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ABSTRACT

LIER, M. J. Topological complexity and the Lusternik-Schnirelmann category.
2021. 163 p. Dissertação (Mestrado em Ciências – Matemática) – Instituto de Ciências
Matemáticas e de Computação, Universidade de São Paulo, São Carlos – SP, 2021.

In recent years, a new field integrating robotics and topology was born, referred to by
many as Topological Robotics, in which the main strategy is to use algebraic topological
tools to get some insight into robotics problems. One of those problems is called the robot
motion planning problem and is the main motivation for this work.

We present an in-depth study of Topological Complexity, discussing how it relates to the
Motion Planning Problem, and the main methods for computing it for CW complexes
and Smooth Manifolds, spaces of great interest in robotics. The concept of Lusternik-
Schnirelmann category is introduced due to its connection with Topological complexity,
both being particular cases of the more general concept of the Schwarz Genus of a fibration.

Keywords: Topological Complexity, Lusternik-Schnirelmann category, Schwarz Genus,
Algebraic Topology, Motion Planning Problem, Fibrewise Topology.





RESUMO

LIER, M. J. Complexidade topológica e categoria de Lusternik-Schnirelmann.
2021. 163 p. Dissertação (Mestrado em Ciências – Matemática) – Instituto de Ciências
Matemáticas e de Computação, Universidade de São Paulo, São Carlos – SP, 2021.

Nos últimos anos, nasceu um novo campo de pesquisa integrando robótica e topologia,
referido por muitos como Robótica Topológica, no qual a principal estratégia é utilizar
ferramentas da topologia algébrica para obter uma maior intuição sobre certos problemas
da robótica. Um desses problemas chama-se problema do planejamento do movimento de
um robô e é a principal motivação para este trabalho.

Apresentamos um estudo aprofundado da Complexidade Topológica, discutindo como ela
se relaciona com o Problema do Planejamento de Movimento, e os principais métodos para
a sua computação para complexos CW e variedades suaves, espaços de grande interesse
da robótica. O conceito da categoria de Lusternik-Schnirelmann é introduzido devido à
sua ligação com a complexidade topológica, sendo ambos casos particulares do conceito
mais geral do Gênero de Schwarz de uma fibração.

Palavras-chave: Complexidade Topológica, categoria de Lusternik-Schnirelmann, Schwarz
Genus, Topologia Algébrica, Problema do Planejamento de Movimento, Topologia Fi-
brewise.
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INTRODUCTION

Topology was born in Euler’s paper on the Seven Bridges of Königsberg in 1736
(EULER, 1736), and its modern name was coined by the German mathematician Johann
Benedict Listing, in 1848 (LISTING, 1848). It is best described as the study of sets in
which one can establish a notion of “proximity” between points. These sets are called
Topological Spaces, and their importance lies in the fact that we can define an idea of
continuity in them.

In 1895, Henri Poincaré revolutionized mathematics by introducing the concepts
of homotopy and homology groups, in a paper entitled “Analysis Situs” (POINCARÉ,
1895), thereby inaugurating a major field of study, nowadays called Algebraic Topology,
which can be described as the use of algebraic tools in solving topological problems. In
the last century, efforts from numerous renowned mathematicians have made Algebraic
Topology what it is today, a solid strong theory with vast applications in many areas of
mathematics and science (HATCHER, 2002; WHITEHEAD, 1978).

Parallel to this story, in the world of robotics, the interest in manufacturing au-
tonomous robots, i.e., robots that can complete tasks without the need for human control,
became greater than ever. To properly operate, an autonomous robot must have a sophis-
ticated algorithm for deciding on how to proceed from one configuration to the next. This
fundamental question of how to set up such an algorithm is currently known as the Robot
Motion Planning Problem and is a major field of study in robot engineering, thoroughly
discussed in (LATOMBE, 1991).

At the beginning of the 21st century, Michael Farber started applying topologi-
cal tools to solve problems in robotics and engineering, creating the field of Topological
Robotics (FARBER, 2008). In this process, Farber came across the famous Robot Motion
Planning Problem. At first, this might seem to be a simple problem, and in fact, it is for
spaces such as a point-like robot moving on a plane with no obstacles. Nevertheless, in real
applications, one has spaces with many obstacles and humanoid robots with many joints
and complex structures, with the ability to move and rotate in a three-dimensional setting.
For such complex spaces, there is no simple answer to the motion planning problem.

Motivated by that, Farber introduced a numerical invariant called the Topological
Complexity (FARBER, 2003), which gives a lower bound for how “complex” any motion
planning algorithm will be for a given topological space. Usually, the spaces of interest
are the ones that describe the possible configurations of a robot, but the theory can be
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developed for any topological space.

The difficulty in building motion planning algorithms comes mainly from the fact
that we are always interested in the most “stable” algorithm, meaning that the motion
planner functions should be continuous. In (FARBER, 2003), it was shown that the only
spaces where one can produce a motion planning algorithm with a single continuous mo-
tion planning function for the entire space are the contractible spaces (TC=1). For any
non-contractible topological space, depending on the value of TC, one needs an algorithm
with at least that number of motion planning functions, which always results in an al-
gorithm with some problematic points, where the motion planner may be discontinuous,
meaning that small variations in initial and final configurations can produce completely
unrelated paths. To sum it up, the topological complexity provides us with a lower bound
for how “problematic” any motion planning algorithm will be in a given space.

Two geometrically different spaces can have the same topology, which is what we
call homeomorphic spaces, for example, the letters M and N are homeomorphic, but they
are not homeomorphic to the letter X. There is a less restrictive concept called homotopy
type, which only depends on the topology of a space, but spaces with different topology
may have the same homotopy type, in the previous example, M, N, and X have the same
homotopy type (HATCHER, 2002).

We can simplify many problems in robotics by solving them up to homotopy type,
meaning that we solve them for a homotopy equivalent space. A simple example would
be a robot that can move on a plane with one obstacle in the middle of it, this space is
homotopy equivalent to S1, which is much easier to work with. One would also expect
that the complexity of a motion planner only depends on the homotopy type of the space,
and in fact, this is true (theorem 3.2.3).

When introducing topological complexity, in (FARBER, 2003), Farber showed
that there are important upper bounds depending on the dimension and the Lusternik-
Schnirelmann category of the space (theorem 3.2.6). Furthermore, by using results due
to Albert Schwarz (SCHWARZ, 1966), Farber obtained a cohomological lower bound for
TC. These upper and lower bounds prove to be useful in determining the complexity
of n-spheres, projective spaces, robot arms, n-dimensional rigid bodies, and others (see
chapter 3).

Chapter 1 of this dissertation is dedicated to the introduction of some crucial back-
ground one needs before properly understanding the theory of Topological Complexity.
The most important part of this preliminary chapter is the discussion about (Co)Homology
Theory, in which we introduce the cup product and the cohomology ring, which are es-
sential later on when producing a lower bound for TC via cuplength (chapter 3). Due
to the importance of this preliminary topic, we also present some auxiliary results on
Homological Algebra, in appendix A.
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In Chapter 2, we present the concept of Lusternik-Schnirelmann Category (or LS
category). This theory has a strong relation with TC, due to the fact that both invariants
are particular cases of the more general concept of Schwarz Genus (SCHWARZ, 1966)
(chapter 3). Hence, by better understanding the LS category we can gain some insight
into the topic of Topological Complexity. The most important result relating the two
invariants is theorem 3.2.6, in which is also shown that there is a close relationship between
the topological complexity of a space and its covering dimension.

The LS category was introduced by Lazar Lusternik and Lev Schnirelmann in
(LUSTERNIK; SCHNIRELMANN, 1934), initially called simply “category”, with its first
definition contemplating only smooth manifolds. Its importance lays in the fact that the
category of a manifold is an upper bound for the number of critical points of any smooth
function on it. Later on, Ralph H. Fox gave a new formulation to what we now know as
the Lusternik-Schnirelmann Category (FOX, 1941).

Chapter 3 is dedicated to the theory of Topological Complexity. We start by prop-
erly formulating the Motion Planning Problem mathematically, which motivates the def-
inition of topological complexity. In section 3.2, we present some key results regarding
TC, for example, the fact that it is a homotopy invariant (theorem 3.2.3), and its relation
with LS category and covering dimension (theorem 3.2.6).

In section 3.3, we introduce what is called the Schwarz genus of a fibration, and
show that both TC and LS category are particular cases of this broader concept. We give
a detailed proof for a cohomological lower bound for the Schwarz genus of any fibration
(theorem 3.3.7), and by applying this to the path fibration we show that if K is a field,
then the topological complexity of any space is bounded from below by what we call the
zero divisors cup length of H∗(X ;K) (theorem 3.3.11).

After obtaining this important lower bound for TC, we give two practical examples
of computations, the first one being for the case of a robot arm with n joints, and the
second one is the case of a rigid body moving freely, either in a 2D space or a 3D space.

We close chapter 3 by presenting the concept of “order of instability” (both lo-
cally and globally) of a motion planner, which measures how unstable a motion planning
algorithm is at a given point (or as a whole, in the global case). In theorem 3.4.6, we
prove that for nice enough spaces (connected C∞-smooth manifolds) the minimum order
of instability for a given space coincides with its topological complexity.

We finish by presenting the fibrewise method for topological complexity, in chapter
4. The idea, presented in (IWASE; SAKAI, 2010; IWASE; SAKAI, 2012), is that topolog-
ical complexity is the same as a newly formulated LS category in the context of fibrewise
topological spaces.

It is important to notice that the numerical invariant topological complexity has
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no relation to “optimal distance paths”, i.e., paths that minimize distance, it is simply
a measure of how “problematic” any motion planning algorithm in a given space will be.
Nevertheless, there are some variations in the definitions of topological complexity that
incorporate some restrictions to how the paths must be. Two quite simple and important
versions are the monoidal topological complexity and the symmetric topological complex-
ity. Both these concepts are introduced in chapter 4, and we finish this last chapter by
using the fibrewise category to obtain a relation between topological complexity and the
monoidal version of topological complexity (IWASE; SAKAI, 2010).
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CHAPTER

1
PRELIMINARIES

In this first chapter, we present many important concepts for the development of
both LS category and topological complexity. We develop the theory of (Co)homology in
more detail since it will be important when fabricating a lower bound for TC in chapter 3.

1.1 Paracompact and Normal Spaces

Definition 1.1.1 ((MUNKRES, 2000)). If X is a topological space, then a collection
{Aα}α of subspaces of X is said to be locally finite if for every point x ∈ X there exists
an open neighborhood Vx of x, which intersects a finite number of elements from {Aα}α .

Remember that if {Uα} is an open covering of X , then an open refinement of
that covering is another open covering {Vα} such that for each α we have Vα ⊂Uα .

Definition 1.1.2 ((MUNKRES, 2000)). A topological space X is paracompact if every
open covering of X has a locally finite open refinement that covers X .

Definition 1.1.3 ((MUNKRES, 2000)). Let {Uα}α be an open covering of a topological
space X . A partition of unity subordinate to {Uα}α is a collection of functions {ϕα}α ,
ϕα : X → [0,1], such that

(i) Supp(ϕα)⊂Uα, for all α . Remember that Supp(ϕα) = {x ∈ X | ϕα(x) 6= 0}

(ii) The family {Supp(ϕα)}α is locally finite.

(iii) ∑α ϕα(x) = 1, for all x ∈ X .

If X is a smooth manifold (see section 1.2), then the partition above will be called
a smooth partition of unity if all ϕα are smooth maps.
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Theorem 1.1.4 ((MUNKRES, 2000)). Consider X a paracompact Hausdorff space and
{Uα}α an open covering of X . Then there exists a partition of unity subordinate to {Uα}α .

Definition 1.1.5 ((DUGUNDJI, 1966)). A topological space X is said to be normal if
it is a Hausdorff space in which for every pair of disjoint closed sets E,F ⊂ X , there are
disjoint open sets U,V with E ⊂U and F ⊂V .

Theorem 1.1.6 ((DUGUNDJI, 1966)). Let X be a Hausdorff space, then the following
statements are equivalent:

1. X is normal

2. For any locally finite open covering {Uα}α of X there exists an open refinement
{Vα}α that covers X , such that V α ⊂Uα for all α , and Vα 6= /0 whenever Uα 6= /0.

For the proof of this statement refer to Theorem 6.1 in (DUGUNDJI, 1966).

Definition 1.1.7 ((CORNEA et al., 2003)). A topological space X is called completely
normal whenever the following equivalent conditions are satisfied:

1. Any pair of subsets A,B ⊂ X , such that A∩B = /0 and B∩A = /0, can be separated
by disjoint open sets.

2. Every subspace of X is normal.

1.2 Topological and Smooth Manifolds
Definition 1.2.1 ((TU, 2011)). A topological space M is said to be locally Euclidean
of dimension n, if each point x ∈ M has an open neighborhood U and a homeomorphism
ϕ : U →V onto an open subset V ⊂Rn. The pair (U,ϕ : U →V ) is called a chart of M, U

is a coordinate neighborhood and ϕ a coordinate map.

Lemma 1.2.2 ((LEE, 2011)). For a topological space X the following statements are
equivalent

1. X is locally Euclidean of dimension n.

2. Every point of X has a neighborhood homeomorphic to an open ball in Rn.

3. Every point of X has a neighborhood homeomorphic to Rn.

Definition 1.2.3 ((TU, 2011)). A topological manifold of dimension n, or a topo-
logical n-manifold, is a locally euclidean topological space of dimension n, which is also
second countable and Hausdorff.
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In many cases we shall denote a topological manifold by Mn, by which we mean
that M is a n-manifold, not to be confused with the n-fold Cartesian product M×·· ·×M.

Recall that we define the closed n-disk in Rn as the subset Dn
= {x ∈Rn : ‖x‖≤ 1}.

Given a Topological n-manifold, to introduce the concept of a closed n-disk in M we proceed
as follows.

Definition 1.2.4. A closed n-disk in a topological n-manifold M is a subset D ⊂ M

homeomorphic to Dn and such that there exists a coordinate neighborhood U ⊂ M, with
D ⊂U , with D being a deformation retract of U .

The last part in the previous definition is motivated by the fact that the closed
n-disk in Rn is a deformation retract of Rn, with the deformation retraction r : Rn → Dn

defined by

r(x) =

x, if x ∈ Dn

x
‖x‖ , if x ∈ Rn \Dn .

Definition 1.2.5 ((LEE, 2012)). If U ⊂Rn and V ⊂Rm are open subsets, then a function
F : U → V is said to be smooth (or C∞) if all its components have continuous partial
derivatives of all orders. Furthermore, if F is bijective with smooth inverse, we call it a
diffeomorphism.

Definition 1.2.6 ((LEE, 2012)). Let M be a topological n-manifold, and suppose (U,φ)
and (V,ψ) are charts. Then we say that these two charts are smoothly compatible if
either U ∩V = /0 or ψφ−1 : φ(U ∩V )→ ψ(U ∩V ) is a diffeomorphism.

Definition 1.2.7 ((LEE, 2012)). An atlas for a topological manifold M is a collection of
charts whose coordinate neighborhoods cover M. If all the charts are smoothly compatible,
then we have a smooth atlas. Furthermore, we say that a smooth atlas is maximal if
it is not properly contained in any larger smooth atlas.

Definition 1.2.8 ((LEE, 2012)). A smooth manifold is a topological manifold together
with a maximal smooth atlas, sometimes called the smooth structure on the manifold.

Next, we present a sequence of well-known theorems regarding Topological and
Smooth Manifolds, for the proof of these results refer to the literature mentioned in each
theorem.

Theorem 1.2.9 ((LEE, 2011) Theorem 4.77). If X is a second countable, locally compact
Hausdorff space, then it is paracompact. In particular, if X is a topological manifold, it is
paracompact.

Theorem 1.2.10 (Smirnov metrization theorem - (MUNKRES, 2000) Theorem
42.1). Let X be a topological space. Then X is metrizable if and only if it is paracompact,
Hausdorff, and locally metrizable. In particular, every topological manifold is metrizable.
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Theorem 1.2.11 ((LEE, 2012) Examples 1.8 and 1.34). If M1, . . . ,Mk are topological
manifolds (respectively smooth manifolds) of dimension n1, . . . ,nk, then M1×·· ·×Mk is a
topological manifold (respectively smooth manifold) of dimension n1 + · · ·+nk.

Theorem 1.2.12 ((LEE, 2012) Theorem 6.15). Any smooth n-manifold is homeomorphic
to a subset of R2n+1.

Theorem 1.2.13 (Sard’s Theorem. (LEE, 2012) Theorem 6.10). If f : M → N is a
smooth map between smooth manifolds, then the set of critical values of f has measure
zero in N.

Theorem 1.2.14 ((LEE, 2012) Theorem 2.23). If M is a smooth manifold with an open
covering U = {Uα}α , then there is a smooth partition of unity subordinate to U .

Theorem 1.2.15 ((LEE, 2012) Theorem 2.29). For any closed subset F of a smooth
manifold M there is a smooth non negative function f : M → R such that f−1(0) = F .

1.3 (Co)Homology Theory
This section is dedicated to the introduction of two central theories in Algebraic

Topology. The first one being Singular Homology, and the second one its dual notion of
Singular Cohomology. These two theories have a strong link which will be made evident
by the Universal Coefficient Theorem. Many classical theorems will be presented without
proof, for deeper understanding refer to (HATCHER, 2002).

We shall develop both theories using the concept of free R-modules, which reduces
to the case of free abelian groups if we choose the ring R to be Z. For basic definitions
and results regarding R-modules refer to Appendix A.1.

Singular Homology and Cohomology

Definition 1.3.1 ((HATCHER, 2002)). The standard n-simplex is the topological
space given by

∆n .
=

{
(t0, . . . , tn) ∈ Rn+1 ∣∣ n

∑
i=0

ti = 1 and ti ≥ 0, for all i = 0, . . . ,n

}
.

Definition 1.3.2 ((HATCHER, 2002)). A singular n-simplex in X is any continuous
function σ : ∆n → X , and we denote by Sn(X) the set of all singular n-simplexes in X .

Define the continuous functions (embeddings) εi,n−1 : ∆n−1 → ∆n given by

εi,n−1(t0, . . . , tn−1) = (t0, . . . , ti−1,0, ti, . . . , tn−1).
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We define the ith face operator to be the function ∂ i
n : Sn(X)→ Sn−1(X) given by ∂ i

n(σ) =

σεi,n−1 (sometimes denoted simply by ∂ i).

Let R be a commutative ring with unity, we define Cn(X ;R) to be the free R-module
generated by Sn(X) (see definition A.1.9).

Define for each n = 0,1, . . . the function ∂n : Sn(X ;R)→Cn−1(X ;R) given by

∂n(σ) =
n

∑
i=0

(−1)i∂ i
n(σ),

which extends uniquely to an R-homomorphism ∂n : Cn(X ;R) → Cn−1(X ;R) (see defini-
tion A.1.7) called the boundary homomorphism, additionally, it is easy to prove that
∂n∂n+1 = 0 for all n, hence we have a chain complex (see definition A.2.1)

· · · Cn+1(X ;R) Cn(X ;R) Cn−1(X ;R) · · ·∂n+1 ∂n .

In many occasions we may drop the index and write simply ∂ : Cn(X ;R)→ Cn−1(X ;R).
We usually use the notation C(X ;R), without index, to refer to the whole chain complex
above.

The homology R-modules (see definition A.2.2) of the chain complex above are
called the singular homology R-modules of X , denoted by

Hn(X ;R) =
Zn(X ;R)
Bn(X ;R)

,

in which Zn(X ;R)= ker(∂ ) and Bn(X ;R)= Im(∂ ). Usually, elements of Zn(X ;R) and Bn(X ;R)

are called n-cycles and n-boundaries of X , respectively. In particular, Hn(X ;R) is called
the nth singular homology R-module of X .

Given M an R-module, one can produce a dual chain complex by applying the
functor HomR(·,M) (see definition A.2.13), by doing so, we obtain the chain complex
(sometimes called a cochain complex)

· · · Cn−1(X ;M) Cn(X ;M) Cn+1(X ;M) · · ·δn δn+1 ,

in which Cn(X ;M)
.
= (Cn(X ;R))∗ = HomR(Cn(X ;R);M) and δn(φ)

.
= (∂n)

∗(φ) = φ∂n. In
many occasions we may drop the indexes and write simply δ .

We define the n-cocycles and n-coboundaries submodules of Cn(X ;M) to be
Zn(X ;M)

.
= ker(δ ) and Bn(X ;M)

.
= Im(δ ), respectively. The quotient R-module

Hn(X ;M)
.
=

Zn(X ;M)

Bn(X ;M)

is called the nth singular cohomology R-module of X with coefficients in M.
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Proposition 1.3.3 ((HATCHER, 2002)). A continuous map f : X →Y between topolog-
ical spaces X and Y , induces a chain map f# : Cn(X)→Cn(Y ) given by f#(σ) = f σ , for σ
a singular n-simplex. Hence it also induces a cochain map f # : C∗

n(Y ) → C∗
n(X) given by

f #(φ) = φ f#. This implies that f induces a map on singular homology and cohomology,
namely f∗ : Hn(X ;R) → Hn(Y ;R) and f ∗∗ : Hn(Y ;R) → Hn(X ;R) given by f∗([z]) = [ f#(z)]

and f ∗∗ ([φ]) = [ f #(φ)].

We may use the notation f ∗ instead of f ∗∗ for the map induced in cohomology.

Proposition 1.3.4. Let f : X →Y be a continuous map between topological spaces, A⊂X

any subset of X and fo = f |A : A → Y . If u ∈ ker( f ∗∗ ), then u ∈ ker( fo
∗
∗).

Proof. Notice that for any φ ∈C∗
n(Y ;R) and any singular n-simplex σ ∈Cn(A;R)⊂Cn(X ;R),

we have f #
o (φ)(σ) = φ fo#(σ) = φ foσ = φ f σ = φ f#(σ) = f #(φ)(σ). Clearly, this means

that φ fo# = (φ f#)|Cn(A;R)

If we had f ∗∗ ([φ]) = 0, then f #φ = φ f# = δψ = ψ∂ , for some ψ ∈Cn−1(X ;R). Then,
we have φ fo# = (φ f#)|Cn(A;R) = (ψ∂ )|Cn(A;R) = ψ|Cn−1(A;R)∂ |Cn(A;R). So, if we define ψo =

ψ|Cn−1(A;R), we have f #
o (φ) = δψo, hence fo

∗
∗([φ]) = [ f #

o (φ)] = [δψo] = 0.

Next, we will present the most important results regarding singular homology,
many of which have a dual version for singular cohomology.

Homotopy invariance

Theorem 1.3.5 ((HATCHER, 2002)). If f ,g : X → Y are homotopic maps, then the
induced maps in singular homology and cohomology are the same, f∗ = g∗ and f ∗ = g∗.

Proof. Notice that, in view of theorem A.2.22, to prove this theorem we only have to show
that f#,g# : Cn(X ;R)→Cn(Y ;R) are chain homotopic.

Let F : X × I → Y be a homotopy from f to g. Define the maps ζ n
i : ∆n → ∆n−1 × I

given by ζ n
i (t0, . . . , tn) =

(
(t0, . . . , ti−1, ti + ti+1, ti+2, . . . , tn), ti+1 + · · ·+ tn

)
, and define an R-

homomorphism P : Cn−1(X)→Cn(Y ) by

P(σ) =
n

∑
i=0

F(σ × id)ζ n
i ,

for σ a singular (n−1)-simplex. One can check that ∂P+P∂ = f# −g#, which proves the
theorem.

Theorem 1.3.6 ((HATCHER, 2002)). If f : X → Y is a homotopy equivalence, then
f∗ : Hn(X ;R)→ Hn(Y ;R) and f ∗∗ : Hn(Y ;M)→ Hn(X ;M) are isomorphisms for any n, any
commutative ring R and R-module M. In other words, the homology and cohomology of
a space X only depends on its homotopy type.



1.3. (Co)Homology Theory 29

Proof. The statement is a direct consequence of A.2.22.

Reduced Homology and Cohomology

It is easy to explicitly compute the homology of a single point space, the result
being H0({p};R) = R and Hn({p};R) = 0 for n ≥ 1, so, by theorem 1.3.6, we know that
this is the homology of any contractible space. In many situations, it is preferable to have
a functor as the homology functor that takes a contractible space to the trivial module in
every level. Singular homology fails in this aspect only for H0, for this reason, we define
another version of homology.

Definition 1.3.7 ((HATCHER, 2002)). For any topological space X let ε : C0(X ;R)→ R

be the homomorphism ε (∑σ rσ σ) = ∑σ rσ , we clearly have ε∂ = 0, hence we have a chain
complex

· · · Cn+1(X ;R) Cn(X ;R) · · · C1(X ;R) C0(X ;R) R 0∂ ∂ ε ,

the homology modules of which are called the reduced singular homology modules
of X with coefficients in R, denoted by H̃n(X ;R).

It is easy to see, from the previous definition, that we basically have H̃n(X ;R) =

Hn(X ;R) for n ≥ 1, and H0(X ;R)≈ H̃0(X ;R)⊕R. To see that this last part is true, consider
the short exact sequence 0 ker(ε) C0(X ;R) R 0ε , which splits, since R is
free, hence C0(X ;R)≈ker(ε)⊕R, so we get

C0(X ;R)
Im(∂ )

=
ker(ε)⊕R

Im(∂ )
,

but since Im(∂ )⊂ ker(ε) we have
ker(ε)⊕R

Im(∂ )
=

ker(ε)
Im(∂ )

⊕R,

thus we concluded that H0(X ;R)≈ H̃0(X ;R)⊕R.

In a similar fashion, we define the reduced singular cohomology modules of X

with coefficients in an R-module M, denoted by H̃n(X ;M), to be the cohomology modules
of the cochain complex

0 R∗ C∗
0(X ;R) C∗

1(X ;R) · · ·ε∗ δ .

It is easy to see that H̃n(X ;M) = Hn(X ;M), for n ≥ 1, and H̃0(X ;M) = H0(X ;M)/ Im(ε∗).

Relative homology and Cohomology

If A is a subspace of X , let Cn(A;R) be the submodule of Cn(X ;R) generated by all
singular n-simplexes σ with Im(σ)⊂ A. We can define the quotient R module

Cn(X ,A;R) .
=

Cn(X ;R)
Cn(A;R)

,
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and since we clearly have ∂ (Cn(A;R))⊂Cn−1(A;R), the boundary map naturally induces
another boundary map ∂ : Cn(X ,A;R)→ Cn−1(X ,A;R) given by ∂ ([c]) = [∂ (c)], hence we
have a chain complex

· · · Cn(X ,A;R) Cn−1(X ,A;R) · · · C1(X ,A;R) C0(X ,A;R) 0∂ ∂ ,

the homology of which, denoted by Hn(X ,A;R), is called the homology module of X

relative to A. By dualizing the previous chain complex, we can define the cohomology
modules of the new chain complex, denoted by Hn(X ,A;M), and called the nth singular
cohomology module of X relative to A with coefficients in M.

Proposition 1.3.8. The quotient R-modules Cn(X ,A;R) are free for all n.

The previous proposition is a direct consequence of proposition A.1.8. From this
we conclude, by lemma A.2.9, that the sequence

0 Cn(A;R) Cn(X ;R) Cn(X ,A;R) 0i p

is a short exact split sequence, in which i is the canonical inclusion and p is the projection
homomorphism. Lemma A.2.19 implies that by dualizing with HomR(·,N), generates a
short exact split sequence

0 C∗
n(X ,A;R) C∗

n(X ;R) C∗
n(A;R) 0

p∗ i∗ .

Long sequence of a pair

Notice that

0 C(A;R) C(X ;R) C(X ,A;R) 0i p

is a short exact split sequence of chain complexes and chain maps, and by consequence
so is

0 C∗(X ,A;R) C∗(X ;R) C∗(A;R) 0
p∗ i∗ ,

hence, by theorem A.2.16 and corollary A.2.20 there are long exact sequences

· · · Hn(A;R) Hn(X ;R) Hn(X ,A;R) Hn−1(A;R) · · ·i∗ p∗ α ,

and

· · · Hn(X ,A;N) Hn(X ;N) Hn(A;N) Hn+1(X ,A;N) · · ·p∗∗ i∗∗ β .

In this case it is rather easy to understand the connecting homomorphism α . Notice
that, if we take z+Cn(A;R) in Zn(X ,A;R) any cycle, then ∂ (z)+Cn−1(A;R) = [0] implies
that ∂ (z) ∈ Zn−1(A;R), hence we can define a homomorphism Hn(X ,A;R)→ Hn−1(A;R) by
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sending [z] into [∂ (z)], and it is not difficult to see that this is precisely the connecting
homomorphism as we defined in the proof of theorem A.2.16, so we have

α
(
(z+Cn(A;R))+Bn(X ,A;R)

)
= ∂ (z)+Bn(A;R),

for this reason many authors write ∂ for the connecting homomorphism, but we shall keep
using α to avoid confusion.

The two previous long sequences are called the long exact homology sequence
of the pair (X ,A) and the long exact cohomology sequence of the pair (X ,A),
respectively.

If A is a point, then the long exact homology sequence of the pair gives us
H̃n(X ;R)≈Hn(X ,{pt};R).

Long exact sequence of a triple

Notice that given a triple (X ,A,B) of topological spaces, with B ⊂ A ⊂ X we can
construct the following short exact split sequence

0 Cn(A,B;R) Cn(X ,B;R) Cn(X ,A;R) 0i p ,

in which i(c+Cn(B)) = c+Cn(B) and p(c+Cn(B)) = c+Cn(A), with both functions well
defined, since B ⊂ A ⊂ X . The sequence is clearly exact, and the fact that it splits follows
easily, since Cn(X ,A;R) is free. One can see that i and p define chain maps in the natural
way, and from theorem A.2.16 we get the following long exact sequence

· · · Hn(A,B;R) Hn(X ,B;R) Hn(X ,A;R) Hn−1(A,B;R) · · ·i∗ p∗ α ,

which is called the long exact homology sequence of the triple (X ,A,B). Just like
in the previous case of the long exact sequence of a pair, here we can understand the
homomorphism α in a really simple way. Notice that if z ∈Cn(X ,A;R) is a cycle, it means
that ∂ (z) ∈ Cn−1(A;R), hence the class ∂ (z)+Cn−1(B;R) is a cycle in Cn−1(A,B;R). By
using the definition of the connecting homomorphism, one gets

α((z+Cn(A;R))+Bn(X ,A;R)) = (∂ (z)+Cn−1(B;R))+Bn−1(A,B;R).

If N is any R-module, from corollary A.2.20 we get the long exact sequence

· · · Hn(X ,A;N) Hn(X ,B;N) Hn(A,B;N) Hn+1(X ,A;N) · · ·p∗∗ i∗∗ β ,

called the long exact cohomology sequence of the triple (X ,A,B).
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Excision

Theorem 1.3.9 ((HATCHER, 2002), The Excision Theorem 1). Let (X ,A,B) be
a triple of spaces with B ⊂ A ⊂ X , such that the closure of B lies in the interior of A

(B ⊂ int(A)). Then the inclusion map i : (X \B,A\B) ↪→ (X ,A) induces isomorphisms

i∗ : Hn(X \B,A\B)→ Hn(X ,A),

for all n.

Theorem 1.3.10 ((HATCHER, 2002), The Excision Theorem 2). If we have sub-
spaces Z,Y ⊂ X such that their interiors cover X , int(Z)∪ int(Y ) = X , then the inclusion
j : (Z,Y ∩Z) ↪→ (X ,Y ), induces isomorphisms

j∗ : Hn(Z,Y ∩Z)→ Hn(X ,Y ),

for all n.

To see that theorems 1.3.9 and 1.3.10 are equivalent, simply note that in the
notation of both theorems we have to take A =Y and X \B = Z to go back and forth from
one to the other.

If U is a collections of subsets of X , such that their interiors cover X , we denote
by CU

n (X ;R) the collection of elements in Cn(X ;R) which are sums of singular chains in
each subset of U . The boundary map naturally restricts to ∂ : CU

n (X ;R) → CU
n−1(X ;R),

thus we have a new chain complex, which gives us homology R-modules HU
n (X ;R).

We will not give the proof for the excision theorem here, since it is too technical
and long. One important part in proving the theorem is showing the following result.

Proposition 1.3.11 ((HATCHER, 2002)). The inclusion map i : CU
n (X ;R) → Cn(X ;R)

induces an isomorphism i∗ : HU
n (X ;R)→ Hn(X ;R) for all integers n.

The basic idea behind the proof of the previous proposition is that we can take a
class [z] ∈ Hn(X ;R) and write it as a sum of classes [z1]+ · · ·+[zk] such that for each i we
have zi ∈Cn(Ui;R) for some Ui ∈ U . In the case n = 1, we can see this process as taking a
path in X and writing it as the product of finitely many paths, each path with its image
contained in an element of U (it is always possible to take finitely many paths since the
initial path is a compact subspace of X).

The excision theorem is useful when computing the homology of wedge sums, in
what follows we shall present some results in this direction.

Definition 1.3.12 ((HATCHER, 2002)). A pair of spaces (X ,A) is said to be a good
pair if A is a nonempty closed subset of X , such that there exists a neighborhood U of A,
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to which A is a deformation retract, that is, there is a homotopy F : U × I → A, such that
F |U×{0} = idU , F(U,1)⊂ A and F(a, t) = a, for all a ∈ A.

Proposition 1.3.13 ((HATCHER, 2002)). If (X,A) is a good pair and R a commu-
tative ring, then the quotient map q : (X ,A) → (X/A,A/A) induces an isomorphism
q∗ : Hn(X ,A;R)→ Hn(X/A,A/A;R)≈ H̃n(X/A;R).

Proof. Since (X ,A) is a good pair we know there is an open subset V ⊂ X such that A ⊂V

is a deformation retract of V . Consider the commutative diagram

(X ,A) (X ,V ) (X \A,V \A)

(X/A,A/A) (X/A,V/A) ((X/A)\ (A/A),(V/A)\ (A/A))

q

i

q q̃=q|X\A

k

j l

by applying the homology functor we get the commutative diagram

Hn(X ,A;R) Hn(X ,V ;R) Hn(X \A,V \A;R)

Hn(X/A,A/A;R) Hn(X/A,V/A;R) Hn((X/A)\ (A/A),(V/A)\ (A/A);R)

q∗

i∗

q∗ q̃∗

k∗

j∗ l∗

Our first claim is that i∗, j∗, k∗ and l∗ are isomorphisms.

That k∗ and l∗ are isomorphisms follows directly from the Excision Theorem 1.3.9.

For i∗, consider the homology long exact sequence of the triple (X ,V,A)

· · · Hn(V,A;R) Hn(X ,A;R) Hn(X ,V ;R) Hn−1(V,A;R) · · ·i∗ ,

since A is a deformation retract of V we have that the pairs (V,A) and (A,A) are homo-
topic, hence Hk(V,A;R)≈Hk(A,A;R) = 0, for all n. Hence, by the exact sequence above,
we conclude that i∗ is an isomorphism.

Similarly, for j∗ we consider the long exact sequence of the triple (X/A,V/A,A/A),
and since (V/A,A/A) is homotopic to (A/A,A/A) we conclude that j∗ must be an isomor-
phism.

Now we claim that q̃∗ is also an isomorphism. To see why this is true, simply notice
that q̃ : X \A → (X/A)\ (A/A) is an homeomorphism, given by q̃(x) = [x], for all x ∈ X \A,
which is clearly bijective onto (X/A)\ (A/A), and the continuous map r : (X/A)\ (A/A)→
X \A, given by r([x]) = x is the inverse homeomorphism, hence q̃∗ is in fact an isomorphism.

Finally, the commutativity of the diagram above implies that both q∗s are isomor-
phisms, hence we get Hn(X ,A;R)≈Hn(X/A,A/A;R)≈ H̃n(X/A;R).

Lemma 1.3.14. Let R be a commutative ring. If {(Xα ,Aα)}α is a family of pairs of spaces,
then

Hn

(⊔
α

Xα ,
⊔
α

Aα ;R

)
≈
⊕

α
Hn(Xα ,Aα ;R).
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Proof. Notice that each singular simplex σ : ∆n →
⊔

α Xα has a path connected image,
hence every element of Cn (tαXα ;R) is a finite formal sum ∑i σi with each σi ∈Cn(Xαi;R)

for some αi, which is exactly the description of the module ⊕α Cn(Xα ;R), hence we get

Cn (tαXα ;R)≈
⊕

α
Cn(Xα ;R)

Zn (tαXα ;R)≈
⊕

α
Zn(Xα ;R)

Bn (tαXα ;R)≈
⊕

α
Bn(Xα ;R)

and the same is valid for Aα .

Recall that, by the first isomorphism theorem for R-modules, for any family of
R-modules Mα , with submodules Nα ⊂ Mα , we have

⊕
α Mα⊕
α Nα

≈
⊕

α
Mα
Nα

. To prove this fact,
simply notice that the kernel of the projection homomorphism ⊕

α Mα →
⊕

α
Mα
Nα

is exactly⊕
α Nα .

So we have

Cn(tαXα ,tαAα ;R)≈
⊕

α Cn(Xα ;R)⊕
α Cn(Aα ;R)

≈
⊕

α

Cn(Xα ;R)
Cn(Aα ;R)

=
⊕

α
Cn(Xα ,Aα ;R),

similarly Zn(tαXα ,tαAα ;R)≈
⊕

α Zn(Xα ,Aα ;R) and Bn(tαXα ,tαAα ;R)≈
⊕

α Bn(Xα ,Aα ;R),
hence

Hn

(⊔
α

Xα ,
⊔
α

Aα ;R

)
≈
⊕

α
Hn(Xα ,Aα ;R).

Corollary 1.3.15 ((HATCHER, 2002)). Suppose {(Xα ,xα)}α is a collection of good pairs
(in particular, if Xα are all CW complexes), then the inclusions iα : Xα ↪→

∨
α Xα induce

an isomorphism

⊕α iα∗ :
⊕

α
H̃n(Xα ;R)→ H̃n

(∨
α

Xα ;R

)
.

Proof. To show this corollary, we simply apply proposition 1.3.13. Mimicking the notation
in the proposition, consider

(X ,A) =

(⊔
α

Xα ,
⊔
α
{xα}

)
,

then clearly X/A =
∨

α Xα , and the proposition states that the quotient map

q :

(⊔
α

Xα ,
⊔
α
{xα}

)
→

(∨
α

Xα ,∗

)
induces an isomorphism

q∗ : Hn

(⊔
α

Xα ,
⊔
α
{xα};R

)
→ Hn

(∨
α

Xα ,∗;R

)
≈ H̃n

(∨
α

Xα ;R

)
,
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and by applying lemma 1.3.14 we conclude

⊕
α

H̃n(Xα ;R)≈
⊕

α
Hn(Xα ,{xα};R)≈ H̃n

(∨
α

Xα ;R

)
.

Example 1.3.16. Since the n-sphere Sn is a CW complex, for any point x ∈ Sn the pair
(Sn,{x}) is a good pair, hence corollary 1.3.15 gives us

H̃ j

(
k∨

i=1

Sn;R

)
=

Rk, if j = n

0, otherwise
.

Mayer-Vietoris Sequence

When one has a collection of two subsets U = {A,B} of a space X , such that
int(A)∪ int(B) = X , it is common to write Cn(A+B;R) instead of CU

n (X ;R).

Consider the exact sequence

0 Cn(A∩B;R) Cn(A;R)⊕Cn(B;R) Cn(A+B;R) 0
f g ,

in which f (x) = (x,−x) and g(x,y) = x+y. Both f and g are chain maps, and by theorem
A.2.16 we have the long exact sequence

· · · Hn(A∩B;R) Hn(A;R)⊕Hn(B;R) Hn(A+B;R) Hn−1(A∩B;R) · · ·f∗ g∗ α ,

and by proposition 1.3.11 we know that Hn(A+B;R)≈Hn(X ;R), so the exact sequence
becomes

· · · Hn(A∩B;R) Hn(A;R)⊕Hn(B;R) Hn(X ;R) Hn−1(A∩B;R) · · ·f∗ g∗ α ,

which is the Mayer-Vietoris sequence.

