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RESUMO

VENDRUSCOLLO, V. G. Sistemas de partículas aleatórias e processos de Schur.
2023. 147 p. Dissertação (Mestrado em Ciências – Matemática) – Instituto de Ciências
Matemáticas e de Computação, Universidade de São Paulo, São Carlos – SP, 2023.

Pode soar absurdo acreditar que um modelo de tráfego, autovalores de matrizes aleató-
rias, e o comprimento da maior subsequência crescente de permutações aleatórias possuem
uma conexão. Matemáticos dizem o contrário. Resultados surpreendentes mostram que
flutuações desses e outros modelos têm o mesmo comportamento assintótico. O desen-
volvimento da probabilidade integrável, um ramo da teoria de representações aplicada
à probabilidade, é crucial para tais descobertas. O TASEP (totally asymmetric simple
exclusion process) é um sistema de partículas interagentes que simula o tráfego. Este é
encontrado em uma parametrização particular de um objeto mais geral, o processo de
Schur, o qual é o principal objeto deste estudo.

Palavras-chave: Processos de Schur, Probabilidade Integrável, Funções Simétricas, TA-
SEP, Análise Assintótica.





ABSTRACT

VENDRUSCOLLO, V. G. Random particle systems and Schur processes. 2023.
147 p. Dissertação (Mestrado em Ciências – Matemática) – Instituto de Ciências Mate-
máticas e de Computação, Universidade de São Paulo, São Carlos – SP, 2023.

It may sound absurd to believe that a traffic jam model, eigenvalues of random matrices,
and the length of the longest increasing subsequence of random permutations have a con-
nection. Mathematicians say otherwise. Surprising results show that some fluctuations
of these and many other models have the same asymptotic behavior. The development
of integrable probability, a branch of representation theory applied to probability, is cru-
cial for such findings. The totally asymmetric simple exclusion process (TASEP) is an
interacting particle system that simulates traffic. We find the TASEP in a particular
parametrization of a more general object, the Schur process, which is the main object of
this study.

Keywords: Schur Processes, Integrable Probability, Symmetric Functions, TASEP, Asymp-
totic Analysis.
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CHAPTER

1
INTRODUCTION

The Central Limit Theorem states that the Gaussian distribution is the limit-
ing distribution of the normalized sum of independent and identically distributed (i.i.d.)
random variables. The value of this result relies on its generality: no matter what the
distribution of the variables is, they only need to be i.i.d. (under mild assumptions). This
is called the Gaussian universality.

The first glimpse of this result appeared in the XVIIIth century when De Moivre
and Laplace considered the problem for i.i.d. Bernoulli random variables. Their proof has
an algebraic part, where they computed explicit formulas for probabilities, and an analytic
part, where they calculated the asymptotic distribution using Stirling’s approximation for
n!. Although there was a strong belief in the truth of the Gaussian universality, rigorous
proofs appeared only at the beginning of the XXth century, with the works of Chebyshev,
Markov and Lyapunov (FISCHER, 2011).

Nowadays, we still study similar problems. Take a sequence of random variables
(not i.i.d.) and define some quantity related to them (usually non-linear). Then we try
to conjecture a kind of central limit theorem (universality). In the field of Mathematical
Physics, for example, these problems may appear in the study of interacting particle
systems, since the interest of Statistical Mechanics is in finding the equilibrium state
when the number of particles becomes large. Moreover, we are particularly interested in
probabilistic systems that can be analyzed by algebraic methods. Such models are called
integrable models (BORODIN; GORIN, 2012; BAIK, 2018; FERRARI, 2019).

To illustrate, Random Matrix Theory is part of this area and good progress has
been made in the last decades. The references (ERDőS; SCHLEIN; YAU, 2011; BLEHER;
ITS, 1999; DEIFT; GIOEV, 2007; PASTUR; SHCHERBINA, 1997; SOSHNIKOV, 1999;
TAO; VU, 2010; TAO; VU, 2011; TRACY; WIDOM, 1994) are just some examples of
several results found. In short, Dyson’s conjecture says that eigenvalues statistics converge



20 Chapter 1. Introduction

(when the matrix dimension becomes large) to a distribution that does not depend on
the initial matrix distribution, but only on the symmetry class of the matrix ensemble
(ERDőS; YAU, 2012). A limit distribution that appears in this theory is the well-known
Tracy-Widom distribution (TRACY; WIDOM, 1994). The Semicircle Law and the Sine
Process also appear in such problems.

The KPZ universality is related to statistics of random growth models (COR-
WIN, 2016), like the totally asymmetric simple exclusion process (TASEP), an integrable
model which we present next. It is possible to find exact formulas for some statistics of
the TASEP and then use them in the asymptotic analysis (BORODIN; GORIN, 2012).
The limiting distribution for the fluctuations of the so-called height function of this model
is the Tracy-Widom distribution (JOHANSSON, 2000). That is right, even though the
TASEP does not seem related to random matrices, it is the same distribution found in ran-
dom matrix theory! Many other models present this behavior such as the Corner Growth
Model (JOHANSSON, 2000), the Last Passage Percolation (BORODIN; OKOUNKOV;
OLSHANSKI, 2000; JOHANSSON, 2001a), the largest increasing subsequence in ran-
dom permutations (BAIK; DEIFT; JOHANSSON, 1999) and the Poly-Nuclear Growth
model (PRäHOFER; SPOHN, 2002). Therefore, mathematicians have enough evidence
to suspect about universality here.

1.1. TASEP, Integrable Models and the KPZ Universality
Class

The totally asymmetric simple exclusion process (TASEP) was first introduced by
Spitzer (1970) and it is a simple but very rich interacting particle system. This model can
be interpreted as a traffic model, for example. Suppose we have N particles positioned in Z
denoted by y1(t)> · · ·> yN(t), where t denotes the time. At time t = 0, they are positioned
on the first N non-positive integers, that is, y1(0) = 0,y2(0) = −1, . . . ,yN(0) = 1−N (see
Figure 1).

Figure 1 – Initial condition in TASEP. The black circles are particles and the white ones are
empty spaces.

Source: Elaborated by the author.

The TASEP has the following dynamics: the particles want to jump from left to
right, but they only do it when they are not blocked by another one (Figure 2). If they
are free to move, we flip a coin to decide if the particle jumps (the coin does not need to
be fair). For now, we may assume discrete time and we update the particles one by one,
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going from the first one to the last one. When the last particle is updated, we say that one
unit of time is finished. Check Patrik Ferrari’s website1 to see simulations of this model.

Figure 2 – Particles can only jump if the adjacent space on the right is empty.

Source: Elaborated by the author.

The main object studied in the literature about the TASEP is the height function
h(x, t). This function associates the current configuration of the model, at each time t, to
a real function, in such a way that the difference h(x+ 1

2 , t)−h(x+ 1
2 ,0) counts the exact

number of particles that have passed the position x until the time t. The graphic of h(x, t)

at time t is obtained connecting segments of slope −1 and 1, depending on the existence
or not of a particle at position x, respectively (see Figure 3).

Figure 3 – The height function

Source: Elaborated by the author.

It was proven that fluctuations of this height function converge to a specific dis-
tribution in Random Matrix Theory (JOHANSSON, 2000). More precisely, Johansson
obtained the convergence

lim
t→∞

P
(

h(t, tx)− c1(x)t
c2(x)t1/3 ≥−s

)
= F2(s), (1.1)

where c1 and c2 are explicit functions and F2 is the Tracy-Widom distribution, which is
the limiting distribution for fluctuations of the largest eigenvalue in the Gaussian Unitary
Ensemble of random matrices (TRACY; WIDOM, 1994).

The route used to obtain this result is in direct analogy to the one used to prove
particular cases for the Central Limit Theorem. First, there is an algebraic part, computing
explicit formulas for the distribution of the height function. Next, we use these formulas
to obtain the asymptotic distribution for the fluctuations of the height function.
1 <https://wt.iam.uni-bonn.de/ferrari/research/jsanimationtasep>

https://wt.iam.uni-bonn.de/ferrari/research/jsanimationtasep
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The algebraic techniques cited above usually come from the Representation Theory.
The subarea of representation theory devoted to finding algebraic methods to solve proba-
bilistic problems is called Integrable Probability (BORODIN; GORIN, 2012). The theory
of Symmetric Functions and the Robinson-Schensted-Knuth (RSK) correspondence are
some examples of that. On the asymptotic analysis for integrable models, we often rely on
Laplace method, Steepest Descent Method, Fredholm determinants and Riemann-Hilbert
problems (CORWIN, 2016).

Surprisingly, many two-dimensional models (one spatial and one temporal) not re-
lated to the TASEP present the same asymptotic behavior (ADLER; MOERBEKE, 2005;
BAIK; DEIFT; JOHANSSON, 1999; BORODIN, 2003; BORODIN et al., 2007; BUFE-
TOV; GORIN, 2018; GORIN; SHKOLNIKOV, 2015; OKOUNKOV; RESHETIKHIN,
2007). Such systems belong to the Kardar-Parisi-Zhang (KPZ) universality class. It is
conjectured that all models in this class converge under the KPZ 1:2:3 scaling to a uni-
versal fluctuation field h(x, t). This field does not depend on the model but only on the
initial condition class. The invariant limit process is called KPZ fixed point, and it was
recently constructed by Matetski, Quastel and Remenik (2021). In (CORWIN, 2016), we
see several models, as random growth processes and stochastic PDEs, supporting this con-
jecture and revealing properties of the KPZ fixed point. However, at the moment we are
arguably in a “De Moivre-Laplace stage” for this class of stochastic systems, say Borodin
and Gorin (2012), in analogy to the Gaussian universality.

We hope the relevance of integrable models is clear. In this Master’s Thesis, we
only study the TASEP, but the reader should have in mind that this simple model is part
of a wide class of models connected with each other by an object not very well understood
yet: the KPZ fixed point.

1.1.1. Block-Push Process

The Block-Push process is a model similar to the TASEP, but more general, in
the sense that we can generate the TASEP from this model. To define it, let N(N+1)

2 be
distinct particles positioned on N levels, labeled by j = 1, . . . ,N, such that each level j has
exactly j particles. The position of the i-th particle of the j-th level at time t is denoted
by x j

i (t). For the initial conditions, we require that all particles of each level j lie on the
first j non-positive integers (Figure 4), that is,

x j
i (0) = i− j, 1 ≤ i ≤ j ≤ N.

As in TASEP, particles want to jump from left to right, staying in the same level.
The movement is again decided by the flip of a coin performed particle by particle, now
accordingly to the following rules:
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Figure 4 – Block-Push: initial conditions (N=4). Particles with the same color have the same
i-index.
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Source: Elaborated by the author.

(Block) A particle is “blocked” by the ones in the level below, that is, the ones with
same i-index can never be at same position. To be more clear, see Figure 4, the
particles with the same color can never be on the same vertical line;

(Push) When a particle moves, the adjacent particle above also moves. Imagine that
you have a pile of books, if you slowly push the lower one, the ones above also move;

We update each particle individually, starting from the bottom to the top and from
the right to the left, applying the rules above. A particle cannot move twice in the
same update.

See Patrik Ferrari’s website2 for computer simulations. One could ask “why are
we defining such complicated model if we just want to study the TASEP?”. For now, we
justify this by noticing that the TASEP is a restriction of the Block-Push process to
the particles yi(t) = xi

1(t), as if we were projecting the last particle of each level on a
line (see Figure 5). Therefore, if we understand the Block-Push process, we may obtain
results about the TASEP. In this work, we will see that the Block-Push process is just a
parametrization of a large class of models.

1.2. About the content
Now we present the content of this Master’s Thesis, which is a study of the existent

literature. We do not present any new results. The goal is to produce an accessible and
useful text for beginners in the area, since most of the literature is in form of journal
articles and advanced lecture notes. As for prerequisites, the reader is expected to be
familiar to the basics of Measure Theory, Probability and Complex Analysis, so that an
undergraduate student in final years can follow the text. The end of the last chapter is
the only part that requires some background in Functional Analysis. To facilitate access
2 <https://wt.iam.uni-bonn.de/ferrari/research/jsanimationakpz>

https://wt.iam.uni-bonn.de/ferrari/research/jsanimationakpz
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Figure 5 – Looking only at the red particles, we obtain the TASEP.

Source: Elaborated by the author.

to the individual topics, the chapters are rendered as self-contained as possible. Let us
present a summary of the content of each chapter.

In Chapter 2, we present the necessary theory of symmetric functions. They can
be understood as “polynomials” in infinitely many variables that are invariant under
permutations of its variables. A fundamental class of symmetric functions, called Schur
functions, is used to compute probabilities over a particular type of objects: the partitions.

The partitions are finite decreasing sequences of non-negative integers. They can
be visualized as diagrams of boxes, called Young diagrams (Figure 6). We will show later
that the TASEP can be described by an evolution of these diagrams. The main results of
this chapter are the Cauchy identities, because they allow the computation of probabilities
on the set of partitions.

Figure 6 – Young diagrams. The number of boxes in each row corresponds to each number of
the sequence.

(4,3,3,1) = (5,1) =

Source: Elaborated by the author.

After this, we proceed to the main topic of the text, the Schur processes (Chapter
3). In this chapter, some of the magic happens: all the nice identities obtained in Chapter
2 are explored together to define the Schur processes and to calculate probabilities on
partitions in a systematic way.

We start defining the Schur measure, which is a probability measure on the set
of partitions. In other words, the Schur measure is an “infinite die” with partitions on
its faces. Then we define a Markov chain on partitions, which is a random evolution of
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Young diagrams, as in Figure 7. We will show that this Markov chain has the important
property of preserving Schur measures.

Figure 7 – A pictorial example of a Markov chain on partitions, which produces a “growth” of
a diagram.

→ → → → → ···
Source: Elaborated by the author.

The Schur processes are probability measures on vectors of partitions, generalizing
the idea above. Again we define Markov chains for these objects, such that they preserve
Schur processes. To finish the chapter, we show how one can study the TASEP as a partic-
ular parametrization of a Schur process (which is the Block-Push process discussed above).
This is not the only way to study the TASEP, we can study it by solving Kolmogorov
equations via Bethe ansatz method (BETHE; METALLE, 1931; GWA; SPOHN, 1992;
SCHüTZ, 1997; TRACY; WIDOM, 2008; BAIK; LIU, 2018), however, this is beyond the
scope of this work. Moreover, Schur processes are far more accessible for beginners since
it requires just basic knowledge in Algebra.

At each time t, the particles in TASEP are positioned over a random subset of
integers. So in Chapter 4, we study a general theory used to understand probabilities
about random particles in a given space, called determinantal point processes (DPP). The
important property of DPPs is that we can compress a lot of information about the
particles in just a two variable function K(x,y), called correlation kernel. We show how
to apply this theory in TASEP and how the probabilities computed in Chapter 3 are
expressed in this language.

