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RESUMO

SANTOS,I. C. Congruéncias de retas e planos do ponto de vista da teoria de singularidades.
2023. 122 p. Tese (Doutorado em Ciéncias — Matemadtica) — Instituto de Ciéncias Matemdticas e
de Computacdo, Universidade de Sao Paulo, Sdo Carlos — SP, 2023.

Esta tese € dedicada ao estudo de congruéncias de retas e planos. Congruéncias de retas (resp.
de planos) nada mais sdo que familias parametrizadas de retas (resp. familias parametrizadas
de planos). No que diz respeito as congruéncias de retas, estudamos o caso a 3-parametros
em R* e classificamos as singularidades genéricas das congruéncias (caso geral), bem como
as singularidades das congruéncias normais e normais Blaschke, neste dltimo caso fornecendo
uma resposta positiva para a conjectura apresentada por Izumiya, Saji e Takeuchi em 2003.
Motivados pelo estudo das congruéncias normais Blaschke, também iniciamos o estudo de
frontais sob o ponto de vista da geometria afim, generalizando a ideia de estrutura equiafim
para frontais, definindo o campo Blaschke para frontais, fornecendo exemplos e um teorema
fundamental para a teoria equiafim apresentada. Levando em conta o aspecto mais geométrico
das congruéncias de retas apresentado na teoria introduzida por Ernst Kummer para o caso
regular, estudamos congruéncias de retas nas quais a superficie diretora é um frontal, obtendo
resultados que generalizam a teoria dada por Kummer. Além disso, considerando familias
parametrizadas de planos, apresentamos um teorema de classificacdo genérica das singularidades

destas congruéncias, seguindo o método utilizado para o caso das familias de retas.

Palavras-chave: Geometria diferencial, Geometria diferencial afim, Frontal, Congruéncia de

retas, Congruéncia de planos.






ABSTRACT

SANTOS,I. C. Line and plane congruences from a singularity theory viewpoint. 2023. 122
p- Tese (Doutorado em Ciéncias — Matematica) — Instituto de Ciéncias Matematicas e de
Computagdo, Universidade de Sao Paulo, Sao Carlos — SP, 2023.

This thesis is devoted to the study of line and plane congruences. Line congruences (resp.
plane congruences) are nothing but parametric families of lines (resp. parametric families of
planes). We study the case of 3-parameter line congruences in R* in order to classify their
generic singularities (general case) and the singularities of normal and Blaschke affine normal
congruences, in this last case, providing a positive answer to the conjecture presented by [zumiya,
Saji and Takeuchi in 2003. Motivated by the study of Blaschke line congruences, we study
frontals from the differential affine geometry viewpoint, generalizing the idea of equiaffine
structure, defining the Blaschke vector field of a frontal, providing examples and a fundamental
theorem for the theory stated here. Taking into account Kummer’s theory for line congruences
in the regular case, we generalize some results to the case of line congruences for which the
director surface is a frontal. Moreover, considering parametrized families of planes, we provide a

classification of their generic singularities by using the same approach used for the case of lines.

Keywords: Differential geometry, Affine differential geometry, Frontal, Line congruence, Plane

congruence.
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CHAPTER

INTRODUCTION

Line congruences arose as a method of transforming one (hyper)-surface to another
using lines. Then, a line congruence in R” is a n — 1-parameter family of (straight) lines, usually
given by a pair {x,§}, where x: U — R" and § : U — R"\ {0} are smooth maps and U is an
open subset of R”~!. A classical example of line congruence is that given by the normal lines
to a regular surface, called exact normal congruence. The first record about line congruences
appeared in “Mémoire sur la Théorie des Déblais et des Remblais" (1776,1784) where Gaspard
Monge seeks to solve a minimizing cost problem of transporting an amount of land from one
place to another, preserving the volume (see (GHYS, 2012) for historical notes). After Monge,
Ernst Eduard Kummer in (KUMMER, 1859) was the first to deal with the general theory of line
congruences. This theory is currently known as Kummer theory of line congruences and details
can be found in (EISENHART, 1909) or (OGURA, 1916).

In recent years, the subject achieved an important development with contributions by
(BARAIJAS; CRAIZER; GARCIA, 2020), (CRAIZER; GARCIA, 2022a), (HONDA; [ZUMIYA;
TAKAHASHI, 2019), (IZUMIYA; SAJI; TAKEUCHI, 2003), (LOPES; RUAS; SANTOS, 2022)
among others. From the singularity theory viewpoint, we look at a line congruence as a map
Fixg):UXI—R" where U is an open subset of R"~! and I is an open interval thus, locally, a
line congruence is a map from R” to R". The case with n = 3 is studied in (IZUMIYA; SAJI;
TAKEUCHI, 2003), where the authors classify the generic singularities of 2-parameter line
congruences in R3, showing that these singularities are folds, cusps and swallowtails. They also
show that the singularities which appear in generic normal line congruences are the Lagrangian
stable ones (see table 1). Furthermore, considering the affine normal vector field (or Blaschke
vector field) of a non-degenerate regular surface, the case of equiaffine normal congruences
is studied and the authors present a conjecture which asserts that the generic singularities
of Blaschke exact normal congruences are Lagrangian stable. More recently in (CRAIZER;
GARCIA, 2022b), using the existence of an equiaffine pair defining a generic line congruence,

the authors provide a geometric description of the singularities which appear in the classification
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given in (IZUMIYA; SAJI; TAKEUCHI, 2003).

From the affine differential geometry viewpoint, there is a particular interest in the
Blaschke affine normal congruences, for instance, in (BARAJAS; CRAIZER; GARCIA, 2020)
the authors study the affine principal lines on surfaces in 3-spaces near affine umbilic points.
Taking into account equiaffine line congruences, i.e., line congruences for which the director
surface is given by an equiaffine vector field transversal to the reference surface, in (CRAIZER;
GARCIA, 2022a) the authors discuss the behavior of the curvature lines associated to this type

of line congruence at isolated umbilic points.

Motivated by the results present in (IZUMIYA; SAJI; TAKEUCHI, 2003), in chapter
4, taking into account the case of 3-parameter line congruences in R* we classify the generic
singularities of 3-parameter line congruences and 3-parameter normal congruences in theorems
4.2.1 and 4.3.2, respectively. The comparison of these two theorems shows that the singularities
of 3-parameter line congruences are different from the singularities of normal congruences.
Furthermore, we show that singularities of corank 2 appear generically in both cases and the
proof of theorem 4.2.1 relies on a refinement of K-orbits by .A-orbits of .4,-codimension 1.
We also take a closer look at the case of Blaschke normal congruences, showing that their
generic singularities are Lagrangian stable in corollary 4.4.1, providing a positive answer to the
conjecture presented in (IZUMIYA; SAJI; TAKEUCHI, 2003). These results are part of a joint
work with Débora Lopes and Maria Aparecida Soares Ruas and can also be found in (LOPES;
RUAS; SANTOS, 2022).

The study of surfaces with singularities from the affine differential geometry viewpoint
has not been much explored, mainly due to the difficulties which arise at singular points.
Motivated by the classification of the singularities of Blaschke normal congruences, we explore
this viewpoint in chapter 5, where we work with a special class of singular surfaces called
frontals. If we take a surface S and we think of light as particles which propagate at unit speed
in the direction of the normals of S, then at a given time ¢, this particles provide a new surface
S’. We call S’ the wave front of S. The notion of frontals arises as a generalization of wave
fronts, when considering the case of hypersurfaces. In recent years, many papers are dedicated
to the study of these singular surfaces, among them, see (FUKUNAGA; TAKAHASHI, 2019),
(ISHIKAWA, 2018), (ISHIKAWA, 2020), (MARTINS et al., 2016), (MEDINA-TEJEDA, 2020),
(MEDINA-TEJEDA, 2022b), (MEDINA-TEJEDA, 2022a), (SAJI; TERAMOTO, 2021), (SAJI;
UMEHARA; YAMADA, 2009). Other references can be found in the survey paper (ISHIKAWA,
2018).

In chapter 5, our goal is to extend the study of properties invariant under equiaffine
transformations to the case of frontals, defining equiaffine structure on frontals, equiaffine
transversal vector fields and the associated conormal vector field. With this, we seek to understand
when it is possible to define a vector field along a frontal that, at regular points, plays the same

role as the classical Blaschke vector field, then we define the Blaschke vector field of a frontal
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and we give, in theorem 5.2.1, necessary and sufficient conditions that a frontal needs to satisfy
to have a Blaschke vector field. Furthermore, we obtain a version for frontals of the fundamental
theorem of affine differential geometry for regular surfaces in a way that its proof relies on
assuming the integrability conditions in the regular case (see theorem 5.3.1). In order to do this,
we use the same approach applied in (MEDINA-TEJEDA, 2022a). These results are also in
(SANTOS, 2022).

For a more geometric aspect of the line congruences we go back to Kummer’s theory,
which is briefly reviewed in chapter 3 section 3.3. The best-known results in Kummer’s theory
are formulated for congruences {x,&} where x is a regular surface and & is an immersion.
For instance, we discuss in Proposition 3.3.4 a nice way of defining lines of curvature using
line congruences: lines of curvature on a smooth non-parabolic surface are those curves whose
surfaces of congruence S¢ are developable. Since the definition of line congruences admits pairs
{x,€}, where x and € may have singularities, a natural question appears: what happens to the
results of Kummer’s theory when we have & being a frontal, for instance? In chapter 6 we extend
this theory to the case of line congruences {x, &} where x is a smooth map and & is a proper
frontal, in order to answer this question. These results are part of a joint work with Débora
Lopes, Maria Aparecida Soares Ruas and Tito Alexandro Medina Tejeda and can also be found
in (LOPES et al., 2022).

When working in R? it seems natural to consider not only families of straight lines, but
also families of planes over surfaces. The family of normal planes to a regular surface in R* is a
classical example of plane congruence and in this case it is not difficult to show that the generic
singularities are the Lagrangian stable, since we can look at the plane congruence as a Lagrangian
map associated to the family of distance squared functions, which is generically P-R " -versal
(see example 7.2.1). The classification of the generic singularities of plane congruences arises as
a natural generalization of the results for the case of lines. We start chapter 7 with a more general
case, taking into account r-surfaces in R” (in the sense of (LIMA, 2004), chapter 7) and families
of n — r-planes, where n — 1 > r > 1, then we classify the generic singularities for the case n =4,
r =2 in theorem 7.2.1. In this case we also have singularities of corank 1 and 2 and the proof

relies on a refinement of K-orbits by .4-orbits of .A,-codimension less than or equal to 2.
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CHAPTER

PRELIMINARIES FROM SINGULARITY
THEORY

In this chapter, we present some basic results in singularity theory which help us in the
next chapters. More details can be found in (GIBSON, 1979), (MOND; NUNO-BALLESTEROS,
2020), (IZUMIYA et al., 2016) and (WALL, 1981) .

2.1 Germs of smooth mappings

Let U,V C R” be two open subsets of R” containing a point p € R” and f: U — R?
and g : V — R? be two smooth maps. We say that f is equivalent to g if there is an open set
W CUNV containing p such that f|,, = g, . This relation is an equivalence relation and an

equivalent class is called a germ at p of a smooth map. A map-germ at p is denoted by

f:(R", p)— RP.

Let £, denote the set of germs, at the origin 0 in R”, of smooth functions (R”,0) — R”",
En=A{f:(R",0) = R: fis the germ of a smooth function}.

With the addition and multiplication operations, £, becomes a commutative ring with a unit.

This ring is a local ring with maximal ideal, denoted by M, given by
M, ={fec&:f(0)=0}.

Sometimes it is important to look at the kth-power of M, where k is a positive integer. This
is the set of all f € M, with zero partial derivatives of order less than or equal to k — 1 at the

origin.
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The set of all smooth map-germs f : (R”,0) — R”, denoted by &, p, is a free £,-module
given by

Note that given a germ f : (R",0) — (R”,0) we obtain a mapping f* : £, — &,, called
induced algebra homomorphism, given by f*(1) = A o f. It is possible to show that if p = n
then f* is an isomorphism if and only if f is invertible. For details, see chapter 4 in (GIBSON,
1979) or chapter 2 in (MOND; NUNO-BALLESTEROS, 2020).

2.2 Mather’s groups

Let R denote the group of germs of diffeomorphisms (R"”,0) — (R”",0). We refer to R
as the “group of right equivalences” and this group acts smoothly on £(n, p) by

hef =fon™,

forallh € R and f € E(n,p).

The group £ of germs of diffeomorphisms (R”,0) — (R”,0) acts smoothly on M,,&, ,
by

k-f=kof,

forall k € £ and f € M,&, ,. We refer to L as the “group of left equivalences”.

The “left-right” group A is given by the direct product of R and L, i.e., A=TR x L.
This group acts smoothly on M,,&, , by

(hk)-f=ko foh™!,

for all (h,k) € Aand f € M,E, .

The group K is called the contact group and it is given by the germs of diffeomorphism
(R" xR?,0) — (R" x R”,0) which can be written in the form H(x,y) = (h(x),H;(x,y)) such
that 7 € R and H,(x,0) = 0 for x near to 0. The group K acts on M,&, , as follows. Given
f.ee My, pand (h,H) € K, g = (h,H)- f if and only if

(x,8(x)) =H(h ' (x), foh™ ' (x)).

Given map germs f,g € M,E, p, if there is h € R, such that h*(f*(M)) = g" (M), where
h*(f*(M))) is the ideal generated by the coordinate functions of f oh and g*(M ) is the ideal

generated by the coordinate functions of g, we have that f and g are K-equivalent, denoted by,
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f ~ g (see section 4.4 in (MOND: NUNO-BALLESTEROS, 2020) for details). Let J*(n, p) be

the k-jet space of map germs from R” to R”. For any j*f(0), we set
KEGEF(0) = {/"8(0) : ~ 8}

for the /C-orbit of f in the space of k-jets J*(n, p).

The Mather groups are not Lie groups and & (n, p) is not a finite dimensional manifold,
but in order to define the tangent space to an orbit of one of the Mather’s groups, we proceeded as
follows (for details and more information, see section 3.5 in (IZUMIYA et al., 2016) or chapters
3 and 4 in (MOND; NUNO-BALLESTEROS, 2020)). Let 7w : TR? — RP be the tangent bundle
over R?, thus a map-germ & : (R”,0) — TR? is said to be a germ of vector field along f € &,
if mo& = f. The tangent space 0y to £, , at f is defined to be the &£,-module of germs of vector
fields along f.

Let 6, = Oid(R”,o P 0)°
identity maps on (R”,0) and (R”,0), respectively. Note that 6, is nothing but the set of germs of

) and 6, = Qid( where id(gn o) and id(gp ) denote the germs of the

the vector fields on R” at the origin. Define the maps

tf:6,— 06,
Or—dfoo

of:6,— 0
Vi yof.

Note that 6, is a free module over &, and 6, is a free module over £, with structure given by the
homomorphism f* : £, — &,, defined by f*(y) = yo f. Let f*(M,) denote the pullback of
the maximal ideal in £,. The tangent spaces LG - f to the G-orbits of f at the germ f are defined
as by:

LR-f=tf(M,-6,) LL - f=wf(M,-6,) LA - f=LR-f+LL-f
LK-f=LR-f+f"(M,)- 6f

If we choose a system of coordinates (yi,---,y,) in R” then the germs of vector fields along f

0 0

(8_) of,---, (3_) o f form a free basis of 6. Then, 6, can be identified canonically with
Y1 Yp

En,p» that is, Oy is a free £,-module of rank p and we have

of 9 :
LR'f:M"{a_yi""’ai} LL-f = f*(Mp)er, ey}

f*(Mp) ) ef = f*(Mn) 'Snyp

where ey, - - - , e, are the standard basis vectors of R” consider as elements of &, , and (x1,-- - ,x,)

is a coordinate system in (R",0).



30 Chapter 2. Preliminaries from singularity theory

When studying deformations, the singularity can move away from the origin and because

of this, the extended tangent spaces are defined as follows, considering local coordinates,

d 0
LeR'f:gn{a_){‘lf";a_i;} LEL'f:f*<6P){el7"'7eP}

LK-f=LR-f+f(M,)-&Ep

For any of the groups G =R, L, A, IC, the codimension of the orbit of f is defined by

Mngn,p)
LG-f

and the codimension of the extended orbit of f is defined by

cod(f,G) = dimg <

cod,(f,G) = dimg (ng—pf)

2.3 Unfoldings

Definition 2.3.1. Let f € £(n, p). A r-parameter unfolding (r, F) of f is a map-germ
F:(R"xR",(0,0)) — (R” xR, (0,0))

in the form F(x,y) = (f(x,y),y) with f(x,0) = f(x). The family of map-germs f is called a
r-parameter deformation of f and we denote, for a fixed yo, fy, (x) = f(x,¥0)-

Definition 2.3.2. Let G be a Mather group and I the identity in G.

a) A morphism between two unfoldings (a,F) and (b,G) is a pair (o, ¥) : (a,F) — (b,G)
with o : (R%,0) — (G,1), v : (R,0) — (R”,0), such that

fy=al(y) “By(y)-
The unfolding (a, F) is then said to be induced from (b, G) by (a, y).

b) Two unfoldings (a,F) and (b,G) are G-equivalent if there exists a morphism (@, y) :
(a,F) — (b,G) where y is invertible (so, a = D).

¢) An unfolding (a,F) of a map-germ f is said to be G-versal if any unfolding (b, G) of f

can be induced from (a, F).
d) Anunfolding (a, F) of f is said to be G-trivial if it is G-equivalent to the constant unfolding

(@, ).

Now, using definition 2.3.2 and the definition of codimension, we can define stability

and infinitesimally stability.
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Definition 2.3.3. A map-germ f is G-stable (resp. G,-stable) if all of its unfoldings are G-trivial
(resp. G,-trivial).

Theorem 2.3.1. A map-germ f is G-stable (resp. G.-stable) if and only if cod(f,G) = 0 (resp.
code(f,G) =0).

Definition 2.3.4. Let f: (N,xo) — (P,y,) be a map germ between manifolds. An unfolding of f
is a triple (F, i, j) of map germs, where i : (N,x0) — (N',xp,), j : (P,yo) — (P, ;) are immersions
and j is transverse to F, such that Foi= jo fand (i, f) : N = {(x',y) e N x P: F(x') = j(y)} is
a diffeomorphism germ (see the associated diagram in figure 1). The dimension of the unfolding
is dim(N') — dim(N).

(N/ ! F (P/ ! )
Af/o) Py
i J

(N, z0) %(R Yo)

Figure 1 — Associated diagram

Remark 2.3.1. The above definition of unfolding is locally equivalent to the usual parametrized
one given in definition 2.3.1. For details, see chapter 3 in (GIBSON et al., 2000).

Lemma 2.3.1. (IZUMIYA; SAJT; TAKEUCHI, 2003), Lemma 3.1) Let F : (R"~! x R, (0,0)) —

(R",0) be a map germ with components Fj(x,t),i=1,2,--- ,n, i.e.
F(x,t) = (F1(x,1),- -, Fy(x,1)).

n

d
Suppose that 5 (0,0) # 0. We know by the Implicit Function Theorem that there is a germ of

function g : (R"~1,0) — (RR,0), such that

F1(0) = {(x.g(x) :xe (R"1,0)}.

Let us consider the immersion germs i : (R"~!,0) — (R”,(0,0)), given by i(x) = (x,g(x)),
j: (R*=10) — (R",(0,0)), given by j(y) = (y,0) and a map germ f : (R"~1,0) — (R"~!,0),
given by f(x) = (Fi(x,g(x)), - ,Fy—1(x,g(x))). Then the triple (F,i, j) is a one-dimensional
unfolding of f.

For a map germ f : (R" x R",0) — (R”,0), we define
Jf (R XR,0) = T (n, p)
(x,y) = Jif(x),

where j¥f(x,y) indicates the k-jet with respect to the first variable.
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Lemma 2.3.2. (IZUMIYA; TAKEUCHI, 2001), Lemma 3.3) Let F : (R" x R",0) — (R? x
R”,0) be an unfolding of fy of the form F(x,y) = (f(x,y),y). If j*f is transverse to K*(j* £5(0))
for a sufficiently large k, then F is infinitesimally A-stable.

Let us denote by C*(M,R") the space of smooth maps between the manifold M and R”
endowed with the so-called Whitney C”-topology (for more details on this topology see chapter
5 in (MOND; NUNO-BALLESTEROS, 2020)).

Definition 2.3.5. Let G be one of Mather’s subgroups of C and 5 a smooth manifold. A family
of maps F : R" x B — R¥, given by F(x,y) = f;(x), is said to be locally G-versal if for every
(x,y) € R" x B, the germ of F at (x,y) is a G-versal unfolding of f; at x.

With notation as above, let g : M — R be an immersion, where M is a smooth manifold,

and denote by ¢, : M x B — R* the map given by

‘Pg(zay) = F(g(z),y).

Denote by Imm(M,R") the subset of C*(M,R") whose elements are proper C*-immersions
from M to R".

Theorem 2.3.2. (MONTALDI, 1991), Theorem 1) Suppose F : R" x B — R as above is locally
G-versal. Let W C J" (M, RK ) be a G-invariant submanifold, where M is a manifold and let

Rw = {g € Imm(M,R") : jidy hW}.

Then Ry is residual in Imm(M,R"). Moreover, if BB is compact and W is closed, then Ry is open

and dense.

Lemma 2.3.3. ((GOLUBITSKY; GUILLEMIN, 2012), Lemma 4.6)(Basic Transversality Lemma)
Let X, B and Y be smooth manifolds with W a submanifold of Y. Consider j : B — C*(X,Y)
a non-necessarily continuous map and define @ : X x B — Y by ®(x,b) = j(b)(x). Suppose ®

smooth and transversal to W, then the set
{beB:jb)yhW}
is a dense subset of B.
When studying germs of functions it is important to consider also the direct product of

the group R with translations, which we denote by R*.

Definition 2.3.6. Two families of germs of functions F,G : (R" x R",(0,0)) — (R,0) are P-
R -equivalent if there exist a germ of diffeomorphism @ : (R” x R",(0,0)) — (R" x R",(0,0))
of the form ®(x,y) = (o (x,y), y(y) and a germ of function ¢ : (R",0) — R such that

G(x,y) = Fo®(x,y) +c(y).
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Above, the letter P stands for parametrized, as we have a family of germs of diffeomor-

phisms o( y) of R” parametrized by y and the “+ " stands for the addition of ¢(y).

Definition 2.3.7. We say that a deformation F : (R” x R",(0,0)) — (R,0) of a germ of function
feM,is Rt-versal if

LRef+RA1LE, - E} =&,

. OF
where F; = —(x,0), fori=1,---,r.

dyi

2.4 Lagrangian singularities

A skew-symmetric 2-form @ on a smooth manifold M is said to be a symplectic form if
it is closed and non-degenerate and, that is, dw = 0 and for all p € M, if a)p(v, w) =0, for all w,
then v = 0. A manifold M equipped with a symplectic form  is called a symplectic manifold. It
follows from the definition of symplectic form that dw = 0 and ®" is a volume form for M, so

dimM = 2n for some positive integer n.

