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ABSTRACT

GUIMARÃES, A. On Hamiltonian systems with critical Sobolev exponents. 2022. 57
p. Tese (Doutorado em Ciências – Matemática) – Instituto de Ciências Matemáticas e de
Computação, Universidade de São Paulo, São Carlos – SP, 2022.

In this thesis we consider lower order perturbations of the critical Lane-Emden system posed on
a bounded smooth domain Ω⊂ RN , with N ≥ 3, inspired by the classical results of Brezis and
Nirenberg (BRÉZIS; NIRENBERG, 1983). We solve the problem of finding a positive solution
for all dimensions N ≥ 4. For the critical dimension N = 3 we show a new phenomenon, not
observed for scalar problems. Namely, there are parts on the critical hyperbola where solutions
exist for all 1-homogeneous or subcritical superlinear perturbations and parts where there are no
solutions for some of those perturbations.

Keywords: Lane-Emden systems; Critical hyperbola; Critical dimension; Positive solutions.





RESUMO

GUIMARÃES, A. Sobre sistemas Hamiltonianos com expoentes críticos de Sobolev. 2022.
57 p. Tese (Doutorado em Ciências – Matemática) – Instituto de Ciências Matemáticas e de
Computação, Universidade de São Paulo, São Carlos – SP, 2022.

Nesta tese consideramos perturbações de ordem inferior do sistema crítico de Lane-Emden
em domínios limitados suaves Ω ⊂ RN , com N ≥ 3, inspirados pelos resultados clássicos de
Brézis e Nirenberg (BRÉZIS; NIRENBERG, 1983). Resolvemos o problema de encontrar uma
solução positiva para toda dimensão N ≥ 4. Para a dimensão crítica N = 3 mostramos um novo
fenômeno, não observado nos problemas escalares. A saber, existem partes na hipérbole crítica
onde se têm soluções para toda perturbação homogênea de grau um ou superlinear subcrítica, e
partes onde não se têm soluções para algumas destas perturbações.

Palavras-chave: Sistemas de Lane-Emden, Hipérbole Crítica, Dimensão crítica, Solução posi-
tiva.
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∫

Ω
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Et — W 2, t+1
t (Ω)∩W

1, t+1
t

0 (Ω)

Cr,Ω — inf{‖u‖; u ∈ Ep and |u| r+1
r
= 1}

Cs,Ω — inf{‖u‖; u ∈ Eq and |u| s+1
s
= 1}

S — inf
u∈Ep,|u|q+1=1
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CHAPTER

1
INTRODUCTION

In the memorable paper (BRÉZIS; NIRENBERG, 1983) from 1983, Brezis and Nirenberg
considered the perturbed Lane-Emden equation with critical growth

−∆u = λut +u2∗−1 in Ω, u > 0 in Ω, u = 0 on ∂Ω, (1.0.1)

in a bounded smooth domain Ω ⊂ RN , N ≥ 3, where 2∗ = 2N/(N−2) is the critical Sobolev
exponent for the embedding of H1

0 (Ω), with 1 ≤ t < 2∗− 1. In particular, they discovered a
surprising difference between the cases N ≥ 4 and N = 3, the latter named as critical dimension.
For the particular case with t = 1, namely for

−∆u = λu+u2∗−1 in Ω, u > 0 in Ω, u = 0 on ∂Ω, (1.0.2)

they proved the existence of a solution for every 0< λ < λ1(Ω), the optimal interval for existence,
for N ≥ 4. In contrast, with N = 3, they showed the existence of 0 < λ ∗ < λ1(Ω) such that no
solutions exists for 0 < λ < λ ∗; see (BRÉZIS; NIRENBERG, 1983, Theorem 1.2 and Corollary
1.1). Here λ1 = λ1(Ω) stands for the first eigenvalue of (−∆,H1

0 (Ω)).

The notion of critical growth for Hamiltonian systems, as independently introduced
by Mitidieri (MITIDIERI, 1993) and van der Vorst (VORST, 1992), soon after considered by
several authors, including Clément et al. (CLÉMENT; FIGUEIREDO; MITIDIERI, 1992) and
Peletier-van der Vorst (PELETIER; VORST, 1992), is given by the so-called critical hyperbola.
In 1998, Hulshof et al. (HULSHOF; MITIDIERI; VORST, 1998) analyzed the version of (1.0.2)
in the framework of Hamiltonian systems, namely they considered

−∆u = λv+ |v|p−1v in Ω,

−∆v = µu+ |u|q−1u in Ω,

u,v = 0 on ∂Ω,

with N ≥ 4, for (p,q) on the critical hyperbola

1
p+1

+
1

q+1
=

N−2
N

. (1.0.3)
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1.1 Main goals
Fascinating results were proved in (HULSHOF; MITIDIERI; VORST, 1998, Theorem

2), and we think that three important problems were left open:

a) What happens in dimension N = 3?

b) What is the meaning of the critical dimension for Hamiltonian elliptic systems?

c) The investigation of the general 1-homogenous perturbation of the critical Lane-Emden
system, namely (HS) ahead with rs = 1, which includes r = s = 1 as a particular case.

Item c) deserves some extra comments, since the most accurate 1-homogenous perturba-
tion to Hamiltonian systems, given below in (HS), is induced by the hyperbola of points (r,s)
such that rs = 1. Indeed, this hyperbola has been named as the spectral curve for Hamiltonian
systems; see (MONTENEGRO, 2000; LEITE; MONTENEGRO, 2019; LEITE; MONTENE-
GRO, 2020) for linear operators and (SANTOS et al., 2020) in the fully nonlinear scenario. In
this thesis we address these three questions and present some results observed in the framework
of Hamiltonian systems which are non-existent for scalar problems. In order to accomplish that,
consider the following Hamiltonian system


−∆u = λ |v|r−1v+ |v|p−1v in Ω,

−∆v = µ|u|s−1u+ |u|q−1u in Ω,

u,v = 0 on ∂Ω,

(HS)

in a bounded smooth domain Ω⊂ RN , N ≥ 3, λ > 0 and µ > 0. Here (p,q) lies on the critical
hyperbola, that is p > 0 and q > 0 satisfy (1.0.3), and (r,s) is such that

0 < r < p, 0 < s < q, rs≥ 1. (1.1.1)

Since λ > 0 and µ > 0, the critical growth system (HS) can be seen as a lower order
perturbation of the Lane-Emden critical system

−∆u = |v|p−1v, −∆v = |u|q−1u in Ω, u = v = 0 ∂Ω,

as (1.0.1) is a lower order perturbation of the critical Lane-Emden equation

−∆u = u2∗−1, u > 0 in Ω, u = 0 on ∂Ω.

Moreover, condition (1.1.1) on (r,s) for (HS) corresponds to condition 1≤ t < 2∗−1 for (1.0.1).

The main result proved in this work reads as follows.

Theorem 1.1.1. Let λ > 0, µ > 0, assume (1.1.1) and in case rs = 1 also suppose that λ µr

is suitably small. If N ≥ 4 or, N = 3 and p≤ 7/2 or p≥ 8, then (HS) has a classical positive

solution.
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The precise condition on the size of λ µr (for the case with rs = 1) is specified at (2.2.1)
and (2.2.2) ahead. Actually, such condition appeared before in (MELO; SANTOS, 2015) and
corresponds to the hypothesis λ < λ1 for equation (1.0.2). Moreover, as proved in (VORST,
1992, Theorem 4.2), if such condition is not verified, then (HS) may have no positive solution in
star-shaped domains. Also observe that, in case of N = 3, (7/2,8) and (8,7/2) are symmetric
points on the critical hyperbola (1.0.3).

We call the attention to the fact that, when λ = µ , r = s, p = q, any solution of (HS)
is such that u = v (see (SANTOS; NORNBERG; SOAVE, 2021, Example 4.3)), which makes
(HS) and (1.0.1) to be equivalent in this case. With this in mind, for N = 3, the so-called critical
dimension for (1.0.1), we prove the existence of solutions for (p,q) lying on some parts of the
critical hyperbola (even if r = s = 1), which brings new results when comparing to (HULSHOF;
MITIDIERI; VORST, 1998, Theorem 2), where the case N = 3 is not considered. Indeed, when
setting side by side our results with (HULSHOF; MITIDIERI; VORST, 1998, Theorem 2), our
contribution is threefold: we treat the case N = 3; for N = 4 we do not impose p 6= 2 or p 6= 5; for
N ≥ 3 we consider the natural 1-homogenous (rs = 1) or superlinear (rs > 1) perturbations, while
(HULSHOF; MITIDIERI; VORST, 1998, Theorem 2) is restricted to the case with r = s = 1,
p > 1 and q > 1. In particular, for N ≥ 4, we cover all the points (p,q) on the critical hyperbola,
which includes points with p < 1 or q < 1 for N > 4. Figure 1 ahead illustrates the existence
result given by Theorem 1.1.1 for N ≥ 4.
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N−2

2
N−2
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• (p, q)

Critical Hyperbola, N ≥ 5

rs = 1

Figure 1 – Given any (p,q) on the critical hyperbola, any (r,s) satisfying (1.1.1) is admissible for finding
a positive solution to (HS).

We recall that in the critical dimension N = 3, it is not possible to prove the existence of
a solution for (1.0.1) in the full range 1≤ t < 5. Indeed, as in (BRÉZIS; NIRENBERG, 1983,
Corollary 2.3), such existence results is proved only for 3 < t < 5. This motivates the introduction
of the following definition.
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Definition 1.1.2. For N = 3, let (p,q) be a point on the critical hyperbola (1.0.3), Ω be a

bounded regular domain, and (r,s) satisfying (1.1.1). We say that (p,q) is on a Critical Region if,

for some Ω and some (r,s), (HS) has no positive solution for some λ and µ small. On the other

hand, (p,q) is on a Noncritical Region if for all Ω, all (r,s) satisfying (1.1.1), λ and µ suitably

small, then (HS) has a positive solution (see Figure 2).

Finally, we make a link between critical/noncritical regions of the critical hyperbola
associated with Hamiltonian systems and the critical dimensions for the biharmonic operator
under Navier boundary conditions. We recall that according to (VORST, 1995), the dimensions
N = 5,6,7 are named as critical for the study of

∆
2u = µu+u

N+4
N−4 in Ω, u = ∆u = 0 on ∂Ω, (1.1.2)

a particular case of (HS) with λ = 0 and p = 1; see also (EDMUNDS; FORTUNATO; JAN-
NELLI, 1990; BERNIS; GRUNAU, 1995) for the case with Dirichlet boundary conditions for the
biharmonic and polyharmonic operators, respectively. A first try to understand the phenomenon
of critical dimension for Hamiltonian systems was presented in (MELO; SANTOS, 2015). How-
ever, the perturbation in (MELO; SANTOS, 2015) makes the problem look like a nonlinear
version of the biharmonic equation (1.1.2), as the counterpart of the p−Laplacian version for
(1.0.1). In the case with λ > 0 and µ > 0 in (HS), the natural symmetric perturbation of the
critical Lane-Emden system, we recover that the only critical dimension is N = 3, as it happens
to the scalar problem (1.0.1), unveiling the notions of critical and noncritical regions of the
critical hyperbola for N = 3.

1.2 Open problems and future projects

Once Definition 1.1.2 is posed, it is natural to identity the critical and noncritical of the
critical hyperbola for N = 3, and this gives rise to the following problems.

Open problems.

1. Find the critical region of the critical hyperbola (1.0.3) for N = 3.

2. A simpler problem, but still challenging, is to find the optimal values 7/2 < p∗ ≤ p∗ < 8
such that (HS) has no solution for any p∗ ≤ p ≤ p∗ with r = s = 1, λ = µ small, with
Ω = B(0,1)⊂ R3.

For this second question, due to the results in (BRÉZIS; NIRENBERG, 1983, Theorem
1.2) and (3.2.21), we know that 4≤ p∗ ≤ 5≤ p∗ ≤ 13/2. Figure 2 illustrates the open problem
regarding what should be critical and noncritical regions of the critical hyperbola for N = 3.
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Figure 2 – Critical Hyperbola for N = 3

Our work may also serve as motivation for future investigation. In view of the results in
(KIM; PISTOIA, 2021, Theorem 1.1), that consider r = s = 1, it could be interesting to study
blowing up phenomena for system (HS), with rs = 1, as λ = µ → 0.

1.3 The structure of this thesis
This thesis is organized as follows.

Chapter 2 is divided in three sections. In the first one, we present the variational approach
to treat (HS), namely, writing (HS) as the fourth order equations (P) or (P’). We also define
the energy functionals associated with these equations, show that they have the mountain pass
geometry and present an upper bound for their mountain pass levels. Section 2.3 is devoted to
localize the range where such functionals satisfy the (PS)c-condition and to the proof of Theorem
1.1.1.