In Chapter 5, the last one, we discuss the asymptotics for the TASEP, that is, its
behavior in large time scale. We show how a rescaled version of the model is related to the
Airy point process, which gives rise to the celebrated Tracy-Widom distribution (TRACY;
WIDOM, 1994). We tried to reproduce this well-established result in the literature, using
a more accessible approach.

As you will see, the content of this Master’s thesis is quite extensive. So before
going through the full text, we strongly recommend to the reader to follow the first section
of each chapter, where we present a short summary for the respective chapter. In this way,
it will be easier to understand the goals of this work. More precisely, start reading in the
following order:

Section 2.1 → Section 3.1 → Section 4.1 → Section 5.1.

After that, you can read the full chapters to explore the details.
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CHAPTER

2
SYMMETRIC FUNCTIONS

In this chapter, we define the Schur functions and obtain the Cauchy identities.
They are the basic objects necessary for the later definition of Schur processes, in Chapter
3. The text is accessible to undergraduate students. The experienced reader is invited to
see (SAGAN, 2001, Ch. 4) or (BAIK; DEIFT; SUIDAN, 2016, Ch. 10) for a more direct
(albeit not detailed) approach, or simply read the summary provided here. For more details
and results, see (MACDONALD, 1998). All the text of this chapter is based on the three
references above.

2.1. Summary of the Chapter
The symmetric functions are symmetric polynomial expressions in infinitely

many variables, as

x1 + x2 + x3 + · · · or x1x2 + x1x3 + x2x3 + · · · .

To understand the space of symmetric functions, denoted by Λ, we need the so-called
partitions, which are finite sequences of non-increasing non-negative integers. Each par-
tition is represented by a Young diagram. For example, the partitions (4,3,1), (6,2)
and (2,2) are represented by the diagrams of boxes

, and ,

respectively. The diagrams are self-explanatory: the number of boxes on the i-th row
represents the i-th term in the partition. Let Y denote the set of all partitions.

A semistandard Young tableau (SSYT) of shape λ ∈ Y is a filling of boxes of
the diagram of λ , with natural numbers, such that they weakly increase along the rows
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and strictly increase down the columns. For example, let λ = (4,3,1), then

1 1 3 4
3 3 7
4

is a SSYT and
1 1 3 5
1 2 6
4

is not. (2.1)

Let T be a SSYT and let ni be the number of times that i ∈ N appears on T . We can
associate T to the monomial

xT = xn1
1 xn2

2 · · ·xnk
k .

For example, in the SSYT in 2.1, we have xT = x2
1x3

3x2
4x7. Given λ ∈ Y, the associated

Schur function is defined by the formal series

sλ (x1,x2, . . .) = ∑
T

xT ,

where the sum is over all SSYTs with shape λ . For example, for λ = (2,1), some of the
possible SSYTs are

1 1
2

,
1 2
2

,
1 1
3

,
1 3
3

,
1 2
3

,
1 3
2

,
1 2
4

,
1 4
2

, · · · ,

so we have

sλ (x) = x2
1x2 + x1x2

2 + x2
1x3 + x1x2

3 +2x1x2x3 +2x1x2x4 + · · · .

One can prove that the Schur functions are symmetric, i.e., invariant under permutations
of variables.

Let µ,λ ∈ Y, we write µ ⊂ λ when the diagram of µ is contained in the diagram
of λ . If µ ⊂ λ , the diagram obtained by “subtracting” µ from λ is called skew Young
diagram and it is denoted by λ/µ . For instance, given λ = (4,3,1) and µ = (3,2), we
have µ ⊂ λ , as Figure 8 shows.

Figure 8 – Skew Young diagram (µ is highlighted with darker boxes inside λ ).

µ = ⊂ = λ λ/µ = .

Source: Elaborated by the author.

Following the same process we used to define Schur functions, we define the skew
Schur functions. For example, for partitions λ = (3,2) and µ = (1), we have µ ⊂ λ and

λ/µ = .
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We fill the boxes with weakly increasing numbers along the rows and strictly increasing
numbers down the columns, in all possible ways. Some of the possibilities are

1 1
1 2

,
1 2

1 2
,

1 2
2 2

,
2 2

1 3
, · · · .

Again we sum the corresponding monomials to define the skew Schur function

sλ/µ(x) = x3
1x2 + x2

1x2
2 + x1x3

2 + x1x2
2x3 + · · · .

These are the intuitive definitions for Schur functions and skew Schur functions. If they
seem too confusing, do not worry: along the chapter we present them formally.

The main results of this chapter are the interesting Cauchy identities

∑
λ∈Y

sλ (x)sλ (y) =
∞

∏
i, j=1

1
1− xiy j

(2.2)

and

∑
ν∈Y

sν/λ (x)sν/µ(y) =
∞

∏
i, j=1

1
1− xix j

∑
κ∈Y

sλ/κ(y)sµ/κ(x). (2.3)

They compress information about the Schur functions into a simple product ∏∞
i, j=1

1
1−xiy j

depending only on the variables. Notice that the sums above run over all partitions, and
as we will see, these formulas allow us to define probability measures on Y.

2.2. Partitions
We start discussing partitions in more details.

Definition 2.1. A partition is a non-increasing sequence λ = (λ1,λ2,λ3, . . .) of non-
negative integers with a finite number of non-zero terms. More precisely, λ1 ≥ λ2 ≥ λ3 ≥
·· · ≥ 0 and there exists n0 ∈ N such that λn = 0 for all n ≥ n0.

The compact notation λ = (λ n1
1 ,λ n2

2 , . . .) can be used if some terms appear more
than once. Another common notation is λ = (1m1 ,2m2 ,3m3 , . . .), where for all i ∈ N,

mi = Card{ j : λ j = i},

that is, mi is the number of times that i repeats itself in λ (when we are working with
more than one partition, we write mi = mi(λ )). For example, we have

(4,4,2,2,2,1,0,0, . . .) = (4,4,2,2,2,1) = (42,23,1) = (1,23,30,42).

Notice that the null terms are usually omitted.
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Definition 2.2. The sum |λ |= ∑i∈Nλi is called the size of λ . If λ = n, we write λ ` n.

The sum |λ | is always finite, since the number of non-zero terms in λ is finite. We
denote by Yn the set of all partitions of size n. If |λ |= n, we also say that λ is a partition
of n, since we are literally breaking n in smaller parts. For example, Y3 = {(3) ,(2,1) ,

(
13)},

which corresponds to all possible ways of writing the number 3 as a sum of positive
integers.

Example 2.1. These are all the fifteen elements of Y7: (7), (6,1), (5,2), (5,12), (4,3),
(4,2,1), (4,12), (32,1), (3,22), (3,2,12), (3,14), (23,1), (22,13), (2,15), (16).

Definition 2.3. The number of non-zero terms of λ is called the length of λ and it is
denoted by ℓ(λ ).

Example 2.2. For λ = (5,4,1,0,0, . . .), we have |λ |= 10 and ℓ(λ ) = 3.

The partition ∅ :=(0,0, . . .) is called the empty partition. The set of all partitions
of any size is denoted by Y. It is straightforward to note that Y = ∪̇∞

n=1Yn, where the
symbol ∪̇ means that the union is disjoint.

For easy visualization, we often represent partitions as a set of boxes, called Young
diagrams, where each row, from the top to the bottom, represents a term of the partition
(see Figure 9).

Figure 9 – Young diagrams

(a) λ = (4,3,1) (b) λ ′ = (3,2,2,1)

If we look from the left to the right on Figure 9a, the number of boxes in each
column of λ = (4,3,1) defines a new partition λ ′ = (3,2,2,1) (Figure 9b). This leads us
to the following definition.

Definition 2.4. Let λ ∈ Y. The partition λ ′ defined by λ ′
i := Card{ j : λ j ≥ i} is called

the transpose of λ .

From definition above and from the geometric representation of partitions, we
obtain λ1 = ℓ(λ ′) and λ ′

1 = ℓ(λ ). Note that λ ′ is well-defined, since { j : λ j ≥ i} ⊃ { j : λ j ≥
i+1}, so λ ′

i ≥ λ ′
i+1.

Proposition 2.1. An equivalent definition for the transpose λ ′ is λ ′
i = max

{
j : λ j ≥ i

}
.
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Proof. Let j0 = max
{

j : λ j ≥ i
}

, then

λ1 ≥ λ2 ≥ ·· · ≥ λ j0−1 ≥ λ j0 ≥ i > λ j0+1 ≥ λ j0+2 ≥ ·· · ,

so Card{ j : λ j ≥ i}= j0.

Given two partitions λ and µ , we would like to be able to compare them. We have
several ways to do this and each one has some importance.

Definition 2.5. (Natural ordering) Given λ ,µ ` n, we write λ ⊴ µ if

∀i ≥ 1, λ1 +λ2 + · · ·+λi ≤ µ1 +µ2 + · · ·+µi.

In addition, if λ and µ satisfy the definition above and λ 6= µ , we simply write
λ ◁ µ .

Definition 2.6. (Lexicographic Ordering) Given λ ,µ ` n, we write λ < µ if, for some
i ∈ N, we have λ j = µ j for all j < i and λi < µi.

Notice that both natural and lexicographic ordering compare partitions with the
same size.

Example 2.3. The natural order is not total as we can see that (3,3),(4,1,1) ∈ Y6 are
not comparable, since 3 ≤ 4 and 3+3 > 4+1. On the other hand, the lexicographic order
is total. To illustrate, in Y6 we have

(6)> (5,1)> (4,2)>
(
4,12)> (32)> (3,2,1)>

(
3,13)> (23)> (22,12)> (2,14)> (16).

The natural ordering dominates the lexicographic one, in the sense of the following
proposition.

Proposition 2.2. Let λ ,µ ` n. If λ ◁ µ , then λ < µ .

Proof. If λ ◁ µ , then λ 6= µ , so there exists i = min{ j : λ j 6= µ j}. If we had λi > µi, then

λ1 + · · ·+λi−1 +λi = µ1 + · · ·+µi−1 +λi > µi + · · ·+µi,

thus λ ⋬ µ , which is a contradiction. So we must have λi < µi.

The next proposition provides a characterization for partitions, with respect to
the natural ordering.

Proposition 2.3. A sequence λ of n non-negative integers defines a partition if, and only
if, λ ⊵ σ(λ ) for all permutations σ ∈ Sn.
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Proof. (⇒) Since λ1 ≥ ·· · ≥ λn, we have λ1 + · · ·+ λi ≥ λσ(1) + · · ·+ λσ(i) for any i, so
λ ⊵ σ(λ ).

(⇐) For all i = 1, . . . ,n−1, take the permutation σi that switches λi by λi+1. Since
λ ⊵ σi(λ ) for each i, we have

(λ1, . . . ,λi−1,λi,λi+1, . . . ,λn)⊵ (λ1, . . . ,λi−1,λi+1,λi, . . . ,λn).

Particularly, we obtain

λ1 + · · ·+λi−1 +λi ≥ λ1 + · · ·+λi−1 +λi+1,

so λi ≥ λi+1.

2.2.1. Skew Young Diagrams
We have more three ways to compare partitions. Each one is necessary for this

work.

Definition 2.7. We write µ ⊂ λ if the diagram of λ contains the diagram of µ , that is,
µi ≤ λi for all i (or equivalently, µ ′

i ≤ λ ′
i ). The diagram obtained by subtracting µ from λ

is called skew Young diagram and it is denoted by λ/µ .

Definition 2.8. (Interlacing Property) We write µ ≼ λ , and say that λ and µ interlace,
when λi+1 ≤ µi ≤ λi for all i. In this case, the skew Young diagram λ/µ is called a
horizontal strip.

Proposition 2.4. We have µ ≼ λ if, and only if, 0 ≤ λ ′
i −µ ′

i ≤ 1 for every i.

Proof. Assume µ ≼ λ , then 0 ≤ λi − µi, so µ ⊂ λ and then 0 ≤ λ ′
i − µ ′

i . By Proposition
2.1, we have λ ′

i = j0 = max
{

j : λ j ≥ i
}

, so by the interlacing property,

µ1 ≥ ·· · ≥ µ j0−1 ≥ λ j0 ≥ i,

and this means that µ ′
i ≥ j0−1 = λ ′

i −1, proving the second inequality. For the reciprocal,
we use the same idea.

Definition 2.9. We write µ ≼v λ , when 0 ≤ λi−µi ≤ 1 for all i (in particular, µ ⊂ λ ). In
this case, the skew Young diagram λ/µ is called a vertical strip.

Example 2.4. Given λ = (4,3,1) and µ = (2,2), we have µ ⊂ λ as the figure below shows
(µ is highlighted with darker boxes). On the right, we show the skew Young diagram λ/µ ,
which is neither a horizontal strip nor a vertical strip, since λ ′

3 −µ ′
3 = 2 and λ1 −µ1 = 2,

respectively.

µ = ⊂ = λ ; λ/µ = .
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Example 2.5. Given λ = (4,3,1) and µ = (4,1), we see that λ/µ is an horizontal strip,
but not a vertical strip.

µ = ⊂ = λ ; λ/µ = .

Example 2.6. Given λ = (4,3,1) and µ = (3,2), we see that λ/µ is both a horizontal
and a vertical strip.

µ = ⊂ = λ ; λ/µ = .

2.2.2. Young tableaux and the Robinson-Schensted correspondence
Let us go a little further on the study of Young diagrams. In this section, we show

a simple way to compute probabilities on Y, using a well-known result on representations
of the symmetric group SN . We start defining a new object by filling the Young diagrams
with natural numbers.

Definition 2.10. A Young tableau of shape λ ∈YN is a filling of boxes on the diagram
of λ with the naturals 1,2, . . . ,N. If T is a Young tableau of shape λ , we denote sh(T ) = λ .

If the numbers strictly increase along the rows and down the columns of a Young
tableau T , we say that T is a standard Young tableau.

Figure 10 – Young tableaux of shape λ = (4,3,1)

1 3 4 6
2 6 8
7

(a) Standard.

2 6 4 8
3 7 1
5

(b) Not standard.

We denote by SYTN the set of all standard Young tableaux of size N, that is,
sh(T ) ` N. The interesting result below was firstly proven by Robinson (1938) and then
found in another form by Schensted (1961).

Theorem 2.1. (Robinson-Schensted correspondence) There is a bijection between the
symmetric group SN and the set

{(T,U) ∈ SYTN ×SYTN : sh(T ) = sh(U)},

i.e., the set consisted of pairs of standard Young tableaux of size N with same shape.

The bijection established on Theorem 2.1 is obtained by an algorithm, but we do
not enter in such details. We are only interested in the information that the set defined
in the theorem has exactly N! elements.
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Example 2.7. The set SYT3 is composed by the tableaux

T1 =

1
2
3

, T2 =
1 2
3

, T3 =
1 3
2

and T4 = 1 2 3 ,

so there are 3! pairs with the same shape. They are (T1,T1), (T2,T2), (T3,T3), (T4,T4),
(T2,T3) and (T3,T2), agreeing to Theorem 2.1.