Example 2.4.1. Let N be a smooth manifold and 7*N its cotangent bundle. There is a canonical
symplectic structure on T*N. The canonical 1-form (or the Liouville form, or the Tautological
form) A on T*N is defined, at each (¢,v) € T*N, by A(W) T (T*N) — R, where

Mgy (W) = v (dpg) (W)

and p : T*N — N is the canonical projection defined by p(g,v) = g. The canonical symplectic
structure on T*N is given by the 2-form @ = —dA. Let x : U — R" be a local system of
coordinates of N, where X = (x1,---,x,). The 1-forms dx;(q) : TyN =+ R,i=1,--- ,n form a

basis of 7N, thus any v €; N can be written in a unique way in the form

pi(g,v)dxi(q).
1

n
V=

1

Then, we obtain a local system of coordinates ¢ : T*U — R" x R" of TN, where ¢(q,v) =
(x1(q),- -+ ,xn(q), p1(q,v),- -+ , pu(g,v)). In this system of coordinates, we have

A= i pidxi,
i=1

therefore,

o =—dA =Y dx;\dp;.
i=1
Definition 2.4.1. Let (M, ®;) and (M;, @,) be two symplectic manifolds. A symplectomorphism
between (M, ;) and (M, @,) is a diffeomorphism ¢ : M| — M, such that ¢* @, = ;. More

precisely, @ (p)(vi,v2) = @2(¢(p))(dp(v1),dd,(v2), for any p € My and vy, vo € T,M;.



34 Chapter 2. Preliminaries from singularity theory

Definition 2.4.2. Let M be a 2n-dimensional smooth manifold and let @ be a symplectic form
on M. We say that a smooth submanifold L of M is a Lagrangian submanifold if dimL = »n and

CO|L:0

Example 2.4.2. If we consider the cotangent bundle of a smooth manifold N with the canonical
symplectic structure, given in example 2.4.1, then the fibers of p : T*N — N are Lagrangian

submanifolds.

Definition 2.4.3. Let 7 : E — N be a fiber bundle such that E is a symplectic manifold. We say
that 7 : E — N is a Lagrangian fibration if its fibers are Lagrangian submanifolds of E.

Example 2.4.3. It follows from example 2.4.2 that p : T*N — N is a Lagrangian fibration.

Definition 2.4.4. Let 7: E — N and 7’ : E/ — N’ be a Lagrangian fibrations. A symplecto-
morphism @ : E — E' is said to be a Lagrangian diffeomorphism if there is a diffeomorphism
¢:N— N suchthat T’ o =¢or.

Definition 2.4.5.

a) Let w: E — N be a Lagrangian fibration and consider a Lagrangian immersioni: L — E,

that is, i* @ = 0. The restriction of 7 to i(L), i.e., Toi: L — N, is called a Lagrangian map.

b) The set of critical values of a Lagrangian map is said to be a caustic. We denote by C(i(L))
the caustic of the Lagrangian map woi:L — N.

c) We say that two Lagrangian maps moi:L — N and ©t'oi' : L' — N’ are Lagrangian
equivalent if there is a Lagrangian diffeomorphism @ : E — E’ such that ®(i(L)) = i'(L').

Remark 2.4.1. If 7oi: L — N and 7’ oi’ : L' — N’ are Lagrangian equivalent, then the caustics
C(i(L)) and C(/'(L')) are diffeomorphic. Also, it follows from the above proposition that if two

Lagrangian maps are Lagrangian equivalent, then they are A-equivalent.

It is known that all Lagrangian fibrations of a fixed dimension are locally Lagrangian
diffeomorphic (see theorem 5.2 in (IZUMIYA et al., 2016)), thus we can work on the cotangent
bundle 7 : T*R" — R” and all the results are valid on any Lagrangian fibration. Let (x,p) =
(x1,-+*,Xr, p1,- -, pr) denote the canonical coordinates on T*R”, A the canonical 1-form and ®

the canonical symplectic form on 7T*R”.

Definition 2.4.6. We say that an r-parameter family of germs of functions F : (R" x R",0) —
(R,0) is a Morse family of functions if the map germ A : (R” x R”,0) — (R",0), given by

dF oF
Ar(x,y) = <8_3q’ ,g> (x,)

is not singular.
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When F is a Morse family

OF . OF

(CF,O):{(x,y)E(R”er,O):a—xl(x,y): _WZO}

is a germ of smooth submanifold of (R” x R",0) of dimension r. Then, we immerse (Cr,0) in
the cotangent bundle 7*R" using the map-germ L(F) : (Cr,0) — T*R” defined by

oF JoF
L(F)(x,y) = ) ) B R % .
(E)n) = (3 5w 5o
Note that L(F)*A =Y/ 18 dy,‘ = dFj__, hence

L(F)'o = ~L(F)"dA = —dL(F)'A = —d(dF,) = —(ddF)|, =0.

As we know that dimCr = r, it follows that L(F)(CF) is a Lagrangian submanifold of 7*R". We
call F the generating family of the germ of Lagrangian submanifold L(F)(Cr).

Example 2.4.4. Let x : U — R* be a regular hypersurface in R*, where U C R? is open and
x(U) =M.Let D :U x R* — R, defined by

D(u,p) = (x(u) — p,x(u) — p)

be the family of distance squared functions on M. The germ of D at each (ug, pg) € U x R*is a
Morse family of functions as follows. If we write u = (u,us,u3), X(u) = (x1(u),x2(u),x3(u),x4(1t))
and p= (pl 7P2;P3;P4)’ then
4
=) (xiu) -
i=1

We need to prove that the map

Ap:UxR* 5 R

p) s (2D 9D 9D
P 8u1’8u2’8u3

is not singular. Its jacobian matrix is given by

air arz a1z —2(x1)u, —2(2)u; —2(x3)u, —2(x4)y,
JAp=|ax axn ax —2(x1)u, —2(x2)u, —2(x3)u; —2(x4)u, |
azi axn a3z —2(x1)u; —2(x2)u; —2(x3)u;  —2(x4)us
where a;j = 2(Xyu; (u),x(u) — p) +2(xy, (), %, (1)), i = 1,2,3. Since x is an embedding, the
rank of the matrix
T
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is 3 at each point u € U. Then Ap is not singular. Furthermore, the catastrophe set of D is given
by

Cp = {(u,p) : p=x(u) +m(u), for some t € R},

where n denotes the unit normal vector field of M. Then, taking this into account, the Lagrangian

immersion associated to D is given by
L(D): (U xI,(ug,t0)) — T*R*
(u,t) — (x(u) +m(u),2tn(u)),
where po = x(uo) +ton(u). Hence, the germ of Lagrangian map associated to D is Fiy n)(u,7) =
x(u) +m(u).

Theorem 2.4.1. ((IZUMIYA et al., 2016), Theorem 4.8 (ii)) For an open and dense set of
embeddings x : U — R*, the family D is locally P-R*-versal.

Definition 2.4.7. A germ of Lagrangian immersion i : (L,u) — (T*R",p) (or a germ of La-
grangian map woi: (L,u) — R"m(p)) is said to be Lagrangian stable if for any representative
i:V — T*R’ of i, there is a neighborhood W of i (in the Whitney C*-topology on the subset
of Lagrangian immersions considered as a subspace of C*(R", T*R")) and a neighborhood V
of u such that for any Lagrangian immersion j in W, there exists ' € V with moi and 7o j

Lagrangian equivalent, where j : (L,u') — (T*R", p’) is the germ of j at u’.

Next we see that the notion of Lagrangian stability in terms of generating families.

Theorem 2.4.2. (IZUMIYA et al., 2016), Theorem 5.4 (1)) The Lagrangian map-germ 7o L(F)
is Lagrangian stable if and only if F is an R "-versal unfolding of f(x) = F(x,0).

Theorem 2.4.3. (IZUMIYA et al.,2016), Theorem 5.5) Let F : (R” x R",0) — (R, 0) be a Morse
family of functions. Suppose that L(F) : (C(F),0) — T*R" is Lagrangian stable and r < 4. Then
L(F) is Lagrangian equivalent to a germ of a Lagrangian submanifold whose generating family

G(x1, ++ ,Xn,¥1, -+ ,yr) is one of the following germs, where Q(xi, - ,x,) = ix,% .42

a) O, ,Xn) +27 +y1xy

b) Q(x2, + , %) +xF +y1x1 +y2x3

©) Q(x2, 1) +2] +y1X1 + Y247 +y3%]

d) Q(x2,++ , %) + X8 +y1x1 +y2xF 4+ y355 + uaxt

€) Q(x3,++ ,Xn) +33 +X1235 +y1x1 +Yy2x2 +y3 (33 +33)

D) Q(x3,++ ,Xn) +X; +33 +y1X1 +y2x2 + y3x12
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2 O(x3,--,x,) +x%x2 +X‘21' +yix1 +y2x2 +y3x% +)’4X%~

The normal forms of the Lagrangian stable map-germs 7 o L(G) for r < 4 are given in

table 1.
G singularity type = 7o L(G) singularity type = Normal form
A, Fold X
A; Cusp (o3 +y2x1,32)
Ay Swallowtail (x‘]l +y2x1 + y3x%,Y2,J’3)
As Butterfly (X? +y2x1 +y3X% +)’4X%a}’2,)’37)’4)
Dy Elliptic Umbilic (xF — X3 + y3x1, X132 + Y3%2,3)
D} Hyperbolic Umbilic (¥3 +y3x2,X3 + y3x1,Y3)
Ds Parabolic Umbilic (X122 + y3X1,X7 + X3 +Y4X2,Y3,V4)

Table 1 — Lagrangian stable singularities in R” for r < 4
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CHAPTER

PRELIMINARIES FROM DIFFERENTIAL
GEOMETRY

In this chapter we review some well known results which play an important role for
the understanding of this thesis. First, in section 3.1 we review some basic results on affine
differential geometry, useful in chapter 4, where we classify generic singularities of Blaschke
line congruences and chapter 5, where we generalize the idea of equiaffine structure for a special
class of singular surfaces. In section 3.2 we summarize some results from (IZUMIYA; SAJI;
TAKEUCHI, 2003) which are important in chapter 4 where we deal with the case of 3-parameter
line congruences in R*. In section 3.3 Kummer’s theory for line congruences is reviewed as
preparation for chapter 6, where we generalize some of Kummer’s results taking the director
surface of the congruence as a singular surface. Finally, in section 3.4, definitions and properties
of frontals are presented. These results are useful in chapter 5 as we want to study frontals from

an affine viewpoint and chapter 6, since the singular surfaces we consider are proper frontals.

3.1 Affine differential geometry

Let us regard R"*! as a n+ 1-dimensional affine space with volume element given by
w(ey, - ,e,1) =det(e, - ,e,11), where {e1,--- e,y 1} is the standard basis of R"*!. Let D
be the standard flat connection on R"*!. Let U be an open subset of R” and x : U — R"*! be a
regular hypersurface with x(U) = M and & : U — R"*1\ {0} a vector field which is transversal

to M. We can decompose the tangent space
TR =T,M @ (§ (1)),
where x(u) = p. So, it follows that given X and Y vector fields on M, we have the decomposition

DxY = VxY-FC(X,Y)g, (3.1)
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where V is the induced affine connection and ¢ is the affine fundamental form induced by
&, which defines a symmetric bilinear form on each tangent space of M. We say that M is
non-degenerate if ¢ is non-degenerate which is equivalent to say that the Gaussian curvature of
M never vanishes (see chapter 3 in (NOMIZU; KATSUMI; SASAKI, 1994)). Using the same

idea, we decompose
Dx§ = =S(X)+1(X)§,

where S is the shape operator and 7 is the transversal connection form. We say that & is an

equiaffine transversal vector field if T =0, i.e Dx& is tangent to M.

Using the volume element ® and the transversal vector field €, we induce a volume

element 6 on M as follows
O(X1,- Xn) = 0(Xy,- - . X5, §),
where X1, -- -, X, are tangent to M.
Proposition 3.1.1. (NOMIZU; KATSUMI; SASAKI, 1994), Proposition 1.4) We have
Vx0 =1(X)0, forall X € T,M. (3.2)

Consequently, the following two conditions are equivalent:
(a) VO =0.
(b) T=0.

We say that M has a parallel volume element if there is a volume element 6 on M such
that VO = 0, where

VXG(X1 ,Xz) = X((D(X] ,Xz)) — G(XI,VXXQ) — G(VXX1 ,Xz)

for X,X1,X; vector fields on M. Then, it follows from proposition 3.1.1 that a vector field &,
transversal to a non-parabolic surface, is equiaffine if and only if the induced volume element is

parallel.

Given a non-degenerate hypersurface x : U — R"*! and a vector field € : U — R"*1\ {0}
which is transversal to M = x(U), we take the line congruence generated by (x,&) and the map

Fixg):UxI—R"!
(1) = x(u) +1§ (u),

where / is an open interval.

Definition 3.1.1. A point p = F(u,t) is called a focal point of multiplicity m > 0 if the differential
dF has nullity m at (u,t), where nullity indicates the dimension of the kernel of dF.
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The next proposition relates the shape operator S and the above definition.

Proposition 3.1.2. ((CECIL, 1994), Proposition 1) Let x: U — R™! be a non-degenerate
hypersurface with transversal equiaffine vector field &. Let S be the shape operator related to
M and &. A point p = F(u,t) is a focal point of M of multiplicity m > 0 if and only if 1/7 is an

eigenvalue of S with eigenspace of dimension m at u.

For each u € U and p € R""!, we decompose p — x(u) into tangential and transversal

components as follows

p—x(u) = v(u) + py ()& (u). (3.3)

where v(u) € Ty(,)M. The real function p), is called an affine support function associated to M
and €.

Definition 3.1.2. Let x : U — R"*!, with x(U) = M, be a non-degenerate hypersurface and take
& : U — R* 1\ {0} an equiaffine transversal vector field. Define v : U — R""1\ {0}, such that
for each x(u) =pe M andv € T,(M)

(v(u),E(u)) = 1and (v(u),v) =0. (3.4)

Each v (u) is called the conormal vector of x relative to & at p. The map V is called the conormal

map of x relative to §.
Remark 3.1.1. Using (3.3) and (3.4), we obtain

Pp(u) = (p—x(u), v(u)),
where p, is the affine support function.

Proposition 3.1.3. ((CECIL, 1994), Proposition 2) Let x : U — R"*! be a non-degenerate

hypersurface and & an equiaffine transversal vector field. Then

a) The affine support function p, has a critical point at « if and only if p —x(u) is a multiple

of &(u).

b) If u is a critical point of p,, then the Hessian of p,, at u has the form

H(X,Y) = e(X, (I = pp()S)Y), X, ¥ € TyM.
¢) A critical point u of the function p,, is degenerate if and only if p is a focal point of M.

Given a non-degenerate hypersurface x(U) = M, we know that the affine fundamental
form ¢ is non-degenerate, then it can be treated as a non-degenerate metric (not necessarily

positive-definite) on M.
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Definition 3.1.3. Let x : U — R""! be a non-degenerate hypersurface. A transversal vector field
& :U — R 1\ {0} satisfying

a) & is equiaffine.

b) The induced volume element 6 coincides with the volume element @, of the non-

degenerate metric c.

is called the Blaschke normal vector field of M.

Remark 3.1.2. Given a non-degenerate hypersurface x(U) = M, its Blaschke vector field is

unique up to sign and is given by
E(u) = K@) 2N () +2(u). (35)
where K is the Gaussian curvature of M, N its unit normal and Z is a vector field on M, such that
1(Z,X) = —X(K|'/"?),vX e TM (3.6)

where II denotes the second fundamental form of M (for details, see page 45 item (5) in

(NOMIZU; KATSUMI; SASAKI, 1994)). Using (3.6) we can also write the vector field Z in

terms of the coefficients of the second fundamental form and the partial derivatives of |K| 1/n+2,

If we take the case n = 2, then Z = ax,,, + bx,,, where

-1
a\ [e f —(IK|"*),,
(b)‘(f g) <—<|K|l/4>uz>' -7

Moreover, from (3.5) it follows that the conormal vector relative to the Blaschke vector field of a

non-degenerate hypersurface in R"*! is given by

v(u) = K@)~ N(u) (3.8)

3.2 2-parameter line congruences in R?

Here, we summarize some results from (IZUMIYA; SAJI; TAKEUCHI, 2003) which
are generalized in chapter 4 to the case of 3-parameter line congruences in R*. We state in this
section the conjecture 3.2.1 from (IZUMIYA; SAJI; TAKEUCHI, 2003), for which we give a

positive answer in chapter 4. Along this section, U denotes an open subset of R?.

Definition 3.2.1. A 2-parameter line congruence in R> is a 2-parameter family of lines in R>.

Locally, we write ¢ = {x(u), & (u)} and the line congruence is given by a smooth map

Fyg):UxI—R
(u,1) = F(u,t) = x(u) +1& (u),

where
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e x: U — R3 is smooth and it is called a reference surface of the congruence;

e &:U — R3\ {0} is smooth and it is called the director surface of the congruence.

When there is no risk of confusion, we denote the line congruence just by F instead of
Fixg)-

Lemma 3.2.1. The singular points of a line congruence F{, ¢) are the points (u,t) such that

t2<§7§u1 /\gu2> —l—t<€,Xu1 /\guz +gu1 /\XM2> + <§’Xu1 /\Xu2> =0.

Proof. The jacobian matrix of F is

JF:(xuletgu1 Xy, +1&,, §>.

As we know, (u,7) is a singular point of F if, and only if, detJF (u,t) = 0, thus the result follows

from
detJF (u,t) = (&, (xu, +1&,,) A (Xu, +18,,,)) = 0.
]

Definition 3.2.2. We say that y(u) = x(u) +#(u)& (u) is a focal hypersurface of the line congru-
ence Fiy g if

If y(u) = x(u) +¢(u)& (u) is a focal hypersurface of the line congruence Fix ) then

t2<§7§u1 /\gu2> +t<§7xul /\guz +€u1 /\XM2> + <€7X141 /\XM2> =0.

3.2.1 2-parameter line congruences from the singularity theory view-
point

In IZUMIYA; SAJI; TAKEUCHI, 2003) the authors seek to classify the singularities
of 2-parameter line congruences in R3. In order to do this, they consider some classes of
congruences, like general line congruences, i.e., those for which there are no restrictions on x
and &, normal congruences and Blaschke affine normal congruences. First, the singularities of a

general line congruence are classified in the following theorem.

Theorem 3.2.1. (IZUMIYA; SAJI; TAKEUCHI, 2003), Theorem 1.2) There exists an open
dense subset O C C*(U,R? x R*\ {0}) such that the germ of the line congruence Fix ) at any
point (ug,tp) € U x I is an immersive germ, or .A-equivalent to the fold, the cuspidal edge or the

swallowtail for any (x,§) € O.

Here, the fold is the map germ defined by (x,y,z) — (x,y,z%), the cuspidal edge is
the map germ defined by (x,y,z) — (x,y,z> +xz) and the swallowtail is defined by (x,y,z)
(x,y,2* +xz4+y7%).
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An important and natural class of line congruence is the class of normal congruences,

defined as follows.

Definition 3.2.3. A 3-parameter line congruence ¢ = {x(u), & (u)}, for u € U C R?, is said to
be normal if for each point uy € U there is a neighborhood U of ug and a regular hypersurface,
given by y(u) = x(u) +t(u)€ (1), whose normal vectors are parallel to & (u), for all u € U. The

congruence is an exact normal congruence if & (u) is a normal vector at x(u), for all u € U.

The next proposition characterizes 2-parameter normal line congruences in R?.

Proposition 3.2.1. (IZUMIYA; SAJI; TAKEUCHI, 2003), Proposition 5.1) A line congruence

Fix &) 1s normal if and only if

(o (580). ) (o (550,

Let us denote the space of the normal congruences by N(U,R? x (R*\ {0})) with the
Whitney C*-topology induced from C* (U,R? x (R*\ {0})). Then, we have the following

theorem.

Theorem 3.2.2. (IZUMIYA; SAJI; TAKEUCHI, 2003), Theorem 5.7) There exists an open
dense subset O C N(U,R? x (IR?\ {0})) such that the germ of the normal congruence Fy ¢) at
any point (ug,y) € U x I is a Lagrangian stable map germ for any (x,&) € O. Therefore, Fix )
is A-equivalent to an immersion germ, the fold, the cuspidal edge, the swallowtail, the pyramid

or the purse for any (x,&) € O.

Another important class of line congruences considered in (IZUMIYA; SAJI; TAKEUCHI,
2003) is the Blaschke affine line congruence, i.e., the congruence given by a regular non-
degenerate surface x : U — R3 and its Blaschke vector field & : U — R> defined in definition
5.2.1. The authors observed that the affine evolute of a non-degenerate plane curve is the caustic
of a certain Lagrangian submanifold in 7*R?. Using some results proved for normal congruences,
the authors show some relations which suggest that something similar might occur for the case
of non-parabolic surfaces (see section 6 in (IZUMIYA; SAJI; TAKEUCHI, 2003) for details).
Taking this into account, they present the following conjecture, for which we give a positive

answer in corollary 4.4.1.

Conjecture. (IZUMIYA; SAJI; TAKEUCHI, 2003), Conjecture 6.5) Germs of generic Blaschke

affine normal congruences at any points are Lagrangian stable.
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3.3 Kummer’s theory for 2-parameter line congruences
in R

Here, taking into account a Euclidean approach to line congruences C = {x, &}, where
x:U — R3, € : U — S? are smooth maps and & is an immersion, we present the theory developed
by Ernst Eduard Kummer for line congruences. More content about line congruences can be
found in (BIANCHI, 1894), (EISENHART, 1909) and (WEATHERBURN, 1955). We start by

defining two quadratic forms associated to the line congruence C.

Definition 3.3.1. Let C = {x,&} be a line congruence defined on U, an open subset of R?
and S = x(U) a regular surface. Let o : I — S, where [ is an open interval, be a regular curve
parametrized by arc length, such that ot(s) = x(u; (s),uz(s)). If &(s) = & (u1(s),uz(s)), where
g = (u1(0),u2(0)) and v = u (0)xy, (¢) + u5(0)x,,(q) € T,S, where x(g) = p, then we associate

to C two quadratic forms, as follows:

(I) Kummer first fundamental form :
T,:T,S+R (3.10)
v L,(v) = Sul + 2.7 uidy + GuZ,
where & = (§,,€6,,), F =(&,,,§,,) and¥ = (§,,,&,,). We denote by T the associated

matrix.

(II) Kummer second fundamental form:
17,: 7,8 =R (3.11)
v I, (V) = Ll + (M + Ao) uydy + N U,

where & = —(x,,,§,,), Ao = —(x4,&,,), M = —(x4,,§,,) and N = —(x,,8 ) .
We denote by ZZ = —DE” Dx the associated matrix.

Given a line {x(q),&(q)} of the congruence C, its spherical representation is given by
the point & (q) € S2. If we have a curve C on the reference surface S its spherical representation is

the curve on S? given by the spherical representations of all the lines of the congruence through
C.

Definition 3.3.2. The lines of the congruence passing through a curve C on the reference surface

S form a ruled surface S¢ called surface of the congruence.

3.3.1 Limit points and Kummer principal lines

If C is given by x(¢) = xo a(t) where a(r) = (u1(t),uz(t)) and &(r) = & o a(t), the

surface of the congruence Sc¢ can be written as

Y(t,w) =x(t)+w&(t),r e ,weR, (3.12)



46 Chapter 3. Preliminaries from differential geometry

where the curve x(7) is called a directrix of S¢ and for each fixed ¢ the line L;, which pass
through o¢(¢) and is parallel to & (¢), is called a generator of the ruled surface Sc. If [|€ (¢)|| = 1,
we say that & () is the spherical representation of Sc. Since € is an immersion, ||&’(¢)|| # 0.
Suppose ||€(7)|| = 1, so the ruled surface considered is non-cylindrical. It is known (see section
3.5 in (CARMO, 2016)) that there exists a curve § : [ — R3, contained in the ruled surface Sc,

parametrized by

B(t) =x(t) +k(1)E (1), (3.13)
_—M whose tangent vector satisfies
where k(1) = .80 hose tangent vector satisfi
(B'(1),'(1)) =0. (3.14)

This special curve is called striction line. The intersection point of a generator with the striction
line is called the central point of the generator. Given a generator L; the coordinate of its central

point is k(z), given in (3.13)

Let ¢ = (u1(0),u2(0)) and note that

—~
»—;\
—~
(=}
~—
e
=
—~
_
N~—
+
<
N~
—~
(=)
SN~—
e
<
)
—~
_
S~—
)—‘:\
—
=)
~—
e
=
—
Q
~—

_ LUE+ (M + M) ity N U
B EuE +2.F Uy +Gu’?

iy
=2 where p =x(q).
Z,

If we associate to v = 0o/'(0) = u} (0)x,, (q) + u5(0)xy, (g) its coordinates (i} (0),u5(0)), then it
is possible to look at k as a function defined in 7),S, i.e

H,:T,S - R (3.15)
TT,(v)
IP(V) ’

V= Hp(V) = (3.16)

which provides the coordinate of the central point of the generator L associated to the surface of
the congruence Sc. If we restrict %), to a compact set, then this function have a maximum and a
minimum values, which we denote by .#] and .#;. Note that (3.15) depends only on p and the
direction v, so we can take the restriction JZ), : S! 5 R.

