences where the director surface ξξξ : U → R3 is a proper frontal.
For instance, we define principal surfaces and describe how their binary differential equation
is related to the equation of developable surfaces. Furthermore, when considering the exact
normal congruence given by a frontal x and its unit normal vector field n we study, in corollaries
6.2.3 and 6.2.4, how the Kummer principal lines (see definition 6.2.3) are related to the lines
of curvature of x (see definition 3.4.5). We mentioned in section 2 that in the regular case it is
possible to work using the tangent space of x or the tangent space of ξξξ . Here, we replace these
planes by the plane TΩ, where ΩΩΩ is a tangent moving basis of ξξξ . In this chapter, sometimes we
deal with a pair of frontals x and ξξξ , therefore in order to distinguish the matrix valued maps that
have the same role of ΛΛΛΩ, we denote ∆∆∆

Ω̄
the matrix such that Dξξξ = Ω̄ΩΩ∆∆∆

T
Ω̄

and δ
Ω̄

:= det(∆∆∆
Ω̄
)

where Ω̄ΩΩ is a tangent moving basis of ξξξ . In particular, if we take ξξξ = n the normal vector field
induced by a tangent moving basis ΩΩΩ of x, then is satisfied that Dn = ΩΩΩµµµT

Ω
(see (MEDINA-

TEJEDA, 2022a)), that is, ∆∆∆Ω = µµµΩ. The results in this chapter are part of a joint work with
Débora Lopes, Maria Aparecida Soares Ruas and Tito Alexandro Medina Tejeda (LOPES et al.,
2022).

6.1 Line congruences with a frontal director surface

Let us start with a special example of line congruence {x,ξξξ} for which x and ξξξ are
frontals and ξξξ is an equiaffine transversal vector field (in the sense of chapter 5) different from
the unit normal vector field of x. This is an important class of line congruences which generalize
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the idea of equiaffine line congruence when considering proper frontals.

Example 6.1.1. Let x = (u1,u2
2,4/15u1u5

2 +1/2u3
1u4

2 +u1u2
2) defined in U ⊂ R2, given by U =

(−1/10,1/10)× (−4,4), (see figure 7) and ξξξ =
1

ρ7/4

(
−3

√
3

8
ξ1,

9
√

3
8

ξ2,

√
3

240
ξ3

)
, where

ξ1 = 216u1
6u2

4 −189u1
4u2

5 +66u1
2u2

6 +16u2
7 +324u1

4u2
2

+9u1
2u2

3 +48u2
4 +108u1

2 +36u2

ξ2 =
(

216u1
4u2

4 +87u1
2u2

5 −16u2
6 +252u1

2u2
2 +24u2

3 +72
)

u2
2

ξ3 = 145800u1
8u2

8 +35721u1
6u2

9 +25326u1
4u2

10 +4896u1
2u2

11 +6480

+277020u1
6u2

6 +896u2
12 +114129u1

4u2
7 +39204u1

2u2
8 +5088u2

9

+179820u1
4u2

4 +88938u1
2u2

5 +12096u2
6 +48600u1

2u2
2 +14040u2

3

ρ = 54u1
4u2

4 +9u1
2u2

5 +4u2
6 +54u1

2u2
2 +12u2

3 +9.

Figure 7 – Frontal which admits an equiaffine transversal vector field different from its unit normal vector
field.

Remark 6.1.1. Along this chapter, we consider several times that ξξξ is a unitary frontal. In terms
of family of lines, there is no difference considering ξξξ unitary or not, but we work with this
restriction in order to extend some concepts of Kummer’s theory to this context. Next, we define
the relative quadratic forms associated to a line congruence.

6.1.1 Ω-Kummer fundamental forms

Definition 6.1.1. Let 𝒞 = {x,ξξξ} be a line congruence, where x : U → R3 is a smooth map,
ξξξ : U → R3 is a frontal and let ΩΩΩ be a tangent moving basis of ξξξ . If ΩΩΩ =

(
w1 w2

)
, we define
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the following quadratic forms:

ℐΩ(v) = ℰΩb2
1 +2ℱΩb1b2 +𝒢Ωb2

2, (6.1)

where ℰΩ = ⟨w1,w1⟩, ℱΩ = ⟨w1,w2⟩, 𝒢Ω = ⟨w2,w2⟩, v ∈ TΩ and (b1,b2) are the coordinates
of v in the basis w1,w2. This form is called the ΩΩΩ-Kummer first fundamental form of 𝒞 and we
denote by ℐℐℐΩ := ΩΩΩ

T
ΩΩΩ its associated matrix.

ℐℐΩ(v) = ℒΩb2
1 +(ℳ1Ω +ℳ2Ω)b1b2 +𝒩Ωb2

2, (6.2)

where ℒΩ = −⟨xu1,w1⟩, ℳ2Ω = −⟨xu1,w2⟩, ℳ1Ω = −⟨xu2,w1⟩ and 𝒩Ω = −⟨xu2,w2⟩. This
form is called the ΩΩΩ-Kummer second fundamental form of 𝒞 and we denote by ℐℐℐℐℐℐΩ :=−ΩΩΩ

T Dx
the matrix of these last coefficients.

Remark 6.1.2. Note that ℐΩ is a positive-definite quadratic form.

Let 𝒞 = {x,ξξξ} be a line congruence, where ξξξ : U → S2 is a frontal and let ΩΩΩ be a tangent
moving basis of ξξξ . Define the function 𝒦 Ω

q : R2 → R, given by

𝒦 Ω
q (b1,b2) =

bTℐℐℐℐℐℐΩad j(∆∆∆T
Ω)b

bTℐℐℐΩb
, (6.3)

where q ∈U , ad j() denotes the adjoint of a matrix, bT =
(

b1 b2

)
. Note that we can associate

(b1,b2) to the coordinates of a vector v = b1w1(q)+ b2w2(q), then we write 𝒦 Ω
q (b1,b2) =

𝒦 Ω
q (v).

Proposition 6.1.1. Let 𝒞 = {x,ξξξ} be a line congruence, where ξξξ is a frontal and let ΩΩΩ be a
tangent moving basis of ξξξ . Then

1. ℐℐℐ = ∆∆∆ΩℐℐℐΩ∆∆∆
T
Ω

2. ℐℐℐℐℐℐ = ∆∆∆ΩℐℐℐℐℐℐΩ.

Proof. Note that

ℐℐℐ = Dξξξ
T Dξξξ = (ΩΩΩ∆∆∆

T
Ω)

T (ΩΩΩ∆∆∆
T
Ω) = ∆∆∆ΩΩΩΩ

T
ΩΩΩ∆∆∆

T
Ω = ∆∆∆ΩℐℐℐΩ∆∆∆

T
Ω.

The case for ℐℐℐℐℐℐ follows analogously.