Chapter 3 is devoted to the proof of some technical estimates which are crucial for the
variational treatment and is divided as follows. In Section 3.1 we prove some identities and
inequalities involving the auxiliary functions f−1

λ
and Fλ and their asymptotic behaviours. In

Section 3.2 we calculate an upper bound for the mountain pass level cF of the functional IF by
showing some estimates involving the ground state solutions of the Lane-Emden critical system
on RN and the auxiliary function f−1

λ
.

The most significant classical results used in this thesis are presented in Appendix A,
namely the Mountain Pass Theorem, a few convergence results, and two integral inequalities.
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CHAPTER

2
EXISTENCE OF SOLUTIONS TO THE

SISTEM (HS)

In this chapter, we start by showing the variational approach to treat (HS). After that, in
Section 2.2, we prove that the functionals IF and IG associated to (P) and (P’), respectively, have
the Mountain Pass geometry and compute upper bounds for their mountain pass levels. Finally,
in Section 2.3, we localize the range where the functionals IF and IG satisfy the (PS)c-condition.

2.1 Variational approach

To deal with (HS), following the same approach as in (MELO; SANTOS, 2015), define

fλ (t) = λ |t|r−1t + |t|p−1t, Fλ (t) =
∫ t

0
f−1
λ

(t)dt,

gµ(t) = µ|t|s−1t + |t|q−1t, Gµ(t) =
∫ t

0
g−1

µ (t)dt,
(2.1.1)

and rewrite (HS) as one of the fourth-order equations under Navier boundary conditions{
∆( f−1

λ
(∆u)) = µ|u|s−1u+ |u|q−1u in Ω,

u,∆u = 0 on ∂Ω,
(P)

{
∆(g−1

µ (∆v)) = λ |v|r−1v+ |v|p−1v in Ω,

v,∆v = 0 on ∂Ω.
(P’)

Associated with (P) and (P’), we consider the C1(Ep,R) and C1(Eq,R) functionals

IF(u) =
∫

Ω

Fλ (∆u)dx− µ

s+1

∫
Ω

|u|s+1dx− 1
q+1

∫
Ω

|u|q+1dx,

IG(u) =
∫

Ω

Gµ(∆v)dx− λ

r+1

∫
Ω

|v|r+1dx− 1
p+1

∫
Ω

|v|p+1dx,
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where Et := W 2, t+1
t (Ω)∩W

1, t+1
t

0 (Ω) is endowed with the norm ‖u‖ = |∆u| t+1
t

. Throughout in
this work |w|θ stand for the Lθ (Ω)-norm of w.

The variational treatment of (HS) given by studying (P) or (P’) is usually called reduction
by inversion. This idea has been used by P. L. Lions (LIONS, 1985) and in several other
papers, as for example in (CLÉMENT; MITIDIERI, 1997; CLÉMENT; FELMER; MITIDIERI,
1997; HULSHOF; VORST, 1996; BONHEURE; SANTOS; TAVARES, 2014). Here, since the
functions fλ and gµ are not pure power, and due to the critical growth nature of (HS), we prove in
Section 3.1 some sharp estimates on fλ , whose corresponding versions to gµ also hold. In order
to capture in this inversion the contribution of the term λ |u|r−1u, to downsize the Mountain Pass
level, we compute in Lemma 3.2.1 some integrals on rings involving the ground state solutions of
the Lane-Emden critical system on RN , where terms associated to u 7→ λ |u|r−1u are dominant.

Definition 2.1.1. We say that u∈ Ep is a weak solution of (P) if, and only if, I′F(u) = 0. A function

u ∈C2(Ω) such that f−1
λ

(∆u) ∈C2(Ω) is a classical solution of (P) if, and only if, satisfies (P)
pointwise. Similarly, we define weak and classical solutions of (P’). Moreover, (u,v) is a classical

solution of (HS) if, and only if, u,v ∈C(Ω)∩C2(Ω) satisfy (HS) pointwise.

Lemma 2.1.2. If u is a weak solution of (P), then it is a classical solution of (P). The converse is

also true. Moreover, u is a classical solution of (P) if, and only if, (u,v) is a classical solution of

(HS), with v = f−1
λ

(−∆u).

Proof. We can mimic the proof of (MELO; SANTOS, 2015, Lemma 1), which is based on the
arguments in (SANTOS, 2008, Section 4) and (HULSHOF; VORST, 1993, Section 3).

2.2 Mountain Pass Geometry
Next we show that the functionals IF and IG have the Mountain Pass geometry and

obtain upper bounds for their Mountain Pass levels. For the cases with rs = 1 we introduce the
conditions

λ
1/r

µ ≤ (2|Ω|)
r−p

r(p+1)

2
r+1

r
C

r+1
r

r,Ω , (2.2.1)

λ µ
1/s ≤ (2|Ω|)

s−q
s(q+1)

2
s+1

s
C

s+1
s

s,Ω , (2.2.2)

on the size of (λ ,µ), where

Cr,Ω = inf{‖u‖; u ∈ Ep and |u| r+1
r
= 1}, Cs,Ω = inf{‖v‖; v ∈ Eq and |v| s+1

s
= 1}.

Remark 2.2.1. Conditions (2.2.1) and (2.2.2) for the case with rs= 1 are natural and correspond

to the hypothesis on λ and µ in (HULSHOF; MITIDIERI; VORST, 1998, Theorem 2) to treat

(HS) with r = s = 1, and to the hypothesis λ < λ1 in (BRÉZIS; NIRENBERG, 1983) to study

(1.0.2).
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Proposition 2.2.2. Let (p,q) and (r,s) be as in (1.0.3) and (1.1.1).

1. Then IF has the Mountain Pass geometry with a local minimum at zero, under the additional

condition (2.2.1) when rs = 1.

2. Then IG has the Mountain Pass geometry with a local minimum at zero, under the additional

condition (2.2.2) when rs = 1.

Proof. Observe that IF(0) = 0 and, from (3.1.2),

IF(u)≤
p

p+1
‖u‖

p+1
p − µ

s+1
|u|s+1

s+1−
1

q+1
|u|q+1

q+1, ∀u ∈ Ep.

Then, IF(tu)→−∞ when t→ ∞ and u 6= 0.

On the other hand, by Lemma 3.1.5,

IF(u) =
∫
|∆u|≤2λ

p
p−r

Fλ (∆u)dx+
∫
|∆u|>2λ

p
p−r

Fλ (∆u)dx− µ

s+1
|u|s+1

s+1−
1

q+1
|u|q+1

q+1

≥ 1

2
r+1

r λ 1/r

r
r+1

∫
|∆u|≤2λ

p
p−r
|∆u| r+1

r dx+
1

2
p+1

p

p
p+1

∫
|∆u|>2λ

p
p−r
|∆u|

p+1
p dx

− µ

s+1
|u|s+1

s+1−
1

q+1
|u|q+1

q+1.

By Jensen’s inequality, for a nonnegative measurable function a and α > 1,∫
ω

(a(t))αdt ≥ |ω|1−α

(∫
ω

a(t)dt
)α

. (2.2.3)

Since 0 < r < p, with α = r+1
r

p
p+1 > 1, it follows that

IF(u)≥
(meas(|∆u| ≤ 2λ

p
p−r ))1−α

2
r+1

r λ 1/r

r
r+1

(∫
|∆u|≤2λ

p
p−r
|∆u|

p+1
p dx

)α

+
1

2
p+1

p

p
p+1

∫
|∆u|>2λ

p
p−r
|∆u|

p+1
p dx− µ

s+1
|u|s+1

s+1−
1

q+1
|u|q+1

q+1

≥ |Ω|
r−p

r(p+1)

2
r+1

r λ 1/r

r
r+1

(∫
|∆u|≤2λ

p
p−r
|∆u|

p+1
p dx

)α

+
1

2
p+1

p

p
p+1

∫
|∆u|>2λ

p
p−r
|∆u|

p+1
p dx− µ

s+1
|u|s+1

s+1−
1

q+1
|u|q+1

q+1.

For u 6= 0 such that

1

2
p+1

p

p
p+1

‖u‖−
p−r
rp ≥ |Ω|

r−p
r(p+1)

2
r+1

r λ 1/r

r
r+1

i.e. ‖u‖ ≤
(

p(r+1)
(p+1)r

) pr
p−r

2|Ω|λ
p

p−r ,

it follows that

IF(u)≥
|Ω|

r−p
r(p+1)

2
r+1

r λ 1/r

r
r+1

[(∫
|∆u|≤2λ

p
p−r
|∆u|

p+1
p dx

)α

+

(∫
|∆u|>2λ

p
p−r
|∆u|

p+1
p dx

)α]
− µ

s+1
|u|s+1

s+1−
1

q+1
|u|q+1

q+1.
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Since 1−α =− p−r
r(p+1) =−

p
p+1

p−r
pr and (a+b)α ≤ 2α−1(aα +bα) for a,b≥ 0, we infer that

IF(u)≥
(2|Ω|)

r−p
r(p+1)

2
r+1

r λ 1/r

r
r+1

‖u‖ r+1
r − µ

s+1
|u|s+1

s+1−
1

q+1
|u|q+1

q+1

for all u ∈ E such that ‖u‖ ≤
(

p(r+1)
(p+1)r

) pr
p−r 2|Ω|λ

p
p−r .

If r+1
r < s+ 1, i.e. 1

r < s, and since s < q, it follows that IF has the Mountain Pass
geometry with a local minimum at zero.

On the other hand, if r+1
r = s+1, i.e. 1

r = s, for u 6= 0, we infer that

(s+1)IF(u) ≥ (2|Ω|)
r−p

r(p+1)

2
r+1

r λ 1/r
‖u‖ r+1

r −µ|u|
r+1

r
r+1

r
− s+1

q+1 |u|
q+1
q+1

=

(
(2|Ω|)

r−p
r(p+1)

2
r+1

r λ 1/r
−µ|u|

r+1
r

r+1
r
‖u‖− r+1

r

)
‖u‖ r+1

r − s+1
q+1 |u|

q+1
q+1

≥
(

(2|Ω|)
r−p

r(p+1)

2
r+1

r λ 1/r
−µ

1

C
r+1

r
r,Ω

)
‖u‖ r+1

r − s+1
q+1 |u|

q+1
q+1

and (2.2.1) gives (2|Ω|)
r−p

r(p+1)

2
r+1

r λ 1/r
−µ

1

C
r+1

r
r,Ω

> 0, and again IF has the Mountain Pass geometry around

zero, since 1
r = s < q.

Let S be the Sobolev constant for the embedding Ep ↪→ Lq+1(Ω), namely

S = inf
u∈Ep,|u|q+1=1

‖u‖.

Proposition 2.2.3. Suppose (1.0.3) and (1.1.1), µ > 0, λ > 0 and in the case rs = 1 also assume

(2.2.1). If N ≥ 4 and p≤ (N +2)/(N−2), or N = 3 and p≤ 7/2, then the mountain pass level

cF of the functional IF is such that cF ∈ (0, 2
N S

pN
2(p+1) ).

Proof. See Section 3.2.

2.3 (PS)c condition
When treating (P), the main difficulty is the lack of compactness for the embedding

Ep ↪→ Lq+1(Ω). Here we localize the levels c for which the (PS)c-condition holds. Throughout
this section (1.0.3), (1.1.1), µ,λ > 0 are assumed, and the main results is the following.

Proposition 2.3.1. IF satisfies the (PS)c-condition for all c < 2
N S

pN
2(p+1) .

We split the proof of this proposition in several lemmas.
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Lemma 2.3.2. Every (PS) sequence for IF is bounded

Proof. Let (un) be a (PS) sequence for IF . So, using Corollary 3.1.3 and Lemma 3.1.6, there
exists c ∈ R and a positive sequence (εn) with εn→ 0 such that

εn‖un‖+ c≥ IF(un)−
I′F(un)un

s+1
=
∫

Ω

Fλ (∆un)−
f−1
λ

(∆un)∆un

s+1
dx+

(q− s)|un|q+1
q+1

(s+1)(q+1)

≥
∫
|∆un|≥2λ

p
p−r

Fλ (∆un)−
f−1
λ

(∆un)∆un

s+1
dx≥ τ

∫
|∆un|≥2λ

p
p−r
|∆un|

p+1
p dx

≥ τ

(∫
Ω

|∆un|
p+1

p dx−
∫
|∆un|≤2λ

p
p−r
|∆un|

p+1
p dx

)
≥ τ‖un‖

p+1
p −2

p+1
p λ

p+1
p−r |Ω|,

which implies the boundedness of (‖un‖).

To localize the levels where IF satisfies the (PS) condition the following result, due to
P.-L. Lions, is necessary.