Proposition 3.3.1. The extreme values of % : S! — R, denoted by .%#] and %5, satisfy

B —F (M + M) +GL +EN
TN+ T = oG _ 72 (3.17a)
_ 2
S = AL N — (M + M) . (3.17b)

469 — F7)
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Proof. Suppose £y = %,(Ao, lo) an extreme value of

_ glz—l-(z///l—l—e//z))tu-l—e/l/,uz
() = EALF2.FAU+Gu? ’
where (A, ) € S'. Then,
M/ _
= (% o) = Ao(—2L 42508 ) + Ho (27607 — (M + M) (3.18a)
&}if
(AO Uo) = Ao(— (A + M) +260.F ) + 1o (240G —2.4). (3.18b)

From (3.18), we get
2L 42708 200 — (M + M)

p— O’
2000 F — (M + M) 209G — 2N
thus,
2
HHEG — F2) 4 Ho(—EN — LG+ (M + M) F) + LN — M —0.
From the above equation, we obtain (3.17). [

With notation as in proposition 3.3.1, the points on the line {x(q), & (q)}, where x(q) = p,
determined by %] and %5 are called its limit points. They are boundaries of the segment of
the line containing all other central points, associated to different directions taken in 7),S. If we
take x(s) = x(u (s),u2(s)) aregular curve on S, such that (i} (s),u5(s)) is associated to extreme
values of (), for all 7 € I, an open interval, then from (3.18) isolating %5, we obtain the

following binary differential equation
R.FYL — E( M+ M)VE+2GL — EN Vs + (G (M + M) — FNVF=0. (3.19)

The curves which are solutions of (3.19) are called Kummer principal lines. A direction v €

T,S\ {0} associated to an extreme value of %), is called a Kummer principal direction at p.

3.3.2 Focal points and developable surfaces of the congruence

Let {x, €} be a line congruence defined in U an open subset of R?, such that ||| = 1.
We can also look at the surfaces of the congruence which are developable. In this case, the central
points are called focal points and the surface of the congruence is tangent to its striction line. If

we parametrize the striction line by

B(s) = x(ui (s), u2(s)) + p (ur(s),u2(s)) & (w1 (5), u2(s)),

then 8’ is parallel to €. Above, p(u1(s),uz(s)) is the coordinate of the focal point, for each s € I,
an open interval. Since & is unitary and f3 is parallel to &, we get that (8',§,, ) = (B,§,,) =0,

which is equivalent to

(.,?ul—l—///luz) (5”1“‘ )

0 (3.20a)
—(%2u1+ﬂu2)+P(/ul+gu2) 0.

(3.20b)
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Proposition 3.3.2. The coordinates of the focal points of a given line of the congruence, denoted

by p; andn py, satisfy:
—F (M + M) +GL +EN

p1+p2= Yy (3.21a)
ppr=" ‘;;__/2% 2 (3.21b)
Proof. From (3.20), we get
—uy (=L +pE) =uy(pF — M)
—uy (— M +pF) =y (pG —N),
then
—ZL+p8E (—M+pF o,
pF — M PpY—N
thus,
P(EG — F+p(~GL — EN + MTF + MF)+ LN — MMy =0
From the above equation, we get (3.21).
[]

Proposition 3.3.3. Each line of the congruence admits at most two developable surfaces of the

congruence through it.

Proof. From (3.20) we get

— L) — Moy — My — N 0
Euy + Fu Fu|+9u,

and form this determinant, we have the following binary differential equation

(—~F L+ EMVE A+ (—F s —GL +EN + F M)ty + (=G Mo+ F N )i =0.
(3.22)

Thus, through each line of the congruence, we have possibly two curves which are directrices of

developable surfaces of the congruence. O]

We call equation (6.13) the equation of the developable surfaces of the congruence.
It follows from proposition 3.2.1 that a 2-parameter line congruence {x,&} is normal if and
only if .#| = .#,. Furthermore, if we compare (3.17) and (3.21), we have that, for normal
congruences, the focal points and the limit points coincide. It follows also that he same happens
to the directrices of the developable surfaces of the congruence and the Kummer principal lines,
since the equations (6.13) and (3.19) are the same for .#| = .#>.
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Another important result from Kummer’s theory is the following one, which relates
the lines of curvature of a regular surface x : U — R3 to the Kummer principal lines, when
considering the congruence given by x and its unit normal vector field. In this case, we say that

the congruence is an exact normal congruence.

Proposition 3.3.4. Let {x, & } be an exact normal congruence. A curve C on the reference surface
parametrized by xo o : I — R3, where at(s) = (u1(s),u2(s)) is such that (u},u5) # (0,0), is a line
of curvature if and only if the surface of the congruence Y (s,w) = x(s) + wé& (s) is developable.

Proof. Let Sc be the surface of the congruence parametrized by Y (s, w) x(s) +w&(s). It is
known that the ruled surface S¢ is developable if and only if [ ﬂ = 0. We know that
(s

|€]| = 1and (x',&) =0, thus [x', €', E] =0 if and only if &' (s) = k(s)x
curvature formula (see section 3.2 in (CARMO, 2016)), x(s) is a line of curvature. L]

) and from Rodrigues’

3.4 Frontals

As we seek to study frontals from a differential affine geometry viewpoint in chapter 5
and generalize Kummer’s theory for line congruences {x, €}, where x : U — R? is a smooth
map and € : U — R3 is a frontal in chapter 6, we give in this section some important no-
tions related to this special class of singular surfaces. The main references in this section are
(MEDINA-TEJEDA, 2022a) and (MEDINA-TEJEDA, 2022b). For properties of frontals and
their geometrical invariants we also refer to (ISHIKAWA, 2018), (MARTINS et al., 2016), (SAJI,;
TERAMOTO, 2021) and (SAJI; UMEHARA; YAMADA, 2009). A smooth map x: U — R3 is
said to be a frontal if, for all g € U there is a vector field n: U, — R3 where g € U, is an open
subset of U, such that |[n|| = 1 and (x,,(«),n(«)) = 0, for all u € U,, i = 1,2. This vector field is
said to be a unit normal vector field along x. We say that a frontal x is a wave front if the map
(x,m) : U — R3 x §? is an immersion for all g € U. Here, we consider mainly proper frontals,
that is, frontals x for which the singular set X(x) = {¢ € U : x is not immersive in ¢} has empty

interior. This is equivalent to say that U \ £(x) is an open dense set in U.

Definition 3.4.1. We call moving basis a smooth map Q : U — M3.,(R) in which the columns
wi, Wy : U — R3 of the matrix Q = (w1 w2) are linearly independent vector fields.

Definition 3.4.2. We call a tangent moving basis (tmb) of X a moving basis Q = (w;, w,), such

that x,,,,X,, € (W1, W2)Rr, Where ( ,)r denotes the linear span R-vector space.

Next proposition provides a characterization of frontals in terms of tangent moving basis.

Proposition 3.4.1. (MEDINA-TEJEDA, 2022a), Proposition 3.2) Let x : U — R> be a smooth
map with U C R? an open set. Then, x is a frontal if and only if, for all ¢ € U, there are
smooth maps Q : U, — M3,2(R) and A : U; — Mjy2(R) with rank(Q) =2 and U, C U a
neighborhood of ¢, such that Dx(§) = QAS, for all § € U,.
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Since a tangent moving basis exist locally and we want to describe local properties, from
now on we suppose that for a given frontal we have a global tangent moving basis. Then, if a
frontal x satisfies Dx = QA”, where Q is a tangent moving basis, we have that £(x) = A5 (0),

where Aq := detA.
W1 X Wo

Letx : U — R3 be a frontal, Q = <w1 w2) a tmb and denote by n = ——— the
w1 X wa|
unit normal vector field induced by Q. We set the matrices
Eq F
o=@ (B Fa)_ ((wiw) (wiwa ) (3.23)
Fo Gqo (W2, W) (W2, w2)
o= Q'pn= [ fo)_(~Wum) —(wing)) (3.24)
ha e —(w2,ny,)  —(W2,1y,)
[TRREESSE | /S il (3.25)
oo = ﬂgadj(AQ), (3.26)
T T
7= (Q Q)1 = ( L (3.27)
" Ty T
T T2
=@ o= 12 "2} (3.28)
P Ol (@'@

Given a frontal x : U — R3 and a tmb Q = (Wl wz) it follows that (wy,n) = (wp,n) = 0. By

taking this, we can rewrite

Ih:Cmmﬂw«mva_ (3.29)

<(W2)M1 ) n) <(W2)M2 ) n>

Remark 3.4.1. With notation as above, if Q is a tangent moving base of x, we have the
decomposition Dx = QAL then Ag = DXTQI;)1 , namely Ag is completely determined by x and
Q, therefore from now on, it will denote this matrix valued map. Also we write To = [wi,w2|g
the plane generated by w; and w,. Note that given two tangent moving basis Q and Q of a proper

frontal, we have T = T5.

Definition 3.4.3. Let x : U — R3 be a frontal and Q a tangent moving basis of x, we define
the Q-relative curvature Ko := det(lL,) and the Q-relative mean curvature Hg := —itr(ag),
where ¢r() is the trace and ad j() is the adjoint of a matrix. Also we call the functions kg :=

Hgo — 4 /Hsz2 — AaKq and krg := Hg + 4 /ng2 — Ao Kq the Q-relative principal curvatures.

According to (MEDINA-TEJEDA, 2020) it is possible to define smooth functions
ki,ky : U\ X(x) — R, related to k1o and kpq, which do not depend on the chosen tangent moving
basis inducing the same orientation of the normal vector field. These functions have similar
properties to the classical principal curvatures and in the case of non-degenerate singularities
coincide with those functions defined in (TERAMOTO, 2016) (equation (2.6)), via a suitable

change of coordinates.
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Given a frontal x : U — R3 with a global unit normal vector field n: U — R3, we can

also consider the matrices

I:=Dx"Dx = (E F) — <<X”“X“‘> <X”“X“2>>, (3.30)
F G <Xu1 I Xul > <Xu2 ) XM2>
Il:= —Dx"Dn = <e f) - (_<X“"n”1> _<X”“n“2>>. (3.31)
f g _<Xu27nu1> _<Xu27n142>

If we decompose Dx = QAT then I = AIoAT and II = All,. Also, the classical normal
curvature at a regular point g € U \ ¥(x) is given by

3Ty

=— 32

where © € R?\ {0} are the coordinates of a vector in the tangent plane in the basis (xul xu2>.

Definition 3.4.4. Let x : U — R be a frontal, Q a tangent moving basis of x, we define the
Q-relative normal curvature by

_ b'Mgad j(AL)b

b

k(D) :

where ¢ € U and b € R?\ {0} represent the coordinates in the basis Q of vectors in T (q).

The directions defined by the vectors v € T represented by b in which kfn2 (b) achieves

an extreme value are called principal directions.

Definition 3.4.5. Let x : U — R? be a proper frontal and y: (—¢,€) — U a smooth curve. We

say that y is a line of curvature of x if (x o y)(¢) defines a principal direction for every ¢ such
that (xo y)'(¢) # 0.

The next proposition, given in (MEDINA-TEJEDA, 2022b), provides a differential

equation associated to lines of curvature.

Proposition 3.4.2. (MEDINA-TEJEDA, 2022b), Corollary 5.1) Letx: U — R3 be a proper
frontal and Q a tangent moving basis of x. A smooth curve y: (—¢&,€) — U is a line of curvature
if and only if Aq (Y)Y Pal(y)Y = 0on (—&,¢€), where

p:<_01 ;)_

3.4.1 Frontals with extendable Gaussian curvature

Now, taking into account the results in (MEDINA-TEJEDA, 2022b), we investigate some
classes of frontals for which the Gaussian curvature admits a smooth extension. These classes
play an important role in chapter 5, where we define the Blaschke vector field of a frontal. Other
important references for the study of Gaussian curvature are (MARTINS et al., 2016) and (SAJI,
UMEHARA; YAMADA, 2009).
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3.4.1.1 Frontals with extendable normal curvature

Let x : U — R? be a proper frontal with extendable normal curvature. It follows from corollary
3.1 in (MEDINA-TEJEDA, 2022b) that if x : (U,0) — (IR?,0) is a frontal with extendable normal
curvature and O a singularity of rank 1, then its Gaussian curvature has a smooth extension.
Furthermore, this extension is non-vanishing if and only if x ~ n, where n is the unit normal

vector field of x and ~ indicates that there are ; and €, tmb of x and n, respectively and

a smooth matrix valued map B : U — GL(2,R), such that A, = A;B, where Dx = QlAlT and
Dn = QzAZT . The next theorem characterizes proper frontals of rank 1 with extendable normal

curvature.

Theorem 3.4.1. (MEDINA-TEJEDA, 2022b), Theorem 3.2) Let x : (U,0) — (R3,0) be a
proper frontal with extendable normal curvature and O a singularity of rank 1, then after a rigid

motion and a change of coordinates on a neighborhood of 0, x can be represented by the formula:

1753 %) u uy
y= (ul,b(ul,uz),/o ( 0 h(ul,tl)bu2(u1,tl)dt1) buz(ul7t2)dt2+/0 (~/() l(l‘l)dll) buz(ul,tz)dtz

(3.33)
+/ ( I(t1) dtl)bul(tz, dt2+/ (/ (tl)dtl)dtz),

where b, h, [, r are smooth function on neighborhoods of the origin in each case.

3.4.1.2 Wave fronts with extendable Gaussian curvature

If we look at a germ of wave front x : (U,0) — (R3,0), such that 0 € £(x) and rank Dx(0) = 1,
then it follows from remark 4.1 in (MEDINA-TEJEDA, 2022b) that up to an isometry, X is

R-equivalent to
uj u3
V= (1, —huy (w1,02), /0 (T (112) — by (¢, 102) )l — /0 thuy (0,0)d1). (3.34)

Note that Dy has decomposition Dy = QA”, where

1 0
1 0
Q=0 1 andAT:< ) (3.35)

by, by,
81 U2

for h, g1 and b smooth functions such that g; = h,, and —b = h,,,. From this, we obtain that

“u and Aq =

K =
ST (1R, +12)? Mzt

(3.36)

From corollary 4.3 in (MEDINA-TEJEDA, 2022b), it follows that if / in (3.34) satisfies the

equation fy,,,, + c(u1,u2)hy,u, = 0, where ¢(uy,up) is a smooth function, then y is a wave front
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of rank 1 with extendable Gaussian curvature. Furthermore, using this information in (3.36) and

K,
2 we get, by the density of
Ao

taking into account that in U \ X(x) the Gaussian curvature is K =

U \ X(x), that its extension is given by

—c(uy,up)
K=—+--—"—"">"—. (3.37)
(14h2 + u3)?
Thus, if c(u,u;) is a non-vanishing function, we obtain a wave front of rank 1 for which the
Gaussian curvature has a non-vanishing extension. It follows from proposition 3.4 in (MEDINA-
TEJEDA, 2022b) that a wave front does not admit a smooth extension for its normal curvature,

hence this class has no intersection with the class 3.4.1.1.

Remark 3.4.2. Note that the second order linear PDE
hu1u1 + C(MI;MZ)huzuz =0 (3.38)

is an important step in order to obtain frontals with extendable non-vanishing Gaussian curvature.
If c(u1,up) = 1, then the equation (3.38) is the two dimensional Laplace equation (an elliptic
equation), which was discovered by Euler in 1752. This PDE has been useful in many areas, like
gravitational potential, propagation of heat, electricity and magnetism (for more information see
chapter 7 in (GONZALEZ-VELASCO, 1996)). On the other hand, if we take c¢(u;,u;) = —a?,
where a # 0 is a constant, then (3.38) is the one-dimensional wave equation (a hyperbolic
equation). The wave equation governs the dynamics of some physical systems, for instance, the
guitar string, the longitudinal vibrations of an elastic bar, propagation of acoustic, fluid, and
electromagnetic waves (see chapter 5 in (GONZALEZ-VELASCO, 1996)). Note in (3.36) that
the sign of K is determined by the sign of c(uy,u5), but this sign also identifies if the PDE (3.38)
is hyperbolic or elliptic.
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CHAPTER

SINGULARITIES OF 3-PARAMETER LINE
CONGRUENCES IN R*

Here, we deal with three parameter families of lines in R4, ie., 3-parameter line con-
gruences in R*. More content about line congruences can be found in (BIANCHI, 1894),
(EISENHART, 1909) and (WEATHERBURN, 1955). Our approach here is motivated by (IZU-
MIYA; SAJI; TAKEUCHI, 2003). Our goal is to classify generic singularities of 3-parameter
line congruences, normal line congruences and Blaschke affine normal line congruences, in this
last case, providing an answer to the conjecture presented in IZUMIYA; SAJI; TAKEUCHI,
2003). Along this chapter, U denotes an open subset of R>

4.1 3-parameter line congruences in R*

Definition 4.1.1. A 3-parameter line congruence in R* is a 3-parameter family of lines in R*.

Locally, we write ¢ = {x(u), & (1)} and the line congruence is given by a smooth map

Fyg):UxI—R*
(u,t) = F(u,t) =x(u) +1&(u),

where

e x: U — R*is smooth and it is called a reference hypersurface of the congruence;

o £:U — R*\ {0} is smooth and it is called the director hypersurface of the congruence.

When there is no risk of confusion, we denote the line congruence just by F instead of

Fixg)-
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Lemma 4.1.1. The singular points of a line congruence F(, ¢) are the points (u,t) such that

t3<57§u1 /\guz /\§M3> +t2<§7xul /\guz /\51,{3 +§I,{] /\Xuz /\5143 +gul /\éu2 /\Xu3>+
F1(E Xuy AXuy Ny + Xy N AXuy + & A Xy AXuiy) + (& Xy AXiy AXyy) = 0.

Proof. The jacobian matrix of F is

JF = [X”1+t€u1 X“2+t§u2 Xu; +t€u3 ﬂ

As we know, (u,1) is a singular point of F if, and only if, detJF (u,7) = 0, thus the result follows

from

dCtJF(I/t,I) = <€7(X141 +t€u|)/\ (XM2 +t§u2) A (XM3 +t§ug)> =0.
[

Definition 4.1.2. We say that y(u) = x(u) +1(u)€ (u) is a focal hypersurface of the line congru-
ence Fiy g) if

<€ (”)Q’m /\yuz/\yu3> =0. (41)
If y(u) = x(u) +1(u)§ (u) is a focal hypersurface of the line congruence Fy g then

P E NELNE) +HE X NE NE +E Axi, NE+E, NE, AXuy)+
+ (&, Xy, A Xy, /\§M3 + Xy, /\gu2 A Xy +§u1 A Xy AXyz) + (€ Xy, AXyy AXyy) = 0.

4.1.1 Ruled surfaces of the congruence

There is a geometric interpretation related to definition 4.1.2, when x is an embedding
and & is an immersion, as follows. Let {x(u), € («)} be a 3-parameter line congruence and C
a regular curve on the reference hypersurface x. If we restrict the director hypersurface & to
this curve, we obtain a ruled surface associated to the 1-parameter family of lines {x(s), & (s)},
where s is the parameter of C, x(s) = x(u(s)) and & (s) = & (u(s)). The line obtained by fixing
s is called a generator of the ruled surface. These kind of ruled surfaces are called surfaces of
the congruence and since &l(s) = 0, it is possible to define its striction curve (see section 3.5
in (CARMO, 2016) for details). In the special case where this ruled surface is developable, the
points of contact of a generator with the striction curve are called focal points. Let us write
a(s) =x(u(s)) +p(u(s)) € (u(s)) as the striction curve, where p (u(s)) denotes the coordinate of
the focal point relative to & (u(s)). Suppose o (s) # 0 for all s, then it is possible to show that o’
is parallel to & and assuming ||§[| = 1, o' is perpendicular to &, , i = 1,2,3, thus

uy(hir+pgin) +uy(hot + pgi2) +ub(hst +pgi3)
uy (hia+pgia) +uy(hoo + pgan) + ub(hsa + pgas)
uh (h3+pgi13) +us(haz + pgas) +us(hsz + pgsz) =0,

0
0
0
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where g;; = (&,,,&,) and hj; = (x,,,§,, ). As we want to find a non-trivial solution for the above

system, we obtain the cubic equation

hii+pgu ha+pgi2 hai+pgiz
hi2+pgi2 hn+pgrn ha+pgs | =0,
hi3+pgi3 hoz+pgas hiz+pgss

from which we obtain the coordinates p; of the focal points, i = 1,2, 3. Hence, related to each line
of the congruence we have (possibly) three focal points. We define a focal set of the congruence

as

yi(u) = x(u) + pi(u)§ (u), i=1,2,3.

Thus, for every ug, y;(uo) is a focal point and there is a curve in this focal set (striction curve)
a(s) = x(u(s)) + pi(u(s))& (u(s)), such that a(sg) = y;(uo) and o' (s¢) is parallel to & (ug), then

(& (o), Yiuy N Yiuy N Ying) = 0. (4.2)

Therefore, the focal points are located at the focal hypersurfaces defined 4.1.2.

4.2 Singularities of 3-parameter line congruences in R*

In this section we use methods of singularity theory to obtain the generic singularities
of 3-parameter line congruences in R*. Our approach is the same as in (IZUMIYA; SAJI;
TAKEUCHI, 2003), but here we are dealing with the case of 3 parameters in R4, Let F(X@
be a line congruence and take x; and &;, i = 1,2,3,4, as the coordinate functions of x and &,

respectively, thus we have

Fix gy (u,1) = (xp (u) + &1 (u),x2 () + 182 (u), x3 () 4 183 (1), x4 (1) + 184 (w))

If (ug,t9) € U x I and &4(up) # O then there exists Uy C U an open subset given by {u € U :
E4(u) # 0}. Let us define

calu) = _m7 (4.3)

Ea(u)

where u € Uy and ag = x4(ug) + 104 (up). Therefore,

Fix gy (1) = X(u) + ca(u)§ (u) + (1 — c4(u)) & (u)
x(u) +cq(u)é(u) +7€ (u), where f =t —cq(u).

Then, if we look at f(X@ (u,7) = x(u) + c4(u)& (1) +7& (1) we can see that its fourth coordinate,
which is denoted by Fy, is x4 (1) + c4 (1) E4 (1) +7E4(u) = ag + 7E4(u), by (4.3). Furthermore,
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Ia*l (ap) = {(u,0) : u € Uy} and via the Implicit Function Theorem and lemma 2.3.1, the germ

of ﬁ(x, g) at (uo,0) is an one-dimensional unfolding of

Fu) = a0 Fy ) (11,0) = (1 (1) + ca(u) &1 (), 2 (1) + ca () Ep (1), x3 () + 4 (u)E3 (),
where 4(y1,y2,y3,54) = (¥1,52,¥3)-
Lemma 4.2.1. Let F(X”;,:) U x I — R* be a line congruence. With notation as above, the

singularity of f at u is determined by 74 o x.