The maps f∗ and g∗ are easily induced from f and g, namely f∗([z]) = ([z], [−z]) and
g([z], [y]) = [z+ y]. The connecting homomorphism is not that complicated, simply note
that any n-cycle z∈Cn(X ;R) is homologous to a sum x+y∈Cn(A+B), and since ∂ (x+y) =

0, we have ∂y =−∂x ∈ A∩B, and by the definition of the connecting homomorphism we
have α([z]) = [∂x] = [∂y].

The Universal Coefficient Theorem for Cohomology
The idea of this section is to establish a relation between Cohomology and Ho-

mology modules, this is done via the Universal Coefficient Theorem, which asserts that
Cohomology is the dual of Homology (via the Hom functor) plus an extra factor given by
the Ext functor, which is introduced in the homological algebra appendix A.2.
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In the entirety of this section, we shall be assuming that R is a Principal Ideal
Domain (PID), it will be made clear very soon why this requirement is needed for the
proof of the Universal Coefficient Theorem.

The initial intuition that one might have for constructing this theorem is that
since we generated the cohomology R-modules by applying the Hom functor to the chain
complex modules, which gave rise to the singular cochain complex modules, one natural
question is whether the cohomology modules are simply the dual of the homology modules,
in other words, we want to know if there is an isomorphism Hn(X ;M)≈HomR(Hn(X ;R);M).
The answer to this question is given by the Universal Coefficient Theorem.

Theorem 1.3.17 ((HATCHER, 2002)). If X is a topological space, R is a Principal Ideal
Domain and M is an R-module, then the following is a split exact sequence:

0 ExtR(Hn−1(X ;R),M) Hn(X ;M) HomR(Hn(X ;R),M) 0 .

So we do not have an isomorphism per se, but we conclude that the cohomology
R-modules are given by

Hn(X ;M)≈HomR(Hn(X),M)⊕ExtR(Hn−1(X),M),

and by using the commonly known properties of Hom and Ext, as presented in appendix
A.2, one can easily obtain the cohomology modules once the homology of a space is known.

Instead of proving the universal coefficient theorem for topological spaces, we shall
prove it for chain complex of free R-modules, which will automatically imply the topolog-
ical version.

Theorem 1.3.18 ((HATCHER, 2002)). If R is a Principal Ideal Domain, C is a chain
complex of free R-modules, and M is an R-module, then the following is a split exact
sequence:

0 ExtR(Hn−1(C;R),M) Hn(C;M) HomR(Hn(C;R),M) 0 .

We start by defining a natural homomorphism

h : Hn(C;M)→ HomR(Hn(C;R),M),

to do so, denote by Zn and Bn the submodules of cocycles and coboundaries and by Zn

and Bn the cycles and boundaries of Cn. If [φ] ∈ Hn(C;M), then φ ∈ Zn, which means
φ : Cn → M is a homomorphism with δφ = φ∂ = 0, which basically means that φ(Bn) = 0.

With this in mind, we can define the restriction φo = φ|Zn , and since φo(Bn) = 0,
lemma A.1.6 implies that φo induces a homomorphism

φo :
Zn

Bn
→ M,
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which is clearly an element of HomR(Hn(C;R),M), hence we have our candidate for homo-
morphism

h : Hn(C;M)→ HomR(Hn(C;R),M)

φ 7→ φo,

in other words, h([φ])(z+Bn) = φo(z+Bn) = φ(z).

Notice that h is well defined, if [φ] = [ψ] are two elements in Hn(C;M), then
φ −ψ ∈ Bn, i.e, φ −ψ = δγ for some γ ∈C∗

n−1, which implies that for any z ∈ Zn we have
(φ −ψ)(z) = δγ(z) = γ(∂ z) = γ(0) = 0, hence φ|Zn = ψ|Zn , and consequently φo = ψo.

The map h is clearly an R-homomorphism, since

h([rφ +ψ])(z+Bn) = (rφ +ψ)(z)

= rφ(z)+ψ(z)

= rh([φ])(z+Bn)+h([ψ])(z+Bn)

for any φ, ψ ∈ Zn, r ∈ R, and z ∈ Zn.

Next, we will show that h is an epimorphism, by showing that it has a right inverse.
This is the part where the assumption of R being a PID plays a big role. In appendix A.1
we have shown that if R is a PID, then all the submodules of a free R-module are also free
(Theorem A.1.11), thus Bn and Zn are free R-modules, once Cn is a free R-module.

The sequence

0 Zn Cn Bn−1 0i ∂ ,

is short exact, and the fact that Bn−1 is free implies that the sequence above splits (lemma
A.2.9). Hence there is a homomorphism p : Cn → Zn which restricted to Zn is the identity
p|Zn = idZn .

Define a homomorphism

g : HomR(Hn(C;R),M)→ Hn(C;M),

in the following way. If ψ : Hn(C;R)→ M is an R-homomorphism, then it defines a homo-
morphism ψ̃ : Zn → M, given by ψ̃(z) = ψ(z+Bn), hence ψ̃(Bn) = 0. Now we extend this
homomorphism by defining ψ1 = ψ̃ p : Cn → M, and since p|Zn = idZn and Bn ⊂ Zn we still
have ψ1(Bn) = 0, which is the same as δψ1 = 0, i.e., ψ1 ∈ ker(δ ), whence [ψ1] ∈ Hn(C;M).
Thus we define g(ψ) = [ψ1]. Notice that

hg(ψ)(z+Bn) = h([ψ1])(z+Bn)

= ψ1(z) = ψ̃(z) = ψ(z+Bn),
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hence hg = idHomR(Hn(C;R),M), thus showing that h is surjective.

From the previous discussion we conclude that the sequence

0 ker(h) Hn(C;M) Hom(Hn(C);M) 0h ,

is short split exact, which already shows that Hn(C;M) is equal to the direct sum of
Hom(Hn(C);M) and an extra factor ker(h), which we will show is the Ext functor factor
as stated in the theorem.

Consider the commutative diagram

0 Zn+1 Cn+1 Bn 0

0 Zn Cn Bn−1 0

0 ∂

∂

0

∂

if we dualize it by applying the Hom(_,M) functor we get the commutative diagram

0 B∗
n C∗

n+1 Z∗
n+1 0

0 B∗
n−1 C∗

n Z∗
n 0

δ

0

δ
δ 0

Notice that the rows in the original diagram are split exact (since each Bn is free),
and by lemma A.2.19 we have that the dual of a split exact sequence is itself split exact,
hence the rows of the second diagram above are split exact, therefore, by corollary A.2.17,
we get a long exact sequence of homology from the dualized diagram above

· · · B∗
n−1 Hn(C;M) Z∗

n B∗
n · · · .

Notice that the connecting homomorphism α : Z∗
n → B∗

n is simply a restriction, i.e.,
if φ ∈ Z∗

n , then α(φ) = φ|Bn . This can be easily shown by applying the definition of the
connecting homomorphism, by surjectivity of C∗

n → Z∗
n , if φ ∈ Z∗

n , there is a Φ ∈C∗
n such

that Φ|Zn = φ , and then we clearly have δ (Φ) = δ (φ|Bn).

So if in : Bn ↪→ Zn is the canonical inclusion map, what we concluded above is that
α = i∗n : Z∗

n → B∗
n.

From a long exact sequence, as the previous one, we can always extract short exact
sequences

0 Coker(i∗n−1) Hn(C;M) ker(i∗n) 0 .

Notice that we can identify ker(i∗n) with HomR(Hn(C;R),M), with the following
isomorphism

ker(i∗n)−→ HomR(Hn(C;R),M)

(φ : Zn → M) 7−→ (φ : Zn/Bn → M),
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since φ ∈ ker(i∗n) means exactly that φ|Bn = 0, we define φ(z+Bn) = φ(z), and the previous
map is well defined. The inverse isomorphism is given by

Hom(Hn(C;R),M)−→ ker(i∗n)

(ψ : Zn/Bn → M) 7−→ (ψ̃ : Zn → M)

in which ψ̃(z) = ψ(z+Bn).

If k : Zn ↪→ Cn is the inclusion map, then k∗ : C∗
n → Z∗

n is the restriction map, i.e.,
k∗(φ) = φ|Zn , and the map induced in homology k∗∗ : Hn(C;M)→ Z∗

n , is given by k∗∗([φ]) =
φ|Zn , this homomorphism can be restricted to k∗∗ : Hn(C;M)→ ker(i∗n), as in the previous
exact sequence, and we get that

ker(k∗∗) = {[φ] | φ|Zn = 0},

which is exactly the kernel of the homomorphism h we defined earlier, hence we can
substitute the previous short exact sequence by

0 Coker(i∗n−1) Hn(C;M) HomR(Hn(C;R),M) 0h ,

and since h has a right inverse this is a split short exact sequence.

Now we proceed to show that Coker(i∗n−1) is the Ext factor presented in the theo-
rem.

From the discussion about the Ext functor in appendix A.2, we can see that

0 Bn−1 Zn−1 Hn−1(C;R)
in−1

is a free resolution of Hn−1(C;M), by dualizing it with Hom(_,M) we get

0 (Hn−1(C;R))∗ Z∗
n−1 B∗

n−1 0
i∗n−1 ,

whence, by definition

ExtR(Hn−1(C;R),M) =
B∗

n−1

Im(i∗n−1)
= Coker(i∗n−1).

This concludes the proof of theorem 1.3.18, which immediately implies theorem
1.3.17.

Notice that, since the Ext functor is trivial for free R-modules (proposition A.2.30
property E2), we get the following corollaries.

Corollary 1.3.19. Let R be a PID, M an R-module, and C is a chain complex of free
R-modules such that all its homology groups are free, then

Hn(C;M)≈HomR(Hn(C;R),M).
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Corollary 1.3.20. Let K be a field, M a K-module, and C a chain complex of K-modules,
then

Hn(C;M)≈HomK(Hn(C;K),M).

Example 1.3.21. One good example for using the universal coefficient theorem is to
compute the cohomology modules of the n-sphere Sn. It is common to compute the ho-
mology modules of Sn by using the Mayer-Vietoris Sequence, if R is a PID with unit, we
get

H j(Sn;R) =

R, if j = 0 or n;

0, otherwise.

Since R is a free R-module, we can apply corollary 1.3.19, and by using the fact
that HomR(R,M)≈M (from proposition A.2.23) we get

H j(Sn;M) =

M, if j = 0 or n;

0, otherwise.

in other words, the homology and cohomology modules are the same for Sn.

Corollary 1.3.22. Suppose R is a DIP, M is an R-module and {(Xα ,xα)}α is a collection
of good pairs, then ⊕

α
H̃n(Xα ;R)≈ H̃n

(∨
α

Xα ;R

)
.

Proof. We already know that this is valid in the case of homology, from corollary 1.3.15,
and by combining that result with the universal coefficient theorem we get

H̃n

(∨
α

Xα ;M

)
≈HomR

(⊕
α

H̃n(Xα ;R),M

)
⊕ExtR

(⊕
α

H̃n−1(Xα ;R),M

)
≈
⊕

α

[
HomR(H̃n(Xα ;R),M)⊕ExtR(H̃n−1(Xα ;R),M)

]
≈
⊕

α
H̃n(Xα ;M).

Example 1.3.23. From the previous corollary we can compute the cohomology of the
wedge of spheres

H̃ j

(
k∨

i=1

Sn;M

)
=

Mk, if j = n;

0, otherwise.
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Cup Product
In this section our goal is to define a product between cohomology classes, making

it possible to introduce the cohomology ring later on.

We will first define the cup product in singular cohomology and prove it is a
well-defined product later on.

Definition 1.3.24 ((HATCHER, 2002)). If X is a topological space with singular coho-
mology R-modules Hk(X ;R) (with coefficients in a commutative ring R), we define the
cup product by

^: Hk(X ;R)×H l(X ;R)→ Hk+l(X ;R)

([φ], [ψ]) 7→ [φ ^ ψ]

in which φ : Ck(X ;R)→ R and ψ : Cl(X ;R)→ R are cocycles, and φ ^ ψ : Ck+l(X ;R)→ R

is the cocycle given by

φ ^ ψ(σ) = (φ(σεk+l
k ))(ψ(σξ k+l

l )),

in which σ is a singular (k + l)-simplex εk+l
k : ∆k → ∆k+l and ξ k+l

l : ∆l → ∆k+l are the
canonical embeddings

εk+l
k (t0, . . . , tk) = (t0, . . . , tk,0, . . . ,0),

ξ k+l
l (t0, . . . , tl) = (0, . . . ,0, t0, . . . , tl),

and in the general case we have

φ ^ ψ

(
∑
σ

rσ σ

)
= ∑

σ
r2

σ (φ(σεk+l
k ))(ψ(σξ k+l

l )).

Now, we need to show that the cup product is a well defined function, by showing
that φ ^ ψ is in fact a cocycle, if both φ and ψ are cocycles, and that if ([φ1], [ψ1]) =

([φ2], [ψ2]), then [φ1 ^ ψ1] = [φ2 ^ ψ2].

First, notice that if the cup product is well defined, then it will be an R-bilinear
function.

Proposition 1.3.25. The cup product is an R-bilinear map, in other words, the dis-
tributive laws apply: (rφ1 + φ2) ^ ψ = r(φ1 ^ ψ) + (φ2 ^ ψ) and φ ^ (rψ1 +ψ2) =

r(φ ^ ψ1)+(φ ^ ψ2), for φ,φ1,φ2 ∈C∗
k (X ;R), ψ,ψ1,ψ2 ∈C∗

l (X ;R) and r ∈ R.

Proof. Just for this proof let us denote ε .
= εk+l

k and ξ .
= ξ k+l

l . From the definition, if σ
is a singular (k+ l)-simplex we have

(rφ1 +φ2)^ ψ(σ) = (rφ1(σε)+φ2(σε))(ψ(σξ ))

= r(φ1(σε))(ψ(σξ ))+(φ2(σε))(ψ(σξ ))

= (r(φ1 ^ ψ)+(φ2 ^ ψ))(σ),
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and analogously φ ^ (rψ1 +ψ2) = r(φ ^ ψ1)+(φ ^ ψ2).

The next lemma will be useful in proving that the cup product is well defined.

Lemma 1.3.26 ((HATCHER, 2002)). If φ ∈C∗
k (X ;R) and ψ ∈C∗

l (X ;R), then

δ (φ ^ ψ) = (δφ)^ ψ +(−1)kφ ^ (δψ).

Proof. Let σ be a singular (k+ l +1)-simplex, then

(δφ)^ ψ(σ) = (δφ(σεk+l+1
k+1 ))(ψ(σξ k+l+1

l )) = (φ(∂ (σεk+l+1
k+1 )))(ψ(σξ k+l+1

l ))

=
k+1

∑
j=0

(−1) j(φ(∂ j(σεk+l+1
k+1 )))(ψ(σξ k+l+1

l ))

=

[
k

∑
j=0

(−1) j(φ(∂ j(σεk+l+1
k+1 )))(ψ(σξ k+l+1

l ))

]
+(−1)k+1(φ(σεk+l+1

k ))(ψ(σξ k+l+1
l )),

in the last step, we used the fact that ∂ k+1(σεk+l+1
k+1 ) = σεk+l+1

k . On the other hand we
have

(−1)kφ ^ (δψ)(σ) = (−1)k(φ(σεk+l+1
k ))(δψ(σξ k+l+1

l+1 ))

= (−1)k(φ(σεk+l+1
k ))(ψ(∂ (σξl+1)

k+l+1))

= (−1)k
l+1

∑
j=0

(−1) j(φ(σεk+l+1
k ))(ψ(∂ j(σξ k+l+1

l+1 )))

=
k+l+1

∑
j=k

(−1) j(φ(σεk+l+1
k ))(ψ(∂ j−k(σξ k+l+1

l+1 )))

= (−1)k(φ(σεk+l+1
k ))(ψ(σξ k+l+1

l ))

+

[
k+l+1

∑
j=k+1

(−1) j(φ(σεk+l+1
k ))(ψ(∂ j−k(σξ k+l+1

l+1 )))

]
,

this time, in the last step, we used the fact that ∂ 0(σξ k+l+1
l+1 ) = σξ k+l+1

l . It is not difficult
to see that we have the following equalities

• ∂ j(σεk+l+1
k+1 ) = (∂ jσ)εk+l

k , for j = 0, . . . ,k

• σεk+l+1
k = (∂ jσ)εk+l

k , for j = k+1, . . . ,k+ l +1

• σξ k+l+1
l = (∂ jσ)ξ k+l

l , for j = 0, . . . ,k

• ∂ j−k(σξ k+l+1
l+1 ) = (∂ jσ)ξ k+l

l , for j = k+1, . . . ,k+ l +1
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So we get

[(δφ)^ ψ +(−1)kφ ^ (δψ)](σ) =
k+l+1

∑
j=0

(−1) j(φ((∂ jσ)εk+l
k ))(ψ((∂ jσ)ξ k+l

l ))

=
k+l+1

∑
j=0

(−1) jφ ^ ψ(∂ iσ)

= φ ^ ψ(∂σ) = δ (φ ^ ψ)(σ).

This lemma implies that if both φ and ψ are cocycles than φ ^ ψ is a cocycle,
and if φ is a coboundary (φ = δϕ , ϕ : Ck−1(X ;R)→ R) and ψ is a cocycle, then φ ^ ψ =

δϕ ^ ψ = δ (ϕ ^ ψ) (the analogous happens if φ is a cocycle and ψ is a coboundary).
These properties show that the cup product is a well defined function.

It is also possible to define a relative version of the cup product. If A and B are
open subsets of X we define the map

Hk(X ,A;R)×H l(X ,B;R)→ Hk+l(X ,A∪B;R)

by first restricting the usual cup product to the map

Hk(X ,A;R)×H l(X ,B;R)→ Hk+l(X ,A+B;R),

in which Hn(X ,A+B;R) has as elements equivalence classes of cocycles that vanish in sums
of chains in A and chains in B. Notice that the inclusion C∗

n(X ,A∪B;R) ↪→C∗
n(X ,A+B;R)

induces an isomorphism in cohomology, Hn(X ,A∪B;R)≈Hn(X ,A+B;R), thus giving the
relative cup product as desired.

Notice that the cup product Hk(X ,A;R)×H l(X ,B;R) → Hk+l(X ,A+B;R) is well
defined because if ϕ ∈C∗

k (X ;R) vanishes in Ck(A;R) and ψ ∈Cl(X ;R) vanishes in Cl(B;R),
then ψ ^ ϕ obviously vanishes in Ck+l(A;R) and Ck+l(B;R), hence it also vanishes on sums
of elements Ck+l(A+B;R).

Theorem 1.3.27 ((HATCHER, 2002)). If R is a commutative ring, then for any u,v ∈
H∗(X ,A;R) we have u ^ v = (−1)|u||v|v ^ u, in which |u| is the cohomology level of u, i.e.,
if u ∈ Hk(X ,A;R), then |u|= k.

Proposition 1.3.28 ((HATCHER, 2002)). Given R a commutative ring and
f : (X ,A)→(Y,B) a continuous map between pairs of spaces, the cohomology induced
map, f ∗∗ : Hn(Y,B;R)→Hn(X ,A;R), satisfies f ∗∗ (u ^ v) = f ∗∗ (u)^ f ∗∗ (v).
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The Cohomology ring

With the cup product in our hands, we can easily turn H∗(X ;R) into a ring (or
even an R-algebra), called the Cohomology ring of X with coefficients in R.

We simply define H∗(X ;R) to be the direct sum⊕
i H i(X ;R), with the multiplication

of two elements ∑i ui and ∑ j v j defined by (∑i ui)(∑ j v j) = ∑i, j ui ^ v j. It is clear that
H∗(X ;R) is an R-module, and since the cup product is an R-bilinear associative binary
operation, we have that it is, in fact, an R-algebra.

Remark 1.3.29. Although H∗(X ;R) has an R-algebra structure, in many situations we
will only use the fact that it has a ring structure.

Cross Product

Another important notion in cohomology is the cross product. For its definition, we
use the cup product, as introduced earlier. Many authors follow the inverse order, defining
first the cross product and then using it to produce the cup product. For practicality and
simplicity, we chose to define the cup product first, using the singular simplexes definition.

Definition 1.3.30 ((HATCHER, 2002)). Given two topological spaces X and Y , and a
commutative ring R, the cross product is the homomorphism

µ : H∗(X ;R)⊗H∗(Y ;R)→ H∗(X ×Y ;R)

u⊗ v 7→ u× v,

in which u×v= p1
∗
∗(u)^ p2

∗
∗(v), where p1 : X ×Y →X and p2 : X ×Y →Y are the canonical

projections.

If we remember the definition of tensor product in section A.1, we can confirm that
the cross product, as defined above, is, in fact, a homomorphism, since the R-bilinearity
of the cup product implies that (u,v) 7→ u× v is R-bilinear, hence defines a unique homo-
morphism µ .

It is possible to define a product which turns H∗(X ;R)⊗H∗(Y ;R) into a ring, such
that the cross product becomes a ring homomorphism. This multiplication is given by
(u1 ⊗ v1)(u2 ⊗ v2) = (−1)|v1||u2|(u1 ^ u2)⊗ (v1 ^ v2), and it is not difficult to verify, by
using the definition of the cross product and theorem 1.3.27, that in this condition the
cross product becomes a ring homomorphism.

We can establish a direct relation between the cross product and the cup product
by means of the diagonal map

∆ : X → X ×X

x 7→ (x,x),
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if we compose its induced map in cohomology with the cross product we get

∆∗
∗(u× v) = ∆∗

∗(p1
∗
∗(u)^ p2

∗
∗(v))

= ∆∗
∗(p1

∗
∗(u))^ ∆∗

∗(p2
∗
∗(v))

= (p1∆)∗∗(u)^ (p2∆)∗∗(v)

= u ^ v,

for any u,v ∈ H∗(X ;R). In the previous equation we used the fact that f ∗∗ (u ^ v) =

f ∗∗ (u)^ f ∗∗ (v) (proposition 1.3.28), and that p1∆ = p2∆ = idX .

The Künneth Theorem

We can extend the cross product to the following homomorphism

µ :
n⊕

i=0

H i(X ;R)⊗Hn−i(Y ;R)→ Hn(X ×Y ;R)

∑
j

ui ⊗ v j 7→ ∑
j

ui × v j

which we shall simply call the cross product homomorphism.

As shown in (HATCHER, 2002), this homomorphism is an isomorphism in the
case where R is a field (usually called the Künneth isomorphism), this means that the
cohomologies of X and Y completely determine the cohomology of the Cartesian product
X ×Y (the same is valid for homology). This also results in an isomorphism between the
cohomology rings

µ : H∗(X ;R)⊗H∗(Y ;R)→ H∗(X ×Y ;R).

In the more general case, when we only ask for R to be a PID, we get the following
statement, called the Künneth Theorem.

Theorem 1.3.31 ((DAVIS; KIRK, 2001)). If R is a PID, the following is a split exact
sequence

0
⊕n

i=0 H i(X ;R)⊗Hn−i(Y ;R) Hn(X ×Y ;R)
⊕n−1

i=0 Tor(H i(X ;R),Hn−1−i(Y ;R)) 0 .

1.4 Homotopy Theory
In many moments throughout this section we shall write diagrams like

A B

C D

and ask if such a diagram has a solution, meaning that all the unbroken arrows are known
morphisms which commute in the diagram, and the question is whether there is a dashed
arrow morphism, such that the whole diagram commutes.
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Fibrations

Definition 1.4.1 ((ARKOWITZ, 2011)). A continuous map p : E →B has the homotopy
lifting property (HLP), or covering homotopy property (CHP), with respect to
a space X , if the diagram

X ×{0} E

X × I B

f

p

F

has a solution for any maps F and f . Furthermore, p is called a fibration, or fibre map,
if it satisfies the HLP for any space X . If p satisfies the HLP for any CW-complex X (or,
equivalently, for any cube In), then it is called a Serre fibration, or weak fibration.

It is important to note that many authors use the nomenclature Hurewicz fibra-
tion to what we defined as a fibration, to further distinguish it from the Serre fibration.

For a fibration p : E → B we usually call E the total space and B the base of the
fibration. If b ∈ B, we denote Fb = p−1(b), which is called the fiber over b of the fibration
p. In the case of based spaces, with base point ∗ ∈ B, we usually say that F = p−1(∗) is
the fiber of p, and we say that (E,B,F, p) is a fiber space. In the particular case where
the base B is path connected we have that all fibers Fb are of the same homotopy type,
thus for the means of homotopy theory the fiber is the same for all b ∈ B. Sometimes we
simply write one Gothic letter for a fiber space B

.
= (E,B,F, p).

Proposition 1.4.2. If p : E → B is a fibration and A ⊂ B, then pA : p−1(A)→ A is also a
fibration.

Proof. Let X be a topological space, and consider the following commutative diagram

X ×{0} p−1(A) E

X × I A B

f i

pA p

F j

in which f and F are arbitrary continuous maps, such that F |X×{0} = pA f .

We clearly have p(i f ) = jF |X×{0}, and since p is a fibration we can apply the
homotopy lifting property, which gives us a map

G : X × I → E,

such that G|X×{0} = i f and pG= jF . From this last equality we get p(G(X ×I))⊂ j(A) =A,
hence G(X × I)⊂ p−1(A). So we can define the map

H : X × I → p−1(A)

(x, t) 7→ G(x, t)
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which is well defined since G(x, t) ∈ p−1(A), for all (x, t) ∈ X × I. Notice that H|X×{0} = f

and pAH = F . Hereby we have shown that pA has the homotopy lifting property for any
space X , hence it is a fibration.

Example 1.4.3. Let X be a topological space and consider its path space X I =

{γ : I → X | γ continuous} (sometimes denoted by PX) with the usual compact-open topol-
ogy. The map π : X I → X ×X given by π(γ) = (γ(0),γ(1)) is a fibration, usually called the
path fibration of X . To see that it is in fact a fibration let us show that it satisfies the
homotopy lifting property for an arbitrary space W . Consider the commutative diagram

W ×{0} X I

W × I X ×X

f

πF̃

F

for which we want to find a map F̃ so that it still commutes.

Notice that F = (F1,F2) with F1,F2 : W × I → X , and we can define the map

G : W × I → X

(w, t) 7→ f (w)(t),

The commutativity of the previous diagram gives us F |W×0 = π f , which means

(F1(w,0),F2(w,0)) = F(w,0) = π f (w) = ( f (w)(0), f (w)(1)),

hence F1(w,0) = f (w)(0) and F2(w,0) = f (w,1). Thus we can define the function
F̃ : W × I → X I by

F̃(w, t)(s) =


F1(w,−3s+ t), for 0 ≤ s ≤ t/3;

f (w,(3s− t)/(3−2t)), for t/3 ≤ s ≤ 1− t/3;

F2(w,3(s−1)+ t), for 1− t/3 ≤ s ≤ 1;

which is continuous, with F̃ |W×{0} = f and πF̃(w, t) = (F̃(w, t)(0), F̃(w, t)(1)) =

(F1(w, t),F2(w, t)) = F(w, t), whence π has the homotopy lifting property for any space.

If we apply proposition 1.4.2 to the previous example we get the following corollary.

Corollary 1.4.4. If X is a topological space with subsets A,B ⊂ X , consider the following
subspace of the path space

E(X ;A,B) = {γ ∈ X I | γ(0) ∈ A and γ(1) ∈ B},

and let π : E(X ;A,B)→ A×B be defined by π(γ) = (γ(0),γ(1)), then π is a fibration.



48 Chapter 1. Preliminaries

Proof. Simply notice that E(X ;A,B) = π−1(A×B) (with π defined in example 1.4.3), and
that π is simply a restriction of π, thus we can apply proposition 1.4.2 to conclude that
π is a fibration.

Proposition 1.4.5. A fibration p : E → B has a section s : B → E if and only if there is
a map r : B → E such that pr' idB.

Proof. The “only if” part of the proposition is trivial. To show the “if” part, suppose
there is a map r : B → E such that pr' idB, and let F : B× I → B be a homotopy from pr

to idB, then the diagram
B×{0} E

B× I X

r

p

F

commutes, and by the homotopy lifting property there is a homotopy G : B× I → E such
that pG = F , hence pG(x,1) = x and s : B → E given s(x) = G(x,1) is a section of p.

Cofibrations

We say that (X ,A) is a pair of spaces if X is a topological space and A ⊂ X is a
subspace with the induced topology from X . Particularly, when A is a closed subset of X ,
we will call (X ,A) a closed pair.

Definition 1.4.6 ((ARKOWITZ, 2011), definition 1.5.12). We say a pair of spaces (X ,A)

has the homotopy extension property if the diagram

X ×{0}∪A× I Y

X × I

i

G

has a solution for any space Y and any map G.

In other words, (X ,A) has the homotopy extension property if any homotopy from
A, which has an extension at the starting point, can be extended throughout the whole
interval I.

If the pair (X ,A) has the homotopy extension property, then it is called a cofibred
pair ((JAMES, 2012)). The inclusion map A ↪→ X is a particular case of what we call a
cofibration, generalized in the following definition.

Definition 1.4.7 ((HATCHER, 2002)). A map u : A → X is called a cofibration if for
any space E, any map f : X → E and any homotopy gt : A → E such that g0 = f ◦u there
exists a homotopy ft : X → E such that gt = ft ◦u, for all t ∈ I.
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Proposition 1.4.8 ((HATCHER, 2002)). Given u : A → X a cofibration, then u is a
homeomorphism onto its image u(A). Hence all cofibrations can be thought of as inclusion
maps.

Fibrations and Cofibrations main results
Before presenting some important results regarding fibrations and cofibrations, let

us introduce some useful concepts.

Definition 1.4.9 ((ARKOWITZ, 2011)). Given a diagram X Z Y
f g in a

category C , its pullback is given by an object P and morphisms u,v such that the
following diagram (called a pullback square) commutes

P Y

X Z

v

u g

f

and for any object Q and morphisms u′ v′ such the unbroken arrow diagram

Q

P Y

X Z

v′

∃! ω

u′

v

u g

f

commutes, there exists a unique morphism ω : Q → P such that the whole diagram com-
mutes. We may refer to P or (P,u,v) as the pullback of the diagram.

The dual definition, starting with a diagram X Z Y
f g , is called a

pushout.

Proposition 1.4.10 ((ARKOWITZ, 2011) proposition 3.2.9). In the category of topo-
logical spaces and continuous maps the pullback of any diagram X Z Y

f g

exists and is unique (analogously for the pushout).

For topological spaces one can write the pullback of X Z Y
f g explic-

itly as
P = {(x,y) ∈ X ×Y | f (x) = g(y)},

and the maps u : P → X and v : P → Y are the canonical projections (for a proof
see proposition 3.3.11 in (ARKOWITZ, 2011)). Similarly, the pushout of a diagram
X Z Y

f g can be written as

P = X ∨Y/∼ ,
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in which f (z)∼ g(z), for all z ∈ Z, and u : X → P and v : Y → P are the canonical quotient
maps (for a proof see proposition 3.2.9 in (ARKOWITZ, 2011)).

Proposition 1.4.11 ((ARKOWITZ, 2011) proposition 3.3.12). If

P Y

X Z

v

u g

f

is a pullback square and f is a fibration, then v is a fibration.

Next, we present some results which guarantee that any map between topological
spaces can be replaced by a fibration or a cofibration, what we mean by “replacing” a
map will soon become clear.

Definition 1.4.12 ((ARKOWITZ, 2011)). Given a map f : X → Y , we define the
mapping path of f , denoted E f , as the pullback of X Y Y If p0 , in which
p0(γ) = γ(0), for all γ ∈ Y I, i.e.,

E f = {(x,γ) ∈ X ×Y I | f (x) = γ(0)}.

Proposition 1.4.13 ((ARKOWITZ, 2011) proposition 3.5.8). If we define f ′ : X → E f

and f ′′ : E f →Y by f ′(x) = (x,γ f (x)) and f ′′(x,γ) = γ(1), in which γ f (x) is the constant path
at f (x), then the diagram

X E f Y

f

f ′ f ′′

commutes and

1. f ′ is a homotopy equivalence.

2. f ′′ is a fibration.

The previous proposition clarifies what we mean by replacing a map f with a
fibration f ′′. From the point of view of homotopy theory, X and E f represent the same
thing, once they are homotopy equivalent. Furthermore, since f ′ is a homotopy equivalence
and f ′′ f ′ = f , we have that f and f ′′ are the same map up to homotopy equivalence, hence
for homotopy theory it is all the same map, i.e., any homotopic property of f is shared by
f ′′ and vise versa, for example, if f is null homotopic, so is f ′′, if f induces an isomorphism
in some level of homotopy groups or homology modules, so does f ′′, and so on.

Next, we present the dual process of replacing a map with a cofibration.
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Definition 1.4.14 ((ARKOWITZ, 2011)). Given a map f : X → Y , we define the map-
ping cylinder of f to be the space

M f = (X × I tY )/∼ ,

in which (x,0)∼ f (x).

Proposition 1.4.15 ((ARKOWITZ, 2011) proposition 3.5.2). Given a map f : X → Y ,
we can define the maps f ′ : X → M f and f ′′ : M f →Y , by f ′(x) = [(x,1)], f ′′([(x, t)]) = f (x)

and f ′′([y]) = y, then f = f ′′ f ′ and

1. f ′ is a cofibration.

2. f ′′ is a homotopy equivalence.

Definition 1.4.16 ((ARKOWITZ, 2011)). The homotopy pullback of a diagram

X Z Y
f g

is given by
P = {(x,γ,y) ∈ X ×ZI ×Y | γ(0) = f (x) and γ(1) = g(y)},

and maps u : P → X and v : P → Y , the canonical projections.

Equivalently, the homotopy pullback of the given diagram is the pullback of
E f Z Y

f ′′ g , in which f ′′ is a fibration equivalent to f .

Notice that proposition 1.4.11 implies that both u and v in the definition of homo-
topy pullback (1.4.16) are fibrations.

Proposition 1.4.17 ((ARKOWITZ, 2011)). If (P,u,v) is the homotopy pullback of
X Z Y

f g , then f u'gv. Furthermore, if (P′,u′,v′) is another triple with these
properties, then there is a map ω : P′ → P such that the following diagram homotopy
commutes

P′

P Y

X Z

v′

ω

u′

v

u g

f

Suspensions and Loop Spaces

Definition 1.4.18 ((HATCHER, 2002)). The suspension of a topological space X , de-
noted by SX , is the quotient space X × I/ ∼, in which ∼ is the equivalence relation that
identifies all points of X ×{0} and X ×{1}. So we are basically collapsing the ends of the
”cylinder” X × I to points (see figure 1).
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Definition 1.4.19 ((HATCHER, 2002)). The reduced suspension ΣX of a based space
(X ,∗X), is defined as the quotient of the suspension SX by an equivalence relation that
collapses ∗X × I to a single point.

Example 1.4.20. The suspension of the n-sphere Sn is homeomorphic to the (n+ 1)-
sphere, SSn = Sn+1.

Figure 1 – Representation of the suspension SX and the reduced suspension ΣX of a space X .

Source: Elaborated by the author.

Definition 1.4.21 ((HATCHER, 2002)). The loop space of a based topological space
(X ,∗X) is the subspace ΩX ⊂ X I, given by

ΩX = {γ ∈ X I | γ(0) = γ(1) = ∗X}.

NDR pairs

Definition 1.4.22 ((WHITEHEAD, 1978)). Let (X ,A) be a pair of spaces, we say that
(X ,A) is an NDR pair if there exists a pair of continuous functions (u,h), with u : X → I

and h : X × I → X , such that:

1. A = u−1(0).

2. h is a homotopy relative to A, starting at the identity map, i.e. h(x,0) = x, for x ∈ X .

3. If x ∈ X and u(x)< 1 then h(x,1) ∈ A.

If condition (3) is replaced by h(x,1) ∈ A, for all x ∈ X , then (X,A) is called a DR
pair.

Definition 1.4.23. A subset A ⊂ X is called a neighborhood retract of X if there
exists an open subset U ⊂ X , with A ⊂U , such that A is a retract of U .
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Notice that in the case of (X ,A) being an NDR pair, we have, as a consequence of
conditions 2 and 3, that A is a neighborhood retract of X , with the neighborhood being
U = u−1([0,1)), and the retraction is given by h(x,1) with x ∈U .

Theorem 1.4.24 ((WHITEHEAD, 1978)). Given a closed pair (X ,A) the following state-
ments are equivalent

1. (X ,A) is an NDR pair.

2. (I ×X ,0×X ∪ I ×A) is a DR pair.

3. 0×X ∪ I ×A is a retract of I ×X .

4. (X ,A) is a cofibred pair.

Let us prove the above-stated theorem by proving some simpler lemmas.

Lemma 1.4.25. The pair (I,{0}) is a DR pair.

Proof. Simply define the function u : I → I as u(x)= x/2 and the homotopy h(t,x)= (1−t)x,
it is not difficult to see that this pair of functions satisfy the conditions of definition 1.4.22
for DR pairs.

Lemma 1.4.26. If both (X ,A) and (Y,B) are NDR pairs, then so is (X ×Y,X ×B∪A×Y ).
And if either (X ,A) or (Y,B) is a DR pair, then the resulting pair is also DR.

Proof. Suppose (u,h) and (v,g) are pairs of functions as in definition 1.4.22 for the pairs
(X ,A) and (Y,B) respectively. We wish to show that (X ×Y,X ×B∪A×Y ) is an NDR pair.
For this reason we define the function w : X ×Y → I by

w(x,y) = min{u(x),v(y)},

and since u−1(0) = A and v−1(0) = B we clearly have that

1. w−1(0) = X ×B∪A×Y .

2. If we define the map f : X ×Y × I → X ×Y by

f (x,y, t) =


(x,y), if v(x) = u(y) = 0 (i.e (x,y) ∈ A×B);

(h(x, t),g(y, tu(x)/v(y))) , if v(y)> 0 and v(y)≥ u(x);

(h(x, tv(y)/u(x)),g(y, t)) , if u(x)> 0 and u(x)≥ v(y);

we have that f is a homotopy (since it is continuous), and f (x,y,0) = (x,y) for all (x,y) ∈
X ×Y . What is left to prove is that condition 2 from definition 1.4.22 is valid, i.e., that
this homotopy is relative to X ×B∪A×Y . Take (x,y) ∈ X ×B∪A×Y . If (x,y) ∈ A×B we
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clearly have f (x,y) = (x,y). If (x,y) ∈ (X \A)∪B we fall in the third case of the definition
of f , thus f (x,y) = (h(x,0),g(y, t)) = (x,y). The last case is (x,y) ∈ A× (Y \B) which is
completely analogous to the previous case.

3. Notice that

f (x,y,1) =


(x,y), if v(x) = u(y) = 0 (i.e (x,y) ∈ A×B);

(h(x,1),g(y,u(x)/v(y))) , if v(y)> 0 and v(y)≥ u(x);

(h(x,v(y)/u(x)),g(y,1)) , if u(x)> 0 and u(x)≥ v(y);

so if w(x,y) < 1, we have that u(x) < 1 or v(y) < 1, which implies that h(x,1) ∈ A or
g(y,1) ∈ B, hence from the definition of f we get that f (x,y,1) ∈ X ×B∪A×Y , whence
concluding that (X ×Y,X ×B∪A×Y ) is an NDR pair.

Suppose that (X ,A) is a DR pair, then all the prove above is still valid, and
we have the additional information that h(x,1) ∈ A for all x ∈ X , this clearly implies that
f (x,y,1)∈ X ×B∪A×Y , for all (x,y)∈ X ×Y , hence (X ×Y,X ×B∪A×Y ) is a DR pair.

Lemma 1.4.27. If (X ,A) is a closed pair, then X ×{0}∪A× I is a retract of X × I if and
only if (X ,A) is a cofibred pair.

