Thèse de Doctorat
DOI
10.11606/T.55.2013.tde-09052013-150022
Document
Auteur
Nom complet
Pedro Henrique Apoliano Albuquerque Lima
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Carlos, 2013
Directeur
Jury
Pérez, Victor Hugo Jorge (Président)
Brumatti, Paulo Roberto
Hefez, Abramo
Levcovitz, Daniel
Orihuela, Fernando Eduardo Torres
Titre en portugais
Sobre a fibra especial e o teorema de Risler-Teissier para filtrações
Mots-clés en portugais
Fibra especial
O Teorema de Risler-Teissier para filtações
Propriedae da fibra especial ser Gorenstein
Resumé en portugais
Seja (R;m) um anel Noetheriano local e R 'CONTÉM' 'iota IND. 1' 'CONTÉM' 'iota IND. 2' 'CONTÉM ... uma filtração de ideais de R. Podemos então construir a álgebra graduada F('\Im) := 'SOMA DIRETA IND. n > OU = 0 POT. 'iota IND. n / 'm 'iota IND. n', chamada de fibra especial. Esta tese objetiva a pesquisa deste anel. Investigamos sobre a sua propriedade de ser Gorenstein e a sua regularidade de Castelnuovo-Mumford. Outro objetivo, é generalizarmos o teorema de Risler-Teissier (sobre multiplicidades mistas) para o caso de filtrações de Hilbert
Titre en anglais
On fiber cone and Risler-Teissier theorem to fibration
Mots-clés en anglais
Castelnuovo-Mumford regularity
Fiber cone
Gorenstein property
Risler-Teissier theorem to fibration
Resumé en anglais
Let (R;m) be a Noetherian local ring and R 'CONTAINS' 'iota IND. 1' 'CONTAINS' 'iota IND. 2' 'CONTAINS' ... a filtration of ideals in R. We may then construct the graded algebra F(\Im) := 'DIRECT SUM' IND. n > OR = '0 POT. 'iota' IND. n / 'm 'iota IND. n' , which is called fiber cone. This thesis has the goal to research about this graded ring. We investigate its Gorenstein property and its Castelnuovo-Mumford regularity. Another aim is to generalize the Risler-Teissiers theorem (about mixed multiplicities) for the case of Hilbert filtration

AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.