Proof. Let us suppose & ,(up) # 0 (other cases are analogous), (ug,%) = (0,0) € U x I and
&(0) = (0,0,0,1). Using the above notation, c4(0) = 0, thus the jacobian matrix of f at 0 is

equal to the jacobian matrix of 4 ox at 0. [
The above lemma is important because it shows that the singularity of £, and therefore
the unfolding F, is determined by 40 & : U — R3.

Lemma 4.2.2. Let W C J¥(3,3) be a submanifold. For any fixed map germ € : U — R*\ {0}
and any fixed point (ug,t9) € U x I with &4(up) # 0, the set

T s = X ECTWRY s (RoFigg)) MW at (uo,o)}
is a residual subset of C* (U,R*).
Proof. We proceed as in (IZUMIYA; SAJI; TAKEUCHI, 2003), lemma 4.1. Let us identify
C*(U,R*) x C=(U,R*\ {0}) = C*(U,R* x R*\ {0}) and take the C*-Whitney Topology in-

duced on C*(U,R*) x {€}. Let us take {C j17-1 a countable open cover for W, such that Cjis

compact. Define
T4§7W7(u()7t0)7cj = {X : ]]f (ft4 Oﬁ(&g)) h W, with ]]f (77[4 Of(x.,é)) (uo,t0) € GJ} .

The idea here is to show that T4€7W7(u07 0).C) is an open subset of C*~ (U , ]R“). Note that the map

F e (U, RY) = € (U4 X I,Jk(3,3)> ,

defined by j*(x) = j* (77:4 o Fy, §)> is continuous, as follows. It is known that the k-jet map
10 (Uy x IL,RY) = €= (U4 X I,Jk(3,3))
and the maps
5:C” (Us,RY) x C* (Us,R) x C* (I,R) — C= (Us x I,R?)
(X,c4,7) — X+ 1€ +7&
a0 C° (Uy x ILRY) — €~ (Us x I,R?)
(f1: f2, f3: fa) = (f1s fas f3) -



4.2. Singularities of 3-parameter line congruences in R* 59

are continuous, then as we have fk = jk o my o's, the continuity follows.

Define

Owe, = {gGCOO <U4><I,Jk(3,3)> e W ar (ug,10), g(u, 10) eé,},

which is open (see page 52 in (GOLUBITSKY; GUILLEMIN, 2012)). Considering that the
restriction map

res}U4 :C” (U,R4) —C” (U4,R4)

1s continuous, it follows that

Tf,w,(uo,zo),cj = (reS’U4)_l © (fk)_l (Owc;)

is open. If we are able to show that TfW ( _1s a dense subset of C*° (U , R4) , then we have
M) j

up,to),C

¢ _ 4
T4,W7(uo,lo) - m T47W7(M0J0)7Cj
jeN

residual.

It is enough to show that

Tew o cos = {X € C7 (UsRY) : Jf (Zao Freg) ) W in (uo,10),
i* (7%4 oﬁ(xé)) (ug,to) € Ej}
is a dense subset of C™ (Us, R?).
Let us write
P(3,3,k) = {(p1,p2,p3) : piis a polynomial with p;(0) = 0 and deg(p;) < k}.

Given x € C™ (Uy,R*) and p = (p1, p2, p3) € P(3,3,k), we define the map f(y ) : Us x I — R?
by
Joxp) (us1) = (x1(u) + p1 () + ca(u) &y (u) + 181 (u),x2(u) + pa(u)+
+cq(u)&o(u) +1&(u),x3(u) + pa(u) +ca(u) &3 (u) +1E3(u)).
We also define
®: Uy xIxP(3,3,k) — J53,3)
(M,t, (p17p27p3)) = j]ff(x,p)(u7t) = jkf(XJ),t)(u)'

Since we can look at P(3,3,k) as RY, we identify P(3,3,k) with J%(3,3), and their tangent
spaces. Thus, we have that ® is a submersion at any point and it follows that ® i W. Using

lemma 2.3.3, we have that

{p=(p1,p2,p3) € P(3,3,k) : @, "W at (up,1),such that P, (ug,t9) € E'j}
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is dense in P(3,3,k). Thus, there is a sequence p, = (p1,p2,p3), in P(3,3,k) such that p, —
(0,0,0) with @, h W in C}, for all n € N.

Note that £ = x-+ (1. 72.P3),:0) € Ty (4 ).cp000 ¥ 1 € N: because

it (ﬁ4 Oﬁ(n&)) =7t (fixpn) =@ OW.

0) =xand ¢

. . 0o 4
W, (ut0.10).C;Us is dense in C (U4,R )

Furthermore, lim,,_,.. X+ ((p1, p2, p3)

n’

If &;(uo) #0, j = 1,2,3, we can define the set

T2 o = {x € C*(U,RY) : j* (ﬁjoF(X@) W at (uo,to)}, =123

where 7; is the projection in the coordinates different than j. Thus, the above lemma holds for
5 -

the sets Tj7W’(u0’tO), j=1,2,3,4.

Remark 4.2.1. Define

O1={§cC”(URN{0}) : £, NE,NE#0, 008, NG, NEHO,
or§, NELNEAOVucU}
Then, O is a residual subset of C (U, R*\ {0}) as follows. If we denote by X' = {c € J!(4,4) :
kernel rank(o) =i}, where kernelrank(o) indicates the dimension of the kernel of o, then
JH(4,4)\ Oy = Z* U UX? It is known that ¥/ is a submanifold of J!(4,4) of codimension i
thus, since U C R? is open, if we take & such that j'€ M X, then j'E(U)NZ =0, i =2,3,4 what
happens if and only if & € 0. Therefore, by Thom’s Transversality Theorem, O is residual.
Note above that we are denoting j'& (u) = [§ (u) &, (u) &,,(u) &, (u).

Finally, it follows from lemma 4.2.2 that

Taw (uoso) = {(X7§> Ly (fu Oﬁ(x,é)) hW at (uo,1),§ € @1}
is residual.
Now, we are able to prove our first main theorem, which provides a classification of the
generic singularities of 3-parameter line congruences in R*.
Theorem 4.2.1. There is an open dense set O C C* (U,R* x (R*\ {0})), such that:
a) Forall (x,&) € O, the germ of the line congruence Fix ) at any point (ug,t0) € U x 1 is
stable;

b) For all (x,&) € O, the germ of the line congruence Fix&) at any point (u,f) € U x 1
is a 1-parameter versal unfolding of a germ f : (R3,ug) — R> at r = 1. Then, Fixe) is

A-equivalent to one of the normal forms below
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(x,y,2,w) = (x,y,w,z%) (Fold).

(x,y,2,w) = (x,y,w,z> +xz) (Cusp).

(x,5,2,w) = (x,,2° + (x> £y?)z+ wz,w) (Lips/Beaks).
(x,3,2,w) = (x,y,w, A 4xz+ yzz) (Swallowtail).

(x,3,2,w) = (x,y,w, 2 +x2 £ y*2* +wz?).

(x,y,2,w) = (x,9,w,2° +xz+yz> +wz’) (Butterfly).

(x,y,2,w) = (z,x% +y* 4+ zx +wy,xy,w) (Hyperbolic Umbilic).

(x,y,2,w) = (z,x% — y* 4+ zx +wy,xy,w) (Elliptic Umbilic).

Proof. We first prove item (a). Given f € £33 and z = j*£(0), define

@) = {75(0) g

For a sufficiently large &, define

1,(3,3) = {f € J¥(3,3) : cod.(K,f) >5}.

Consider

which is a submanifold of codimension i-.

1.

¥ = {c €J'(3,3) : kernel rank(c) = i} C J'(3,3),
2

We look at the slice of IT;(3,3) in £, i.e., f € ITx(3,3) such that kernel rank(d f(0)) = 1.
Then, we are dealing with f € IT;(3,3) of corank 1. Therefore, we can write f(x,y,z) =
(x,v,8(x,y,2)), where g(0,0,z) has a singularity of A, type, for some 5 < r < k—1 and
we call them /C-singularities of A,-type. Note that if we regard the “good" set as the
complement of IT;(3,3) in X!, then its singularities are the K-singularities of Aj, A,
Az and Ay-type. Therefore, the slice IT;(3,3) N X! is a semialgebraic set of codimension

greater than or equal to 5, so it has a stratification {S! }"!,, with codim(S}) > 5.

As we did in the first case, define IT;(3,3) N X2, i.e., the set of f € IT;(3,3) of corank
2. We may assume that f(x,y,z) = (z,81(x,¥,2),82(x,¥,z)), where g; has zero 1-jet and
(g1(x,y,0),82(x,7,0)) has 2-jet in H?(2,2), therefore, (g1(x,y,0),g2(x,y,0)) has 2-jet
given by one of the normal forms below (See (GIBSON, 1979) or (MOND; NUNO-
BALLESTEROS, 2020)):

(% +3%a); (¢ =y% ) (2a); (2,005 (% £57,0); (0,0).

Hence, by looking at the first two normal forms and its local algebras, f is XC-equivalent to

one of the forms below:
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o Wi:(z,x*+y*+xz,xy)

o W (z,x2 —y2 +xz7xy)

and both of these forms have cod,(K) = 4. The other K-orbits have cod,(K) > 5. Note
that £2\ (W, UW5) is a semialgebraic set of codimension greater than or equal to 5.
I1(3,3) N X2 is a semialgebraic set contained in X2\ (W; UW), then its codimension is
greater than or equal to 5, thus, there is a stratification {Slz}'ln:z1 of it, with cod im(Siz) > 5.

Furthermore, the “good" set contains only W; and W;.

. In a similar way, we define IT;(3,3) N X%, i.e., the set of the k-jets f € IT;(3,3) whose

corank is 3. Tt is well-known that £3 has codimension 9, so IT;(3,3) N X3 is a semialgebraic
with

m3

set of codimension greater than or equal to 9, hence, there is a stratification {S?}izl,

codim(S3) > 5.

Then, it follows that the “good" set, i.e., the set of the K-orbits of codimension less than

or equal to 4, contains the following K-orbits

o type A,, for 1 <r <4,
e type Wi;
o type W>.

Applying lemma 4.2.2 and remark 4.2.1 to each strata of the above stratification, we

obtain that

mj
7= e 1= 1223
1=

,7§+r = ]—’\;4-7147‘7(’4071’0)7 1 S r S 4

T74i = Taw, (wpi0) 1 = 1,2-

are residual subsets of C(U,R* x (R*\ {0})). Hence,

9
O47(”07t0) = ﬂ 77

i=1

1s residual. The same is true for the sets (’)j (0,10)° j=1,2,3, defined in a similar way.

is a residual set (9(

Since & (u) # 0 for all u € U, given a point (ug,79) € U x I, &j(ug) # 0, for some j, there
C C*(U,R* x (R*\ {0})), such that

uo,1o)

(ng) S O(u(),to) <:>Jllc (ﬁ’-jol’f(xé)> h AH W17 W27 SlJ7 .] = 172737 r= 17 74’

It follows from what we already have done that the germ of I7:(X7§) at (up,0), which is equivalent

to the germ of Fiy ¢) at (uo,f), is a 1-dimensional unfolding of 7; o F(u,0) and it follows

from lemma 2.3.2 that Fi ¢) is A-infinitesimally stable for all (x,&) € O

uo,fo)- Since a germ
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A-infinitesimally stable is .A-stable (see (MATHER, 1969)), there is a neighborhood U, x I;, of
(ug,t9) in U x I, such that Fixe) is A-stable. This result holds independently of the fixed

Uy X} 1y
0770
point (ug, 1), so we can consider a countable family of points (u;,#;) € U x I and neighborhoods

Uy, x I, (i=1,2,--+), such that Fy g ]U g, 18 A-stable and

UxI=|]JU,xI,

i=1
Since O, ,) is a residual subset of C*(U,R* x (R*\ {01)), it follows that

[

O, = ﬂ O(Mi»li)

i=1
is residual. Furthermore, the germ of F(y ¢) at any point (u,t) € U x I is A-infinitesimally stable,
for all (x,&) € O;.

Since .7 : C*(U,R* x (R*\ {0})) — C=(U x I,R*), defined by .7 (x,€) = Fixg), is
continuous and
S={feC”(UxI,R") : f A-infinitesimally stable}

is open (See (GOLUBITSKY; GUILLEMIN, 2012) p. 111), O =.%~1(S) is open. By previous

arguments O, C O and O, is dense, therefore O is an open dense subset.

To prove (b), we refine the KC-orbits of type A, and A3 of the above stratification, by
taking the A-orbits of A,-codimension < 1 inside these K-orbits. Then, the relevant strata
in this stratification are the A-orbits of stable singularities Ay, kK = 1,2,3, and the A-orbits of
singularities of A.-codimension 1 of type A, A3, A4 and Dy4. The complement of their union is

a semialgebraic set of codimension greater than or equal to 5.

1. K-orbit of A; type

f(x,y,2) = (x,y,72) which is stable, hence, we have just this A-orbit. Its suspension in R*

is the stable germ that we are looking for.

2. KC-orbits of A; type
It follows from the classification made by Marar and Tari (MARAR; TARI, 1996), that the
possible normal forms are
fx3,2) = (50,2 +P(x,)z) ,

where P(x,y) is one of the singularities Ay, Dy, Eg, E7 or Eg and cod. (A, f) = u(P).
As we are looking for f which have a versal unfolding of dimension 1 that is a stable germ,
we must have P(x,y) = x or P(x,y) = x*> £ y?. Therefore, we have the A-orbits

f1(63,2) = (x,,2 +xz) (Cusp);

fxy2) = (6,2 + (¥ £y*)2) (Lips(+) / Beaks(—)),
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with code (A, f1) = 0 and cod. (A, f») = 1. The stable germs R* 0 — R*, 0 are, respec-
tively

Fl(X,y,Z,W) = (x7y723 +XZ,W);
FZ(x7y7Z7W) = (X,y,ZS + (xzj:yz)z—}-wzjw),

These germs are .A-equivalent, however they are considered separately, because they are

versal unfoldings of f; and f,, respectively, which are not A-equivalent.

. KC-orbits of Az type

In a similar way, the possible normal forms are (see (MARAR; TARI, 1996), section 1)

(3,2 +xz£9°22), k> 1. code (A) =k —1;
(x,3, 2%+ (07 £x5)z+x2),k > 2. code (A) = k.

Hence, the useful cases are those where kK = 1 or k = 2 in the first type of orbit, i.e.,

fi(x,y,2) = (x,y,2* + xz+yz%) (Swallowtail);
fZ(xayaz) = (X,y,z4—|—xziy2Z2),

with cod, (A, f1) = 0e code (A, f>) = 1. The stable germs R* 0 — R*,0 are, respectively

Fl (X,y,z,W) = (x,y,z4+xz+yz2,w)

Fz(x,y,Z,W) = (x,y,Z4 +XZ:|:y222 +WZ27W)'

. K-orbits of A4 type

Via (MARAR; TARI, 1996), the possible normal forms are

(x,y,z5 +xz+yz2), code(A) =1;
(x,3,2° +xz+ 222 +y2°), code(A) =2;
(x,3,2 +x2+y2’), code(A) =3.

Thus, the only case to be considered is
fx,y,2) = (x,9,2 +x2+y2%),
whose associated stable germ is

F(x,3,2,w) = (x,5,2° +xz2+y22 +wz>, w).

5. KC-orbits Wy and W,
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The germs

Fl(x7y7zaw) = (Z7X2+)’2+ZX+W)’7X)’7W);
FZ(X7y7ZaW) = (Z7x2_y2+zx+wy7xy7w)'

are, respectively, 1-parameter versal unfoldings of (see (BRUCE, 1986), section 3)

fl(xuyvz) = (Zax2+y2+2x;XY)§
fZ(x7y7Z) - (Zyxz—y2+ZX7XY) ’

where f] and f; are of the type W) e W, respectively and both have cod.(.A) = 1. Then,
we conclude the proof.

4.3 Normal congruences

In this section, our approach is the same as in (IZUMIYA; SAJI; TAKEUCHI, 2003) and
we seek to provide a classification of the generic singularities of 3-parameter normal congruences
in R?. For this, it is necessary to characterize normal congruences and consider some aspects of

Lagrangian singularities.

Definition 4.3.1. A 3-parameter line congruence ¢ = {x(u),& (u)}, for u € U C R, is said to
be normal if for each point uy € U there is a neighborhood U of ug and a regular hypersurface,
given by y(u) = x(u) +t(u)& (1), whose normal vectors are parallel to & (u), for all u € U. The

congruence is an exact normal congruence if & (1) is a normal vector at x(u), for all u € U.

The next proposition characterizes 3-parameter normal line congruences in R* and
corresponds to the Proposition 5.1 in IZUMIYA; SAJI; TAKEUCHI, 2003).

Proposition 4.3.1. Let ¢ = {x(u),&(u)}, u € U C R3, be a 3-parameter line congruence in
R*. ¢ is normal if, and only if, &;;(u) = hji(u), i,j € {1,2,3}, for all u € U, where h;; =

(v (). )

Proof. Let € be a normal congruence and S’ a hypersurface parameterized locally by y(u) =
x(u) +t(u)& (1), whose normal vectors are parallel to & (u). Let us suppose that ||& (u)|| = 1.
Then, y,,(u), i = 1,2,3 are orthogonal to & (), therefore, (§,y,,) = 0. From these expressions,

we obtain

ty, = _<Xu1a€>
t, = —(Xu,, ) - 4.4)
luy = _<Xu3>€>-
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Since t is sSmooth, #,,,u, = tusu, > tuyuy = tusu; A0 typuy = tusu,- From t,,, = t,,,,, We obtain

_<XM1M2’5> - <Xul7éu2> = _<Xulu2?€> - <Xuzv€u1>

Therefore, hi = (Xy,, §u2> = (Xy,, éul) = hy1. The other cases are analogous.

Reciprocally, suppose h;j = hj;, for i, j = 1,2, 3. Taking into account the system (4.4), it
follows from h;; = hj; that 1, = tuyu;» tuyus = tuzu, and ty,u; = fuzu,. Therefore, this system is
associated to an exact differential equation and it has a solution ¢. Write y(u) = x(u) +¢(u)& (u).
Note that

<§7YM,<> == <§7Xu[> —|—tui
- <§’X”i> - <€7xui> =0

If y is not an immersion, there is a positive real number A such that §(u) = x(u) + (¢ (u) + 1) (u)
is an immersion. For the last part, it is sufficient to look at the case when y(u) belongs to the

focal set of the congruence. O]

Denote by
Emb(U,R*) = {x: U — R*: x is an embedding}
the space of the regular hypersurfaces in R* with the Whitney C*-topology, and by
EN (UR* x (R*\{0})) = {(x,€) : x € Emb(U,R?), &(u) is normal to x at x(u) }
the space of the exact normal congruences. So, we have the following well known theorem.

Theorem 4.3.1. There is an open dense subset O C Emb(U,R*), such that the germ of an exact
normal congruence F(, ¢) at any point (up,t9) € U x I is a Lagrangian stable map germ for any
xe 0,1e.,Vxe O, F(X7 £) is an immersive germ, or 4-equivalent to one of the normal forms in
table 2.

Singularity Normal form

Fold (x,y,w,2%)

Cusp (x,y,w,2° +x2)
Swallowtail (x,y,w, 2" +xz +yZ 2)
Butterfly (x, y,w 2 +xz4+y22 +wzd)
Elliptic Umbilic (z,w, x> —y% +zx,2y)
Hyperbolic Umbilic  (z,w,x> +zy,y* + zx,xy)

Parabolic Umbilic (z,w,xy +x2, x> +y> +yw)

Table 2 — Generic singularities of exact normal congruences



4.3. Normal congruences 67

Proof. 1t follows from example 2.4.4 that the germ Fy g) at (uo, ), where (X, &) € EN(U,R* x
(R*\ {0})), is the Lagrangian map associated to the germ of family of distance squared functions
D on M = x(U), which is a Morse family of functions. Furthermore, from theorem 2.4.1 we
know that for an open and dense subset of Emb(U,R*) the family D is locally P-R*-versal.
Since, Fix g) is Lagrangian stable if and only if D is P-R*-versal (see theorem 2.4.2), we have
the result. [l

Now, we define a natural map P : EN (U,R* x (R*\ {0})) — Emb(U,R*), given by
P(x, &) = x. Taking into account the natural identification between x € Emb(U,R*) and the pair
(x,n), where n is its unit normal vector field, it follows that this map is a retraction, so it is a
continuous open map. Then, we have the following corollary, which provides a classification of

the generic singularities of 3-parameter exact normal congruences.

Corollary 4.3.1. There is an open dense subset O C EN (U,R* x (R*\ {0})), such that the
germ of an exact normal congruence Fix g) at any point (ug,tp) € U x I is a Lagrangian stable

map germ, for all (x,&) € O.

Proof. 1t follows from the fact that P : EN (U,R* x (R*\ {0})) — Emb(U,R*) is an open
continuous map and from theorem 4.3.1. [

Let us consider some aspects of Lagrangian singularities (see chapter 5 in (IZUMIYA
et al., 2016)). Take the cotangent bundle 7 : T*R* — R*, whose symplectic structure is given
locally by the 2-form @ = —dA, where A is the Liouville 1-form, given locally by A = Zle pidzi,
where (z1,22,23,24, P1, P2, P3, P4) are the cotangent coordinates. For a given congruence F(X7 £)>

we define a smooth map Ly gy : U X I — T*R* ~ R* x (R")*, given by

= XU iI/l iu
L<X75>(”’”‘( SRR ))‘

Definition 4.3.2. We say that F(, ¢) is a Lagrangian Line Congruence if L g is a Lagrangian

immersion.

Proposition 4.3.2. Suppose that L, ¢ is an immersion. Then F|y ¢ is a Lagrangian congruence

if, and only if, is a normal congruence

Proof. Locally, the Liouville 1-form of T*R* is given by A = Zle pidz;. So,

( _y iu xi(u 5 u iu
Five )= X gy et g g 0)

i=1
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Therefore, being ® = —dA, we have

_L&g)(w):dLym(x):g(dé"H(u)Adx,( )+ H?H( )dmd Si ( ))
(<(ﬁ)> < & )dumdm
+<<(ﬁ)m,xw> < % >)du1Adu3+
+<<(%)M,XM> < % >)du2Adu3+

+
1
T
el
T
R‘m
~

~
\/
Q
-~
>
Q
=

|
where x(u) = (x1(u),x2(u),x3(u),x4(u)) and

By proposition 4.3.1, we can regard the space of the Lagrangian congruences as follows.

]

A line congruence F(y ¢) is a Lagrangian congruence if, and only if, there is a smooth function

t:U — R, such that x(u) +#(u)& (u) is an immersion and the following conditions hold

'tm<u>+<”5—”<u>,xul<u>> 0
tuz(u)+<H§—H(u),Xu2(u)> =0
)+ (370 () ) =0

4.5)
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So, we can define the space of the Lagrangian congruences
L(U,R* x (R*\{0})) = {(x,£,€) : x(u) + ()& (u) is an immersion and (4.5) holds}

with the Whitney C*-topology. Our idea now is to show that the generic singularities of normal
congruences are the same as the generic singularities of exact normal congruences, so, let us

define the map
T,p: C°(U,R* xR x (R*\ {0})) — C*(U,R* x (R*\ {0}))
(x(u),(u), & () = (x(u) +1(u)§ (1), & (w)).

Proposition 4.3.3. T, is an open continuous map under the Whitney C*-topology.

Proof. For any positive k € Z, the map

T - MU, R x R x (R*\ {0})) — J*(U,R* x (R*\ {0}))
Fx1.8) = f(x+18.8)

is a submersion, so it is an open map. From this, follows that 7., is an open map. [

Now, take
N(U,R*x (R*\{0})) =T;,, (L (U,R* x (R*\ {0}))) c €~ (U,R* x (R*\ {0})),

with the Whitney C*-topology induced from C (U,R* x (R*\ {0})). Note that we can regard
N(U,R* x (R*\ {0})) as the space of the normal congruences. Then, we have the following

theorem.