Proof. Suppose there exists a retraction r : X × I → X ×{0} ∪A× I. Let us show that
(X ,A) is a cofibred pair. First of all, consider arbitrary maps f0 : X → Y and gt : A → Y ,
with t ∈ I, such that gt is a homotopy and g0 = f0|A. Remember that we can write this
homotopy gt as a function G : A× I → Y defined as G(a, t) = gt(a). Then we can define a
function H : X ×{0}∪A× I → Y , which is basically the combination of f0 and G, that is,
H(x,0) = f0(x), for all x ∈ X , and H(a, t) = G(a, t), for all (a, t) ∈ A× I. The fact that A is
closed in X implies that H is continuous, as shown below.

Notice first that X ×{0} and A× I are both closed in X × I, whence X ×{0}∪A× I

is also closed. Now, if F ⊂ U is a closed subset, then H−1(F) = f−1
0 (F)×{0}∪G−1(F),

and from the continuity of f0 we have that f−1
0 (F)×{0} is closed in X ×{0}, hence it is

closed in X × I. Similarly G−1(F) is closed in A× I, therefore it must be closed in X × I.
Finally we conclude that H−1(F) = f−1

0 (F)×{0}∪G−1(F) is closed in X × I, in particular,
it is closed in X ×{0}∪A× I, thus proving that H is continuous.

To finish this part of the proof, consider the homotopy H ◦ r : X × I → Y , which
shows that (X ,A) is a cofibred pair.

Conversely, suppose that (X ,A) is a cofibred pair, then define Y .
= X ×{0}∪A× I,

f0 : X → Y given by f0(x) = (x,0), and gt : A → Y given by gt(a) = (a, t). By hypothesis
there exists a function F : X × I → Y , such that F(x,0) = (x,0) and F(a, t) = (a, t), for all
x ∈ X , a ∈ A and t ∈ I. Hence F is a retraction of X × I onto X ×{0}∪A× I.
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Proof of theorem 1.4.24. (1) =⇒ (2): Since (X ,A) is NDR and (I,{0}) is DR (Lemma
1.4.25), we have by lemma 1.4.26 that (X × I,X ×{0}∪A× I) is a DR pair.

(2) =⇒ (3): This is always true, if any pair (X ,A) is a DR pair then A is a retract
of X , since there is a continuous function h : X × I → X with h(X ×{1})⊂ A and h(x,1) = x,
for all x ∈ X .

(3) ⇐⇒ (4): Lemma 1.4.27

(3) =⇒ (1): Suppose we have the retraction

r : X × I → X ×{0}∪A× I.

Let π1 : X×I →X and π2 : X×I → I be the projections onto the first and second coordinates
respectively. Now, we can define the pair of functions (u,h), which shall satisfy the NDR
conditions. First, define u : X → I as

u(x) = sup{t −π2 ◦ r(x, t)|t ∈ I},

and h : X × I → X as h(x, t) = π1 ◦ r(x, t). We clearly have that u(x)≥ 0, since for t = 0 we
have t −π2 ◦ r(x, t) = 0. Now we proceed to check the three NDR conditions.

(i) A = u−1(0): If a ∈ A we have t −π2 ◦ r(a, t) = t −π2(a, t) = t − t = 0 for all t ∈ I,
therefore u(a) = 0. Conversely if x ∈ X is such that u(x) = 0, then t −π2 ◦ r(x, t) = 0 for all
t ∈ I, in particular, for t > 0, hence π2 ◦ r(x, t) = t > 0, if t > 0, and since the codomain of
r is X ×{0}∪A× I, we conclude that r(x, t) ∈ A× I for t > 0, and the fact that A is closed
implies that r(x,0) = (x,0) ∈ A× I, hence x ∈ A.

(ii) h is clearly continuous, since it is the combination of continuous functions, so
we have

h(x,0) = π1 ◦ r(x,0) = π1(x,0) = x

and
h(a, t) = π1 ◦ r(a, t) = π1(a, t) = a,

for all x ∈ X , a ∈ A, and t ∈ I.

(iii) u(x)< 1 =⇒ π2 ◦ r(x,1)> 0 =⇒ r(x,1) ∈ A× I =⇒ h(x,1) = π1 ◦ r(x,1) ∈ A.

Hence (X ,A) is an NDR pair.

Proposition 1.4.28. The pair (I,{0,1}) is an NDR pair.

Proof. We define u : I → I by

u(t) =


4t , if 0 ≤ t ≤ 1/4;

1 , if 1/4 ≤ t ≤ 3/4;

4(1− t) , if 3/4 ≤ t ≤ 1;
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and h : I × I → I by

h(x, t) =


t(x−1/2)+ x , if t/(2+2t)≤ x ≤ (2+ t)/(2+2t);

0 , if x ≤ t/(2+2t);

1 , if x ≥ (2+ t)/(2+2t);

It is not difficult to see that both u and h are continuous, and that they satisfy the
conditions of definition 1.4.22.

As a consequence of the previous proposition and lemma 1.4.26, we get the follow-
ing corollary.

Corollary 1.4.29. If (X ,A) is an NDR pair, then (X × I,X ×{0,1}∪A× I) is also an
NDR pair.

With the previous corollary, we can prove the following theorem.

Theorem 1.4.30. If the inclusion i : A ↪→ X is both a homotopy equivalence and a cofi-
bration, then X strongly deformation retract onto A.

Proof. Let r′ : X → A be the homotopy inverse of the inclusion i : A ↪→ X , i.e., ir′' idX

and r′i' idA. Let F ′ : A× I → A be a homotopy such that F ′|A×{0} = r′i and F ′|A×{1} = idA.
Since F ′ is exactly r′ when restricted to A×{0}, and A ↪→ X is a cofibration, we have,
by the homotopy extension property, that there is a homotopy G′ : X × I → X , such that
G′|X×{0} = r′ and G′|A×I = F ′. Thus if we define r : X → A by r(x) = G′(x,1), we get
ri(a) = G′(a,1) = F ′(a,1) = idA(a) = a, for all a ∈ A, and G′ is a homotopy between r'r′,
hence ir' ir′' idX .

Now let F : X × I → X be a homotopy between idX and ir, that is, F(x,0) = x and
F(x,1) = ir(x), for all x ∈ X . Define G : ((X ×{0,1})∪ (A× I))× I → X by

G(x,0, t) = x,
G(x,1, t) = F(r(x),1− t),
G(a,s, t) = F(a,(1− t)s),

for all x ∈ X , a ∈ A and s, t ∈ I. It is not hard to see that G is well defined and continuous.

By corollary 1.4.29, we know that A ↪→ X being a cofibration implies
that X ×{0,1}∪A× I ↪→ X × I is a cofibration. Since the map G restricted to
(X ×{0,1}∪A× I)×{0} is equal to F , we can apply the homotopy extension property
and obtain a map

G̃ : X × I × I → X ,

with G̃(x,s,0) = F(x,s) and G̃|((X×{0,1})∪(A×I)×I) = G.



1.5. Dimension Theory 57

Now we can finally define the strong deformation retraction H : X × I → X by

H(x,s) = G̃(x, t,1),

then we have the following equations

H(x,0) = G̃(x,0,1) = G(x,0,1) = x,
H(x,1) = G̃(x,1,1) = G(x,1,1) = F(r(x),0) = r(x) ∈ A,
H(a, t) = G̃(a, t,1) = G(a, t,1) = F(a,0) = a,

for all x ∈ X , a ∈ A and t ∈ I, whence H is a strong deformation retraction of X into A.

The Strøm Structure
The Strøm Structure is very similar to the NDR pairs previously introduced, a

close relationship will be shown in a theorem later on.

Definition 1.4.31. By a Strøm Structure on a pair (X ,A), we mean a pair of maps
(α,h), with α : X → I and h : X × I → X , such that:

(i) α(A) = 0.

(ii) h is a homotopy relative to A, starting at the identity map, and with h(x, t)∈ A,
when t > α(x).

If A is closed, then condition (ii) implies that A = α−1(0).

Theorem 1.4.32. If (X ,A) is a closed pair, then (X ,A) is cofibred if and only if there
exists a Strøm Structure on (X ,A).

We will postpone the proof of this theorem to chapter 4, in which we shall prove
it in the fibrewise case.

Notice that theorems 1.4.32 and 1.4.24 imply that in the case of closed pairs (X ,A),
the concepts of NDR and Strøm Structure are equivalent.

1.5 Dimension Theory
Definition 1.5.1 ((MUNKRES, 2000)). Let A be a family of subsets of X , the order of
A is the integer n, such that there is some x ∈ X contained in n elements of A , but there
is no y ∈ X contained in more than n of those elements. If no such integer exists we say
the order is ∞.

Definition 1.5.2 ((MUNKRES, 2000)). The dimension of a topological space X is the
smallest positive integer m such that for any open covering A of X there exists an open
refinement B of order m+ 1, in this case we denote dim(X) = m. The dimension of the
empty set is defined to be −1, and if dim(X)> n, for all n ∈N, then we write dim(X) = ∞.
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In the literature, this dimension may be referred to as covering dimension, or
Lebesgue covering dimension.

Example 1.5.3. Any discrete topological space X has dimension zero, since {{x}}x∈X is
an open refinement of any open covering of X , and it has order 1.

Theorem 1.5.4 ((PEARS, 1975), Theorem 2.7). For the n-dimensional euclidean space
we have dim(Rn) = n.

As one would expect, the dimension of a topological n-manifold is precisely n,
in other words, it coincides with the usual notion of dimension in a manifold. It is not a
triviality to prove this fact, one possible direction is to first define the inductive dimensions
as follows.

Definition 1.5.5 ((PEARS, 1975)). The small inductive dimension of a space X ,
denoted by ind(X) ∈ N∪{−1,∞}, is defined inductively in the following manner.

1. ind(X) =−1 ⇐⇒ X = /0.

2. for n ≥ 0, ind(X)≤ n if for every x ∈ X and an open neighborhood Vx of x, there is
an open neighborhood Ux of x, with Ux ⊂Vx such that ind(∂Ux)≤ n−1.

3. if ind(X)≤ n and ind(X)≰ n−1, then ind(X) = n.

4. if X 6= /0 and ind(X)≰ n for all n ∈ N, then ind(X) = ∞.

Definition 1.5.6 ((PEARS, 1975)). The large inductive dimension of a space X ,
denoted by Ind(X) ∈ N∪{−1,∞}, is defined inductively in the following manner.

1. Ind(X) =−1 ⇐⇒ X = /0.

2. for n ≥ 0, Ind(X)≤ n if for every pair of closed subset A ⊂ X and open subset B ⊂ X ,
such that A⊂B, there exists an open set U , such that A⊂U ⊂B and Ind(∂U)≤ n−1.

3. if Ind(X)≤ n and Ind(X)≰ n−1, then Ind(X) = n.

4. if X 6= /0 and Ind(X)≰ n, for all n ∈ N, then Ind(X) = ∞.

Notice that the only difference between definitions 1.5.5 and 1.5.6 is the second
item, while in the first we consider points of X and its neighborhoods, in the second
definition we change the points with closed sets. Therefore if X is a Hausdorff space, or
more generally a T1 space, we have ind(X)≤ Ind(X).

Proposition 1.5.7. Let X be a topological space, if A ⊂ X , then ind(A)≤ ind(X).
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Theorem 1.5.8 ((NAGATA, 1981) Theorem II.7). If X is a metrizable space, then
Ind(X) = dim(X).

Theorem 1.5.9 ((NAGATA, 1981) Theorem IV.1). If X is a metrizable, separable space,
then Ind(X) = ind(X) = dim(X). In particular, Ind(Rn) = ind(Rn) = dim(Rn) = n.

This last theorem, together with theorem 1.2.10, implies that that for Mn a topo-
logical n-manifold dim(Mn) = ind(Mn). Now we can show that ind(Mn) = n, and finally,
we obtain the result dim(Mn) = n.

Theorem 1.5.10. If Mn is a topological n-manifold, then ind(Mn) = n.

Proof. We prove this by induction on n.

n=1: If M1 is a 1-manifold, take x ∈ M1 and U a neighborhood of x, then there
is another neighborhood V , such that V ⊂ U , and ϕ : V → A is a homeomorphism, with
A ⊂R open. Now, let B be an open ball (i.e., an interval) in R such that ϕ(x) ∈ B ⊂ B ⊂ A.
Notice that x ∈ ϕ−1(B) ⊂ U and ∂ϕ−1(B) ∼= ∂B, which consists of two isolated points,
therefore ind(∂ϕ−1(B)) = 0. Also, for any open neighborhood W of x with W ⊂ ϕ−1(B),
we have ind(∂W ) = 0, hence ind(M1)≤ 1 and ind(M1)≰ 0, therefore ind(M1) = 1.

Induction hypothesis: Suppose ind(Mk) = k for k = 1, . . . ,n−1.

Let Mn be a topological n-manifold, take x ∈ Mn and U a neighborhood of x, then
there is another neighborhood V , such that V ⊂ U , and ϕ : V → A is a homeomorphism,
with A ⊂ Rn open. Let B be an open ball in Rn such that ϕ(x) ∈ B ⊂ B ⊂ A. We have
x ∈ ϕ−1(B)⊂U , and ∂ϕ−1(B)∼= ∂B ∼= Sn−1, which is a topological (n−1)-manifold, from
the induction hypothesis we get ind(∂ϕ−1(B)) = n− 1. So we know that ind(Mn) ≤ n.
Notice that ϕ−1(B)∼= B ∼=Rn, therefore ind(ϕ−1(B)) = ind(Rn) = n, and from proposition
1.5.7 we have n = ind(ϕ−1(B))≤ ind(Mn)≤ n, whence we have ind(Mn) = n.

Corollary 1.5.11. If Mn is a topological n-manifold, then dim(Mn) = n = Ind(Mn).

1.6 CW-complexes

Introduction

In this section, we will define the important class of topological spaces called
CW-complexes, which plays an important role in homotopy theory. Before defining these
spaces, which have an inductive definition, let us introduce some useful concepts.

Definition 1.6.1 ((MUNKRES, 1984), Chapter 1, Section 2, pg. 10). Given a topolog-
ical space X and a family of subspaces of {Aα}α of X , the topology of X is said to be
coherent with the family {Aα}α if U is open in X if and only if U ∩Aα is open in each
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Aα (equivalently we can change open with closed). When this happens, we say that X has
the coherent topology in relation to {Aα}α .

Theorem 1.6.2. Given a topological space X and a family of subspaces {Aα}α , the
following statements are equivalent.

(i) X has the coherent topology in relations to {Aα}α .

(ii) X has the finest topology such that all the inclusions iα : Aα → X are continuous.

(iii) A function f : X → Y is continuous if and only if f iα : Aα → Y is continuous, for all
α .

Proof. It is easy to see that (i) and (ii) are equivalent by simply noticing that if U ⊂ X ,
then i−1

α (U) = U ∩Aα . Let us show that (i) implies (iii), suppose (i) is true, clearly f

continuous implies that the restrictions f iα are all continuous, conversely if all f iα are
continuous, let V ⊂ Y be open, then ( f iα)−1(V ) = f−1(V )∩Aα are all open, and by te
definition of coherent topology f−1(V ) is open in X , hence f is continuous. Finally, to
show that (iii) implies (ii), suppose (iii) is true, then the inclusions iα : Aα → X are all
continuous, since id : X → X is obviously continuous, it remains to show that X has the
finest topology with this property. Let X ′ be equal to X as a set, equipped with the coherent
topology in relations to {Xα}α , we want to show that X = X ′. Notice that, since (i) and
(ii) are equivalent, the inclusions Xα ↪→ X ′ are continuous, hence by (iii) the identity map
(as sets) X → X ′ is continuous, but since the topology of X ′ is finner than the topology of
X , this can only mean that X = X ′.

Definition 1.6.3 ((ARKOWITZ, 2011)). Given two topological spaces X and Y , define
the disjoint union X tY to be the topological space which as a set is the usual disjoint
union, and is equipped with the coherent topology in relation to {X ,Y}.

Notice that by defining the coherent topology on the disjoint union, as above, we
have that both inclusions X ↪→ X tY and Y ↪→ X tY are continuous, it is the largest
topology with this property.

Analogously, for an arbitrary family of spaces {Xα}α we define the disjoint union⊔
α Xα , in which A ⊂

⊔
α Xα is an open subset if and only if each A∩Xα is open in Xα . This

will also be the largest topology such that each inclusion Xα ↪→
⊔

α Xα is continuous.

Remember that if X is a topological space and p : X → S is a surjection onto a set S,
then we can define the quotient topology on S as follows: U ∈ S is open ⇐⇒ p−1(U) is
open in X . This is particularly useful when we have a space X with a certain equivalence
relation ∼. Then we can equip the quotient X/ ∼ with the quotient topology for the
canonical projection π : X → X/∼. In all the remainder of this work, we shall assume that
this is the topology of quotient spaces, unless otherwise stated.
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If in a space X we fix a certain point ∗X , then we say that (X ,∗X) is a based space
with basepoint ∗X .

Definition 1.6.4. Given X and Y two based spaces we define their wedge product (or
wedge sum), X ∨Y , to be X tY/∼, in which every point is equivalent only to itself, except
for the basepoints ∗X and ∗Y which are also equivalent to each other.

There is an intuitive way to understand the construction above, we are taking two
spaces X and Y and gluing one point of X to one point of Y as depicted in figure 2.

Figure 2 – The wedge of two based spaces.

Source: Elaborated by the author.

Notice that once we take the wedge of X and Y we still have a based space X ∨Y

with basepoint [∗X ] = [∗Y ].

One can easily extend the definition of wedge to an arbitrary collection {Xα}α

of based spaces. The wedge of such a collection, denoted by ∨α Xα , is the disjoint union
quotiented by the equivalence relation which associates all the basepoints. This new space
has basepoint [∗Xα ] for any α in the family of indices.

Definition 1.6.5. Given two topological spaces X and Y , a subset W ⊂ X , and a contin-
uous function f : W → Y , we define the adjunction space of X and Y with respect to f ,
X ∪ f Y , to be the quotient space X tY/ ∼ in which the equivalence relation is given by
w ∼ f (w).

As seen in figure 3, in an adjunction space we are basically gluing the subspace W

to its image f (W ), thereby connecting X and Y .

In what follows we shall call an open n-cell any topological space homeomorphic
to the open n-disc, Dn = {x∈Rn : ‖x‖< 1}, and a closed n-cell any space homeomorphic
to the closed n-disc Dn. If En is a closed n-cell then there is a homeomorphism φ : Dn → En,
and we define its boundary ∂En to be the image φ(Sn−1).

Definition 1.6.6. Suppose X is a topological spaces, {En
α}α is an indexed family of n-

cells and ϕα : ∂En
α → X are continuous functions from the boundary of Eα to X for each
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Figure 3 – Pictorial representation of an adjunction space.

Source: Elaborated by the author.

index α . Then we can define a function ϕ :
⊔

α ∂En
α → X , in which ⊔α ∂En

α ⊂
⊔

α En
α and

ϕ |∂En
α = ϕα . And we define the adjunction space X ∪ϕ

⊔
α En

α which is called: ”the space
obtained from X by attaching n-cells through the functions ϕα (see figure 4).

CW complexes

Definition 1.6.7 ((ARKOWITZ, 2011)). Consider a topological space X .

1. if X = /0, then it is a CW complex.

2. if X 6= /0, then this will be a CW complex if it is a Hausdorff space together with
a sequence of subspaces called skeleta

X0 ⊂ X1 ⊂ X2 ⊂ ·· · ,

whose union is X , such that the following conditions are satisfied.

a) X0 is a nonempty set of points. And we proceed inductively, so that X1 is
obtained from X0 by attaching 1-cells, X2 is obtained from X1 by attaching
2-cells, and so on.
Before stating the second condition, let us clarify some notation. From (a)
we know that Xn is obtained from Xn−1 by attaching n-cells. To write more
explicitly, there exists a set {En

α}α of closed n-cells and maps ϕ n
α which induce

a map ϕ :
⊔

α ∂En
α → Xn−1 such that

Xn = Xn−1 ∪ϕ
⊔
α

En
α .
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Now, we can define a map from En
α to Xn by composing the following inclusion

and projection

En
α Xn−1 t (

⊔
α En

α) Xn = Xn−1 ∪ϕ
⊔

α En
α

i p ,

this composition we shall denote by Φn
α , and the subset Φn

α(E
n
α)⊂ X is called

an closed n-cell of X and is denoted en
a.

b) X has the coherent topology with respect to the set of all closed cells {en
α}n

α .
This means A ⊂ X is open ⇐⇒ A∩ en

α is open for all cells en
α .

Figure 4 – A rough representations of the space obtained from X by attaching n-cells

. . .

Source: Elaborated by the author.

Notations and definitions regarding CW complexes.

• The maps ϕ n
α : ∂En

α → Xn−1 are called attaching maps.

• The maps Φn
α : En

α → Xn are called characteristic maps, notice that Φn
α |∂En = ϕ n

α .

• The image Φ(En
α \∂En

α) is called an open n-cell and is denoted en
α .

• X is said to be a finite CW complex if it has finitely many closed (or open) cells.

• X is said to be a finite dimensional CW complex if for some N we have that X

is equal to its N-skeleton X = XN . The smallest N satisfying this condition is called
the dimension of X .

• X is said to be a locally finite CW complex if the set of open (or closed) n-cells
is locally finite.
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Remark: An open n-cell en
α need not be open in X . The reason for it being called “open”, is

the fact that it is homeomorphic to the open n-disk Dn, since we have the homeomorphism
Φn

α |En
α\∂En

α : En
α \∂En

α → en
α .

Proposition 1.6.8. Given X a CW complex and an open and respective closed n-cells
en

α and en
α , we have that the closure of en

α in X is en
α (justifying the notation).

Proof. Denote the closure of en
α by Cl(en

α). Note that en
α is compact, since en

α = Φ(En
α).

Given that X is Hausdorff, if y ∈ X \ en
α , there must be disjoint open sets separating y

and en
α , hence y /∈Cl(en

α), and we conclude that Cl(en
α)⊂ en

α . Now, notice that if an open
subset U ⊂ X intersects en

α , then it also intersects en
α , since (Φn

α)
−1(U) is open in En

α .
Hence en

α =Cl(en
α).

Lemma 1.6.9 ((ARKOWITZ, 2011) Lemma 1.5.6). Given X a CW complex we have.

1. X has the coherent topology with respect to the set of skeleta {Xn}n.

2. If K ⊂ X is a compact subset, then K intersects only finitely many open (or closed)
cells of X .

Since a closed n-cell en
α is the image of the compact space En

α through the contin-
uous map Φn

α : En
α → Xn, it is itself a compact subspace of X . Whence by lemma 1.6.9 we

have that en
α intersects finitely many open cells of X .

The name CW complex comes from the following properties.

(C) Closure-finiteness: The closure of each cell intersects finitely many cells.

(W) Weak topology: The topology on a CW complex is the coherent topology with
respect to its cells (many authors use the term weak topology instead of coherent
topology, but we prefer the latter one to avoid confusion with the functional analysis
concept of weak topology).

Proposition 1.6.10 ((LEE, 2011) proposition 5.4). For X a locally finite CW complex we
do not need to check for condition (b) in definition 1.6.7 (the coherent topology condition),
it is a consequence of the rest of the definition.

Lemma 1.6.11 ((ARKOWITZ, 2011) Lemma 1.5.7). Given X a CW complex, Y a topo-
logical space and f : X → Y a function, the following statements are equivalent.

1. f is continuous.

2. f |en
α : en

α → Y is continuous for all closed cells of X .

3. f ◦Φn
α : En

α → Y is continuous for all characteristic maps Φn
α .
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4. f |Xn : Xn → Y is continuous for all the skeleta of X .

Proposition 1.6.12. Any CW complex is:

1. a normal space [(HATCHER, 2002), Proposition A3];

2. locally contractible [(HATCHER, 2002), Proposition A4];

3. paracompact [(LEE, 2011), Theorem 5.22];

4. completely normal [(LUNDELL; WEINGRAM, 1969), Propostition 4.3] - Lundell
and Weingram actually prove that any CW complex is perfectly normal, which is
an even stronger condition than completely normal.

Given X a topological space we can always consider a family of subsets F of X ,
and generate a topological space given by X with the coherent topology in relation to
the family F . One particularly interesting case is when F is the family of all compact
subsets of X , in which we denote the new space by XC. Notice that X and XC have the
same compact subsets. In general, a space that has the coherent topology with respect to
its compact subspaces is called a Compactly Generated Space.

Remark 1.6.13. Some authors, for example, (WHITEHEAD, 1978), use the nomen-
clature compactly generated space only for Hausdorff spaces with the above-mentioned
property. This is particularly interesting when developing homotopy theory on a fixed
category.

Proposition 1.6.14. The following are compactly generated spaces.

1. CW complexes.

2. Metric spaces.

3. Locally compact spaces.

Proof. 1. Suppose X is a CW complex, if F ⊂ X is a subset whose intersection with each
compact subspace of X is closed, then its intersection with all closed cells of X are closed
(since a closed cell is compact), hence F is closed in X . Whence X is compactly generated.

2. Suppose X is a metric space. If A ⊂ X is not open in X , then there exists a
non-interior point x ∈ A. Thus there is a sequence (xn)n in X \A converging to x. The
set S .

= {xn}n ∪{x} is a compact subset of X whose intersection with A is not open in S.
Therefore X is compactly generated.

3. Suppose X is locally compact. If A ⊂ X is not open in X , then there exists a
non-interior point x ∈ A. Let K be a compact neighborhood of x (x ∈ int(K)), then A∩K
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cannot be open in K, otherwise, we would have A∩K = U ∩K, for U some open subset
of X , and so U ∩ int(K) would be an open subset of X , containing x and contained in A,
contradicting the hypothesis that x is not an interior point of A. Hence X is compactly
generated.

Given X and Y two CW complexes, one might be interested in taking the product
X ×Y . The immediate question that arises is whether this product is itself a CW complex.
Unfortunately, the answer is not always positive, nonetheless, we can define a topology
pretty naturally on X ×Y which makes it a CW complex, which will be exactly the
compactly generated space (X ×Y )C, more explicitly we have the following theorem.

Theorem 1.6.15 ((HATCHER, 2002), Theorem A.6). For CW complexes X and Y we
can define a CW complex structure on X ×Y by considering its closed cells to be en

α × f m
β ,

in which en
α and f m

β are the closed cells of X and Y , respectively. The characteristic maps
are defined as Φn

α ×Ψm
β , in which Φn

α and Ψm
β are the characteristic maps of en

α and f m
β ,

respectively. Then this CW complex is exactly (X ×Y )C. If either X or Y is locally compact,
then (X ×Y )C = X ×Y . If both X and Y have countably many cells, then (X ×Y )C = X ×Y .

Example 1.6.16. Here we discuss a case in which (X ×Y )C 6= X ×Y . This example was
constructed in (DOWKER, 1952).

Consider X and Y CW complexes of dimension 1, constructed in the following
manner. X has uncountably many 1 cells, all with one common point (0 cell), more
explicitly X =

∨
s Is, in which s runs through all the sequences of positive integers s =

(s1,s2, . . .) and Is is the unit interval [0,1] with base point 0. Y is defined similarly, Y =
∨

j I j,
with the indexes j running through the positive integers.

Figure 5 – Representation of the spaces X and Y from example 1.6.16.

Source: Elaborated by the author.

Given an index s = (s1,s2, . . .) and j ∈ N consider the point ps j
.
= (1/s j,1/s j) in

Is× I j ⊂ X ×Y , and define P ⊂ X ×Y to be the subset containing all the points ps j. Notice
that the intersection of P with the 0-cells and 1-cells of (X ×Y )C is empty, and with any
2-cell Is × I j it is exactly one point ps j, hence they are all closed subsets of the cells, thus,
by theorem 1.6.15, P is a closed subset of (X ×Y )C.
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Let us show that P is not closed in X ×Y with the usual product topology. To prove
this, we will show that (0,0) ∈ P, in which 0 is the point attaching all the unit intervals
in each CW complex. An open neighborhood of 0 in X is of the form U .

=
∨

s[0,as], and
similarly a neighborhood of 0 in Y is of the form V .

=
∨

j[0,b j], and we consider the open
neighborhood of (0,0) given by U ×V . Now we wish to show that the intersection of P and
U ×V is not empty. Choose an index s = (s1,s2, . . .) with s j > max{ j,1/b j} and choose
an integer k > 1/as. Then sk > k > 1/as, which implies 1/sk < as. Since 1/sk < bk, we have
psk = (1/sk,1/sk) ∈ [0,as]× [0,b j] ⊂ U ×V . Therefore P is not closed, and we conclude
(X ×Y )C 6= X ×Y .

Example 1.6.17. There is a particular interest in the product of a CW complex X

with the unit interval I = [0,1], which is also a CW complex with two 0 cells {0} and
{1}, and a single closed 1-cell [0,1]. Since I is compact, by theorem 1.6.15, we have that
(X × I)C = X × I.

Example 1.6.18. Every n-sphere Sn has the structure of a CW complex, which has a
single 0 cell and an n cell, with attaching map ϕ : ∂En →∗ the constant map.

Figure 6 – Representation of the CW structure of a 2-sphere. The boundary of a 2-disk is iden-
tified with a single point outside of it, and the space we get is homeomorphic to the
2-sphere.

Source: Elaborated by the author.

Some other classical examples of CW complexes are RPn , CPn , HPn , compact
connected surfaces and simplicial complexes.

Definition 1.6.19 ((HATCHER, 2002)). If X and Y are CW complexes, then f : X → Y

is said to be a cellular map, if for any integer, k, the k-skeleton of X is mapped into the
k-skeleton of Y , i.e., f (Xk)⊂ Y k

Theorem 1.6.20 (Cellular approximation theorem. (HATCHER, 2002) theorem
4.8). Any map f : X → Y between CW complexes is homotopic to a cellular map.
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∆-complexes and simplicial complexes

Definition 1.6.21 ((VICK, 2012)). The convex hull of a set A ⊂ Rn is the smallest
convex subset of Rn containing A.

Definition 1.6.22 ((MUNKRES, 1984)). A finite set of points {x0,x1, . . . ,xk}⊂Rn is said
to be geometrically independent, if the set of vectors {x1 − x0,x2 − x0, . . . ,xk − x0} is
linearly independent.

Definition 1.6.23 ((HATCHER, 2002), Chapter 2, Section 2.1, page 103). An n-simplex
is the convex hull of a geometrically independent set {x0, . . . ,xn} in some Rm, with m ≥ n.
The points x0, . . . ,xn are called the vertices of the n-simplex.

We usually consider the vertices of an n-simplex to have an ordering and we write
[x0,x1, . . . ,xn], by which we mean that this is an n-simplex with vertices x0, . . . ,xn, and
those vertices follow that specified order, if we switched, for example, x0 and x1, we would
get [x1,x0,x2, . . . ,xn], which is essentially the same n-simplex (geometrically), but if we
take the ordering into consideration, this is a different n-simplex then the one we started
with.

A subsimplex of an n-simplex, [x0,x1, . . . ,xn], is a simplex spanned by a subset of
those vertices, following the order inherited from the n-simplex. A particular example are
the faces of the n-simplex, which are subsimplexes with n vertices, more specifically, we
call [x0, . . . , x̂i, . . . ,xn] the ith face of the n-simplex.

Definition 1.6.24 ((HATCHER, 2002)). The standard n-simplex, usually written ∆n,
is the the n-simplex with its vertices being the canonical base of Rn+1, that is ∆n =

[e0,e1, . . . ,en].

∆n =

{
(t0, . . . , tn) ∈ Rn+1 :

n

∑
i=0

ti = 1 and ti ≥ 0 for all i

}
.

We usually denote the ith face of ∆n by (∆n)i. Notice that (∆n)i = [e0, . . . , êi, . . . ,en]

is homeomorphic to ∆n−1 by the canonical homeomorphism h : ∆n−1 → (∆n)i given by

h(t0, . . . , tn−1) = (t0, t1, . . . , ti−1,0, ti, . . . , tn−1) (1.1)

The boundary of ∆n is defined as the union of all its faces ∂∆n =

∪i[e0, . . . , êi, . . . ,en].

∂∆n =

{
(t0, . . . , tn) ∈ Rn+1 :

n

∑
i=0

ti = 1, ti ≥ 0 for all i, and at least one ti is zero
}

.

The open n-simplex is defined as ∆̊n .
= ∆n \∂∆n.
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Definition 1.6.25 ((HATCHER, 2002)). A topological space X is called a ∆-complex
(or as some authors may write, it has a ∆-complex structure) if there are maps ψn

α : ∆n →X ,
in such a manner that:

1. The restrictions ψn
α |∆̊n : ∆̊n → X are injective, and each point of x lies in the image

of exactly one such map.

2. For all maps ψn
α : ∆n → X and each face (∆n)i we have ψn

α |(∆n)i ◦h = ψn−1
β : ∆n−1 → X ,

for some map ψn−1
β . In which h is the canonical homeomorphism as in equation 1.1.

3. A subset A ⊂ X is open if and only if each (ψn
α)

−1(A) is open in ∆n.

As a consequence of condition 3 above, a ∆-complex can be built inductively as
a quotient space, similarly to the manner we built CW-complexes previously. We start
with a set X0 of 0-simplexes, each with a map ψ0

α : ∆0
α → X0 (here ∆0

α is simply ∆0).
Then we attach a family of 1-simplexes ∆1

α , we do this by considering the disjoint union
X0 t (

⊔
α ∆1

α), and taking the quotient by identifying each vertex of ∆1
α with an element

of X0, so that we get a space X1 with maps ψ1
α : ∆1

α → X1 which restricted to a vertex of
∆1

α becomes one of the maps ψ0
α (considering the canonical homeomorphism 1.1). If Xn−1

has been constructed, we proceed to get Xn by considering a collection of n-simplexes ∆n
α ,

and attaching them similarly to the case described above.

With the construction above one can show that every ∆-complex is a CW complex,
with its open cells being en

α = ψn
α(∆̊n

α), and characteristic maps ψn
α .

Definition 1.6.26. A simplicial complex is a ∆-complex with the extra condition that
each simplex is uniquely determined by its vertices. More explicitly, if X is a simplicial
complex and ψn

α : ∆n
α → X is a map as in definition 1.6.25, then the image by ψn

α of the
vertices of ∆n

α has n elements, and no other such map has exactly these elements in the
image of its vertices.

1.7 Euclidean Neighborhood Retract

Definition 1.7.1 ((DOLD, 2012)). A topological space X is said to be an Euclidean
neighborhood retract (ENR), if it is homeomorphic to X ′ ⊂ Rn, for some n, such that
there is an open subset of U ⊂ Rn containing X ′, to which X ′ is a retract.

Clearly, the most simple examples of ENRs are the open subsets of any Euclidean
space Rn.

Lemma 1.7.2. The disjoint union of a finite number of ENRs is still an ENR.
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Proof. Let A and B be two ENRs and consider X = AtB to be the disjoint union of the
two. Since both are ENRs, there exists euclidean subsets A′ ⊂Rn and B′ ⊂Rm, with open
sets containing them, U and V , respectively, such that A and B are homoeomorphic to A′

and B′, which are retracts of U and V , respectively. The subset A is also homeomorphic to
Ã .
= A′×{0}m ×{0} ⊂ Rn+m+1 and B is homoeomorphic to B̃ .

= {0}n ×B×{1} ⊂ Rn+m+1.
Clearly Ã and B̃ are disjoint in Rn+m+1, hence X = AtB is homeomorphic to Ã∪ B̃, which
clearly is a retract of the open subset U ×(−1/3,1/3)m×(−1/3,1/3)∪(−1/3,1/3)n×V ×
(2/3,4/3). Whence X is an ENR.

Example 1.7.3. The union of ENRs is not necessarily an ENR. Take for example the
two subsets of R:

A = {0}, B = {1/n ∈ R | n ∈ N>0} ,

both are clearly ENRs, since A is a retract of R itself and B is a retract of the open set
∪∞

n=1(1/n−εn,1/n+εn), in which εn =
1
2(

1
n −

1
n+1). But it is easy to see that X =A∪B is not

an ENR, by contradiction suppose r : U → X is a retraction of an open subspace U onto
X , then there is a path-connected open subset V ⊂U with 0 ∈V . Consider s .

= r|V : V → X ,
since s is continuous, s(V ) must be path-connected, but since 0 ∈ s(V ) and 1/n ∈ s(V ), for
all n sufficiently large, we have a contradiction.

Lemma 1.7.4. The cartesian product X ×Y of two ENRs is still an ENR.

Proof. If A and B are ENRs, with retractions from open sets U ⊂Rn and V ⊂Rm, r :U →A′

and s : V → B′, onto A′ ⊂ Rn and B′ ⊂ Rm, homeomorphic to A and B, respectively. Then
clearly A×B is homeomorphic to A′×B′ ⊂Rn+m, and r×s : U ×V → A′×B′ is a retraction.
Hence A×B is an ENR.

Lemma 1.7.5 ((DOLD, 2012)). Let X be an ENR and Y a topological space with a
subspace B ⊂ Y . If f0, f1 : Y → X are maps such that f0|B = f1|B, then there is an open
neighborhood W of B and a homotopy F : f0|W ' f1W , such that F(b, t) = f0(b), for all
b ∈ B and t ∈ I.

Lemma 1.7.6 ((DOLD, 2012)). Let X be an ENR with a subset B which is itself an
ENR. Then there is an open subset U , with B ⊂U ⊂ X , and a retraction r : U → B, such
that, if we denote by i : B ↪→ X the canonical inclusion, then ir : U → X is homotopic to
the inclusion j : U ↪→ X .

Theorem 1.7.7 ((DOLD, 2012) proposition 8.12). Any locally contractible and locally
compact subspace of Rn is an ENR.
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CHAPTER

2
THE LUSTERNIK-SCHNIRELMANN

CATEGORY

In this chapter, we will introduce the concept of Lusternik-Schnirelmann Category.
The main references here are (CORNEA et al., 2003; JAMES, 1978).

2.1 Lusternik-Schnirelmann category

Definition 2.1.1 ((JAMES, 1978)). Given X a topological space and A ⊂ X , we say that
A is a categorical subset (or just categorical) if A is contractible in X , in other words,
the inclusion A ↪→ X is null-homotopic. A covering of X is said to be categorical if all its
elements are categorical subsets of X .

Definition 2.1.2 ((JAMES, 1978)). The Lusternik-Schnirelmann Category(or LS
Category) of a space X , denoted by cat(X), is the smallest positive integer k such that
there exists an open categorical covering of X of cardinality k. If there is no such k we
write cat(X) = ∞.

Some authors prefer to define the LS category to be one less than what we defined
above, this would not change much in the theory that follows. To avoid confusion we shall
always prefer the definition given above throughout the text unless otherwise stated.

One thing one might immediately conclude from the definition of LS category is
that X is a contractible space if and only if cat(X) = 1.

There is also the concept of category for subspaces of X . The subspace category
of A ⊂ X is the least integer k such that there are open subsets U1, . . . ,Uk of X , which cover
A and are contractible in X . This invariant is denoted by catX(A), and as in the previous
case, if no such integer exists we write catX(A) = ∞.
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A covering of X with all open subsets contractible in X (as in definition 2.1.2) is
usually called a categorical covering. So we can reformulate the LS category as being
the cardinality of the smallest categorical covering of X .

The LS category is an important topological invariant, and the following proposi-
tion shows that it is stronger than that, as it is a homotopy invariant.

Proposition 2.1.3 ((JAMES, 1978)). The Lusternik-Schnirelmann Category depends
only on the homotopy type of the space.

Proof. Suppose X and Y have the same homotopy type, and that f : X →Y is a homotopy
equivalence with g : Y → X its homotopy inverse. Suppose cat(X) = k, and let U1, . . . ,Uk

be a categorical open covering of X . Consider the open covering of Y given by Vj =

g−1(U j), j = 1, . . . ,k. Let us show that Vj is categorical. We know that U j is categorical,
so the inclusion iU j : U j ↪→ X is null-homotopic, which in turn implies that f |U j = f ◦ iU j is
null-homotopic, whence f |U j ◦ g|V j = f ◦ g|V j is null-homotopic, and since f ◦ g ' idY =⇒
f ◦g|V j ' iV j : Vj ↪→ Y , we conclude that Vj is categorical. Hence cat(Y ) ≤ cat(X). The
inverse inequality is completely analogous.