Given a line congruence 𝒞 = {x,ξξξ}, where ξξξ : U → S2 is a frontal and ΩΩΩ is a tangent
moving basis of ξξξ , the next proposition shows how the function 𝒦q, from Kummer’s theory
(given in 3.15) and the function 𝒦 Ω

q , defined in (6.3), are related when q /∈ Σ(ξξξ ).
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Proposition 6.1.2. Let 𝒞 = {x,ξξξ} be a line congruence, where ξξξ : U → S2 is a frontal and let ΩΩΩ

be a tangent moving basis of ξξξ . Then, for each q /∈ Σ(ξξξ ), δΩ𝒦q(a1,a2) = 𝒦 Ω
q (b1,b2), where

we write bT = (b1,b2) ∈ R2, aT = (a1,a2) = bT ∆∆∆
−1
Ω
(q) and δΩ = det∆∆∆Ω(q).

Proof. Since q /∈ Σ(ξξξ ), let w = Dξξξ qa, hence we can write w = ΩΩΩ∆∆∆
T
Ωa, where aT =

(
a1 a2

)
.

Thus a = ∆∆∆
−T
Ω

b, where bT =
(

b1 b2

)
are the coordinates of w relative to ΩΩΩ. From proposition

6.1.1,

𝒦q(a1,a2) =
aTℐℐℐℐℐℐa
aTℐℐℐa

=
bT ∆∆∆

−1
Ω
ℐℐℐℐℐℐ∆∆∆

−T
Ω

b

bT ∆∆∆
−1
Ω
ℐℐℐ∆∆∆

−T
Ω

b
=

bT ∆∆∆
−1
Ω

(∆∆∆ΩℐℐℐℐℐℐΩ)∆∆∆
−T
Ω

b

bT ∆∆∆
−1
Ω

(
∆∆∆ΩℐℐℐΩ∆∆∆

T
Ω

)
∆∆∆
−T
Ω

b

=
1

det(∆∆∆Ω)

bTℐℐℐℐℐℐΩad j(∆∆∆T
Ω)b

bT ∆∆∆
−1
Ω

(
∆∆∆ΩℐℐℐΩ∆∆∆

T
Ω

)
∆∆∆
−T
Ω

b

hence

δΩ𝒦q(a1,a2) =
bTℐℐℐℐℐℐΩad j(∆∆∆T

Ω)b
bTℐℐℐΩb

= 𝒦 Ω
q (b1,b2) (6.4)

Note that 𝒦 Ω
q (a1,a2) = 𝒦 Ω

q (ϕ(a1,a2)), for all ϕ ∈ R∖0, thus we can consider 𝒦 Ω
q :

S1 → R.

Proposition 6.1.3. Let 𝒞 = {x,ξξξ} be a line congruence, where ξξξ : U → S2 is a frontal. The
congruence 𝒞 is normal if and only if the matrix ℐℐℐℐℐℐΩad j(∆∆∆T

Ω) is symmetric.

Proof. It follows from proposition 5.1 in (IZUMIYA; SAJI; TAKEUCHI, 2003) that 𝒞 is normal
if and only if ℐℐℐℐℐℐ = ∆∆∆ΩℐℐℐℐℐℐΩ is symmetric. It can be shown by straightforward calculations that
this is equivalent to say that ℐℐℐℐℐℐΩad j(∆∆∆T

Ω) is symmetric.

6.2 Principal and developable surfaces of the congruence

6.2.1 Kummer principal directions

Definition 6.2.1. Let {x,ξξξ} be a line congruence, where ξξξ : U → R3 is a frontal and let C be a
curve on x parametrized by x(t) = x(α(t)), where α : I →U is smooth and ξξξ (t) = ξξξ (α(t)) is
the restriction of ξξξ to C. The ruled surface SC, parametrized by

Y (t,v) = x(t)+ vξξξ (t), t ∈ I ⊂ R,v ∈ R, (6.5)

is called a surface of the congruence.

Definition 6.2.2. Let {x,ξξξ} be a line congruence, where ξξξ : U → S2 is a proper frontal, ΩΩΩ =(
w1 w2

)
a tangent moving basis of ξξξ . We say that a direction w ∈ TΩ(q) is a Kummer principal

direction if 𝒦 Ω
q (w) is an extreme value of 𝒦 Ω

q .
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Remark 6.2.1. The Kummer principal directions do not depend on the chosen tangent moving
basis. In fact, let {x,ξξξ} be a line congruence, where ξξξ : U → R3 is a proper frontal, ΩΩΩ and
Ω̄ΩΩ are two tangent moving bases of ξξξ . Thus there is B : U → GL(2,R) such that ΩΩΩ = Ω̄ΩΩB.
Note that ℐℐℐΩ = ΩΩΩ

T
ΩΩΩ = BT Ω̄ΩΩ

T
Ω̄ΩΩB = BTℐℐℐ

Ω̄
B and ℐℐℐℐℐℐΩ = ΩΩΩ

T Dx = BT Ω̄ΩΩ
T Dx = BTℐℐℐℐℐℐ

Ω̄
. Fur-

thermore, if Dξξξ = ΩΩΩ∆∆∆
T
Ω = Ω̄ΩΩ∆∆∆

T
Ω̄

, then ∆∆∆
T
Ω̄
= B∆∆∆

T
Ω. Using this and 6.3 we get 𝒦 Ω̄

q (b̄1, b̄2) =

det(B)𝒦 Ω
q (b1,b2), where (b̄1, b̄2) and (b1,b2) are the coordinates of a vector v ∈ TΩ(q) = T

Ω̄
(q)

in the bases ΩΩΩ and Ω̄ΩΩ, respectively. Therefore, the extreme values of 𝒦 Ω
q do not depend on the

tangent moving basis.

Definition 6.2.3. Let 𝒞 = {x,ξξξ} be a line congruence, where ξξξ : U → S2 is a proper frontal and
ΩΩΩ a tangent moving basis of ξξξ . Let SC be a surface of the congruence, given by

Y (t,v) = x(t)+ vξξξ (t), t ∈ I ⊂ R,v ∈ R, (6.6)

where α : U → I, such that α(t) = (u1(t),u2(t)) is smooth, x(t) = x(α(t)) and ξξξ (t) = ξξξ (α(t)).

We say that SC is a principal surface if for all t ∈ I such that

(
b1

b2

)
= ∆∆∆

T
Ω

(
u′1
u′2

)
̸= 0, (b1,b2)

determines a Kummer principal direction in TΩ. We call α : I →U a Kummer principal line.

Lemma 6.2.1. Let {x,ξξξ} be a line congruence, where ξξξ : U → S2 is a proper frontal, ΩΩΩ is a
tangent moving basis of ξξξ and we write ∆∆∆Ω =

(
δi j

)
. Then, 𝒦 Ω

q has an extreme value at (b1,b2)

if and only if

b1(δ22ℒΩ −δ12ℳ1)+
b2

2
(δ11ℳ1Ω −δ21ℒΩ +δ22ℳ2Ω −δ12𝒩Ω) (6.7)

− k0(b1ℰΩ +b2ℱΩ) = 0

b2(δ11𝒩Ω −δ21ℳ2Ω)+
b1

2
(δ11ℳ1Ω −δ21ℒΩ +δ22ℳ2Ω −δ12𝒩Ω) (6.8)

− k0(b2𝒢Ω +b1ℱΩ) = 0,

where k0 = 𝒦 Ω
q (b1,b2).