Lemma 2.3.3. Given a bounded sequence (un) in Ep, there exists a subsequence, also denoted

here by (un), such that:

(i) un ⇀ u in Ep.

(ii) un→ u a.e. in Ω and in Lθ (Ω), for all 1≤ θ < q+1.

(iii) |∆un|
p+1

p ∗
⇀ γ in the sense of measures on Ω.

(iv) |un|q+1 ∗⇀ ν in the sense of measures on Ω.

(v) There exist an at most countable index set J, a family of points {x j : j ∈ J} ⊂Ω and two

sequences {ν j : j ∈ J},{γ j : j ∈ J} ⊂ (0,+∞) such that:

ν = |u|q+1 + ∑
j∈J

ν jδx j , γ ≥ |∆u|
p+1

p + ∑
j∈J

γ jδx j ,

Sν

p+1
p

1
q+1

j ≤ γ j for all j ∈ J, in particular ∑
j∈J

ν

p+1
p

1
q+1

j <+∞.

(vi) ∇un ⇀ ∇u in
(

W 1, p+1
p (Ω)

)N
.

(vii) ∇un→ ∇u a.e. in Ω and in (Lσ (Ω))N , for all 1≤ σ < σ∗, with σ∗ > p+1
p depending on

the critical Sobolev embedding of W 1, p+1
p (Ω).

Proof. See (LIONS, 1985, Lemma I.1) or (SANTOS, 2010, Lemma 3.3).

An improvement of the previous lemma is given next.
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Lemma 2.3.4. If (un) is a (PS)-sequence for IF , then there exists a subsequence, for short also

denoted by (un), satisfying (i)-(vii) from Lemma 2.3.3 with the additional fact that J is at most

finite.

Proof. Let x j ∈ Ω be a point in the singular support of µ and ν . Let ζ ∈ C∞
c (RN) such that

0 ≤ ζ ≤ 1, ζ ≡ 1 in B(0,1) and supp(ζ )⊂ B(0,2). Moreover for each θ > 0 define ζθ (x) :=
ζ (

x−x j
θ

). So there exists constants c1 and c2 independent of θ such that

|∇ζθ (x)| ≤
c1

θ
, |∆ζθ (x)| ≤

c2

θ 2 , ∀x ∈ RN .

By (SANTOS, 2010, Lemma 3.4 ), unζθ ∈ Ep, ∀n ∈ N and θ > 0. Fixing θ > 0, since (ζθ un)

is bounded in Ep, 〈I′F(un),ζθ un〉= o(1) that is

o(1) =
∫

Ω

f−1
λ

(∆un)∆unζθ dx−
∫

Ω

|un|q+1
ζθ dx−µ

∫
Ω

|un|s+1
ζθ dx

+
∫

Ω

f−1
λ

(∆un)un∆ζθ dx+2
∫

Ω

f−1
λ

(∆un)∇un∇ζθ dx.
(2.3.1)

On the other hand, ζθ (x)
θ→0−−−→ δx j(x), ∀x ∈Ω. So from un ⇀ u in Ep and Ep ⊂⊂ Ls+1(Ω)∫
Ω

|un|s+1
ζθ dx n→∞−−−→

∫
Ω

|u|s+1
ζθ dx θ→0−−−→ 0.

Now, by (3.1.1) and Hölder inequality
(

1
p+1 +

1
q+1 +

2
N = 1

)
, there exists C > 0 independent of

n and θ such that

∣∣∣∣∫
Ω

f−1
λ

(∆un)un∆ζθ dx
∣∣∣∣≤∫

Ω

|∆un|1/p|un||∆ζθ |dx≤C

(∫
Ω

|un|q+1
∣∣∣∣∆ζ

(
x− x j

θ

)∣∣∣∣ q+1
2

dx

) 1
q+1

.

From the definition of the weak* convergence

∫
Ω

|un|q+1
∣∣∣∣∆ζ

(
x− x j

θ

)∣∣∣∣ q+1
2

dx n→∞−−−→
∫

Ω

∣∣∣∣∆ζ

(
x− x j

θ

)∣∣∣∣ q+1
2

dν ,

and since |∆ζ (
x−x j

θ
)|( q+1

2 ) θ→0−−−→ 0 ∀x ∈Ω, by the Lebesgue dominated convergence theorem,

∫
Ω

∣∣∣∣∆ζ

(
x− x j

θ

)∣∣∣∣ q+1
2

dν
θ→0−−−→ 0.

We also have

∣∣∣∣∫
Ω

f−1
λ

(∆un)∇un∇ζθ dx
∣∣∣∣≤C

(∫
Ω

(
1
θ

∣∣∣∣∇ζ

(
x− x j

θ

)∣∣∣∣ |∇un|
) p+1

p

dx

) p
p+1

and

∫
Ω

(
1
θ

∣∣∣∣∇ζ

(
x− x j

θ

)∣∣∣∣ |∇un|
) p+1

p

dx n→∞−−−→
∫

Ω

(
1
θ

∣∣∣∣∇ζ

(
x− x j

θ

)∣∣∣∣ |∇u|
) p+1

p

dx = O(θ N− p+1
p ).
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Given ε > 0 let M(ε) > 0 be such that f−1
λ

(t)t ≥ 1
1+ε
|t|

p+1
p for all |t| ≥ M(ε). Then

define

An := {x ∈ B(x j,2θ)∩Ω; |∆un(x)| ≥M(ε)},Bn := (Ω∩B(x j,2θ))\An.

Then,∫
Ω

f−1
λ

(∆un)∆unζθ dx =
∫

An

f−1
λ

(∆un)∆unζθ dx+
∫

Bn

f−1
λ

(∆un)∆unζθ dx

≥ 1
1+ ε

∫
Ω

|∆un|
p+1

p ζθ dx+
∫

Bn

( f−1
λ

(∆un)∆un−
1

1+ ε
|∆un|

p+1
p )ζθ dx

=
1

1+ ε

∫
Ω

|∆un|
p+1

p ζθ dx+
∫

Bn

( f−1
λ

(∆un)∆un−
1

1+ ε
|∆un|

p+1
p )ζθ dx−→ 1

1+ ε
γ j (2.3.2)

by taking the limit as n→ ∞ and after as θ → 0, because

lim
θ→0

limsup
n→∞

∣∣∣∣∫Bn

( f−1
λ

(∆un)∆un−
1

1+ ε
|∆un|

p+1
p )ζθ dx

∣∣∣∣
≤ lim

θ→0
limsup

n→∞

∫
Bn

( f−1
λ

(M)M+
1

1+ ε
M

p+1
p )ζθ dx = 0.

Then, from all the above estimates ranging from (2.3.1) to (2.3.2), we infer that

0 = lim
θ→0

limn→∞〈I′F(un),unζθ 〉 ≥
γ j

1+ ε
−ν j

which implies that ν j≥ γ j
1+ε

for all ε > 0, and hence ν j≥ γ j. In contrast, since 0≤ f−1
λ

(∆un)∆un≤
|∆un|

p+1
p , it follows from all the above estimates ranging from (2.3.1) to (2.3.2) that

0 = lim
θ→0

lim
n→∞
〈I′F(un),unζθ 〉 ≤ γ j−ν j,

which implies

γ j = ν j. (2.3.3)

Then, from Lemma 2.3.3, ν j ≥ Sν

p+1
p

1
q+1

j and so

ν j ≥ S
pN

2(p+1) , (2.3.4)

since pN
2(p+1) =

(
1− 1

q+1
p+1

p

)−1
and γ j > 0. Combining this with ∑ j∈J ν

p+1
p

1
q+1

j <+∞, it follows
that J is at most finite.

Lemma 2.3.5. Given a bounded sequence (un) in Ep, K ⊂⊂ Ω\{x j : j ∈ J} with {x j : j ∈ J}
from Lemma 2.3.3, then un→ u in Lq+1(K), up to a subsequence.

Proof. See the proof of (SANTOS, 2010, Lemma 3.6).
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Lemma 2.3.6. If (un) is a (PS)-sequence for IF , and {x j : j ∈ J} from Lemma 2.3.3, then for

every j ∈ J, up to a subsequence,

lim
n→∞

∫
Ω

[
Fλ (∆un)−

1
s+1

f−1
λ

(∆un)∆un

]
dx≥ ps−1

(p+1)(s+1)
γ j.

Proof. Consider the even function Hp(t) := |t|−
p+1

p
(
Fλ (t)− 1

s+1 f−1
λ

(t)t
)
. By Lemma 3.1.1,

lim
t→∞

Hp(t) = lim
t→∞

[
ps−1

(p+1)(s+1)
f−1
λ

(t)

t1/p
− p− r

p+1
λ

r+1
| f−1

λ
(t)|r+1

t
p+1

p

]
=

ps−1
(p+1)(s+1)

.

Then, given ε > 0 small, there exists t0 > 0 such that

Hp(t)> cε > 0 for all |t|> t0,

with cε =
ps−1

(p+1)(s+1) − ε , which implies that

Fλ (t)−
1

s+1
f−1
λ

(t)t > cε |t|
p+1

p for all |t|> t0. (2.3.5)

Let An, Bn and ζθ be like in Lemma 2.3.4, with An and Bn associated with t0. So, from (2.3.5)
and Corollary 3.1.3,

∫
Ω

Fλ (∆un)−
1

s+1
f−1
λ

(∆un)∆undx≥ cε

(∫
An

|∆un|
p+1

p ζθ dx+
∫

Bn

|∆un|
p+1

p ζθ dx
)

+
∫

Bn

[
Fλ (∆un)−

1
s+1

f−1
λ

(∆un)∆un− cε |∆un|
p+1

p

]
ζθ dx

= cε

∫
Ω

|∆un|
p+1

p ζθ dx+
∫

Bn

[
Fλ (∆un)−

1
s+1

f−1
λ

(∆un)∆un− cε |∆un|
p+1

p

]
ζθ dx. (2.3.6)

On the other hand,

lim
θ→0

limsup
n→∞

∣∣∣∣∫Bn

[
Fλ (∆un)−

1
s+1

f−1
λ

(∆un)∆un− cε |∆un|
p+1

p

]
ζθ dx

∣∣∣∣
≤ lim

θ→0
limsup

n→∞

∫
Ω

[
Fλ (t0)+

1
s+1

f−1
λ

(t0)t0 + cε |t0|
p+1

p

]
ζθ dx = 0, (2.3.7)

and, from Lemma 2.3.3,

lim
θ→0

limsup
n→∞

cε

∫
Ω

|∆un|
p+1

p ζθ dx≥ cεγk. (2.3.8)

From (2.3.6), (2.3.7), (2.3.8) and the arbitrariness of ε > 0, we get the desired inequality.

Lemma 2.3.7. If (un) is a (PS)-sequence for IF , K ⊂⊂ Ω\{x j : j ∈ J} with {x j : j ∈ J} from

Lemma 2.3.3, then up to a subsequence,∫
K
( f−1

λ
(∆un)− f−1

λ
(∆u))(∆un−∆u)dx n→∞−−−→ 0. (2.3.9)
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Proof. Let δ = dist(K,{x j : j ∈ J}). For each θ ∈ (0,δ ), consider Aθ = {x∈Ω : dist(x,K)< θ}
and ξθ ∈C∞

c (Ω), 0≤ ξθ ≤ 1, ξθ ≡ 1 on Aθ/2 and ξθ ≡ 0 on Ω\Aθ . So, by the monotonicity of
f−1
λ

,

0≤
∫

K
( f−1

λ
(∆un)− f−1

λ
(∆u))(∆un−∆u)dx≤

∫
Ω

( f−1
λ

(∆un)− f−1
λ

(∆u))(∆un−∆u)ξθ dx

=
∫

Ω

f−1
λ

(∆un)∆unξθ − f−1
λ

(∆un)∆uξθ − f−1
λ

(∆u)(∆un−∆u)ξθ dx. (2.3.10)

Fixing θ > 0, since I′F(un)→ 0 and (unξθ ) is bounded in E, then 〈I′F(un),ξθ u〉 = o(1) and
〈I′F(un),ξθ un〉= o(1) that is

o(1)=
∫

Ω

f−1
λ

(∆un)(∆uξθ +u∆ξθ +2∇u∇ξθ )dx−
∫

Ω

|un|q−1unξθ udx−µ

∫
Ω

|un|s−1unξθ udx

(2.3.11)
o(1)=

∫
Ω

f−1
λ

(∆un)(∆unξθ +un∆ξθ +2∇un∇ξθ )dx−
∫

Ω

|un|q+1
ξθ dx−µ

∫
Ω

|un|s+1
ξθ dx.