Given λ ` N, define

dim(λ ) := Card{T ∈ SYTN : sh(T ) = λ},

in other words, dim(λ ) is the number of possible standard Young tableaux with shape
λ . So the number of pairs (T,U) ∈ SYTN ×SYTN such that sh(T ) = sh(U) = λ is exactly
dim(λ )2, hence Theorem 2.1 implies that

∑
λ`N

dim(λ )2 = N!. (2.4)

Definition 2.11. The Plancherel measure is the function defined by

PN(λ ) =
dim(λ )2

N!
, λ ∈ YN .

By equation (2.4), PN is a probability measure on YN , that is, we have ∑λ∈YN PN(λ )=
1. In other words, PN is a biased die with the partitions of YN on its faces.

Example 2.8. For N = 3, we have by Example 2.7,

dim( )2 = dim
( )2

= 1 and dim
( )2

= 4,

so P3 is given by

P3 ( ) = P3

( )
=

1
6

and P3
( )

=
4
6
.

So we can say that P3 is an ordinary die with six faces, but the partitions (3) and (1,1,1)
appear on one face, respectively, and (2,1) appears on four faces (Figure 11).

Using the Plancherel measures, we can define a measure on Y in the following way.

Definition 2.12. Let t > 0. The Poissonized1 Plancherel measure parametrized by
t is the function defined by

PPoisson
t (λ ) = e−t t |λ |

(|λ |!)2 dim(λ )2, λ ∈ Y.

1 The name is related to the expression e−ttn/n!, which is the probability mass function for the
Poisson distribution.
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Figure 11 – Die for P3

Source: Elaborated by the author.

The function Pt is indeed a probability measure on Y, since

∑
λ∈Y

Pt(λ ) =
∞

∑
N=0

∑
λ`N

e−t tN

(N!)2 dim(λ )2 = e−t
∞

∑
N=0

tN

N! ∑
λ`N

PN(λ )︸ ︷︷ ︸
=1︸ ︷︷ ︸

=et

= 1.

In Chapter 3, we show that the Poissonized Plancherel measure is a particular parametriza-
tion of a more general probability measure. But before this, we need to dive into the theory
of symmetric functions.

2.3. Symmetric Polynomials and Symmetric Functions

2.3.1. The Ring of Symmetric Polynomials

Given a permutation σ ∈ SN and a polynomial p(x1, . . . ,xN), the action of σ in p

is given by
σ(p) = σ · p(x1,x2, . . . ,xN) := p

(
xσ(1),xσ(2), . . . ,xσ(N)

)
.

In other words, σ acts in p by switching the variables according to σ .

Example 2.9. For p(x1,x2,x3) = x1997
1 + x7

2x3 and σ = (1 3 2), we have

σ · p(x1,x2,x3) = x1997
3 + x7

1x2.

Definition 2.13. A polynomial p in N variables is called symmetric if, for any permu-
tation σ ∈ SN , we have σ · p = p.

The set of all symmetric polynomials in N variables is denoted by ΛN .

Example 2.10. The polynomial of Example 2.9 is not symmetric, but

q(x1,x2,x3) = x2022
1 + x2022

2 + x2022
3 + x1x2 + x1x3 + x2x3

is symmetric.
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Let C[x1, . . . ,xN ] be the vector space (and ring) of polynomials in N variables with
complex coefficients. It is straightforward to verify that ΛN is closed under the operations
of sum and multiplication of polynomials, so the next proposition holds.

Proposition 2.5. The set ΛN is a vector subspace and a subring of C[x1, . . . ,xN ].

It is our interest to find a linear basis for ΛN . For this purpose, we need to define
the “simplest” symmetric polynomials. We are now adapting the ideas of (SAGAN, 2001,
Ch. 4) for finite variables.

Definition 2.14. Let λ be any partition with length ℓ= ℓ(λ )≤ N, the polynomial

mλ ,N = mλ (x1, . . . ,xN) := ∑xλ1
i1 · · ·xλℓ

iℓ ,

summed over all ℓ-tuples (xi1 , . . . ,xiℓ) of distinct variables, is called monomial symmetric
polynomial in N variables. If ℓ(λ )> N, we set mλ ,N := 0.

Example 2.11. For λ = (3,1), we have

mλ ,2 = x3
1x2 + x1x3

2;

mλ ,3 = x3
1x2 + x3

1x3 + x1x3
2 + x1x3

3 + x3
2x3 + x2x3

3;

mλ ,4 = x3
1x2 + x3

1x3 + x3
1x4 + x1x3

2 + x1x3
3 + x1x3

4 + x3
2x3 + x3

2x4 + x2x3
3 + x2x3

4 + x3
3x4 + x3x3

4.

From Example 2.11, we see that mλ (x1, . . . ,xN−1,0) = mλ (x1, . . . ,xN−1) for every N

and λ . Since mλ ,N is obtained by summing over all permutations of variables, it must be
symmetric (mλ ,N ∈ ΛN). We can interpret mλ ,N as the “smallest” symmetric polynomial
containing the monomial xλ1

1 · · ·xλℓ
ℓ , that is, the polynomial with less monomials satisfying

this property.

We say that a polynomial is homogeneous of degree n if all monomials in its
expression have degree n.

Example 2.12. The polynomial

p(x1,x2,x3) = x21
1 + x14

1 x7
2 + x7

1x14
2 + x21

2 + x14
1 x7

3 + x14
2 x7

3 + x7
1x14

3 + x7
2x14

3 + x21
3

is homogeneous of degree 21.

Let
Λn

N := {p ∈ ΛN : p is homogeneous of degree n}∪{0},

be the space of symmetric homogeneous polynomials of degree n, which is a vector sub-
space of ΛN . Notice that if f ∈ Λn

N and g ∈ Λm
N , then f g ∈ Λn+m

N . We also have the direct
sum

ΛN =
∞⊕

n=0

Λn
N , (2.5)

so to prove that the mλ ,N ’s provide a basis for ΛN , it suffices to find a basis for each Λn
N .
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Proposition 2.6. The set B = {mλ ,N : λ ` n, ℓ(λ )≤ N} is a linear basis for Λn
N .

Proof. If λ ` n, then mλ ,N is homogeneous of degree n, so Span(B) ⊂ Λn
N . On the other

hand, let p ∈ Λn
N . It can be written as a sum of monomials of degree n, i.e.

p(x1, . . . ,xN) = ∑
i

cixi1 · · ·xin .

Fixed some index i, the monomial cixσ(i1) · · ·xσ(in) is also in the expression of p, for any
permutation σ ∈ SN . So there exists λ such that cimλ ,N appears in the expression of p.
Since i is arbitrary, we obtain that p is a linear combination of mλ ,N ’s. Finally, we shall
prove that B is linearly independent. Take any linear combination

a1mλ1 + · · ·+akmλk
= 0,

assuming all λi’s distinct. This is a sum of distinct monomials, with repeated coefficients
and equal to zero, so we have a1 = · · ·= ak = 0.

By Proposition 2.6 and (2.5), we obtain the corollary below.

Corollary 2.1. The set {mλ ,N : λ ∈ Y, ℓ(λ )≤ N} is a basis for ΛN .

2.3.2. The Ring of Formal Power Series

In this section, we present the ring of formal power series. Basically, they are
polynomials in infinitely many variables. This object is necessary to understand the ring
of symmetric functions.

Consider for each N ∈ N the projection

πN : C[x1, . . . ,xN ]→ C[x1, . . . ,xN−1]

p(x1, . . . ,xN) 7→ p(x1, . . . ,xN−1,0).

In other words, πN acts in a polynomial by setting xN = 0.

Example 2.13. For the polynomial

p(x,y,z) = xy+ xz+ yz ∈ C[x,y,z],

we have
π3 p(x,y,z) = p(x,y,0) = xy ∈ C[x,y].

Definition 2.15. Let x = {x1,x2,x3, . . .} be a countable set of infinitely many variables.
The set of formal power series is defined by

C[x] = C[x1,x2, . . .] := {(p1, p2, . . .) : ∀N ∈ N, pN ∈ C[x1, . . . ,xN ],πN pN = pN−1}.
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The elements of C[x] are sequences of polynomials such that when we set xN = 0
in pN , we obtain pN−1.

Example 2.14. For each N ∈ N, let pN(x1, . . . ,xN) = x1 + · · ·+ xN , so

pN(x1, . . . ,xN−1,0) = x1 + · · ·+ xN−1 +0 = pN−1(x1, . . . ,xN−1),

therefore, p = (pN)N∈N ∈ C[x].

Note 2.1. We often use some abuse of notation to represent formal power series. To
illustrate, we would simply write p, from Example 2.14, as p = x1 + x2 + x3 + · · · . That is
why we use the word formal: there are no worries about the convergence of such series
(yet), because we are not evaluating the series in any values.

Example 2.15. The reader should be cautious about the abuse of notation described in
Note 2.1. For instance, the infinite product

p(x1,x2, . . .) = x1x2x3 · · ·

is not a formal power series. Indeed, writing p accordingly to Definition 2.16, we would
have p = (x1x2 · · ·xN)N∈N and we see that πN(x1 · · ·xN) = 0 6= x1 · · ·xN−1.

We equip C[x] with the usual operations of sum and multiplication of polynomials,
applied elementwise in the sequences. The good definition of these operations follows
directly by the analogous operations for polynomials. Furthermore, it follows that C[x] is
a vector space and a ring.

For any monomial p = xλ1
1 · · ·xλN

N , the sum ∑λi is the degree of p. The degree of a
polynomial p 6= 0, denoted by deg(p), is the maximum of the degrees of monomials in its
expression. We now extend this definition to formal power series.

Definition 2.16. Let p = (pN)N∈N ∈ C[x]\{0}, the degree of p is given by

deg(p) := sup
N∈N

{deg(pN)}.

If {deg(pN) : N ∈ N} is not bounded, we define deg(p) := ∞.

The notion of degree allows the following remark, which is important for future
manipulation of formal power series.

Example 2.16. The multiplication in C[x] must be handled carefully. We have already
seen that the monomial of infinite degree ∏∞

i=1 xi is not a formal power series (Example
2.15). On the other hand, p = ∏∞

i=1(1+ xi) is a formal power series since we can do this
multiplication taking only monomials with finite degree, in the following way:

∞

∏
i=1

(1+ xi) = (1+ x1)(1+ x2)(1+ x3) . . .

= 1+∑xi +∑xi1xi2 +∑xi1xi2xi3 + · · · ,
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where the sums above run through all permutations of 1,2,3, . . . variables, respectively.
Also, we have deg(p) = ∞.

Example 2.17. The formal power series x2
1 + x2 + x2

3 + x4 + · · · has degree 2.

As we expect, the usual properties for degree of polynomials are still valid here:
we have deg(p+q) = max{deg(p),deg(q)} and deg(pq) = deg(p)+deg(q).

2.3.3. The Ring of Symmetric Functions
In analogy to the construction of the ring of symmetric polynomials, we now repeat

the process with infinitely many variables.

Definition 2.17. Given λ ∈ Y, the monomial symmetric function corresponding to
λ is given by mλ := (mλ ,N)N∈N.

Note that mλ ∈ C[x], since πNmλ ,N = mλ ,N−1 for each N. We use the mλ ’s as
generators for the space of symmetric functions.

Definition 2.18. The vector space Λ := Span{mλ : λ ∈ Y} is called the ring of sym-
metric functions.

We have defined Λ as a vector space, but it is also a ring since it is closed under
the usual product of C[x]. Remember that every mλ is symmetric, so are all f ∈ Λ. Notice
that each f ∈ Λ is written as a finite linear combination of mλ ’s.

Example 2.18. We have f = 2x1 +2x2 +2x3 + · · · ∈ Λ, since f is exactly 2m(1).

Example 2.19. The product f = ∏∞
i=1(1+ xi) ∈ C[x] is not a symmetric function, even

though it is invariant under permutations of its variables. If f could be written as a finite
linear combination of mλ ’s, then f would have bounded degree, which does not happen,
therefore, f /∈ Λ.

Let us continue to reproduce the results proved in Section 2.3.1. Again, it is useful
to decompose Λ as a direct sum of finite dimension subspaces. So we define the space of
symmetric homogeneous functions of degree n, given by

Λn := Span{mλ : λ ` n}.

Since the number of partitions of n is finite, Λn has finite dimension. Moreover, every
f ∈ Λn has degree n, because every mλ for λ ` n has degree n, so we have the natural
decomposition

Λ =
∞⊕

n=0

Λn. (2.6)
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The mλ ’s, for λ ` n, not only generate Λn, but they are indeed a basis.

Proposition 2.7. The set {mλ : λ ` n} is linearly independent, so it is a basis for Λn.

Proof. Write
a1mλ1 + · · ·+akmλk

= 0

where k = p(n) (the number of partitions of n). By definition of mλ , we have for every
N ∈ N,

a1mλ1,N + · · ·+akmλk,N = 0,

so if we take N sufficiently large, we have a1 = · · · = ak = 0, since the mλ ,N ’s provide a
basis for Λn

N (Proposition 2.6).

Example 2.20. We have Y3 = {(3),(2,1),(1,1,1)}, so {m(3),m(2,1),m(1,1,1)} is a basis for
Λ3, which has dimension 3.

The next proposition sets a natural characterization for Λn, in terms of homoge-
neous polynomials in Λn

N .

Proposition 2.8. For each n ∈ N, we have

Λn = {( fN)N∈N ∈ C[x] : fN ∈ Λn
N}.

Proof. If f = ( fN) ∈ Λn, we have f = ∑λ`n cλ mλ , so for each N, fN = ∑λ`n cλ mλ ,N ∈ Λn
N .

Conversely, let f be such that fN ∈ Λn
N = Span{mλ ,N : λ ` n} for each N (using Proposition

2.6), then fN = ∑λ`n cλ mλ ,N , therefore,

f = ( fN) =

(
∑
λ`n

cλ mλ ,N

)
= ∑

λ`n
cλ mλ ∈ Λn.

A similar characterization is obtained for Λ.

Proposition 2.9. We have

Λ = { f = ( fN)N∈N ∈ C[x] : fN ∈ ΛN ,deg( f )< ∞}.

Proof. By (2.6), if f ∈ Λ, then there exists M ∈N and homogeneous symmetric functions
g(k) ∈ Λk for k = 1, . . . ,M, such that

f = g(1)+ · · ·+g(M) ⇒ fN = g(1)N + · · ·+g(M)
N ∈

∞⊕
k=0

Λk
N = ΛN .
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Also, we have deg( f ) = max{deg(g(k))} ≤ M < ∞. Reciprocally, if deg( f )< ∞, there exists
M = sup{deg( fN)}, so each fN can be written as

fN = g(1)N + · · ·+g(M)
N ,

where g(k)N ∈ Λk
N for each k. Defining g(k) =

(
g(k)1 ,g(k)2 , . . .