Theorem 4.3.2. There is an open dense set O’ C N(U,R* x (R*\ {0})), such that the germ of

normal congruence F(y ) at any point (ug,19) is a Lagrangian stable germ, for any (x,§) € O'.

Proof. From Corollary (4.3.1), there is an open dense subset O C EN (U RY x (R4 \ {0})),
such that the germ of exact normal congruence F(y g) is a Lagrangian stable germ for all
(x,€) € O at any point (ug, %) € U x I. As we know, T}, is an open map, so we just need to take
0 =T,,(0). O

4.4 Blaschke normal congruences

In this section we deal with one of the most important classes of equiaffine line con-
gruences, which is the class of Blaschke normal congruences. Our goal is to provide a positive
answer to the following conjecture from (IZUMIYA; SAJI; TAKEUCHI, 2003):

Conjecture. Germs of generic Blaschke affine normal congruences at any point are Lagrangian
stable.
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Taking this into account, let us regard R* as a four-dimensional affine space with volume
element given by (e, en,e3,e4) = det(ey,ez,e3,e4), where {e1,ez,e3,e4} is the standard basis
of R*. Let D be the standard flat connection on R*. Now, let us consider the affine support

function p,, given in (3.3) and fix an Euclidean inner product (.,.) in R*, then pp 1is given by

Pp(u) = (p—x(u),v(u)), (4.6)

where V is the conormal vector field relative to &. Thus

35 (1) = vilu). 4.7)

Remark 4.4.1. It follows from item 5.1.4 that the catastrophe set of p, which is also called the

Criminant set of p, is
Cp = {(u,p) : p=x(u) +1& (u), forsomet € R}.

Now we seek to prove that the family of affine support functions is a Morse family
of functions. In order to do this, we prove first that the conormal vector field associated to an

equiaffine vector field transversal to a non-degenerate hypersurface is an immersion.

Proposition 4.4.1. Let x : U — R* be a non-degenerate hypersurface with transversal equiaffine

vector field €. The conormal vector field v : U — R* relative to € is an immersion.

Proof. Let x(U) = M. It follows from the fact that v is the conormal vector field of & that
(v,&) =1and (v,v) = 0, for all tangent vector field v. Thus, taking the derivative we get

<de(W),V(p)> = —<V(p)7de(W)> = —<V(p), (VWV)p+c(W7V)p§> = _C(W7V)pa

for all p = x(u) and w € T,M. Then, w is a direction in the kernel of dv, if and only if
(dv,(w),w) = (0,W) = —c,(w,W) =0, for all W € T,M, but since X is non-degenerate it

follows that ¢ is non-degenerate, hence w = 0 and Vv is an immersion. U

Proposition 4.4.2. Let x : U — R* be a non-degenerate hypersurface with transversal equiaffine
vector field &. Then the family of germs of functions p : (U x R?, (ug, po)) — (R, 19), where

to = p(uo, po) and uy is a critical point of p, is a Morse family of functions.

Proof. Let us denote (u, p) = (uy,up,us, p1,p2, p3, p4). From definition 2.4.6, in order to prove
that p is a Morse family we need to prove that the map germ A : (U x R*, (uo, po)) — R3, given
by

_(dp dp Jp
Ap(l’t:p) - (aul’Quz’ 8143) (uvp)
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is not singular. Its jacobian matrix is given by

PPy PP P ppy
81418141 8u18u2 81418143
1) o, po) = | P TP b
8u18u2 8u§8u2 8u228u3
oy 9Ppy 9Py
du1dus Jdurduz Jduzduz

(viur (vo)ur (v3)ur (va)uy

(VDuz (V2)uz (V3)ua (Va)up | (4.8)

(Viuzs  (V2)uz  (V3)ur  (Va)us

Since x : U — R3 is non-degenerate, it follows from proposition 4.4.1 that v : U — R* is an

immersion, therefore the jacobian matrix 4.8 has rank 3 and Ap is not singular. [

The above proof is an alternative to that one presented in (LOPES; RUAS; SANTOS,
2022) for the same proposition.

Remark 4.4.2. It follows from the above proposition that the 4-parameter family of germs of
functions p : (U x R?*, (ug, po)) — (R, to), where uy is a critical point of pj,, is a Morse family.
Furthermore, if po = x(uo) +10& (uo) (where 19 = pp, (uo)), the Lagrangian immersion associated
to this Morse family is L : (U x R, (ug, %)) — T*R*, given by

L) = <x<u> W f”zw) ,

whose Lagrangian map associated is Fiy gy = 70 L(u,1) = x(u) +1& (u), where 7 : T*R* — R%,

4.4.1 Blaschke Exact Normal Congruences

Here, we work with the line congruence F(X@ U x I — R* where x: U — R* is a non-
degenerate regular surface and € : U — R* is its Blaschke vector field (see definition 5.2.1).
Let Emb,g(U,R*) = {x: U — R*: x is a non-degenerate embedding} be the space of non-
degenerate regular hypersurfaces with the Whitney C*- topology. Define the space of the

Blaschke exact normal congruences as

BEN(U,R* x (R*\ {0})) = {(x,&) : x € Embyo(U,R?"), & is the

Blaschke normal vector field of x} .
Then, we identify (with the Whitney C*-topology) the spaces Emb,, (U, R*) and
Seon(U,R* x R*\ {0}) = {(x,v) € C*(U,R* x R*\ {0}) : x € Emby,,(U,R*) and v is
the conormal of x relative to the Blaschke vector field}

Definition 4.4.1. Let x : U — R*, with x(U) = M, be a non-degenerate hypersurface. We define
the conormal bundle of M by

Ni={(p.v):pEM, (nw)=0,YweT,M} C T*R*.
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Remark 4.4.3. Note that we can look at S, (U,R* x R*\ {0}) as a section of the conormal
bundle of M.

Let us define the following maps

H: (R*xR*\{0}) xR* - R (4.9)
(A,B,C) — (B,C —A)

g:U = R*xR*\ {0} (4.10)

w— (x(u), v(u)),

where g € Scon (U, R* x R*\ {0}). If we fix a parameter C, Hc : R* x R*\ {0} — R is a submer-

sion, therefore, Hc o g is a contact map. Finally, note that

p(”t?p) =Ho (guld’R4> (uup)

Proposition 4.4.3. For a residual subset of Emb,,(U,R* x R*\ {0}) the family p is locally
P-R+-versal.

Proof. Following the identification in remark 3.1.2 and the notation in remark 4.4.3 we can
apply theorem 2.3.2 in order to show that there is a residual subset of Emb,y(U,R* x R*\ {0})
for which p is locally P- R*-versal. O

Theorem 4.4.1. There is a residual subset O C Emby, (U, R*) such that the germ of the Blaschke
exact normal congruence Fiy g at any point (up,tp) € U x I is a Lagrangian stable map germ for
any x € O, 1i.e.,Vx € O, F(x7 £) is an immersive germ, or A-equivalent to one of the normal forms
in table (2).

Proof. Letus take the map germ Fy g : (U xR, (uo,10)) — (R*, po). Thus uj is a critical point of
Ppo by proposition 3.1.3. Then, p : (U x R?, (ug, po)) — (R, 1) is a Morse family of functions.
Furthermore, by Remark 4.4.1, the Lagrangian map related to this family is Fiy ¢). It is known
that if p is P-R T -versal, then Fix ¢ 1s Lagrangian stable (see theorem 2.4.2), so the result

follows from proposition 4.4.3. [
The map
I1: BEN (U,R* x (R*\ {0})) — Emb,,(U,R?), (4.11)

given by I1(x, &) = x, is open and continuous. Thus, we obtain the following corollary, which
proves the conjecture 3.2.1 given in (IZUMIYA; SAJI; TAKEUCHI, 2003).

Corollary 4.4.1. There is a residual subset O C BEN (U,R* x (R*\ {0})), such that the germ
of the Blaschke exact normal congruence Fix g at any point (ug,t9) € U x I is a Lagrangian stable
map germ for any (x,§) € O, ie., V(x,§) € O, Fi; ¢ is an immersive germ, or .A-equivalent to

one of the normal forms in table (2).
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4.4.2 Blaschke Normal Congruences

Let

BN(U,R* x (R*\ {0})) ={(x,&) : 3t € C*(U,R), s.t.y(u) = x(t) +t(u)& (u) € Emb,z(U,R?)
and & is the Blaschke normal vector fieldof y}

be the space of the Blaschke normal congruences. Alternatively we can look at this space as a
subspace of C*(U,R* x R x (R*\ {0}))

BN(U,R* x R x (R*\ {0})) = { (x(u),t(u),E () : y(u) = x(u) +1 ()& (1) € Embng(U,R*) and
& is the Blaschke normal vector field ofy}
In both cases, with the Whitney C*”-topology.
The map
T,p: C(U,R* xR x (R*\ {0})) — C~(U,R* x (R*\ {0}))
(x(u), (1), & () = (x(u) +1 ()& (u), & (u),
is open and continuous (see proposition 4.3.3) in the Whitney C*-topology. Notice that
BEN (U,R* x (R*\ {0})) c C*(U,R* xR x (R*\ {0}))
with the following identification
BEN (U, R* x (R*\ {0})) > (x,&) ~ (x,0,&),

where x € Emb,¢(U, R*) and £ is its Blaschke normal vector field. Furthermore, we can look at

the space of the Blaschke normal congruences as the space
BN(U,R* x (R*\ {0})) = T;,, (BN(U,R* x R x (R*\ {0}))) . (4.12)

Thus, Ty, (BEN (U,R* x (R*\ {0}))) = BN (U,R* x (R*\ {0})). Hence, we obtain the follow-

ing theorem.

Theorem 4.4.2. There is a residual subset O’ C BN(U,R* x (R*\ {0})), such that the germ of
Blaschke normal congruence Fix . at any point (up,tp) € U x I is a Lagrangian stable map germ
for any (x,§) € O, e, V(x,8) € O, Fiy ¢y is an immersive germ, or .A-equivalent to one of

the normal forms in table (2).

Proof. It is known that map T, is open and continuous and 7,,(BEN (U,R* x (R*\ {0}))) =

BN (U,R* x (R*\ {0})).1f&/ C BEN (U,R* x (R*\ {0})) is open and dense, then its image by

T,p is an open dense subset of BN (U,R* x (R*\ {0})). Take O = N O; the residual subset of
ieN

BEN (U,R* x (R*\ {0})) given in Corollary (4.4.1). We can show that 7;,(0) = O’ = N O},

ieN
where T;,(O;) = O., therefore O’ is residual. O
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Example 4.4.1. Taking into account (LEICHTWEISS, 1989)(section 2) and (LI et al., 2015)(sec-
tion 2.2.4) it is possible to parametrize a non-degenerate hypersurface M around an elliptic point,
by considering not only R-equivalence but also affine transformations of R*, as a graph of a
function 4 : U — R, such that

h(u) = 1/2(u3 + 13 +ud) + aryuugus +1/6 (—ayno — ar0n) us + 1/2an10utuy
+ 1/2a201u%u3 + 1/6 (—a210 — a()]z) u% -+ 1/26112014114% + 1/2a021u%u3
+1/6(—azo1 — aga1) uj + 1/2a100u113 + 1/2ap12u2u3 + O(3). (4.13)
Here O(3) means functions of order higher than 3. Since the group of affine transforma-
tions is different from the group of Euclidean motions (translations and rotations) it follows that
this is not necessarily a local parametrization of M around an Euclidean umbilic point. Using

this parametrization, the Blaschke normal vector of M at the origin is given by (0,0,0,1). If we

choose a1 = az10 = agi2 = a1 =0, ajp0 = a102 = 1 and agy; = 2, it follows that
h(u) = 1/2(uf +u3 +u3) — 1/3u3 + 1/2uqu3 + 1/ 2u1u3 + ubuz — 1/3u3.
Using (3.5) we can compute the Blaschke normal vector field of M
& (u) =(6/5uy +18/5ut —17/5(u3 +u3) + O(3),2up — 6uyus — 52 /Suzuz + 0(3),
2u3 — 6uyuz —26/5(us —u3) + O(3), 1+ 3/5ut +u5 +u3 + 0(3)).

Furthermore, the congruence map Fiy g)(u,t) = X(u1,u2,u3) +1& (u1,u,u3) has a singular point
at (0,0,0,—1/2) and its 2-jet at this point is given by

Fig)(u,1) = (2/5u1 = 9/5ui +17/10(u5 + u3) +6/5 (t -+ 1/2) uy, 3usup + 26 /Suzu
+2(t+1/2)up,3uyuz +13/5u3 — 13 /505 + 2 (t +1/2) uz,t + 1 /5u?).

If we take A = s+ % =r+ %u%, then it is possible to verify that Fy g)(u,4) is an elliptic umbilic

singularity.
Example 4.4.2. Let us take a non-degenerate hypersurface given by the graph of

h(u) = —1/2uf —1/205 +1/203 +1/6u; — 1/ 2ufuz
+1/2uyu3 +1/3u3 + 1/ 2up13. 4.14)

Then, in a similar way to the last example, it is possible to verify that the map F(, ¢), where
x(uy,up,uz) = (uy,uz,uz,h(uy,uz,u3)) and & is the Blaschke normal vector field of x, has a
hyperbolic umbilic singularity at (0,0,0,5/4).

Example 4.4.3. By taking a non-degenerate hypersurface given by the graph of
h(u) = 1/2(—u} — u3 +u3) + 2uyuouz + 1/ 2uyu3 + 1/2uiu3 + 1 /45 (4.15)

it follows, in a similar way to the first example, that the map F(, ¢, associated to the Blaschke

exact normal congruence, has a parabolic umbilic singularity at (0,0,0,—5/6).
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CHAPTER

EQUIAFFINE STRUCTURE FOR FRONTALS

In this chapter we generalize the idea of equiaffine structure to the case of frontals and
define the Blaschke vector field of a frontal. We also investigate some necessary and sufficient
conditions that a frontal needs to satisfy to have a Blaschke vector field and provide some
examples. Finally, taking the theory developed here into account a fundamental theorem, which
is a version for frontals of the fundamental theorem of affine differential geometry, is shown. The
results presented here can also be found in the paper (SANTOS, 2022), submitted for publication.
In 5.4 we briefly discuss some problems we want to deal with in future research taking into

consideration the theory developed here.

5.1 Equiaffine structure on frontals

In this section we define equiaffine transversal vector fields to a frontal similarly as
defined in (NOMIZU; KATSUMI; SASAKI, 1994) when considering regular surfaces, however
as we are dealing with frontals, we need to take into account tangent moving basis and the

limiting tangent planes.

5.1.1 The case of the unit normal vector field

Letx: U — R3 be a frontal, Q : U — M3,»(R) a tmb of x, where Q = <w1 w2> and

n: U — R the unit normal vector field along x. For each ¢ € U we decompose
R* = To(q) © (n(q))r-
Using this decomposition we get
wi, = Tjwi+ T7wa + pin, (5.1)

where the symbols 73‘, i,j,k = 1,2 are those in (3.27) and (3.28). Note that p;; = ((W;)u;, 1),
thus the matrix ( Di j> coincide with the matrix (3.29).
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Remark 5.1.1. If we define a bilinear form pg(q) : To x To — R, given by pa(q)(wi,w;) =
pij= <W,'Mj (¢),n(q)), then the matrix of pg relative to the basis Q is Il and pg is non-degenerate
if and only if Il is non-singular, which is equivalent to say that the Q-relative curvature Ko is

non-zero (see definition 3.4.3).

Definition 5.1.1. A proper frontal is said to be a non-parabolic frontal if for some tmb Q the

relative curvature Kq never vanishes.

Remark 5.1.2. It follows from corollary 3.23 in (MEDINA-TEJEDA, 2022a) that a frontal
x : U — R3 is a wavefront if and only if, (Ko, Hq) # 0 on £(x), for whatever tangent moving

base Q. Therefore, every non-parabolic frontal is a wavefront.

Proposition 5.1.1. The notion of non-parabolicity is independent of tmb.

Proof. Via proposition 3.18 in (MEDINA-TEJEDA, 2022a) the zeros of K are independent of
tmb. [

The next proposition provides a representation formula for non-parabolic frontals.

Proposition 5.1.2. Let x : (U,0) — (R?,0) be a germ of non-parabolic frontal, Q a tmb of x
and 0 € X(x). Then, up to an isometry X is /R-equivalent to

uj uz
y(”]?”Z) = (a(ulal’tZ);b(ul;uZ)a/O (t]aul <t17u2) +M1bu1(tl;u2))dt] +/O tzbuz(oatZ)dtZ)v

where a, b are smooth functions such that a,, = b,,,.

Proof. See proposition 4.1 in (MEDINA-TEJEDA, 2022b). [

5.1.2 The case of a transversal vector field

Let € : U — R3 be a vector field which is transversal to the frontal x : U — R3 i.e.
&(q) ¢ To forall g € U, where Q = <W1 w2> is a tmb. Thus, for each g € U we can decompose

R’ = To(q) ® (§(9))r-
In the same way that occurs with the unit normal vector field, we write
. = Dlwi +D72wy + hy; 5.2
Wi, = W1+ LDwo + ué- (5.2)

and we obtain a bilinear form hq(q) : T x To — R, such that hg(gq)(W;,w;) = h;j(g). We call

hq the relative affine fundamental form of x induced by &. In a similar way, we write
£, =-Siwi—Siwr+ 16 (5.3)

Then for each g € U we have Sq(q) : Ta(q) — Ta(q), such that So(q)(w;) = S!w; + S?w, and
10(q) : To(g) — R, such that 7q(q)(w;) = 1;, i = 1,2. We call S the relative shape operator of

& and tq the relative transversal connection form.
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Definition 5.1.2. The vector & defines an equiaffine structure on x (or € is equiaffine) when the
derivatives of € are in Tg(q), for all g € U, i.e. when 1o = 0.

For a frontal x : U — R> and an equiaffine transversal vector field & : U — R? we say
that the symbols Dk and h;;, given in (5.2), define an equiaffine structure on x.

Definition 5.1.3. Given v,v, € T, we define

0(vi,v2) := @(vy,v2,€),

where @ is the canonical volume element in R3, that is @(ej,es,e3) = det(e,ez,e3), for
{e1,ez,e3} the standard basis of R3. The volume element 6 is called the induced volume

element.

Proposition 5.1.3. If x is a non-parabolic frontal then the relative fundamental form induced by

a transversal vector field is non-degenerate.

Proof. Let § be a transversal vector field, thus we can write
§E=¢n+2,

where Z is tangent and ¢ : U — R\ 0 is smooth. Hence,

&E-7

= __ _ _ —n

¢

and

Wiy; = T Wi +T W2+pt]n

= <T1W1 + TZWQ — p(;jz> + %é

= D};wi +Djwa +h;;&.

Therefore, h;j = ¢ , I, =1,2. From this, (pij> is non-singular if and only if (h,-j> is non-

singular. As x is non-parabolic, the result follows from remark 5.1.1. O]

Proposition 5.1.4. Let & : U — R3 be a vector field which is transversal to a frontal x : U — R3,
Let us suppose that

§=¢n+Z

where Z(u) = a(u)wy(u) +b(u)wy(u) € To, Q = <w1 w2) and ¢ (u) # 0, for all u € U. Then
hg and g satisfy
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(@) hg = %pg-

(b) (W) = %(PQ(Z,Wi) + @u;)-

Proof. Note that 5.1.4 was proved in proposition (5.1.3). In order to prove 6.8 let us write

Bgo = (b,- j> the relative shape operator of n. We know that

.. = —Sa(wi) + (W)€ = —Sa (W) + Ta(Wi)Z + To(W;)¢n. (5.4)
On the other hand,
..(a) = —9Ba(q)(Wi) + ¢un+Z, (5.5)
= (24— 9Ba(w)) + (64, + pa(Z,wi)n,

where Z,Z is the tangent component of Z,,. By comparing the normal components of (5.4) and
(5.5), it follows that To(w:) = § (pa(Z, Wi) + ¢u,)- O

Remark 5.1.3. Let us take x : U — R a frontal and Q = (wl w2> atmb. If & : U — R3, given
by & = ¢n+aw; + bw,, is an equiaffine transversal vector field, then T7q = 0. Via proposition
5.14, to(w;) = % (pa(aw) +bwa, w;) + ¢y,). Since 1o =0, we get in U \ X(x)

palaw; +bwy,wi) = apq(wi,Wi) +bpa(W2,W1) = aeq +bfra = — @y,

palaw; +bwy, wo) = apq(Wi,Wa) +bpa(W2,W2) = afio +bgo = —du,,

1
a ea  fro —uy \ .

= U\ X(x). 5.6
(b) (fm gQ) <—¢u2> mUAZ) -0

Since a,b € C*(U,R) and U \ X(x) is dense, it follows that for a point ¢ € £(x) we have

<0(4)> _ lim (6‘9 fzg)l <_¢u1> '
b(q) =4\ fio 8o —Ou,

Note in remark 3.1.2 that we could write the vector field W considering a tmb Q = <w1 w2>

therefore,

instead of the usual tmb Dx = (xu X xu2>. In this case, we would obtain an expression like (5.6)
instead of (3.7).

5.2 The Blaschke and the conormal vector fields of a

frontal

The Blaschke vector field and the conormal vector field associated to an equiaffine

transversal vector field play an important role when studying regular surfaces from the affine
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differential geometry viewpoint. With the Blaschke structure, for instance, we define proper
and improper affine spheres (see chapter 2 in (NOMIZU; KATSUMI; SASAKI, 1994)) and the
Blaschke line congruences (see 4.4.1 or section 6 in (LOPES; RUAS; SANTOS, 2022)). On the
other hand, the conormal vector field makes calculations with the affine support function easier,
for instance (see section 1 in (CECIL, 1994)). Taking into account the importance of these two
objects, in this section we define the Blaschke vector field of a frontal and the conormal vector

field associated to an equiaffine vector field transversal to a frontal.

5.2.1 The Blaschke vector field of a frontal

Definition 5.2.1. Let x : U — R? be a proper frontal such that its Gaussian curvature never
vanishes in U \ £(x). We say that a transversal vector field & is the Blaschke vector field of x if it
is a smooth extension of the usual Blaschke vector field defined in U \ £(x).

It follows from the density of U \ £(x) and from the fact that the Blaschke vector field
is unique up to sign (see (NOMIZU; KATSUMI; SASAKI, 1994)) that the above extension is

unique. Now, looking at the special affine group (or equiaffine group)
SA(3,R) ={®:x+— Ax+b:A cM;(R),detA = 1 and b is a constant vector}

we seek to show an invariance property for the Blaschke vector field defined here, in the following
sense. Given a frontal x : U — R3 and ® € SA(3,R), the Blaschke vector field of y = ®ox is E,

where

E(q) =.&(q), forallg e U.

Proposition 5.2.1. Let x : U — R be a proper frontal for which the Gaussian curvature has a
non-vanishing smooth extension. If there exists, the Blaschke vector field of x is an equiaffine

invariant.

Proof. Let ®(x) = Ax+ b be an equiaffine transformation, then y = ® o x has the same singular
set of x. Furthermore, it is known that in U \ £(x) the usual Blaschke vector field of y is given
by E = @, &, where & is the Blaschke vector field of x. Let us keep the same notation for the
extension of &, then ®,& is an extension of E to U, so it is the Blaschke vector field of y. [

Remark 5.2.1. Note that is not always possible to obtain a smooth extension of the Blaschke
vector field. For instance, if x: U — R3 is a non-parabolic frontal, i.e., for all tmb Q, the Q-
relative curvature Ko # 0, then the Gaussian curvature is not extendable (see proposition 4.1 in
(MEDINA-TEJEDA, 2020)). It is known that the usual Blaschke vector field is given in U \ X(x)
by |K|'/*n+ W, where W is a tangent vector field (see remark 3.1.2), thus (€, n) = |K|'/*. Since
it is not possible to extend K, it follows that is not possible to extend this vector field. From this,
it follows that a necessary condition to obtain the Blaschke vector field of a frontal is that its

Gaussian curvature is extendable.
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Next, we characterize frontals for which it is possible to define the Blaschke vector field.