(2.3.12)
From (2.3.10), (2.3.11), (2.3.12), Lemma 2.3.3, Lemma 2.3.5 and (SANTOS, 2010, Lemma 2.4),
it follows that

0≤
∫

K
( f−1

λ
(∆un)− f−1

λ
(∆u))(∆un−∆u)dx≤

∫
Ω

f−1
λ

(∆un)∆ξθ (un−u)dx

+2
∫

Ω

f−1
λ

(∆un)∇ξθ ∇(un−u)dx−
∫

Ω

f−1
λ

(∆u)(∆un−∆u)ξθ dx+o(1)

≤C
(∫

Aθ

|un−u|q+1dx
) 1

q+1

+C
(∫

Ω

|∇un−∇u|
p+1

p dx
) p

p+1

−
∫

Ω

f−1
λ

(∆u)(∆un−∆u)ξθ dx+o(1) = o(1).

Lemma 2.3.8. If (un) is a (PS)-sequence for IF , then ∆un
n→∞−−−→∆u a.e. in Ω, up to a subsequence.

Proof. Let K ⊂⊂Ω\{x j} j∈J . By the inverse of the Lebesgue dominated convergence theorem,
there exists a subsequence of the integrand in (2.3.9) that converges a.e. in K. Using (DAL
MASO; MURAT, 1998, Lemma 6) with

X = R, βn = f−1
λ

, β = f−1
λ

, and ξn = ∆un(x)

we get ∆un→ ∆u a.e. in K. Since K is an arbitrary compact subset of Ω\{x j} j∈J , we conclude
that ∆un→ ∆u a.e. in Ω.

Lemma 2.3.9. If (un) is a (PS)-sequence for IF , then f−1
λ

(∆un)⇀ f−1
λ

(∆u) in Lp+1(Ω), up to a

subsequence.

Proof. Since, up to a subsequence,
∆un

n→∞−−−→ ∆u a.e. in Ω,

(∆un) is bounded in L
p+1

p (Ω), and
| f−1

λ
(∆un)| ≤ |∆un|1/p,
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we infer that f−1
λ

(∆un)
n→∞−−−→ f−1

λ
(∆u) a.e. in Ω, ( f−1

λ
(∆un)) is bounded in Lp+1(Ω), and hence

f−1
λ

(∆un)⇀ f−1
λ

(∆u) in Lp+1(Ω).

Proposition 2.3.10. If (un) is a (PS)-sequence for IF , then there exist a subsequence, still

denoted by (un), such that un ⇀ u in Ep and u is a weak solution of (P).

Proof. First, since (un) is a (PS)-sequence to IF , 〈I′F(un),w〉 → 0, for all w ∈ Ep. On the other
hand, up to a subsequence,

f−1
λ

(∆un)⇀ f−1
λ

(∆u) in Lp+1(Ω),

|un|q−1un ⇀ |u|q−1u in L
q+1

q (Ω) and

|un|s−1un→ |u|s−1u in L
s+1

s (Ω).

Thus, for all w ∈ Ep, 〈I′F(un),w〉 → 〈I′F(u),w〉. Then 〈I′F(u),w〉= 0, for all w ∈ Ep, that is, u is a
weak solution of (P).

Proof of Proposition 2.3.1. Let (un) be a (PS)c sequence for IF with c < 2
N S

pN
2(p+1) . By con-

tradiction, suppose that J 6= /0. We can suppose the assertions of Lemma 2.3.4, with γ j = ν j,

ν j ≥ S
pN

2(p+1) , for all j ∈ J, by (2.3.3) and (2.3.4). Since (un) is bounded in Ep, 〈I′F(un),un〉= o(1),
and Lemmas 2.3.3 and 2.3.6, we infer that

c = lim
n→∞

IF(un)−
1

s+1
〈I′F(un),un〉

= lim
n→∞

∫
Ω

Fλ (∆un)−
1

s+1
f−1
λ

(∆un)∆undx+
(

1
s+1

− 1
q+1

)∫
Ω

|un|q+1dx

≥
(

ps−1
(p+1)(s+1)

+
1

s+1
− 1

q+1

)
ν j =

2
N

ν j ≥
2
N

S
pN

2(p+1)

for every j ∈ J, which is a contradiction. Hence, J = /0.

Then, from Lemmas 2.3.3 and 2.3.5, since Lq+1(Ω) is uniformly convex, un → u in
Lq+1(Ω).

Let vn = un−u, thus vn ⇀ 0 in Ep, ∆vn→ 0 a.e. in Ω and vn→ 0 in Lq+1(Ω). Since

|(a+b) f−1
λ

(a+b)−a f−1
λ

(a)| ≤ |a+b|
p+1

p + |a|
p+1

p ≤ 2p(|b|
p+1

p + |a|
p+1

p ), ∀a,b ∈ R,

from (BRÉZIS; LIEB, 1983, Theorem 2), with j(t) = t f−1
λ

(t),∫
Ω

f−1
λ

(∆un)∆undx =
∫

Ω

f−1
λ

(∆u+∆vn)(∆u+∆vn)dx

=
∫

Ω

f−1
λ

(∆u)∆u+ f−1
λ

(∆vn)∆vndx+o(1).

Since u is weak solution of (P),

o(1) = 〈I′F(un),un〉=
∫

Ω

f−1
λ

(∆un)∆un−|un|q+1−µ|un|s+1dx

= 〈I′F(u),u〉+
∫

Ω

f−1
λ

(∆vn)∆vndx+o(1) =
∫

Ω

f−1
λ

(∆vn)∆vndx+o(1),
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that is, f−1
λ

(∆vn)∆vn→ 0 in L1(Ω). Then, Lemma 3.1.4 and Jensen’s inequality (2.2.3) lead to

0←
∫

Ω

f−1
λ

(∆vn)∆vndx≥ 1
21/p

∫
|∆vn|≥2λ

p
p−r
|∆vn|

p+1
p dx+

1
(2λ )1/r

∫
|∆vn|≤2λ

p
p−r
|∆vn|

r+1
r dx

≥ 1
21/p

∫
|∆vn|≥2λ

p
p−r
|∆vn|

p+1
p dx+

1
(2λ )1/r

|Ω|1−α

(∫
|∆vn|≤2λ

p
p−r
|∆vn|

p+1
p dx

)α

,

with α = p
p+1

r+1
r . Therefore |∆vn|

p+1
p → 0 in L1(Ω), that is, un→ u in Ep.

At this point we have all the tools at hand to prove our main result.

Proof of Theorem 1.1.1. Suppose, without loss of generality, that p≤ q. The case q≤ p can be
handled similarly, by using IG instead of IF . By Propositions 2.2.2, 2.2.3, 2.3.1 and Lemma 2.1.2,
the existence of a classical solution is a direct consequence of the Mountain Pass theorem.

Next, we prove that any Mountain Pass solution is signed. Let u be a Mountain Pass
solution of (P). So, by Lemma 2.1.2, u ∈C2(Ω) and u = 0 on ∂Ω. Then, by the classical strong
maximum principle for second-order elliptic operators, it is enough to show that ∆u does not
change sign in Ω. By contradiction, suppose that ∆u changes sign in Ω, and let ω be the solution
of {

−∆ω = |∆u| in Ω,

ω = 0 on ∂Ω.

By the Strong Maximum Principle, ω > |u| in Ω and we infer that

cF ≤max
t≥0

IF(tω) = max
t≥0

{∫
Ω

Fλ (t∆ω)dx− µ

s+1
ts+1

∫
Ω

|ω|s+1dx− tq+1

q+1

∫
Ω

|ω|q+1dx
}

< max
t≥0

{∫
Ω

Fλ (t∆u)dx− µ

s+1
ts+1

∫
Ω

|u|s+1dx− tq+1

q+1

∫
Ω

|u|q+1dx
}
= max

t≥0
IF(tu) = cF ,

which is a contradiction. Hence ∆u does not change sign in Ω, and therefore, up to multiplication
by −1, u > 0 and −∆u > 0 in Ω. Finally, by Lemma 2.1.2, with v = f−1(−∆u), (u,v) is a
positive classical solution of (HS).
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CHAPTER

3
TECHNICAL RESULTS

This chapter is devoted to the proof of some technical results used in this thesis. In Section
3.1 we prove some useful properties for the auxiliary functions associated to the problems (P)
and (P’), and in Section 3.2 we prove Proposition 2.2.3 by calculating an upper bound for the
mountain pass level cF of the functional IF .

3.1 Some technical properties of the auxiliary functions

Ahead in this section, where (1.1.1) is assumed, some properties of the functions
f−1
λ

, Fλ , g−1
µ and Gµ , as defined in (2.1.1), are given. Indeed, we can consider f−1

λ
and Fλ

and infer the respective properties for the others. We start by showing some useful inequalities.
Observe that

t p < fλ (t) and λ tr < fλ (t) for t > 0

and writing τ = fλ (t) we get

f−1
λ

(τ)< τ
1/p and f−1

λ
(τ)<

τ1/r

λ 1/r
for t > 0. (3.1.1)

So,

Fλ (τ)≤
p

p+1
|τ|

p+1
p and Fλ (τ)≤

r
r+1

1
λ 1/r
|τ| r+1

r ∀τ ∈ R. (3.1.2)

The next lemmas are used to obtain the geometric condition and upper bounds for the
critical level of the Mountain Pass Theorem for the functionals IF and IG.

Lemma 3.1.1. Fλ (t) =
p

p+1 f−1
λ

(t)t− p−r
p+1

λ

r+1 | f−1
λ

(t)|r+1 for all t ∈ R

Proof. Set M(t) := p
p+1 f−1

λ
(t)t− p−r

p+1
λ

r+1 | f−1
λ

(t)|r+1−Fλ (t). Then M(0) = 0, M is even, and
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for t > 0

M′(t)=
1

p+1

(
− f−1

λ
(t)+

pt
λ r[ f−1

λ
(t)]r−1 + p[ f−1

λ
(t)]p−1

−
λ (p− r)

[
f−1
λ

(t)
]r

λ r[ f−1
λ

(t)]r−1 + p[ f−1
λ

(t)]p−1

)

=
1

p+1

(
λ (p− r)

[
f−1
λ

(t)
]r

λ r[ f−1
λ

(t)]r−1 + p[ f−1
λ

(t)]p−1
−

λ (p− r)
[

f−1
λ

(t)
]r

λ r[ f−1
λ

(t)]r−1 + p[ f−1
λ

(t)]p−1

)
= 0,

which implies the desired identity.

Lemma 3.1.2. Fλ (t) = λ
r

r+1 | f−1
λ

(t)|r+1 + p
p+1 | f−1

λ
(t)|p+1 for all t ∈ R.

Proof. The argument follows as in the proof of the last Lemma, observing that for all t > 0

d
dt

(
λ

r
r+1

| f−1
λ

(t)|r+1 +
p

p+1
| f−1

λ
(t)|p+1

)
=

λ r
[

f−1
λ

(t)
]r
+ p

[
f−1
λ

(t)
]p

λ r
[

f−1
λ

(t)
]r−1

+ p
[

f−1
λ

(t)
]p−1 = f−1

λ
(t),

which coincides with d
dt Fλ (t).

Corollary 3.1.3. Fλ (t)≥
f−1
λ

(t)t
s+1

, for all t ∈ R.

Proof. Since f−1
λ

(t)t = f−1
λ

(t) fλ ( f−1
λ

(t)) = λ | f−1
λ

(t)|r+1+ | f−1
λ

(t)|p+1, from Lemma 3.1.2 and
(1.1.1), for all t ∈ R,

Fλ (t)−
f−1
λ

(t)t
s+1

= λ

(
r

r+1
− 1

s+1

)
| f−1

λ
(t)|r+1 +

(
p

p+1
− 1

s+1

)
| f−1

λ
(t)|p+1 ≥ 0.

Lemma 3.1.4.

f−1
λ

(t)≥


( t

2λ

)1/r
, ∀ 0 < t ≤ 2λ

p
p−r ,( t

2

)1/p
, ∀ t ≥ 2λ

p
p−r .

Proof. Observe that 2λ
p

p−r = λ (λ
1

p−r )r +(λ
1

p−r )p = fλ (λ
1

p−r ) and write z = f−1
λ

(t).

If t ≤ 2λ
p

p−r , applying f−1
λ

to this inequality, one gets z≤ f−1
λ

(2λ
p

p−r ) = λ
1

p−r , that is,

zp ≤ λ zr, and so t = zp +λ zr ≤ 2λ zr, which implies
( t

2λ

)1/r ≤ f−1
λ

(t).

If t ≥ 2λ
p

p−r , then z≥ λ
1

p−r and 2zp ≥ λ zr + zp = t, which implies f−1
λ

(t)≥ (t/2)1/p, as
desired.

Lemma 3.1.5.