Proof. Note that

𝒦 Ω
q (b1,b2) =

b2
1(δ22ℒΩ −δ12ℳ1)+b2

2(δ11𝒩Ω −δ21ℳ2Ω)

b2
1ℰΩ +2b1b2ℱΩ +b2

2𝒢Ω

+
b1b2(δ11ℳ1Ω −δ21ℒΩ +δ22ℳ2Ω −δ12𝒩Ω)

b2
1ℰΩ +2b1b2ℱΩ +b2

2𝒢Ω

Let us suppose that 𝒦 Ω
q has an extreme value at (b1,b2). At an extreme value k0 of 𝒦 Ω

q , we

have
∂𝒦 Ω

q
∂bi

= 0, i = 1,2. From this, we get (6.7) and (6.8). Reciprocally, if (b1,b2) is such that
(6.7) and (6.8) are valid, then we have directly that k0 is an extreme value of 𝒦 Ω

q . Let us show
that 𝒦 Ω

q (b1,b2) = k0. Let us suppose b1 ̸= 0 and b2 ̸= 0 (other cases are analogous). If we sum
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(6.7) multiplied by b1 with (6.8) multiplied by b2, we obtain

b2
1(δ22ℒΩ −δ12ℳ1)+b1b2(δ11ℳ1Ω −δ21ℒΩ +δ22ℳ2Ω −δ12𝒩Ω)

+b2
2(δ11𝒩Ω −δ21ℳ2Ω) = k0(b2

1ℰΩ +2b1b2ℱΩ +b2
2𝒢Ω).

From this, we have k0 = 𝒦 Ω
q (b1,b2).

Proposition 6.2.1. Let {x,ξξξ} be a line congruence, where ξξξ : U → S2 is a proper frontal, ΩΩΩ a
tangent moving basis of ξξξ and we write ∆∆∆Ω =

(
δi j

)
. Then:

(1) A curve (u1(t),u2(t)) is a Kummer principal line if and only if this is a solution of

C1b2
1 +C2b1b2 +C3b2

2 = 0, for all t, (6.9)

where

C1 = 2ℱΩ (δ22ℒΩ −δ12ℳ1Ω)−ℰΩ (δ11ℳ1Ω −δ21ℒΩ +δ22ℳ2Ω −δ12𝒩Ω)

C2 = 2𝒢Ω (δ22ℒΩ −δ12ℳ1Ω)−2ℰΩ (δ11𝒩Ω −δ21ℳ2Ω)

C3 = 𝒢Ω (δ11ℳ1Ω −δ21ℒΩ +δ22ℳ2Ω −δ12𝒩Ω)−2ℱΩ (δ11𝒩Ω −δ21ℳ2Ω) .

We call (6.9) the equation of principal surfaces of the congruence.

(2) If the congruence is normal then (6.9) can be written as(
u′1 u′2

)
∆∆∆ΩPad j(ℐℐℐℐℐℐΩ)

T
∆∆∆ΩℐℐℐΩ∆∆∆

T
Ω

(
u′1
u′2

)
= 0, (6.10)

where P =

(
0 1
−1 0

)
.

Proof. 1. From (6.7) and (6.8), we have that (b1(t),b2(t)) provides an extreme value of 𝒦 Ω
q

for all t if and only if∣∣∣∣∣∣∣
b1(δ22ℒΩ −δ12ℳ1)+

b2

2
ℳ b1ℰΩ +b2ℱΩ

b2(δ11𝒩Ω −δ21ℳ2Ω)+
b1

2
ℳ b2𝒢Ω +b1ℱΩ

∣∣∣∣∣∣∣= 0,

where ℳ = (δ11ℳ1Ω − δ21ℒΩ + δ22ℳ2Ω − δ12𝒩Ω). The equation (6.9) is obtained
directly from the above expression.

2. We know from proposition 6.1.3 that {x,ξξξ} is normal if and only if ℐℐℐℐℐℐΩad j(∆∆∆T
Ω) is

symmetric, which is equivalent to say that

δ11ℳ1Ω −δ21ℒΩ = δ22ℳ2Ω −δ12𝒩Ω. (6.11)

By using this condition in (6.9), we obtain (6.10).
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Proposition 6.2.2. The discriminant 𝒟 =C2
2 −4C1C3 of the equation (6.9) is non-negative. This

discriminant is zero if and only if the coefficients C1,C2 and C3 are identically zero.

Proof. If we write

ℒ = 2(δ22ℒΩ −δ12ℳ1) ,

𝒩 = 2(δ11𝒩Ω −δ21ℳ2Ω) ,

ℳ = (δ11ℳ1Ω −δ21ℒΩ +δ22ℳ2Ω −δ12𝒩Ω) ,

then

C1 = ℱΩℒ −ℰΩℳ ,

C2 = 𝒢Ωℒ −ℰΩ𝒩 ,

C3 = 𝒢Ωℳ −ℱΩ𝒩 .

Hence, 𝒢ΩC1 −ℱΩC2 +ℰΩC3 = 0, from which we get C3 =
ℱΩC2 −𝒢ΩC1

ℰΩ

. Thus

𝒟 =C2
2 −4

C1ℱΩC2

ℰΩ

+4
𝒢ΩC2

1
ℰΩ

=

(
C2 −2

C1ℱΩ

ℰΩ

)2

−4
C2

1ℱ 2
Ω

ℰ 2 +4
𝒢ΩC2

1
ℰΩ

=

(
C2 −2

C1ℱΩ

ℰΩ

)2

+4
C2

1
ℰ 2

Ω

(ℰΩ𝒢Ω −ℱΩ)≥ 0.

As ℰΩ𝒢Ω −ℱΩ > 0, we get 𝒟 = 0 if and only if C1 =C2 = 0, which implies that C3 = 0.

Proposition 6.2.2 asserts that at points where 𝒟 > 0 there are only two Kummer principal
directions.

We can also look at the developable surfaces associated to a given line congruence {x,ξξξ},
where x : U → R3 is a smooth map and ξξξ : U → R3 is a unitary proper frontal. In order to do
this, we have the next proposition.

Proposition 6.2.3. Let {x,ξξξ} be a line congruence, where ξξξ : U → S2 is a proper frontal, ΩΩΩ a tan-
gent moving basis of ξξξ . A surface of the congruence Y (t,v) = x(u1(t),u2(t))+ vξξξ (u1(t),u2(t))

is a developable surface if and only if (u1(t),u2(t)) is a solution of

(
u′1 u′2

)
Pad j(ℐℐℐℐℐℐΩ)ℐℐℐΩ∆∆∆

T
Ω

(
u′1
u′2

)
= 0. (6.12)

We call (6.12) the equation of developable surfaces of the congruence.