Next, we provide a comparison between LS category and the dimension of a given
space X . Dimension here always means covering dimension, as discussed in section 1.5,
in the case of Manifolds and CW complexes, this coincides with the usual concept of
dimension.

Theorem 2.1.4 ((JAMES, 1978)). Let X be a path-connected, paracompact, and locally
contractible Hausdorff space, then

cat(X)≤ dim(X)+1. (2.1)

Proof. If dim(X) = ∞ there is nothing to be proven. Assume that dim(X) = n < ∞. Since
we are supposing X locally contractible, there is a categorical covering {Vβ}β∈B of X , and
since the dimension of X is n there is a locally finite refinement {Uα}α∈A, of order n+1.
Since each Uα is contained in a Vβ , which is contractible in X , the path connectedness of
X implies Uα is also categorical, hence {Uα}α is a categorical covering.

Since X is a Hausdorff paracompact space, by theorem 1.1.4 we know that there
is a partition of unity subordinate to the covering {Uα}α , let {πα}α be such a partition.

Now, for each x ∈ X define

S(x) = {α ∈ A | πα(x) 6= 0},

which is clearly a finite set. For each finite subset S ⊂ A define

W (S) = {x ∈ X | πα(x)> 0 and πα(x)> πβ (x), for all β /∈ S and α ∈ S}.
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Before proceeding, let us show that W (S) is open for any finite set S⊂A. Suppose x∈W (S),
since {Uα}α is locally finite there is an open neighborhood N of x which intersects finitely
many elements of the open covering, let us denote those elements by Uα1, . . . ,Uαk , and
denote by T = {α1, . . . ,αk} ⊂ A. Consequently, the only nontrivial functions among the
collection {πα}α in N are πα for α ∈ T . If T \S = /0, then we have that

N ∩

(⋂
α∈S

π−1
α ((0,∞))

)
is an open subset of W (S) containing x. And when T \S 6= /0, the subspace

N ∩

 ⋂
α∈S,β∈T\S

(πα −πβ )
−1((0,∞))


is an open subset of W (S) containing x, thus showing that W (S) is in fact open. In both
cases above we are using the fact that S and T are finite, so we are taking finite intersections
of open substes, which are itself open.

For any finite subset S ⊂ A let |S| denote the cardinality of S. If for two different
subsets of A we have |S|= |S′|, then W (S) and W (S′) are disjoint. This is easily seen since
if x ∈ W (S), then there are α ∈ S \ S′ and β ∈ S′ \ S, and we have πα(x) > πβ (x), which
implies x /∈W (S′), and by a completely analogous argument, if y ∈W (S′), then y /∈W (S).

If α ∈ S we clearly have W (S)⊂{x∈X | πα(x)> 0}⊂Uα , and since Uα is categorical
and X is path connected, we have that each W (S) is an open categorical subset of X .

Now, notice that x ∈ W (S(x)), for all x ∈ X , hence {W (S(x))}x∈X covers X . Also
notice that |S(x)| ≤ n+1 for any x ∈ X , since {Uα}α has order n+1. For k = 1, . . . ,n+1
we define the following subspaces of X

Wk =
⋃

|S(x)|=k

W (S(x)).

Remember that for x 6= y in X such that |S(x)|= |S(y)| we either have W (S(x)) =W (S(y)) or
W (S(x)) and W (S(y)) are disjoint, so Wk is a disjoint union of open categorical subspaces,
hence it is itself an open categorical subspace of X . Thus we have found an open categorical
covering W1, . . . ,Wn+1 of X , which implies cat(X)≤ n+1 = dim(X)+1.

Remark 2.1.5. In James’ article (JAMES, 1978) Theorem 2.1.4 was stated without the
assumption of X being locally contractible, however Farber showed that this hypothesis
cannot be ignored (FARBER, 2003). For a counterexample consider X to be the subset
of R2 given by the union of Cn = {(x,y) ∈ R2 | x2 +(y− 1/n)2 = 1/n2}, for n ∈ N. There
exists no contractible neighborhood of (0,0) in X , since any neighborhood of this point
will certainly contain a circle centered in (0,1/n) of radius 1/n for a big enough n, whence
cat(X) = ∞, although dim(X) = 1.
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Definition 2.1.6 ((CORNEA et al., 2003)). Given X a topological space, the Geometric
Category of X is defined as the least number k such that there is an open covering, of
cardinality k, of X by contractible subsets. This invariant is usually written gcat(X). If no
such integer exists we write gcat(X) = ∞.

Notice that in our initial definition of LS category we considered open coverings by
subsets contractible in X , and in this new definition of Geometric Category, we are asking
for each subset to be contractible in itself. Since this last condition creates a stronger
restriction on the possible open coverings, it is straightforward that for any space X we
have

cat(X)≤ gcat(X).

Definition 2.1.7. Given X a compact topological n-manifold we define the ball-category
of X , as the lowest cardinality of a covering of X by closed n-disks (see definition 1.2.4).
This is usually written as ballcat(X). If no such integer exists we write ballcat(X) = ∞.

Since closed n-disks are always contractible, we clearly have

cat(X)≤ gcat(X)≤ balcat(X).

Next, we use the structure of the cohomology ring of a space X , to obtain a lower
bound for its LS category.

Definition 2.1.8 ((CORNEA et al., 2003)). Let R be a commutative ring and X a
topological space, the R-cuplength of X , cupR(X), is defined as the least integer k such
that for any collection u1, . . . ,uk ∈ H̃∗(X ;R), we have u1 ^ · · ·^ uk = 0.

Theorem 2.1.9 ((CORNEA et al., 2003)). Given R a commutative ring and X a topo-
logical space we have

cupR(X)≤ cat(X).

Proof. We begin by supposing that cat(X) = n, and our goal is to show that this will imply
that the R-cuplength of X is lower than or equal to n. Let {U1, . . . ,Un} be a categorical
open covering of X . Let u1, . . . ,un be cohomology classes in H∗(X ;R).

For each (X ,Ui) we may consider the cohomology exact sequence of the pair, as
described in section 1.3, given by

· · · Hm(X ,Ui;R) Hm(X ;R) Hm(Ui;R) · · ·qi
∗
∗ ji∗∗ ,

in which qi : X → (X ,Ui) and ji : Ui → X are the canonical inclusions.

By definition, Ui being categorical means that the inclusion map ji : Ui → X is
nullhomotopic, and by the homotopy invariance of cohomology this implies that ji∗∗ = 0,
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which by exactness of the previous sequence implies that qi
∗
∗ is surjective. Hence for

ui ∈ H∗(X ;R) there exists ui ∈ H∗(X ;Ui;R) such that qi
∗
∗(ui) = ui. We may find such a ui

for each ui, i = 1, . . . ,n.

Remember the relation between the cup product and the cross product via the
diagonal map, described in section 1.3, and notice that it easily extends to the general
relative case, more explicitly, for subspaces A,B ⊂ X , the cup product becomes

^: H∗(X ,A;R)⊗H∗(X ,B;R)→ H∗(X ,A∪B;R)

u⊗ v 7→ u ^ v,

while the cross product and the diagonal map are given by

µ : H∗(X ,A;R)⊗H∗(X ,B;R)→ H∗(X ×X ,A×X ∪X ×B;R)

u⊗ v 7→ u× v,

and

∆ : (X ,A∪B)→ (X ×X ,A×X ∪X ×B)

x 7→ (x,x),

respectively. And we still have u ^ v = ∆∗
∗(u× v). On top of that, we have the following

commutative diagram

X (X ,A∪B)

X ×X (X ×X ,A×X ∪X ×B)

r

∆ ∆
r1×r2

in which r, r1 and r2 are the canonical inclusions. This diagram together with the cross
product yields the following commutative diagram

H∗(X ;R) H∗(X ,A∪B;R)

H∗(X ×X ;R) H∗(X ×X ,A×X ∪X ×B;R)

H∗(X ;R)⊗H∗(X ;R) H∗(X ,A;R)⊗H∗(X ,B;R)

r∗∗
∆∗
∗

(r1×r2)
∗

∆∗
∗

µ

r1
∗
∗⊗r2

∗
∗

µ

and using the fact that the cup product is exactly ∆∗
∗µ we get r∗∗(u ^ v) = r1

∗
∗(u)^ r2

∗
∗(v),

for any cohomology classes u ∈ H∗(X ,A;R) and v ∈ H∗(X ,B;R).

Now we just apply the equality above to our case of interest, namely we have n

inclusions qi : X → (X ,Ui) and q : X → (X ,
⋃n

i=1Ui), so we get

q∗∗(u1 ^ · · ·^ un) = q0
∗
∗(u1)^ · · ·^ qn

∗
∗(un) = u1 ^ · · ·^ un.

But since ⋃n
i=1Ui = X , we have H∗(X ,

⋃n
i=1Ui;R) = 0, hence q∗∗ = 0, thus u1 ^ · · ·^ un = 0,

and we conclude that cupR(X)≤ n = cat(X).
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Often in homotopy theory and when discussing topological complexity, we are
interested in spaces of the homotopy type of a CW-complex. Such a space satisfies the
conditions of theorem 2.1.4, so for CW-complexes we have

cupR(X)≤ cat(X)≤ dim(X)+1,

in which R is a commutative ring and dim(X) is simply the CW-complex dimension.

Example 2.1.10. The cohomology ring H̃∗(Sn;R) only has one generator at the level n,
hence cupR(Sn) = 2 ≤ cat(Sn). Furthermore, it is easy to construct a categorical covering
of Sn with two open sets, namely if N,S ∈ Sn are the north and south pole, consider the
covering given by Sn \{N} and Sn \{S}, it is well known that these spaces are homeomor-
phic to Rn, hence they are contractible, and cat(Sn) ≤ 2. With the two inequalities we
conclude that cat(Sn) = 2 for any integer n ≥ 1.

Example 2.1.11. Let Mg be a closed orientable surface of genus g ≥ 1. Hatcher shows
in Example 3.7 of (HATCHER, 2002) that the cup product H1(Mg;Z)⊗H1(Mg;Z) →
H2(Mg;Z) is not trivial, by which we conclude that 3 ≤ cupZ(Mg)≤ cat(Mg)≤ dim(Mg)+

1 = 3, hence cat(Mg) = 3.

Example 2.1.12. Let T n = ∏n
i=1 S1 be the n-torus, then clearly dim(T n) = n.dim(S1) = n,

hence cat(T n) ≤ n + 1. Now we wish to show that for a field K we have cupK(T n) =

n+ 1. To show this we will use the fact that the cross product is an isomorphism (as a
consequence of theorem 1.3.31, since K is a field). First notice that the Künneth theorem
implies that Hn(T n;K)≈H1(S1;K)⊗K Hn−1(T n−1;K), in which we are using the fact that
T n = S1 ×T n−1, thus, by induction, knowing that H1(S1;K) = K, we get Hn(T n;K) = K.
Furthermore, we have the cross product isomorphism

× : H1(S1;K)⊗H1(S1;K)→ H2(T 2;K),

which implies that all elements of H2(T 2;K) are of the form a ^ b, in which a = p1
∗
∗(a

′)

and b = p2
∗
∗(b

′), for some a′,b′ ∈ H1(S1;K) and p1 and p2 the cononical first and second
coordinate projections of T 2 onto S1.

As an induction hypothesis suppose that every element of H l(T l;K) is of the form
a1 ^ · · ·^ al for l = 1, . . . ,n−1, then the cross product isomorphism,

× : H1(S1;K)⊗Hn−1(T n−1;K)→ Hn(T n;K),

implies that every element of Hn(T n;K) is of the form

p1
∗
∗(a)^ p2

∗
∗(a1 ^ · · ·^ an−1) = p1

∗
∗(a)^ p2

∗
∗(a1)^ · · ·^ p2

∗
∗(an−1),

hence cupK(T n) = n+1 and we conclude that cat(T n) = n+1.



2.1. Lusternik-Schnirelmann category 77

Notice that when g = 1 in example 2.1.11, we have the same space as when n = 2
in example 2.1.12, i.e., M1 = T 2, and the results obtained in both examples are consistent
cat(M1) = cat(T 2) = 3

Example 2.1.12 shows us that both the dimension upper bound, cat(X)≤ dim(X)+

1, and the cup length lower bound, cupR(X) ≤ cat(X), may be reached by some spaces,
and even stronger we showed that there is a space for which cupR(X) = dim(X)+1.

Definition 2.1.13 ((CORNEA et al., 2003)). A based space X is said to have a non-
degenerate basepoint xo if (X ,xo) is a cofibre pair, in other words, the inclusion xo ↪→ X

has to be a cofibration.

If the subset {xo} is closed in X (for instance, if X is Hausdorff) and xo is a
non-degenerate basepoint, we have, by theorem 1.4.24, that (X ,xo) is an NDR pair, and,
as showed in section 1.4, there is an open neighborhood of xo that strong deformation
retracts to xo. This is always the case for CW-complexes, their basepoints are always
non-degenerate, which is a consequence of the fact that any CW-pair (X ,A) is an NDR
pair, since A is closed in X and A ↪→ X is a cofibration (see, for example, proposition 1.5.17
in (ARKOWITZ, 2011)).

Lemma 2.1.14 ((CORNEA et al., 2003)). If (X ,xo) is a path connected normal cofibre
pair, with cat(X)≤ n, then we can find a categorical open covering {V1, . . . ,Vn} of X with
xo ∈ Vi, for all i, and each Vi is contractible to xo relative to xo, meaning that there is a
homotopy F : Vi × I → X from the inclusion Vi ↪→ X to the constant map equal to xo, for
which F(xo, t) = xo, for all t ∈ I.

Proof. First, let us quickly discuss the case when n = 1, which would immediately imply
cat(X) = 1. In this case, we know that X is contractible, in other words, the inclusion
xo ↪→ X is a homotopy equivalence, and, by hypothesis, it is also a cofibration, so theorem
1.4.30 applies and we conclude that X strongly deformation retracts into xo, which solves
the case n = 1 for the current lemma.

Now suppose n ≥ 2 and consider a categorical open covering {Ui}n
i=1, from which

we shall construct a new covering that satisfies the lemma’s conditions.

Notice that we can choose the elements Ui of the covering above, in a way that at
least one of them does not contain the basepoint xo. In case all of them were to contain xo

we can simply redefine Un to be Un \xo, which is still an open categorical set. In addition,
we can enumerate the covering {Ui}i in a way that x ∈Ui, for i = 1, . . . ,k and x /∈Ui, for
i = k+1, . . . ,n, for some integer 1 ≤ k < n.

Since X is a normal space and {Ui}i is finite, theorem 1.1.6 guarantees that there
is another open covering {Wi}i with W i ⊂ Ui and Wi 6= /0, whenever Ui 6= /0. And the fact
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that (X ,xo) is a cofibre pair implies, via theorem 1.4.24, that there is a neighborhood of
xo, N ⊂ X , that strong deformation retracts to xo. Consider the subspace

N = N ∩U1 ∩·· ·∩Uk ∩ (X \W k+1)∩·· ·∩ (X \W n),

and notice that, since N ⊂ N, this subspace also strongly deformation retracts to xo, and
it is open, once it is a finite intersection of open subspaces.

Since X is normal, there is an open set M such that

xo ∈ M ⊂ M ⊂ N ⊂U j,

for j = 1, . . . ,n.

We define a new categorical open covering {Vj}n
j=1 by

Vj = (U j ∩ (X \M))∪M, for j = 0, . . . ,k,

and
Vj =Wj ∪N , for j = k+1, . . . ,n.

Now we just have to check that this is an open covering and that all subsets are
categorical. That all Vj are open subsets is immediate. To see that {Vj} j covers X , first
remember that {Wj} j covers X , and Wj ⊂Vj, for j = k+1, . . . ,n, so the only problem may
be in Vj, for j = 1, . . . ,k. Notice that for those cases the only part of U j that is not in Vj

is M \M, but we have M ⊂ N ⊂Vn, whence {Vj} j does in fact cover X .

Finally, let us show that each Vj is categorical, and even more strongly, let us show
that each Vj contracts to xo in X via a contracting homotopy relative to xo. To construct
those homotopies, firs consider the contracting homotopies

G j : U j × I → X ,

such that G(u,0) = u and G(u,1) = c j, for all u ∈U , in which c j is some point in X .

For each c j, j = 1, . . . ,n, define a path

γ j : I → X ,

such that γ(0) = c j and γ(1) = xo. This is possible, since X is path connected.

Let
H j : N × I → X

be a homotopy such that H j(x,0) = x, H j(x,1) = xo and H j(xo, t) = xo, for all x ∈ N and
t ∈ I. Such an H exists since xo is a strong deformation retract of N.
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For j = 1, . . . ,k define Fj : Vj × I → X by

Fj(x, t) =


H j(x, t), if x ∈ M;

G j(x,2t), if x ∈ (U j ∩ (X \M)) and 0 ≤ t ≤ 1/2;

γ j(2t −1), if x ∈ (U j ∩ (X \M)) and 1/2 ≤ t ≤ 1;

and for j = k+1, . . . ,n define Fj : Vj × I → X by

Fj(x, t) =


H j(x, t), if x ∈ N ;

G j(x,2t), if x ∈Wj and 0 ≤ t ≤ 1/2;

γ j(2t −1), if x ∈Wj and 1/2 ≤ t ≤ 1.

It is not difficult to see that Fj is a contracting homotopy relative to xo, for all
j.

Remark 2.1.15. A categorical covering as in lemma 2.1.14, for which each categorical
subset contracts to the basepoint via a contracting homotopy relative to the basepoint, is
called a based categorical covering.

Proposition 2.1.16 ((CORNEA et al., 2003)). If U and V form an open covering of X ,
then cat(X)≤ cat(U)+ cat(V ).

Proof. Suppose cat(U) = m and cat(V ) = n. Let {U1, . . . ,Um} and {V1, . . . ,Vn} be categor-
ical open coverings for U and V , respectively. Notice that, since Ui is open in U , which
is open in X , we have that Ui is itself open in X , and the same is true for Vj. Since any
Ui or Vj is contractible in U or V , they are clearly contractible in X . We conclude that
{U1, . . . ,Um,V1, . . . ,Vn} is a categorical open covering of X , since it has m+n elements we
have cat(X)≤ m+n = cat(U)+ cat(V ).

Proposition 2.1.17 ((CORNEA et al., 2003)). For X and Y normal path-connected
spaces with non-degenerate basepoints, we have cat(X ∨Y ) = max(cat(X),cat(Y )).

Proof. Let us denote cat(X) = n and cat(Y ) = m. Let {U j}n
j=1 and {Vj}m

j=1 be the based
categorical open coverings of X and Y , respectively.

For any 1 ≤ i ≤ n and 1 ≤ j ≤ m, it is easy to see that Ui ∪Vj is an open subset
of X ∨Y . Furthermore, Ui has a contracting homotopy relative to the basepoint xo ∈
X , likewise Vj has a contracting homotopy relative to the basepoint yo ∈ Y . Since the
basepoints are fixed in these homotopies, they easily define a homotopy in Ui∪Vj ⊂ X ∨Y

which contracts Ui ∪Vj to the basepoint [xo] = [yo], hence Ui ∪Vj is an open categorical
subset of X ∨Y .
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If n ≥ m (the other case is analogous) take the based categorical open covering

{U1 ∪V1, . . . ,Um ∪Vm,Um+1 ∪Vm, . . . ,Un ∪Vm},

since it has n elements we get cat(X ∨Y )≤ max(cat(X),cat(Y )).

For the reverse inequality, consider the canonical maps k : X ∨Y → X and j : X →
X ∨Y . Suppose cat(X ∨Y ) = l, with a categorical open covering {U j}l

j=1. Define Vj =

j−1(U j) = X ∩U j. Notice that each Vj is categorical, indeed if H : Ui × I → X ∨Y is a
homotopy contracting to the basepoint [xo], which is always possible by path conectedness,
then define G : Vj×I →X by G(v, t) = k(H( j(v), t)), and notice that G(v,0) = k(H( j(v),0) =
k( j(v)) = v, since k j = idX , and G(v,1) = k(H( j(v),1)) = k([xo]) = xo. Whence cat(X)≤ l =

cat(X ∨Y ), and a completely analogous argument shows that cat(Y )≤ cat(X ∨Y ).

Example 2.1.18. For any positive integer n we have cat(Sn ∨·· ·∨Sn) = cat(Sn) = 2.

In an even more general case, we may consider positive integers n1, . . . ,nm and we
have cat(Sn1 ∨·· ·∨Snm) = 2.

2.2 LS category of Products
In topology, one really important construction is that of a cartesian product of

two (or more) topological spaces. Next, we shall present some interesting results for the
LS category of such spaces.

For the proof of the first theorem in this section, we shall develop a slightly different
way to define LS category, by means of what we call a categorical sequence, as presented
next.

Definition 2.2.1 ((CORNEA et al., 2003)). Given X a topological space, we say that a
nested sequence /0=O0 ⊂O1 ⊂ ·· · ⊂Ok = X of open subsets is a categorical sequence, if
for every i = 1, . . . ,k we have Oi \Oi−1 ⊂Ui, for some categorical open set Ui. Furthermore,
the integer k, as above, is called the length of the categorical sequence.

Lemma 2.2.2 ((CORNEA et al., 2003)). For any topological space, X , we have cat(X)≤ k

if and only if X has a categorical sequence of length k.

Proof. If cat(X) ≤ k, let {Ui}k
i=1 be a categorical open covering of X , define O0 = /0 and

O j =
⋃ j

i=1Ui, for j = 1, . . . ,k, then /0 = O0 ⊂ O1 ⊂ ·· · ⊂ Ok = X and O j \O j−1 ⊂ U j, for
j = 1, . . . ,k. Thus we have a categorical sequence of length k.

Conversely, suppose there is a categorical sequence of length k, /0 = O0 ⊂ O1 ⊂
·· · ⊂ Ok = X , since this is a nested sequence with Ok = X , it must be the case that
{O j \O j−1}k

j=1 covers X , hence {U j}k
j=1 covers X , in which U j is the open categorical set

containing O j \O j−1, therefore cat(X)≤ k.
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Remark 2.2.3. We can conclude from lemma 2.2.2 that the LS category of a space X is
the smallest integer k such that there exists a categorical sequence of length k in X .

Now we are ready to proceed to one of the important theorems in this section.
We will actually present two versions of the next theorem, in each we will impose some
conditions in the spaces X , Y and the product X ×Y so that cat(X ×Y )< cat(X)+cat(Y ).
In both versions presented it is not difficult to see that X and Y being CW-complexes
satisfies the requested conditions.

Remember that if all subspaces of a space X are normal, then X is called a com-
pletely normal space (definition 1.1.7), which is equivalent to the condition that all pairs
of subsets A,B ⊂ X , such that A∩B = /0 and A∩B = /0, should be separable by disjoint
open subsets. In particular, every metric space is normal, and all its subspaces are metric,
hence normal, thus all metric spaces are completely normal. And, as stated in proposition
1.6.12, we have that all CW complexes are completely normal.

Theorem 2.2.4 ((CORNEA et al., 2003)). Suppose X and Y are path-connected spaces
with X ×Y completely normal (in particular, if X and Y are metric spaces or CW com-
plexes). Then

cat(X ×Y )< cat(X)+ cat(Y ).

Proof. Suppose cat(X) = n and cat(Y ) =m, by lemma 2.2.2 there are categorical sequences
/0=O0 ⊂O1 ⊂ ·· · ⊂On =X and /0=P0 ⊂P1 ⊂ ·· · ⊂Pm =Y , in X and Y , respectively. Denote
by {Ui}n

i=1 and {Wj}m
j=1 the open categorical sets such that

Oi \Oi−1 ⊂Ui and Pj \Pj−1 ⊂Wj.

Define Q0 = /0, and for r = 1, . . . ,n+m−1, define Qr ⊂ X ×Y by

Qr =
⋃

i+ j=r+1

Oi ×Pj =
r⋃

j=1

O j ×Pr+1− j

in which we define Oi = /0, for i > n, and Pj = /0, for j > m.

Note that Qn+m−1 = On ×Pm = X ×Y , and to see that for r < n+m− 1 one has
Qr ⊂ Qr+1, simply notice that for j < n we have

O j ×Pr+1− j ⊂ O j+1 ×Pr+1− j ⊂ Qr+1,

and for j = n, since r+1−n < m, we have

On ×Pr+1−n ⊂ On ×Pr+2−n ⊂ Qr+1,

hence we have a nested sequence of open sets

/0 = Q0 ⊂ Q1 ⊂ ·· · ⊂ Qn+m−1 = X ×Y .
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Our goal now is to show that the previous sequence is a categorical one, so we
have to show that each Qr \Qr−1 is contained in an open categorical subset of X ×Y . To
do so, let us first show that

Qr \Qr−1 =
r⋃

j=1

(O j \O j−1)× (Pr− j+1 \Pr− j), (2.2)

for all r = 1, . . . ,m+n−1.

First suppose that (x,y)∈ (O j \O j−1)×(Pr− j+1\Pr− j), for some j ∈ {1, . . . ,r}, then
(x,y) ∈ O j ×Pr− j+1 ⊂ Qr. Since y /∈ Pr− j, from the fact that the P sequence is nested, we
conclude that (x,y) /∈⋃r

k= j Ok×Pr−k. Analogously, x /∈ O j−1 implies (x,y) /∈⋃ j−1
k=1 Ok×Pr−k,

these two unions add up to Qr−1, hence (x,y) /∈ Qr−1 and (x,y) ∈ Qr \Qr−1.

To prove the inverse inclusion, suppose (x,y) ∈ Qr \Qr−1, for some r = 1, . . . ,m+

n−1. Notice that x ∈ O j \O j−1, for some j ∈ {1, . . . ,r}, and (x,y) ∈ Ok ×Pr−k+1, for some
k ≥ j, but then Pr−k+1 ⊂ Pr− j+1 implies that (x,y) ∈ O j ×Pr− j+1. Since (x,y) /∈ Qr−1, we
have (x,y) /∈ O j ×Pr− j, and since x ∈ Q j, we must have y /∈ Pr− j, whence (x,y) ∈ (O j \
O j−1)× (Pr− j+1 \Pr− j), thus proving equation 2.2.

Notice that (O j \O j−1)× (Pr− j+1 \Pr− j) ⊂U j ×Wr− j+1, which is a categorical set
in X ×Y , and that if j 6= k we have

(O j \O j−1)× (Pr− j+1 \Pr− j)∩ (Ok \Ok−1)× (Pr−k+1 \Pr−k) = /0,
(O j \O j−1)× (Pr− j+1 \Pr− j)∩ (Ok \Ok−1)× (Pr−k+1 \Pr−k) = /0,

as a consequence of the fact that both the sequences P and O are nested.

Since X ×Y is completely normal, there are pairwise disjoint open sets A1r, . . . ,Arr

such that (O j \O j−1)× (Pr− j+1 \Pr− j)⊂ A jr. If we take B jr = A j ∩ (U j ×Wr− j+1), we still
have that B1r, . . . ,Brr are pairwise disjoint and (O j \O j−1)× (Pr− j+1 \Pr− j) ⊂ B jr, and
since B jr ⊂ U j ×Wr− j+1, we get the additional property that B jr is a categorical open
subset of X ×Y . Define Zr =

⋃r
j=1 B jr, for r = 1, . . . ,n+m− 1, clearly Zr is open and,

since it is a union of disjoint categorical sets, it must be categorical, once X ×Y is path
connected. Furthermore, notice that Qr \Qr−1 ⊂ Zr, hence Z1, . . . ,Zm+n−1 covers X ×Y ,
and we conclude that cat(X ×Y )≤ m+n−1 = cat(X)+ cat(Y )−1.

Next, we present the second version of the theorem, this time we will make no
assumptions about X ×Y , instead we shall suppose that both X and Y are normal spaces.
Before proving this version of the theorem, let us establish some useful definitions and
preliminary results.

Definition 2.2.5 ((CORNEA et al., 2003)). Let X be a topological space, we say that
an open covering U = {Uα}α of X is an i-covering if any element x ∈ X is contained in
at least i open sets of U . We define the LS i-category of X , cati(X), as the least integer
k such that there is an open categorical i-covering of X of cardinality k.
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In view of definition 2.2.5, it is obvious that the usual categorical open covering is
simply a categorical open 1-covering.

Now, we present a result with the goal of comparing cat(X) with cati(X), for any
integer i.

Lemma 2.2.6. Suppose X is a path-connected normal space and {U1, . . . ,Un} is a categor-
ical open i-covering of X . Then there exists an open set Un+1 such that {U1, . . . ,Un,Un+1}
is an open categorical (i+1)-covering.

Proof. For each m ∈ {1, . . . ,n}, define Cm = {ω ⊂ {1, . . . ,n} | |ω|= i and m /∈ ω}, in which
|ω| is the cardinality of ω . For m = 1, . . . ,n, let Fm ⊂ X be given by

Fm =
⋃

ω∈Cm

(⋂
j∈ω

U j

)
.

Notice that
(X \U1)⊂ F1,

since U1, . . . ,Un is an i-covering (so any x ∈ (X \U1) must be in some intersection of i

elements of the covering, excluding U1). Hence (X \F1) ⊂ U1 and F1 is clearly open, so
we have a closed set, (X \F1), contained in an open set, U1, thus, by the normality of X ,
there must be an open set V1 ⊂ X , with

(X \F1)⊂V1 ⊂V 1 ⊂U1.

Suppose we have constructed V1, . . . ,Vm−1 such that for every k ∈ {1, . . . ,m−1} we
have

(X \Fk)∩

(
k−1⋂
j=1

(X \U j)

)
⊂Vk ⊂V k ⊂Uk ∩

(
k−1⋂
j=1

(X \V k)

)
,

then we know that (X \Um) ⊂ Fm (for the same reason as the case when m = 1) and
V j ⊂U j, for all j = 1, . . . ,m−1, thus we have

(X \Um)∪

(
m−1⋃
j=1

V j

)
⊂ Fm ∪

(
m−1⋃
j=1

U j

)
,

and by taking the complement inclusion we have

(X \Fm)∩

(
m−1⋂
j=1

(X \U j)

)
⊂Um ∩

(
m−1⋂
j=1

(X \V j)

)
,

which is again a closed set contained in an open set, and by normality of X there must
be an open set Vm such that

(X \Fm)∩

(
m−1⋂
j=1

(X \U j)

)
⊂Vm ⊂V m ⊂Um ∩

(
m−1⋂
j=1

(X \V j)

)
.
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Notice that V1, . . . ,Vn are disjoint, since if 1 ≤ k < l ≤ n we have, by the previ-
ous inclusion, Vl ⊂ (X \V j) ⊂ (X \Vk). Also, since Vj ⊂ U j, we conclude that each Vj is
categorical.

Define Un+1 =
⋃n

j=1Vj, then Un+1 is a disjoint union of open categorical sets in
a space X which is path-connected, hence Un+1 is itself a open categorical set, and
{U1, . . . ,Un,Un+1} is an open categorical covering, so the only thing left to prove is that
it is an (i+1)-covering.

To do so, take x ∈ X , if x is already in (i+ 1) elements of the original covering
{U1, . . . ,Un}, there is nothing to be proven, if not, then x is contained in exactly i-elements
of the original covering, and we proceed as follows. Let t ∈ {1, . . . ,n} be the smallest integer
such that x ∈Ut , then clearly x /∈ Ft and for any j = 1, . . . , t −1 we have x /∈U j (since t is
the smallest with that property), hence x ∈

⋂t−1
j=1(X \U j), therefore

x ∈ (X \Ft)∩

(
t−1⋂
j=1

(X \U j)

)
⊂Vm ⊂Un+1,

whence {U1, . . . ,Un+1} is in fact an (i+1)-covering of X .

An immediate consequence of the lemma 2.2.6 is the following corollary.

Corollary 2.2.7. For X a path-connected normal space, we have that cat(X)≤ n if and
only if cati(X)≤ n+ i−1.

Proof. Suppose cat(X)≤ n, then there is a categorical open 1-covering of X of cardinality
n. By applying lemma 2.2.6 i−1 times, we get an open categorical i-covering of cardinality
n+1− i, hence cati(X)≤ n+ i−1.

Conversely, if cati(X)≤ n+ i−1, then let {U1, . . . ,Un, . . . ,Un+i−1} be a categorical
open i-covering of X . Then it is not difficult to see that {U1, . . . ,Un} must also cover X ,
since each x ∈ X is in i elements of the original covering and we have extracted only i−1
elements, namely Un+1, . . . ,Un+i−1, to construct the new covering, hence cat(X)≤ n.

With this in hands, we are finally ready to present the second version of the product
inequality for the LS category.

Theorem 2.2.8. If X and Y are path-connected normal spaces, then cat(X×Y )< cat(X)+

cat(Y ).

Proof. Suppose cat(X) = n and cat(Y ) = m. By corollary 2.2.7 we have that catm(X) ≤
n+m− 1 and catn(Y ) ≤ n+m− 1. Let U = {U1, . . . ,Un+m−1} be a categorical open m-
covering of X and V = {V1, . . . ,Vn+m−1} a categorical open n-covering of Y . Define W =

{W1, . . . ,Wn+m−1}, in which Wj =U j ×Vj. Notice that each Wj is a categorical open set in
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X ×Y . To show that W covers X ×Y , let (x,y) ∈ X ×Y , then, since U is an m-covering of
X , there are m indices { j1, . . . , jm} ⊂ {1, . . . ,n+m−1} such that x ∈U ji , for all i = 1, . . . ,m.
Analogously, there are indices {k1, . . . ,kn} ⊂ {1, . . . ,n+m− 1} such that y ∈ Uki , for i =

1, . . . ,n. There must be an intersection between these two sets of indices, otherwise we
would have n+m distinct indices in a set of cardinality n+m−1. So if we denote by j the
index such that x∈U j and y∈Vj, we obviously have (x,y)∈Wj. Whence W is a categorical
open covering of X ×Y and cat(X ×Y )≤ |W |= n+m−1 = cat(X)+ cat(Y )−1.

Since the product of CW complexes (respectively metric spaces) is always a CW
complex (respectively a metric space), and since CW complexes and metric spaces are
always completely normal, both theorems 2.2.4 and 2.2.8 imply the following corollary.

Corollary 2.2.9. If X1, . . . ,Xn is a collection of CW complexes (or metric spaces), then

cat(X1 ×·· ·×Xn)≤ cat(X1)+ · · ·+ cat(Xn)−n+1.

Example 2.2.10. As a generalization of example 2.1.12, we may define the spaces T n
m =

∏n
i=1 Sm, and as in example 2.1.12 we have that T n+1

m = Sm×T n
m, so by the Künneth theorem

we know that if K is a field, then Hmn(T n
m;K) = K with the cross product

× : Hm(Sm;K)⊗Hm(n−1)(T n−1
m ;K)→ Hnm(T n

m;K)

being an isomorphism, whence there is a nonzero element in Hn(T n
m;K) given by

u1 ^ · · ·^ un, and cupK(T n
m)= n+1≤ cat(T n

m). In this case, the dimension inequality is not
really helpful, since the dimension of T n

m is nm, we conclude that n+1 ≤ cat(T n
m)≤ nm+1,

which only determines the category in the case where m = 1, which is exactly example
2.1.12. In the general case, we may use the product inequality

cat(T n
m) = cat(Sm ×·· ·×Sm)≤ cat(Sm)+ · · ·+ cat(Sm)−n+1 = 2n−n+1 = n+1,

so we conclude that cat(T n
m) = n+1, for all positive integers n and m.

2.3 Whitehead’s Formulation
In this section, we will present an alternative formulation of LS category, due to

George W. Whitehead.

Definition 2.3.1 ((CORNEA et al., 2003)). The fat wedge of order k of a based space
(X ,∗X) is given by

T k(X) =
{
(x1, . . . ,xk) ∈ Xk : at least one x j is the basepoint ∗X

}
.
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Let us denote by jk : T k(X)→ Xk the canonical inclusion, and let ∆ : X → Xk be
the diagonal map.

Definition 2.3.2 ((CORNEA et al., 2003), Whitehead’s formulation). The Whitehead
category of X , catWh(X) is the smallest integer n (or ∞) such that the diagonal map
∆ : X → Xn factors through the fat wedge T n(X) up to homotopy, in other words, there is
a map ∆′ such that the following diagram homotopy commutes

T n(X)

X Xn

jn∆′

∆

We will prove that this definition coincides with the open covering definition of
category, for the particular case of normal, path-connected spaces with non-degenerate
basepoint. And since we generally deal with spaces with the homotopy type of a connected
CW complex, we can consider both category definitions as equivalent.

First, we prove the following lemma.

Lemma 2.3.3 ((CORNEA et al., 2003)). Let X be a normal topological space. In this
case, cat(X)≤ n if and only if there is an open covering {V1, . . . ,Vn}, such that there are
homotopies H j : X × I → X , with H j|X×{0} = idx and H(v,1) = ∗ j, for all v ∈ Vj, in which
∗ j is a fixed point associated with Vj.

Proof. The “if” part is simple since the condition stated above implies the existence of
an open categorical covering with n open subsets. Let us prove the “only if” part of the
statement.

Suppose X is normal and cat(X)≤ n, then by definition there exists a categorical
open covering U1, . . . ,Un of X , with homopies G j : U j × I → X starting at the inclusion
U j ↪→ X and ending as a constant map G j(u,1) = ∗ j.

Since X is normal, there are open coverings {Vj}n
j=1 and {Wj}n

j=1 of X such that

Vj ⊂V j ⊂Wj ⊂W j ⊂U j.

V j and X \Wj are two disjoint closed subsets of a normal space, hence there is a
continuous function λ j : X → I, such that λ j(V j) = 1 and λ j(X \W ) = 0.

With this, we can define the homotopy H j : X × I → X , given by

H j(x, t) =

x, if x ∈ X \Wj;

G j(x, tλ j(x)), if x ∈Wj.

H j is continuous on two closed subsets X \Wj × I and W j × I, which cover X × I,
and on the intersection (X \Wj × I)∩ (W j × I) = W j \Wj × I the two definitions coincide,
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hence H j is itself continuous. It is not difficult to see that H j(x,0) = x, for all x ∈ X , and
H j(v,1) = G j(v,1) = ∗ j, for all v ∈Vj. So we have the desired homotopy.

Theorem 2.3.4 ((CORNEA et al., 2003)). For X a normal path-connected topological
space with non-degenerate basepoint, we have that the Whitehead’s definition of category
coincides with the usual open categorical covering definition, that is catWh(X) = cat(X).

Proof. Suppose catWh(X) = n, then there is a map ∆′ : X → T n(X), such that the diagram

T n(X)

X Xn

j∆′

∆

homotopy commutes, in other words, there is a homotopy H : X × I → Xn such that
H(x,0) = ∆(x) and H(x,1) = j∆′(x), for all x ∈ X .

Let pi : Xn → X be the ith projection onto X . Then we have piH : X × I → X with
piH(x,0) = x and piH(x,1) = pi j∆′(x), for all x ∈ X .

Let N be an open neighborhood of the basepoint ∗ which contracts to ∗ (such a
neighborhood exists since ∗ is non-degenerate), and define Ui = (pi j∆)−1(N).

By definition we have that T n(X) =
⋃

i p−1
i (∗) and j∆′ ⊂ T n(X), hence

( j∆′)−1

(⋃
i

p−1
i (∗)

)
= ( j∆′)−1(T n(X)) = X ,

and ⋃
i

Ui =
⋃

i

(pi j∆′)−1(N) =
⋃

i

( j∆′)−1(p−1
i (N))

= ( j∆′)−1

(⋃
i

p−1
i (N)

)
⊃ ( j∆′)−1

(⋃
i

p−1
i (∗)

)
= ( j∆′)−1 (T n(X)) = X ,

therefore, U1, . . . ,Un is an open covering of X . It remains to be shown that this covering
is categorical.