Theorem 5.2.1. A frontal x : U — R> admits a Blaschke vector field if and only if its Gaussian

curvature K has a non-vanishing extension to U and there are a,b € C*(U,R) such that

-1
AD)) _ (€0 Po ) forallge U, (5.7)
b(q)) “a\fia 8o —Qu,

where Q = (wl w2> is a tmb and ¢ = |K|'/4.

Proof. Let & = ¢gn+ aw| + bw, be the Blaschke vector field of x. Then, ¢,a,b € C*(U,R)
and ¢ = (€,n) = |K|'/*in U \ Z(x) (see remark 3.1.2). It follows from the density of U \ X(x)

and from the smoothness of ¢ that ¢(g) = li_r>n|K /4. From the fact that & is transversal to x,
Uu—q

it follows that ¢ # 0 in U, consequently K admits a non-vanishing extension to U. As § is
equiaffine in U \ £(x), it follows from remark 5.1.3 that

~1
al [ea fua — 0y n X
<b>_<fm g9> <—¢uz> UARR)

Since a,b € C*(U,R) and U \ £(x) is dense, we obtain for a point g € X(x) that

<0(4)> _ lim (6‘9 fzg)l <_¢u1>
b(q) =4\ fio g —~u, )

Reciprocally, considering K the non-vanishing extension of the Gaussian curvature of x, define
¢ = |K|'/* and take a,b € C*(U,R) satisfying (5.7), then it follows from definition 5.2.1 and
from remarks 3.1.2 and 5.1.3 that & is the Blaschke vector field of x. ]

Remark 5.2.2.

(a) Letx: U — R3 be a frontal in the class 3.4.1.1, such that its Gaussian curvature K admits a
non-vanishing extension, so in order to have a Blaschke vector field we just need to verify
the condition (5.7) in theorem 5.2.1. One can verify that K, = f by,, for a smooth function

f is a sufficient condition for this to happen. For instance, with any of the choices below

o b= u%, r=0,1=1and h = h(u;,u) any smooth function (see example 5.2.1),

2
o b= gug + u%, r=0,1=1and h = h(uy,uy) any smooth function (see example 5.2.2),

we obtain x for which K admits a non-vanishing extension and condition (5.7) is verified,

hence we have a Blaschke vector field.
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(b)

If x : U — R3 is a wave front given by the class 3.4.1.2, such that the Blaschke vector field
exists in the regular part U \ £(x), then it is given by & = (&,,€,,&5), where

I ¢y
S 5.8a
$1=73 34 hyyu, G50
1 Cuzhulul - Culhuluz
=—- 5.8b
&2 4 APy (5.8b)
1 _uzcuzhulul + uzculhuluz +4Chu1bt1 - culhul
== . 5.8¢
63 4 C3/4hulu1 ( )

Note in (5.8) that is not always possible to extend &, since /,,,, (¢) = 0 for all ¢ € £(x).
However, if we take for instance, ¢ a smooth function such that ¢,, = ghy,,,, for a smooth
function g, then & admits an extension to the entire U. If § = 0, we get ¢ = c¢(u2), which is
satisfied for the case ¢ constant, for instance (see example 5.2.3). It is worth observing that
for ¢ constant, we get § = (0,0, p), for some p € R and if we think of frontal improper
affine spheres as those frontals for which the Blaschke vector field is constant, then this
choice of ¢ provides a class of this type of frontals. This is an important class, specially if
we seek to understand frontals from the affine viewpoint, and will be further discussed in
future works. It is also important to remark that improper affine spheres with singularities
is a topic of interest in differential geometry, see (CRAIZER; DOMITRZ; RIOS, 2020),
(ISHIKAWA; MACHIDA, 2006) (MARTINEZ, 2005), (MILAN, 2013) and (NAKAJO,
2009), for instance.

5.2.2 Examples

Now, we provide some examples taking into account the classes described in 3.4.1.

Example 5.2.1. Let x : U — R? defined by x = (uy,u3,4/15uiu3 + 1/2uiu + uu3), where

U=(

—1,1) x (—4,4) (see figure 2). This frontal is a cuspidal cross-cap obtained from a 5/2-

cuspidal edge and satisfies x ~ n, where n is its unit normal. We decompose Dx = QAT where

1 ’ 1 0
Q= 0 1 and A = (0 ) > '
u(4/15uw3 +3/2uius + 1) 1/3uy (3uiu3 +2u3 +3) up

We have that Ag = 2u, and

where

o 18x 10%uy (54ur*un® + 9uy2uz> + 4un® + 541 2ur? + 12u5° 4-9)
Q= 2
u

Y

1= 2025u;*1ur® 4+ 72001 212 +900u; O ur* + 641510 + 120011 * 15> + 310001 2u,°
+ 480w, 4 1800u; *us? + 12000 21> + 900u2* + 900u; % 4 900.
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K
Therefore, considering that at a regular point the Gaussian curvature is given by ?L_Q’ we obtain
Q
that the extension of the Gaussian curvature is
P 10* (54u1*ur® + 9urun” + 4ur® + 54u1%ur* + 12u5° +9)
= 2

Then, writing ¢ = |K]| 174 the Blaschke vector field of x is given by & = ¢n+aw; + bw,, where

! _3\@5 9\/§§ \/gé where

&= 21611 %ur* — 189 u1%uy> + 66 u1%12° + 161y + 324 11 *uy?
+9u12u23+48u24—|— 108u12+36u2

a and b are obtained using (5.6). Thus, & =

&= <2l6u14u24 +87ur2uy — 16u2% +252u%uy® + 24 uy> + 72) ur?

&3 = 1458001 3u2® 4 35721 11 up® + 25326 u1*ur 10 4 4896 1 2un ' + 277020 ;1 Ouy®
+ 8961y + 114129 u1%uy” + 39204 1213 + 5088 12” + 17982011 *1r* + 88938 1 2u°
+ 12096 12° + 48600 11 21y + 14040 15> + 6480

p= 54u14u24 +9u12u25 +4u26 +54u12u22 + 12u23 +9.

Figure 2 — Frontal with extendable non-vanishing Gaussian curvature.

Remark 5.2.3. It is worth observing that the Blaschke vector field € of a frontal is also a frontal,
since & is equiaffine. In example 5.2.1, £(€) is given in figure 3.

Then, the Blaschke vector field is a proper frontal and it is given in figure 4, restricting the
domain to (—1/10,1/10) x (—1/60,1/60).
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> -
-0.8 -0.6 -04 -0.2 0| 0.2 04 06 08

> &

Figure 3 — Singular set (&) of the Blaschke vector field.

0.00008

0.00006 0.00
000004 0
0.00002° 0.005
-0.00002 T
~0.00004 " -0.00008 -0.00002 0.00004. 00008

-0.00006

Figure 4 — The Blaschke vector field from example 5.2.1

Example 5.2.2. Let x: U — R3 defined by x = (uy, 213 +u3,uu3), for U = (—1,1) x (—1,1)
(see figure 8). This frontal satisfies x ~ n, where n is its unit normal. We decompose Dx = QAT,

where

1 0 L0
Q=10 u%—i—l and A = .
9 0 2u2

We have that Aq = 2u, and

2uy (uy +1)% (U3 — up +1)?
(ul +2u) +u§ +ud + 23 +u? +1)2

Ko =

Then,

@t 1Pdmt 1)
(uéo—f—Zu;—i—ug—i—u‘z‘—l—Zu%—l—u%—i—1)2
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is the extension of the Gaussian curvature to U. In a similar way to example 5.2.1, we obtain that
the Blaschke vector field of x is given by

1
= 3u2,0,7u3 +4).
& 4(u%+u2+1)3/2(u2+1)3/2( uz, I/l2+ )

Figure 5 — Frontal with extendable non-vanishing Gaussian curvature.

Example 5.2.3. Letx: R2 — R3 defined by x = (uj, —12u1%uy + 4u23, wit+6u2u? -3 u24)
(see figure 6). This is a wave front of rank 1 for which the Gaussian curvature admits a non-

vanishing extension. We decompose Dx = QAT where

1 0
1 0
Q= —24uju; 1 and A = 5 2k
4ui + 12uiu5  —up

We have that Ag = —12u? + 1243 and

12(u1? — uy?)

Kq = 3+
(161416 — 96u14u22 + 144u12u24 + u22 + 1)

Then, the extension of the Gaussian curvature is

—1

K= .
(16116 — 9611 4u2? + 14414 2uz* + up® + 1)°

In a similar way to example 5.2.1, we obtain that the Blaschke vector field of x is given by

& =1(0,0,1).
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~2 4020 0-20.404

Figure 6 — Wave front of rank 1 with extendable non-vanishing Gaussian curvature.

5.2.3 Conormal vector field

Definition 5.2.2. Given a frontal x : U — R3, we define the affine conormal vector field of x

relative to an equiaffine transversal vector field & as the vector field v : U — R3\ 0, such that

(v(u),&(u)) =1

(v(u),w) =0, forall w € T (u),
forallu e U.

Remark 5.2.4. It follows from the second condition above that the conormal vector field is

always a multiple of the unit normal vector field n of x.

The next proposition shows that an important property of the conormal vector field is

still valid when we are working with the case of non-parabolic frontals.

Proposition 5.2.2. Given a frontal x : U — R?, a tmb Q and an equiaffine transversal vector
field &, we have that

(Vi EY=0,i=1,2.
(Vy,, V) = —hq(v,w;), where v(u) € To(u) forallu e U, i,j=1,2.

Furthermore, if x is non-parabolic then the conormal vector field is an immersion.

Proof. In order to simplify notation, we drop the subscript in the notation for the induced affine
fundamental form and indicate only by 4. We know that (v, &) = 1 so, differentiating and using
the fact that & is equiaffine, we get (v,,, &) = 0.
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From (v,v) =0, it follows that (v,,v) = —(V,v,,). We can write
—Vy, = —VJI_ —h(v,w;)&,

where v; indicates the tangent component of v,,, thus considering the properties of the conormal

vector field, we obtain

(Vi V) = —(V,Vy,) = —h(V,wW;). (5.9

Now, let us suppose that x is non-parabolic and that v is not an immersion, hence there
is (a,b) € R?\ 0 such that av,, +bv,, = 0. Thus,

(aVy, +bvy,,v) =0.
By using (5.9) and the above expression, we get
0= —ah(v,w) —bh(v,wy) = h(v,—aw| — bw,), for all v,

but this contradicts the fact that / is non-degenerate. ]

5.3 A fundamental theorem

In this section we provide, in theorem 5.3.1, a fundamental theorem for the theory
developed in section 5.1. This theorem is a version for frontals of the fundamental theorem
of affine differential geometry (see section 4.9 in (SIMON; SCHWENK-SCHELLSCHMIDT,;
VIESEL, 1991) for the classical result for regular surfaces). Thus, taking U C R? an open subset
and assuming the integrability conditions for the regular case are valid in an open dense subset of
U, we obtain for each ¢ € U a neighborhood V C U of ¢, a frontal x : V — R? and an equiaffine
transversal vector field & : V — R3, in the sense of section 5.1. In order to do this, we use the
same approach applied in (MEDINA-TEJEDA, 2022a).

5.3.1 The compatibility equations

W1 XWp

——=2- the unit
[wixwsl

Let x : U — R? be a proper frontal, Q = <w1 w2> atmb and n =
normal vector field induced by Q. By considering the decomposition Dx = QAT and Aq = detA,

one can get in U \ A, 1 (0) the following structural equations

Xuyuy = Ll1%u + 111X, +en (5.10a)
Xujuy = Félxul + ]‘—%lxldz +/n (5.10b)
Xuyuy = FéZXMI + F%quz +gn, (5.10¢)
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where e, f and g are the coefficients of the second fundamental form of x. In a similar way, if
& : U — R? is an equiaffine transversal vector field to x, the following hold in U \ A5 (0)

Xujuy :ﬂlxul ‘f’f‘ﬁxuz +cné (5.11a)
Xuruy = D31 Xu, +131%0, + €21 (5.11b)
Xuyu; = DapXuy +139%u, +22€ (5.11¢)
£, = —bix, —bix,, (5.11d)
§,, = —biXu, —biXy,. 5.11e)

The symbols ¢;; induce a symmetric bilinear form called the affine fundamental ¢ relative to &,

while the symbols lN"f] are associated to the induced affine connection V (see (3.1)).

Proposition 5.3.1. If we write & = ¢n + ax,, + bx,,, where ¢ # 0, then in U \ £(x) we have:

ci cn2 lfe f
_ - ’ (5.12)
<C12 sz) ¢ (f g)
I - f}l f%l _ r{, i 1 [ae be I 1 (ae be (5.13)
I3 I3 0y 15) ¢ \af bf ¢ \af bf

- I, I? rl, 12 1 b 1 b
D=2 2= (2 22 af bf\ _ - — af by (5.14)
Iy I I I3,) ¢ \ag bg ¢ \ag bg
Proof. 1f & = ¢n+ ax,, + bx,, in (5.11), then

Xu1u1 — (f{] —f-Clla)Xul + (f%] +C11b)xuz + ¢Clln
Xuuy = (f;] +C21a)xu1 + (f%] +C21b)Xu2 + ¢C21n

Xupuy = (fgz + cna)xy, + (fgz +c22b)Xy, + Pcoon.

Hence, comparing this to (5.10) we have the result. [

If we look at the basis wi,w;,,n of R3, it follows from (5.1) that there are smooth
functions 7;;‘ defined in U, i, j,k € {1,2}, such that

Wi, = Tiwi+ T(iw2 +eon (5.152)
W, = Toywi + Toiwa + fron (5.15b)
Wiu, = Tiawi + T3W2 + fion (5.15¢)
Wau, = TW1 + T5Wa + gon (5.15d)
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We know that wi,w»,& is a basis of R3, then from (5.2), (5.3) and from the fact that & is
equiaffine there are smooth functions Df‘j, h;; and Sj. defined in U, i, j, k € {1,2}, such that

Wiy = D1ywi+Dhwy+h & (5.16a)
Wou, = Dy w1+ D3 wa+ hy & (5.16b)
Wi, = D%zwl + D%zwz + h12€ (5.16¢)
Wau, = DyyWi + D3, Wy + hnod (5.16d)
&, =—Siwi—Siw, (5.16e)
&, =—Sywi—Siw. (5.160)

If we write & = ¢n + ax,, +bx,, and & = ¢n+aw; + bw,, where ¢ # 0, then in U \ Z(x)

QY AT () ana [ % f’eﬂ _ (9@ bea (5.17)
b b afa bfa afro bfa

Hence, taking (5.15), (5.16), (5.17) and using the method of the proof of proposition 5.3.1 one
can get the following result:

Proposition 5.3.2. If we write & = ¢n+ aw; + bwa, for ¢,d,b € C*(U,R) and ¢ # 0, then

hip hiz) 1 [ea fio inv. (5.18)
ha1 ha ¢\ fro 8o
PTG bea) o Lfaca beal v (s
T dfra b o afro bfra 7 .
’Dzsz—l 67~f1£z b~f1§z :7-2_1 afio bfia Ain U\ Z(x),
0 \dgo bgo O\ aeq beg

Dl D2 Dl DZ 1 1
where D = < il §1> D, = ( 12 ;2 T = Tlll Tii and 7, = Tllz 7i :
D, Dy, D;, Dy, To1 7—221 T2 7—222
Remark 5.3.1. With notation as in proposition (5.3.2), it follows from II = Allg (see 3.31),
from 5.12 and from (5.18) that

ae be _[e e a 0 _A eq  eq a 0 7 (5.20)
af bf fr)\0 b fHa fa)\0 b
hiy h
ciu ey _Lfe f :lA eo o _ A [ 2
c12 ¢\f g/ ¢ \fio so hiy ha
in U \ X(x). Furthermore, just taking the decomposition Dx = QA’, we have that

St ST\ _ (b1 b1
= A.
S 83) \by b3
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Proposition 5.3.3. Let x : U — R? be a proper frontal and Q a tmb of x. Then, in U \ £(x), we

can write
D, =A"! (flA—Aul) ,
D, = Al (sz —Au2> .
Proof. It is known that the Christoffel symbols for the decomposition in the basis {x,,,X,,,n}

are given by ['y = (ngle) I! (see section 4.3 in (CARMO, 2016)) thus, by taking (5.12), we
get

~ 1 b 1 b
Ir=Ir,—- ac ve (Dx,f] Dx)I'! — — ae e , from Dx = QA’, we have
¢ \af bf ¢ \af bf

b
= ((AulﬂT —l—AQ;)QAT) (AT)illQA_l B lA (aeQ eg)

¢ \afra bfa
b
— (A, QTQ+AQT Q) (QTQ) AT - LA [ 42 Do) pp-
¢ \afra bfr
b
=|A,+A T]—l aeq  Dea )\ A~!, from (5.19), we have
¢ \afra bfra
= (A, +AD)AT,

since 71 = QZI Q(QTQ)_I. From this, we obtain D; = A~ (flA — Am). Similarly, we prove

the other case. O]

From now on, if A € M,,,(R), we denote by A(;) the ith-row and by AU) the jth-column
of A.

Proposition 5.3.4. Let I, A, (hi j> , <cl~ j) :U — M2 (R) be arbitrary smooth maps, such that
I is symmetric and i, j = 1,2. Consider also Aqg = det A and T the principal ideal generated
by Aq in the ring C**(U,R). Suppose that U \ A5 (0) is an open dense set and that

E F
1= = AIoAT 521
(F G) Q (5.21)

(cij) = % (; J;) =A (hij) :

where ¢ € C*(U,R\ 0) and define in U \ A5 (0), I'; and I'; by (5.13) and (5.14), respectively.
Then,

(a) The map A~! <1N"1A —Aul) : U\ A5 "' (0) = Mpy2(R) has a unique C* extension to U if
and only if,

A l)ullﬂA(Tm - A<1>19A(T2>u1 +Ey, — Fy, € Tq. (5.22)
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(b) The map A~ (ng — Auz) : U\ 45" (0) = Ma»(R) has a unique C* extension to U if
and only if,

Ay, leAlL) = A loA(y, + Fi, — Gy € Ta.

Proof.  (a) Let us suppose D, the C* extension of A~ <f1A — Au1> to U, thus
AD; =T1A—A,

in U\ A5, (0). From (5.13), it follows that

AD =T A— L (% ") Aa,.
¢ \af bf

0 —(E, — I
It is known that '] = (%Iu1 + %Al)lfl, where A| = (Bv—Fu) . Hence
E,—F, 0

2 2 ¢ \af bf

Via (5.21) we have an expression for I, then multiplying the above expression by the
right side with 2IQAT and taking into account (5.19) and (5.20), we obtain that

2 < 6~l€Q l;eg

Al2Dilo —Tau + 2 [ 92
< ' 9 \aha bfo

Note that the right side of the above equation is a skew-symmetric matrix, which implies

2 (a b
that 2Dy Ig — g, + = [ 2 %9
¢ \dfra bfra

since U \ A, 1(0) is dense, this is also true in U. So, there is @; € C**(U,R) such that

2 [ de be 0 —w
Do —Tou += | 0 % | 1g= H .
¢ \afra bfra o 0

T
Multiplying (5.23) by the left side with (1 o) and by the right side with (o 1) , we
get

11 1 b
AD; = (=L, + AT TA— = (“e e) A—A,,.

> IQ> AT =AIgAl, — A ToA +A;. (5.23)

) Io is a skew-symmetric matrix in U \ A5 (0), but

0 —ow
—oido = A, (wl 0 ) Al = ATl —AqyJoA) = (B = Fu) € To.

Reciprocally, suppose (5.22). Since U \ A, '(0) is a dense set, there is a unique @; €
C*(U,R) such that

A(l)mIQA(T2) _A(I)IQA(Tz)Ml +Ey, —F,, = 01Aq € Tg.
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0 —o
From the above expression, it follows that AIQAZl — AullQA’ +A;=A ( 0 1) AT,
()]

since AlgA;, — Ay, IoA" +A| is a skew-symmetric matrix. Define Dy : U — My,2(R),

given by
1 2 [ de be 0 —w
D =— IQ”I__ _ Q - Q Io+ ! Iél,
2 ¢ \dfra bfra o 0
thus
2 deg Beg T t t
A | 2D1g _IQul +—1 . ~ Ip |A = I\IQI\M1 —AMIIQA +A;.
¢ \dfra bfra

Taking into account (5.21) and then the expression for I,, we show, using the above
expression, that D; = A~ (flA—Am) in U\ 45" (0). Since D; is smooth and U \

Ao ! (0) is dense, we have the result.

Item (b) follows analogously by considering the matrix Aj :=
F, — Gy, 0

0 _(Fuz_Gm))

[

In preparation for the Fundamental theorem, let us set the matrices W = <w1 W) 5) S
GL(3),

D%l D%1 hi1
D= | D) D} h (5.24a)
-st s 0
D112 D122 hi2
D,=|Dl, D3 hnl|. (5.24b)
-s} -s2 0

Then, the system (5.16) is represented by

W, =WDT

(5.25)
W,, =WDI.

It is known that the compatibility condition for the system (5.25)is W =W from which

ujup upuy’
we obtain

D D,W + Dy, W =D W, +Dy,, W =D, W] + Do W' =D,D;W’ + Dy, W',

2

that is equivalent to

(DD, +Dy,, — DDy — Dy, )W’ =0.
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Since W € GL(3), we get
Dluz - D2u1 + [DlaDZ] = 07

where [Dl,Dz] = D1D2 — D2D1.

We have next two auxiliary lemmas, which play an important role in the proof of theorem
5.3.1.

Lemma 5.3.1. The integrability conditions for the system

Xy, = AWy + A1owr
Xy, = A 1wWi + Aowr (5.26)
x(q)=p

are

hiy h
Al ) s symmetric;
hay o

. (o 1) (ADI+AMI):(1 o) (AD>+Ay,).

Proof. It is known that the integrability condition for the system (5.26) 1S X4, = Xy, - If we

set the matrices

N A1 Az O
A= 7(,21 122 0| andM = (Xu1 Xu, 5) s
0 0 1

"‘"T A A A A A
then M = WA . Hence, the integrability condition is M,,, j = M, 1, where {1, j,k} is the standard
~T N N
basis of R3. By using (5.25), M= WA and M, j = M,,i, we obtain

T""T/.\ ""T/.\ ""T/.\ ""T/.\ "‘"T/.\ "‘"T/.\ T"‘"T/.\ "‘"T/.\
WD A j+ WA, j=W, A j+ WA, i=W,A i+ WA, i=WD)A i+ WA, i,

’VTA NT ~ ’VTA NT ~
so, the integrability condition is equivalent to DT A" j+ A, J= DIA i+ A, 1. By taking each

component of this expression we have

Miuy — Miu, = DiyAat + Dy Ay — DA — Dirdra (5.27)
Mauy — Mo, = Dh a1 + D3 A — DA — Dhdn (5.28)
Aihia + Aiohay = Ap1hyy + Apha;. (5.29)

Finally, note that (5.27) and (5.28) are equivalent o (0 1) (ADy+Ay,) = (1 0) (AD:+Ay,)

hir hiz

and (5.29) is equivalent to say that A ( > is symmetric. U

har hy
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Lemma 5.3.2. (MEDINA-TEJEDA, 2022a), Lemma 5.2) If we have
AD; =T /A—A, and AD, =T,A —A,,,
in which A, Dy, D, : U — Myxn(R) and T, T : U\ A5, (0) — My (R) are smooth maps with
int(Ag'(0)) = 0, where Aq = detA. Then,
Iy, — T2y, +[I'1,T2] = 0is equivalent to Dy, — Doy, + [D,D2] =0in U.