Proof. Let us suppose α : I → U a smooth curve, given by α(t) = (u1(t),u2(t)), such that
the surface of the congruence Y (t,v) = x(t)+ vξξξ (t) is developable, where x(t) = x(α(t)) and
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ξξξ (t) = ξξξ (α(t)). Then it is known that
[
x′,ξξξ ′

,ξξξ
]
= 0 (See section 3.5 in (CARMO, 2016)). From

this expression, we obtain the differential equation of developable surfaces

u′21
[
xu1 ,ξξξ u1

,ξξξ
]
+u′1u′2

([
xu1,ξξξ u2

,ξξξ
]
+
[
xu2,ξξξ u1

,ξξξ
])

+u′22
[
xu2,ξξξ u2

,ξξξ
]
= 0. (6.13)

By considering that ξξξ is unitary we have ξξξ =
w1 ×w2

‖w1 ×w2‖
, where ΩΩΩ =

(
w1 w2

)
. We also know

that Dξξξ = ΩΩΩ∆∆∆
T
Ω, where ∆∆∆Ω =

(
δi j

)
, thus

[
xu1,ξξξ u1

,ξξξ
]
=

1
‖w1 ×w2‖

⟨xu1,(δ11w1 +δ12w2)× (w1 ×w2)⟩.

By using the coefficients of the first and second ΩΩΩ-Kummer fundamental forms and the formula
for the vector triple product a× (b× c) = ⟨a,c⟩b−⟨a,b⟩c, we get[

xu1,ξξξ u1
,ξξξ
]
= δ11(ℱΩℒΩ −ℰΩℳ1Ω)+δ12 (ℒΩ𝒢Ω −ℱΩℳ1Ω) . (6.14)

In a similar way, we obtain[
xu1,ξξξ u2

,ξξξ
]
+
[
xu2 ,ξξξ u1

,ξξξ
]
=δ21(ℱΩℒΩ −ℰΩℳ1Ω)+δ22(𝒢ΩℒΩ −ℱΩℳ1Ω) (6.15)

+δ11(ℱΩℳ2Ω −ℰΩ𝒩Ω)+δ12(𝒢Ωℳ2Ω −ℱΩ𝒩Ω)[
xu2 ,ξξξ u2

,ξξξ
]
=δ21(ℱΩℳ2Ω −ℰΩ𝒩Ω)+δ22(𝒢Ωℳ2Ω −ℱΩ𝒩Ω). (6.16)

Hence, from (6.14), (6.15) and (6.16) we can rewrite (6.13) as

(
u′1 u′2

)
Pad j(ℐℐℐℐℐℐΩ)ℐℐℐΩ∆∆∆

T
Ω

(
u′1
u′2

)
= 0.

Theorem 6.2.1. Let {x,ξξξ} be a normal line congruence, where ξξξ : U → S2 is a proper frontal,
ΩΩΩ a tangent moving basis of ξξξ . Then the equation of principal surfaces is a multiple of the
equation of developable surfaces by δΩ, where δΩ = det∆∆∆Ω. More precisely

∆∆∆ΩPad j(ℐℐℐℐℐℐΩ)
T

∆∆∆ΩℐℐℐΩ∆∆∆
T
Ω = δΩPad j(ℐℐℐℐℐℐΩ)ℐℐℐΩ∆∆∆

T
Ω. (6.17)

Proof. We know from propositions (6.2.1) and (6.2.3) that the binary differential equations
which provide principal and developable surfaces of the congruence are, respectively, given by

(
u′1 u′2

)
∆∆∆ΩPad j(ℐℐℐℐℐℐΩ)

T
∆∆∆ΩℐℐℐΩ∆∆∆

T
Ω

(
u′1
u′2

)
= 0, (6.18)

(
u′1 u′2

)
Pad j(ℐℐℐℐℐℐΩ)ℐℐℐΩ∆∆∆Ω

(
u′1
u′2

)
= 0. (6.19)
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It follows from proposition 6.1.3 that ℐℐℐℐℐℐΩad j(∆∆∆T
Ω) is symmetric, since we have a normal

congruence. It can be shown by straightforward calculations that this is equivalent to say that
ad j(ℐℐℐℐℐℐΩ)

T ∆∆∆Ω is symmetric. Hence, we have

∆∆∆ΩPad j(ℐℐℐℐℐℐΩ)
T

∆∆∆ΩℐℐℐΩ∆∆∆
T
Ω

= ∆∆∆ΩP∆∆∆
T
Ωad j(ℐℐℐℐℐℐΩ)ℐℐℐΩ∆∆∆

T
Ω

=−∆∆∆ΩP∆∆∆
T
ΩPPad j(ℐℐℐℐℐℐΩ)ℐℐℐΩ∆∆∆

T
Ω, since −P = P−1

= ∆∆∆Ωad j(∆∆∆Ω)Pad j(ℐℐℐℐℐℐΩ)ℐℐℐΩ∆∆∆
T
Ω, since −P∆∆∆

T
ΩP = ad j(∆∆∆Ω)

= δΩPad j(ℐℐℐℐℐℐΩ)ℐℐℐΩ∆∆∆
T
Ω.

Corollary 6.2.1. Let {x,ξξξ} be a normal line congruence. If x and ξξξ are analytic, then an analytic
solution of the equation of principal surfaces is either a branch of Σ(ξξξ ) or an analytic solution of
the equation of developable surfaces.

Proof. Let γ : I →U , given by γ(t) = (u1(t),u2(t)), be an analytic solution of the equation of
principal surfaces, then δΩ(γ) is an analytic mapping. If there is t0 such that the derivatives
δΩ(γ)

( j)(t0) = 0, for all positive integer j, then δΩ(γ)(t) = 0, for all t ∈ I. Otherwise, the zeros
of δΩ(γ) are isolated and therefore γ is a solution of the equation of developable surfaces, once
we have (6.17).

From now on, we consider x a frontal, ΩΩΩ a tangent moving basis of x and ξξξ its normal
vector field. Also note that we can take ΩΩΩ as a tangent moving basis of ξξξ .

Proposition 6.2.4. Let x : U → R3 and ξξξ : U → S2 be two proper frontals, such that ξξξ is the
unit normal vector field of x. Then, w is a principal direction if and only if is a Kummer principal
direction associated to the congruence {x,ξξξ}.

Proof. It follows from (MEDINA-TEJEDA, 2022b) and from remark 6.2.1 that the principal
directions (see definition 3.4.4) and the Kummer principal directions do not depend on the chosen
tangent moving basis, so let us consider ΩΩΩ an orthonormal one, i.e, ΩΩΩ

T
ΩΩΩ = idR2 . From lemma

3.1 and remark 3.1 in (MEDINA-TEJEDA, 2022b), it follows that IIΩad j(ΛT
Ω
) is symmetric,

then the principal directions are given by its eigenvectors. Since the congruence is normal,
ℐℐℐℐℐℐΩad j(∆∆∆T

Ω) is symmetric and we get analogously that the Kummer principal directions are
given by its eigenvectors. As Dξξξ = ΩΩΩ∆∆∆

T
Ω and Dx = ΩΩΩΛT

Ω
, then

IIΩad j(ΛΛΛT
Ω) =−ΩΩΩ

T Dξξξ ad j(ΛΛΛT
Ω) =−ΩΩΩ

T
ΩΩΩ∆∆∆

T
Ωad j(ΛΛΛT

Ω) =−∆∆∆
T
Ωad j(ΛΛΛT

Ω)

ℐℐℐℐℐℐΩad j(∆∆∆T
Ω) =−ΩΩΩ

T Dxad j(∆∆∆T
Ω) =−ΩΩΩ

T
ΩΩΩΛΛΛ

T
Ωad j(∆∆∆T

Ω) =−ΛΛΛ
T
Ωad j(∆∆∆T

Ω).