)
, we have g(k) ∈ Λk and f =

g(1)+ · · ·+g(M) ∈ ⊕Λk = Λ.

Proposition 2.9 says that every symmetric function is a formal power series com-
posed by a sequence of symmetric polynomials such that the set of their degrees is
bounded.

Example 2.21. The hypothesis deg( f )< ∞ is necessary in the last proposition. To illus-
trate, take again the formal power series f = ( fN) where fN = ∏N

i=1(1+xi). It is clear that
fN ∈ ΛN for each N, but as we saw in Example 2.16, deg( f ) = ∞ and f /∈ Λ.

The following property shows that Λ is closed under the usual multiplication of
formal power series. So it follows that Λ is a subring.

Proposition 2.10. If f ∈ Λn and g ∈ Λm, then f g ∈ Λn+m.

Proof. Write f = ( fN) and g = (gN), so by Proposition 2.8, fN ∈ Λn
N and gN ∈ Λm

N for each
N ∈N, so fNgN ∈ Λn+m

N . Applying Proposition 2.8 again, we have f g = ( fNgN)∈ Λn+m.

Corollary 2.2. The space Λ is a subring of C[x] (therefore, it is an algebra).

2.3.4. Other bases for the ring of symmetric functions

We saw that {mλ : λ ` n} is a basis for Λn, but there are other important bases
for Λn. To present them, we need to define the following symmetric functions.

Definition 2.19. The n-th elementary symmetric function en is the sum of all prod-
ucts of n distinct variables. More precisely, for any n ≥ 1,

en := m(1n) = ∑
i1<···<in

xi1 · · ·xin

and we set e0 := 1.

The n-th complete homogeneous function hn is the sum of all monomials of
degree n, that is,

hn := ∑
λ`n

mλ = ∑
i1≤···≤in

xi1 · · ·xin

for n ≥ 1. Again we set h0 := 1.
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The n-th power sum is defined by

pn := m(n) =
∞

∑
i=1

xn
i

for all n ≥ 1.

Example 2.22. We have
e1 = x1 + x2 + x3 + · · · ,

e2 = x1x2 + x1x3 + x2x3 + · · · ,

and
e3 = x1x2x3 + x1x3x4 + x2x3x4 + · · · .

Example 2.23. We have h1 = e1 and

h2 = e2 + x2
1 + x2

2 + x2
3 + · · · .

Note 2.2. Sometimes it is useful to work with finite variables. In this case, Definition
2.19 remains the same.

In order to prove some results about these functions, we define their generating
functions. We will see that it is actually easier to manipulate the generating functions
than the functions themselves.

Definition 2.20. The generating functions for en, hn and pn are, respectively,

E(z) :=
∞

∑
n=0

enzn, H(z) :=
∞

∑
n=0

hnzn and P(z) :=
∞

∑
n=1

pnzn−1.

We can see the generating functions as formal power series in the ring C[z,x1,x2, . . .].
The next proposition shows nice expressions for them.

Proposition 2.11. We have E(z) = ∏∞
i=1(1 + xiz), H(z) = ∏∞

i=1(1 − xiz)−1 and P(z) =
d
dz ∑∞

i=1 ln(1− xiz)−1.

Proof. For the first identity, we expand the product, obtaining

∞

∏
i=1

(1+ xiz) = 1+(x1 + x2 + · · ·)z +(x1x2 + x1x3 + x2x3 + · · ·)z2

+(x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4 + · · ·)z3 + · · ·

= e0 + e1z+ e2z2 + e3z3 + · · ·= E(z).



2.3. Symmetric Polynomials and Symmetric Functions 43

To prove the second one, we are going to use the geometric series (1−xiz)−1 = ∑∞
j=0(xiz) j.

We can write
∞

∏
i=1

(1− xiz)−1 =
∞

∏
i=1

∞

∑
j=0

(xiz) j

= (1+ x1z+ x2
1z2 + · · ·)(1+ x2z+ x2

2z2 + · · ·)(1+ x3z+ x2
3z2 + · · ·) · · ·

= 1+(x1 + x2 + · · ·)z+
[(

x2
1 + x2

2 + · · ·
)
+(x1x2 + x1x3 + x2x3 + · · ·)

]
z2 + · · ·

= h0 +h1z+h2z2 + · · ·= H(z).

For the last one, the logarithm should be interpreted as its power series, obtaining

d
dz

∞

∑
i=1

ln(1− xiz)−1 =
d
dz

∞

∑
i, j=1

x j
i z j

j
=

∞

∑
i, j=1

x j
i z j−1

=(x1 + x2 + · · ·)+
(
x2

1 + x2
2 + · · ·

)
z+ · · ·

=
∞

∑
n=1

pnzn−1 = P(z).

Note 2.3. The calculations in the last proof are just formal, that is, we are not worried
about the convergence of the series, since we are not evaluating them. The notation d

dz
is

not the derivative defined in Real Analysis, but just the formal derivative used in Algebra.
Whenever we write some expression that does not look like a formal power series, we
should interpret them as the power series that we know from its Taylor expansion, for
example,

1
1− x

= 1+ x+ x2 + x3 + · · ·

and
ex = 1+ x+

x2

2!
+

x3

3!
+ · · · .

The expressions obtained in Proposition 2.11 are used to get results that would
be harder to prove using just the definitions.

Corollary 2.3. We have H(z)E(−z) = 1.

Proof. From Proposition 2.11,

H(z)E(−z) =
∞

∏
i=1

(1− xiz)−1
∞

∏
i=1

(1+ xi(−z)) =
∞

∏
i=1

1− xiz
1− xiz

= 1.

Corollary 2.4. We have

H(z) =
1

E(−z)
= exp

(
∞

∑
n=1

pnzn

n

)
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Proof. The first equality follows from Corollary 2.3. From Proposition 2.11 and by the
product property of logarithms,

∞

∑
n=1

pnzn

n
=
∫

P(z)dz =
∞

∑
i=1

ln
1

1− xiz
= ln

(
∞

∏
i=1

1
1− xiz

)
= lnH(z). (2.7)

Now we get the result by taking the exponential on both sides.

The next corollary sets a relation between the generating functions E(z), H(z) and
P(z).

Corollary 2.5. We have

P(z) =
H′(z)
H(z)

and P(−z) =
E′(z)
E(z)

.

Proof. From equation (2.7),

P(z) =
d
dz

lnH(z) =
H′(z)
H(z)

.

For the second identity, we apply Corollary (2.3).

Corollary 2.6. For any natural n ≥ 1,
n

∑
i=0

(−1)ieihn−i = 0.

Proof. Expanding the product H(z)E(−z), we obtain

H(z)E(−z) =
∞

∑
i, j=0

(−1)ieih jzi+ j.

Fixing a natural n ≥ 1, we see that the coefficient of zn is the sum

∑
i, j∈N
i+ j=n

(−1)ieih j =
n

∑
i=0

(−1)ieihn−i,

which must be zero due to Corollary (2.3).

Let λ = (λ1, . . . ,λk), if f = e, p or h, then we define the symmetric function fλ =

fλ1fλ2 · · · fλn . By Definition 2.19, fλi ∈ Λλi for each i. Also, applying Proposition 2.10 succes-
sively, we have fλ ∈ Λ|λ |, therefore, the formal power series eλ , hλ and pλ are well-defined
symmetric functions.

Proposition 2.12. We have H(z) = ∑λ∈Y
pλ z|λ |

ξλ
, where ξλ := ∏∞

i=1 imi(λ )mi(λ )! and mi(λ )
is the number of times that the number i repeats itself in λ .
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Proof. By Equation (2.7), we have lnH(z) = ∑∞
k=1

pkzk

k . Taking the exponential on both
sides, we obtain

H(z) = exp

(
∞

∑
k=1

pkzk

k

)
=

∞

∏
k=1

exp
(

pkzk

k

)
=

∞

∏
k=1

(
∞

∑
n=0

pn
kzkn

knn!

)
.

So
H(z) =

(
1+p1z+

p2
1z2

2!
+

p3
1z3

3!
+ · · ·

)(
1+

p2z2

2
+

p2
2z4

222!
+

p3
2z6

233!
+ · · ·

)
· · ·

and we see that H(z) is an infinite sum such that each term is the product

∞

∏
i=1

(piz
i)mi

imimi!
= z∑ imi

∞

∏
i=1

1
imimi!

∞

∏
i=1

pmi
i (2.8)

and the sum is over all the sequences (m1,m2,m3, . . .) with a finite number of non-zero
terms. Since each sequence (m1,m2, . . .) defines a partition λ = (1m1 ,2m2 , . . .) the sum is
over all partitions. Moreover, each term in (2.8) assumes the form pλ z|λ |

ξλ
, as we wanted to

prove.

Example 2.24. We know that {m(3),m(2,1),m(1,1,1)} is a basis for Λ3. Ordering this basis
accordingly to the lexicographic order ((3)> (2,1)> (1,1,1)), one obtain the coordinates
of each pλ for λ ` 3:

p(3) = 1m(3)+0m(2,1)+0m(1,1,1);

p(2,1) = 1m(3)+1m(2,1)+0m(1,1,1);

p(1,1,1) = 1m(3)+3m(2,1)+6m(1,1,1).

The matrix formed by the coordinates is triangular with no zeros on the main diagonal,
so it is invertible. Consequently, the set {p(3),p(2,1),p(1,1,1)} is linearly independent, and
since dimΛ3 = 3, it must be a basis for Λ3.

Example 2.25. Let us write all the eλ ’s, for λ ` 4, in the basis {mλ : λ ` 4}. We have

e(4) = m(1,1,1,1);

e(3,1) = 4m(1,1,1,1)+m(2,1,1);

e(2,2) = 6m(1,1,1,1)+2m(2,1,1)+m(2,2);

e(2,1,1) = 12m(1,1,1,1)+5m(2,1,1)+2m(2,2)+m(3,1);

e(1,1,1,1) = 24m(1,1,1,1)+12m(2,1,1)+6m(2,2)+4m(3,1)+m(4)

and we observe the same pattern from the previous example, thus, {eλ : λ ` 4} is a basis
for Λ4.

These examples provide intuition to enunciate the next theorem.
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Theorem 2.2. The sets {pλ : |λ |= n}, {eλ : |λ |= n} and {hλ : |λ |= n} are linear bases
for Λn.

Proof. Since all the sets above have dimΛn elements, it suffices to prove that they are lin-
early independent or generate Λn. The proofs presented here are found in (MACDONALD,
1998) and (SAGAN, 2001). Given λ ` n, we have

pλ = pλ1
· · ·pλℓ

= (xλ1
1 + xλ1

2 + · · ·)(xλ2
1 + xλ2

2 + · · ·) · · ·(xλℓ
1 + xλℓ

2 + · · ·),

so pλ is a sum of monomials in the form xλ1
i1 · · ·xλℓ

iℓ . When we have i j = ik for some j and k,
the exponents are summed, then the monomial above is associated with a partition with
higher natural order. Therefore, when we write pλ as a linear combination of mµ ’s, we
always have λ ⊴ µ , and since the natural order implies the lexicographic order, we can
write

pλ = ∑
µ≥λ

cµmµ .

Furthermore, we have cλ 6= 0, so the matrix of coordinates of pλ ’s is triangular with no
zeros on the main diagonal, that is, the set {pλ : |λ |= n} is linearly independent. For the
eλ ’s, we use the same strategy. Given λ ` n and its transpose λ ′, the product eλ ′ = eλ ′

1
· · ·eλ ′

ℓ

is a sum of monomials of the form

(xi1 · · ·xiλ ′1
)(x j1 · · ·x jλ ′2

) · · ·(xk1 · · ·xkλ ′
ℓ
) = xα1 · · ·xαr .

By definition of ek, we can suppose i1 < i2 < · · · < iλ ′
1
, j1 < j2 < · · · < jλ ′

2
ans so on. Now

imagine that we are entering the numbers i1, i2, . . . , iλ ′
1

in the first column of the diagram
of λ , j1, j2, . . . , jλ ′

2
in the second and so on. Since these indexes are strictly increasing, all

the numbers ≤ t must occur in the top t rows of λ , so we have α1+ · · ·+αt ≤ λ1+ · · ·+λt

for every t, that is, α ⊴ λ . By Propositions 2.2 and 2.3, it follows that

eλ ′ = ∑
µ≤λ

dµmµ .

This argument also proves that dλ = 1, so again we have a triangular matrix of coordi-
nates with no zeros on the main diagonal, thus {eλ : |λ |= n} is a basis. Finally, we shall
prove that the hλ ’s, for λ ` n, generate Λn. For this, it suffices to prove that the ek’s are
polynomials in hl’s. We know that e1 = h1, and by Corollary 2.6, we have for every natural
k,

ek = h1ek−1 −h2ek−2 + · · ·+(−1)k+1hk,

hence we get the result by induction over k.

Corollary 2.7. The sets {pλ : λ ∈ Y}, {eλ : λ ∈ Y} and {hλ : λ ∈ Y} are linear bases for
Λ.

Corollary 2.8. Every f ∈ Λ can be written as a polynomial in each of the following sets
of variables: {p1,p2,p3, . . .}, {e1,e2,e3, . . .}, {h1,h2,h3, . . .}.
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2.3.5. Skew-symmetric Polynomials
Ironically, to prove more interesting properties about symmetric functions, we

should look at the skew-symmetric polynomials (or anti-symmetric polynomials).

Definition 2.21. A polynomial p is called skew-symmetric if σ · p = sgn(σ)p, for every
permutation σ ∈SN . The set of all skew symmetric polynomials in N variables is denoted
by AN .

Example 2.26. For every transposition (i j), we have sgn(i j) = −1. So if p is skew-
symmetric, we have (i j) · p =−p.

The next properties are straightforward.

Proposition 2.13. Let p,q ∈ C[x1, . . . ,xN ], then:

(a) If p and q are symmetric, then pq is symmetric;

(b) If p and q are skew-symmetric, then pq is symmetric;

(c) If p is symmetric and q is skew-symmetric, then pq is skew-symmetric.

If q divides p, then the same is valid for the quotient p/q.

Consider a set of N variables x = {x1, . . . ,xN} and a sequence α = (α1, . . . ,αN) of
N non-negative integers. Let xα := xα1

1 · · ·xαN
N . The anti-symmetrization of xα is the

polynomial
aα(x1, . . . ,xN) := ∑

σ∈SN

sgn(σ)σ(xα).

Example 2.27. Let α = (2,1). The anti-symmetrization of xα = x2
1x2 is aα(x1,x2) =

x2
1x2 − x2

2x1.