Fλ (t)≥


r

r+1
λ
−1/r

( t
2

) r+1
r
+

p
p+1

( t
2λ

) p+1
r
, ∀ |t| ≤ 2λ

p
p−r ,

r
r+1

λ

( t
2

) r+1
p
+

p
p+1

( t
2

) p+1
p
, ∀ |t| ≥ 2λ

p
p−r .
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Proof. It is a straightforward consequence of Lemmas 3.1.2 and 3.1.4.

Lemma 3.1.6. For τ = ps−1

2
p+1

p (p+1)(s+1)
,

Fλ (t)−
f−1
λ

(t)t
s+1

≥ τ|t|
p+1

p ∀|t| ≥ 2λ
p

p−r .

Proof. By Lemma 3.1.4 and the proof of Corollary 3.1.3, for all |t| ≥ 2λ
p

p−r ,

Fλ (t)−
f−1
λ

(t)t
s+1

= λ

(
r

r+1
− 1

s+1

)
| f−1

λ
(t)|r+1 +

(
p

p+1
− 1

s+1

)
| f−1

λ
(t)|p+1

≥ ps−1
(p+1)(s+1)

| f−1
λ

(t)|p+1 ≥ ps−1
(p+1)(s+1)

( |t|
2

) p+1
p

.

Lemma 3.1.7. For all α, β ∈ R, there exists θ ∈ (0, 1) such that

0≤ f−1
λ

(α +β )(α +β )≤ f−1
λ

(α)α +
r+1

r
|β | | f−1

λ
(α +θβ )|.

Proof. Consider the function m(t) = f−1
λ

(t)t. Then, m is even, m′(0) = 0 and

m′(t) = f−1
λ

(t)+
t f−1

λ
(t)

λ r
[

f−1
λ

(t)
]r
+ p

[
f−1
λ

(t)
]p , for t > 0.

Hence,

0 < m′(t)< f−1
λ

(t)+
t f−1

λ
(t)

λ r
[

f−1
λ

(t)
]r
+ r
[

f−1
λ

(t)
]p =

r+1
r

f−1
λ

(t) ∀ t > 0,

which implies that |m′(t)| ≤ r+1
r | f−1

λ
(t)| for all t ∈ R. By the mean value theorem, there exists

θ ∈ (0,1) such that

0≤ f−1
λ

(α+β )(α+β )= f−1
λ

(α)α+m′(α+θβ )β ≤ f−1
λ

(α)α+
r+1

r
|β | | f−1

λ
(α+θβ )|.

Lemma 3.1.8.

lim
t→∞

t
p+1

p − f−1
λ

(t)t

t
r+1

p
=

λ

p
.

In particular, given 0 < c < λ

p , there exists t0 > 0 such that

0≤ f−1
λ

(t)t ≤ |t|
p+1

p − c |t|
r+1

p , ∀|t| ≥ t0. (3.1.3)

Proof. For t > 0, writing t = fλ (τ),

t
p+1

p − f−1
λ

(t)t

t
r+1

p
=

(λτr + τ p)
p+1

p −λτr+1− τ p+1

(λτr + τ p)
r+1

p
=

(λτ
r− p(r+1)

p+1 + τ
p− p(r+1)

p+1 )
p+1

p −λ − τ p−r

τ
(r−p)(r+1)

p (λ + τ p−r)
r+1

p

=
(λ + τ p−r)[τ

r−p
p (λ + τ p−r)

1
p −1]

τ
(r−p)(r+1)

p (λ + τ p−r)
r+1

p

=
τ

r−p
p (λ + τ p−r)

1
p −1

τ
(r−p)(r+1)

p (λ + τ p−r)
r+1

p −1
.
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Then, with y = τr−p, y t→∞−→ 0+, and it follows that

lim
t→∞

t
p+1

p − f−1
λ

(t)t

t
r+1

p
= lim

y→0+

y1/p(λ + y−1)1/p−1

y
r+1

p (λ + y−1)
r+1

p −1
= lim

y→0+

(λy+1)1/p−1

y(λy+1)
r+1

p −1
,

and applying the L’Hôpital rule,

lim
t→∞

t
p+1

p − f−1
λ

(t)t

t
r+1

p
= lim

y→0+

λ

p (λy+1)1/p−1

(λy+1)
r+1

p −1 +
(

r+1
p −1

)
λy(λy+1)

r+1
p −2

=
λ

p
.

3.2 Upper bound for the Mountain Pass level
Let (p,q) be on the critical hyperbola (1.0.3) and (ϕ,ψ) be a positive radial solution of

the problem
−∆ϕ = |ψ|p−1

ψ, −∆ψ = |ϕ|q−1
ϕ, in RN , (3.2.1)

whose qualitative and quantitative properties are described in (HULSHOF; VORST, 1996).

We recall that (ϕ,ψ) has de following decay at infinity:

a) 2
N−2 < p < N

N−2 , lim
t→∞

t p(N−2)−2
ϕ(t) = b and lim

t→∞
tN−2

ψ(t) = c,

b) p = N
N−2 , lim

t→∞

tN−2

log t
ϕ(t) = b and lim

t→∞
tN−2

ψ(t) = c,

c) N
N−2 < p < N2+2N−4

N2−4N+4 , lim
t→∞

tN−2
ϕ(t) = b and lim

t→∞
tN−2

ψ(t) = c,

d) p = N2+2N−4
N2−4N+4 , lim

t→∞
tN−2

ϕ(t) = b and lim
t→∞

tN−2

log t
ψ(t) = c,

e) N2+2N−4
N2−4N+4 < p, lim

t→∞
tN−2

ϕ(t) = b and lim
t→∞

tq(N−2)−2
ψ(t) = c,

where b > 0 and c > 0 are constants and t = |x|. Fix a ∈Ω. Let ξa ∈ C∞
c (RN) be a function such

that 0 ≤ ξa(x) ≤ 1 for all x ∈ RN , ξa ≡ 1 in B(a,ρ/2), ξa ≡ 0 in B(a,ρ)c and B(a,ρ) ⊂⊂ Ω,
ρ > 0.

Lemma 3.2.1. Suppose (1.1.1) and let Uδ ,a := δ
−N
q+1 ξa(x)ϕ

(x−a
δ

)
, where ϕ is defined by (3.2.1)

and Vδ ,a = |Uδ ,a|−1
q+1Uδ ,a. Then, for everery t ∈ [m,m], with m > 0 and m, m independent of δ , it

holds:

• if N = 3 with p≤ 7/2, or N ≥ 4 with p≤ N+2
N−2 , then∫

Ω

f−1
λ

(t∆Vδ ,a(x)t∆Vδ ,a(x))dx < t
p+1

p S, for δ > 0 suitably small, (3.2.2)

• if N = 3 with 7/2 < p < 11, or N ≥ 4 with N+2
N−2 < p≤ N2+2N−4

N2−4N+4 , then

∫
Ω

f−1
λ

(t∆Vδ ,a(x)t∆Vδ ,a(x))dx<


t

p+1
p S+ c1t

r+1
r δ

N(r+1)
r(p+1) − c2t

r+1
p δ

N
q+1

N
N−2 , if r < 2

N−2 ,

t
p+1

p S+ c1t
r+1

r δ

N(r+1)
r(p+1) − c2δ

N
q+1

N
N−2 | log(δ )|, if r = 2

N−2 ,

t
p+1

p S+ c1t
r+1

r δ

N(r+1)
r(p+1) − c2t

r+1
p δ

N(p−r)
p+1 , if r > 2

N−2 ,
(3.2.3)
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• if N2+2N−4
N2−4N+4 < p, then

∫
Ω

f−1
λ

(t∆Vδ ,a(x)t∆Vδ ,a(x))dx<


t

p+1
p S+ c1t

r+1
r δ

N(r+1)
r(p+1) − c2λδ

Nq
q+1 | log(δ )|, if r+1 = p+1

q+1 ,

t
p+1

p S+ c1t
r+1

r δ

N(r+1)
r(p+1) − c2λδ

Nq
q+1 , if r+1 < p+1

q+1 ,

t
p+1

p S+ c1t
r+1

r δ

N(r+1)
r(p+1) − c2λδ

N(p−r)
p+1 , if r+1 > p+1

q+1 .

(3.2.4)

Proof. First, observe that
∆Vδ = γδ ,a(x)+σδ ,a(x),

where
γδ ,a(x) := |Uδ |−1

q+1δ
−N
q+1 δ

−2
∆ϕ

(
x−a

δ

)
and

σδ ,a(x) := |Uδ |−1
q+1δ

−N
q+1

(
2δ
−1

∇ξa(x)∇ϕ

(
x−a

δ

)
+ϕ

(
x−a

δ

)
∆ξa(x)

)
.

So,∫
Ω

f−1
λ

(t∆Vδ ,a(x))t∆Vδ ,a(x)dx =∫
B(a,ρ/2)

f−1
λ

(tξa(x)γδ ,a(x)+ tσδ ,a(x))(tξa(x)γδ ,a(x)+ tσδ ,a(x))dx

+
∫

Ω\B(a,ρ/2)
f−1
λ

(tξa(x)γδ ,a(x)+ tσδ ,a(x))(tξa(x)γδ ,a(x)+ tσδ ,a(x))dx,

and since supp
(
∆Vδ ,a(x)

)
⊂ B(a,ρ) and supp(tσδ ,a(x))⊂ R(a,ρ/2,ρ), where R(a,ρ/2,ρ) :=

B(a,ρ)\B(a,ρ/2), one has

∫
Ω

f−1
λ

(t∆Vδ ,a(x))t∆Vδ ,a(x)dx =
∫

B(a,ρ/2)
f−1
λ

(tγδ ,a(x))tγδ ,a(x)dx

+
∫

R(a,ρ/2,ρ)
f−1
λ

(tξa(x)γδ ,a(x)+ tσδ ,a(x))(tξa(x)γδ ,a(x)+ tσδ ,a(x))dx.

Now we split the estimate in two steps, which correspond to the principal part

hδ ,a :=
∫

B(a,ρ/2)
f−1
λ

(
tγδ ,a(x)

)
tγδ ,a(x), (3.2.5)

and to the residual part

jδ ,a :=
∫

R(a,ρ/2,ρ)
f−1
λ

(tξa(x)γδ ,a(x)+ tσδ ,a(x))(tξa(x)γδ ,a(x)+ tσδ ,a(x))dx. (3.2.6)

Step 1. Estimate of (3.2.5)

Using (3.1.1) and the asymptotic behavior of ∆ϕ as in (HULSHOF; VORST, 1996,
Theorem 2) and (SANTOS, 2010, Lemma 6.2), one gets
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hδ ,a =
∫
RN

∣∣tγδ ,a(x)
∣∣ p+1

p dx+
∫

B(a,ρ/2)
f−1
λ

(
tγδ ,a(x)

)
tγδ ,a(x)dx−

∫
RN

∣∣tγδ ,a(x)
∣∣ p+1

p dx

= t
p+1

p S+
∫

B(a,ρ/2)
f−1
λ

(
tγδ ,a(x)

)
tγδ ,a(x)−|tγδ ,a(x)|

p+1
p dx−

∫
RN\B(a,ρ/2)

∣∣tγδ ,a(x)
∣∣ p+1

p dx.

(3.2.7)
The behavior of the last term is already known by (SANTOS, 2010), namely

−
∫
RN\B(a,ρ/2)

∣∣tγδ ,a(x)
∣∣ p+1

p dx≤


−t

p+1
p Cδ

N(p+1)
q+1 , if q > N

N−2 ,

−t
p+1

p C| log(δ )|p+1δ
N(p+1)

q+1 , if q = N
N−2 ,

−t
p+1

p Cδ qN , if q < N
N−2 .

(3.2.8)

Next, we estimate

iδ ,a :=
∫

B(a,ρ/2)
f−1
λ

(
tγδ ,a(x)

)
tγδ ,a(x)−|tγδ ,a(x)|

p+1
p dx. (3.2.9)

We consider three parts of the ball B(a,ρ/2), namely the ball B(a,δ ) and the rings R(a,δ ,δ M)

and R(a,δ M,ρ/2), where the number M < 1 will be defined ahead. This splitting involving rings
is key argument to capture the contribution of the term λ |u|r−1r to downsize the Mountain Pass
level.

Step 1.1. By the behavior of ∆ϕ(x) it is known that there exists (for δ sufficiently small) c > 0
such that if |x−a|< δ then c < t|∆ϕ(x−a

δ
)|, so (3.1.3) and N+2(q+1)

q+1 = pN
p+1 , can be used to infer

that∫
B(a,δ )

f−1
λ

(
tγδ ,a(x)

)
tγδ ,a(x)−|tγδ ,a(x)|

p+1
p dx≤−cλ

∫
B(a,δ )

|tγδ ,a(x)|
r+1

p dx

≤−c′λ
∫

B(a,δ )
δ
−N r+1

p+1 dx =−Cλδ
N p−r

p+1 .