Let G : N × I → X be the contracting homotopy for N, contracting to ∗, then we
may define the contracting homotopies Li : Ui × I → X by

Li(u, t) =

piH(u,2t), 0 ≤ t ≤ 1/2;

G(pi j∆(u),2t −1), 1/2 ≤ t ≤ 1;

hence each Ui is categorical and cat(X)≤ n = catWh(X).

Conversely, suppose cat(X) = n, with {U1, . . . ,Un} a categorical covering as in
lemma 2.3.3, i.e., there are homotopies Hi : X × I → X such that Hi(x,0) = x, for all x ∈ X ,
and Hi(u,1) = ∗, for all u ∈Ui.
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Define H : X × I → Xn by H(x, t) = (H1(x, t), . . . ,Hn(x, t)), for all x ∈ X and t ∈ I.
Notice that, for all x ∈ X , H(x,0) = ∆(x) and H(x,1) ∈ T n(X), since x must be in some
Ui, which implies Hi(x,1) = ∗. Define ∆′ : X → T n(X) by ∆′(x) = H(x,1). Then j∆′'∆ (via
the homotopy given by H), in which j : T n(X) ↪→ Xn is the canonical inclusion, hence, by
Whitehead’s definition of category, we conclude that catWh(X) ≤ n = cat(X), therefore
cat(X) = catWh(X).

One particularly interesting class of spaces for which theorem 2.3.4 is valid is the
class of path-connected CW complex. Using Whitehead’s definition of category we can
obtain a more restrictive upper bound than the dimension of the space for this class of
spaces.

Theorem 2.3.5 ((CORNEA et al., 2003)). If X is an (n− 1)-connected (n ≥ 1) CW
complex of dimension N < ∞, then

cat(X)≤ dim(X)

n
+1.

Proof. Since X is (n−1)-connected, we may assume its CW structure is given by a single
0-cell (the basepoint) and no other cells of dimension lower than n, i.e., X = {x0}∪Xn ∪
·· ·∪XN , in which Xk denotes the k-skeleton of X (to see why X has such a CW structure
refer to proposition 4.15 in (HATCHER, 2002)).

Given this CW structure of X , we see that the (n(k+ 1)− 1)-skeleton of the fat
wedge T k+1(X) is equal to the (n(k+1)−1)-skeleton of Xk+1, since the difference between
these two spaces only appears in dimension equal to or greater than n(k+1).

Choose k to be the integer such that nk ≤ N < n(k+ 1). By the cellular approx-
imation theorem (1.6.20) we have that the diagonal map ∆ : X → Xk+1 is homotopic to
a cellular map ∆̃ : X → Xk+1, and since dim(X) = N, we have that the image of ∆ is
contained in the N-skeleton of Xk+1, which is a subset of T k+1(X), hence we may define
∆′ : X → T k+1(X) such that j∆′ = ∆̃'∆, in which j : T k+1(X) ↪→ Xk+1 is the canonical
inclusion, hence, by Whitehead’s definition of category, we conclude that

cat(X)≤ k+1 ≤ N
n
+1 =

dim(X)

n
+1.

As a final remark let us show that Whitehead’s definition of category is a homotopy
invariant.

Theorem 2.3.6. If X and Y are based spaces of the same homotopy type, then
catWh(X) = catWh(Y ).
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Proof. First notice that if X and Y are of the same homotopy type, with homotopy
equivalence f : X →Y and homotopy inverse g : Y → X , then the map f n : Xn →Y n given by
f n(x1, . . . ,xn) = ( f (x1), . . . , f (xn)), for all (x1, . . . ,xn) ∈ Xn, is a homotopy equivalence with
homotopy inverse gn : Y n → Xn defined in an analogous way. If F : X × I → X is a homotopy
such that F(x,0) = g f (x) and F(x,1) = x, for all x ∈ X , then Fn : Xn × I → Xn given by
Fn(x1, . . . ,xn, t) = (F(x1, t), . . . ,F(xn, t)), for all (x1, . . . ,xn, t) ∈ Xn × I, is a homotopy with
Fn(x1, . . . ,xn,0) = gn f n(x1, . . . ,xn) and Fn(x1, . . . ,xn,1) = (x1, . . . ,xn), for all (x1, . . . ,xn) ∈
Xn. Furthermore, since we are dealing with based spaces, we clearly have f (T n(X)) ⊂
T n(Y ) and F(T n(X)× I) ⊂ T n(X), hence we may restrict f n and gn to define homotopy
equivalences f ′ : T n(X)→ T n(Y ) and g′ : T n(Y )→ T n(X), so that jY f ′ = f n|T n(X), in which
jY : T n(Y ) ↪→ Y n is the canonical inclusion.

Now suppose catWh(X)= n, and let ∆′
X : X → T n(X) be a map such that the diagram

T n(X)

X Xn

jX
∆′

X

∆X

homotopy commutes.

Define ∆′
Y : Y → T n(Y ) by ∆′

Y = f ′∆′
X g. Notice that ∆Y f = f n∆X , hence gn∆Y f =

gn f n∆X '∆X , and that jY f ′ = f n|T n(X) implies that gn( jY f ′)' jX .

We have

gn( jY ∆′
Y ) = gn( jY f ′∆′

X g) = (gn jY f ′)∆′
X g' jX ∆′

X g'∆X g'gn∆Y f g'gn∆Y ,

hence
jY ∆′

Y ' f ngn( jY ∆′
Y )' f ngn∆Y '∆Y ,

and in conclusion catWh(Y )≤ n = catWh(X). The proof of the opposite inequality is com-
pletely analogous.

2.4 Ganea’s formulation
The formulation of category presented in this section is due to Tudor Ganea, and

like Whitehead’s formulation, it is very important from the point of view of homotopy
theory.

Definition 2.4.1 ((CORNEA et al., 2003)). Define G̃n(X) to be the homotopy pullback
in the diagram

G̃n(X) T n(X)

X Xn

p̃n jn

∆

we can take p̃n to be a fibration, which is called the nth Ganea’s fibration.
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Proposition 2.4.2 ((CORNEA et al., 2003)). Given p̃n : G̃n(X) → X the nth Ganea
fibration of a space X , there exists a section s : X → G̃n(X) of p̃n if and only if catWh(X)≤ n.

Proof. Remember, from proposition 1.4.5, that for a fibration as p̃n, the existence of a
section is equivalent to the existence of a section up to homotopy, i.e., a map s : X → G̃n(X)

such that p̃ns' idX .

With this in hands, suppose catWh(X) ≤ n. Let ∆′ : X → T n(X) be the map such
that jn∆′'∆ (as in definition 2.3.2). Then the unbroken arrow diagram

X

G̃n(X) T n(X)

X Xn

∆′

s

idX

δ

p̃n jn

∆

commutes homotopically, and by the homotopy pullback property there exists a map
s : X → G̃n(X), so that the diagram homotopy commutes. Hence p̃ns' idX , and by our
initial remark there is a section of p̃n.

Conversely, suppose s : X → G̃n(X) is a section of p̃n, and define ∆′ = δ s, then
jn∆′ = jnδ s'∆p̃ns = ∆, whence catWh(X)≤ n.

It is evident, by proposition 2.4.2 and theorem 2.3.4, that we may define the
category of a path-connected normal space with non-degenerate basepoint as being the
smallest integer such that a section of p̃n exists. This will indeed be the final formulation,
but before we do so let us introduce a useful construction for obtaining the Ganea spaces
and fibrations, which is the way Ganea himself originally did.

Definition 2.4.3 ((CORNEA et al., 2003), The Fibre-Cofibre Construction). Let
X be a topological space with basepoint ∗, we shall build the Ganea fibrations
Fn(X) Gn(X) X

in pn inductively.

First consider F1(X) G1(X) X
i1 p1 to be the fibration

ΩX PX X
i1 p1 in which ΩX is the loop space of X , PX is the space of

all paths starting on ∗, i1 is simply the inclusion map and p1 maps each path to its final
point, p1(γ) = γ(1).

Suppose we have defined the fibration Fn(X) Gn(X) X
in pn , let us use

it to construct the n+ 1 case. Let C(in) = Gn(X)∪C(Fn(X)) be the mapping cone of in.
Define qn : C(in)→ X to be the extension of pn by mapping C(Fn(X)) into ∗.

Now we can turn qn into a fibration pn+1 : Gn+1(X)→ X , written explicitly we have

Gn+1(X)
.
=
{
(x,γ) ∈C(in)×X I : qn(x) = γ(0)

}
,
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and pn+1(x,γ) = γ(1), for all x ∈C(in), and we have the homotopy commutative diagram

C(in) Gn+1(X)

X

qn

hn

pn+1

with hn defined by hn(x) = (x,γqn(x)), in which γα is the constant path at α . Then hn is a
homotopy equivalence, and we have the more complete homotopy commutative diagram

Gn(X) C(in) Gn+1(X)

X

pn qn

'

pn+1

Hence inductively we build the following diagram of Ganea fibrations

ΩX = F1(X) F2(X) F3(X) · · · Fn(X) · · ·

PX = G1(X) G2(X) G3(X) · · · Gn(X) · · ·

X X X · · · X · · ·

i1 i2 i3 in

p1 p2 p3 pn

The previous definition is functorial, and we can see this inductively: for the case
n = 1, if f : X → Y is a based map, then G1( f ) : G1(X) = PX → G1(Y ) = PY defined by
G1( f )(γ) = f ◦γ is a based map, this makes G1 into a covariant functor, and the following
diagram commutes

G1(X) G1(Y )

X Y

G1( f )

pX
1 pY

1
f

Now, suppose we have defined the covariant functor Gn, and let us use it to contruct
Gn+1. Remember that

Gn+1(X) =
{
(x,γ) ∈ Gn(X)∪C(Fn(X))×X I : qn(x) = γ(0)

}
.

Given f : X → Y we have Gn( f ) : Gn(X) → Gn(Y ) and we define Gn+1( f ) : Gn+1(X) →
Gn+1(Y ) by

Gn+1( f )(x,γ) =

(Gn( f )(x), f ◦ γ) , if x ∈ Gn(X);

([Gn( f )(in(z)), t], f ◦ γ) , if x = [z, t] ∈C(Fn(X)).

Gn+1 is well defined, and since Gn is a covariant functor, so is Gn+1. Summing this
all up, we have the following proposition.
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Proposition 2.4.4 ((CORNEA et al., 2003)). Gn is a covariant functor for each n ∈ N
and the following diagram commutes

Gn(X) Gn(Y )

X Y

Gn( f )

pX
n pY

n
f

Theorem 2.4.5 ((CORNEA et al., 2003) theorem 1.63). For all n, we have that Gn(X)

and G̃n(X) have the same homotopy type, and the homotopy equivalence satisfies the
following homotopy commutative diagram

Gn(X) G̃n(X)

X
pn

'

p̃n

Now we can give the new definition of category.

Definition 2.4.6 ((CORNEA et al., 2003)). The category of a path-connected normal
space X with non-degenerate basepoint, cat(X), is the smallest integer n such that there
is a section for the nth Ganea fibration Fn(X) Gn(X) X

in pn .

2.5 LS category lower bounds

The Toomer invariant

In this section, we shall introduce the Toomer invariant of a topological space,
which is an important lower bound for category.

Definition 2.5.1 ((CORNEA et al., 2003)). Let R be a commutivative ring, X a
topological space and pn : Gn(X) → X be the nth Ganea fibration. The Toomer in-
variant of X with coefficients in R, eR(X) is the least integer k ≥ 0 such that
H∗(pk) : H∗(Gn(X))→ H∗(X) is an epimorphism.

Proposition 2.5.2 ((CORNEA et al., 2003)). For path-connected normal spaces with
non-degenerate basepoint the Toomer invariant is a lower bound for the LS category.

Proof. If cat(X) ≤ n, by Ganea’s definition, there is a section s : X → Gn(X) of pn, i.e.,
pn ◦ s = idX , which implies H∗(pn)◦H∗(s) = idH∗(X), hence H∗(pn) is an epimorphism and
we have eR(X)≤ n.
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Category Weight

Definition 2.5.3 ((CORNEA et al., 2003)). Let X be a CW-complex and u ∈ H∗(X ;R),
u 6= 0, a cohomology class. Then the category weight of u, wgt(u), is the greatest integer
k (or ∞) such that H∗(pk−1)(u) = 0, in which pk−1 is the (k−1) Ganea fibration.

If u ∈ H∗(X ;R) is the zero class (u = 0), we usually write wgt(u) = ∞, since
H∗(pk−1)(u) = 0, for all k.

Proposition 2.5.4. For X a CW-complex and u a non-zero cohomology class, if
H∗(pn)(u) 6= 0, then H∗(pn+1)(u) 6= 0. And if H∗(pn)(u) = 0, then H∗(pn−1)(u) = 0.

Proof. Both claims are easily shown with the following homotopy commutative diagram

Gn(X) Gn+1(X)

X

fn

pn pn+1

from which we get H∗( fn)◦H∗(pn+1) = H∗(pn). So, H∗(pn)(u) 6= 0 implies H∗(pn+1)(u) 6= 0
and H∗(pn+1)(u) = 0 =⇒ H∗(pn)(u) = 0.

Proposition 2.5.4 shows that category weight can also be defined to be the smallest
integer k such that H∗(pk)(u) 6= 0.

Proposition 2.5.5 ((CORNEA et al., 2003)). If X is a path-connected CW complex,
then cat(X)≥ wgt(u), for any cohomology class u 6= 0.

Proof. Suppose cat(X) ≤ n, then there is a section s for the nth Ganea fibration pn,
therefore pn is surjective and H∗(pn) is injective, whence H∗(pn)(u) 6= 0, and we conclude
that wgt(u)≤ n.
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CHAPTER

3
TOPOLOGICAL COMPLEXITY

3.1 The Motion Planning Problem
In this section, we will introduce what is called in robotics the Motion Planning

Problem. The main reference on the topic is (LATOMBE, 1991).

For many decades, one big problem in robotics has been the development of au-
tonomous robots, in short, these are robots that can perform highly complex tasks without
detailed guidance on how to proceed on each step.

As a simple example, we have a robot that can move freely on a 2D surface. In
the non-autonomous case, a person would have to control the robot’s every move using a
controlling system. In the alternative autonomous case, the robot would be programmed
to choose paths on the surface automatically when given the task “go from point A to
point B”.

For any given mechanical system, we can describe every configuration of it as a
point in a topological space X . In this scenario, the task of obtaining a motion planner
on X reduces to obtaining a function s : X ×X → X I from the Cartesian product X ×X to
the space of all paths in X , X I.

Figure 7 – Representation of a motion planning function s : X ×X → X I.

Source: Elaborated by the author.

If X is path-connected (as is expected for any space of configurations of a me-
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chanical system), then we can always construct a function s as mentioned above. The
difficulties arise when we require s to be continuous (considering the open-compact topol-
ogy in X I). This is a valid requirement for practical reasons since the continuity, in this
case, implies that small perturbations in the initial and final points (x,y) ∈ X ×X do not
result in completely different paths in X I.

Figure 8 – Two motion planning functions, on the left, a discontinuous one, and on the right, the
desired continuous version, with small variations resulting in little change between
the paths s(x,y) and s(x′,y′).

Source: Elaborated by the author.

For a more formal definition of a motion planner, first define the path fibration
π : X I → X ×X such that π(γ) = (γ(0),γ(1)), for all γ ∈ X I, and we have the following
definition.

Definition 3.1.1 ((FARBER, 2003)). In the conditions previously described, a motion
planner in X is a section of the fibration π.

As we can see from the next theorem, it is a really strict class of spaces that assume
a continuous motion planner as previously described.

Theorem 3.1.2 ((FARBER, 2003)). Let X be a topological space, then there exists a
continuous motion planning function s : X ×X → X I, if and only if X is contractible.

Proof. First, suppose that there is a continuous motion planning function s : X ×X → X I,
then fix a point x0 ∈ X and define the homotopy

F : X × I → X

(x, t) 7→ s(x,x0)(t),

for all x ∈ X and t ∈ I, which clearly contracts X into the point x0.

Conversely, suppose X is contractible, then there exists a homotopy F : X × I → X

which contracts X into a single point x0. With this, we can build the motion planner
s : X ×X → X I defined by

s(x,y)(t) =

F(x,2t), 0 ≤ t ≤ 1/2;

F(y,2−2t), 1/2 ≤ t ≤ 1.
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3.2 Topological Complexity
Inspired by the motion planning problem, Michael Farber introduced in 2003 a

topological invariant (later it will be shown that it is even a homotopy invariant) with the
idea of measuring how “complex” it would be to develop a motion planning algorithm for a
given mechanical system. Since then, much work has been done, and many mathematicians
are studying and developing the theory around this new invariant called Topological
Complexity.

Definition 3.2.1 ((FARBER, 2003)). Given a topological space X , we say that the Topo-
logical Complexity of X , TC(X), is the smallest integer k such that there exist U1, . . . ,Uk

an open covering of X ×X and local sections si : Ui → X I of the path fibration π, for all
i = 1, . . . ,n.

Figure 9 – Representation of the decomposition of X ×X , as in definition 3.2.1.

Source: Elaborated by the author.

Notice that the basic idea in definition 3.2.1 is to decompose the space X ×X into
open subspaces in each of which we can find a section of π, that is, a local continuous
motion planning function.

Clearly, for contractible spaces we will have TC(X) = 1. This follows immediately
from theorem 3.1.2, and means that we do not need to decompose the space into smaller
parts to find a motion planning algorithm.

Remark 3.2.2. Notice that in definition 3.2.1, the Topological Complexity measures
exactly how many open subspaces are needed to cover the whole space with local sections
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of π, it is important to mention that some authors use the so-called “normalized version”
of topological complexity, which is one less than the original definition. There is no huge
advantage in using one or the other definition, but in all that follows we shall use the
original definition.

As mentioned earlier the Topological Complexity only equals 1 when the space is
contractible. Now we see an even more general result, not only for TC(X) = 1, but for any
case, it only depends on the homotopy type of the space.

Theorem 3.2.3 ((FARBER, 2003)). The topological complexity of X , TC(X), depends
only on its homotopy type.

Proof. Suppose X and Y are of the same homotopy type, with f : X → Y a homotopy
equivalence and g : Y → X its homotopy inverse. Let TC(X) = k, and consider an open
covering U1, . . . ,Uk of X ×X with local sections si : Ui → X I. By defining Vi = (g×g)−1(Ui),
we have an open covering of Y ×Y , and we can explicitly define local sections on each Vi.
To do so, first consider F : Y × I → Y to be a homotopy starting on idY and ending on
f ◦g, then we define the section ri : Vi → PY as

ri(A,B)(t) =


F(A,3t), 0 ≤ t ≤ 1/3;

f (si(g(A),g(B))(3t −1)), 1/3 ≤ t ≤ 2/3;

F(B,3−3t), 2/3 ≤ t ≤ 1.

Hence, we found k local sections of the path fibration in Y , therefore TC(Y )≤ k = TC(X).
The opposite inequality is completely analogous, whence TC(Y ) = TC(X)

Lemma 3.2.4 ((FARBER, 2003)). For any topological space X we have

cat(X)≤ TC(X).

Proof. Suppose TC(X) = k, and let U1, . . . ,Uk be the open covering in X ×X with local
sections, si : Ui → X I, of the path fibration. Fix a point a ∈ X , and define f : X → X ×X

by f (x) = (a,x), for all x ∈ X . This function is clearly continuous, hence Vi = f−1(Ui) is
open in X . Moreover, since U1, . . . ,Uk is an open covering of X ×X , V1, . . . ,Vk is an open
covering of X . Finally, notice that each Vi is categorical, to see that (if Vi 6= /0), consider
the homotopy F : Vi × I → X given by F(x, t) = si(x,a)(t), for all x ∈Vi and t ∈ I. Whence
we conclude that cat(X)≤ k = TC(X).

Lemma 3.2.5. For any path-connected topological space X we have TC(X)≤ cat(X ×X)

Proof. Suppose U ⊂ X ×X is an open categorical subset of X ×X . Let F : U × I → X ×X

be a contracting homotopy, i.e., F(u,0) = u and F(u,1) = (a,a), for some a ∈ X and for
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all u ∈ U . Notice that we may choose any point a ∈ X , since X is path connected. Then
we can define s : Ui → X I by

s(u)(t) =

F1(u,2t), for 0 ≤ t ≤ 1/2;

F2(u,2−2t), for 1/2 ≤ t ≤ 1;

in which F = (F1,F2). Clearly, s is a local section of the path fibration π : X I → X ×X .
Hence, if cat(X ×X) = n and U1, . . . ,Un is a categorical covering of X ×X , then this covering
also satisfies the topological complexity’s conditions, hence TC(X)≤ n = cat(X ×X).

Theorem 3.2.6 ((FARBER, 2003)). If X is a path-connected, paracompact and locally
contractible space, such that X ×X is completely normal (in particular, if X is a path
connected, locally contractible CW complex or metric space), then

cat(X)≤ TC(X)≤ 2cat(X)−1,

and
TC(X)≤ 2dim(X)+1.

Proof. We already proved in lemma 3.2.4 that cat(X)≤ TC(X). And by combining lemma
3.2.5 and theorem 2.2.4 we get

TC(X)≤ cat(X ×X)≤ 2cat(X)−1.

The other inequality follows from the fact that cat(X) ≤ dim(X)+1 (see theorem 2.1.4).

Theorem 3.2.7 ((FARBER, 2004)). If X is an (n−1)-connected CW complex. Then

TC(X)≤ 2dim(X)

n
+1.

Proof. In the conditions of the theorem we have that cat(X) ≤ dim(X)
n + 1 (see theorem

2.3.5), this together with the inequality TC(X)≤ 2cat(X)−1 proves the theorem.

Corollary 3.2.8 ((FARBER, 2004)). If X is a simply connected CW complex, then

TC(X)≤ dim(X)+1.

Proof. Simply connected means 1-connected, so n = 2 in the previous theorem gives the
desired result.

Theorem 3.2.9 ((FARBER, 2003)). If X and Y are metrizable path-connected spaces,
then

TC(X ×Y )≤ TC(X)+TC(Y )−1.
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Proof. Denote TC(X) =m and TC(Y ) = n,let U1, . . . ,Um be an open covering of X ×X such
that there exists a continuous motion planning si : Ui → X I, for each i = 1, . . . ,m. Since
X ×X is metrizable, it is paracompact, hence there is a partition of unity fi : X ×X → [0,1],
i = 1, . . . ,m, subordinate to the open covering {Ui}i.

Analogously, let V1, . . . ,Vn be an open covering of Y ×Y , σ j : Vj → PY , j = 1, . . . ,n
a continuous motion planning, and f j : Y ×Y → [0,1] a partition of unity subordinate to
the covering.

Given a pair S×T ⊂ {1, . . . ,m}×{1, . . . ,n} we define

W (S,T ) =

{
(x,y,z,w) ∈ (X ×Y )× (X ×Y ) :

fi(x,z)g j(y,w)> fi′(x,z)g j′(y,w),

∀ (i, j) ∈ S×T and (i′, j′) /∈ S×T

}

Notice that:

(a) Every W (S,T ) is open.

This is indeed true, since each fig j − fi′g j′ is a continuous function, we have that
W (S,T ) is a finite intersection of open sets

W (S,T ) =
⋂

(i, j) ∈ S×T

(i′, j′) /∈ S×T

( fig j − fi′g j′)
−1((0,∞))

and therefore it is itself open.

(b) If S×T ⊈ S′×T ′ and S×T ⊉ S′×T ′, then W (S,T )∩W (S′,T ′) = /0.

Let (i, j) ∈ S×T \ S′×T ′ and (i′, j′) ∈ S′×T ′ \ S×T . If (x,y,z,w) ∈ W (S,T ), then
fi(x,z)g j(y,w)> fi′(x,z)g j′(y,w), thus (x,y,z,w) /∈W (S′,T ′), whence W (S,T )∩W (S′,T ′) = /0.

(c) If (i, j) ∈ S × T , then W (S,T ) ⊂ Ui ×Vj, and there is a continuous motion
planning function ρi j : Ui ×Vj → P(X ×Y ), which can be restricted to W (S,T ).

Notice that we are considering the natural homeomorphism between (X ×Y )×
(X ×Y ) and (X ×X)× (Y ×Y ), so

Ui ×Vj
.
= {(x,y,z,w) ∈ (X ×Y )× (X ×Y ) | (x,z) ∈Ui, (y,w) ∈Vj}.

Suppose (i, j)∈ S×T , if (x,y,z,w)∈W (S,T ), then fi(x,z)g j(y,w)> 0, which implies (x,z)∈
Ui and (y,w) ∈Vj, hence W (S,T )⊂Ui ×Vj.

The continuous motion planning on Ui ×Vj is defined as

ρi j : Ui ×Vj −→ P(X ×Y )

(x,y,z,w) 7−→ ρi j(x,y,z,w) : [0,1]→ X ×Y

t 7→ (si(x,z)(t),σ j(y,w)(t))
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(d) The sets W (S,T ) cover (X ×Y )× (X ×Y ).

Let (x,y,z,w) ∈ (X ×Y )× (X ×Y ) be any point, and consider S×T ⊂ {1, . . . ,m}×
{1, . . . ,n} such that S consists of the indices i for which fi(x,z) = maxk{ fk(x,z)}, and
T consists of the indices j such that g j(y,w) = maxl{gl(y,w)}, then we clearly have
(x,y,z,w) ∈W (S,T ).

Now, define the open set

Wk =
⋃

|S|+|T |=k

W (S,T ),

for k = 2,3, . . . ,n+m. Notice that, from item (c), we have that W (S,T )∩W (S′,T ′) = /0,
whenever |S|+ |T |= k = |S′|+ |T ′|, whence there exists a continuous motion planning on
each Wk, and we conclude that TC(X ×Y )≤ m+n−1.

Since the Cartesian product of metrizable path-connected spaces is still metrizable
path-connected, we get, as a consequence of theorem 3.2.9, the following corollary.

Corollary 3.2.10. If X1, . . . ,Xn are metrizable path-connected spaces, then

TC(X1 ×X2 ×·· ·×Xn)≤ TC(X1)+TC(X2)+ · · ·+TC(Xn)−n+1.

3.3 Schwarz Genus and a Cohomological Bound for TC
In what follows, we shall deduce a sophisticated relation between the topological

complexity of a space X and its cohomology ring H∗(X ×X ;R). This relation was first
shown by Albert Schwarz while dealing with a numerical invariant nowadays called the
Schwarz Genus of a fibration, which is a generalization of Farber’s Topological Complexity.

Definition 3.3.1 ((SCHWARZ, 1966)). Given a fibration B = (E,B,F, p), define the
genus of B, g(B) or g(p), to be the smallest integer k such that there is an open covering
U1, . . . ,Uk of the base B with local sections si : Ui → E of p defined for all i.

Remark 3.3.2. Notice that the Topological Complexity is simply the Schwarz Genus of
the path fibration as defined in example 1.4.3.

One might have already noticed the similarities between topological complexity
and the Lusternik-Schnirelmann category just by looking at both definitions. In fact,
both concepts are specific cases of the Schwarz Genus. For the Topological Complexity,
we have already seen that it is simply the genus of the path fibration. The following
proposition shows that the LS category is also the genus of a specific fibration.
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Proposition 3.3.3. Let (X ,x0) be a path connected based space, consider the space

P0X = {γ ∈ X I | γ(0) = x0}

and define the fibration p : P0X → X by p(γ) = γ(1), then cat(X) = g(p).

Proof. Suppose U ⊂ X is a subset for which there is a local section of p, i.e., there is a
map s : U → P0X such that s(u)(0) = x0 and s(u)(1) = u, for all u ∈ U . So we can define
F : U × I → X by F(u, t) = s(u)(t), for all u ∈U and t ∈ I, for which we have F(u,0) = x0

and F(u,1) = u, for all u ∈U , hence U is categorical.

Conversely, suppose U ⊂ X is categorical, then there is F : U × I → X such that
F(u,0) = x0 and F(u,1) = u, for all u ∈ U , thus we can define a local section of p by
s : U → P0X given by s(u)(t) = F(u, t), for all u ∈U and t ∈ I.

Remark 3.3.4. Notice that, if B = (E,B,F, p) is a fibration of genus 1, g(B) = 1, this
means that there is a global section for p, which we will denote by s : B → E. Since we
have ps = idB, the functoriality of cohomology implies that s∗∗p∗∗ = idH∗(B;R), in which R is
any commutative ring. This means that p∗∗ is injective, in other words, ker(p∗∗) = 0.

From remark 3.3.4, we understand that if a fibration p : E → B has genus 1, then
its cohomology induced homomorphism has a trivial kernel. In what follows we shall prove
a more general statement, namely that, if g(p) = n, then (ker(p∗∗))

n = 0, in which

(ker(p∗∗))
n = {u1 ^ u2 ^ · · ·^ un | ui ∈ ker(p∗∗)}.

Definition 3.3.5 ((SCHWARZ, 1966)). Let R be a commutative ring and B= (E,B,F, p)

a fibration. The length of the fibration B with coefficients in R, denoted lR(B) or lR(p),
is the greatest integer n for which (ker(p∗∗))

n 6= 0.

From remark 3.3.4 when g(B) = 1, we have 1= g(B)> lR(B) = 0. We wish to show
that this inequality between the genus and the length of a fibration is valid in general.
For this purpose, we first prove the succeeding lemma.

Lemma 3.3.6 ((SCHWARZ, 1966)). Let R be a PID, B = (E,B,F, p) a fibration,
{B1, . . . ,Bn} an open covering of the base B, and Bi = (p−1(Bi),Bi,Fi, pi) the restriction
fibrations, for i = 1, . . . ,n. Then

lR(B)< n+
n

∑
i=1

lR(Bi).

Proof. First of all, notice that each Bi is in fact a fibration, by what we have proven in
proposition 1.4.2.

Let λi : Bi ↪→ B be the canonical inclusions, and si
.
= lR(Bi), for i = 1, . . .n. And

denote M .
= n+∑n

i=1 si.
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By contradiction, let us assume that

lR(B)≥ n+
n

∑
i=1

si = M,

so there is a non trivial element in (ker(p∗∗))
M, in other words, there are cohomology

classes u j ∈ ker(p∗∗)⊂ H∗(B;R), for j = 1, . . . ,M, such that u1 ^ · · ·^ uM 6= 0.

Consider the following cohomology classes

v1 = u1 ^ u2 ^ · · ·^ u1+s1

v2 = us1+2 ^ · · ·^ u(s1+2)+s2

...
vi = us1+···+si−1+i ^ · · ·^ u(s1+···+si−1+i)+si

...
vn = us1+···+sn−1+n ^ · · ·^ u(s1+···+sn−1+n)+sn

We clearly have λi
∗
∗(vi) = 0, for i = 1, . . . ,n, otherwise we would have a non zero

product,
λi

∗
∗(vi) = λi

∗
∗(us1+···+si−1+i)^ · · ·^ λi

∗
∗(u(s1+···+si−1+i)+si),

of si+1 elements in ker(pi
∗
∗), notice that they are in fact in ker(pi

∗
∗), since p∗∗(u j) = 0 and

pi
∗
∗λi

∗
∗ = (λi pi)

∗
∗, and λi pi is simply a restriction of p to p−1(Ui), so by proposition 1.3.4 we

have pi
∗
∗λi

∗
∗(u j) = 0. Hence, if λi

∗
∗(vi) 6= 0, this would contradict the fact that si = lR(Bi).

Remember that, in proposition 1.3.11, we saw that for an open covering, such
as U = {B1, . . . ,Bn}, we have that HU

n (B;R) is isomorphic to the usual Hn(B;R), which
means we can consider the chain complex CU (B;R) with only the singular simplexes that
have its image entirely contained in one of the elements Bi of the base U . If we dualize
such a chain complex (by the Hom(_,R) functor) we can produce cohomology modules,
which by the Universal Coefficients Theorem are isomorphic to the usual cohomology. So
when talking about cohomology classes, we may always restrict ourselves to classes [φ],
with φ : CU

n → R, this will be useful in the remainder of the proof.

Since λi : Bi ↪→ B is the inclusion, we have λi
∗
∗ : H∗(B;R) → H∗(Bi;R), and if

λi
∗
∗([φ]) = 0, for some k-cocycle φ , then [φλi#] = [φ|Ck(Bi;R)] = 0, which means φ|Ck(Bi;R) =

δψ for some ψ ∈Ck−1(Bi;R).

Notice that since λi
∗
∗(vi) = 0, if we define v = v1 ^ · · ·^ vn, we will have λi

∗
∗(v) = 0,

for all i = 1, . . .n, since by proposition 1.3.28 we have

λi
∗
∗(v) = λi

∗
∗(v1)^ λi

∗
∗(v2)^ · · ·^ λi

∗
∗(vi)^ · · ·^ λi

∗
∗(vn)

= λi
∗
∗(v1)^ λi

∗
∗(v2)^ · · ·^ 0 ^ · · ·^ λi

∗
∗(vn)

= 0
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Now let us show that λi
∗
∗(v) = 0, for all i, implies that v = 0. Suppose v ∈ Hk(B;R),

and let v = [φ], in which φ ∈ (CU
k (B;R))∗, so φ is an R-homomorphism φ : CU

k (B;R)→ R,
whence

0 = λi
∗
∗([φ]) = [λ #

i (φ)] = [φλi#] = [φ|Ck(Bi;R)],

for the last equality we are using the fact that λi : Bi ↪→ B is an inclusion, hence λi# :
Ck(Bi;R) → CU

k (B;R) is also an inclusion. For a cohomology class like [φ|Ck(Bi;R)] to be
zero, means that

φ|Ck(Bi;R) = δψi = ψi∂ ,

for some R-homomorphism ψi : Ck−1(Bi;R)→ R.

Notice that CU
k−1(B;R) can be viewed as a direct sum ⊕

iCk−1(Bi;R), hence the
collection of homomorphisms {ψi}i defines a new homomorphism

ψ : CU
k−1(B;R)→ R,

such that ψ|Ck−1(Bi;R) = ψi. Now we have

(δψ)|Ck(Bi;R) = (ψ∂ )|Ck(Bi;R) = ψ|Ck−1(Bi;R)∂ |Ck(Bi;R) = ψi∂ |Ck(Bi;R) = δψi = φ|Ck(Bi;R),

whence φ = δψ , therefore [φ] = 0, and we conclude that

0 = [φ] = v = v1 ^ · · ·^ vn = u1 ^ · · ·^ uM,

contradicting our initial hypothesis.

Theorem 3.3.7 ((SCHWARZ, 1966)). Let R be a PID and B = (E,B,F, p) a fibration,
then g(B)> lR(B).

Proof. If g(B) = ∞ there is nothing to be proven. Suppose g(B) = n < ∞, and let
{B1, . . . ,Bn} be an open covering of B such that there are local sections of p in each
Bi, i.e., there are continuous functions si : Bi :→ E such that the composition psi : Bi ↪→ B

becomes the canonical inclusion.

Let Bi = (p−1(Bi),Bi,Fi, pi) be the restriction fibrations (as in proposition 1.4.2),
for i = 1, . . . ,n, and notice that the section si : Bi → E must have all its image in p−1(Bi),
hence it restricts to a map ri : Bi → p−1(Bi), so that piri = idBi , so for the induced maps
in cohomology we have si

∗
∗pi

∗
∗ = idBi

∗
∗ = idH∗(Bi;R), hence pi

∗
∗ is injective, in other words,

ker(pi
∗
∗) = 0, which implies that lR(Bi) = 0.

Finally, by lemma 3.3.6 we get

lR(B)< n+
n

∑
i=1

lR(Bi) = n = g(B).
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Now we can translate what we have proven to some results regarding the Topo-
logical Complexity. Since the Topological Complexity is simply the Schwarz genus of the
path fibration π : X I → X ×X , we get the following corollary, as a direct consequence of
theorem 3.3.7.

Corollary 3.3.8. Given a space X and a PID R, we have TC(X) = g(π)> lR(π).

Now, let us analyze what happens when we take the cohomology’s coefficient ring
to be a field K.

First, recall that in this case, all the homology and cohomology modules are free,
so the Tor factor in the Künneth Theorem vanishes, and we end up with the cross product
being an isomorphism

µ : H∗(X ;K)⊗H∗(X ;K)→ H∗(X ×X ;K)

(u,v) 7→ u× v.

As sown previously, the relation between the cup product and the cross product
is given by u ^ v = ∆∗

∗(u× v) (see section 1.3), represented in the following commutative
diagram

H∗(X ;K)⊗H∗(X ;K) H∗(X ×X ;K)

H∗(X ;K)

µ

^ ∆∗
∗

Notice that if we define α : X → X I by α(x)(t) = x, for all x ∈ X and t ∈ I (i.e, the constant
path at each point x), then we get the following commutative diagram, and its cohomology
induced version

X X I H∗(X ;K) H∗(X I;K)

X ×X H∗(X ×X ;K)

α

∆
π

α∗
∗

π∗
∗∆∗

∗

thus we get the following commutative diagram

H∗(X ;K)⊗H∗(X ;K) H∗(X ×X ;K)

H∗(X I;K)

H∗(X ;K)

µ

^

π∗
∗

α∗
∗

We already know that µ is an isomorphism, now we want to show that α∗
∗ is also

one, which will imply that ker(π∗
∗ )≈ker(^).
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To see that α∗
∗ must be an isomorphism, notice that α : X → X I is a homotopy

equivalence with homotopy inverse β : X I → X given by β (γ) = γ(0), for all γ ∈ X I. We
clearly have βα = idX , and to show that αβ ' idX I consider the homotopy F : X I × I → X I

given by

F(γ,s)(t) =

γ(0), for 0 ≤ t ≤ 1− s;

γ(t −1+ s), for 1− s ≤ t ≤ 1.

To see that this is indeed a continuous function, remember that the sets

V (K,U) = {γ ∈ X I | γ(K)⊂U},

with K ⊂ I compact and U ⊂ X open, form a subbase of the compact-open topology in X I,
hence a basic open set in X I is a finite intersection, W =

⋂m
i=1V (Ki,Ui), of such sets. It is

easy to see by the definition of F that F(γ,s)(Ki)⊂ γ(Ki), for any Ki ⊂ X , hence

F

((⋂
i

V (Ki,Ui)

)
× I

)
⊂
⋂

i

V (Ki,Ui),

and since (
⋂

iV (Ki,Ui))× I is open in X I × I, we conclude that F is continuous. Finally,
notice that F(γ,0) = αβ (γ) and F(γ,1) = γ , for all γ ∈ X I, hence αβ ' idX I , and α is in
fact a homotopy equivalence, which implies that its cohomology induced homomorphism,
α∗
∗ , is an isomorphism, and by the diagram above we conclude that

ker(π∗
∗ ) = µ(ker(^)).

Remember that µ is a ring homomorphism, where the product in H∗(X ;K)⊗
H∗(X ;K) is defined as

(u1 ⊗ v1).(u2 ⊗ v2) = (−1)|v1||u2|(u1 ^ u2)⊗ (v1 ^ v2),

so if we define

(ker(^))k = {(u1 ⊗ v1) . . .(vk ⊗uk) | (vi ⊗ui) ∈ ker(^)},

we clearly have
µ((ker(^))k) = (µ(ker(^)))k = (ker(π∗

∗ ))
k.

Definition 3.3.9 ((FARBER, 2003)). Using the same notation as above, we call ker(^
) ⊂ H∗(X ;K)⊗H∗(X ;K) the ideal of zero divisors of H∗(X ;K). The greatest integer
k such that (ker(^))k 6= 0 is called the zero divisors cup length of H∗(X ;K), and is
denoted by zclK(X).

From the discussion above we immediately get the following proposition.
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Proposition 3.3.10. For any space X and field K, one has zclK(X) = lK(π), in which
π : X I → X ×X is the path fibration.