Proposition 2.14. The polynomial aα is skew-symmetric.

Proof. Take any transposition (i j) ∈ SN (i 6= j), then

(i j) · aα(x1, . . . ,xi, . . . ,x j, . . . ,xN) = aα(x1, . . . ,x j, . . . ,xi, . . . ,xN)

= ∑
σ∈SN

sgn(σ)σ
(

xα1
1 · · ·xαi

j · · ·xα j
i · · ·xαN

N

)
= ∑

σ∈SN

sgn(σ)(σ ◦ (i j))(xα)

= ∑
τ∈SN

sgn(τ ◦ (i j))τ(xα)

=− ∑
τ∈SN

sgn(τ)τ(xα) =−aα .

Since every σ ∈ SN is a composition of transpositions, we obtain the result.
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Corollary 2.9. If αi = α j for i 6= j, then aα = 0.

Proof. By Proposition 2.14, −aα = (i j) · aα = aα .

Let δ := (N −1,N −2, . . . ,1,0). By Corollary 2.9, we may assume α1 > α2 > · · ·>
αN ≥ 0, so that we have α = λ +δ for some partition λ satisfying ℓ(λ )≤ N. By definition
of determinant, we have

aλ+δ = det
[
xλ j+N− j

i

]N

i, j=1
.

In particular, taking λ =∅, we have

aδ = det
[
xN− j

i

]N

i, j=1
= ∏

1≤i< j≤N
(xi − x j),

which is the well-known Vandermonde determinant.

Proposition 2.15. For every partition λ such that ℓ(λ ) ≤ N, the polynomial aλ+δ is
divisible by aδ .

Proof. Let i and j be distinct integers such that xi = x j. Since aλ+δ is skew-symmetric,
we have

aλ+δ (x1, . . . ,xi, . . . ,x j, . . . ,xN) = (i j) · aλ+δ (x1, . . . ,xi, . . . ,x j, . . . ,xN)

=−aλ+δ (x1, . . . ,xi, . . . ,x j, . . . ,xN),

hence aλ+δ (x1, . . . ,xi, . . . ,x j, . . . ,xN) = 0. So for every pair (i, j) such that 1 ≤ i < j ≤ N, the
difference xi − x j divides aλ+δ , thus aλ+δ is divisible by aδ .

Proposition 2.16. We have AN = {aδ s : s ∈ ΛN}.

Proof. By Proposition 2.13 and the fact that aδ is skew-symmetric, we have aδ s ∈ AN for
every s ∈ ΛN . Conversely, if p is skew-symmetric, we can repeat the proof of Proposition
2.15 to show that aδ divides p, so s = p/aδ is a well-defined symmetric polynomial, by
Proposition 2.13, hence p = aδ s.

Corollary 2.10. AN is a vector subspace.

Proof. By Proposition 2.16, AN is closed under sum and scalar multiplication, since ΛN

is a vector subspace.

Corollary 2.11. ΛN and AN are linearly isomorphic.

Proof. The linear application φ : ΛN → AN defined by φ(s) = aδ s is the desired isomor-
phism.
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As the mλ ’s are the “smallest” symmetric polynomials, the aλ+δ ’s are the “small-
est” skew-symmetric polynomials, so the next proposition is analogous to the one for
symmetric polynomials (Proposition 2.1).

Proposition 2.17. The set {aλ+δ (x1, . . . ,xN) : λ ∈ Y, ℓ(λ )≤ N} is a basis for AN .

2.4. Schur Polynomials and Schur Functions

2.4.1. Schur Polynomials
The polynomial aλ+δ/aδ , well-defined by Proposition 2.15, has a special name.

Definition 2.22. For every partition λ with ℓ(λ ) ≤ N, the Schur polynomial in N

variables corresponding to λ is given by

sλ ,N = sλ (x1, . . . ,xN) :=
aλ+δ (x1, . . . ,xN)

aδ (x1, . . . ,xN)
=

det
[
xλ j+N− j

i

]N

i, j=1

∏
1≤i< j≤N

(xi − x j)
.

If ℓ(λ )> N, we define sλ ,N := 0.

Besides the name, this definition is due to Jacobi (1841). However, it was Schur
(1901) who discovered important results about such polynomials, as their relevance to the
representation theory of symmetric groups.

Example 2.28. For the empty partition ∅= (0,0,0, . . .), we have s∅ = 1.

Example 2.29. We have

s(1)(x1) = x1;

s(1)(x1,x2) = x1 + x2;
...

s(1)(x1, . . . ,xN) = x1 + x2 + · · ·+ xN .

Example 2.30. For any n ≥ 1,

s(n)(x) = xn

s(n,0)(x,y) = xn + xn−1y+ · · ·+ xyn−2 + yn.

Example 2.31. For any pair n1 ≥ n2,

s(n1,n2)(x1,x2) = s(n1,n2) (x1,x2) =
xn1+1

1 xn2
2 − xn1

1 xn2+1
2

x1 − x2
= xn1

1 xn2
2 + xn1−1

1 xn2+1
2 + · · ·+ xn2

1 xn1
2 .

Corollary 2.12. Every Schur polynomial is symmetric.
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Proof. Since aλ+δ and aδ are skew-symmetric, the quotient must be symmetric.

Proposition 2.18. The degree of the Schur polynomial sλ is |λ |.

Proof. We have deg(sλ ) = deg(aλ+δ )−deg(aδ ). Notice that

deg(aδ ) =

(
N
2

)
=

N(N −1)
2

and
deg(aλ+δ ) =

N

∑
i=1

(λi +N − i) = |λ |+ N(N −1)
2

,

hence it follows the result.

The next proposition is essential to define the Schur symmetric functions in the
next section. We show that when we make xN = 0 in a Schur polynomial in N variables, we
obtain the Schur polynomial in N −1 variables (both with respect to the same partition
λ ).

Proposition 2.19. For every λ ∈ Y and N ∈ N, we have πNsλ ,N = sλ ,N−1.

Proof. For N ≤ ℓ(λ ), the result is straightforward. Suppose N > ℓ(λ ). When xN = 0, we
have

aδ (x1, . . . ,xN−1,0) = x1 · · ·xN−1 ∏
1≤i< j≤N−1

(xi − x j) = x1 · · ·xN−1aδ (x1, . . . ,xN−1)

Moreover, xλ j+N− j
N = 1 when j = N and xλ j+N− j

N = 0 for j = 1, . . . ,N − 1. So by Laplace
expansion in the last row of the matrix that defines aλ+δ , we have

aλ+δ (x1, . . . ,xN−1,0) = det
[
xλ j+N− j

i

]N−1

i, j=1

= x1 · · ·xN−1 det
[
xλ j+N−1− j

i

]N−1

i, j=1

= x1 · · ·xN−1aλ+δ (x1, . . . ,xN−1).

Now we divide aλ+δ by aδ to obtain the result.

The Schur polynomials provide a new and important basis for ΛN .

Corollary 2.13. The set {sλ ,N : ℓ(λ )≤ N} is a basis for ΛN .

Proof. Take the isomorphism φ : ΛN → AN from Corollary 2.11. Since the aλ+δ ’s form a
basis for AN (Proposition 2.17), the elements

φ−1(aλ+δ ) = φ−1(aδ sλ ,N) = sλ ,N

form a basis for ΛN .
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The following theorem is essential for this study, since we need it to define an
important probability measure on Y. To prove it, we need the two lemmas below. The
first one is a classic result from linear algebra and the second is in (BORODIN; GORIN,
2012).

Lemma 2.1. (Cauchy-Binet identity) Let n ≤ k. For two matrices A = [ai, j]n×k and B =

[bi, j]k×n,

det(AB) = ∑
1≤ℓ1<···<ℓn≤k

det[ai,ℓ j ]det[bℓi, j].

Particularly, for n = k, we obtain the usual identity det(AB) = det(A)det(B). The proposi-
tion still works for k = ∞, in this case, each entry of AB is a series, so we must verify that
each one converges.

Lemma 2.2. (Cauchy determinant formula) The following identity holds:

det
[

1
1− xiy j

]N

i, j=1
=

∏i< j
(
xi − x j

)
∏i< j

(
yi − y j

)
∏N

i, j=1
(
1− xiy j

) .

Theorem 2.3. (Cauchy identity) If a = (a1, . . . ,aN) and b = (b1, . . . ,bN) are such that∣∣aib j
∣∣< 1 for all i, j = 1, . . . ,N, then

∑
λ∈Y

sλ (a)sλ (b) =
N

∏
i, j=1

1
1−aib j

. (2.9)

Proof. (BAIK, 2018) The sum on the left side of (2.9) is finite since sλ = 0 when ℓ(λ )> N.
By definition,

∑
λ∈Y

sλ (a)sλ (b) = ∑
λ1≥···≥λN≥0

det
[
aλ j+N− j

i

]
det
[
bλ j+N− j

i

]
∏i< j(ai −a j)(bi −b j)

.

Let µ j := λ j +N − j, so that µ1 > · · · > µN . By Cauchy-Binet identity (Lemma 2.1), the
numerator is equal to

∑
µ1>···>µN≥0

det
[
aµ j

i

]
det
[
bµ j

i

]
= det

[
∞

∑
n=0

an
i bn

j

]
= det

[
1

1−aib j

]
,

since ∑∞
n=0 an

i bn
j < ∞. So it follows from Lemma 2.2, that

∑
λ∈Y

sλ (a)sλ (b) =
det
[

1
1−aib j

]
∏i< j(ai −a j)(bi −b j)

= ∏
i, j

1
1−aib j

,

as we wanted to prove.



52 Chapter 2. Symmetric Functions

2.4.2. Schur Functions
Consider an infinite set of variables x = {x1,x2, . . .}. Let sλ ,N = sλ (x1, . . . ,xN) be

the Schur polynomial in N variables with respect to λ . From the properties discussed in
the previous sections, the sequence (sλ ,N)N∈N is a symmetric function.

Definition 2.23. The symmetric function given by sλ (x) := (sλ ,N(x1, . . . ,xN))N∈N is called
the Schur function with respect to λ .

This is the classical definition of Schur functions, but there is a definition based
on combinatorics, briefly presented in the introduction of this chapter. For this modern
approach, see (SAGAN, 2001, Ch. 4), there it is shown the equivalence of these two
definitions.

Proposition 2.20. The set of Schur functions {sλ : λ ∈ Y} is a basis for Λ.

Proof. By Corollary 2.13, for every N ∈ N, {sλ ,N : ℓ(λ ) ≤ N} is a basis for ΛN . Let f =

( fN)N∈N ∈ Λ, then fN ∈ ΛN for each N, so

fN = ∑
λ∈Y

cλ sλ ,N

(remember we defined sλ ,N = 0 when N < ℓ(λ )). Since πN fN = fN−1, we have

fN−1 = ∑
λ∈Y

cλ sλ ,N−1,

hence the constants in the linear combination remain the same for every natural N. There-
fore, we conclude that

f = ( fN)N∈N =

(
∑

λ∈Y
cλ sλ ,N

)
N∈N

= ∑
λ∈Y

cλ
(
sλ ,N

)
N∈N = ∑

λ∈Y
cλ sλ ,

that is, {sλ : λ ∈Y} generates Λ. Now, to prove that the set of Schur functions is linearly
independent, take any finite linear combination such that

c1sλ1 + · · ·+ cksλk
= 0

and choose N ≥ maxℓ(λi). So we have

c1sλ1,N + · · ·+ cksλk,N = 0,

which implies that c1 = · · · = ck = 0 since {sλ ,N : ℓ(λ ) ≤ N} is linearly independent in
ΛN .

Example 2.32. The Schur function parametrized by the empty partition ∅ = (0,0, . . .)
is s∅ = 1.
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Example 2.33. For λ = (1), we have the Schur polynomials

sλ (x1) = x1

sλ (x1,x2) = x1 + x2

sλ (x1,x2,x3) = x1 + x2 + x3

...
sλ (x1, . . . ,xN) = x1 + x2 + · · ·+ xN ,

so the Schur function with respect to λ is the formal series

sλ (x1,x2,x3, . . .) = x1 + x2 + x3 + · · · .

By Proposition 2.8, each Schur function is expressed as a polynomial in the gener-
ators hk or ek of Λ. The formulas are given below. The proof is technical and it is not in
the scope of this work. One proof is found in (MACDONALD, 1998) and a second one,
by Lindström (1973), is presented in (SAGAN, 2001).

Theorem 2.4. (Jacobi-Trudi formulas) Given a partition λ , the Schur function sλ can
be expressed as

sλ = det
[
hλi−i+ j

]ℓ(λ )
i, j=1 = det

[
eλ ′

i −i+ j

]ℓ(λ ′)

i, j=1
,

where we agree that hk = ek = 0 for k < 0.

We end this section presenting the Cauchy identity for Schur functions (in Theorem
2.3, we obtained it for finite variables). Consider two sets of variables x = {x1,x2,x3, . . .}
and y= {y1,y2,y3, . . .}. Now we have to specify which set of variables is considered for some
symmetric function. For example, the power sums in the variables x and y are denoted by
pk(x) and pk(y). For any partition λ ∈Y, remember the number ξλ defined in Proposition
2.12.

Theorem 2.5 (Cauchy identity). Let x and y be two sets of infinite variables, then
∞

∏
i, j=1

1
1− xiy j

= ∑
λ∈Y

sλ (x)sλ (y) = ∑
λ∈Y

pλ (x)pλ (y)
ξλ

. (2.10)

Proof. Since the set {xiy j}∞
i, j=1 is countable, we can take an enumeration w = {w1,w2, . . .}

of this set. For each n ∈ N, we have

pn(w) =
∞

∑
k=1

wn
k =

∞

∑
i, j=1

xn
i yn

j = pn(x)pn(y),

so for all λ ∈ Y, we obtain pλ (w) = pλ (x)pλ (y). By Propositions 2.11 and 2.12, we have

H(z;w) =
∞

∏
k=1

1
1−wkz

= ∑
λ∈Y

pλ (w)z|λ |

ξλ
= ∑

λ∈Y

pλ (x)pλ (y)z
|λ |

ξλ
.
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Replacing each wk by xiy j, we obtain
∞

∏
i, j=1

1
1− xix jz

= ∑
λ∈Y

pλ (x)pλ (y)z
|λ |

ξλ
.

Finally, we evaluate this expression on z = 1 to obtain one of the identities.

Remember that we have already proved the Cauchy identity for Schur polynomials
in Theorem 2.3. So for any N ∈ N, and for the variables x = {x1, . . . ,xN ,0,0, . . .} and
y = {y1, . . . ,yN ,0,0, . . .}, we have

∞

∏
i, j=1

1
1− xix j

=
N

∏
i, j=1

1
1− xix j

= ∑
λ∈Y

sλ (x1, . . . ,xN)sλ (y1, . . . ,yN) = ∑
λ∈Y

sλ (x)sλ (y).