Step 1.2. Now focus the attention on the R(a,δ ,δ M)-term. In this ring, since 1 < |x−a|
δ

< δ M−1,
with M < 1 to be defined, the asymptotic decay of γδ ,a(x) present in (SANTOS, 2010, Lemma
6.2) can be used, and three cases have to be analized.

Case 1: q > N
N−2 .

In this case it is known that

δ
−pN
p+1

∣∣∣∣∆ϕ

(
x−a

δ

)∣∣∣∣≥ c|x−a|−p(N−2)
δ

p(N−2)− pN
p+1 ,

the last term is grater than a constant if |x−a| ≤ δ M with

(1−M)p(N−2)− pN
p+1

= 0 ⇐⇒ M =
p(N−2)−2
(N−2)(p+1)

=
N

N−2
1

q+1
,

observing that 0 < M < 1, and δ M < ρ/2 since δ → 0. Applying Lemma 3.1.8, it follows that∫
R(a,δ ,δ M)

f−1
λ

(
tγδ ,a(x)

)
tγδ ,a(x)−|tγδ ,a(x)|

p+1
p dx≤−cλ

∫
R(a,δ ,δ M)

∣∣tγδ ,a(x)
∣∣ r+1

p dx

≤−cλ

∫
R(a,δ ,δ M)

|x−a|−(r+1)(N−2)
δ

N r+1
q+1 dx =−cλδ

N r+1
q+1

∫
δ M

δ

y1−r(N−2)dy,
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and hence

∫
R(a,δ ,δ M)

f−1
λ

(
tγδ ,a(x)

)
tγδ ,a(x)−|tγδ ,a(x)|

p+1
p dx≤−


cλδ

N
q+1

N
N−2 | log(δ )|, if r = 2

N−2 ,

cλ
δ

N
q+1

N
N−2 −δ

N p−r
p+1

2− r(N−2)
, if r 6= 2

N−2 .

Case 2: q = N
N−2 .

In this case it is known that

δ
−pN
p+1

∣∣∣∣∆ϕ

(
x−a

δ

)∣∣∣∣≥ c
(

log
( |x−a|

δ

)
+1
)p

|x−a|−p(N−2)
δ

p(N−2)− pN
p+1 ,

so one can use M = N
N−2

1
q+1 and proceed as in Case 1, to obtain the same estimate, which could

be even better.

Case 3: q < N
N−2 .

In this case it is known that

δ
−pN
p+1

∣∣∣∣∆ϕ

(
x−a

δ

)∣∣∣∣≥ c|x−a|−
p(q+1)N

p+1 δ
pqN
p+1 ,

and this is grater than a constant if |x−a| ≤ δ M with

Mp(q+1)N
p+1

=
pqN
p+1

⇐⇒ M =
q

q+1
.

So Lemma 3.1.8 can be applied, leading that

∫
R(a,δ ,δ M)

f−1
λ

(
tγδ ,a(x)

)
tγδ ,a(x)−|tγδ ,a(x)|

p+1
p dx≤−cλ

∫
R(a,δ ,δ M)

∣∣tγδ ,a(x)
∣∣ r+1

p dx

≤−cλ

∫
R(a,δ ,δ M)

|x−a|−
(r+1)(q+1)

p+1 N
δ

r+1
p+1 qNdx =−cλδ

r+1
p+1 qN

∫
δ M

δ

yN−1− (q+1)(r+1)
p+1 Ndy

and so

∫
R(a,δ ,δ M)

f−1
λ

(
tγδ ,a(x)

)
tγδ ,a(x)−|tγδ ,a(x)|

p+1
p dx≤−


cλδ

Nq
q+1 | log(δ )|, if r+1 = p+1

q+1 ,

cλ
δ

Nq
q+1 −δ

N p−r
p+1

N−N (q+1)(r+1)
p+1

, if r+1 6= p+1
q+1 .

Step 1.3. Finally we estimate the R(a,δ M,ρ/2)-term. In this ring,
∣∣x−a

δ

∣∣> 1, and the asymptotic
behavior of γδ ,a(x) present in (SANTOS, 2010, Lemma 6.2) can be used one more time, but in

this case γδ ,a becomes small, and then f−1
λ

(
tγδ ,a(x)

)
tγδ ,a(x)−|tγδ ,a(x)|

p+1
p ≤−cλ |tγδ ,a(x)|

p+1
p ,

and one can proceed as in (3.2.8).

At this point, from Steps 1.1, 1.2, and 1.3, we can write the estimates for iδ ,a defined

in (3.2.9). But before doing this, note that in all the three cases of Step 1.2, the term δ
N(p−r)

p+1

(dominant term in Step 1.1) appear, so it does not need to be repeated.
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iδ ,a ≤



−cλδ
N

q+1
N

N−2 | log(δ )|−Cδ
N(p+1)

q+1 , if q > N
N−2 , r = 2

N−2 ,

−cλ
δ

N
q+1

N
N−2 −δ

N p−r
p+1

2− r(N−2)
−Cδ

N(p+1)
q+1 , if q > N

N−2 , r 6= 2
N−2 ,

−cλδ
N

q+1
N

N−2 | log(δ )|−C| log(δ )|p+1δ
N(p+1)

q+1 , if q = N
N−2 , r = 2

N−2 ,

−cλ
δ

N
q+1

N
N−2−δ

N p−r
p+1

2−r(N−2) −C| log(δ )|p+1δ
N(p+1)

q+1 , if q = N
N−2 , r 6= 2

N−2 ,

−cλδ
Nq

q+1 | log(δ )|−Cδ qN , if q < N
N−2 , r+1 = p+1

q+1 ,

−cλ
δ

Nq
q+1 −δ

N p−r
p+1

N−N (q+1)(r+1)
p+1

−Cδ
qN , if q < N

N−2 , r+1 6= p+1
q+1 .

(3.2.10)

Now we summarize all the calculation made in Step 1. To estimate hδ ,a, from (3.2.7), we must
deal with (3.2.8) and (3.2.10). Observe that the majorante in (3.2.8) also appears in the second
terms in (3.2.10). Then, the estimate for (3.2.7) follows from the comparison among the powers
of δ in (3.2.10).

For q > N
N−2 , the terms to be compared are

−Cδ
N(p+1)

q+1 and −


cλδ

N
q+1

N
N−2 | log(δ )|, if r = 2

N−2 ,

cλ
δ

N
q+1

N
N−2 −δ

N p−r
p+1

2− r(N−2)
, if r 6= 2

N−2 ,
(3.2.11)

and the first part is always weaker. Of course N p−r
p+1 > N

q+1
N

N−2 if r < 2
N−2 , and N(p+1)

q+1 > N
q+1

N
N−2

(since p > 2
N−2 always), so in this case the dominant term is −cλδ

N
q+1

N
N−2 . The same analysis

shows that if r = 2
N−2 the dominant term is cλδ

N
q+1

N
N−2 | log(δ )|. If r > 2

N−2 , then N p−r
p+1 <

N
q+1

N
N−2

and the dominant term is −cδ
N p−r

p+1 .

When q = N
N−2 the analysis done before gives that the dominant term is

−


cλδ

N
q+1

N
N−2 | log(δ )|, if r = 2

N−2 ,

cλδ
N

q+1
N

N−2 , if r < 2
N−2 ,

−t
p+1

p C| log(δ )|p+1δ
N(p+1)

q+1 −Cλδ
N p−r

p+1 if r > 2
N−2 .

Finaly, if q < N
N−2 the terms that we have to compare are

−t
p+1

p Cδ
qN and −


cλδ

Nq
q+1 | log(δ )|, if r+1 = p+1

q+1 ,

cλ
δ

Nq
q+1 −δ

N p−r
p+1

N−N (q+1)(r+1)
p+1

, if r+1 6= p+1
q+1 .

If r + 1 < p+1
q+1 , it is easy to see that Nq

q+1 < N p−r
p+1 and surely Nq

q+1 < Nq, so −cλδ
Nq

q+1 is the

dominant term. The same computation ensures that the dominant term is −cλδ
Nq

q+1 | log(δ )|, if
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r+1 = p+1
q+1 . Finally, if r+1 > p+1

q+1 an analogous computation show that the term −Cλδ
N p−r

p+1 is
the dominant. Then, putting it all together,

hδ ,a ≤ t
p+1

p S−



cλδ
N

q+1
N

N−2 | log(δ )|, if q≥ N
N−2 , r = 2

N−2 ,

cλδ
N

q+1
N

N−2 , if q≥ N
N−2 , r < 2

N−2 ,

cλδ
N(p−r)

p+1 , if q≥ N
N−2 , r > 2

N−2 ,

λδ
Nq

q+1 | log(δ )|, if q < N
N−2 , r+1 = p+1

q+1 ,

cλδ
Nq

q+1 , if q < N
N−2 , r+1 < p+1

q+1 ,

cλδ
N(p−r)

p+1 , if q < N
N−2 , r+1 > p+1

q+1 .

(3.2.12)

Step 2 Estimate of the residual part (3.2.6).

Here
∣∣x−a

δ

∣∣≥ ρ

2δ
→ ∞, uniformly with respect to x ∈ R(a,ρ/2,ρ), as δ → 0. Then the

asymptotic behavior of γδ ,a and σδ ,a present in (SANTOS, 2010, Lemma 6.2) reads

σδ ,a(x)≤


c|Uδ |−1

q+1δ
N

p+1 (|x−a|−N+1 + |x−a|−N+2), if p > N
N−2 ,

c|Uδ |−1
q+1δ

N
p+1 | log(δ )|(| log |x−a|+1|)(|x−a|−N+1(1+ |x−a|)), if p = N

N−2 ,

c|Uδ |−1
q+1δ

pN
q+1 (|x−a|−p(N−2)+2 + |x−a|−p(N−2)+1), if p < N

N−2 ,

and,

γδ ,a ≤


c|x−a|−p(N−2)δ

pN
q+1 , if q > N

N−2

c(|log(|x−a|)|p+1 +1)
p

p+1 |x−a|−p(N−2)| logδ |pδ
pN

q+1 , if q = N
N−2

c|x−a|
p(q+1)N

p+1 δ
pqN
p+1 , if q < N

N−2 .

From this, it follows that | jδ ,a| is bounded from above by

|R(a,ρ/2,ρ)|



f−1
λ

(
ct
(

δ
pN

q+1 +δ
pN

q+1

))
ct
(

δ
pN

q+1 +δ
pN

q+1

)
, if p < N

N−2 ,

f−1
λ

(
ct
(

δ
pN

q+1 +δ
N

p+1 | log(δ )|
))

ct
(

δ
pN

q+1 +δ
N

p+1 | log(δ )|
)
, if p = N

N−2 ,

f−1
λ

(
ct
(

δ
pN

q+1 +δ
N

p+1

))
ct
(

δ
pN

q+1 +δ
N

p+1

)
, if p,q > N

N−2 ,

f−1
λ

(
ct
(
| logδ |pδ

pN
q+1 +δ

N
p+1

))
ct
(
| logδ |pδ

pN
q+1 +δ

N
p+1

)
, if q = N

N−2 ,

f−1
λ

(
ct
(

δ
pqN
p+1 +δ

N
p+1

))
ct
(

δ
pqN
p+1 +δ

N
p+1

)
, if q < N

N−2 ,

≤ |R(a,ρ/2,ρ)|



f−1
λ

(
tcδ

pN
q+1

)
tcδ

pN
q+1 , if p < N

N−2 ,

f−1
λ

(
tcδ

N
p+1 | log(δ )|

)
tcδ

N
p+1 | log(δ )|, if p = N

N−2 ,

f−1
λ

(
tcδ

N
p+1

)
tcδ

N
p+1 , if p,q > N

N−2 ,

f−1
λ

(
tcδ

N
p+1

)
tcδ

N
p+1 , if q = N

N−2 ,

f−1
λ

(
tcδ

N
p+1

)
tcδ

N
p+1 , if q < N

N−2 ,

= |R(a,ρ/2,ρ)|


f−1
λ

(
tcδ

pN
q+1

)
tcδ

pN
q+1 , if p < N

N−2 ,

f−1
λ

(
tcδ

N
p+1 | log(δ )|

)
tcδ

N
p+1 | log(δ )|, if p = N

N−2 ,

f−1
λ

(
tcδ

N
p+1

)
tcδ

N
p+1 , if p > N

N−2 ,
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and using the asymptotic behavior of f−1
λ

, one concludes that

| jδ ,a| ≤


cλ

(
tδ

pN
q+1

) r+1
r
, if p < N

N−2 ,

cλ

(
tδ

N
p+1 | log(δ )|

) r+1
r
, if p = N

N−2 ,

cλ

(
tδ

N
p+1

) r+1
r
, if p > N

N−2 .