Proof. This follows from the equation we obtained earlier µ((ker(^))k) = (ker(π∗
∗ ))

k, since
µ is an isomorphism, this equation clearly implies that (ker(^))k = 0 ⇐⇒ (ker(π∗

∗ ))
k = 0,

whence zclK(X) = lK(π).

Finally, the proposition above together with corollary 3.3.8 produces the following
theorem.

Theorem 3.3.11 ((FARBER, 2003)). Given X a topological space and K a field, we have
TC(X)> zclK(X).

Example 3.3.12 ((FARBER, 2003)). We know that the n-sphere’s cohomology ring
H∗(Sn;K) has two generators, let us denote them by 1 ∈ H0(Sn;K) and u ∈ Hn(Sn;K), in
which 1 is the class of the cocycle φ1 : C0(X ;K) → K such that φ1(σ) = 1K for any 0-
cycle σ , hence the class 1 is the multiplicative identity of the cohomology ring H∗(Sn;K).
If we define a = 1⊗ u− u⊗ 1 ∈ H∗(Sn;K)⊗H∗(Sn;K), it is easy to see that a is a zero
divisor since ^ (a) = 1 ^ u−u ^ 1 = u−u = 0. Another zero divisor is b = u⊗u, since
u ^ u ∈ H2n(Sn;K). We may compute a.a = (1⊗u−u⊗1).(1⊗u−u⊗1), in which we get
the following four terms:

−(1⊗u).(u⊗1) =−(−1)n2
u⊗u =−(−1)nu⊗u = (−1)n−1u⊗u;

−(u⊗1).(1⊗u) =−(−1)0u⊗u =−u⊗u;

(1⊗u).(1⊗u) = (−1)01⊗ (u ^ u) = 0;

(u⊗1)(u⊗1) = (−1)0(u ^ u)⊗1 = 0.

The two last ones are zero since u ^ u ∈ H2n(Sn;K) = 0, hence

a.a = ((−1)n−1 −1)u⊗u,

so if n is even we get a.a = −2b, and if K is a field of characteristic different from 2, for
example Q, we get

TC(Sn)> zclQ(Sn)≥

2, if n is even;

1, if n is odd.

Theorem 3.3.13 ((FARBER, 2003)). The topological complexity of the n-sphere Sn is
given by

TC(Sn) =

2, if n is odd;

3, if n is even.
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Proof. Notice that 2 = cat(Sn) ≤ TC(Sn) ≤ 2cat(Sn)− 1 = 3, and by example 3.3.12 we
know that for n even TC(Sn) > 2, so this case is totally determined. Now, we only need
to show that TC(Sn) = 2 for n odd. We shall do this explicitly by constructing an open
covering of Sn ×Sn, given by

U = {(x,y) ∈ Sn ×Sn | x 6=−y},

and
V = {(x,y) ∈ Sn ×Sn | x 6= y}.

It is easy to see that {U,V} is an open covering of Sn ×Sn, We wish to show that
there are continuous motion planning functions s : U → (Sn)I and r : V → (Sn)I, i.e., two
local sections of the path fibration π : (Sn)I → Sn ×Sn. It is easy to construct s, since for
any (x,y) ∈ U we have x 6= −y, we know that there must be a shortest path on Sn from
x to y, so we define s(x,y) to be this path with constant speed. For r we define the path
r(x,y) in two steps, since x 6= y there is a shortest path between x and −y, in the first
step r(x,y) follows this path with constant speed. Since n is odd, there is a non vanishing
continuous tangent vector field F : Sn → Rn+1. In the second part of the path r(x,y), we
move from −y to y via the spherical arc

−cos(πt).y+ sin(πt).
F(y)
|F(y)|

, for t ∈ [0,1].

So, the covering {U,V} proves that TC(Sn) ≤ 2, for n odd, thus completing the
proof.

The Topological Complexity of a Robot Arm

As an application of the theory developed until here, we will compute the topolog-
ical complexity of a robot arm. We may think of a robot arm as a collection of rigid bars
connected by flexible joints as in figure 10, with the first bar fixed, so that all possible
configurations of this mechanical system are determined by the angles αi (in the planar
case), hence the configurations space is T n = ∏n

i=1 S1. It is easy to see that in the spatial
case (in which the joints can move in any direction in a 3 dimensional space) we have that
the configurations space is given by T n

2 = ∏n
i=1 S2.

The problem of determining the topological complexity of a robot arm is fully
resolved once we prove the following theorem.

Theorem 3.3.14 ((FARBER, 2003)). For n and m positive integers we have

TC(T n
m) =

n+1, if m is odd;

2n+1, if m is even.
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Figure 10 – Representation of a robot arm structure.

α1

α2

αn−1

αn

Source: Elaborated by the author.

Proof. Remember, from example 2.2.10, that cat(T n
m) = n+1, for any positive integers n

and m, so theorem 3.2.6 implies that

n+1 ≤ TC(T n
m)≤ 2n+1,

and by corollary 3.2.10 we have

TC(T n
m)≤ (TC(Sm)−1)n+1.

From theorem 3.3.13 we conclude that for m odd, TC(T n
m) = n+1.

Now, suppose m is even. Let ui ∈ Hm(T n
m;Q) be given by ui = pi

∗
∗(u), in which u is

the generator of Hm(Sm;Q) and pi : T n
m → Sm is the projection on the ith factor. Since pi

has a right inverse (the canonical inclusion), we conclude that pi
∗
∗ has a left inverse, hence

pi
∗
∗ is injective, and therefore ui is non zero.

Now, define ai = 1⊗ui−ui⊗1, for i = 1, . . .n, elements in the ideal of zero divisors
of H∗(T n

m;Q)⊗H∗(T n
m;Q).

Notice that ui ^ ui = pi
∗
∗(u)^ pi

∗
∗(u) = pi

∗
∗(u ^ u) = 0, since u ^ u ∈ H2m(Sm;Q) =

0. By the discussion in example 2.2.10, we know that u1 ^ · · ·^ un 6= 0.

For m even we get

aiai = 2(1⊗ (ui ^ ui)−ui ⊗ui) =−2ai ⊗ai,

since ui ^ ui = 0, and since (ui⊗ui)(ui+1⊗ui+1) = (−1)|ui||ui+1|(ui ^ ui+1)⊗ (ui⊗ui+1), we
get

n

∏
i=1

aiai = (−1)N2n(u1 ^ · · ·^ un)⊗ (u1 ^ · · ·^ un) 6= 0,
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in which N is an integer. Hence, zclQ(T n
m) = 2n, and by theorem 3.3.11 we conclude that

TC(T n
m) = 2n+1, for m even.

Theorem 3.3.14 shows that for a robot arm the topological complexity is propor-
tional to the number of joints n, in the planar case being n+ 1 and in the spatial case
2n+1.

TC of Topological Groups and Rigid Body Motion Planning

The possible movements of a rigid body in a 2-dimensional space are: translation by
any vector in R2 and rotation around the axis perpendicular to the plane. Mathematically
speaking, this configuration space is simply R2×SO(2), which is usually called the Special
Euclidean group, denoted by SE(2).

This can be generalized to SE(n) = Rn ×SO(n), which described the movement of
a rigid body in an n-dimensional space. To compute the topological complexity of a rigid
body we will make use of the following lemma.

Lemma 3.3.15 ((FARBER, 2004)). If X is a path-connected topological group (in par-
ticular, if X is a connected Lie Group), then cat(X) = TC(X).

Proof. Suppose X is a path-connected topological group, we already know from the general
case (lemma 3.2.4) that cat(X)≤ TC(X), so we only need to prove the reverse inequality.

Suppose cat(X) = m and let U1, . . . ,Um be an open covering of X with homotopies
F : Ui× I → X , such that Fi(u,0) = u and F(u,1) = e, for all u ∈Ui, in which e is the group
identity of X .

Define f : X ×X → X given by f (x,y) = xy−1. Since X is a topological group, f is a
continuous map, and we can define Wi = f−1(Ui), for i = 1, . . . ,m, which clearly forms an
open covering of X ×X .

Define si : Wi → X I by s(x,y)(t) = (F(xy−1, t))y, for all (x,y) ∈Wi and t ∈ I. This is
clearly a local section of the path fibration in X , hence TC(X)≤ m = cat(X).

Since Rn is contractible, and both TC and cat are homotopy invariants we have that
TC(SE(n)) = TC(SO(n)) = cat(SO(n)), the last equality being a consequence of lemma
3.3.15 and the well known fact that SO(n) is a Lie group.

2-dimensional case (n=2): In this case, we know that SO(2) = S1, from which
we conclude that TC(SE(2)) = cat(S1) = 2.
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3-dimensional case (n=3): First, let us recall that the n-dimensional real pro-
jective, RPn, is defined as the space of all 1 dimensional subspaces of Rn+1, explicitly

RPn =
Rn+1 \{0}
(x ∼ λx)

=
Sn

x ∼−x
=

Dn

∼
,

in the last case the equivalence relation is given by x =−x, for x ∈ ∂Dn = Sn−1.

One can see that SO(3) = RP3. The idea behind the proof is to consider the 3-
dimensional disk D3

π = {x ∈ R3 | ‖x‖ ≤ π} of radius π, and notice that each point x ∈ D3
π

describes a rotation along the axis crossing x and the origin with angle given by ‖x‖ (with
−x being the rotation by the same angle in the opposite direction), and since rotations by
angles of π and −π yield the same result, we can identify the antipodal boundary points,
thus getting a space homeomorphic to D3/∼, as described above.

Thus, we have cat(SO(3))= cat(RP3). The LS category of real projective spaces are
well known. First, notice that the dimension inequality implies cat(RPn)≤ dim(RPn)+1=
n+1. It is well known that H∗(RPn;Z2)=Z2[α]/(αn+1), with |α|= 1 (i.e., α ∈H1(RPn;Z2)

is a generator of the cohomology module of order 1) (see theorem 3.19 in (HATCHER,
2002)). So, it is quite obvious that the least integer k for which (H̃∗(RPn;Z2))

k = 0 is
k = n+1, in other words, cupZ2

(RPn) = n+1 ≤ cat(RPn)≤ n+1. With this, we conclude
that

TC(SE(3)) = cat(SE(3)) = cat(SO(3)) = cat(RP3) = 4.

One might wonder whether we are able to compute the category of SO(n), for any
n, and the answer is that at the moment this is still an open question, the latest results are
given in (IWASE; MIMURA; NISHIMOTO, 2005) and (IWASE; KIKUCHI; MIYAUCHI,
2007), in which the category of SO(n) is computed up to n = 10, yielding

cat(SO(4)) = 5; cat(SO(8)) = 13;
cat(SO(5)) = 9; cat(SO(9)) = 21;
cat(SO(6)) = 10; cat(SO(10)) = 22.
cat(SO(7)) = 12;

3.4 Order of Instability
In this section, we will introduce the concept of order of instability of a motion

planner, the main reference for this section is (FARBER, 2004).

An alternative useful definition of a motion planner is to consider the subspaces
covering X ×X to be Euclidean neighborhood retracts (ENR) instead of open subsets.
More precisely, we have the following definition.
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Definition 3.4.1 ((FARBER, 2004)). Given a topological space X , an ENR motion
planner is a covering of X ×X by subspaces F1, . . . ,Fk, such that

1. Each Fi is an ENR.

2. Fi ∩Fj = /0, if i 6= j.

3. There is a local section si : Fi → X I of the path fibration π for each i.

By using this definition for each pair of points (A,B) there is only one possible
path going from A to B, since all the ENRs are pairwise disjoint.

Example 3.4.2 ((FARBER, 2004)). Suppose X is a finite dimensional polyhedron (with
a CW structure). We can explicitely construct an ENR motion planner on it.

To do so, let n be the dimension of X , and let Xk be the k-skeleton of X . Define
Sk = Xk \Xk−1 and

Fj = ∪i+k= jSi ×Sk.

Then F0, . . . ,F2n is a covering of X ×X . We clearly have Fj ∩Fl = /0, if j 6= l.

Notice that each Sk is homeomorphic to the union of disjoint open sets in Rk, hence
it is itself open and therefore an ENR. Now, we easily conclude, using lemmas 1.7.4 and
1.7.2, that each Fj is an ENR.

What is left to show is that there are local sections of the path fibration in each
Fj.

We show this explicitly. First, fix a point in the interior of each cell of X , and
fix also paths between each pair of those points. Now, given a point (A,B) ∈ Fj, we have
A ∈ Si for some i, and B ∈ Sk, for some k, such that i+k = j. Thus, A lies in an open i-cell,
ei, and B in an open k-cell, ek.

Let ci ∈ ei and ck ∈ ek be the points fixed in these cells, and let σ denote the fixed
path from ci to ck. The path from A to B will be defined as: first go from A to ci following
the straight line in the i-cell, then proceed through σ , and finally go from ck to B following
the straighline in the k-cell. This clearly defines a continuous motion planner on each Fj.

Corollary 3.4.3 ((FARBER, 2004)). For any n-dimensional Polyhedron it is possible to
find an ENR motion planner by decomposing the space into 2n+1 subspaces.

In the case of 1-dimensional polyhedra (graphs), corollary 3.4.3 is saying that
we can get a motion planning algorithm with 3 local rules. One rule describes motions
between vertices, the other between vertices and points in open 1-cells, and the last one
describes motions between points in open 1-cells.
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Definition 3.4.4 ((FARBER, 2004)). Let X be a topological space with an ENR motion
planner given by F1, . . . ,Fk and si : Fk → X I. Given a point (A,B) ∈ X ×X , the order of
instability of the motion planner at (A,B) is the largest integer r such that any open
neighborhood of (A,B) instersects r distinct elements of the covering F1, . . . ,Fk. The order
of instablity of the motion planner is defined as the maximum order of instability at a
point of X ×X .

An equivalent way of defining the order of instability of a motion planner, using the
notation from definition 3.4.4, is by saying that the order of instability at (A,B) ∈ X ×X

equals the biggest integer r such that

(A,B) ∈ F i1 ∩·· ·∩F ir , for some 1 ≤ i1 < i2 < · · ·< ir ≤ k.

Equivalently we can define the order of instability of the motion planner as the largest r

sucht that
F i1 ∩·· ·∩F ir 6= /0, for some 1 ≤ i1 < i2 < · · ·< ir ≤ k.

The order of instability represents an important measure of how “unstable” a
motion planner is. For example, if a certain motion planner has order of instability r, it
means that there is a point (A,B) ∈ X ×X for which small perturbations can cause it to
be in r different ENRs from the motion planner, in other words, small perturbations can
cause big changes in the path followed, which can be a problem for computational reasons,
so an ideal motion planner has the smallest order of instability possible.

Lemma 3.4.5 ((FARBER, 2004)). Let X be a path-connected metrizable space, and
U1, . . . ,Uk an open covering of X ×X with local sections, si : Ui → X I, of the path fibration.
If for some integer 1 ≤ r ≤ k we have

Ui1 ∩·· ·∩Uir = /0,

for any set of indexes 1 ≤ i1 < i2 < · · ·< ir ≤ k, then TC(X)< r (in particular if U1 ∩·· ·∩
Uk = /0, then TC(X)< k).

Proof. Since X is a metric space, it is Hausforff and paracompact, hence any open covering
of X has a partition of unity subordinate to it.

Let U1, . . .Uk be an open covering of X ×X as described above, and let f1, . . . , fk :
X ×X → R be a partition of unity subordinate to this covering.

Given any subset of indices S ⊂ {1, . . . ,k} define

W (S) = {(x,y) ∈ X ×X | fi(x,y)> 0, if i ∈ S and fi(x,y)> f j(x,y), if i ∈ S and j /∈ S},

and notice that:
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1. W (S) ⊂ X ×X is an open set, since it is a finite intersection of open subsets like
fi
−1((0,∞)) and ( fi − f j)

−1((0,∞)).

2. If |S|= |S′| and S 6= S′, then W (S)∩W (S′) = /0.

3. If i ∈ S, then W (S)⊂Ui. This is obvious, since for any (x,y)∈W (S) we have fi(x,y)>

0, hence (x,y) ∈ supp( fi)⊂Ui.

4. ⋃|S|<r W (S) = X ×X . Indeed, if (x,y)∈ X ×X , let i1, . . . , it be all the indices such that
fil(x,y) > 0, then (x,y) ∈ W (i1, . . . , it). Furthermore, we must have t < r, otherwise
we would have that (x,y) is in the support of at least r functions fi meaning that
(x,y) would be in at least r elements of the covering U1, . . . ,Uk, contradicting our
initial hypothesis that any intersection of r elements of the covering is empty.

Define
Wj =

⋃
|S|= j

W (S),

for j = 1, . . . ,r− 1, then, from items (1) and (4), above we have that W1, . . . ,Wr−1 is an
open covering of X ×X . From (2) and (3) we know that Wj is a disjoint union of open
subsets in each of which there is a section of the path fibration, whence we may define a
section in Wj, and we conclude that TC(X)≤ r−1.

To simplify notation on the next theorem, let us define, for now, the order of
instability of a space X , denoted OI(X), to be the smallest possible order of instability
of an ENR motion planner in X . Le us also define the ENR topological complexity, denoted
TCENR(X) to be the smallest number of ENR subsets of X necessary to construct an ENR
motion planner.

Theorem 3.4.6 ((FARBER, 2004)). For X a connected C∞-smooth manifold we have
TC(X) = TCENR(X) = OI(X)

Proof. Suppose X is a connected C∞-smooth manifold. We will start by proving that
TC(X) ≤ TCENR(X). To do so, suppose F1, . . . ,Fk is an ENR motion planner of X , with
local sections of the path fibration given by si : Fi → X I. To prove that k ≥ TC(X), we
shall show that there are open neighborhoods of each Fi in which we can extend the local
sections.

We know that X ×X is a smooth manifold (theorem 1.2.11) and that X ×X ⊂ Rn

for some n (theorem 1.2.12), hence X ×X is also locally contractible and locally compact,
once it is a manifold, and by theorem 1.7.7 we conclude that X ×X is an ENR.

So, we have that both Fi and X ×X are ENRs, thus we may apply lemma 1.7.6,
from which we get that there is an open subset Ui, and a retraction r : Ui → F , such that
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Fi ⊂Ui ⊂ X ×X , and kr : Ui → X ×X is homotopic to the inclusion j : Ui ↪→ X ×X , in which
k : Fi ↪→ X ×X is the canonical inclusion.

Let H : Ui × I → X ×X be a homotopy with H(x,0) = j(x) and H(x,1) = kr(x), for
all x ∈Ui.

Notice that if (x,y) ∈ Ui ⊂ X ×X , then H(x,y, t) = (γ(x,y, t),δ (x,y, t)), with γ,δ :
Ui × I → X continuous functions. We have

(γ(x,y,0),δ (x,y,0)) = (x,y),

and (γ(x,y,1),δ (x,y,1)) ∈ Fi, for all (x,y) ∈Ui.

So, we may define s′i : Ui → X I by

s′i(x,y)(t) =


γ(x,y,3t), 0 ≤ t ≤ 1/3;

si(γ(x,y,1),δ (x,y,1))(3t −1), 1/3 ≤ t ≤ 2/3;

δ (x,y,3−3t), 2/3 ≤ t ≤ 1.

Thus, s′(x,y) is formed by going from x to γ(x,y,1) via γ , then si connects γ(x,y,1)
and δ (x,y,1), and finally it goes from δ (x,y,1) to y via the reverse path of δ , all these
functions are continuous, hence s′i is continuous. We conclude that there is a covering of
X by open sets U1, . . . ,Uk, with Fi ⊂ Ui, such that there are local sections of the path
fibration in each of those sets, hence TC(X)≤ k.

Conversely, suppose TC(X) = k, we will show that there must be an ENR motion
planner with k elements. Let U1, . . . ,Uk be an open covering of X ×X with local sections
of the path fibration given by si : Ui → X I. Since X ×X is a smooth manifold, theorem
1.2.14 guarantees that there exists a smooth partition of unity fi : X ×X →R, i = 1, . . . ,n,
subordinate to U1, . . . ,Un.

Let ci, i = 1, . . .k, be regular values for the respective fi such that 0 < ci < 1 and
c1 + · · ·+ck = 1. These numbers exist, since by Sard’s theorem (1.2.13) we know that the
set of critical values of each fi, Ci, has measure zero in R, hence Ci must be a discrete
set of points and the same is true for C1 ×·· ·×Ck ⊂ Rk, so it can not contain the subset
{(x1, . . . ,xk)⊂ Rk | x1 + · · ·+ xk = 1, 0 < xi < 1}, which is clearly not discrete, whence we
can find c1, . . . ,ck as desired.

Define

Vi =
{
(x,y) ∈ X ×X | fi(x,y)≥ ci and f j(x,y)< c j, for all j < i

}
.

Notice that

1. Vi ⊂Ui, once supp( fi)⊂Ui and ci > 0. Hence we may restrict the local sections and
define s′i = si|Vi , which are local sections of the path fibration on Vi.
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2. Vi ∩Vj = /0, if i 6= j

3. V1∪·· ·∪Vk = X ×X , since for any (x,y) ∈ X ×X we have ∑i fi(x,y) = 1 and ∑i ci = 1,
with 0 ≤ fi(x,y)≤ 1 and 0 < ci < 1, there must be some index i for which fi(x,y)≥ ci,
and we can also choose i to be the least of those indexes, which clearly implies
(x,y) ∈Vi.

4. Since Vi = f1
−1((−∞,c1))∩·· ·∩ fi−1

−1((−∞,ci−1))∩ fi
−i([c1,∞)), we have that Vi is

a manifold, whence it is an ENR.

With this we proved that TC(X) = TCENR(X), and now we proceed to prove the
second part, namely TC(X) = OI(X).

From what we have proven, we can already infer that OI(X)≤ TC(X), since for an
ENR motion planner with TC(X) local sections (which we have just shown that exists)
the order of instability is lower than or equal to TC(X).

The only thing left to show is that TC(X)≤ OI(X). To do so, suppose F1, . . . ,Fk ⊂
X ×X , with si : Fi → X I, is an ENR motion planner of X with order of instability r. By
definition F i1 ∩ ·· · ∩F ir+1 = /0, for any collection of r + 1 distinct indices 1 ≤ i1 < · · · <
ir+1 ≤ k.

For each index i = 1, . . . ,k define a continuous non negative function fi : X ×X → R,
such that f−1

i (0) = F i (the existence of such functions is guaranteed by theorem 1.2.15).

Define the continuous function ϕ : X ×X → R by

ϕ(x,y) = min{ fi1(x,y)+ · · ·+ fir+1(x,y) | 1 ≤ i1 < · · ·< ir+1 ≤ k},

and notice that ϕ(x,y) > 0, for all (x,y) ∈ X ×X , otherwise there would be an element
(x,y) in an intersection F i1 ∩·· ·∩F ir+1 .

Consider the set

Ui = {(x,y) ∈ X ×X | (r+1) fi(x,y)< ϕ(x,y)},

which is clearly open since Ui = (ϕ − (r+1) fi)
−1((0,∞)), and notice that U1, . . . ,Uk forms

an open covering of X ×X , since F i ⊂Ui, for all i.

Note that Ui1 ∩ ·· · ∩Uir+1 = /0, for any choice of indices 0 ≤ i1 < · · · < ir+1 ≤ k,
otherwise we would have fi1(x,y)+ · · ·+ fir+1(x,y)< ϕ(x,y), contradicting the definition of
ϕ .

In the first part of the proof (when showing that TC(X) = TCENR(X)) we showed
that there is an open covering U ′

1, . . . ,U
′
k of X ×X , with Fi ⊂U ′

i and local sections s′i : U ′
i →

X I of the path fibration.
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Define Vi =Ui∩U ′
i ⊃ Fi with local sections s′i|Vi . Then we clearly have that V1, . . . ,Vk

is an open covering of X ×X , and Vi1 ∩·· ·∩Vir+1 = /0, for all 1 ≤ i1 < · · ·< ir+1 ≤ k, hence,
by lemma 3.4.5, we have that TC(X)≤ r, which concludes the proof.

What we just proved shows that the topological complexity determines, in some
sense, a lower bound for how unstable any motion planning algorithm will be in a given
space. More precisely, for a space X and any motion planning algorithm in X , given
by local sections s1, . . . ,sn of the path fibration, we will be able to find pair of points
(x,y) ∈ X ×X for which small variations can produce TC(X) different paths, and this will
be true regardless of how close you stay to the originally chosen points, as shown in figure
11.

Figure 11 – There are points x and y in X such that for any given neighborhoods Nx and Ny of
x and y, respectively, there are TC(X) = k different paths given by k different local
sections of the chosen motion planning algorithm connecting the two neighborhoods.

Source: Elaborated by the author.
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CHAPTER

4
THE FIBREWISE METHOD

4.1 Fibrewise Topology

Fibrewise Spaces

Definition 4.1.1 ((CRABB; JAMES, 2012)). Consider a topological space B, which we
will call the base space. A fibrewise space over B is just a topological space X with a
continuous map p : X → B, called the projection. In the case of p being a fibration, we
usually refer to X as a fibrant.

Remark 4.1.2. Usually, one writes only X for a fibrewise space, but we should always
think of the pair (X , p) as being the fibrewise space, since altering the projection p yields
a different space.

Definition 4.1.3 ((CRABB; JAMES, 2012)). Let (X , p) be a fibrewise space over B. For
each b ∈ B we define the fibre of b as the subset Xb = p−1(b) of X .

Definition 4.1.4 ((CRABB; JAMES, 2012)). Let (X , p) and (Y,q) be two fibrewise spaces
over B. A fibrewise map from X to Y is a continuous function f : X → Y such that the
following diagram commutes

X Y

B

f

p
q

Now we can introduce the category of fibrewise spaces, which has as its objects
all the fibrewise spaces, and as its morphisms all the fibrewise maps. An equivalence in
this category is called a fibrewise topological equivalence or a fibrewise homeo-
morphism.
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Proposition 4.1.5. A map f : X → Y between fibrewise spaces (X , p), (Y,q) over B is a
fibrewise map if and only if f (Xb)⊂ Yb, for all b ∈ B.

Proof. First, let us assume that f : X → Y is a fibrewise map. Given b ∈ B and y ∈ f (Xb)

we have that there exists x ∈ Xb such that y = f (x). Notice that x ∈ Xb implies p(x) = b,
and p(x) = q◦ f , whence q(y) = p(x) = b, and we conclude that y ∈ Yb.

Conversely, assume that f (Xb)⊂Yb, for all b ∈ B. For any x ∈ X we have f (Xp(x))⊂
Yp(x), hence there exists an element y ∈ Yp(x) such that f (x) = y, which implies q◦ f (x) =

q(y) = p(x). Since this is the case for any x ∈ X , we conclude that q ◦ f = p, and f is a
fibrewise map.

Notice that if f : X → Y is a fibrewise map between fibrewise spaces over B, one
can naturally define a fibrewise map between XB′ and YB′ , in which B′ ⊂ B (here we are
considering XB′

.
= p−1(B′)). This map is defined in the following manner

fB′ : XB′ −→ YB′

x 7−→ f (x),

so a fibrewise map f : X →Y defines many continuous maps between the fibres fb : Xb →Yb.

Figure 12 – For a map f : X →Y to be fibrewise, apart from being continuous, it essentially needs
to map each fibre of X (e.g. Xb1 ,Xb2 ,Xb3), into the respective fibre of Y (Yb1 ,Yb2 ,Yb3).

Xb1
Xb2 Xb3

X
Yb1

Yb2 Yb3

Y

f

Source: Elaborated by the author.

Notice that if the fibrewise map f : X → Y is a fibrewise homeomorphism, then
each map fb : Xb → Yb is a homeomorphism, i.e., all the fibers are homeomorphic. This is
not a sufficient condition for two spaces to be fibrewise homeomorphic, take for example
the case in which X = Rd (the real line with the discrete topology), Y = R, B = R. We
consider X = Rd and Y = R to be fibrewise spaces over R, with the projections being the
identity map. Then all the respective fibers are homeomorphic Xb = {b}= Yb, but X and
Y are not fibrewise homeomorphic (they are not even homeomorphic in the usual sense).

Definition 4.1.6 ((CRABB; JAMES, 2012)). Given f : X → Y a fibrewise map between
the fibrewise spaces over B (X , p) and (Y,q). If there is a section t : B → Y of q : Y → B,
such that f = t ◦ p, then we say f is fibrewise constant.
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If f : X → Y is a fibrewise constant map then it is constant on each fibre Xb, since
if x1,x2 ∈ Xb, then f (x1) = t(p(x1)) = t(b) = t(p(x2)) = f (x2). But the converse is not true,
there are fibrewise maps which are constant on each fibre, but not fibrewise constant. One
example is to take Rd over R, then the identity map i : Rd → R is constant on each fibre,
but it is not fibrewise constant, since there is no section s : R→ Rd.

Definition 4.1.7 ((CRABB; JAMES, 2012)). Given a family of fibrewise spaces {X j} j

over B, we define the fibrewise product ∏B X j to be a subspace of the direct product
∏X j as a topological space, such that it is a fibrewise space over B satisfying the condition:
for any fibrewise space X over B if we randomly choose fibrewise maps f j : X → X j for each
index j, then the map

f : X −→ ∏
B

X j

x 7−→ { f j(x)} j

(4.1)

is fibrewise, and all the fibrewise maps from X into ∏B X j correspond precisely to the
families { f j} j, in the sense that each family gives us a different fibrewise map.

In the following proposition, we show that the fibrewise product always exists and
is unique.

Proposition 4.1.8. Following the notation of definition 4.1.7, let us show that

∏
B

X j = A .
=
{
{x j} j ∈ ∏X j : pi(xi) = p j(x j), for all i, j

}
,

and that the projection is defined as

p : ∏
B

X j −→ B

{x j} j 7−→ p j(x j).

Proof. First, let us show that the suggested space satisfies the condition of definition
4.1.7. Let X be any fibrewise topological space over B and consider fibrewise functions
f j : X → X j, for each j. We wish to show that the function defined in 4.1, with A in the
place of ∏B X j, is a fibrewise map. From general topology, we know it will be continuous,
since each factor is continuous, so we only need to show the fibrewise condition.

Let us denote by q : X → B the projection of X . We want to show that p ◦ f = q.
Remember that f = { f j} j, and for each j we have p j ◦ f j = q.

Take x ∈ X , then p j( f j(x)) = q(x), for all j, hence { f j(x)} j ∈ A. And from the way
we defined p we have p◦ f (x) = p({ f j(x)} j) = p j( f j(x)) = q(x), hereby concluding that f

is a fibrewise map.

Now, let us show that each family of fibrewise maps { f j} j defines a different map.
It is easier to show the counter-positive, so suppose the families { f j} j and {g j} j define
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the same fibrewise map f from X to A, but this naturally means that f j(x) = g j(x), for
all x ∈ X and j.

To see that A is the only space satisfying the conditions from definition 4.1.7,
notice that if any point from

(
∏X j

)
\A was included there would be no way of defining a

projection. And if we consider a subspace Ã ⊂ ∏X j so that A\ Ã 6= /0, then given {a j} j ∈
A\ Ã, we can construct a family of fibrewise maps { f j} j from the fibrewise space {∗}, with
its projection given by q∗(∗) = p j(a j), to the space X j, each function defined by f j(∗) = a j.
Then the function f = { f j} j falls out of Ã, as we wanted to show.

There is one more way we can visualize the fibrewise product. From proposition
4.1.8, we see that this product is basically the union of the product of the corresponding
fibres of {X j} j. More precisely,

∏
B

X j =
⋃
b∈B

(
∏(X j)b

)
,

hence it satisfies the following property(
∏
B

X j

)
b

= ∏(X j)b.

In case we have only two fibrewise spaces X and Y over B, we usually denote their
fibrewise product by X ×B Y .

Fibrewise Pointed Spaces

Definition 4.1.9 ((CRABB; JAMES, 2012)). A fibrewise pointed space over a base
space B is a triple (X , p,s) in which (X , p) is a fibrewise space over B and s : B → X is a
section of p (i.e., p◦ s = idB).

Definition 4.1.10 ((CRABB; JAMES, 2012)). Given two fibrewise pointed spaces,
(X , p,s) and (Y,q, t), we define a fibrewise pointed map between X and Y , to be any
map f : X → Y such that the following diagram commutes

B

X Y

B

s t

f

p q

The fibrewise pointed spaces constitute a category with its morphism being the
fibrewise pointed maps.
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Remark 4.1.11. Just like we defined the concept of fibrewise constant map in the previ-
ous section, we can define the concept of fibrewise pointed constant map, and in this
case, it turns out to be a really simple definition, since for two fibrewise pointed spaces
(X , pX ,B,sX) and (Y, pY ,B,sY ) there is exactly one fibrewise pointed constant map, namely
the map sY ◦ pX . This is due to the fact that if we defined, as in the previous section, that
a fibrewise pointed map f : X → Y is fibrewise pointed constant if there exists t a section
of pY such that

f = t ◦ pX ,

then we have
sY = f ◦ sX = t ◦ (pX ◦ sX) = t ◦ idB = t,

hence f = sY ◦ pX .

4.2 Fibrewise Homotopy Theory
Using the ideas of Fibrewise Topology, it is possible to introduce a homotopy theory

for this kind of space. In this section, we shall give a short introduction to this topic, and
later on, we will use it to introduce the fibrewise version of the Lusternik-Schnirelmann
Category.

In all the definitions that follow we can replace “fibrewise” with “fibrewise pointed”
obtaining the pointed version of all these concepts.

Fibrewise homotopy

Definition 4.2.1 ((CRABB; JAMES, 2012)). If f : X →Y and g : X →Y are two fibrewise
maps of fibrewise spaces over B, then a fibrewise homotopy between f and g is a
homotopy ft in the usual sense, such that ft : X → Y is a fibrewise map, for each t ∈ I.
If this is the case, we say that f and g are fibrewise homotopic, usually denoted by
f 'B g.

Fibrewise homotopic is easily shown to be an equivalence relation between fibrewise
maps, and the set of all equivalence classes is denoted by πB[X ;Y ].

Definition 4.2.2 ((CRABB; JAMES, 2012)). Given fibrewise spaces X and Y over B, a
fibrewise map ϕ : X → Y is called a fibrewise homotopy equivalence if there exists a
fibrewise map ψ : Y → X such that ψ ◦ϕ 'B idX and ϕ ◦ψ 'B idY . If this is the case, we
say that X and Y have the same fibrewise homotopy type.

Definition 4.2.3 ((CRABB; JAMES, 2012)). A fibrewise map f : X → Y is said to be
fibrewise null-homotopic if it is fibrewise homotopic to a fibrewise constant map.
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Definition 4.2.4 ((CRABB; JAMES, 2012)). Given X a fibrewise space over B, and
A ⊂ X . We say that A is a fibrewise retract of X if there exists a fibrewise map r : X → A

such that r|A = idA, in which case r is called a fibrewise retraction.

Definition 4.2.5. A fibrewise space X over B is said to be fibrewise compressible to a
subspace D ⊂ X if there is a fibrewise homotopy Ft : A → X , t ∈ I, such that F0 is the
inclusion map A ↪→ X and F1(A)⊂ D.

Fibrewise Cofibration and Fibration

Definition 4.2.6 ((CRABB; JAMES, 2012)). Given fibrewise spaces X and A over B,
and a fibrewise map u : A → X , we say that u has the fibrewise homotopy extension
property if for every fibrewise space E over B, with a fibrewise map f : X → E and a
fibrewise homotopy gt : A → E such that the following diagram

A

X E

u
g0

f

commutes, there exists a fibrewise homotopy ft : X → A such that f0 = f and the diagram

A

X E

u
gt

ft

commutes, for all t ∈ I. In this case, u : A → X is called a fibrewise cofibration and the
pair (X ,u) is called a fibrewise cofibre space. If u is an inclusion map then the pair
(X ,A) is called a fibrewise cofibred pair.

Proposition 4.2.7 ((CRABB; JAMES, 2012) Proposition 4.1). If X is a fibrewise space
and A ⊂ X is a closed subset with u : A → X being the inclusion map, then u is a fibrewise
cofibration if and only if (X ×{0})∪ (A× I) is a fibrewise retract of X × I.

Definition 4.2.8 ((CRABB; JAMES, 2012)). Consider X and E fibrewise spaces over
B, then a fibrewise map p : E → X is said to have the fibrewise homotopy lifting
property, if for any fibrewise space A over B with a fibrewise map f : A → E and a
fibrewise homotopy gt : A → X such that the diagram

A E

X

f

g0 p

commutes, there exists a fibrewise homotopy ht : A → E such that h0 = f and the diagram

A E

X

ht

gt p
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commutes, for all t ∈ I. In this case, p : E → X is called a fibrewise fibration and the
pair (E, p) is called a fibrewise fibre space over X .

Definition 4.2.9. Let (X , p,s) be a fibrewise pointed space over B, then X is said to be a
fibrewise well-pointed space over B if the section s : B → X is a fibrewise cofibration.

Remark 4.2.10. Notice that a fibrewise pointed space is similar to a based space, but
instead of a basepoint x0 ∈ X we have s(B) ∈ X , so if we consider the case where B is
a single point, then we are back at the case of a based space. With this in mind, the
previously described condition of a fibrewise well-pointed space is similar to considering
a based space with a non-degenerate basepoint.

The fibrewise Strøm Structure

In section 1.4, we briefly discussed the Strøm Structure, now we shall adapt this
concept to the fibrewise case.

Definition 4.2.11. A fibrewise pair is a pair of spaces (X ,A) such that both (X , pX ,B)

and (A, pA,B) are fibrewise spaces with A ⊂ X and pA = pX |A.

Definition 4.2.12. A fibrewise pointed pair is a pair of spaces (X ,A) such that both
(X , pX ,B,sX) and (A, pA,B,sA) are fibrewise pointed spaces with A ⊂ X , sX(X) ⊂ A, pA =

pX |A and sA(b) = sX(b), for all b ∈ B.

Definition 4.2.13. If (X ,A) is a fibrewise pair, then a Fibrewise Strøm Structure on
(X ,A) is a pair (α,h) of a map α : X → I and a fibrewise homotopy h : X × I → X relative
to A starting at the identity map, such that

(i) α(a) = 0, if and only if a ∈ A;

(ii) h(x, t) ∈ A, if t > α(x).

Proposition 4.2.14. Let (X ,A) be a closed fibrewise pair. Then, (X ,A) is fibrewise cofi-
bred if and only if (X ×{0})∪ (A× I) is a fibrewise retract of X × I.

Proof. First, suppose u : A ↪→ X is a cofibration. In the homotopy extension property,
take E = (X ×{0})∪ (A× I) to be the fibrewise space over B with projection given by
pE(x, t) = pX(x), for all (x, t)∈ E. Define the fibrewise map f : X → E given by f (x) = (x,0),
for all x ∈ X , and the fibrewise homotopy G : A × I → E given by G(a, t) = (a, t), for
all (a, t) ∈ A × I. Then the extension (via the fibrewise homotopy extension property)
F : X × I → E is a fibrewise retraction of X × I onto (X ×{0})∪ (A× I).

Conversely, suppose there is a fibrewise retraction,

r : X × I → (X ×{0})∪ (A× I),
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given a fibrewise map f : X → E and a homotopy G : A× I → E (as in the homotopy exten-
sion property). Then, similarly to the proof of lemma 1.4.27, we may define a continuous
map (since A is closed) given by H : (X ×{0})∪A× I → E, such that H(x,0) = f (x), for
all x ∈ X , and H(a, t) = G(a, t), for all a ∈ A and t ∈ I. Then H ◦ r is the desired fibrewise
homotopy.

Proposition 4.2.15. If (X ,A) is a closed fibrewise pair. Then (X ,A) is fibrewise cofibred
if and only if (X ,A) admits a fibrewise Strøm Structure.