Hence, IIΩad j(ΛT
Ω
) = ad j(ℐℐℐℐℐℐΩad j(∆∆∆T

Ω)). Then, the eigenvectors of IIΩad j(ΛΛΛT
Ω) are the eigen-

vectors of ℐℐℐℐℐℐΩad j(∆∆∆T
Ω), that is, w ∈ TΩ is a principal direction if and only if is a Kummer

principal direction.
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Remark 6.2.2. It follows from IIΩad j(ΛΛΛT
Ω) = ad j(ℐℐℐℐℐℐΩad j(∆∆∆T

Ω)) that if w1,w2 are the eigen-
vectors of ℐℐℐℐℐℐΩad j(∆∆∆T

Ω) associated to the eigenvalues γ1,γ2, respectively, then w1,w2 are the
eigenvectors of IIΩad j(ΛΛΛT

Ω) associated to the eigenvalues γ2,γ1, respectively. Furthermore, if
w1, for instance, is a Kummer principal direction associated to a maximum of 𝒦 Ω

q , then w1

is a principal direction associated to a minimum of the ΩΩΩ-relative normal curvature, which is
defined in (MEDINA-TEJEDA, 2022b). That is, if we denote by 𝒦1Ω and 𝒦2Ω the minimum
and the maximum of 𝒦 Ω

q , respectively, then k1Ω = 𝒦2Ω and k2Ω = 𝒦1Ω where k1Ω and k2Ω are
the ΩΩΩ-relative principal curvatures (see definition 3.4.3).

Example 6.2.1. Despite proposition 6.2.4, it is not true that for a line congruence given by a
frontal x : U → R3 and its unit normal vector field ξξξ : U → S2, a curve is a Kummer principal
line if and only if it is a line of curvature. Let us take, for instance, the congruence given by

x(u1,u2) =
(
u1,u2,u2

1u2 +u2
2
)

ξξξ (u1,u2) =
1√

4u2
1u2

2 +u4
1 +4u2

1u2 +4u2
2 +1

(
2u1u2,−u2

1 −2u2,1
)
.

In this case, the Gaussian curvature is given by

K(u1,u2) =
−4(u1

2 −u2)

(u14 +4u12u22 +4u12u2 +4u22 +1)2

so u2 = u2
1 is a curve of parabolic points. The equation of the lines of curvature is given by

(2u3
1u2

2 −4u1u3
2 +u1)u′21 +(−u4

1u2 −4u3
2 −u2 +1)u′2u′1

+(−u5
1 −2u3

1u2 −u1)u′22 = 0.

On the other hand, the equation of principal surfaces of the congruence is given by(
u2 −u2

1
)[(

2u3
1u2

2 −4u1u3
2 +u1

)
u′21 +

(
−u4

1u2 −4u3
2 −u2 +1

)
u′2u′1

+
(
−u5

1 −2u3
1u2 −u1

)
u′22
]
= 0.

Then, the curve of parabolic points u2 = u2
1 is a Kummer principal line, but it is not a line of

curvature.

Next, we have some results regarding the relation between the Kummer principal lines
and the lines of curvature of a frontal.

Corollary 6.2.2. Let x : U → R3 be a frontal, ΩΩΩ a tangent moving basis of x and ξξξ : U → S2 a
normal vector field induced by ΩΩΩ. If ξξξ is a proper frontal, then the equation of principal surfaces
is

γ
′T

∆∆∆ΩPad j(ℐℐℐℐℐℐΩ)
T

∆∆∆ΩℐℐℐΩ∆∆∆
T
Ωγ

′ =−KΩ det(IΩ)γ
′T Pα

T
Ω(γ)γ

′, (6.20)

where KΩ and αΩ are related with x (see section 3.4).
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Proof. Note that ∆∆∆Ω = µΩ, KΩ = det∆∆∆Ω, ℐℐℐΩ = IΩ and ℐℐℐℐℐℐΩ =−IΩΛΛΛ
T
Ω. Thus, from (6.17)

∆∆∆ΩPad j(ℐℐℐℐℐℐΩ)
T

∆∆∆ΩℐℐℐΩ∆∆∆
T
Ω = δΩPad j(ℐℐℐℐℐℐΩ)ℐℐℐΩ∆∆∆

T
Ω

= KΩPad j(−IΩΛΛΛ
T
Ω)IΩµ

T
Ω

= KΩPad j(ΛΛΛT
Ω)ad j(−IΩ)IΩµ

T
Ω

=−KΩ det(IΩ)Pα
T
Ω(γ),

where Dx = ΩΩΩΛΛΛ
T
Ω.

Note that via corollary 6.2.2 we can express the equation of principal surfaces of the
congruence (6.10) only considering quantities related to the frontal x, when we have an exact
normal congruence.

Remark 6.2.3. It is worth observing above that −det(IΩ)γ
′T PαT

Ω
(γ)γ ′ = 0 is the equation of

the developable surfaces of the congruence.

Corollary 6.2.3. Let x : U → R3 and ξξξ : U → S2 be two proper frontals with the same singular
sets, such that ξξξ is the unit normal vector field of x. Then, a curve on x is a Kummer principal
line if and only if it is a line of curvature of x.

Proof. The results follows from the fact that λΩγ ′T PαT
Ω
(γ)γ ′ = 0 is the equation of the lines of

curvature (see proposition 3.4.2) and from K−1
Ω

(0) = λ
−1
Ω

(0).

Corollary 6.2.4. Let x : U →R3 be a proper frontal with extendable normal curvature, such that
the extension of the Gaussian curvature K never vanishes. Then, the Kummer principal lines
coincide with the lines of curvature of x.

Proof. It follows from corollary 3.1 in (MEDINA-TEJEDA, 2022b) that x and its normal vector
field have the same singular set, hence applying corollary 6.2.4 we have the result.