(3.2.13)

Step 3: Comparison of the residual parts in (3.2.12) and (3.2.13).

Step 3.1: p < N
N−2 . First, observe that this implies q > N

N−2 . To obtain (3.2.2), from the compari-
son (3.2.11) to obtain (3.2.12), it is enough to verify that N(p+1)

q+1 < pN
q+1

r+1
r , which is equivalent

to p+1 < p r+1
r , that is r < p, which is always the case. Hence, the Lemma is proved in this

case.

Step 3.2: p = N
N−2 . Again this implies q > N

N−2 , and the procedure to obtain (3.2.2) is identical
to that from Step 3.1.

Step 3.3: N
N−2 < p≤ N+2

N−2 .

If r < 2
N−2 , to obtain (3.2.2), from (3.2.12) and (3.2.13), one must decide when N2

(q+1)(N−2) <
N

p+1
r+1

r , that is

N(p+1)
(q+1)(N−2)

<
r+1

r
⇐⇒ p(N−2)−2

N−2
−1 <

1
r
⇐⇒ r <

1
p− N

N−2
,

and this is always true for N ≥ 4. If N = 3, these conditions read

3 < p≤ 5, r < 2, and r <
1

p−3

which are satisfied with the extra condition p≤ 7/2.

If r = 2
N−2 , then r+1

r = N
2 , to obtain (3.2.2), from (3.2.12) and (3.2.13), one must decide

when
p+1
q+1

≤ N−2
2
⇐⇒ p(N−2)−2

N
≤ N−2

2
⇐⇒ p≤ N

2
+

2
N−2

,

and (remember p ≤ N+2
N−2) this is always true for N ≥ 4, and with N = 3 these conditions read

p≤ 7/2.

If r > 2
N−2 , to obtain (3.2.2), from (3.2.12) and (3.2.13), one must decide when N(p−r)

p+1 <
N

p+1
r+1

r , that is

p− r <
r+1

r
⇐⇒ 0 < r2 +(1− p)r+1. (3.2.14)

Remember that p≤ N+2
N−2 . Then, for N > 4, (3.2.14) is true because such second order polynomial

has no real roots. For N = 4 and p < N+2
N−2 , again (3.2.14) has no real root and (3.2.14) is verified.

For N = 4 and p = N+2
N−2 , such polynomial has 1 as real root and r > 1 = 2/(N− 2), hence

(3.2.14) is verified. With N = 3, the largest real root of such polynomial is less or equal to 2 for
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p ≤ 7/2, hence (3.2.14) is verified because r > 2 = 2/(N− 2). This finishes the proof of the
lemma.

Remark 3.2.2. The estimate of
∫

Ω
f−1
λ

(t∆Vδ ,a(x))t∆Vδ ,a(x)dx from Lemma 3.2.1 deserves some

comments.

When evaluating
∫

Ω
f−1
λ

(t∆Vδ ,a(x))t∆Vδ ,a(x)dx, the leading term comes from∫
B(0,ρ/2) f−1

λ

(
tγδ ,a(x)

)
tγδ ,a(x)dx, which carries by itself a (negative) remainder that has to

be compared with the residual term
∫

R(0,ρ/2,ρ) f−1
λ

(t∆Vδ ,a(x))t∆Vδ ,a(x)dx. With N ≥ 4 or N = 3
and p ≤ 7/2 the remainder

∫
R(0,ρ/2,ρ) f−1

λ
(t∆Vδ ,a(x))t∆Vδ ,a(x)dx is smaller than the negative

part of the remainder term in
∫

B(0,ρ/2) f−1
λ

(t∆Vδ ,a(x))t∆Vδ ,a(x)dx, which brings down the func-
tional when comparing it to the problem without the perturbation λur, and this plays an important
role in the results in this work. At this point, it is important to compare the estimates (3.2.2),
(3.2.3) and (3.2.4) with (SANTOS, 2010, Eq. (6.4)).

We are almost prepared for the proof of Proposition 2.2.3. Going on this direction,
observe that if (1.0.3) and (1.1.1) are satisfied, then

lim
t→∞

IF(tVδ ,a) =−∞

and the maxt≥0 I(tVδ ,a) is achieved at some tδ > 0, thus,

0 = I′F(tδVδ ,a) =
∫

Ω

f−1
λ

(tδ ∆Vδ ,a)∆Vδ ,a dx− ts
δ
|Vδ ,a|s+1

s+1− tq
δ
, (3.2.15)

from where we infer that

tq+1
δ

=
∫

Ω

f−1
λ

(tδ ∆Vδ ,a)tδ ∆Vδ ,a dx− ts+1
δ
|Vδ ,a|s+1

s+1. (3.2.16)

Lemma 3.2.3. Suppose (1.0.3) and (1.1.1). Then tδ , as δ → 0, is bounded form below and

above.

Proof. Suppose by contradiction that tδ
δ→0−→ 0. Define Aδ := {x ∈Ω; |tδ ∆Vδ ,a(x)|< 1+λ} and

Bδ = Ω\Aδ , small δ give us

Ct1/r
δ
≤

t1/p
δ

(1+λ )1/p

∫
Bδ

|∆Vδ ,a(x)|
p+1

p dx+
t1/r
δ

(1+λ )1/r

∫
Aδ

|∆Vδ ,a(x)|
r+1

r dx

≤
∫

Ω

f−1
λ

(tδ ∆Vδ ,a(x))∆Vδ ,a(x)dx = ts
δ

o(δ )+ tq
δ

O(1).

which is a contradiction by the fact that 1/r ≤ s and 1/r < q, so tδ 9 0. Observe that in the case
rs = 1 the o(δ ) produces the contradiction.

Now observe that by (3.2.15) and the estimates present in (MELO; SANTOS, 2015)

tq
δ
≤ t

1
p

δ
S+ t

1
p

δ
o(δ ) =⇒ t

pq−1
p

δ
≤ S+o(δ )

that is, tδ ≤ k < ∞ for all δ sufficiently small.
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Proof of Proposition 2.2.3. Now, using Lemma 3.1.1 and identity (3.2.16)

max
t≥0

IF(tVδ ,a) = IF(tδVδ ,a) =
∫

Ω

Fλ (tδ ∆Vδ ,a)dx−
tq+1
δ

q+1
− µ

s+1
ts+1
δ
|Vδ ,a|s+1

s+1

=
p

p+1

∫
Ω

f−1
λ

(tδ ∆Vδ ,a)tδ ∆Vδ ,adx−λ
p− r
p+1

∣∣ f−1
λ

(tδ ∆Vδ ,a)
∣∣r+1
r+1

r+1
−

tq+1
δ

q+1
−

µts+1
δ
|Vδ ,a|s+1

s+1

s+1

=
2
N

∫
Ω

f−1
λ

(tδ ∆Vδ ,a)tδ ∆Vδ ,adx−λ
p− r
p+1

∣∣ f−1
λ

(tδ ∆Vδ ,a)
∣∣r+1
r+1

r+1
−

µ(q− s)ts+1
δ
|Vδ ,a|s+1

s+1

(q+1)(s+1)
.

(3.2.17)

By (3.2.15) and Lemma 3.2.1 one gets

tq
δ
≤ t1/p

δ
S−Ct1/p

δ
δ

N(p+1)
q+1 − ts

δ
µ|Vδ ,a|s+1

s+1 ⇒ tδ < S
p

pq−1 .

Combining this with (3.2.17) and Lemma 3.2.1, we infer that

max
t≥0

IF(tVδ ,a)<
2
N

t
p+1

p
δ

S− µ(q− s)
(q+1)(s+1)

ts+1
δ
|Vδ ,a|s+1

s+1 <
2
N

S
pN

2(p+1) ,

which concludes the proof.

Remark 3.2.4. For N = 3, we mention that the estimates from (3.2.3) and (3.2.4) can be used to

prove the existence of a positive solution to (HS) for the pairs (p,q) on the critical hyperbola

(1.0.3) that are not included in Theorem 1.1.1, namely with 7/2 < p < 8, and for some (not all)

(r,s) as in (1.1.1). This remark is linked to the condition 3 < t < 5 in (BRÉZIS; NIRENBERG,

1983, Corollary 2.3) to prove the existence of a solution to (1.0.1).

By (3.2.15) and Lemma 3.2.1 one gets

tq
δ
≤ t1/p

δ
S+ c1t

r+1
r

δ
δ

3(r+1)
r(p+1) + iδ ,a− ts

δ
µ|Vδ ,a|s+1

s+1.

Combining this with (3.2.17) and Lemma 3.2.1, we infer that

max
t≥0

IF(tVδ ,a)≤
2
3

t
p+1

p
δ

S+ c1t
r+1

r
δ

δ

3(r+1)
r(p+1) + iδ ,a−

µ(q− s)
(q+1)(s+1)

ts+1
δ
|Vδ ,a|s+1

s+1,

and this is smaller than 2
3S

3p
2(p+1) if, and only if,

Cδ

3(r+1)
r(p+1) ≤ c1µ|Vδ ,a|s+1

s+1− iδ ,a = c1µ|Vδ ,a|s+1
s+1 + |iδ ,a|. (3.2.18)

To get (3.2.18) it is sufficient to verify, as δ → 0, that

cδ

3(r+1)
r(p+1) < |iδ ,a|, (3.2.19)

or

cδ

3(r+1)
r(p+1) < c1µ|Vδ ,a|s+1

s+1 =


Cµδ

3(s+1)
p+1 , if s < 2,

Cµδ
9

p+1 | logδ |, if s = 2,

Cµδ
3− 3(s+1)

q+1 , if s > 2,

(3.2.20)
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where the behavior of |Vδ ,a|s+1 in (3.2.20) is given in (MELO; SANTOS, 2015, eq. (36)).

To obatin (3.2.19), we keep all the calculation from Step 3.3 for the case with 7/2 <

p ≤ (N + 2)/(N− 2) = 5. Then, we execute similar estimates for 5 < p < 8. Therefore, for
7/2 < p < 8, using the residual terms in the first three lines (that is q ≥ N

N−2 = 3) of (3.2.12),
which is a refinement of (3.2.10), one can see that (3.2.19) holds if, and only if,

r < 1
p−3 if r < 2,

p≤ 7
2 if r = 2,

0 < r2 +(1− p)r+1 if r > 2,

(3.2.21)

otherwise, the term of (3.2.13) is dominant.

Let us now consider (3.2.20). For s < 2 the inequality is equivalent to r+1
r > s+1, that

is rs < 1, which is a contradiction with condition (1.1.1). For s = 2 the inequality is equivalent
to r+1

r ≥ 3, that is r ≤ 1/2, and this together with (1.1.1), gives r = 1/2. Finally, for s > 2 the
inequality is true if

3(r+1)
r(p+1)

> 3− 3(s+1)
q+1

that is, s+1 > q+1− r+1
r

q+1
p+1

=
q+1
p+1

(p− 1
r
). (3.2.22)

Therefore, given any (p,q) on the critical hyperbola (1.0.3) with N = 3, 7/2 < p < 8,
(r,s) as in (1.1.1) with the one of the extra conditions (3.2.21), (r,s) = (1/2,2) or (3.2.22), the
mountain pass level of IF is in the range of compactness and the mountain pass theorem ensures
the existence of a solution.
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Kōkyūroku, v. 1009, p. 132–140, 1997. Nonlinear evolution equations and their applications
(Japanese) (Kyoto, 1996). Citation on page 26.

DAL MASO, G.; MURAT, F. Almost everywhere convergence of gradients of solutions to
nonlinear elliptic systems. Nonlinear Anal., v. 31, n. 3-4, p. 405–412, 1998. ISSN 0362-546X.
Available: <https://doi.org/10.1016/S0362-546X(96)00317-3>. Citations on pages 33 and 57.

EDMUNDS, D.; FORTUNATO, D.; JANNELLI, E. Critical exponents, critical dimensions and
the biharmonic operator. Archive for Rational Mechanics and Analysis, Springer, v. 112, n. 3,
p. 269–289, 1990. Citation on page 22.

https://mathscinet-ams-org.ez67.periodicos.capes.gov.br/mathscinet-getitem?mr=0370183
https://mathscinet-ams-org.ez67.periodicos.capes.gov.br/mathscinet-getitem?mr=0370183
https://doi.org/10.1006%2Fjdeq.1995.1062
https://doi.org/10.4171/PM/1954
https://mathscinet.ams.org/mathscinet-getitem?mr=699419
https://mathscinet.ams.org/mathscinet-getitem?mr=709644
http://www.numdam.org/item?id=ASNSP_1997_4_24_2_367_0
http://www.numdam.org/item?id=ASNSP_1997_4_24_2_367_0
https://doi.org/10.1080%2F03605309208820869
https://doi.org/10.1016/S0362-546X(96)00317-3


52 Bibliography

HULSHOF, J.; MITIDIERI, E.; VORST, R. Van der. Strongly indefinite systems with critical
Sobolev exponents. Trans. Amer. Math. Soc., v. 350, n. 6, p. 2349–2365, 1998. ISSN 0002-
9947. Available: <https://mathscinet.ams.org/mathscinet-getitem?mr=1466949>. Citations on
pages 19, 20, 21, and 26.