Theorem 5.3.1. Let fﬁfj,b;, e, f,g,¢ € C(U,R), such that ¢ # 0. Suppose that

T
E F\ _ Mi A2\ (Ea Fo (A1 A2 (5.30)
F G M1 An ) \Fa Ga) \An Ax

Lfe f\_ (A1 A2\ (A hi (5.31)

O\f g M A ) \ha hx

Si Si _ bi bi M1 A | (5.32)
S, 85 b, b5 A1 Axn

where all the components above are C* functions defined in U, Aq = detA and U \ 15 (0) is a

and

dense set, for A = <7L,~ j> . Suppose also that the compatibility equations for the system (5.11) are
satisfied in U \ A5, (0) and that

Ay loAb) = A laAfy, +Ewn —Fu € To (5.33a)
Ay, leAl) = A loAly, +Fi, — Gy, € Do, (5.33b)

E F
where T, is the principal ideal generated by Ag in the ring C*(U,R) and I = ( FQ GQ> :
Q Q

Then,

(a) Foreach g € U, there exists a neighborhood V C U of ¢, a frontal x : V — R3 with tmb Q,
such that Dx = QAT, and an equiaffine transversal vector field § : V — R3 with associated
equiaffine structure given by (hl- j> ,D1,D,, where

Dlz (D%l D%l)
Dy D5

are the unique C* extensions of A~! <f‘1A — Au1> and A~! (sz — Au2> to U, respec-
tively.
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(b) If moreover, we suppose eg — f> # 0in V' \ Ao 1(0) and that the condition V@ = 0 is
e g f

satisfied in V \ A, ' (0), where V is the connection associated to the symbols —, s a,f‘;‘j
and @, is the volume element induced by the affine fundamental form c, then there is a
volume element @ in R? such that & is the Blaschke vector field of the frontal x.

(c) Let U be connected. Suppose that X : U — R is another proper frontal, E an equiaffine
transversal vector field and Q a tmb satisfying the same conditions that were obtained in

(a). Then, x e X are affinely equivalent.
Proof.

(a) It follows from (5.33) and from proposition (5.3.4) that the maps
A (f“]A - Au,) and A~ (fZA - Au2> ,

defined in U \ A, 1(0), admit unique C* extensions to U, D e D», respectively. Thus, in
U\ 25" (0), we have

D= A" <f1A—Au1>,
D, = Al (sz—A,Q) .

By using D and D,, we can build the matrices D; and D, as the matrices (5.24). Then,
using (5.24, (5.30) and (5.32) we have that

1~\D1 = i:‘11~\— 1~\u1 and 1~\D2 = f‘zx —7\“2,

where
~ ~ e
Iy, I P
I'i= i:él i:%l %
b} —b? 0
~ = f
r, I P
L=, I3 %
bl —b3 0
N A A2 O
A=|2L1; A»n 0.
0 0 1
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(b)

Let us consider the following system of PDE

W, = WD/ (5.34a)
W, = WD] (5.34b)
W)= (v v2 vs). (5.340)

where vq, Vs, v3 are linearly independent vectors in R and ¢ € U is a fixed point. The
compatibility conditions for the system (5.11) are expressed by f‘l uy — f‘2u1 + [f‘l , f‘z} =0
and by hypothesis they are satisfied, so it follows from lemma 5.3.2 that Dy, — Dy, +
[Dy,D;] = 0, which is equivalent to the compatibility conditions for the system (5.34)
(see 5.25). Thus, this system has a unique solution W :V — GL(3), where V C U is a
neighborhood of g. If W = (Wl L5 &), it follows that the vector field & is transversal
to (wy,w;)r and that gui € (wi,wa)R, i = 1,2. Now, let us take the following system of
PDE

Xy, = A11Wi + A1aw
Xy, = A1 W1 + A wr (5.35)

x(q) = p,

for a fixed p € R>. Note that
(0 1) (AD1+Ay) = (0 1) flA: (1 O) sz: (1 O) (ADy+Ay,)

in A ! (0), so, via density the equality holds in U. The above equality, together with the

hir hiz

fact that A < ) is symmetric, means that the system (5.35) has a unique solution

ha1 hyp
x:V R3, where VCVisa neighborhood of g (see lemma 5.3.1). As Dx = QAT, where
Q= (Wl Wz) it follows that x is a frontal for which Q is a tmb, & is an equiaffine

transversal vector field and the equiaffine structure is the desired one.

Moreover, from eg — f2 #01in V' \ A5 ' (0) we obtain that ¢ is non-degenerate in V \ 1, ' (0),
thus let w, be the volume element induced by the non-degenerate metric ¢. Let @; be the
volume element in R3, so the volume element induced by the equiaffine vector field & is
01(v1,v2) = w1(v1,v2,&), where vy, v, are tangent vectors. Since & is equiaffine, 0, is
a parallel volume element in the regular part of x, i.e., VO; = 0 (see proposition 3.1.1).
The apolarity condition V@, = 0 means that w, = p0;, where u is a positive constant,
since a parallel volume element is unique up to a positive scalar multiple. If we take in
IR? the volume element @ = (@, and the new induced volume element 6, we get & = 6,
therefore, & is the usual Blaschke vector field of x in the regular part. Since & is defined in
V, it follows that & is the Blaschke vector field of x as defined in 5.2.1.



96 Chapter 5. Equiaffine structure for frontals

(c) If we write Q = (wl w2) and Q = (6;71 VAVE) , then for each g € U there is an isomor-
phism L, : R? — R3, such that
Lq(W,') = in, i= 1,2.

Ly(§)=§.

We seek to show that L is constant. It follows from the fact that x e X satisfy the same
hypothesis given in item a) that both relative shape operators Sq and S, g are given by the
matrix <S{> , hence L, (S(w;)) = S(W;). Thus,

S) = 5 &= e tl8) = (L) @)+ L 5-8) = (5L) (€~ Lis(m)

0
which means that (8_L> (€) =0, i=1,2. Furthermore,
uj

Vi, = gpcLiw) = ((%L) (1) + L(Wi)

d
p— (a—ulL) (W1> +L<D}1W1 +D%]w2 +h11€)

_(2 L) (wp)+w;
- aul 1 lM] ?
0 d ..
S0, 8_L (w1) = 0. Analogously, we show that 8_L (w;)=0,i, j=1,2. Therefore,
Uy Ui
L is constant and from Q = LQ we obtain
DX = QAT = LOAT = LDx,

that is, X = Lx + a, where a is a constant vector and L : R? — R3 is a linear isomorphism.

]

Remark 5.3.2. The approach used to prove item (a) in theorem 5.3.1 is the same as that applied
to prove the existence part of the fundamental theorem in (MEDINA-TEJEDA, 2022a). Then,
as we are considering here any equiaffine transversal vector field, it is possible to recover from
item (a) the existence theorem from (MEDINA-TEJEDA, 2022a), taking the unit normal as the
equiaffine vector field.

5.4 Future research

Taking into consideration the equiaffine structure on frontals stated here, we expect to

work with other problems generally discussed only for regular surfaces. For instance, the study
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of the affine normal curvature defined in (DAVIS, 2009) and its extendibility when considering
frontals. Furthermore, as improper affine spheres with singularities is a topic of interest in
differential geometry, see for instance (CRAIZER; DOMITRZ; RIOS, 2020), (ISHIKAWA;
MACHIDA, 2006), (MARTINEZ, 2005), (MILAN, 2013) and (NAKAJO, 2009), we seek to
understand better the class of frontal improper affine spheres described in remark 5.2.2 (b).
We also look forward to understand how the conditions given in theorem 5.2.1 are related to

invariants associated to frontals which were not explored in this thesis.
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CHAPTER

A EUCLIDEAN APPROACH TO LINE
CONGRUENCES WITH A FRONTAL
DIRECTRIX SURFACE

Most of the results in Kummer’s theory (see section 3.3) are proved for congruences
{x,E}, where € : U — R is an immersion and U C R? is open. Our goal is to extend this
theory to the case of line congruences where the director surface & : U — R is a proper frontal.
For instance, we define principal surfaces and describe how their binary differential equation
is related to the equation of developable surfaces. Furthermore, when considering the exact
normal congruence given by a frontal x and its unit normal vector field n we study, in corollaries
6.2.3 and 6.2.4, how the Kummer principal lines (see definition 6.2.3) are related to the lines
of curvature of x (see definition 3.4.5). We mentioned in section 2 that in the regular case it is
possible to work using the tangent space of x or the tangent space of &. Here, we replace these
planes by the plane Tg, where Q is a tangent moving basis of &. In this chapter, sometimes we
deal with a pair of frontals x and &, therefore in order to distinguish the matrix valued maps that
have the same role of Ag, we denote Ag the matrix such that D& = ﬁAg2 and 8q := det(Ag)
where Q is a tangent moving basis of €. In particular, if we take & = n the normal vector field
induced by a tangent moving basis Q of x, then is satisfied that Dn = Q[.Lg (see (MEDINA-
TEJEDA, 2022a)), that is, Aq = lo. The results in this chapter are part of a joint work with
Débora Lopes, Maria Aparecida Soares Ruas and Tito Alexandro Medina Tejeda (LOPES et al.,
2022).

6.1 Line congruences with a frontal director surface

Let us start with a special example of line congruence {x,&} for which x and & are
frontals and & is an equiaffine transversal vector field (in the sense of chapter 5) different from

the unit normal vector field of x. This is an important class of line congruences which generalize
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the idea of equiaffine line congruence when considering proper frontals.

Example 6.1.1. Let x = (uy,u3,4/15uiu3 + 1 /2u3u3 +uju3) defined in U C R?, given by U =

1 (=3V3, 93, V3

(—1/10,1/10) x (—4,4), (see figure 7) and & = 7/ 3 &1, 3 &2, 24053), where

E1 = 216u1%up* — 1891 *up° + 6611 %ur® + 16 uy” + 324 11 *ur?
+ 9u12u23 +48 u24 + 108 ulz +36uy

& = <216u14u24 + 87 ui?uy® — 16u2% + 252 u1%up* + 24 uy° —|—72> ur?

E3 = 14580015128 + 35721 11 %up® + 25326 11 #1210 4 4896 11 uy ' + 6480
427702001 %128 + 896 152 + 114129 u1* " 439204 11 >ur® + 5088 u°
+ 1798201 *ur* + 88938 1 21y + 12096 12° + 48600 1 21> + 14040 1>

p= 54u14u24—|—9u12u25 —|—4u26 —|—54u12u22 + 12u23 +9.

il

“““ilillllrﬁm il
e
i i

-400 -200 o] 200 -1 0 1

Figure 7 — Frontal which admits an equiaffine transversal vector field different from its unit normal vector
field.

Remark 6.1.1. Along this chapter, we consider several times that & is a unitary frontal. In terms
of family of lines, there is no difference considering & unitary or not, but we work with this
restriction in order to extend some concepts of Kummer’s theory to this context. Next, we define

the relative quadratic forms associated to a line congruence.

6.1.1 Q-Kummer fundamental forms

Definition 6.1.1. Let C = {x, €} be a line congruence, where x : U — R? is a smooth map,
& : U — R? is a frontal and let Q be a tangent moving basis of &. If Q = (wl W2> , we define
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the following quadratic forms:

To(v) = &bt +2.Fb1by +Gob3, (6.1)

where &g = (W1, W1), Zo = (W,W2), Yo = (Wa,W2), v € T and (by,b,) are the coordinates
of v in the basis wi,w,. This form is called the Q-Kummer first fundamental form of C and we

denote by Zq, := QT Q its associated matrix.
TZo(v) = Lobt+ (Mg + Arg) biby + Nob3, (6.2)

where Lo = — (X, W1), Ao = —(Xu,W2), M10 = —(Xu,,W1) and Ag = —(X,,, W2). This
form is called the Q-Kummer second fundamental form of C and we denote by IZ¢, := —Q! Dx

the matrix of these last coefficients.

Remark 6.1.2. Note that Zg, is a positive-definite quadratic form.

Let C = {x, €} be a line congruence, where & : U — S is a frontal and let Q be a tangent
moving basis of €. Define the function Jifqg : R? - R, given by

bTIILqadj(AL)b
bTZob

Kby, by) = (6.3)

where ¢ € U, ad j() denotes the adjoint of a matrix, b’ = (bl b2> . Note that we can associate

(b1,by) to the coordinates of a vector v = b;w;(q) + bawa(gq), then we write ,)i/qQ(bl,bz) =
Jifqg(v).

Proposition 6.1.1. Let C = {x,&} be a line congruence, where & is a frontal and let Q be a

tangent moving basis of &. Then
1. T =AqToAL
2. IT = A1,
Proof. Note that
T = DETDE = (QAL)T (QAL) = Ao QT QAL = AT oAL.

The case for ZZ follows analogously.
O

Given a line congruence C = {x,&}, where & : U — S? is a frontal and Q is a tangent
moving basis of &, the next proposition shows how the function .%;, from Kummer’s theory
(given in 3.15) and the function %Q, defined in (6.3), are related when g ¢ £(&).
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Proposition 6.1.2. Let C = {x, &} be a line congruence, where & : U — S is a frontal and let Q
be a tangent moving basis of €. Then, for each g ¢ £(&), 8o %5 (a1, az) = Ji/qg(bl,bz), where
we write bT = (by,b2) € R?, a” = (aj,ap) = bTAg' (q) and 8o = detAg(q).

Proof. Since q ¢ X(§), let w = D& a, hence we can write w = QALa, where a7 = <a1 a2>.

Thus a = AS_ZTb, where b7 = <b1 b2> are the coordinates of w relative to Q. From proposition
6.1.1,

a’TIZa bTAG'TIA"p  bTAG (AQTIo)ALTD
a’Za — pTAL'TAGTD  bTAG' (AoZoAL) AL b
1 bTIILqadj(AL)b

~ det(Aq) bTAL' (AgZoAL) AT D

Hqlar,az) =

hence

bTITqadj(AY)
bTIob

b
0o Hy(ar,az) = = . (b1,b2) (6.4)

]

Note that %Q(al,az) = Jﬁfqg((p(al,az)), for all ¢ € R\ 0, thus we can consider Jif]Q :
St = R.

Proposition 6.1.3. Let C = {x,&} be a line congruence, where & : U — S? is a frontal. The

congruence C is normal if and only if the matrix ZZ gad j(AL) is symmetric.

Proof. Tt follows from proposition 5.1 in (IZUMIYA; SAJI; TAKEUCHI, 2003) that C is normal
if and only if ZZ = AqpZZ, is symmetric. It can be shown by straightforward calculations that
this is equivalent to say that ZZ qad j(AL) is symmetric. O

6.2 Principal and developable surfaces of the congruence

6.2.1 Kummer principal directions

Definition 6.2.1. Let {x,&} be a line congruence, where & : U — R? is a frontal and let C be a
curve on x parametrized by x(¢) = x(a(t)), where o : I — U is smooth and & (t) = € (a(2)) is
the restriction of & to C. The ruled surface S¢, parametrized by

Y(t,v) =x(t)+v€(t), relCR,veR, (6.5)
is called a surface of the congruence.

Definition 6.2.2. Let {x, £} be a line congruence, where & : U — S? is a proper frontal, Q =
(wl W2> a tangent moving basis of §. We say that a direction w € Tq(q) is a Kummer principal

direction if jifqg(w) is an extreme value of Ji/qg.
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Remark 6.2.1. The Kummer principal directions do not depend on the chosen tangent moving
basis. In fact, let {x,&} be a line congruence, where & : U — R3 is a proper frontal, Q and
Q are two tangent moving bases of €. Thus there is B : U — GL(2,R) such that Q = QB.
Note that Zo = Q'Q = BTQ" QB = BTZ4B and IZ, = Q' Dx = B'Q Dx = BTZZ,. Fur-
thermore, if D€ = QAL = QAE, then Ag — BAL. Using this and 6.3 we get %Q(BI,BQ) =
det(B)JifqQ (b1,b7), where (by,b;) and (b1, b, ) are the coordinates of a vector v € To(q) = Tg(q)
in the bases Q and Q, respectively. Therefore, the extreme values of Jif]Q do not depend on the

tangent moving basis.

Definition 6.2.3. Let C = {x, €} be a line congruence, where € : U — S? is a proper frontal and

Q a tangent moving basis of €. Let S¢ be a surface of the congruence, given by
Y(t,v)=x(t) +v€(t), t€lCRveER, (6.6)

where @ : U — I, such that o(¢) = (u1(r),uz(t)) is smooth, x(r) = x((t)) and € (1) = & (a(r)).
b /
We say that S¢ is a principal surface if for all ¢ € I such that bl = AL u/l #0, (b1,by)
2 U,
determines a Kummer principal direction in 7. We call o : I — U a Kummer principal line.

Lemma 6.2.1. Let {x, €} be a line congruence, where € : U — S? is a proper frontal, Q is a

tangent moving basis of & and we write Ag = <6,- j). Then, %Q has an extreme value at (b, b;)

if and only if
b
b1(00Lo — d12.41) + 32(511///19 — 01 Lo+ 0 Mro — 01240) (6.7)
—ko(b1Eq+bryFq) =0
b
by (8110 — 01 M) + 51(511///19 — 01 Lo+ 0 Mhro — 01240) (6.8)

—ko(by¥9q +b1%q) =0,

where ko = £, (b1, by).

Proof. Note that

b3 (800Lao — B2 ) + b3 (811N — S M)
br&o +2b1br F o+ b3%0

N bi1by (811400 — 821 L + O Arg — 812.40)
b16a +2b1by F o+ b3%

H (b, by) =

Let us suppose that c%/qg has an extreme value at (b,b;). At an extreme value ko of Jifqg, we

Q
have 852; =0, i = 1,2. From this, we get (6.7) and (6.8). Reciprocally, if (b1,b,) is such that
(6.7) and (6.8) are valid, then we have directly that kg is an extreme value of ji/qg. Let us show

that Ji/qg(bl ,b2) = ko. Let us suppose by # 0 and b, # 0 (other cases are analogous). If we sum
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(6.7) multiplied by b with (6.8) multiplied by b, we obtain

b3 (800 Ly — B12.41) + b1by (811410 — 81 Loy + SroMrg — 812.40)
—+ b%(5]]c/VQ — @1%29) = k()(b%gg + 2b1b2§g + b%gg)

From this, we have kg = Jifqg(bl ,bo). O

Proposition 6.2.1. Let {x, £} be a line congruence, where & : U — S is a proper frontal, Q a

tangent moving basis of & and we write Ag = (6,- j>. Then:

(1) A curve (u1(t),uz(t)) is a Kummer principal line if and only if this is a solution of
C1b3 4 Cybyby +C3b3 = 0, for all 1, (6.9)
where

C1 =29 (00nLo — 6120.M10) — Eq (01110 — 021 Lo + S0 Mg — 01240)
Cr =290 (00 Lo — S12.4#10) — 260 (011N — 621.400)
Cz =Y (811410 — 621 Lo+ OoaMrg — B12MG) — 2% (81140 — 621.4000) -

We call (6.9) the equation of principal surfaces of the congruence.

(2) If the congruence is normal then (6.9) can be written as

/
(u’l u’2> AqPad j(IZ )T AgToAL (”}) =0, (6.10)

u
0 1
where P = .

Proof. 1. From (6.7) and (6.8), we have that (b;(¢),b,(¢)) provides an extreme value of ji/qg
for all ¢ if and only if

b
b1 (0 Lo — 612.41) + 2 M biEo+brFq

)

by (811N — O Mh0) + 31/// by%0 +b1%q

where A4 = (611410 — 01-La + Sn Ao — 012-40). The equation (6.9) is obtained

directly from the above expression.

2. We know from proposition 6.1.3 that {x, €} is normal if and only if ZZqad j(AL) is

symmetric, which is equivalent to say that
oMo — 631 %0 = oo — SN (6.11)

By using this condition in (6.9), we obtain (6.10).
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Proposition 6.2.2. The discriminant & = C% —4C1C5 of the equation (6.9) is non-negative. This

discriminant is zero if and only if the coefficients Cy,C; and Cs are identically zero.

Proof. If we write

L =2(00nLo — din.#)),
N =2(8n1Na — ),
M = (611400 — 621 L0+ 6. Mog — 61240)

then

Ci=9%0L — Eo.M,
C=%% — 6N,
Cy =% M — Fo N .

FaoCr —9oC
Hence, 96C) — % oCh + £C3 = 0, from which we get C3 = % Thus
Q
C1.7aC;  9aC?
2 =C3—4 42221
2 50 * (G19)
C1.Fa\* CFE Yol
=(c-2 —4 4
( 2" 8 ) &7 ey

C1.7a\>
=(C -2 4— (0% — Fo) > 0.
(2 % > + @@é(gg Q) >

AS E06%0 — Fo > 0, we get 2 = 0 if and only if C; = C, = 0, which implies that C3 =0. [

Proposition 6.2.2 asserts that at points where & > 0 there are only two Kummer principal

directions.

We can also look at the developable surfaces associated to a given line congruence {x, &},
where x : U — R? is a smooth map and & : U — R? is a unitary proper frontal. In order to do

this, we have the next proposition.

Proposition 6.2.3. Let {x, £} be a line congruence, where & : U — S? is a proper frontal, Q a tan-
gent moving basis of &. A surface of the congruence Y (¢,v) = x(u1 (¢),uz(t)) +v& (u1 (¢),u2(t))

is a developable surface if and only if (u1(t),u»(¢)) is a solution of

/
<u'1 u’2> Pad j(TL o)L oAl (Z}) =0. (6.12)
2

We call (6.12) the equation of developable surfaces of the congruence.

Proof. Let us suppose & : I — U a smooth curve, given by o/(t) = (u;(t),u2(t)), such that
the surface of the congruence Y (r,v) = x(¢) + v& (¢) is developable, where x(¢) = x(a(¢)) and
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E(r) = &(a(t)). Then it is known that [x',&’, €] = 0 (See section 3.5 in (CARMO, 2016)). From

this expression, we obtain the differential equation of developable surfaces

”/12 [Xulagulug] +”,1u/2 ([Xupguz?é] + [Xuygul’&}) +”/22 [thz?&uz?g] =0. (6.13)

X
By considering that € is unitary we have & = %, where Q = (w1 wz). We also know
W1 Wo
that D€ = QAS, where Ag = (5,- j), thus
1
Xu;,&,,.6] = m<xun(6llwl +012W2) X (W1 X Wp)).

By using the coefficients of the first and second Q-Kummer fundamental forms and the formula

for the vector triple product a x (b x ¢) = (a,c¢)b— (a,b)c, we get
X4y, &,,.8] = 611(Fala — bata) + 612 (ZLaba — Fatha). (6.14)
In a similar way, we obtain

(Xu: &0y ]+ [Xir0 81, ] =021(F bl — bathha) + 00 (Y0 Lo — Fata)  (6.15)
+ 611(Fatlra — EaNa) + 612(Yatra — FaNa)
Xuy, €., 8] =621 (Fatra — EaNa) + 00 (Gotra — FaNa).  (6.16)

Hence, from (6.14), (6.15) and (6.16) we can rewrite (6.13) as

/
<u’1 u’2> Pad j(TZo)ToAL (Z}) —0.
2

]

Theorem 6.2.1. Let {x, €} be a normal line congruence, where & : U — S is a proper frontal,
Q a tangent moving basis of &. Then the equation of principal surfaces is a multiple of the

equation of developable surfaces by 0, where 6 = detAg. More precisely

AoPad j(TTo) AT oAl = 6oPad j(TTo)IoAL. (6.17)

Proof. We know from propositions (6.2.1) and (6.2.3) that the binary differential equations

which provide principal and developable surfaces of the congruence are, respectively, given by
/ / ; T T u/I

(4, uh)AoPadj(TZo)" AaTaAl (m) —0, (6.18)
2

/
<u’1 u’2> Padj(IZg)LoAg <M}> =0. (6.19)
)
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It follows from proposition 6.1.3 that ZZqad j(AL) is symmetric, since we have a normal
congruence. It can be shown by straightforward calculations that this is equivalent to say that

adj(TZq)" Ag is symmetric. Hence, we have

AoPad j(ITZo) AgToAL

= AoPALad j(TTo)IoAL

= —AoPALPPad j(TL o)L oAL, since —P =P~!