Example 6.2.2. Let x : U → R3 defined by x =
(
u1,

2
5u5

2 +u2
2,u1u2

2
)
, for U = (−1,1)× (−1,1)

(Figure 8). Then Dx = ΩΩΩΛΛΛ
T
Ω, where

ΩΩΩ =

 1 0
0 u3

2 +1
u2

2 u1

 and ΛΛΛΩ =

(
1 0
0 2u2

)
. (6.21)

The unit normal vector field induced by ΩΩΩ is given by

ξξξ =
1
µ
(−u2

2(u2 +1)(u2
2 −u2 +1),−u1,(u2 +1)(u2

2 −u2 +1)),

where µ =
√

u210 +2u27 +u26 +u24 +2u23 +u12 +1. The frontal x in this example is special,
because it is a frontal with extendable normal curvature without false singularities (see comments
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after theorem 3.2 in (MEDINA-TEJEDA, 2022b)). Furthermore, λΩ = 2u2 and

KΩ =
2u2(u2 +1)2(u2

2 −u2 +1)2

(u10
2 +2u7

2 +u6
2 +u4

2 +2u3
2 +u2

1 +1)2
,

therefore, considering that at a regular point the Gaussian curvature is given by
KΩ

λΩ

, we obtain

K =
(u2 +1)2(u2

2 −u2 +1)2

(u10
2 +2u7

2 +u6
2 +u4

2 +2u3
2 +u2

1 +1)2

is the extension of the Gaussian curvature to U . Then, the Gaussian curvature also admits an
extension to U and in this case, the extension is non-vanishing. By applying corollary 6.2.4, the
Kummer principal lines coincide with the lines of curvature of x, which are given by the implicit
differential equation

2u2

[(
u2

7 +u2
4 +u2

3 +1
)

u′1
2
+
(

3u1u2
6 +3u1u2

2
)

u′1u′2
]

+2u2

[(
−4u2

11 −12u2
8 +2u1

2u2
5 −12u2

5 −4u1
2u2

2 −4u2
2
)

u′22
]
= 0.

Figure 8 – Frontal for which the unit normal vector has the same singular set.
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CHAPTER

7
SINGULARITIES OF 2-PARAMETER PLANE

CONGRUENCES IN R4

In this chapter we briefly discuss parametric families of planes and their generic singu-
larities. First, we start with a more general case, taking into account r-surfaces in Rn (in the
sense of (LIMA, 2004), chapter 7) and families of n− r-planes, where n−1 > r > 1. The results
in section 7.1 can be seen as generalizations of the results from section 4.2, when we assume
codimension greater than or equal to 2 and parametrized families of planes. In section 7.2 we
discuss 2-parameter family of planes and classify their generic singularities. In 7.3 we discuss
some of the problems related to plane congruences we want to explore in the future.

7.1 A more general case
Let x : U →Rn and ξξξ

i : U →Rn∖{0}, where U ⊂Rr is open and i= 1,2, · · · ,n−r. Then,
we associate to (x,ξξξ 1

,ξξξ
2
, · · · ,ξξξ n−r

) ∈ C∞(U,Rn ×Rn ∖{0}× ·· ·×Rn ∖{0}︸ ︷︷ ︸
n−r−times

) ≡ C∞(U,Rn ×

(Rn ∖{0})n−r) the congruence

F(x,ξξξ ) : U × I1 ×·· ·× In−r → Rn

(u, t1, · · · , tn−r) ↦→ x(u)+ t1
ξξξ

1
+ · · · tn−r

ξξξ
n−r

,

where ξξξ = (ξξξ
1
, · · · ,ξξξ n−r

), I j is an open interval for all j ∈ {1, · · · ,n− r} and the vector fields
ξξξ

1
, · · · ,ξξξ n−r are linearly independent. When there is no risk of confusion, we drop the subscript

in F(x,ξξξ ). Write

𝒲n−r = {ξξξ = (ξξξ
1
, · · · ,ξξξ n−r

) ∈C∞(U,(Rn ∖{0})n−r) : ξξξ
1
, · · · ,ξξξ n−r are linenarly independent}.

(7.1)

We can think of ξξξ ∈ 𝒲n−r as a parametrized family n× (n− r) of matrices, thus given u ∈U

and ξξξ ∈ 𝒲n−r at least one of the (n− r)× (n− r) minors is not zero at u, for all u ∈U . Let us
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suppose, without loss of generality, that the minor given by the first n− r rows is not zero at
u0. Then, there is an open subset U0 ⊂U such that this minor is not zero for all u ∈U0. Taking
this into account there exists a germ of diffeomorphism h : (Rn,u0,0) → (Rn,u0, t0), where
t0 = (t1

0 , t
2
0 , · · · , t

n−r
0 ), such that the first n− r coordinates of F̃ = F ∘h are given by

F̃j = a j +
n−r

∑
i=1

t1
ξξξ

i
j, j = 1, · · · ,n− r, (7.2)

where ξξξ
i
j indicates the j-th component of ξξξ

i and ak = xk(u0)+∑
n−r
j=1 t j

0ξξξ
j
k(u0), k = 1,2, · · · ,n−r.

Thus, if we write a0 = (a1, · · · ,an−r) and G(u, t) = (F̃1, · · · , F̃n−r), we get G−1(a0) = {(u,0) :
u ∈ (U0,u0)}. Using this system of coordinates, we seek to prove that F̃ is an (n−r)-dimensional
unfolding of a germ from Rr to Rr.

Let πn−r : Rn → Rr be the projection in Rr given by π(x1, · · · ,xn−r,xn−r+1, · · · ,xn) =

(xn−r+1, · · · ,xn) and f̃ (u) = πn−r ∘ F̃(u,0).

Proposition 7.1.1. With notation as above, the map germ F̃ : (Rn,u0,0) → Rn is an (n− r)-
dimensional unfolding of f̃ (u) = πn−r ∘ F̃(u,0).

Proof. Take

i : (Rr,u0)→ Rn

u ↦→ (u,0)

j : Rr → Rn

y ↦→ (a0,y)

then, F̃ ∘ i = j ∘ f̃ . Note that F̃ is transverse to j, since we are considering F̃j written as in (7.2).
Furthermore,

{(u, t,y) : F̃(u, t) = j(y)}= {(u,0, f̃ (u)) : u ∈ (Rr,u0)}.

Notice that (i, f ) : (Rr,u0)→{(u, t,y) : F̃(u, t) = j(y)} is given by (i, f̃ )(u) = (u,0, f̃ (u)), thus
is a diffeomorphism. Therefore, (F̃ , i, j) is a two dimensional unfolding of f̃ , from lemma
2.3.1.

Lemma 7.1.1. Let W ⊂ Jk(r,r) be a submanifold. For any fixed ξξξ ∈ 𝒲n−r and any fixed point
q0 = (u0, t0) ∈U × I1 ×·· ·× In−r, such that the minor given by the first n− r rows of ξξξ is not
zero at u0, the set

T ξξξ

W,q0
=
{

x ∈C∞(U,Rn) : jk
1

(
πn−r ∘ F̃(x,ξξξ )

)
tW at (u0, t0)

}
is a residual subset of C∞ (U,Rn).
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Proof. In what follows we identify C∞(U,Rn)×C∞(U,Rn ∖{0})×·· ·×C∞(U,Rn ∖{0}︸ ︷︷ ︸
n−r−times

) with

C∞(U,Rn × (Rn ∖{0})n−r) and we take the C∞-Whitney topology induced on C∞(U,Rn)×{ξξξ}.

Let us take {C j}∞
j=1 a countable open cover for W , such that C j is compact for all j ∈ N.