Proof. If (X ,A) is a fibrewise cofibred pair, then from proposition 4.2.14 there is a re-
traction r : X × I → (X ×{0})∪ (A× I). Since I is compact we can define map α : X → I

by
α(x) = sup

t∈I
|π2 ◦ r(x, t)− t|,

and h : X × I → X by

h(x, t) = π1 ◦ r(x, t), for all (x, t) ∈ X × I,

in which we are considering π1 : X × I → X and π2 : X × I → I to be the projections on the
first and second coordinates, respectively.

We claim that (α,h) is a fibrewise Strøm Structure on (X ,A). Indeed, notice that
both α and h are continuous functions, hence h is a fibrewise homotopy, and, for all a ∈ A,
we have h(a, t) = π1 ◦ r(a, t) = π1(a, t) = a, whence h is relative to A. We clearly have that
α(a) = 0, for all a ∈ A. Finally, if t > α(x) we must have π2◦r(x, t) 6= 0, hence r(x, t)∈ A× I,
therefore h(x, t) = π1 ◦ r(x, t) ∈ A, for all (x, t) ∈ X × I. Thus proving that (α,h) is in fact a
Strøm Structure.

Conversely, if (α,h) is a Strøm Structure on (X ,A), then a fibrewise retraction
r : X × I → (X ×{0})∪A× I is defined by

r(x, t) =

(h(x, t),0), t ≤ α(x);

(h(x, t, t −α(x))), t ≥ α(x).

hence, by proposition 4.2.14, (X ,A) is a cofibred pair.

Recall definition 1.4.22 of NDR pair, given a fibrewise pair (X ,A) we can define
a fibrewise NDR pair by simply adding the condition that h must be a fibrewise
homotopy.

4.3 Monoidal and Symmetric Topological Complexity
When defining topological complexity there were no remarks made about the local

sections of the path fibration, everything was aloud as long as we managed to decompose
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the space into open subsets with local sections. From a more practical point of view, when
thinking of a realistic setup, we may wish to add some straightforward requirements for
the local sections.

First of all, we did not ask for the path from a point x∈X to itself to be the constant
path, but in a practical motion planning algorithm, this condition is rather obvious. To
include this condition, we introduce a new numerical invariant as follows.

Definition 4.3.1 ((IWASE; SAKAI, 2010)). Given a topological space X , the monoidal
topological complexity, TCM(X), is the smallest integer k, such that there exists an
open covering U1, . . . ,Uk of X ×X , with ∆(X)⊂Ui, for all i = 1, . . . ,k, and each Ui admits a
continuous section si : Ui → PX for the path fibration, satisfying si(x,x) = cx (the constant
path at x).

One may think of this extra condition as an initial step to taking distance mini-
mizing paths, as the constant path is indeed the smallest path between a point and itself.
We clearly have TC(X) ≤ TCM(X), so it might be the case that for distance minimizing
algorithms the complexity (or the order of instability) becomes even greater than TC(X).
In the following section, we shall explore the relations between TC(X) and TCM(X) by
using a concept called fibrewise LS category, but first, let us introduce another type of
topological complexity.

Another logical step for building a motion planning algorithm is to consider the
path from x ∈ X to y ∈ X to be the inverse path of y to x, in other words, if si is a local
section we wish to build an algorithm in which si(x,y)(t) = si(y,x)(1− t), for all t ∈ I.

Before defining this new numerical invariant, we need to introduce a fibration,
which will replace the path fibration in this case. Consider the space

P′X = {γ ∈ X I | γ(0) 6= γ(1)},

and consider the group actions of Z2 = Z/2Z on P′X and X ×X \∆(X) given by 1γ = γ−1

(γ−1(t) = γ(1−t), for all t ∈ I) and 1.(x,y) = (y,x), respectively. Then we have the following
fibration

P′X/Z2 −→ (X ×X \∆(X))/Z2

γ 7−→ (γ(0),γ(1))

which we will call the symmetric path fibration.

Definition 4.3.2 ((FARBER, 2006)). The symmetric topological complexity of a
space X , TCS(X), is the Schwarz genus of its symmetric path fibration.

Remark 4.3.3. Notice that if TCS(X) = k and V1, . . . ,Vk is an open covering of (X ×X \
∆(X))/Z2, with local sections si : Vi → P′X/Z2 of the symmetric path fibration, then for
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each element {(x,y),(y,x)} ∈ Vi we are obtaining an element {γ,γ−1}, with γ(0) = x and
γ(1) = y. Hence, we get a motion planning algorithm as wanted, with the path si(x,y)

being the reverse path of si(y,x).

4.4 The Fibrewise Lusternik-Schnirelmann Category
In this section, we present the concept of Fibrewise Lusternik-Schnirelmann Cate-

gory and some important results about this numerical invariant. Our main reference for
this section is (IWASE; SAKAI, 2010).

Before starting the discussion, let us remark that if (X , pX ,B,sX) is a fibrewise
pointed space, then a fibrewise pointed subspace of X is a subspace A ⊂ X such that
sX(B)⊂ A, in this way we get that (A, pX |A,B,sX) is a fibrewise pointed space.

Let us begin with a useful lemma.

Lemma 4.4.1. Given a fibrewise pointed space (X , pX ,B,sX) and a fibrewise pointed
subspace U ⊂ X (that means sX(B)⊂U). Then, the inclusion U ↪→ X is fibrewise pointed
null-homotopic in X if and only if U is fibrewise compressible to sx(B)⊂ X by a fibrewise
pointed homotopy.

Proof. Suppose that U ⊂ X is fibrewise pointed null-homotopic, then there is a fibrewise
pointed homotopy Ht : U → X , t ∈ I, such that H0 is the canonical inclusion and H1 is a
fibrewise pointed constant map. Since the homotopy is fibrewise pointed we have that the
diagram

B

U X

B

sX sX

Ht

pU pX

commutes, for all t ∈ I, in which pU = pX |U . We can see that H1sX = sX , which implies
sX(B)⊂ H1(U). Furthermore, since H1 is a fibrewise pointed constant map, we know from
remark 4.1.11 that H1 = sX pU , hence H1(U)⊂ sX(B), therefore H1(U) = sX(B) and Ht is a
fibrewise pointed homotopy compressing U to sX(B).

Conversely, suppose Ht : U → X is a fibrewise pointed homotopy compressing U to
sX(B), which means that H1(U)⊂ sX(B). As in the previous case, H1sX = sX implies that
sX(B) ⊂ H1(U), and we get H1(U) = sX(B). Since pX H1 = pU , we have that, for x ∈ Ub,
H1(x) = sX(b) = sX pU(x), hence H1 = sX pU is a fibrewise pointed constant map.

Now we introduce the concepts of Fibrewise pointed and unpointed LS category.
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Definition 4.4.2 ((IWASE; SAKAI, 2010)). The Fibrewise Pointed LS category of
a fibrewise pointed space X over B, usually written as catB

B(X), is the minimal number
m ≥ 0, such that there exists an open covering U1, . . . ,Um of X with sx(B) ⊂ Ui, for all i,
and each inclusion Ui ↪→ X is fibrewise pointed null-homotopic in X . If no such m exists
we write catB

B(X) = ∞.

Definition 4.4.3 ((IWASE; SAKAI, 2010)). The Fibrewise Unpointed LS category
of a fibrewise pointed space X over B, usually written as cat∗B(X), is the least positive
integer m, such that there exists an open covering U1, . . . ,Um of X with each Ui fibrewise
compressible into sX(B) in X by a fibrewise homotopy. If there is no such m we say
cat∗B(X) = ∞.

Remark 4.4.4. In (IWASE; SAKAI, 2010), both definitions 4.4.2 and 4.4.3 differ slightly
from what we presented here since Iwase and Sakai used the “normalized” definition, in
which one considers coverings with one element more than was introduced here, in that
case, the value of the category becomes one less than in the “non-normalized” version.
We chose this version mainly for consistency, since for both Topological complexity and
LS category we are using the “non-normalized” version.

Now, inspired by the previously shown inequality TC(X)≤ cat(X ×X) (see lemma
3.2.5), we will analyze what the relation is between these new kinds of category and
topological complexity.

From now on, for any topological space X we define the fibrewise pointed space
d(X) = (X ×X , pX ,X ,sX), in which pX : X ×X → X is the projection on the second coordi-
nate, and sX = ∆ : X → X ×X is the diagonal map.

Theorem 4.4.5 ((IWASE; SAKAI, 2010)). For X a path connected space and d(X) =

(X ×X , pX ,X ,sX), as described above, we have

1. TC(X) = cat∗X(X ×X).

2. TCM(X) = catX
X(X ×X).

Proof. Let us start by proving equality number 2. Assume TCM(X) = m. Then, there is an
open covering U1, . . . ,Um (∆(X)⊂Ui) and local sections si : Ui → X I of the path fibration
π : X I → X ×X , satisfying si(x,x) = cx, for all x ∈ X .

Remember that sX =∆, hence sX(X)⊂Ui implies that each Ui is a fibrewise pointed
subspace of d(X), we wish to show that they are fibrewise pointed nullhomotopic. For that,
consider the homotopy

Ht : Ui → X ×X

(a,b) 7→ (si(a,b)(t),b),
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clearly each Ht is a fibrewise pointed map, since HtsX = Ht∆ = ∆ = sX and pX Ht = pUi ,
once the second coordinate is fixed. Thus we have a fibrewise pointed homotopy, with H0

being the includion map and H1(Ui) = ∆(X) = sX(X), hence, by lemma 4.4.1, we conclude
that H1 is a fibrewise constant map and catX

X(X ×X)≤ m = TC(X).

For the inverse inequality suppose that catX
X(X) =m, then there is an open covering

U1, . . . ,Um of X×X with each Ui ↪→X×X fibewise pointed nullhomotopic, which, by lemma
4.4.1, is equivalent to Ui being fibrewise pointed compressible to sX(X) = ∆(X). So, there is
a fibrewise pointed homotopy Ht : Ui → X ×X from Ui ↪→ X ×X to a map H1 : Ui → X ×X

such that H1(Ui) ⊂ ∆(X). Since the homotopy is fibrewise pointed, it must satisfy the
following conditions

1. pX Ht(a,b) = pUi(a,b) = b, for all (a,b) ∈Ui and t ∈ I;

2. HtsUi(x) = sX(x), for all x ∈ X and t ∈ I.

Condition (1) implies that Ht(a,b) = (Ft(a,b),b), for all (a,b) ∈ Ui and t ∈ I, in
which Ft : Ui → X is a homotopy. Condition (2) implies that Ht(x,x) = (x,x), for all x ∈ X

and t ∈ I, hence Ft(x,x) = x, for all x ∈ X and t ∈ I.

Now we define

si : Ui → X I

(a,b) 7→ Ft(a,b),

which is clearly a section of the path fibration, since F0(a,b) = a and F1(a,b) = b. Fur-
thermore, condition (2) implies that si(a,a)(t) is the constant path, hence U1, . . . ,Um is an
open covering satisfying the conditions for monoidal TC, thus TCM(X)≤m= catX

X(X ×X),
and we finally conclude that TCM(X) = catX

X(X ×X).

In an analogous way, we prove the first equality in the theorem. Suppose that
TC(X) = m, and let U1, . . . ,Um be an open covering of X with local sections of the path
fibration given by si : Ui → X I. Then we may define the homotopy Ht : Ui → X ×X by

Ht(a,b) = (si(a,b)(t),b),

for all (a,b) ∈Ui and t ∈ I. Notice that the second coordinate stays fixed by Ht , hence it
is a fibrewise homotopy (pX Ht = pUi), and since H1(Ui)⊂ sX(X) = ∆(X), we conclude that
cat∗X(X ×X)≤ m = TC(X).

For the opposite inequality, suppose cat∗X(X ×X) = m, and let U1, . . . ,Um be an
open covering of X ×X , with each Ui fibrewise compressible to ∆(X). Let Ht : Ui → X ×X

be a fibrewise homotopy from the inclusion Ui ↪→ X ×X to a map H1 : Ui → X ×X such
that H1(Ui) ⊂ ∆(X). Since Ht is fibrewise, we have pX Ht = pUi , which implies, similarly
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to the previous case, that Ht(a, t) = (Ft(a,b),b), for some homotopy Ft : Ui → X . Then we
can define the map si : Ui → X I as si(a,b) = Ft(a,b), which is clearly a continuous section
of the path fibration. Therefore TC(X) ≤ m = cat∗X(X) and we conclude that TC(X) =

cat∗X(X).

We can use theorem 4.4.5 to try to find a relation between the monoidal and the
standard Topological Complexity, since now we know that this is equivalent to finding a
relation between the fibrewise pointed and unpointed LS categories.

Theorem 4.4.6 ((IWASE; SAKAI, 2010)). For X a fibrewise well-pointed space over B

we have
cat∗B(X)≤ catB

B(X)≤ cat∗B(X)+1.

Proof. The inequality cat∗B(X)≤ catB
B(X) is immediate from the definitions of pointed and

unpointed fibrewise LS category. So, we only need to prove that catB
B(X)≤ cat∗B(X)+1.

First, remember that the well-pointed condition means that (X ,sX(B)) is a fibrewise
cofibred pair, and from proposition 4.2.15 we know that this is equivalent to saying that
there is a Strøm structure on (X ,sX(B)), i.e., there is a map u : X → I and a fibrewise
homotopy h : X × I → X relative to sX(B), such that u−1(0) = sX(B), h(x,0) = x, for all
x ∈ X , and h(x,1) ∈ sX(B), if u(x)< 1.

Notice that, since h is relative to sX(B), we have hsX(b) = sX(b), which implies
that h is actually a fibrewise pointed homotopy. Furthermore, if u(x) < 1, we have
h(x,1)= sx(b) for some b∈B, and from the fibrewise condition we have pX(x)= pX h(x,1)=
pX sX(b) = b, hence h(x,1) = sX pX(x), for u(x) < 1, which is a fibrewise pointed constant
map. In other words, if U = u−1([0,1)), we have that the inclusion U ↪→ X is fibrewise
pointed nullhomotopic, via the fibrewise pointed homotopy h|U×I.

Suppose cat∗B(X) = m and let U1, . . . ,Um be an open covering of X with each Ui

fibrewise compressible to sX(B), via a fibrewise homotopy Hi : Ui × I → X .

Define the open sets

V = u−1([0,1/3)) and U ′
i =Ui \u−1([0,1/2]), i = 1, . . . ,m,

and
Vi =U ′

i ∪V, i = 1, . . . ,m and Vm+1 = u−1([0,2/3)).

Notice that V and U ′
i are disjoint sets and we can define the homotopy Gi : Vi× I →

X to be

Gi(x, t) =

h(x, t), if x ∈V ;

Hi(x, t), if x ∈U ′
i .
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for i = 1, . . . ,m, and there is no problem with the continuity of the function above, once
we have that there are disjoint closed sets, C = u−1([0,1/3]) and D = u−1([1/2,1]), with
V ⊂C and U ′

i ⊂ D.

For the case m+1, we simply define Gm+1 = h|Vm+1×I, and for this case it is imme-
diate that Vm+1 is fibrewise pointed nullhomotopic, via the fibrewise pointed homotopy
Gm+1.

Since h and Hi are both fibrewise, we conclude that Gi is fibrewise. Furthermore,
we have that Gi(sX(b), t) = h(sX(b), t) = sX(b), hence Gi is a fibrewise pointed homotopy.
Lastly, the map h(_,1) is fibrewise pointed constant in V and Hi(_,1) is fibrewise constant,
hence G(_,1) is fibrewise constant, and since it is also a pointed map, it must be a
fibrewise pointed constant map, hence Vi is fibrewise pointed null-homotopic, via the
fibrewise pointed homotopy Gi.

Now, we have a set {V1, . . . ,Vm,Vm+1} of open fibrewise pointed nullhomotopic sets,
it only remains to prove that this is a covering of X . To see this, notice that Ui ⊂Vi∪Vm+1,
for i = 1, . . . ,m, since U1, . . . ,Um covers X , we have that V1, . . .Vm+1 is also a covering, and
finally we conclude that catB

B(X)≤ m+1 = cat∗B(X)+1.

Theorems 4.4.5 and 4.4.6 show that for a path-connected space X, whenever d(X)=

(X ×X , pX ,X ,sX) is a fibrewise well-pointed space, we have TC(X)≤TCM(X)≤TC(X)+1.
As shown in (IWASE; SAKAI, 2010), it is sufficient to suppose that X has the homotopy
type of a locally finite simplicial complex, which yields the following corollary.

Corollary 4.4.7 ((IWASE; SAKAI, 2010)). If X has the homotopy type of a locally finite
simplicial complex, then TC(X)≤ TCM(X)≤ TC(X)+1.
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APPENDIX

A
R-MODULES AND HOMOLOGICAL

ALGEBRA

A.1 R-modules

Basic definitions and results
Usually, one defines left modules and right modules over a ring R, but if R is a

commutative ring these two notions become the same in some sense (every right R-module
is equivalent to a left R-module and vice versa). Since we mainly deal with modules over
commutative rings R (in many cases Principal Ideal Domains), we will only present the
concept of R-modules for this case.

Definition A.1.1 ((LANG, 2002)). Let (R,+, �) be a commutative ring with unity. Then,
an R-module is an abelian group (M,+) together with an operation α : R×M → M, usu-
ally denoted by α(r,x) = rx, satisfying, for all x,y ∈ M and r,s ∈ R, the following conditions

1. r(sx) = (rs)x;

2. r(x+ y) = rx+ ry;

3. (r+ s)x = rx+ sx;

4. 1x = x.

A submodule of M is any subset N ⊂ M, such that N is also a module, in other
words, N is a subgroup of M and rn ∈ N, for all r ∈ R and n ∈ N. If A ⊂ M is any subset
of M, not necessarily a submodule, then the submodule of M generated by A, denoted
〈A〉 is the smallest submodule containing A, more concretely 〈A〉 =

⋂
A⊂N N, in which N

are submodules of M, an equivalent way to put it is 〈A〉= {r1a1 + · · ·+ rkak | k ∈ N, ri ∈
R, ai ∈ A} if A 6= /0 and 〈 /0〉= {0}.

Definition A.1.2 ((LANG, 2002)). If N is a submodule of M, we define the quotient
R-module M/N to be the quotient group M/N (which always exists, since M is abelian)
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with the operation from R defined by r(m+N) = (rm)+N, in which m+N denotes the
equivalence class of m in M/N, which can also be denoted by [m] or [m]N in some cases.

Definition A.1.3. If M is an R-module, we say that x ∈ M is a torsion element if there
is a regular element r ∈ R (i.e., sr = 0 ⇐⇒ s = 0 ∈ R) such that rx = 0. The set T (M) =

{x ∈ M | x is a torsion element} is a submodule of M, called the torsion submodule of
M, if T (M) = 0 we say that M is a torsionfree module.

Notice that in the case of abelian groups (Z-modules), definition A.1.3 is saying
that the torsion elements are the group elements of finite order.

Definition A.1.4 ((LANG, 2002)). If M and N are R-modules, a function f : M → N is
said to be an R-homomorphism if f (rx+ y) = r f (x)+ f (y), for all r ∈ R and x,y ∈ M.
If, in addition, f is surjective, injective or bijective we call it an R-epimorphism, R-
monomorphism, or R-isomorphism, respectively. If an R-isomorphism exists, we say
that M and N are isomorphic, and we denote this by M≈N

Theorem A.1.5 ((LANG, 2002)). If f : M → N is an R-homomorphism, then
Im( f )≈M/ker( f )

Lemma A.1.6. Let ϕ : M →M′ be an R-homomorphism. Let Q⊂N ⊂M and Q′ ⊂N′ ⊂M′

be submodules such that ϕ(N) ⊂ N′ and ϕ(Q) ⊂ Q′, then the function ϕ : N/Q → N′/Q′

given by ϕ(x+Q) = ϕ(x)+Q′, is an R-homomorphism. In addition, if ϕ(N) = N′, then ϕ
is surjective.

The proof of lemma A.1.6 is pretty straightforward, simply notice that ϕ is well
defined, after that it is not difficult to show it is a homomorphism by using the fact that
ϕ is one.

Definition A.1.7. An R-module M is said to be free if it has a subset B ⊂ M, called the
basis of M, satisfying the following equivalent conditions

1. Every x ∈ M can be written in a unique way as x = r1b1 + . . .rnbn, with ri ∈ R and
bi ∈ B.

2. Every x ∈ M can be written as x = r1b1+ . . .rnbn, with ri ∈ R and bi ∈ B, and if si ∈ R

and b′i ∈ B are such that s1b′1, . . .skb′k = 0, then s1 = · · ·= sk = 0 (we usually call this
the linear independence property on B).

3. Any function f : B → N of B into an R-module N, can be uniquely extended to a
homomorphism f : M → N, i.e., f |B = f .

It may not be clear that the three statements in definition A.1.7 are equivalent, for
that reason let us present a brief argument here. The fact that 1 ⇐⇒ 2 is not difficult to
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see, so we will only show the slightly more difficult statement 2 ⇐⇒ 3. If statement 2 is
true, let f : B → N be a map, in which N is another R-module. Notice that f : M → N given
by f (∑i ribi) = ∑i ri f (bi), ri ∈ R, bi ∈ B, is the only homomorphism extending f , since the
representations ∑i ribi are unique. Conversely, suppose statement 3 is true, and consider
the inclusion i : B ↪→ M, then there is a unique homomorphism i : M → M extending i,
hence this has to be the identity i = idM. This implies that 〈B〉= M, otherwise we could
define a homomorphism which is the identity on 〈B〉 and 0 on M \ 〈B〉, contradicting the
uniqueness of the extension i. To prove the linear independence of B, let bi ∈ B and ri ∈ R

be such that ∑i ribi = 0, for each i define the function gi : B → R such that gi is zero
everywhere, except for gi(bi) = 1, let gi : M → R be the unique homomorphism extending
gi, we have r j = g j (∑i ribi) = g j(0) = 0, for all j, thus proving the equivalence of 2 and 3.

Proposition A.1.8. Let M be a free R-module with basis B, if C ⊂ B, then 〈C〉 is free
and M/〈C〉 is also free.

Proof. If B is a basis for M, then 〈C〉 is clearly free with basis C. If C = B then M/〈C〉= 0
is obviously free. Suppose C is a proper subset of B, we claim that B̃ .

= {[b] | b ∈ B\C} is a
basis for M/〈C〉. First, notice that if [m] ∈ M/〈C〉, then m ∈ M and we have m = ∑b∈B rbb,
hence [m] = ∑b∈B\C rb[b]. Furthermore, if r1[b1] + · · ·+ rn[bn] = 0, with bi ∈ B \C, then
[r1b1 + · · ·+ rnbn] = 0, which implies (r1b1 + · · ·+ rnbn) ∈ 〈C〉, hence r1b1 + · · ·+ rnbn =

s1c1 + · · ·+ smcm, for some ci ∈ C and si ∈ R, since all bi and c j are in B, we must have
r1 = · · ·= rn = s1 = · · ·= sm = 0, whence B̃ is indeed a basis for M/〈C〉.

Definition A.1.9 ((VICK, 2012)). For any set S, one can define the free R-module
generated by S to be the set

F(S) = { f : S → R | f is a function},

with the group operation defined by ( f +g)(s) = f (s)+g(s), for all f ,g ∈ F(S) and s ∈ S,
and the operations by R given by (r f )(s) = r( f (s)), for r ∈ R, f ∈ F(S) and s ∈ S. This is
clearly an R−module with basis the set of functions fs : S → R such that fs(s) = 1 and
fs(s′) = 0, for all s′ 6= s.

We may represent an element of f ∈ F(S) by what is called a formal sum. Since
f = r1 fs1 + · · ·+ rk fsk , we write for simplicity f as the formal sum f = r1s1 + · · ·+ rksk.
With this notation, any f ∈ F(S) is of the form f = ∑s∈S rss, with rs 6= 0 for finitely
many s ∈ S. This representation is easier to use when dealing with elements of F(S),
in fact if f ,g ∈ F(S), then f = ∑s∈S rss and g = ∑s∈S tss, with rs, ts ∈ R, and we have
f +g = ∑s∈S(rs + ts)s, in addition, if λ ∈ R then λ f = ∑s∈S(λ rs)s.

Proposition A.1.10. If R is an Integral Domain and M is a finitely generated R-module,
then M is torsion-free if and only if it is isomorphic to a submodule of a free R-module.
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Proof. The “if” part is very straightforward, suppose M is isomorphic to a submodule N

of a free module F . Notice that any free module F is torsionfree, in fact if x ∈ F and r ∈ R

with r 6= 0, then if rx = 0, let x = ∑i ribi, in which {bi}i is a basis for F , then ∑i rribi = 0,
hence rri = 0, for all i, but since R is an integral domain we must have ri = 0, for all i,
whence x = 0. Since N is a submodule of F , it must also be torsionfree, and so is M.

Conversely, let M = 〈b1, . . . ,bn〉 be a torsionfree R-module. Let {a1, . . . ,as} be a
subset of {b1, . . . ,bn}, which is R-linear independent and is maximal for this property,
meaning that if as+1, . . . ,an are the remaining elements of {b1, . . . ,bn}, then {a1, . . . ,as,ai}
is not R-linear independent, for any s+ 1 ≤ i ≤ n (such a subset exists by a simple ar-
gument using Zorn’s lemma, and by noticing that {bi} is R-linear independent, since M

is torsionfree). If s = n, we conclude that M itself is free and we are done. If s < n, we
know that F = 〈a1, . . . ,as〉 is a free module, and there exists ri ∈ R, ri 6= 0, for s+1 ≤ i ≤ n

such that riai ∈ F , let r = rs+1rs+2 . . .rn, then r 6= 0, since R is an integral domain, and
rai ∈ F , for all i, hence rM ⊂ F . Thus, we can define the homomorphism φ : M → F given
by φ(m) = rm, since M is torsionfree we clearly have ker(φ) = 0, hence M≈φ(M)⊂ F , as
we wanted.

Theorem A.1.11. If R is a Principal Ideal Domain (PID), then any submodule of a free
R-module is itself free.

Proof. Suppose R is a Principal Ideal Domain.

Simple case: First, let us show that the statement of the theorem is valid for R

(as an R-module). It is easy to see that any ring is a module over itself, and it is always
free, generated by the multiplicative identity, namely R = 〈1〉. Clearly, the submodules
of R coincide with its ideals, so the simplest one is {0}, which is clearly free. The other
possible submodules are the ideals 〈r〉, with r 6= 0. Notice that {r} is a basis for 〈r〉, since
it generates it, and if sr = 0, for some s ∈ R, we must have s = 0, since R is a domain
(there are no zero divisors). So, we conclude that all submodules of R are free, and they
are either {0} or generated by a single element.

General case: Let F be a free module over R, and E ⊂ F a submodule. Our goal
is to prove that E is free, we will do so by using Zorn’s Lemma.

First, let B ⊂ F be a basis for F , and for C ⊂ B denote EC
.
= E ∩〈C〉. Define the set

F
.
= {(EC,BC) | EC is free, and generated by BC, C ⊂ B},

which is clearly non-empty since (E /0, /0) ∈ F , and we can define the partial order

(EC,BC)≤ (ED,BD) ⇐⇒ C ⊂ D and BC ⊂ BD.

Let E ⊂ F be a non-empty totally ordered subset (also called a chain). We claim that
if C .

=
⋃
(EC,BC)∈E C and BC

.
=
⋃
(EC,BC)∈E BC, then (EC,BC) is in F and is an upper bound
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for E . It is clear that (EC,BC) is an upper bound for E , so we only have to show that
(EC,BC) is in fact an element of F .

It is easy to see that C ⊂ B. Let us show that BC is a basis of EC. If c ∈ EC = E∩〈C〉,
then it can be written as x = r1c1 + · · ·+ rkck, with c1, . . . ,ck ∈

⋃
(EC,BC)∈E C, and since

{C}(EC,BC)∈E is totally ordered, there is Co ∈ {C}(EC,BC)∈E such that c1, . . . ,ck ∈Co, hence
x ∈ ECo , thus x = s1b1 + · · ·+ smbm, si ∈ R, bi ∈ BCo ⊂ BC, so BC does in fact generate EC.
Finally, if s1, . . . ,sm ∈ R and b1, . . . ,bm ∈ BC are such that s1b1+ · · ·+ smbm = 0, then there
is Co such that b1, . . . ,bm ∈ BCo , and since this is a basis we conclude s1 = · · · = sm = 0,
whence BC is in fact a basis.

So, we have concluded that every chain in F has an upper bound in F , thus
Zorn’s lemma implies that there is a maximal element in F , let us denote this element
by (ECM ,BCM). Our goal is to show that CM = B, which will imply that ECM = E ∩〈CM〉=
E ∩〈B〉= E ∩F = E, thus showing that E is free.

By contradiction, suppose CM 6= B, then let ω ∈ B \CM, and consider D = CM ∪
{ω} ⊂ B. We claim that ED is a free submodule of F . Since F is free with basis B, and
D ⊂ B, we know that 〈D〉 is also free, so there is a homomorphism φ : 〈D〉 → R such that
φ(CM) = 0 and φ(ω) = 1. Clearly φ is surjective, with kerφ = 〈CM〉, hence 〈D〉/〈CM〉≈R,
by the first isomorphism theorem. Notice that ECM =ED∩〈CM〉, so the second isomorphism
theorem implies ED/ECM = ED/(ED ∩〈CM〉)≈(ED + 〈CM〉)/〈CM〉, which is a submodule of
〈D〉/〈CM〉≈R, so from the result for the simple case we know that ED/ECM is a free R-
module, which is either {0} or is generated by a single element.

If ED/ECM = {0}, then ED = ECM , which implies (ED,BCM) ∈ F , but this is a con-
tradiction since we clearly have (ECM ,BCM)≤ (ED,BCM).

In the other hand, if ED/ECM has a basis of a single non-zero element, let us
say [a] ∈ ED/ECM , then we claim that BD

.
= BCM ∪ {a} is a basis for ED. Indeed, if

r0u+ r1c1, . . . ,rncn = 0, with ri ∈ R and ci ∈ CM, then r0[u] = [r0u+ r1c1, . . . ,rn−1cn] = [0]
implies r0 = 0, which then implies r1 = · · ·= rn = 0. On top of that, if z∈ED, then [z] = s0[u]

for some s0 ∈ R, which implies (z− s0u) ∈ ECM , so there are s1 . . .sn ∈ R and c1 . . .cn ∈CM

such that (z− s0u) = s0u+ s1c1 + · · ·+ sncn, hence BD is in fact a basis of ED, and again
we have a contradiction. Whence, we finally conclude that CM has to be B, which implies
that E is a free submodule.

The simple case in the previous proof is actually stronger, we have the following
result.

Proposition A.1.12. All submodules of R (as an R-module) are free if and only if R is
a PID.

Proof. If R is a PID we have already proven in the previous theorem that R as an R-
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module has the property stated in the proposition. Suppose all submodules of R are free,
then if ab = 0 for a,b ∈ R non-zero elements, then a = 0 or b = 0, otherwise we would have
the submodule 〈b〉, which we are assuming to be free, but ab = 0 with a 6= 0 contradicts
this fact, hence R is in fact a domain. By contradiction, suppose there was a submodule
of I ⊂ R which is not a principal ideal since I is free there is a basis B ⊂ I of I, with at
least two elements in it, let a,b ∈ B be two different elements, then ab+(−b)a = 0, since
R is commutative, which contradicts the fact that B is a basis. Whence R is a Principal
Ideal Domain (PID).

In view of proposition A.1.12, we can construct simple examples of free modules
with non-free submodules. For instance, consider Z6 as a module over itself, then {0,3}
is a non-free submodule, since the only possible basis is {3}, but 2.3 = 0 implies it is not
a basis.

Corollary A.1.13. If R is a Principal Ideal Domain (PID) and M is a finitely generated
torsionfree R-module, then M is free.

Proof. By proposition A.1.10 we know that M is isomorphic to a submodule N of a free
R-module F , but by theorem A.1.11 N is also free, hence M must be free.

Tensor product of R-modules
Definition A.1.14. Given R-modules M, N and P, we say that a map f : M ×N → P

is R-bilinear if f |M×{n} and f |{m}×N are R-homomorphisms for any n ∈ N and m ∈ M. In
other words, for all m1, m2 ∈ M, n1, n2 ∈ N and r,s ∈ R we must have

f (rm1 +m2,sn1 +n2) = rs f (m1,n1)+ r f (m1,n2)+ s f (m2,n1)+ f (m2,n2).

Theorem A.1.15 ((DAVIS; KIRK, 2001)). Given R-modules M and N there is a unique
R-module M⊗R N , called the tensor product of M and N, and a R-bilinear map
π : M×N → M⊗R N, such that for any R-bilinear map f : M×N → P there exists a unique
R-homomorphism f : M⊗N → P such that the following diagram commutes

M×N P

M⊗R N

f

π
f

Proof. Let us first prove the existence of the tensor product of M and N. We will explicitly
construct an R-module satisfying the condition specified in the theorem.

First consider F(M ×N) to be the free R-module generated by M ×N. The idea
is that we want to take a quotient of F(M ×N) in a way that the map from M ×N to
F(M×N)/∼ taking (m,n) to the equivalence class [(m,n)] is R-bilinear, so we are basically
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asking for the equivalence relation (rm,n)∼ r(m,n)∼ (m,rn), (m+m′,n)∼ (m,n)+(m′,n)

and (m,n+n′)∼ (m,n)+(m,n′). In other words, let L(M×N) be the submodule of F(M×
N) generated by elements of the following kind:

1. (rm,n)− r(m,n);

2. (m,rn)− r(m,n) ;

3. (m+m′,n)− (m,n)+(m′,n);

4. (m,n+n′)− (m,n)+(m,n′).

Then we define M⊗R N = F(M×N)/L(M×N) and π : M×N → M⊗R N is simply
π(m,n) = [(m,n)], usually denoted m⊗n= π(m,n). Clearly π is an R-bilinear map, in other
words, we have:

1. (rm)⊗n = r(m⊗n) = m⊗ (rn);

2. (m+m′)⊗n = m⊗n+m′⊗n;

3. m⊗ (n+n′) = m⊗n+m⊗n′,

for all r ∈R, m,m′ ∈M and n,n′ ∈N. From item 1 above, we conclude that a general element
of M⊗R N is of the form ∑n

i=1 mi ⊗ni (this represents the equivalence class of the element
∑n

i=1(mi,ni)), but this representation is by no means unique, notice that even when n = 1
we can have two or more ways of writing the same element, namely (rm)⊗n = m⊗ (rn).

Now, suppose there is an R-bilninear map f : M ×N → P, we want to show that
there is a unique R-homomorphism f : M ⊗N → P such that f π = f . Uniqueness is sim-
ple, suppose there is such an R-homomorphism, then f (∑n

i=1 mi ⊗ ni) = ∑n
i=1 f (mi ⊗ ni) =

∑n
i=1 f π(mi,ni) = ∑n

i=1 f (mi,ni). To show the existence, consider the R-homomorphism in-
duced by f on F(M ×N), denote it by f̂ : F(M ×N)→ P. Since f is R-bilinear, we have
f̂ (L(M×N)) = 0, hence by lemma A.1.6 it induces an R-homomorphism f : M⊗R N → P

given by f (∑i mi ⊗ni) = f̂ (∑i(mi,ni)) = ∑i f (mi,ni). Hence, f π(m,n) = f (m⊗n) = f (m,n),
for all (m,n) ∈ M×N. Thus, ending the proof of the existence of the tensor product.

To prove uniqueness of the tensor product, suppose T and T ′ are two R-modules
satisfying the conditions for being the tensor product of M and N, with R-bilinear maps
π : M ×N → T and π ′ : M ×N → T ′. By definition of the tensor product, there must be
R-homomorphisms π : T ′ → T and π ′ : T → T ′ such that π ′π = π ′ and ππ ′ = π, but then
(ππ ′)π = π. But the R-homomorphism satisfying this equality is unique, hence ππ ′ = idT ,
analogously π ′π = idT ′ , so we conclude that π is an isomorphism between T ′ and T , which
proves uniqueness of the tensor product.

Notice that, by definition, any R-bilinear map f : M × N → P induces an R-
homomorphism f : M ⊗R N → P given by f (∑i mi ⊗ ni) = ∑i f (m,n). With this in mind,
in many situations we simply say “consider the homomorphism m⊗n 7→ f (m,n)”, mean-
ing the R-homomorphism induced by the R-bilinear map f .
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In the next proposition, we present the most important basic properties of the
tensor product.

Proposition A.1.16 ((DAVIS; KIRK, 2001)). If M, N, P, Q are R-modules, then:

1. M⊗R N≈N ⊗R M;

2. M⊗R R≈R⊗R M≈M;

3. (M⊗R N)⊗R P≈M⊗R (N ⊗R P);

4. (
⊕

α Mα)⊗R N≈
⊕

α(Mα ⊗R N);

5.
(⊕

α Mα

)
⊗R

(⊕
β Nβ

)
≈
⊕

α,β (Mα ⊗R

Nβ ).

Proof. 1. Consider the R-homomorphisms A⊗R B 3 a⊗b 7→ b⊗a ∈ B⊗R A, it is clearly an
isomorphism, with inverse B⊗R A 3 b⊗a 7→ a⊗b ∈ A⊗R B.
2. Consider the R-homomorphism R⊗R M 3 r⊗m 7→ rm∈M, and as a candidate for inverse
consider the map M 3m 7→ 1⊗m, this is in fact an R-homomorphism, since 1⊗(rm+m′) =

r(1⊗m)+1⊗m′, it is clearly the inverse of the R-homomorphism taken earlier, hence we
have an isomorphism.
3. Notice that a general element of (M⊗R N)⊗R P is of the form ∑ j[(∑ j mi j⊗ni j)⊗ p j], and
by the bilinearity of the tensor product, this can always be written as an element of the
form ∑i(mi ⊗ni)⊗ pi. Let f be the homomorphism induced by the R-bilinear application
f : (M ⊗R N)×P → M ⊗R (N ⊗R P) given by f (∑i mi ⊗ ni, p) = ∑i mi ⊗ (ni ⊗ p). It is not
difficult to see that f (∑i(mi⊗ni)⊗ pi) = ∑i mi⊗ (ni⊗ pi), and one can analogously build a
homomorphism g : M⊗R (N⊗R P)→ (M⊗R N)⊗R P such that g(∑i mi⊗ (ni⊗ pi) = ∑i(mi⊗
ni)⊗ pi, then clearly f is an isomorphism with inverse g.
4. Consider the map f : (

⊕
α Mα)×N →

⊕
α(Mα ⊗R N) given by f ((mα)α ,n) = (mα ⊗n)α ,

since it is R-bilinear, it induces a homomorphism f : (
⊕

α Mα)⊗R N →
⊕
(Mα ⊗R N) such

that f ((mα)α ⊗ n) = (mα ⊗ n)α . Let us show that f is a isomorphism by constructing
its inverse homomorphism. For each α let iα : Mα ↪→

⊕
α Mα be the canonical inclusion,

and define the maps gα : Mα ×N → (
⊕

α Mα)⊗R N given by gα(mα ,n) = iα(mα)⊗n, since
this are R-bilinear maps they induce R-homomorphisms gα : M ⊗R N → (

⊕
α Mα)⊗R N

such that gα(mα ⊗ n) = iα(mα)⊗ n. With this we can define a new R-homomorphism
g :
⊕

α Mα ⊗R N → (
⊕
)αMα)⊗R N given by g((mα ⊗ nα)α) = ∑α gα(mα ⊗ nα). It is not

difficult to see that g is the inverse of f by a simple computation. Finally, item 5 is a
simple consequence of item 4.

Property 3 in proposition A.1.16 induces us to simply write M ⊗R N ⊗R P for the
R-module (M ⊗R N)⊗R P. An R-Multilinear map is a map f : M1 × ·· · ×Mn → N, in
which M j and N are R-modules, such that for any j = 1, . . . ,n, and any element a =

(a1, . . . ,a j−1, a j+1, . . . ,an) ∈ M1 ×·· ·×M j−1 ×M j+1 ×·· ·×Mn. If we define the inclusion

iaj : M j → M1 ×·· ·×Mn

m j 7→ (a1, . . . ,a j−1,m j,a j+1, . . . ,an),
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then f iaj is an R-homomorphism. Using this definition, it is possible to introduce the tensor
product M1 ⊗R · · · ⊗R Mn similarly to what was done for the case n = 2, and this new
definition would be equivalent to taking the iterated definition M1⊗R · · ·⊗R M j−1⊗R M j =

(M1 ⊗R · · ·⊗R M j−1)⊗R M j for j ≥ 2.