= Agad j(Aq)Pad j(TL o)L AL, since —PALP = adj(Aq)
= 8aPad j(TL o)L oAL.

]

Corollary 6.2.1. Let {x, &} be a normal line congruence. If x and & are analytic, then an analytic
solution of the equation of principal surfaces is either a branch of £(&) or an analytic solution of

the equation of developable surfaces.

Proof. Lety:1— U, given by y(t) = (u;(t),u2(t)), be an analytic solution of the equation of
principal surfaces, then dq(7) is an analytic mapping. If there is 7y such that the derivatives
8o (7)Y (19) = 0, for all positive integer j, then 8q(¥)(t) =0, for all t € I. Otherwise, the zeros
of dq(7y) are isolated and therefore 7 is a solution of the equation of developable surfaces, once
we have (6.17). ]

From now on, we consider x a frontal, Q a tangent moving basis of x and & its normal

vector field. Also note that we can take Q as a tangent moving basis of &.

Proposition 6.2.4. Let x : U — R> and € : U — S? be two proper frontals, such that & is the
unit normal vector field of x. Then, w is a principal direction if and only if is a Kummer principal

direction associated to the congruence {x, & }.

Proof. 1t follows from (MEDINA-TEJEDA, 2022b) and from remark 6.2.1 that the principal
directions (see definition 3.4.4) and the Kummer principal directions do not depend on the chosen
tangent moving basis, so let us consider  an orthonormal one, i.e, Q7 Q = idp2. From lemma
3.1 and remark 3.1 in (MEDINA-TEJEDA, 2022b), it follows that Ilgad j (Ag) 1S symmetric,
then the principal directions are given by its eigenvectors. Since the congruence is normal,
IZqadj(AL) is symmetric and we get analogously that the Kummer principal directions are
given by its eigenvectors. As DE = QAL and Dx = QAL, then

Noad j(Ay) = —Q' DEad j(AS) = —QTQAGad j(AG) = —Aqad j(AS)
ITqadj(AL) = —QTDxadj(AL) = —QTQALad j(AL) = —ALad j(AL).

Hence, Igad j(AL) = ad j(TZgad j(AL)). Then, the eigenvectors of Ilgad j(AS) are the eigen-
vectors of ZZqad j(AL), that is, w € Tq is a principal direction if and only if is a Kummer

principal direction. O
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Remark 6.2.2. It follows from Igad j(AL) = ad j(TZqad j(AL)) that if wy, w, are the eigen-
vectors of ZZqad j(AL) associated to the eigenvalues 7,9, respectively, then wi, w, are the
eigenvectors of Ilgad j (ASTZ) associated to the eigenvalues }», 71, respectively. Furthermore, if
w1, for instance, is a Kummer principal direction associated to a maximum of Jif]Q, then w
is a principal direction associated to a minimum of the Q-relative normal curvature, which is
defined in (MEDINA-TEJEDA, 2022b). That is, if we denote by .#]o and .%o the minimum
and the maximum of %Q, respectively, then k1o = #5q and kyg = #1q Where k1 and k»q are
the Q-relative principal curvatures (see definition 3.4.3).

Example 6.2.1. Despite proposition 6.2.4, it is not true that for a line congruence given by a
frontal x : U — R> and its unit normal vector field € : U — §2, a curve is a Kummer principal

line if and only if it is a line of curvature. Let us take, for instance, the congruence given by

x(uy,up) = (ul,uz,u%uz + u%)

& (ur,u0) = :

Quiuy, —ud —2uz,1).
\/4u2u2—|—u4+4u2u +4u? 1( e 1 ’ )
Uy Uy U2 +4u; +

In this case, the Gaussian curvature is given by

—4(u|2 —up)

(ur* +dur2un® + duy 2y + 42 + 1)

K(ul,uz) =

SO Uy = u% is a curve of parabolic points. The equation of the lines of curvature is given by

(23 — duyiy + u) ) u? + (—ufuy — 4u3 — up + 1)y
+ (—u] = 2uiuy — uy )uf = 0.
On the other hand, the equation of principal surfaces of the congruence is given by
(uz — u%) [(21[;’14% — 4u1u% + ul) u'lz + (—M?uz — 4u% —up+ 1) Uit
+ (—u? — 2u?u2 — u1> uﬂ =0.

Then, the curve of parabolic points uy = u% is a Kummer principal line, but it is not a line of

curvature.

Next, we have some results regarding the relation between the Kummer principal lines

and the lines of curvature of a frontal.

Corollary 6.2.2. Let x : U — R3 be a frontal, Q a tangent moving basis of xand € : U — S? a
normal vector field induced by Q. If § is a proper frontal, then the equation of principal surfaces

is
YT AoPad j(ITZo) AgLoALY = —Kqdet(Ig)YTPal (v)Y, (6.20)

where Kq and o are related with x (see section 3.4).
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Proof. Note that Ag = U, Ko =detAq, Lo =1 and IZg = —IQA?Z. Thus, from (6.17)

AoPad j(TTo)" AT oAl = 8oPad j(TTo)IoAL
= KoPad j(—ToAd)lapd
= KoPad j(AS)ad j(—To)lopb
= —Kodet(Ig)Pak(y),

where Dx = QAL. ]

Note that via corollary 6.2.2 we can express the equation of principal surfaces of the
congruence (6.10) only considering quantities related to the frontal x, when we have an exact

normal congruence.

Remark 6.2.3. It is worth observing above that —det(Io)y"Pal(y)y = 0 is the equation of
the developable surfaces of the congruence.

Corollary 6.2.3. Letx: U — R3 and € : U — S be two proper frontals with the same singular
sets, such that & is the unit normal vector field of x. Then, a curve on x is a Kummer principal

line if and only if it is a line of curvature of x.

Proof. The results follows from the fact that AgyY’" Pal (7)Y = 0 is the equation of the lines of
curvature (see proposition 3.4.2) and from K,' (0) = A ' (0). O

Corollary 6.2.4. Let x : U — R be a proper frontal with extendable normal curvature, such that
the extension of the Gaussian curvature K never vanishes. Then, the Kummer principal lines

coincide with the lines of curvature of x.

Proof. It follows from corollary 3.1 in (MEDINA-TEJEDA, 2022b) that x and its normal vector

field have the same singular set, hence applying corollary 6.2.4 we have the result. [

Example 6.2.2. Let x : U — R defined by x = (u1, 213 + u3,uu3), for U = (—1,1) x (—1,1)
(Figure 8). Then Dx = QASTI, where

1 0

10
Q=0 wB+1]|andAg= : (6.21)
) 0 2u2

The unit normal vector field induced by Q is given by

&= ﬁ(—ugz(uz—k D(u? —up+ 1), —uy, (ua 4+ 1) (up* — up + 1)),

where 1t = \/12'0 4+ 2us7 + u»® + ur* + 2ur3 4+ ;2 + 1. The frontal x in this example is special,

because it is a frontal with extendable normal curvature without false singularities (see comments
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after theorem 3.2 in (MEDINA-TEJEDA, 2022b)). Furthermore, Ao = 2u; and

2uy(up + l)z(u% —uy+1)>2
(u50+2uz+ug+u‘2‘+2u%+u%+ 1)2’

Ko =

therefore, considering that at a regular point the Gaussian curvature is given by A_Q’ we obtain
Q

(@t 1Pdmt 1)
(u50+2ug+ug+u‘2‘+2u3+u%+ 1)2

1s the extension of the Gaussian curvature to U. Then, the Gaussian curvature also admits an
extension to U and in this case, the extension is non-vanishing. By applying corollary 6.2.4, the
Kummer principal lines coincide with the lines of curvature of x, which are given by the implicit

differential equation
2uy [(u27 + u24 + u23 + 1) u’12 + <3u1u26 + 3u1u22> u’lulz}

+ 2uy [(—4u211 — 12u28 +2u12u25 — 12u25 —4u12u22 —4u22> u'zz] =0.

Figure 8 — Frontal for which the unit normal vector has the same singular set.
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CHAPTER

SINGULARITIES OF 2-PARAMETER PLANE
CONGRUENCES IN R*

In this chapter we briefly discuss parametric families of planes and their generic singu-
larities. First, we start with a more general case, taking into account r-surfaces in R” (in the
sense of (LIMA, 2004), chapter 7) and families of n — r-planes, where n — 1 > r > 1. The results
in section 7.1 can be seen as generalizations of the results from section 4.2, when we assume
codimension greater than or equal to 2 and parametrized families of planes. In section 7.2 we
discuss 2-parameter family of planes and classify their generic singularities. In 7.3 we discuss

some of the problems related to plane congruences we want to explore in the future.

7.1 A more general case

Letx:U — R” andéi:U%R"\{O},whereUC]R’isopenandi: 1,2,--- ,n—r. Then,
we associate to (x,&', €%+ E") € C°(U,R" x R"\ {0} x --- x R"\ {0}) = C*(U,R" x

TV
n—r—times

(R™\ {0})"") the congruence

Fxg):UXLi X X I,_, — R"
(bt,ll,--- 7tn—r) HX(”)—f—tlgl _’__”tn—rgl’l—r,

where & = (E',... "), I; is an open interval for all j € {1,--- ,n—r} and the vector fields

él, ---,&"" are linearly independent. When there is no risk of confusion, we drop the subscript

in Fiy g). Write

Wy, ={E=(E', - E" ) eC™(U,(R"\{0})" ") : E',... ,E" " are linenarly independent}.
(7.1)

We can think of & € #,,_, as a parametrized family n x (n — r) of matrices, thus given u € U

and & € #,_, at least one of the (n— r) X (n— r) minors is not zero at u, for all u € U. Let us
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suppose, without loss of generality, that the minor given by the first n — r rows is not zero at
ug. Then, there is an open subset Uy C U such that this minor is not zero for all u € Uj. Taking
this into account there exists a germ of diffeomorphism % : (R",ug,0) — (R",uq,ty), where

fo = (té,tg, -+ ,15""), such that the first n — r coordinates of F = F oh are given by
_ n—r )
Fj:aj+ztlélj.’j:17---7n—r, (72)
i=1

where 5’1 indicates the j-th component of &' and ay = xﬁ(uo) +1 ;f;ftéfi(uo), k=1,2,---,n—r.
Thus, if we write ag = (a1, ,a,_,) and G(u,t) = (Fy,--- ,F,_,), we get G~ !(ag) = {(u,0) :
u € (Up,up)}. Using this system of coordinates, we seek to prove that F is an (n— r)-dimensional

unfolding of a germ from R" to R".

Let m,_, : R" — R” be the projection in R” given by (x1, -+ ,Xp—r, Xn—ri1,°** ,Xn) =
(xn—r—l—la T ,)Cn) and f(u) = %n*roF(I’hO)'

Proposition 7.1.1. With notation as above, the map germ F : (R",u,0) — R is an (n — r)-
dimensional unfolding of f(u) = m,_, o F (u,0).

Proof. Take

i (R up) - R"
u— (u,0)
j:R — R"

y > (ao,y)

then, Foi= jOf. Note that F is transverse to J, since we are considering 17] written as in (7.2).

Furthermore,

{(u,0,y) 1 F(u,0) = j0)} = {(,0, f () 1 u € (R, ug) }.

Notice that (i, f) : (R",ug) — {(u,t,y) : F(u,t) = j(y)} is given by (i, f)(u) = (u,0, f(u)), thus
is a diffeomorphism. Therefore, (ﬁ ,1,J) is a two dimensional unfolding of f from lemma
23.1. -

Lemma 7.1.1. Let W C J*(r,r) be a submanifold. For any fixed & € #;,_, and any fixed point
qo = (up,t0) € U x I} X --- x I,_,, such that the minor given by the first n — r rows of & is not
zero at ug, the set

T g = {X € COWRY) 1§ (Mo Fig) ) W at (uo,10) |

is a residual subset of C* (U, R").
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Proof. In what follows we identify C*(U,R") x C*(U,R"\ {0}) x --- x C*(U,R"\ {0}) with
n—r:;imes

C=(U,R" x (R"\ {0})""") and we take the C*-Whitney topology induced on C*(U,R") x {&}.

Let us take {C j};":] a countable open cover for W, such that C_‘] is compact for all j € N.
Define

T o, = (XEC(U.R") : ft (n,H oﬁ(x’g)) W with & (nn,roﬁ(x’g)) (q0) €C;}. (1.3)

We claim that 7.3 is open. In fact, taking into account that the map X : C**(Up, R") — C=(Uj x
Iy X -+ X I, J¥(r,7)), given by j¥(x) = j* (nn_,ol::(&g)) is continuous, where Uy C U is an

open subset such that the minor given by the first n — r rows of & is not zero for all u € Uy, define
Ow,c, ={g€C”(Up x I X -+ X Lir, J*(r,r)) : g W at go,g(qo0) € Cj},

which is open. Thus, as the restriction map res),, C*(U,R") — C*(Uy,R") is also continuous,
it follows that

£ AR .
TW,quj = <l"€S|UO) °© (] ) (0W7CJ-) is open.

3 . £ E .. : _
If we show that TW7 40.C; 1 dense, then va o= jQN TW_‘ 4.C; 18 residual. Since the restriction

map is surjective it is enough to show that
Tw.g0.c;.0 = {X € C*(Up, R") : j (nn,, of(xyg)) W with j§ (nn,, oﬁ(x’g)> (90) €Cj}

is dense. Write P(r,r,k) = {(Py,---,P,) : P; is a polynomial with P,(0) = 0 and deg(P,) < k =
0,i=1,---,r}.Givenx € C*(Up,R") and P = (Py,- -, P;) € P(r,1,k), define fix p): Up < Iy -+ X
I, — R" by

Foap)(W,t) =Ty 0 Fig g)(u,t) + P(u).
Define also

®:Uyx Iy X - x I, x P(r,r,k) — J*(r,r)
(u,1,P) Hj]ffX,P(uvt)

which is a submersion, thus ® th W. Then, via lemma 2.3.3
{P € P(r,r,k) : ®p M W at qo, such that ®p(qo) € C;}

is dense in P(r,r,k). Hence, there is { P, } a sequence in P(r,r,k) such that P, — 0, with $p h W,
for all n € N. Note that x, =x+ P, € Tw 40.c;,U0 for all n € N and x,, — X, therefore, Tw q0.C;,U0
is dense. [
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Remark 7.1.1. Let
O1={6cH,_,: (8 6, - 5u,> has rank > 2}.

Then, it follows analogously to remark 4.2.1 that O is a residual subset of #},_,.

Thus, it follows from lemma 7.1.1 that the set

Ty = § (,8) € C*(UR x ®\{0})""): /(700 Flcg)) MW atgoand § € O x -+ x Oy

n—r times

is residual. We proceed analogously if we start considering that any other minor of & is not zero

in order to obtain a residual set as the above one. Then, we have the following theorem.

Theorem 7.1.1. There is an open dense set O C C*(U,R" x (R"\ {0})"~"), such that for all
(x,€) € O the germ of the line congruence Fix gy atany point go € U x I1 X I, is stable.

Proof. The proof follows the same steps of that of 4.2.1. L

7.2 2-parameter plane congruences in R*

Here, we deal with two parameter family of planes in R*, i.e., 2-parameter plane congru-
ences in R*. Our approach for this case is motivated by section 3.2. Along this section U denotes

an open subset of R,

Definition 7.2.1. A 2-parameter plane congruence in R* is a 2-parameter family of planes in R*.

Locally, we write

F(x,é,ﬁ) : ﬁX[X]—)]RA'
(1,1 > x() + 16 1) 1 180,

where

e x:U — R*is smooth and it is called a reference surface.

e £.8:U — R*\ {0} are smooth and linearly independent. We call & and & director

surfaces of the congruence.

Let us write

W ={(E,8) € C°(U,R*\ {0} x R*\ {0}) : & and & are linearly independent} (7.4)
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Example 7.2.1. A classical example of 2-parameter family of planes arises when we take a
regular surface x : U — R*, x(U) = M. Then, at each ¢ € M, g = x(u), there is a well defined
normal plane N,M. Analogously to example 2.4.4 it is possible to show that the family of distance
squared functions on M, D : UxR* = R, defined by

D(u,p) = (x(u) — p,x(u) — p)

is a Morse family of functions and that the Lagrangian map associated is given by Fy ¢ 5 (u,t,1) =
x(u) +1&(u) +18(u), where {&(u), 8 (u)} is a basis for the normal plane N,M at g = x(u) (see
section 7.9 in (IZUMIYA et al., 2016)). Since the germ of family D is locally P-R*-versal
for an open and dense set of embeddings x € C°°(17 ,R%) (see theorem 4.8 in (IZUMIYA et al.,
2016)), it follows similarly to theorem 4.3.1 that the generic singularities of exact normal plane

congruences are the Lagrangian stable (see table 2).

Lemma 7.2.1. The singular points of a line congruence Fiy ¢ 5 are the points (u,,1) such that

(&, NELNEB)+ 178 NBuy NE,B)+11((E, NB,NE,B)+ (8., NE, NE,B))
+1 ({8 AXuy NE,8) + (xu NE,,NE8)) +1((84, AXuy NE,8) + (x4 A8y NE,B))
+ (X, AX,E,8) =0. (7.5)

Proof. We know that (u,,1) € U x I x J is a singular point of Fix¢.5)if and only if detJF (u,t,1) =

0, where

TGt 0) = [0, 18, +184 %y +1E,,+180, & 8],

is the jacobian matrix of F at (u,z,/). From
detJF (u,t,1) = ((Xu, +1&,,, +18u) N (Xup +1&,,, +18.,,) NE,8) =0
we obtain (7.5). ]

Theorem 7.2.1. There is an open dense set O C C=(U,R*) x #5, such that:

a) Forall (x,§,8) € O the germ of the plane congruence Fiy ¢ 5) at any point (uo,,lo) €
U xIxJis stable;

b) For all (x,&,8) € O the germ of the plane congruence Fix £ &) at any point (uo,t0,1p) €
U x I x J is A-equivalent to one of the normal forms below

e (x,y,z,w) — (x,y,w,z%) (Fold).
e (x,y,z,w) — (x,y,w,2° +xz) (Cusp).

o (x,y,2,w) — (x,y,w,z° £x°7+yz) (Lips/Beaks).
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o (x,y,z,w) x,y,w,z3 +x3z+yz+zxw) (Goose).

= (
o (x,9,z,w) = (x,y,w,z* + xz+ yz%) (Swallowtail).
=

)
hd (xayaz7w) xa)’aW7XZ2+Z4+ZS+yZ+WZ3) (Gulls).

o (x,y,2,w) — (x,y,w,xz+ P+ -l-y12 + wz3) (Butterfly).
o (x,y,z,w) > (z,w, x? +y3 + 2y, y2 +x3 4+ wx) (Hyperbolic Umbilic or Sharksfin).
o (x,y,z,w) — (z,w, x> — y2 +x3+ zx,xy +wx) (Elliptic Umbilic or Deltoid).
Proof. Item a) follows directly from theorem 7.1.1, taking n = 4 and r = 2. To prove b) we

proceed as in theorem 4.2.1 item b). The good set in item a) contains the KC-orbits in {f €
J¥(2,2) 1 cod, (K, f) < 4}, that is,

e [C-orbits of A, type, for 1 <r <4;

o ()

o (¥ =y ).
Then, we refine the KC-orbits on the above stratification, by taking the A-orbits of A,.-codimension
< 2 inside these IC-orbits. Then, the relevant strata in this stratification are the A-orbits of stable
singularities A,, r = 1,2 and the A-orbits of singularities of .4,-codimension 1 or 2 of type A5,
Az, A4 and D4. The complement of their union is a semialgebraic set of codimension greater than

or equal to 5. The normal forms and the versal unfoldings below were taken from (GIBSON;
HAWES; HOBBS, 1994).

1. K-orbit of A| type
f(x,y) = (x,y*) which is stable, hence, we have just this A-orbit. Its suspension in R* is
the stable germ that we are looking for.
2. K-orbits of A; type
The possible normal forms are
f1(x,y) = (x,* +xy) (Cusp) — code (A, f1) =0,
f(x,y) = (x,y° £x%y) (Lips(+)/Beaks(-)) — code (A, f1) = 1,
f3(x,y) = (x,y° +xy) (Goose — code (A, fi) = 2.

The versal unfoldings are given by (taking the suspension when it is necessary)

Fi(x,y,z,w) = (x,2,w,y° +xy),
B(x,y,2,w) = (x,3,w,2 £ x°2+y2),
Fs(x,3,2,w) = (x,5,w, 2 + X2+ yz -+ 2xw),
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respectively.

3. K-orbits of A3 type
We get the following normal forms

fi(x,y) = (x,y* +xy) (Swallowtail) — cod, (A, f1) = 1,
Axy) = @y +x7 +°) (Gulls) —code (A, fi) = 2

and the versal unfoldings are given by

Fl (X,y,Z,W) = (x,y,w,xz—l—z4—|—yz2),
B (x,y,2,w) = (x,y,w,x2° + 2+ 20 +yz+wzd),

respectively.

4. KC-orbits of A4 type

The only normal form is

f(xy) = (x,y° +y" +xy) (Butterfly) — code (A, f1) =2,

whose versal unfolding is

F<x7y7Z7W) = (va;W,XZ—l-ZS:|:Z7—|—yZ2+WZ3).

5. K-orbit (x2,y?)
In (RIEGER; RUAS, 1991) it is shown that any germ contained in this /C orbit is A-
equivalent to some member of the series of germs Ié'; = (2 y? Y2 x2my >
m > 1, where the cod. (A,Ié:é") = [ 4+ m. Hence, the only A-orbit to be considered is
fi(x,y) = (x> +y,¥> +x3), which has versal unfolding given by

F] (-x,y,Z,W) - (Z; W7x2 +y3 +Zy,y2 +x3 +WX)

6. K-orbit (x> —y?,xy)
Analogously to the last case, in (RIEGER; RUAS, 1991) it is shown that any germ
contained in this /C orbit is .A-equivalent to some member of the series Hé@ = (x> —y*+
x21+1,xy), [ > 1, which has cod, (A,IIéQ) = 2l. Thus, we only take into account the

A-orbit f>(x,y) = (x> —y> + x>, xy) with versal unfolding given by
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7.3 Future research

In this thesis, when working with plane congruences, we only discuss the classification
of their generic singularities, however, there are other problems associated to these congruences
we expect to investigate in future research. For instance, taking into account an affine normal
plane to a surface in R*, as those defined in (NOMIZU; VRANCKEN, 1993) and (NUNO-
BALLESTEROS; SAIA; SANCHEZ, 2017) and the associated affine normal plane congruences,
the classification of their generic singularities is still an open problem. Taking into account that
line congruences are strongly related to ruled surfaces, another natural question is how plane
congruences are related to non-degenerate 2-ruled hypersurfaces in 4-space (see (SAJI, 2002)).
Furthermore, in (GUTIERREZ; RUAS, 2003) the authors conjectured that any locally strictly
convex surface homeomorphic to the sphere has at least two inflections. Thus, as this conjecture
is related to affine invariants and surfaces in R* it seems natural to face this problem when

studying affine plane congruences.
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