Define

T ξξξ

W,q0,C j
= {x ∈C∞(U,Rn) : jk

1

(
πn−r ∘ F̃(x,ξξξ )

)
tW with jk

1

(
πn−r ∘ F̃(x,ξξξ )

)
(q0) ∈C j}. (7.3)

We claim that 7.3 is open. In fact, taking into account that the map ĵk
1 : C∞(U0,Rn)→C∞(U0 ×

I1 ×·· ·× In−r,Jk(r,r)), given by ĵk
1(x) = jk

1

(
πn−r ∘ F̃(x,ξξξ )

)
is continuous, where U0 ⊂U is an

open subset such that the minor given by the first n− r rows of ξξξ is not zero for all u ∈U0, define

OW,C j = {g ∈C∞(U0 × I1 ×·· ·× In−r,Jk(r,r)) : g tW at q0,g(q0) ∈C j},

which is open. Thus, as the restriction map res|U0
: C∞(U,Rn)→C∞(U0,Rn) is also continuous,

it follows that

T ξξξ

W,q0,C j
=
(

res|U0

)−1
∘
(

ĵk
)−1

(OW,C j) is open.

If we show that T ξξξ

W,q0,C j
is dense, then T ξξξ

W,q0
=
⋂

j∈N
T ξξξ

W,q,C j
is residual. Since the restriction

map is surjective it is enough to show that

TW,q0,C j,U0 = {x ∈C∞(U0,Rn) : jk
1

(
πn−r ∘ F̃(x,ξξξ )

)
tW with jk

1

(
πn−r ∘ F̃(x,ξξξ )

)
(q0) ∈C j}

is dense. Write P(r,r,k) = {(P1, · · · ,Pr) : Pi is a polynomial with Pi(0) = 0 and deg(Pi)≤ k =

0, i= 1, · · · ,r}. Given x∈C∞(U0,Rn) and P= (P1, · · · ,Pr)∈P(r,r,k), define f(x,P) : U0×I1 · · ·×
In−r → Rn by

f(x,P)(u, t) = πn−r ∘ F̃(x,ξξξ )(u, t)+P(u).

Define also

Φ : U0 × I1 ×·· ·× In−r ×P(r,r,k)→ Jk(r,r)

(u, t,P) ↦→ jk
1 fx,P(u, t)

which is a submersion, thus Φ tW . Then, via lemma 2.3.3

{P ∈ P(r,r,k) : ΦP tW at q0, such that ΦP(q0) ∈C j}

is dense in P(r,r,k). Hence, there is {Pn} a sequence in P(r,r,k) such that Pn → 0, with ΦPn tW ,
for all n ∈ N. Note that xn = x+Pn ∈ TW,q0,C j,U0 for all n ∈ N and xn → x, therefore, TW,q0,C j,U0

is dense.
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Remark 7.1.1. Let

𝒪1 = {δδδ ∈ 𝒲n−r :
(

δδδ δδδ u1 · · · δδδ ur

)
has rank ≥ 2}.

Then, it follows analogously to remark 4.2.1 that 𝒪1 is a residual subset of 𝒲n−r.

Thus, it follows from lemma 7.1.1 that the set

TW,q0 =

(x,ξξξ ) ∈C∞(U,Rn × (Rn ∖{0})n−r) : jk
1

(
πn−r ∘ F̃(x,ξξξ )

)
tW at q0 and ξξξ ∈𝒪1 ×·· ·×𝒪1︸ ︷︷ ︸

n−r times


is residual. We proceed analogously if we start considering that any other minor of ξξξ is not zero
in order to obtain a residual set as the above one. Then, we have the following theorem.

Theorem 7.1.1. There is an open dense set 𝒪 ⊂ C∞(U,Rn × (Rn ∖{0})n−r), such that for all
(x,ξξξ ) ∈𝒪 the germ of the line congruence F(x,ξξξ ) at any point q0 ∈U × I1 × In−r is stable.

Proof. The proof follows the same steps of that of 4.2.1.

7.2 2-parameter plane congruences in R4

Here, we deal with two parameter family of planes in R4, i.e., 2-parameter plane congru-
ences in R4. Our approach for this case is motivated by section 3.2. Along this section Ũ denotes
an open subset of R2.

Definition 7.2.1. A 2-parameter plane congruence in R4 is a 2-parameter family of planes in R4.
Locally, we write

F(x,ξξξ ,δδδ ) : Ũ × I × J → R4

(u, t, l) ↦→ x(u)+ tξξξ (u)+ lδδδ (u),

where

∙ x : Ũ → R4 is smooth and it is called a reference surface.

∙ ξξξ ,δδδ : Ũ → R4 ∖ {0} are smooth and linearly independent. We call ξξξ and δδδ director

surfaces of the congruence.

Let us write

𝒲2 = {(ξξξ ,δδδ ) ∈C∞(Ũ ,R4 ∖{0}×R4 ∖{0}) : ξξξ and δδδ are linearly independent} (7.4)
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Example 7.2.1. A classical example of 2-parameter family of planes arises when we take a
regular surface x : Ũ → R4, x(Ũ) = M. Then, at each q ∈ M, q = x(u), there is a well defined
normal plane NqM. Analogously to example 2.4.4 it is possible to show that the family of distance
squared functions on M, D : Ũ ×R4 → R, defined by

D(u, p) = ⟨x(u)− p,x(u)− p⟩

is a Morse family of functions and that the Lagrangian map associated is given by Fx,ξξξ ,δδδ (u, t, l) =

x(u)+ tξξξ (u)+ lδδδ (u), where {ξξξ (u),δδδ (u)} is a basis for the normal plane NqM at q = x(u) (see
section 7.9 in (IZUMIYA et al., 2016)). Since the germ of family D is locally 𝒫-ℛ+-versal
for an open and dense set of embeddings x ∈C∞(Ũ ,R4) (see theorem 4.8 in (IZUMIYA et al.,
2016)), it follows similarly to theorem 4.3.1 that the generic singularities of exact normal plane
congruences are the Lagrangian stable (see table 2).

Lemma 7.2.1. The singular points of a line congruence F(x,ξξξ ,δδδ ) are the points (u, t, l) such that

t2⟨ξξξ u1
∧ξξξ u2

∧ξξξ ,δδδ ⟩+ l2⟨δδδ u1 ∧δδδ u2 ∧ξξξ ,δδδ ⟩+ tl
(
⟨ξξξ u1

∧δδδ u2 ∧ξξξ ,δδδ ⟩+ ⟨δδδ u1 ∧ξξξ u2
∧ξξξ ,δδδ ⟩

)
+ t
(
⟨ξξξ u1

∧xu2 ∧ξξξ ,δδδ ⟩+ ⟨xu1 ∧ξξξ u2
∧ξξξ ,δδδ ⟩

)
+ l (⟨δδδ u1 ∧xu2 ∧ξξξ ,δδδ ⟩+ ⟨xu1 ∧δδδ u2 ∧ξξξ ,δδδ ⟩)

+ ⟨xu1 ∧xu2ξξξ ,δδδ ⟩= 0. (7.5)

Proof. We know that (u, t, l)∈ Ũ×I×J is a singular point of F(x,ξξξ ,δδδ ) if and only if detJF(u, t, l)=

0, where

JF(u, t, l) =
[
xu1 + tξξξ u1

+ lδδδ u1 xu2 + tξξξ u2
+ lδδδ u2 ξξξ δδδ

]
4×4

is the jacobian matrix of F at (u, t, l). From

detJF(u, t, l) = ⟨(xu1 + tξξξ u1
+ lδδδ u1)∧ (xu2 + tξξξ u2

+ lδδδ u2)∧ξξξ ,δδδ ⟩= 0

we obtain (7.5).