HULSHOF, J.; VORST, R. C. A. M. Van der. Asymptotic behaviour of ground states. Proc.
Amer. Math. Soc., v. 124, n. 8, p. 2423–2431, 1996. ISSN 0002-9939. Available: <https:
//mathscinet.ams.org/mathscinet-getitem?mr=1363170>. Citations on pages 26, 40, and 41.

HULSHOF, J.; VORST, R. van der. Differential systems with strongly indefinite variational
structure. J. Funct. Anal., v. 114, n. 1, p. 32–58, 1993. ISSN 0022-1236. Available: <https:
//doi.org/10.1006/jfan.1993.1062>. Citation on page 26.

KIM, S.; PISTOIA, A. Multiple blowing-up solutions to critical elliptic systems in bounded
domains. J. Funct. Anal., v. 281, n. 2, p. Paper No. 109023, 58, 2021. ISSN 0022-1236.
Available: <https://doi.org/10.1016/j.jfa.2021.109023>. Citation on page 23.

LEITE, E. J. F.; MONTENEGRO, M. Maximum and comparison principles to lane-emden
systems. Journal of the London Mathematical Society, Wiley, v. 101, n. 1, p. 23–42, 2019.
Available: <https://doi.org/10.1112%2Fjlms.12256>. Citation on page 20.

. Principal curves to nonlocal lane–emden systems and related maximum principles. Calcu-
lus of Variations and Partial Differential Equations, Springer Science and Business Media
LLC, v. 59, n. 4, 2020. Available: <https://doi.org/10.1007%2Fs00526-020-01770-0>. Citation
on page 20.

LIONS, P.-L. The concentration-compactness principle in the calculus of variations. The limit
case. I. Rev. Mat. Iberoamericana, v. 1, n. 1, p. 145–201, 1985. ISSN 0213-2230. Available:
<https://doi.org/10.4171/RMI/6>. Citations on pages 26 and 29.

MELO, J. L. F.; SANTOS, E. Moreira dos. Critical and noncritical regions on the critical hy-
perbola. In: Contributions to nonlinear elliptic equations and systems. Birkhäuser/Springer,
Cham, 2015, (Progr. Nonlinear Differential Equations Appl., v. 86). p. 345–370. Available:
<https://doi.org/10.1007/978-3-319-19902-3_21>. Citations on pages 21, 22, 25, 26, 47, and 49.

MITIDIERI, E. A Rellich type identity and applications. Communications in Partial Dif-
ferential Equations, Informa UK Limited, v. 18, n. 1-2, p. 125–151, jan 1993. Available:
<https://doi.org/10.1080%2F03605309308820923>. Citation on page 19.

MONTENEGRO, M. The construction of principal spectral curves for Lane-Emden systems
and applications. Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser., v. 29, n. 1, p. 193–229, 2000.
ISSN 0391-173X. Citation on page 20.

PELETIER, L. A.; VORST, R. C. A. M. van der. Existence and non-existence of positive
solutions of nonlinear elliptic systems and the biharmonic equation. Differ. Integral Equ., v. 5,
n. 4, p. 747–767, 1992. ISSN 0893-4983. Citation on page 19.

SANTOS, E. M. dos. Multiplicity of solutions for a fourth-order quasilinear nonhomogeneous
equation. J. Math. Anal. Appl., v. 342, n. 1, p. 277–297, 2008. ISSN 0022-247X. Available:
<https://mathscinet.ams.org/mathscinet-getitem?mr=2440796>. Citation on page 26.

https://mathscinet.ams.org/mathscinet-getitem?mr=1466949
https://mathscinet.ams.org/mathscinet-getitem?mr=1363170
https://mathscinet.ams.org/mathscinet-getitem?mr=1363170
https://doi.org/10.1006/jfan.1993.1062
https://doi.org/10.1006/jfan.1993.1062
https://doi.org/10.1016/j.jfa.2021.109023
https://doi.org/10.1112%2Fjlms.12256
https://doi.org/10.1007%2Fs00526-020-01770-0
https://doi.org/10.4171/RMI/6
https://doi.org/10.1007/978-3-319-19902-3_21
https://doi.org/10.1080%2F03605309308820923
https://mathscinet.ams.org/mathscinet-getitem?mr=2440796


Bibliography 53

. Positive solutions for a fourth-order quasilinear equation with critical Sobolev exponent.
Commun. Contemp. Math., v. 12, n. 1, p. 1–33, 2010. ISSN 0219-1997. Available: <https:
//doi.org/10.1142/S0219199710003701>. Citations on pages 29, 30, 31, 33, 41, 42, 43, 45,
and 47.

SANTOS, E. M. dos; NORNBERG, G.; SCHIERA, D.; TAVARES, H. Principal spectral curves
for Lane-Emden fully nonlinear type systems and applications. arXiv, 2020. Available: <https:
//arxiv.org/pdf/2012.07794.pdf>. Citation on page 20.

SANTOS, E. Moreira dos; NORNBERG, G.; SOAVE, N. On unique continuation principles for
some elliptic systems. Ann. Inst. H. Poincaré C Anal. Non Linéaire, v. 38, n. 5, p. 1667–1680,
2021. ISSN 0294-1449. Available: <https://doi.org/10.1016/j.anihpc.2020.12.001>. Citation on
page 21.

VORST, R. C. Van der. Variational identities and applications to differential systems. Archive for
Rational Mechanics and Analysis, Springer-Verlag, v. 116, n. 4, p. 375–398, 1992. Citations
on pages 19 and 21.

. Fourth order elliptic equations with critical growth. Comptes rendus de l’Académie des
sciences. Série 1, Mathématique, Elsevier, v. 320, n. 3, p. 295–299, 1995. Citation on page 22.

https://doi.org/10.1142/S0219199710003701
https://doi.org/10.1142/S0219199710003701
https://arxiv.org/pdf/2012.07794.pdf
https://arxiv.org/pdf/2012.07794.pdf
https://doi.org/10.1016/j.anihpc.2020.12.001




55

APPENDIX

A
CLASSICAL RESULTS

A.1 The Mountain Pass Theorem
The primary tool in this work is the Mountain pass theorem due to (AMBROSETTI;

RABINOWITZ, 1973). This result says that if a functional defined in a Banach space satisfies
the (PS)c-condition and a geometric property, it has a critical point. In order to state this theorem,
let us recall the definition of a Palais-Smale sequence.

Definition A.1.1. Let X be a Banach space, I : X → R a C 1 functional, and c a real number. A

sequence (uk) in X is called a Palais-Smale sequence at a level c if

I(uk)→ c, and I′(uk)→ 0 in X∗.

The functional I satisfies the (PS)c-condition if any Palais-Smale sequence at level c has a

convergent subsequence.

Theorem A.1.2 (Mountain Pass). Let X be a Banach space, I ∈ C 1 (X ,R) , v ∈ X and r > 0
such that ‖v‖> r and

inf
‖u‖=r

I(u)> I(0)≥ I(v).

If I satisfies the (PS)c-condition with

c := inf
γ∈Γ

max
t∈[0,1]

I(γ(t)),

Γ := {γ ∈ C ([0,1],X);γ(0) = 0, I(γ(1))< 0},
then c is a critical value of I.

A.2 Some convergence results
The first result in this section is the Dominated Convergence Theorem that relates almost

everywhere and Lp convergences.
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Theorem A.2.1 (Lebesgue). Let Ω⊂ RN be an open set, 1≤ p < ∞, and let (uk) be a sequence

in Lp(Ω) such that

1. uk(x)→ u(x) a.e. in Ω as k→ ∞

2. there exists v ∈ Lp(Ω) such that for all k, |uk(x)| ≤ v(x) a.e. in Ω.

Then u ∈ Lp(Ω) and uk→ u in the Lp(Ω) norm, namely
∫

Ω
|uk−u|p dx→ 0.

The converse of this theorem holds within the following sense.

Theorem A.2.2. Let Ω ⊂ RN be open and let (uk) ⊂ Lp(Ω), p ∈ [1,+∞], be a sequence such

that uk→ u in Lp(Ω) as k→ ∞. Then there exist a subsequence (uk j) j and a function v ∈ Lp(Ω)

such that

1. uk j(x)→ u(x) a.e. in Ω as j→ ∞,

2. for all j,
∣∣uk j(x)

∣∣≤ v(x) a.e. in Ω .

In this thesis, we also use that a bounded sequence in a reflexive space has a subsequence
that converges weakly.

Theorem A.2.3. Assume that E is a reflexive Banach space and let (un) be a bounded sequence

in E. Then there exists a subsequence (unk) that converges in the weak topology σ (E,E?).

Due to (BRÉZIS; LIEB, 1983), the following result relates the pointwise convergence
and the convergence of integrals in a general space.

Theorem A.2.4 (Brezis-Lieb). Let j : C→C be a continuous function with j(0) = 0. In addition,

let j satisfy the following hypothesis:

For every sufficiently small ε > 0, there exist two continuous, nonnegative functions ϕε

and ψε such that

| j(a+b)− j(a)|6 εϕε(a)+ψε(b)

for all a,b ∈ C.

Now let un = u+ vn be a sequence of measurable functions from Ω to C such that:

(i) vn→ 0 a.e.;

(ii) j(u) ∈ L1;

(iii)
∫

ϕε (vn(x))dµ(x)6C < ∞, for some constant C, independent of ε and n;
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(iv)
∫

ψε(u(x))dµ(x)< ∞ for all ε > 0.

Then, as n→ ∞, ∫
| j (u+ vn)− j (vn)− j(u)|dµ → 0.

Finally, we present a convergence lemma due to (DAL MASO; MURAT, 1998) used in
the proof of Lemma 2.3.8 that helps to prove the (PS)c-condition for the functionals IF and IG.

Lemma A.2.5. Let X be a finite dimensional real Hilbert space with norm | · | and scalar product

(·, ·). Let (βk) be a sequence of functions from X into X which converges uniformly on compact

subsets of X to a continuous function β . Assume that the functions βk are monotone and the β is

strictly monotone, i.e.

(βk(ζ )−βk(ξ ),ζ −ξ )≥ 0, (β (ζ )−β (ξ ),ζ −ξ )> 0

for every k and for every ζ ,ξ ∈ X with ζ 6= ξ . Let (ξk) be a sequence in X and let ξ be an

element of X such that

lim
k→∞

(βk (ξk)−βk(ξ ),ξk−ξ ) = 0.

Then (ξk) converges to ξ in X.

A.3 Some Inequalities
The following two lemmas are useful and well-known inequalities that we state for

completeness.

Theorem A.3.1 (Jensen’s inequality). Assume |Ω| < ∞. Let j : R→ (−∞,+∞] be a convex

lower semi-continuous function, j 6≡ +∞. Let f ∈ L1(Ω) be such that f (x) ∈ D( j) a.e. and

j( f ) ∈ L1(Ω). Prove that

j
(

1
|Ω|

∫
Ω

f dx
)
≤ 1
|Ω|

∫
Ω

j( f )dx.

Theorem A.3.2 (Hölder’s inequality). Assume that f ∈ Lp and g ∈ Lp′ with 1 ≤ p ≤ ∞. Then

f g ∈ L1 and ∫
| f g|dx≤ | f |p|g|p′·



U
N

IV
ER

SI
D

A
D

E 
D

E 
SÃ

O
 P

AU
LO

In
st

itu
to

 d
e 

Ci
ên

ci
as

 M
at

em
át

ic
as

 e
 d

e 
Co

m
pu

ta
çã

o


	Title page
	Title page
	Dedication
	Acknowledgements
	Epigraph
	Abstract
	Resumo
	List of symbols
	Contents
	Introduction
	Main goals
	Open problems and future projects
	The structure of this thesis

	Existence of solutions to the sistem (HS)
	Variational approach
	Mountain Pass Geometry
	(PS)c condition

	Technical results
	Some technical properties of the auxiliary functions
	Upper bound for the Mountain Pass level

	Bibliography
	Classical Results
	The Mountain Pass Theorem
	Some convergence results
	Some Inequalities