Proposition A.1.17 ((DAVIS; KIRK, 2001)). If f : M → P and g : N → Q are R-
homomorphisms, there is an R-homomorphism, denoted f ⊗ g : M ⊗R N → P⊗R Q, given
by f ⊗g(m⊗n) = f (m)⊗g(n).

Proof. Simply notice that M×N 3 (m,n) 7→ f (m)⊗g(n) ∈ P⊗R Q is a bilinear map, so it
induces a unique homomorphism f ⊗g : M⊗R N → P⊗R Q.

Proposition A.1.18. The tensor product with a fixed R-module N is a covariant functor
from the category of R-modules into itself. It takes any R-module M to M⊗R N and any
R-homomorphism f : M → P to f ⊗ id : M⊗R N → P⊗R N.

Proof. One can easily see that ( f ⊗ id)(g⊗ id) = f g⊗ id and if id : M → M is the identity
of M then id ⊗ id : M⊗R N → M⊗R N is just idM⊗RN .

Lemma A.1.19 ((SPANIER, 1989)). The tensor product of two R-epimorphisms is an
R-epimorphism.

Proof. Let f : M → P and g : N → Q be R-epimorphisms, then any element of P⊗R Q can
be written as ∑i f (mi)⊗g(ni), whence f ⊗g is surjective.

Lemma A.1.20 ((SPANIER, 1989)). For two R-epimorphisms f : M → P and g : N → Q,
the kernel ker( f ⊗g) is generated by elements m⊗n such that m ∈ ker( f ) or n ∈ ker(g)

Proof. Let A ⊂ M⊗N be the submodule generated by elements m⊗n such that m ∈ ker( f )

or n ∈ ker(g). Let λ : M⊗R N → (M⊗R N)/A be the projection onto the quotient module.
Since f and g are surjective, we can define the R-bilinear map

φ : P×Q → (M⊗R N)/A

(p,q) 7→ λ (m⊗n)

in which f (m) = p and g(n) = q. This is well defined, since if f (m′) = f (m) = p, then
(m−m′) ∈ ker( f ), which implies (m−m′)⊗n ∈ A, hence

0 = λ ((m−m′)⊗n) = λ (m⊗n−m′⊗n) = λ (m⊗n)−λ (m′⊗n),

and analogously if g(n′) = g(n) = q. The R-bilinearity follows from the fact that if f (m) = p

and f (m′) = p′, then f (m+ rm′) = p+ rp′, hence

φ(p+ rp′,q) = λ ((m+ rm′)⊗n) = λ (m⊗n)+ rλ (m′⊗n) = φ(p,q)+ rφ(p′,q),
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and analogously for the second variable. This bilinear map induces a unique homomor-
phism

φ : P⊗R Q → (M⊗R N)/A

p⊗q 7→ λ (m⊗n),

with f (m) = p and g(n) = q. It is clear from the way φ was defined that the following
diagram commutes

M⊗R N P⊗R Q

(M⊗R N)/A

f⊗g

λ φ

hence ker( f ⊗g)⊂A, and since the reverse inclusion is obvious, we have ker( f ⊗g) =A.

Lemma A.1.21 ((SPANIER, 1989)). Given an exact sequence of R-modules

M N P 0
f g ,

then for any R-module Q the following sequence is exact

M⊗R Q N ⊗R Q P⊗R Q 0
f⊗id g⊗id .

Proof. Since g and id are epimorphisms, by lemma A.1.19 g ⊗ id is an epimorphism,
and by lemma A.1.20 we know that ker(g⊗ id) is generated by elements n⊗q such that
n ∈ ker(g) = Im( f ), but this are the same elements that generate Im( f ⊗ id), hence the
sequence is exact.

Proposition A.1.22. If 0 M N P 0
f g is a short exact split

sequence of R-modules, then 0 M⊗R Q N ⊗R Q P⊗R Q 0
f⊗id g⊗id is a

short exact split sequence.

Proof. The statement follows by lemma A.1.21 and the fact that if h : N → M is a left
inverse for f , then h⊗ id : N ⊗R Q → M⊗R Q is a left inverse for f ⊗ id.

Proposition A.1.23. If 0 M N P 0
f g is a

short exact sequence of R-modules, and F is a free R-module, then
0 M⊗R F N ⊗R F P⊗R F 0

f⊗id g⊗id is a short exact sequence.

Proof. From lemma A.1.21 the only thing left to prove is that f ⊗ id is injective. Let B

be a basis of F , then

F →
⊕
b∈B

R

∑
b∈B

rbb 7→ (rb)b,
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is an R-isomorphism, and we can define the composition of isomorphisms

M⊗R F → M⊗R
⊕
b∈B

R →
⊕
b∈R

M⊗R R →
⊕
b∈B

M

a⊗

(
∑
b

rbb

)
7→ a⊗ (rb)b 7→ (a⊗ rb)b 7→ (rba)b,

and we denote this isomorphism by ψM. It is easy to verify that the diagram

M⊗R F N ⊗R F

⊕
b M

⊕
b N

f⊗id

ψM ψN

⊕b f

commutes and since f is injective we have that ⊕b f is also injective, which implies the
injectivity of f ⊗ id, since ψM and ψN are isomorphisms.

A.2 Homological Algebra
In this appendix, we present several results from Homological Algebra used in the

main text.

Definition A.2.1 ((WEIBEL, 1995)). A chain complex C is a family of R-modules
{Cn}n∈Z and R-homomorphisms {∂n : Cn →Cn−1}

· · · Cn+1 Cn Cn−1 · · ·∂n+1 ∂n ,

such that ∂n∂n+1 = 0, for all n ∈ Z.

For simplicity, we will omit the indexes and write simply ∂ for every ∂n. The
condition ∂∂ = 0 is equivalent to Im(∂ )⊂ ker(∂ )⊂ (Cn). We usually denote Bn = Im(∂ )⊂
Cn and Zn = ker(∂ )⊂Cn.

Definition A.2.2 ((WEIBEL, 1995)). The n homology module of the chain complex
C is the quotient R-module Hn(C)

.
= Zn(C)/Bn(C)

Definition A.2.3 ((LANG, 2002)). Given two chain complexes C and C′, a chain map
f : C →C′ is a collection of maps fn : Cn →C′

n such that all squares in the following diagram
commute

· · · Cn+1 Cn Cn−1 · · ·

· · · C′
n+1 C′

n C′
n−1 · · ·

∂

fn+1

∂

fn fn−1

∂ ′ ∂ ′

As for the map ∂ , we may omit the indexes for a chain map, and write simply
f : Cn →Cn−1, since it is clear from the domain which fn we are considering.
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Theorem A.2.4 ((LANG, 2002)). The chain complexes as described above form a cate-
gory, called the category of chain complexes of R-modules, the objects of which are
chain complexes C, and the morphisms are chain maps f : C →C′.

Theorem A.2.5 ((LANG, 2002)). A chain map f : C → C′ satisfies f (Zn) ⊂ Z′
n and

f (Bn)⊂ B′
n, hence it naturally induces homomorphisms f∗ : Hn(C)→ Hn(C′). If g : C′ →C′′

is another chain map, then g f : C →C′′ is also a chain map and (g f )∗ = g∗ f∗.

Corollary A.2.6 ((WEIBEL, 1995)). Hn describes a covariant functor from the category
of chain complexes of R-modules to the category of R-modules, for all n. It takes a chain
complex C to Hn(C) and a chain map f : C → C′ to Hn( f ) .

= f∗ : Hn(C)→ Hn(C′), this is
usually called the n-homology functor.

Definition A.2.7 ((WEIBEL, 1995)). A sequence A B C
f g of R-modules and

R-homomorphisms is said to be an exact sequence if Im( f ) = ker(g). More gener-
ally, a sequence · · · An+1 An An−1 · · · is said to be exact if all triples
An+1 An An−1 are exact. A short exact sequence is an exact sequence of the

form 0 A B C 0
f g .

Notice that in a short exact sequence as described above f has to be injective and
g has to be surjective. Furthermore, if we had an exact sequence 0 A B 0h ,
then h is an isomorphism.

Lemma A.2.8 ((HATCHER, 2002)). For a short exact sequence
0 A B C 0

f g the following statements are equivalent.

1. There is an R-homomorphism which is a left inverse of f .

2. There is an R-homomorphism which is a right inverse of g.

3. There is an R-isomorphism ψ : B → A⊕C such that the following diagram commutes

B

0 A C 0

A⊕C

ψ

g

i

f

p

in which i and p are the canonical inclusion and projection homomorphisms. A sequence
satisfying this conditions is called a split exact sequence.

Lemma A.2.9. Let 0 A B C 0
f g be a short exact sequence of R modules.

If C is free, then the sequence is split exact.
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Proof. Simply let D ⊂ C be a basis for C, and define the R-homomorphism h : C → B,
such that for each d ∈ D, h(d) is an element of g−1({d}), which is nonempty since g is
surjective. Then, h is clearly a right inverse for g, hence the sequence splits.

Proposition A.2.10. If the diagram

0 A B C

0 D E F

α β

f g

δ ε

of R-modules is such that each row is exact and it commutes, then there is a unique
homomorphism h : A → D for which the diagram still commutes. Furthermore, if f is an
isomorphism and g a monomorphism, then h is an isomorphism.

Proof. Notice that for any a∈A we have ε f α(a)= gβα(a)= 0. Therefore f α(a)∈ ker(ε)=
Im(δ ), and since δ is injective there is a unique element d ∈ D such that δ (d) = f α(a),
define the map h : A → D by h(a) = d such that δ (d) = f α(a), this map clearly makes the
diagram commute and h(ra+ a′) = rh(a)+ h(a′), hence h is a homomorphism. Suppose
now that f is an isomorphism and g is a monomorphism. If h(a) = h(a′), then 0 = δh(a−
a′) = f α(a−a′) and since both α and f are injective we have a = a′, thus h is injective.
If we take any d ∈ D, then since f is surjective there is b ∈ B with f (b) = δ (d), then
gβ (b) = ε f (b) = εδ (d) = 0, and since g is injective we must have β (b) = 0, so by exactness
of the first row there is α ∈ A such that α(a) = b, whence h(a) = d, and we conclude that
h is an isomorphism.

Definition A.2.11 ((WEIBEL, 1995)). If we fix N an R-module, for each R-module M

we can define HomR(M,N) to be the R-module of R-homomorphisms from M to N. Given
an R-homomorphism f : M → M′ we define the R-homomorphism f ∗ : HomR(M′,N) →
HomR(M,N) given by f ∗(φ) = φ f .

Theorem A.2.12 ((HATCHER, 2002)). If we fix an R-module N , then HomR(·,N) is a
contravariant functor from the R-module category to itself, defined as in definition A.2.11.

Definition A.2.13 ((HATCHER, 2002)). Given chain complex C and an R-module N,
we can apply the HomR(·,N) functor to obtain a new chain complex C∗ = HomR(C,N)

.
=

{HomR(Cn,N)}n∈Z, with maps δ = ∂ ∗ : HomR(Cn,N)→ HomR(Cn+1,N), since δ (φ) = φ∂
we clearly have δδ = 0, and we can write this new chain complex as

· · · C∗
n−1 C∗

n C∗
n+1 · · ·δ δ .

This complex, in which the index is increasing, is usually called a cochain complex.
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As for the case of chain complexes, we have Im(δ )⊂ ker(δ )⊂C∗
n , we usually denote

Bn(C)
.
= Im(δ ) and Zn(C)

.
= ker(δ ), and define the n cohomology R-module of C as the

quotient module Hn(C) = Zn(C)/Bn(C).

A cochain map will be simply the dual notion of a chain map, i.e., just invert
all arrows in the chain map definition. If f : C →C′ is a chain map, then by applying the
HomR(·,N) functor we get a cochain map f ∗ : C′∗→C∗, and we have f ∗(Zn(C′))⊂ Zn(C)

and f ∗(Bn(C′)) ⊂ Bn(C), so by lemma A.1.6 we have a well defined R-homomorphism
f ∗∗ : Hn(C′)→ Hn(C). It is not difficult to check that if f : C →C′ and g : C′ →C′′ are chain
maps, then (g f )∗∗ = f ∗∗ g∗∗, so Hn is a contravariant functor from the category of chain
complexes of R-modules to the category of R-modules, it is usually referred to as the n

cohomology functor.

Definition A.2.14 ((WEIBEL, 1995)). A sequence C C′ C′′f g of chain complexes
and chain maps is said to be an exact sequence of chain complexes if Im( f ) = ker(g),
meaning that this is true in all levels Cn C′

n C′′
n

f g . More generally, a sequence

· · · C C′ C′′ · · ·f g is said to be exact if all triples C C′ C′′f g are
exact. A short exact sequence of chain complexes is an exact sequence of chain
complexes of the form 0 C C′ C′′ 0

f g .

Lemma A.2.15 (Snake Lemma (WEIBEL, 1995)). If the following is a commutative
diagram of R-modules with exact rows

Cn C′
n C′′

n 0

0 Cn−1 C′
n−1 C′′

n−1

f

∂

g

∂ ′ ∂ ′′

f g

then there is an exact sequence

ker(∂ ) ker(∂ ′) ker(∂ ′′) Coker(∂ ) Coker(∂ ′) Coker(∂ ′′)
fo go α f̃ g̃ ,

in which α is called the attaching map.

Since the proof of the Snake Lemma is not provided in the reference, it will be
shown here.

Proof. The maps fo, go, f̃ and g̃ are defined in the natural way, fo and go are restrictions of
f and g respectively (with the range also restricted, which works since f (ker(∂ ))⊂ ker(∂ ′),
and analogously for g), and since f (Im(∂ )) ⊂ Im(∂ ′), we have by lemma A.1.6 a well
defined homomorphism f̃ , analogously for g̃. The map α will be defined latter in the
proof, first let us analyze the exactness of the sequence in the two extremities, namely we
want to show that ker(go) = Im( fo) and ker(g̃) = Im( f̃ ).
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For the fist equality (ker(go) = Im( fo)), let c′n ∈ ker(go)⊂ ker(∂ ′), then c′n ∈ ker(g) =
Im( f ), so there is a cn ∈Cn such that f (cn) = c′n. So we have f ∂ (cn) = ∂ ′ f (cn) = ∂ ′(c′n) = 0,
since f from the bottom row is injective, we have ∂ (cn) = 0, hence cn ∈ ker(∂ ), and since
fo(cn)= f (cn)= c′n, we have c′n ∈ Im( fo). Conversely, if c′n ∈ Im( fo), then there is cn ∈ ker(∂ )
such that fo(cn) = c′n, and we have go fo(cn) = g f (cn) = 0, thus concluding the equality
ker(go) = Im( fo).

For the second equality (ker(g̃) = Im( f̃ )), let (c′+ Im(∂ ′)) ∈ ker(g̃), then g(c′) ∈
Im(∂ ′′), so pick c′′n ∈C′′

n so that ∂ ′′(c′′n) = g(c′), and since g in the upper row is surjective
there is c′n ∈ C′

n such that g(c′n) = c′′n, whence g∂ ′(c′n) = ∂ ′′g(c′) = ∂ ′′(c′′n) = g(c′). Thus
(c′ − ∂ ′(c′n)) ∈ ker(g), from exactness we know there is an element c ∈ Cn−1 such that
f (c) = c′−∂ ′(c′n), then clearly f̃ (c+ Im(∂ )) = c′+ Im(∂ ′). It is clear that g f = 0 implies
g̃ f̃ = 0, thus concluding the veracity of the equality ker(g̃) = Im( f̃ ).

Let us now finally define the attaching map α : ker(∂ ′′)→ Coker(∂ ):

1. For c′′ ∈ ker(∂ ′′), since g is surjective there is a c′ ∈C′
n such that g(c′) = c′′.

2. We have g∂ ′(c′) = ∂ ′′g(c′) = ∂ ′′(c′′) = 0, hence ∂ ′(c′) ∈ ker(g), by exactness there is
an element c ∈Cn−1 such that f (c) = ∂ ′(c′).

We define α(c′′) = c+ Im(∂ ).

We still need to analyze if α is really a homomorphism, its definition is a bit
confusing, but this is not a difficult task. First, let us see that α is indeed a well defined
map. Suppose that for c′′ ∈ ker(∂ ′′) we have c′1, c′2 ∈ C′

n and c1, c2 ∈ Cn−1 such that
g(c′1)= g(c′2)= c′′ and f (c1)= ∂ ′(c′1), f (c2)= ∂ ′(c′2). Notice that (c′1−c′2)∈ ker(g)= Im( f ),
let a ∈Cn be such that f (a) = c′1−c′2, then f (c1−c2) = ∂ ′(c′1−c′2) = ∂ ′ f (a) = f ∂ (a), since
f is injective we conclude c1 −c2 = ∂ (a), hence (c1 + Im(∂ )) = (c2 + Im(∂ )), and the map
is indeed well defined.

To show it is an R-homomorphism consider c′′1,c
′′
2 ∈C′′

n and r ∈ R. Suppose α(c′′i ) =

ci + Im(∂ ), with c′i ∈C′
n such that g(c′i) = c′′i and f (ci) = ∂ ′(c′i), for i = 1,2. Then, clearly

g(rc′1+c′2) = rc′′1 +c′′2 and f (rc1+c2) = ∂ (rc′1+c′2), hence α(rc′′1 +c′′2) = (rc1+c2+Im(∂ )) =
r(c1 + Im(∂ ))+(c2 + Im(∂ )) = rα(c′′1)+α(c′′2).

Now, to finish the proof, we need to verify exactness, we have already shown
that Im( fo) = ker(go) and Im( f̃ ) = ker(g̃), so there are two other equalities left to prove.
Let us start with Im(go) = ker(α). If c′′ ∈ Im(go), then there is c′ ∈ ker(∂ ′) such that
go(c′) = g(c′) = c′′, notice that ∂ ′(c′) = 0 = f (0) implies α(c′′) = 0. Conversely, if c′′ ∈
ker(α), then there are c′ ∈ C′

n and c ∈ Cn such that g(c′) = c′′ and f (c) = ∂ ′(c′), so that
α(c′′) = c+ Im(∂ ) = 0, which means c ∈ Im(∂ ), let a ∈ Cn be so that ∂ (a) = c. Then
∂ ′(c′) = f (c) = f ∂ (a) = ∂ ′ f (a), thus c′− f (a) ∈ ker(∂ ′) and go(c′− f (a)) = g(c′− f (a)) =

g(c′)−g f (a) = g(c′) = c′′, since g f = 0.
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Let us now prove the last equality Im(α) = ker( f̃ ). First, if (c+ Im(∂ )) ∈ Im(α),
then let c′ ∈C′

n and c′′ ∈ ker(∂ ′′) be such that g(c′) = c′′ and f (c) = ∂ ′(c′), in other words,
α(c′′) = c+ Im(∂ ). Then f̃ (c+ Im(∂ )) = f (c)+ Im(∂ ′) = ∂ ′(c′)+ Im(∂ ′) = 0. Conversely,
if (c+ Im(∂ )) ∈ ker( f̃ ), then f (c) ∈ Im(∂ ′), let c′ ∈C′

n be such that ∂ ′(c′) = f (c), then by
definition of α we have α(g(c′)) = c+ Im(∂ ), notice that g(c′) ∈ ker(∂ ′′), since ∂ ′′g(c′) =

g∂ ′(c′) = g f (c) = 0.

Theorem A.2.16 ((WEIBEL, 1995)). If 0 C C′ C′′ 0
f g is a short exact

sequence of chain complexes, then there is a long exact sequence associated to it, namely

· · · Hn(C) Hn(C′) Hn(C′′) Hn−1(C) · · ·f∗ g∗ α ,

which is called the long exact sequence of homology.

Proof. It follows from the snake lemma that the rows are exact in the following commu-
tative diagram

Coker(∂ ) = Cn
Bn

Coker(∂ ′) = C′
n

B′
n

Coker(∂ ′′) = C′′
n

B′′
n

0

0 ker(∂ ) = Zn−1 ker(∂ ′) = Z′
n−1 ker(∂ ′′) = Z′′

n−1

f̃

∂̃

g̃

∂̃ ′ ∂̃ ′′

fo go

with ∂̃ defined in the natural way ∂̃ (c+Bn) = ∂ (c), this is well defined since ∂ (Bn) = 0
and Im(∂ )⊂ Zn−1, analogously for ∂ ′ and ∂ ′′. It is clear that Im(∂̃ ) = Im(∂ ) = Bn−1. We
also have ∂̃ (c+Bn) = ∂ (c) = 0 if an only if c ∈ Zn, hence ker(∂̃ ) = Zn/Bn.

Since ker(∂̃ ) = Hn(C) and Coker(∂̃ ) = Hn−1(C), and the analogous is valid for ∂ ′

and ∂ ′′, we have by the snake lemma the following exact sequence

Hn(C) Hn(C′) Hn(C′′) Hn−1(C) Hn−1(C′) Hn−1(C′′)
f∗ g∗ α f∗ g∗ .

By gluing these sequences, for all n, we get the long exact sequence from the theorem.

Let us analyze what the attaching map α becomes in theorem A.2.16. If (z′′+B′′
n)∈

Hn(C′′), then there is (c′+B′
n)∈C′

n/B′
n such that g̃(c′+B′

n)= g(c′)+B′′
n = z′′+B′′

n, and there
is z ∈ Zn−1 such that fo(z) = f (z) = ∂̃ ′(c′+B′

n) = ∂ ′(c′), and we have α(z′′+B′′
n) = z+Bn−1.

Notice that a completely equivalent definition of the connecting homomorphism α
is: α(z′′+B′′

n) = z+Bn, with z′′ ∈ Z′′
n and z ∈ Zn−1, if there is c′ ∈C′

n such that g(c′) = z′′

and f (z) = ∂ ′(c′).

In a suitable scenario, one can easily introduce the dual notion of the long exact se-
quence of homology. From now on, by dual of a sequence of R-modules A B C

f g

we mean the sequence C∗ B∗ A∗g∗ f ∗ generated by the functor HomR(·,N).
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Corollary A.2.17. If 0 C′′∗ C′∗ C∗ 0
g∗ f ∗ is a short exact sequence of

cochain complexes, then we have the following long exact sequence

· · · Hn(C′′) Hn(C′) Hn(C) Hn+1(C) · · ·g∗∗ f ∗∗ β ,

which is called the long exact sequence of cohomology.

Corollary A.2.17 follows directly from theorem A.2.16. We can construct a slightly
stronger assertion in view of the following lemma.

Lemma A.2.18. The dual of an exact sequence A → B →C → 0 is exact.

Proof. Let A B C 0
f g be an exact sequence, then the dual sequence generated

by HomR(·,N), namely 0 C∗ B∗ A∗g∗ f ∗ , is clearly a chain complex, that is, {0}⊂
ker(g∗) and Im(g∗)⊂ ker( f ∗), since 0 = (g f )∗ = f ∗g∗, so the only thing left to do is prove
the opposite inclusions.

To see that {0} ⊃ ker(g∗), take φ : C → N in the kernel of g∗, i.e., g∗(φ) = φg = 0,
and since g is surjective, we have {0}= φg(B) = φ(C), hence ϕ = 0.

To show that Im(g∗) ⊃ ker( f ∗), take ψ : B → N in the kernel of f ∗, i.e., f ∗(ψ) =

ψ f = 0, which implies Im( f )= ker(g)⊂ ker(ψ), this means that g(a)= g(b) implies ψ(a)=

ψ(b), for any a,b ∈ B. Since g is surjective, we can define for each c ∈C, bc ∈ B such that
g(bc) = c. With this, we can introduce the map φ : C →N given by φ(c) =ψ(bc). We claim
that φ is an R-homomorphism. To see that, take r ∈ R and c1,c2 ∈C, then φ(rc1 + c2) =

ψ(brc1+c2), we also have g(brc1+c2) = rc1+c2 = rg(bc1)+g(bc2) = g(rbc1 +bc2), this implies
that ψ(brc1+c2) = ψ(rbc1 +bc2) = rψ(bc1)+ψ(bc2) = rφ(c1)+φ(c2). Finally, we claim that
g∗(ϕ) = ψ , this is easily shown since from the definition of ϕ we have ϕg(b) = ψ(bg(b)),
and g(bg(b)) = g(b) implies ψ(bg(b)) = ψ(b), hence we conclude Im(g∗)⊃ ker( f ∗).

Lemma A.2.19. The dual of a split exact sequence is a split exact sequence.

Proof. Let 0 A B C 0
f g be an exact sequence, and let

0 C∗ B∗ A∗ 0
g∗ f ∗ be its dual sequence. From lemma A.2.18, the only

thing left to prove is that f ∗ is surjective and the sequence splits. Notice that if h is a left
inverse for f , then h∗ is a right inverse for f ∗, since (h f )∗ = f ∗h∗, and since the original
sequence splits this finishes our proof.

Corollary A.2.20. If 0 C C′ C′′ 0
f g is a short exact sequence of chain

complexes, such that the dual 0 C′′∗ C′∗ C∗ 0
g∗ f ∗ is still short exact, then
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there is a long exact sequence

· · · Hn(C′′) Hn(C′) Hn(C) Hn+1(C′′) · · ·g∗∗ f ∗∗ β ,

called the long exact sequence of cohomology. In particular, this is true if the original
sequence splits.

Definition A.2.21 ((WEIBEL, 1995)). If f ,g : C →C′ are two chain maps, we say that
f and g are chain homotopic if there is a map T : Cn →C′

n+1 such that f −g = T ∂ +∂T ,
for all levels n. In this case, T is called a chain homotopy between f and g.

Theorem A.2.22 ((WEIBEL, 1995)). Two chain homotopic maps f ,g : C → C′ induce
the same maps on homology and cohomology.

Proof. Let T be a chain homotopy from f to g, i.e., f − g = T ∂ + ∂T . If we take a
cycle z ∈ Zn, then f (z)− g(z) = T ∂ (z) + ∂T (z) = ∂T (z), hence f (z)− g(z) ∈ B′

n, which
implies f (z)+B′

n = g(z)+B′(n), whence f∗ = g∗. For cohomology we use an analogous
argument, by simply noticing that the dual chain maps f ∗,g∗ : C′∗ →C∗ satisfy the relation
f ∗−g∗ = δT ∗+T ∗δ , hence f ∗∗ = g∗∗.

Proposition A.2.23. If R is a commutative ring with unit, then for any R-module M

the R-module HomR(R,M) is isomorphic to M by the natural isomorphism

Ψ : M −→ HomR(R,M)

m 7−→ ( fm : R → M),

in which fm(1) = m.

Ext and Tor Functors

Definition A.2.24 ((SPANIER, 1989)). Given any chain complex of R-modules, C =

{Cn,∂n}n, and an R module, M, we can define the chain complex C⊗R M by

· · · Cn+1 ⊗R M Cn ⊗R M Cn−1 ⊗R M · · ·∂⊗id ∂⊗id ,

and the homology R-modules Hn(C ⊗R M) are called the homology R-modules of C

with coefficients in M, denoted Hn(C;M).

Notice that in definition A.2.24, {Cn ⊗M,∂ ⊗ id}n is in fact a chain complex since
(∂ ⊗ id)(∂ ⊗ id) = ∂∂ ⊗ id = 0⊗ id = 0.

Definition A.2.25 ((HATCHER, 2002)). Given M an R-module, a resolution of M is
an exact sequence F given by

· · · F2 F1 F0 M 0
f2 f1 f0 ,

additionally if all Fi are free then F is called a free resolution.



A.2. Homological Algebra 151

Notice that given a free resolution F of M, and an R-module N we can obtain the
following chain complexes

· · · F2 ⊗R N F1 ⊗R N F0 ⊗R N M⊗R N 0
f2⊗id f1⊗id f0⊗id ,

and
0 M∗ F∗

0 F1 F2 · · ·
f ∗0 f ∗1 f ∗2 .

Let us momentarily write Hn(F ;N) = ker( fn ⊗ id)/ Im( fn+1 ⊗ id) and Hn(F ;N) =

ker( f ∗n+1)/ Im( f ∗n ), for n = 0,1, . . . , in what follows we will show that these R-modules are
independent of the free resolution F , and will introduce a special notation for them.

Theorem A.2.26 ((HATCHER, 2002)). Given R-modules M and M′, with free resolu-
tions F and F ′, if φ : M → M′ is an R-homomorphism, then there is a chain map α : F → F ′

extending φ , i.e., every square commutes in the diagram

· · · F2 F1 F0 M 0

· · · F ′
2 F ′

1 F ′
0 M′ 0

α2

f2

α1

f1

α0

f0

φ

f ′2 f ′1 f ′0

if β : F → F ′ is another chain map extending φ , then α and β are chain homotopic.
As a consequence, if φ : M → M′ is an isomorphism, and N an R-module we have
Hn(F ;N)≈Hn(F ′;N) and Hn(F ;N)≈Hn(F ′;N)

Proof. Let us fix the notation Bi and B′
i are basis sets for Fi and F ′

i . The proof of the first
part is done by induction. For the zeroth step define the R-homomorphism α0 : F0 → F ′

0

which sends basis elements b ∈ B0 to some element in f ′0
−1({φ f0(b)}), which is nonempty

since f ′0 is surjective. If αn−1 is defined, define αn : Fn → F ′
n as the R-homomorphism taking

basis elements b ∈ Bn to an element of the set f ′n
−1(αn−1 fn(b)), which is nonempty since

αn−1 fn(Fn) ∈ ker( f ′n−1) = Im( f ′n).

Now suppose β : F → F ′ is another chain map extending φ , then γ = α − β is
a chain map extending the trivial homomorphism 0 : M → M′. We want to define R-
homomorphisms Tn : Fn → F ′

n+1 such that γn = f ′n+1Tn+Tn−1 fn, this is also done inductively.
Clearly T−1 = 0, so for n= 0 the equation becomes f ′1T0 = γ0. Consider the homomorphisms
T0 : F0 → F ′

1 which takes a basis element b ∈ B0 to some element in f ′1
−1({γ0(b)}), which is

nonempty since γ0(b)∈ ker( f ′0) = Im( f ′1). If Tn−1 has being defined, consider Tn : Fn → F ′
n+1

to be the R-homomorphism taking a basis element b∈ Bn to an element of f ′n+1
−1({γn(b)−

Tn−1 fn(b)}), to see that this set is nonempty we use the fact that γn−1 = f ′nTn−1+Tn−2 fn−1

and γn−1 fn = f ′nγn, and apply this to

f ′n(γn −Tn−1 fn) = f ′nγn − f ′nTn−1 fn = γn−1 fn − f ′nTn−1 fn

= ( f ′nTn−1 +Tn−2 fn−1) fn − f ′nTn−1 fn

= Tn−2 fn−1 fn = 0,



152 APPENDIX A. R-modules and homological algebra

hence Im(γn−Tn−1 fn)⊂ ker( f ′n) = Im( f ′n+1). In conclusion, we have that α and β are chain
homotopic, since αn −βn = f ′n+1Tn +Tn−1 fn.

Finally, suppose φ is an isomorphism with ψ : M′ → M its inverse. Let α : F → F ′

and β : F ′ → F be chain maps extending φ and ψ , respectively. It is easy to see that the
composition βα : F →F defines a chain map extending the identity id : M →M. From what
was proven earlier, βα has to be chain homotopic to the identity chain map idF : F → F ,
which is simply the identity map at every level n. By theorem A.2.22, we have that the
induced maps in homology and cohomology by βα are equal to the identity map, hence
(αn)∗ : Hn(F ;N)→ Hn(F ′;N) and (αn)

∗
∗ : Hn(F ′;N)→ Hn(F ;N) are isomorphisms, for any

R-module N.

Definition A.2.27 ((HATCHER, 2002)). Given R-modules M and N, and F a free reso-
lution of M

· · · F2 F1 F0 M 0
f2 f1 f0 ,

we have the chain complexes

· · · F2 ⊗R N F1 ⊗R N F0 ⊗R N M⊗R N 0
f2⊗id f1⊗id f0⊗id ,

and
0 M∗ F∗

0 F1 F2 · · ·
f ∗0 f ∗1 f ∗2 ,

and we define the R-modules

Torn(M,N) =
ker( fn ⊗ id)

Im( fn+1 ⊗ id)
and Extn(M,N) =

ker( f ∗n+1)

Im( f ∗n )
,

for n = 1,2, . . . . Notice that since F1 → F0 → M → 0 is exact, both F1 ⊗R N → F0 ⊗R N →
M⊗R N → 0 and 0→M∗→F∗

0 →F∗
1 are exact (by lemmas A.2.18 and A.1.21), so if we used

the same definition as above for n = 0, we would always have Tor0(M,N) = Ext0(M,N) = 0.
This is usually referred to as the reduced Tor and Ext groups, sometimes written T̃orn and

˜Extn, with the unreduced version being the homology R-modules of the chain complexes

· · · F2 ⊗R N F1 ⊗R N F0 ⊗R N 0
f2⊗id f1⊗id ,

and
0 F∗

0 F1 F2 · · ·
f ∗1 f ∗2 ,

so we have (by exactness)

Tor0(M,N) = (F0 ⊗R N)/ Im( f1 ⊗ id) = (F0 ⊗R N)/ker( f0 ⊗ id)≈M⊗R N,

and
Ext0(M,N) = ker( f ∗1 ) = Im( f ∗0 )≈M∗ = HomR(M;N).
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From theorem A.2.26, we know that Torn(M,N) and Extn(M,N), as defined previ-
ously, are independent from the free resolution F , hence they are well defined.

Remark A.2.28. For any R-module M, there is a free resolution constructed in the
following way. Take F0 = F(M) (remember that F(S) is the free R-module generated by
the set S), and consider the homomorphism f0 : F0 → M given by f0(m) = m, which is
clearly surjective. Now, by induction define Fn = F(ker( fn−1) and fn : Fn → Fn−1 to be
the homomorphism given by fn(b) = b, for all b ∈ ker( fn−1), with this we have Im( fn) =

ker( fn−1)

F(ker( fn−1)) F(ker( fn−2)) F(ker( f0)) F(M)

· · · Fn Fn−1 · · · F1 F0 M 0
fn fn−1 f1 f0

If R is a PID, we can get a simpler free resolution for M, namely

ker( f0) F(M)

0 F1 F0 M 0
f1 f0

in which f0 is the same as in the general case, and f1 is the inclusion homomorphism.
Notice that for any R-module this is an exact sequence, but we can only guarantee it is a
free resolution if R is a PID, since from proposition A.1.12 we know that ker( f0) is a free
module. Notice that this free resolution implies that for any R-module M, with R being a
PID, Torn(M,N) = Extn(M,N) = 0, for all n ≥ 2.

Remark A.2.29. In many situations in algebraic topology we will only be interested in
Tor1(M,N) and Ext1(M,N), therefore we may write Tor(M,N) and Ext(M,N) without any
index when referring to them.

Next, we present the most important properties of Torn and Extn, these properties
are really important when trying to compute these R-modules.

Proposition A.2.30 ((HATCHER, 2002)). If M, N, P and Q are R-modules and {Mα}α

is a family of R-modules we have:

(T1) Torn(M,N)≈Torn(N,M), if R is a PID;

(T2) Torn (
⊕

α Mα ,N) =
⊕

α Torn(Mα ,N);

(T3) Torn(M,N) = 0, for n ≥ 1, if M or N is free;

(T3’) Torn(M,N) = 0, for n ≥ 1, if M or N is torsionfree and R is a PID;

(T4) If R is a PID, then Torn(M,N) = Torn(T (M),N), in which T (M) is the torsion sub-
module of M;
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(T5) Tor1(Zn,M)≈ker(ϕn), in which we are considering Z-modules, and ϕn : M → M given
by ϕn(m) = nm;

(T6) Any short exact sequence 0 → N → P → Q → 0 induces a long exact sequence

· · · Torn(M,N) Torn(M,P) Torn(M,Q) Torn−1(M,N) · · ·

· · · Tor(M,N) Tor(M,P) Tor(M,Q)

M⊗R N M⊗R P M⊗R Q 0

(E1) Extn (
⊕

α Mα ,N) =
⊕

α Extn(Mα ,N);

(E2) Extn(M,N) = 0 if M is free

(E3) Ext1(Zn,M) = M/nM, for Z modules.

Proof. (T2) and (E1) are a consequence of the fact that if Fα = {F i
α , f i

α : F i
α → F i−1

α }i

is a free resolution for each Mα , then the direct sum ⊕
α Fα =

{⊕
α F i

α ,⊕α f i
α
}

i is a free
resolution of ⊕α Mα .

For (T5) and (E3) consider the free resolution of the Z-module Zn given by
0 Z Z Zn 0

fn , in which fn(z) = nz, for some n ∈ Z>0, by applying the
definitions of Ext1 and Tor1 to this free resolution, we obtain the desired results.

To prove (E2) and (T3) suppose M is free, then 0→M →M → 0 is a free resolution
of M, which clearly implies Extn(M,N) = Torn(M,N) = 0, for n ≥ 1.

The property (T6) is basically a consequence of the long exact sequence of ho-
mology (Theorem A.2.16) . Let . . .F2 → F1 → F0 → M → 0 be a free resolution of M. If
0 → N → P → Q → 0 is a short exact sequence, then we have the following commutative
diagram

... ... ...

0 F1 ⊗R N F1 ⊗P F1 ⊗Q 0

0 F0 ⊗R N F0 ⊗P F0 ⊗Q 0

0 0 0

and from proposition A.1.23 we have that each line in the diagram above is a short
exact sequence, hence theorem A.2.16 implies the existence of a long exact sequence as in
statement (T6).

Now, we use (T6) to prove (T1). If R is a PID, we have shown that an R-module
N assumes a free resolution 0 → F1 → F0 → N → 0, which in particular is a short exact
sequence. Thus, applying (T6), we get an exact sequence 0 → Tor(M,N) → M ⊗R F1 →
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M ⊗F0 → M ⊗N → 0, here since F1 and F0 are free we have Tor(F1,N) = Tor(F0,N) = 0.
From the definition of Tor(N,M), we have the exact sequence 0 → Tor(N,M)→ F1⊗R M →
F0⊗R M →N⊗R M → 0. The natural isomorphisms M⊗R Fi≈Fi⊗R M give us a commutative
diagram

0 Tor(M,N) M⊗R F1 M⊗R F0 M⊗R N 0

0 Tor(N,M) F1 ⊗R M F0 ⊗R M N ⊗R M 0

≈ ≈ ≈

and by proposition A.2.10 we conclude that Tor(M,N)≈Tor(N,M).

Now we prove (T3’). Since R is a PID, we have a free resolution
0 F1 F0 M 0

f1 , which implies Torn(M,N) = 0, for n ≥ 2, so the only thing
left to prove is that Tor(M,N) = 0. Suppose M is torsion free (the case where N is
torsion free will be analogous, since we have proven that Tor(M,N)≈Tor(N,M)), we
have Tor(M,N) = ker( f1 ⊗ id), so we basically want to show that ker( f1 ⊗ id) = 0. If
∑i xi ⊗ni ∈ ker( f1 ⊗ id), then ∑i f (xi)⊗ni = 0, which means this sum reduces to zero after
a finite number of bilinear operations, using the tensor product properties. There is a
finite number of elements of N involved in this operations, these elements generate the
submodule N0 ⊂ N, hence ∑i xi ⊗ni lies in the kernel of f1 ⊗ id : F1 ⊗R N0 → F0 ⊗R N0, and
since N0 is a finitely generated torsionfree module, it is free by corollary A.1.13. Hence,
Tor(M,N0) = 0, which implies that the kernel mentioned is trivial, hence ∑i xi⊗ni = 0, and
we conclude that Tor(M,N) = 0.
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