Since this identity holds for every N ∈ N, we can send N to infinity to obtain the formal
power series identity.

2.4.3. A Scalar Product on the Ring of Symmetric Functions
Since {hλ : λ ∈Y} and {mλ : λ ∈Y} are bases for Λ, we can define a scalar product

〈·, ·〉 in Λ by requiring that such bases are biorthogonal, that is, for all λ ,µ ∈ Y,

〈
hλ ,mµ

〉
:= δλ µ =

1, if λ = µ;

0, if λ 6= µ.

We claim that the Schur functions provide an orthonormal basis to Λ with respect
to the scalar product defined above. In order to prove this result, we need the technical
lemma below (proof in (MACDONALD, 1998)).

Lemma 2.3. Let {uλ : λ ∈ Y} and {vλ : λ ∈ Y} be bases of Λ such that uλ , vλ ∈ Λn for
all n ≥ 0. The following conditions are equivalent:

(a)
〈
uλ ,vµ

〉
= δλ µ for all λ , µ ∈ Y;

(b) ∑λ∈Y uλ (x)vλ (y) = ∏i, j
1

1−xiy j
.

Corollary 2.14. The basis {sλ : λ ∈ Y} of Λ is orthonormal.

Proof. By Cauchy identity (Theorem 2.5),

∏
i, j

1
1− xiy j

= ∑
λ∈Y

sλ (x)sλ (y),

so it follows from Lemma 2.3 that
〈
sλ ,sµ

〉
= δλ µ for every λ ,µ ∈ Y.

Corollary 2.15. The scalar product 〈·, ·〉 is symmetric, that is, 〈 f ,g〉 = 〈g, f 〉 for any
symmetric functions f and g.

Proof. Write f and g as a linear combination of sλ ’s and apply Corollary 2.14.
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2.4.4. Skew Schur Functions

Given partitions µ and ν , we have sµsν ∈ Λ. Since {sλ : λ ∈Y} is an orthonormal
basis, we can write

sµsν = ∑
λ∈Y

cλ
µνsλ , cλ

µν :=
〈
sλ ,sµsν

〉
.

The coefficients cλ
µν are known as Littlewood-Richardson coefficients (MACDON-

ALD, 1998). They are non-negative integers that can be computed by a combinatorial
rule (LITTLEWOOD; RICHARDSON, 1934).

Definition 2.24. For λ , µ ∈ Y, the symmetric function given by

sλ/µ := ∑
ν∈Y

cλ
µνsν

is called skew Schur function parametrized by λ and µ .

Directly from the definitions above, we deduce several properties.

Proposition 2.21. We have the following properties:

(a) If |µ|+ |ν | 6= |λ |, then cλ
µν = 0 (this property guarantees that the sum in the defini-

tion of sλ/µ is finite);

(b) If |λ |< |µ|, then sλ/µ = 0;

(c) If |λ | ≥ |µ|, then sλ/µ is a homogeneous symmetric function of degree |λ |− |µ|;

(d) For all λ , µ , ν ∈ Y, we have
〈
sλ/µ ,sν

〉
=
〈
sλ ,sµsν

〉
;

(e) For all λ ∈ Y, sλ/∅ = sλ ;

(f) For all λ ∈ Y, sλ/λ = 1;

(g) For all λ ,µ ∈ Y, sλ/µ(0,0,0, . . .) = δλ µ .

Proof. (a) We have deg(sµsν) = |µ|+ |ν | and deg(sλ ) = |λ |, moreover, sµsν and sλ are
homogeneous. So by definition of sµsν , each cλ

µν with |µ|+ |ν | 6= |λ | must be zero.

(b) If |λ | ≤ |µ|, then |λ |< |µ|+ |ν | for any ν . So by (a), cλ
µν = 0 for all ν , thus sλ/µ = 0.

(c) By (a), cλ
µν = 0 for |µ|+ |ν | 6= |λ |. So in the definition of sλ/µ , the sum is over

partitions ν such that |ν |= |λ |− |µ|, hence deg(sλ/µ) = |λ |− |µ|.

(d) By definition of sλ/µ , we have cλ
µν =

〈
sλ/µ ,sν

〉
.
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(e) By item (d), for all ν ∈ Y,〈
sλ/∅,sν

〉
= 〈sλ ,s∅sν〉= 〈sλ ,sν〉 ,

so we must have sλ/∅ = sλ .

(f) Remember that s∅ = 1, so applying (d) for ν =∅, we have〈
sλ/λ ,1

〉
= 〈sλ ,sλ s∅〉= 〈sλ ,sλ 〉= 1,

by Corollary 2.14. On the other hand, by (c), deg(sλ/λ ) = 0, so sλ/λ = c= cs∅, where
c ∈ C, thus

1 = 〈c,1〉= 〈cs∅,s∅〉= c〈s∅,s∅〉= c.

(g) If λ = µ , we have sλ/µ(0) = 1 from (f). If λ 6= µ , notice that sν(0) = 0 for every ν
such that |ν |> 0. Therefore, by definition of sλ/µ ,

sλ/µ(0) = cλ
µ∅s∅(0) = cλ

µ∅,

but
cλ

µ∅ =
〈
sλ ,sµs∅

〉
=
〈
sλ ,sµ

〉
= 0.

We want to generalize the Cauchy identity (Theorem 2.5) for skew Schur functions.
We start with the two lemmas below. Consider again two sets of variables x = {x1,x2, . . .}
and y = {y1,y2, . . .}. For convenience, let ∏(x,y) := ∏i, j

1
1−xiy j

.

Lemma 2.4. For any λ ,µ ∈ Y, we have

∑
λ∈Y

sλ/µ(x)sλ (y) = sµ(y)∏(x,y).

Proof. (BAIK, 2018) From definition of skew Schur function and from Cauchy identity,

∑
λ∈Y

sλ/µ(x)sλ (y) = ∑
λ∈Y

∑
ν∈Y

cλ
µνsν(x)sλ (y)

= ∑
ν∈Y

sν(x) ∑
λ∈Y

cλ
µνsλ (y)

= ∑
ν∈Y

sν(x)sµ(y)sν(y)

= sµ(y)∏(x,y).

Note that we can define the Schur function in two variables sλ (x,y), since the
union of variables x and y is still countable.
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Lemma 2.5. For any λ ,µ ∈ Y, we have

sλ (x,y) = ∑
µ∈Y

sλ/µ(x)sµ(y).

Proof. (BAIK, 2018) Let z = {z1,z2, . . .} be another set of variables. By Lemma 2.4 and
Cauchy identity,

∑
λ∈Y

∑
µ∈Y

sλ/µ(x)sλ (z)sµ(y) = ∑
µ∈Y

sµ(y) ∑
λ∈Y

sλ/µ(x)sλ (z)

= ∑
µ∈Y

sµ(z)sµ(y)∏(x,z)

= ∏(x,z)∏(y,z).

On the other hand, again by Cauchy identity,

∑
λ∈Y

sλ (x,y)sλ (z) = ∏(x,z)∏(y,z),

and since {sλ (z)} is a basis we get the result by matching the coordinates.

Theorem 2.6 (Skew summation formula). For any λ ,ν ∈ Y, we have

sλ/ν(x,y) = ∑
µ∈Y

sλ/µ(x)sµ/ν(y).

Proof. (BAIK, 2018) Let z be a new variable, by Lemma 2.5,

∑
µ∈Y

∑
ν∈Y

sλ/µ(x)sµ/ν(y)sν(z) = ∑
µ∈Y

sλ/µ(x)sµ(y,z)

= sλ (x,y,z) = ∑
ν∈Y

sλ/ν(x,y)sν(z)

and since {sν(z)} is a basis, we have the result by matching the coordinates.

Theorem 2.7 (Skew Cauchy identity). For any λ ,µ ∈ Y, we have

∑
ν∈Y

sν/λ (x)sν/µ(y) = ∏(x,y) ∑
κ∈Y

sλ/κ(y)sµ/κ(x).

Proof. (BAIK, 2018) Let z and w be two new sets of variables. By Lemmas 2.4 and 2.5,

∑
ν ,λ ,µ∈Y

sν/λ (x)sν/µ(y)sλ (z)sµ(w) = ∑
ν ,λ∈Y

sν/λ (x)sν(y,w)sλ (z)

= ∑
λ∈Y

sλ (y,w)∏(x,y)∏(x,w)sλ (z)

= ∏(x,y) ∑
λ∈Y

sλ (y,w)∏(x,w)sλ (z)

= ∏(x,y) ∑
λ ,κ∈Y

∏(x,w)sλ/κ(y)sκ(w)sλ (z)

= ∏(x,y) ∑
λ ,κ,µ∈Y

sλ/κ(y)sµ/κ(x)sµ(w)sλ (z).
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Now we use that {sµ(w)} and {sλ (z)} are bases to match the coordinates and get the
result.

We also have formulas for the skew Schur functions in terms of en’s and hn’s,
analogous to Jacobi-Trudi formulas (Theorem 2.4). For a proof, see (MACDONALD,
1998).

Proposition 2.22 (Skew Jacobi-Trudi formulas). For any λ ,µ ∈ Y, we have

sλ/µ = det
[
hλi−µ j−i+ j

]max{ℓ(λ ),ℓ(µ)}

i, j=1
= det

[
eλ ′

i −µ ′
j−i+ j

]max{ℓ(λ ′),ℓ(µ ′)}

i, j=1
,

where we agree that hk = ek = 0 for k < 0.

Proposition 2.23. If µ 6⊂ λ , then sλ/µ = 0.

Proof. Let n = max{ℓ(λ ), ℓ(µ)}. Since µ 6⊂ λ , there exists k such that

µ1 ≥ ·· · ≥ µk−1 ≥ µk > λk ≥ λk+1 ≥ ·· · ≥ λn.

So for every pair (i, j) satisfying i ∈ {k, . . . ,n} and j ∈ {1, . . . ,k}, we have λi−µ j− i+ j < 0,
thus hλi−µ j−i+ j = 0. By Proposition 2.22,

sλ/µ = det



f11 · · · f1k f1(k+1) · · · f1n
... ... ... ... ... ...

f(k−1)1 · · · f(k−1)k f(k−1)(k+1) · · · f(k−1)n

0 · · · 0 fk(k+1) · · · fkn

0 · · · 0 f(k+1)(k+1) · · · f(k+1)n
... ... ... ... . . . ...
0 · · · 0 fn(k+1) · · · fnn


, fi j := hλi−µ j−i+ j,

so applying the determinant formula det
(

A C
0 B

)
= detAdetB for block matrices, we obtain

sλ/µ = 0.

2.5. Specializations
Until now, we have worked with symmetric functions interpreting them as formal

power series, considering infinitely countable indeterminants x1,x2, . . .. However, one could
want to evaluate these functions in a sequence of complex numbers α1,α2, . . ., so now we
had better think about convergence of such series.

Example 2.34. Let α = (α1,α2, . . .) be a sequence of complex numbers such that S =

∑i |αi|< ∞ and fix k ∈ N. For every N ∈ N, we have

N

∑
i=1

∣∣∣αk
i

∣∣∣= N

∑
i=1

|αi|k ≤

(
N

∑
i=1

|αi|
)k

≤

(
∞

∑
i=1

|αi|
)k

= Sk,
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so ∑i αk
i converges absolutely for any k and the evaluation of the power sum pk(x) on α

is well-defined. Since the power sums form a algebraic basis for Λ (Corollary 2.8), the
evaluation of every symmetric function (as the Schur functions) on the variables α is
well-defined. Moreover, it is immediate that the evaluation map

α : Λ −→ C

f 7−→ f (α)

is an algebra homomorphism, that is, for any f1, f2 ∈ Λ and c ∈ C,

( f1 + f2)(α) = f1(α)+ f2(α), ( f1 f2)(α) = f1(α) f2(α) and (c f1)(α) = c f1(α).

The last example motivates the definition of a more general tool to evaluate sym-
metric functions.

Definition 2.25. A specialization is an algebra homomorphism ρ : Λ →C. If sλ (ρ)≥ 0
for every λ ∈ Y, then ρ is called a Schur-positive specialization.

Note 2.4. We denote the application of ρ in f ∈ Λ by f (ρ) (instead of ρ( f )), as if we
were evaluating f in a set of complex numbers.

Proposition 2.24. If ρ is a Schur-positive specialization, then sλ/µ(ρ) ≥ 0 for every
λ ,µ ∈ Y.

Proof. By the definition of skew Schur functions (Definition 2.24), we have

sλ/µ(x) = ∑
ν∈Y

cλ
µνsν(x)

where the sum is finite (by Proposition 2.21(b)) and the Littlewood-Richardson coefficients
cλ

µν are non-negative integers (MACDONALD, 1998; LITTLEWOOD; RICHARDSON,
1934). Since ρ is a Schur-positive specialization, we have

sλ/µ(ρ) = ∑
ν∈Y

cλ
µν︸︷︷︸
≥0

sν(ρ)︸ ︷︷ ︸
≥0

≥ 0,

as we wanted to prove.

The theorem below provides a characterization for Schur-positive specializations.

Theorem 2.8. Every Schur-positive specialization ρ is parametrized by two real se-
quences α = (α1 ≥ α2 ≥ ·· · ≥ 0) and β = (β1 ≥ β2 ≥ ·· · ≥ 0) such that ∑i(αi+βi)< ∞, and
an additional parameter γ ≥ 0. We denote ρ = (α;β ;γ) and ρ is defined by its evaluation
on power sums. More precisely,

p1 7→ p1(α;β ;γ) = γ +
∞

∑
i=1

(αi +βi) ; (2.11)

pk 7→ pk(α;β ;γ) =
∞

∑
i=1

(
αk

i +(−1)k−1β k
i

)
, k ≥ 2, (2.12)
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or equivalently,

∞

∑
k=0

hk(α;β ;γ)zk = eγz
∞

∏
i=1

1+βiz
1−αiz

. (2.13)

Proof. This proof is evolved and beyond the scope of this work. There exists several
independently found proofs (EDREI, 1953; THOMA, 1964; VERSHIK; KEROV, 1981;
KEROV; OKOUNKOV; OLSHANSKI, 1998; KEROV, 2003; OKOUNKOV, 1994). We
only show the equivalence between conditions (2.11)-(2.12) and (2.13). By Equation (2.7),

∞

∑
k=0

hk(ρ)zk = H(z) = exp

(
∞

∑
k=1

pk(ρ)
k

zk

)

= eγz exp

(
∞

∑
k=1

∞

∑
i=1

αk
i − (−βi)

k

k
zk

)

= eγz exp

(
∞

∑
k=1

(
pk(α)

k
− pk(−β )

k

)
zk

)
= eγz exp(lnH(z;α)− lnH(z;−β ))

= eγz H(z;α)

H(z;−β )

= eγz
∞

∏
i=1

1+βiz
1−αiz

.