Theorem 7.2.1. There is an open dense set 𝒪 ⊂C∞(Ũ ,R4)×𝒲2, such that:

a) For all (x,ξξξ ,δδδ ) ∈𝒪 the germ of the plane congruence F(x,ξξξ ,δδδ ) at any point (u0, t0, l0) ∈
Ũ × I × J is stable;

b) For all (x,ξξξ ,δδδ ) ∈𝒪 the germ of the plane congruence F(x,ξξξ ,δδδ ) at any point (u0, t0, l0) ∈
Ũ × I × J is 𝒜-equivalent to one of the normal forms below

∙ (x,y,z,w) ↦→ (x,y,w,z2) (Fold).

∙ (x,y,z,w) ↦→ (x,y,w,z3 + xz) (Cusp).

∙ (x,y,z,w) ↦→ (x,y,w,z3 ± x2z+ yz) (Lips/Beaks).
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∙ (x,y,z,w) ↦→ (x,y,w,z3 + x3z+ yz+ zxw) (Goose).

∙ (x,y,z,w) ↦→ (x,y,w,z4 + xz+ yz2) (Swallowtail).

∙ (x,y,z,w) ↦→ (x,y,w,xz2 + z4 + z5 + yz+wz3) (Gulls).

∙ (x,y,z,w) ↦→ (x,y,w,xz+ z5 ± z7 + yz2 +wz3) (Butterfly).

∙ (x,y,z,w) ↦→ (z,w,x2 + y3 + zy,y2 + x3 +wx) (Hyperbolic Umbilic or Sharksfin).

∙ (x,y,z,w) ↦→ (z,w,x2 − y2 + x3 + zx,xy+wx) (Elliptic Umbilic or Deltoid).

Proof. Item a) follows directly from theorem 7.1.1, taking n = 4 and r = 2. To prove b) we
proceed as in theorem 4.2.1 item b). The good set in item a) contains the 𝒦-orbits in { f ∈
Jk(2,2) : code(𝒦, f )≤ 4}, that is,

∙ 𝒦-orbits of Ar type, for 1 ≤ r ≤ 4;

∙ (x2,y2);

∙ (x2 − y2,xy).

Then, we refine the 𝒦-orbits on the above stratification, by taking the 𝒜-orbits of 𝒜e-codimension
≤ 2 inside these 𝒦-orbits. Then, the relevant strata in this stratification are the 𝒜-orbits of stable
singularities Ar, r = 1,2 and the 𝒜-orbits of singularities of 𝒜e-codimension 1 or 2 of type A2,
A3, A4 and D4. The complement of their union is a semialgebraic set of codimension greater than
or equal to 5. The normal forms and the versal unfoldings below were taken from (GIBSON;
HAWES; HOBBS, 1994).

1. 𝒦-orbit of A1 type

f (x,y) = (x,y2) which is stable, hence, we have just this 𝒜-orbit. Its suspension in R4 is
the stable germ that we are looking for.

2. 𝒦-orbits of A2 type

The possible normal forms are

f1(x,y) = (x,y3 + xy) (Cusp)− code (𝒜, f1) = 0,

f2(x,y) = (x,y3 ± x2y) (Lips(+)/Beaks(-))− code (𝒜, f1) = 1,

f3(x,y) = (x,y3 + x3y) (Goose− code (𝒜, f1) = 2.

The versal unfoldings are given by (taking the suspension when it is necessary)

F1(x,y,z,w) = (x,z,w,y3 + xy),

F2(x,y,z,w) = (x,y,w,z3 ± x2z+ yz),

F3(x,y,z,w) = (x,y,w,z3 + x3z+ yz+ zxw),
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respectively.

3. 𝒦-orbits of A3 type

We get the following normal forms

f1(x,y) = (x,y4 + xy) (Swallowtail)− code (𝒜, f1) = 1,

f2(x,y) = (x,y4 + xy2 + y5) (Gulls)− code (𝒜, f1) = 2

and the versal unfoldings are given by

F1(x,y,z,w) = (x,y,w,xz+ z4 + yz2),

F2(x,y,z,w) = (x,y,w,xz2 + z4 + z5 + yz+wz3),

respectively.

4. 𝒦-orbits of A4 type

The only normal form is

f (x,y) = (x,y5 + y7 + xy) (Butterfly)− code (𝒜, f1) = 2,

whose versal unfolding is

F(x,y,z,w) = (x,y,w,xz+ z5 ± z7 + yz2 +wz3).

5. 𝒦-orbit (x2,y2)

In (RIEGER; RUAS, 1991) it is shown that any germ contained in this 𝒦 orbit is 𝒜-
equivalent to some member of the series of germs Il,m

2,2 = (x2 + y2l+1,y2 + x2m+1), l ≥
m ≥ 1, where the code

(
𝒜, Il,m

2,2

)
= l +m. Hence, the only 𝒜-orbit to be considered is

f1(x,y) = (x2 + y3,y2 + x3), which has versal unfolding given by

F1(x,y,z,w) = (z,w,x2 + y3 + zy,y2 + x3 +wx)

6. 𝒦-orbit (x2 − y2,xy)

Analogously to the last case, in (RIEGER; RUAS, 1991) it is shown that any germ
contained in this 𝒦 orbit is 𝒜-equivalent to some member of the series IIl

2,2 = (x2 − y2 +

x2l+1,xy), l ≥ 1, which has code

(
𝒜, IIl

2,2

)
= 2l. Thus, we only take into account the

𝒜-orbit f2(x,y) = (x2 − y2 + x3,xy) with versal unfolding given by

F2(x,y,z,w) = (z,w,x2 − y2 + x3 + zx,xy+wx)
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7.3 Future research
In this thesis, when working with plane congruences, we only discuss the classification

of their generic singularities, however, there are other problems associated to these congruences
we expect to investigate in future research. For instance, taking into account an affine normal
plane to a surface in R4, as those defined in (NOMIZU; VRANCKEN, 1993) and (NUNO-
BALLESTEROS; SAIA; SANCHEZ, 2017) and the associated affine normal plane congruences,
the classification of their generic singularities is still an open problem. Taking into account that
line congruences are strongly related to ruled surfaces, another natural question is how plane
congruences are related to non-degenerate 2-ruled hypersurfaces in 4-space (see (SAJI, 2002)).
Furthermore, in (GUTIERREZ; RUAS, 2003) the authors conjectured that any locally strictly
convex surface homeomorphic to the sphere has at least two inflections. Thus, as this conjecture
is related to affine invariants and surfaces in R4 it seems natural to face this problem when
studying affine plane congruences.
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