Given two real sequences α = (α1 ≥ α2 ≥ ·· · ≥ 0) and α ′ = (α ′
1 ≥ α ′

2 ≥ ·· · ≥ 0),
we can reorder the terms of the two sequences to define another non-increasing sequence,
denoted by α ∪α ′.

Proposition 2.25 (Union of Schur-positive specializations). Given two Schur-positive
specializations ρ = (α;β ;γ) and ρ ′ = (α ′;β ′;γ ′), the specialization

ρ ∪ρ ′ := (α ∪α ′;β ∪β ′;γ + γ ′)

is Schur-positive.

Proof. The sequences α ∪α ′ = (a1 ≥ a2 ≥ ·· · ≥ 0) and β ∪β ′ = (b1 ≥ b2 ≥ ·· · ≥ 0) satisfy,
by Theorem 2.8,

∑
i
(ai +bi) = ∑

j
(α j +β j)+∑

j
(α ′

j +β ′
j)< ∞.

Moreover, we have γ + γ ′ ≥ 0, so the specialization ρ ∪ ρ ′ is Schur-positive (again by
Theorem 2.8).



2.5. Specializations 61

Example 2.35. Let α = (α1 ≥ α2 ≥ ·· · ≥ 0) be such that ∑i αi < ∞. By Theorem 2.8, the
evaluation map xi 7→ αi is exactly the Schur-positive specialization ρ = (α;0;0).

Consider two sets of variables x, y and a symmetric function f. We may want to
work with the two variable function f(x,y). Let ρ1 and ρ2 be Schur-positive specializations.
Since f(x,y) is symmetric in x, we can apply the specialization ρ1 with respect to x,
obtaining the symmetric function in y given by f(ρ1,y). Then we can apply ρ2 with
respect to y, obtaining f(ρ1,ρ2). The technical proposition below shows that we could
just apply ρ1 ∪ρ2 on f(x), now in one variable, obtaining the same result (BAIK, 2018).

Lemma 2.6. Let f ∈ Λ and consider two Schur-positive specializations ρ1 and ρ2. Then
f(ρ1,ρ2) = f(ρ1 ∪ρ2).

We finish the chapter with a series of useful propositions, found in (BORODIN;
GORIN, 2012), about some specializations applied to Schur functions (proofs in (BAIK,
2018)). We denote 000 := (0,0,0, . . .).

Proposition 2.26 (Single α specialization). Let c ≥ 0 and α = (c,0,0, . . .). Consider
the Schur-positive specialization ρ = (α;000;0). If λ/µ is a horizontal strip (µ ≼ λ ), then
sλ/µ(ρ) = c|λ |−|µ|. Otherwise, we have sλ/µ(ρ) = 0.

Proposition 2.27 (Single β specialization). Let c ≥ 0 and β = (c,0,0, . . .). Consider
the Schur-positive specialization ρ = (000;β ;0). If λ/µ is a vertical strip (µ ≼v λ ), then
sλ/µ(ρ) = c|λ |−|µ|. Otherwise, we have sλ/µ(ρ) = 0.

Note that Propositions 2.26 and 2.27 can be applied to Schur functions, since
sλ = sλ/∅ (2.21(e)). Given a λ ∈ Y, remember that dim(λ ) is defined as the number of
possible standard Young tableaux with shape λ (see Section 2.2.2).

Proposition 2.28 (Single γ specialization). Let γ ≥ 0. For the Schur-positive specializa-
tion ρ = (000;000;γ), we have

sλ (ρ) =
γ |λ |

|λ |!
dim(λ ).

If you were brave enough to make this far in this text, we gift you with the next
chapter, which will be definitely more enjoyable. In Chapter 3, we make use of most results
and formulas presented until now. They are indispensable to define probabilities on the
set of partitions.
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CHAPTER

3
SCHUR PROCESSES

The main goal of this chapter is to define a stochastic process on Y and even on
YN . As we stated in the Introduction, our motivation is the fact that the TASEP can
be obtained as a “projection” of an evolution of objects on YN (the Block-Push Process).
First, we are going to define a probability measure on Y, then we construct a Markov
chain on Y that preserves such class of measures. After that, we repeat the construction
for YN . We will see why the formulas presented in Chapter 2 are so useful. We are mostly
following the lecture notes (BORODIN; GORIN, 2012), (BAIK, 2018) and (FERRARI,
2019).

3.1. Summary of the Chapter
We define a probability measure on Y through the formula

Sx,y(λ ) :=
sλ (x)sλ (y)

∏ 1
1−xiy j

, λ ∈ Y,

where we can assume for now that x = {x1,x2, . . .} and y = {y1,y2, . . .} are sets of real
numbers. If we also ensure that ∏∞

i, j=1
1

1−xiy j
is finite, then it is immediate by Cauchy

identity (Equation (2.2)) that Sx,y(λ ) is a well-defined probability measure on Y, that is,
∑λ∈YSx,y(λ ) = 1. This measure is called Schur measure. In other words, it is an “infinite
die” with partitions on its faces (Figure 12).

A random evolution of partitions is defined by the transitional probability

pλ→µ :=
1

∏ 1
1−xiy j

sµ(x)
sλ (x)

sµ/λ (y),

which is the probability for going from λ to µ . These probabilities provide a way to obtain
a random sequence of partitions, where the next partition depends only on the current
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Figure 12 – The Schur measure is a way to select random partitions.

Source: Elaborated by the author.

partition (see Figure 13). This is called a Markov chain. The well-definition of this Markov
chain relies again on the Cauchy identities (2.2) and (2.3).

Figure 13 – A pictorial example of a Markov chain on partitions, which produces a “growth” of
a diagram.

→ → → → → ···
Source: Elaborated by the author.

A nice property we obtain from these definitions is the preservation of the Schur
measure in this Markov chain. More precisely, if a partition is randomly chosen according
to a Schur measure (the die in Figure 12), the next partition of the chain is also chosen
according to a Schur measure with slightly different parameters (a slightly different die).

After this we repeat a similar construction on YN . First, we define a probability
measure on YN given by

Sρ1,...,ρN ,ρ−

(
λ (1), . . . ,λ (N)

)
:=

sλ (1)(ρ1)sλ (2)/λ (1)(ρ2) · · ·sλ (N)/λ (N−1)(ρN)sλ (N)(ρ−)

∏(ρ1,ρ−) · · ·∏(ρN ,ρ−)
.

This measure is called Schur process. The objects ρ1, . . ., ρN and ρ− are special param-
eters we will define later. The well-definition of this measure is again obtained by Cauchy
identities. To continue our analogy, the Schur process is an infinite die with vectors of
partitions on its faces (Figure 14).

Figure 14 – The Schur process is a way to select random vectors of partitions.

Source: Elaborated by the author.

A Markov chain can be defined on YN to obtain sequences of random vectors of
partitions (Figure 15). Analogously, we have a preservation property similar to the one
obtained for the Schur measure.
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Figure 15 – A pictorial example of a Markov chain on YN . →

 →

 →

 →


→ ··· .

Source: Elaborated by the author.

The importance of this framework is that we can recover (using a specific parametriza-
tion for the Markov chain) the Block-Push process (see Section 1.1.1). Then we use some
general results (as the preservation property) to obtain a simple formula for a tricky prob-
lem on the TASEP model: what is the probability that all particles have passed a given
point at time t? The answer is given simply by the Schur measure

PTASEP(yN(t)−1+N ≥ ℓ) = Sσ1,σ2(νN ≥ ℓ),

for some parametrizations σ1 and σ2. This formula, obtained purely by algebraic methods,
is crucial to advance in this work.

3.2. Probabilities on Partitions

3.2.1. Schur Measure
Let x and y be two sets of variables and consider the product set xy =

{
xiy j
}∞

i, j=1.
From Equation (2.7), we have

∞

∏
i, j=1

1
1− xiy jz

= H(z;xy) = exp

(
∞

∑
k=1

pk(xy)zk

k

)
= exp

(
∞

∑
k=1

pk(x)pk(y)z
k

k

)
.

Let z = 1 and recall the notation ∏(x,y) = ∏∞
i, j=1

1
1−xiy j

. From Cauchy identity (Theorem
2.5) and from equation above we have

∑
λ

sλ (x)sλ (y) = ∏(x,y) = exp

(
∞

∑
k=1

pk(x)pk(y)
k

)
.

The identity above is useful because the Schur-positive specializations are defined by their
evaluation on power sums (Theorem 2.8). So given two specializations1 ρ1 and ρ2, we have
the specialized Cauchy identity

∏(ρ1,ρ2) = exp

(
∞

∑
k=1

pk(ρ1)pk(ρ2)

k

)
= ∑

λ
sλ (ρ1)sλ (ρ2). (3.1)

Of course we need to guarantee that ∏(ρ1,ρ2) is finite, since it depends on the convergence
of a series.
1 From now on, we assume that all specializations are Schur-positive.
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Example 3.1. For the trivial specialization ρ0 = (000;000;0) and any other specialization ρ1,
we have ∏(ρ0,ρ1) = 1.

Example 3.2. Let c ∈ [0,1]. Consider the specializations

ρ1 = ((1, . . . ,1︸ ︷︷ ︸
n

,0,0, . . .);000;0) and ρ2 = (000;(c, . . . ,c︸ ︷︷ ︸
m

,0,0, . . .),0).

By Theorem 2.8, we have pk(ρ1) = n and pk(ρ2) = mc(−c)k−1 for every k ≥ 1. So applying
the alternating series test, we obtain

∏(ρ1,ρ2) = exp

(
∞

∑
k=1

pk(ρ1)pk(ρ2)

k

)
= exp

(
nmc

∞

∑
k=1

(−c)k−1

k

)
< ∞.

Definition 3.1. (OKOUNKOV, 2001) Let ρ1 and ρ2 be two specializations satisfying
∏(ρ1,ρ2)< ∞. The measure defined by

Sρ1,ρ2(λ ) :=
sλ (ρ1)sλ (ρ2)

∏(ρ1,ρ2)
, λ ∈ Y, (3.2)

is called the Schur measure parametrized by ρ1 and ρ2. Since Y is discrete, the under-
lying σ -algebra is the power set of Y.

Note 3.1. The function defined in (3.2) is non-negative, since ρ1 and ρ2 are Schur-
positive specializations (Definition 2.25). Moreover, it is a probability measure on Y, since
∑λ Sρ1,ρ2(λ ) = 1, by Equation (3.1).

Example 3.3. Let ρ0 = (000;000;0), then ∏(ρ,ρ0) = 1 for any other specialization ρ (Exam-
ple 3.1), so Sρ,ρ0(λ ) = sλ (ρ)sλ (ρ0). Since s∅ = 1, we have

Sρ,ρ0(λ ) =

1, if λ =∅;

0, otherwise,

therefore, a random partition distributed with respect to Sρ,ρ0 is equal to ∅ almost surely.

Example 3.4. Let t ≥ 0. For the specialization ρt = (000;000; t), we claim that the Schur mea-
sure Sρt ,ρt is exactly the Poissonized Plancherel measure with parameter t2 (see Definition
2.12). First, we have p1(ρt) = t and pk(ρt) = 0 for k > 1, by Theorem 2.8, so ∏(ρt ,ρt) = et2

by (3.1). For any λ ∈ Y, we have by Proposition 2.28,

Sρt ,ρt (λ ) =
sλ (ρt)sλ (ρt)

∏(ρt ,ρt)
= e−t2

(
t |λ | dim(λ )

|λ |!

)2

= e−t2 (
t2)|λ | dim(λ )2

(|λ |!)2 = PPoisson
t2 (λ ).

The Schur measure is a way to compute probabilities on Y. In other words, it is
an infinite die with partitions on its faces. Now we want to define an evolution of random
partitions in time. We do it using Markov chains.
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3.2.2. Markov Chains on Partitions
We start with a quick review on Markov chains. A stochastic process is a set of

random variables (Xt)t≥0 or (Xt)
∞
t=0. We should think of t as time, and (Xt) as describing

the time evolution of a certain quantity. Typically, the value Xt depends on previous values
Xt̄ (t̄ < t), in some structural way. A case of particular interest are Markov chains.

Let S be a discrete set, as N, {1,2, . . . ,N} or Y. A Markov Chain is a discrete-
time stochastic process (Xt)

∞
t=0, where the random variable Xt takes values on S (we call

S the state space) and they have the following property: the state of Xt+1 depends only
on the state of Xt . More precisely,

P(Xt+1 = it+1 | Xt = it ,Xt−1 = it−1, . . . ,X0 = i0) = P(Xt+1 = it+1 | Xt = it) .

Consider an enumeration S = {s1,s2,s3, . . .}. For each pair i and j, we define the number
pi j := P

(
Xt+1 = s j | Xt = si

)
, called transitional probability, which is the probability

for going from the state si to the state s j. We join these probabilities in the transition
matrix

P :=


p00 p01 p02 · · ·
p10 p11 p12 · · ·
p20 p21 p22 · · ·
... ... ... . . .

 ,

where the sum along each row must be 1 and the matrices may have infinite size. Such
matrices are also called stochastic matrices and they are sufficient to define a Markov
Chain. It is possible to verify that the transition matrix for the two-step evolution of the
chain is P2. For n steps, it is Pn. Also, we always need to define the initial distribution for
X0. Now we define a Markov chain in the state space S = Y. Recall that specializations
were defined in 2.25.

Definition 3.2. (Markov chains on Y) Let ρ,ρ ′ be specializations such that ∏(ρ,ρ ′)< ∞.
We define two Markov chains on Y by the two-dimensional transition matrices

p↑(ρ,ρ ′) =
(

p↑λ→µ(ρ,ρ
′)
)

λ ,µ∈Y
and p↓(ρ,ρ ′) =

(
p↓λ→µ(ρ,ρ

′)
)

λ ,µ∈Y
,

indexed by partitions (you can take any enumeration of Y), where

p↑λ→µ(ρ,ρ
′) :=

sµ(ρ)
∏(ρ,ρ ′)sλ (ρ)

sµ/λ (ρ ′) and p↓λ→µ(ρ,ρ
′) :=

sµ(ρ)
sλ (ρ ∪ρ ′)

sλ/µ(ρ ′). (3.3)

Proposition 3.1. The matrices p↑(ρ,ρ ′) and p↓(ρ,ρ ′) are stochastic.

Proof. By definition (3.3), we have for every λ ∈ Y (each line of the matrix),

∑
µ∈Y

p↑λ→µ(ρ,ρ
′) =

1
∏(ρ,ρ ′)sλ (ρ)

∑
µ∈Y

sµ(ρ)sµ/λ (ρ ′) = 1,
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by Lemma 2.4. For the second matrix,

∑
µ∈Y

p↓λ→µ(ρ,ρ
′) =

1
sλ (ρ ∪ρ ′) ∑

µ∈Y
sµ(ρ)sλ/µ(ρ ′) =

sλ (ρ,ρ ′)

sλ (ρ ∪ρ ′)
= 1,

by Lemmas 2.5 and 2.6.

Using the transition matrix p↑(ρ,ρ ′) (or p↓(ρ,ρ ′)) we can define a Markov chain
on Y. For example, provided a initial partition λ (0) = µ , the probability for λ (1) = ν is
equal to p↑µ→ν(ρ,ρ ′). Repeating this process, we obtain a partition λ (t) (depending on
λ (t −1)) for every t = 0,1,2, . . ..

Recall from Proposition 2.23 that

ν 6⊂ κ ⇒ sκ/ν = 0 ⇒ p↑ν→κ(ρ,ρ ′) = 0, p↓κ→ν(ρ,ρ ′) = 0.

So the chain defined by p↑(ρ,ρ ′) satisfies λ (0)⊂ λ (1)⊂ λ (2)⊂ ·· · and the one defined by
p↓(ρ,ρ ′) satisfies λ (0) ⊃ λ (1) ⊃ λ (2) ⊃ ·· · . To illustrate, the transition matrix p↑(ρ,ρ ′)

(indexed by Young diagrams) has the form

∅ · · ·



∅ p00 p01 p02 p03 p04 p05 p06 · · ·
0 p11 p12 p13 p14 p15 p16 · · ·
0 0 p22 0 p24 p25 0 · · ·
0 0 0 p33 0 p35 p36 · · ·
0 0 0 0 p44 0 0 · · ·
0 0 0 0 0 p55 0 · · ·
0 0 0 0 0 0 p66 · · ·

... ... ... ... ... ... ... ... . . .

,

where each entry is a transitional probability. In terms of Young diagrams, the Markov
chains defined above give us random sequences of diagrams as

⊂ ⊂ ⊂ ⊂ ⊂ ·· ·

for p↑(ρ,ρ ′) (increasing the diagram), or

⊃ ⊃ ⊃ ⊃ ⊃ ·· ·

for p↓(ρ,ρ ′) (decreasing the diagram). These Markov chains preserve Schur measures in
the sense of the following proposition.

Proposition 3.2 (Schur measure preservation property). Let µ ∈ Y. Consider the spe-
cializations ρ1,ρ2 and ρ3, then

∑
λ∈Y

Sρ1,ρ2(λ )p↑λ→µ(ρ2,ρ3) = Sρ1∪ρ3,ρ2(µ)
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and

∑
λ∈Y

Sρ1,ρ2∪ρ3(λ )p↓λ→µ(ρ2,ρ3) = Sρ1,ρ2(µ).

Proof. Applying Definitions 3.1 and 3.2, we have by Lemma 2.5,

∑
λ∈Y

Sρ1,ρ2(λ )p↑λ→µ(ρ2,ρ3) = ∑
λ∈Y

sλ (ρ1)����sλ (ρ2)

∏(ρ1,ρ2)

1
∏(ρ2,ρ3)

sµ(ρ2)

����sλ (ρ2)
sµ/λ (ρ3)

=
sµ(ρ2)

∏(ρ1,ρ2)∏(ρ2,ρ3)
∑

λ∈Y
sλ (ρ1)sµ/λ (ρ3)

=
sµ(ρ2)sµ(ρ1 ∪ρ3)

∏(ρ2,ρ1 ∪ρ3)
= Sρ1∪ρ3,ρ2(µ).

The second identity is similar: apply the definitions and one of Cauchy identities.

The proposition above says that, if the distribution of the partition λ (t) is a
Schur measure, then the distribution of λ (t + 1) is still a Schur measure, with slightly
different parameters. The sums in the proposition are from the matrix product between
the starting distribution and the transition matrix (for more steps, we multiply by the
transition matrix again). So if we start with λ (0) distributed with respect to a Schur
measure, we can apply Proposition 3.2 recursively, to obtain that λ (t) is distributed by
a Schur measure at any time t (in the language of Markov chains, we multiply the initial
distribution by the transition matrix t times). We end the section with an useful technical
lemma.

Lemma 3.1 (Commutation relation). Let ρ1,ρ2 and ρ3 be specializations. We have the
matrix identity

p↑(ρ1 ∪ρ2,ρ3)p↓(ρ1,ρ2) = p↓(ρ1,ρ2)p↑(ρ1,ρ3).

Proof. Let A = p↑(ρ1 ∪ρ2,ρ3)p↓(ρ1,ρ2) and B = p↓(ρ1,ρ2)p↑(ρ1,ρ3), it suffices to prove
that the entries Aλ µ and Bλ µ are equal for every pair λ ,µ ∈ Y. By definition of product
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of matrices and by skew Cauchy identity (Theorem 2.7),

Aλ µ = ∑
ν∈Y

p↑λ→ν(ρ1 ∪ρ2,ρ3)p↓ν→µ(ρ1,ρ2)

= ∑
ν∈Y

1
∏(ρ1 ∪ρ2,ρ3)

sν(ρ1 ∪ρ2)

sλ (ρ1 ∪ρ2)
sν/λ (ρ3)

sµ(ρ1)

sν(ρ1 ∪ρ2)
sν/µ(ρ2)

=
1

∏(ρ1,ρ3)∏(ρ2,ρ3)

sµ(ρ1)

sλ (ρ1 ∪ρ2)
∑

ν∈Y
sν/λ (ρ3)sν/µ(ρ2)

=
1

∏(ρ1,ρ3)

sµ(ρ1)

sλ (ρ1 ∪ρ2)
∑

ν∈Y
sλ/ν(ρ2)sµ/ν(ρ3)

= ∑
ν∈Y

sν(ρ1)

sλ (ρ1 ∪ρ2)
sλ/ν(ρ2)

1
∏(ρ1,ρ3)

sµ(ρ1)

sν(ρ1)
sµ/ν(ρ3)

= ∑
ν∈Y

p↓λ→ν(ρ1,ρ2)p↑ν→µ(ρ1,ρ3) = Bλ µ ,

as we wanted to show.

At this point, the reader may have noticed that all the proofs are straightforward
applications of the definitions, Theorems 2.5, 2.6 and 2.7 or Lemmas 2.4 and 2.5. The
next section will not be different.

3.3. Probabilities on Sequences of Partitions

3.3.1. The Schur Process
We now generalize the study from previous section to sequences of partitions. We

denote by
YN = Y×·· ·×Y=

{(
λ (1), . . . ,λ (N)

)∣∣∣λ (i) ∈ Y, i = 1, . . . ,N
}

the set of all sequences of N partitions. We use the superscript notation

λ (i) =
(

λ (i)
1 ,λ (i)

2 , . . .
)

so that we have no confusion with the terms of partitions. For example, the j-th term of
the i-th partition is given by λ (i)

j . You can also think of the elements of YN as vectors
consisting of N Young diagrams, such as

( )
∈ Y2,


 ∈ Y3 or


 ∈ Y4.

We first define a probability measure on YN , generalizing the Schur measure (Def-
inition 3.1).
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Definition 3.3. Let ρ1, . . . ,ρN and ρ− be specializations. The probability measure on YN

given by

Sρ1,...,ρN ,ρ−

(
λ (1), . . . ,λ (N)

)
:=

sλ (1)(ρ1)sλ (2)/λ (1)(ρ2) · · ·sλ (N)/λ (N−1)(ρN)sλ (N)(ρ−)

∏(ρ1,ρ−) · · ·∏(ρN ,ρ−)

is called the Schur process of rank N parametrized by ρ1, . . . ,ρN and ρ−.

We have a few notes about Definition 3.3.

Note 3.2. Recall from Proposition 2.23 that if µ 6⊂ λ , then sλ/µ = 0, so Sρ1,...,ρN ,ρ− is
supported (i.e. it is non-zero) on sequences satisfying λ (1) ⊂ ·· · ⊂ λ (N).

Note 3.3. When N = 1, Definition 3.3 is exactly the Schur measure Sρ1,ρ− from Definition
3.1.

Note 3.4. The Schur process Sρ1,...,ρN ,ρ− is indeed a probability measure. We can prove it
by induction. By Note 3.3, the Schur process of rank 1 is a probability measure (base case).
If we assume that any Schur process of rank N − 1 is a probability measure (induction
step), then we have by Lemma 2.4,

∑
λ (1),...,λ (N)

Sρ1,...,ρN ,ρ−

(
λ (1), . . . ,λ (N)

)
= ∑

λ (1),...,λ (N−1)

sλ (1)(ρ1)sλ (2)/λ (1)(ρ2) · · ·sλ (N−1)/λ (N−2)(ρN−1)

∏(ρ1,ρ−) · · ·∏(ρN−1,ρ−) ∑
λ (N)

sλ (N)/λ (N−1)(ρN)sλ (N)(ρ−)

∏(ρN ,ρ−)

= ∑
λ (1),...,λ (N−1)

sλ (1)(ρ1)sλ (2)/λ (1)(ρ2) · · ·sλ (N−1)/λ (N−2)(ρN−1)

∏(ρ1,ρ−) · · ·∏(ρN−1,ρ−)
sλ (N−1)(ρ−)

= ∑
λ (1),...,λ (N−1)

Sρ1,...,ρN−1,ρ−

(
λ (1), . . . ,λ (N−1)

)
= 1.

So the Schur process of rank N is a probability measure and the induction argument holds.

Example 3.5. Let ρ− = (000;000;0). For any specializations ρ1, . . . ,ρN , we have

Sρ1,...,ρN ,ρ− (∅, . . . ,∅) = 1,

since s∅/∅ = s∅ = 1 and ∏(ρi,ρ−) = 1 for each i = 1, . . . ,N (see Example 3.1). In other
words, if

(
λ (1), . . . ,λ (N)

)
is distributed with respect to Sρ1,...,ρN ,ρ− , where ρ− is the trivial

specialization, then
(

λ (1), . . . ,λ (N)
)
= (∅, . . . ,∅) almost surely.

When we study probability in higher dimensions, we may want to obtain the
marginal probabilities, that is, a probability with respect to just one of the variables.
To illustrate, for a probability mass function P(x,y,z) with x,y,z in some discrete set, the
marginal probability densities in x, y and z are respectively

PX(x) := ∑
y,z

P(x,y,z), PY (y) := ∑
x,z

P(x,y,z) and PZ(z) := ∑
x,y

P(x,y,z).
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Proposition 3.3. The marginals of Schur processes are Schur measures. More precisely,
for each k = 1, . . . ,N, we have

∑
λ (1),...,λ (k−1),λ (k+1),...,λ (N)

Sρ1,...,ρN ,ρ−

(
λ (1), . . . ,λ (k) . . . ,λ (N)

)
= Sρ,ρ−

(
λ (k)

)
where ρ = ρ1 ∪·· ·∪ρk.

Proof. We proceed by induction over the rank of Schur processes. For rank N = 1, there
is nothing to prove, since the Schur process is a Schur measure. Suppose that the result is
true for any Schur process of rank N −1. If 1 ≤ k < N, we have by a computation similar
to Remark 3.4,

∑
λ (1),...,λ (k−1),λ (k+1),...,λ (N)

Sρ1,...,ρN ,ρ−

(
λ (1), . . . ,λ (k), . . . ,λ (N−1)

)
= ∑

λ (1),...,λ (k−1),λ (k+1),...,λ (N−1)

Sρ1,...,ρN−1,ρ−

(
λ (1), . . . ,λ (k), . . . ,λ (N−1)

)
= Sρ,ρ−

(
λ (k)

)
,

with ρ = ρ1 ∪ ·· · ∪ρk, using the induction hypothesis in the last equality. For k = N, we
use the skew summation formula (Theorem 2.6) to obtain

∑
λ (1),...,λ (N−1)

Sρ1,...,ρN ,ρ−

(
λ (1), . . . ,λ (N)

)

= ∑
λ (1),...,λ (N−1)

sλ (1)(ρ1)s λ (2)

λ (1)
(ρ2) · · ·s λ (N−2)

λ (N−3)

(ρN−2)s λ (N−1)

λ (N−2)

(ρN−1)s λ (N)

λ (N−1)

(ρN)sλ (N)(ρ−)

∏(ρ1,ρ−) · · ·∏(ρN ,ρ−)

= ∑
λ (1),...,λ (N−2)

sλ (1)(ρ1)s λ (2)

λ (1)
(ρ2) · · ·s λ (N−2)

λ (N−3)

(ρN−2)sλ (N)(ρ−)

∏(ρ1,ρ−) · · ·∏(ρN ,ρ−) ∑
λ (N−1)

s λ (N)

λ (N−1)

(ρN)s λ (N−1)

λ (N−2)

(ρN−1)

= ∑
λ (1),...,λ (N−2)

sλ (1)(ρ1)s λ (2)

λ (1)
(ρ2) · · ·s λ (N−2)

λ (N−3)

(ρN−2)sλ (N)(ρ−)

∏(ρ1,ρ−) · · ·∏(ρN ,ρ−)
sλ (N)/λ (N−2)(ρN−1 ∪ρN)

= ∑
λ (1),...,λ (N−2)

Sρ1,...,ρN−2,ρN−1∪ρN ,ρ−

(
λ (1), . . . ,λ (N−2),λ (N)

)
= Sρ,ρ−

(
λ (N)

)
with ρ = ρ1 ∪·· ·∪ρN−2 ∪ (ρN−1 ∪ρN), using the induction hypothesis in the last equality.

3.3.2. Markov Chains on Sequences of Partitions
We want to define a Markov chain on YN that preserves Schur processes, in analogy

to Proposition 3.2. Consider the specializations ρ1, . . . ,ρN ,ρ ′. We define the transitional
probabilities on YN by

P




ν(1)

...
ν(N)

→


µ(1)

...
µ(N)


 :=

N

∏
ℓ=1

Pℓ

(
ν(ℓ),µ(ℓ−1) → µ(ℓ)

)
(3.4)
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where

Pℓ(ν ,κ → µ) :=
p↑ν→µ(ρ1 ∪·· ·∪ρℓ,ρ ′)p↓µ→κ(ρ1 ∪·· ·∪ρℓ−1,ρℓ)

∑λ p↑ν→λ (ρ1 ∪·· ·∪ρℓ,ρ ′)p↓λ→κ(ρ1 ∪·· ·∪ρℓ−1,ρℓ)
(3.5)

and we assume µ(0) =∅ so that

P1

(
ν(1),µ(0) → µ(1)

)
= p↑ν(1)→µ(1)(ρ1,ρ ′).

If N = 1, this reduces to the Markov chain on Y given by the matrix p↑(ρ1,ρ ′) (Definition
3.2). Notice that each Pℓ is a transitional probability from Y×Y to Y, that is, for any ν
and κ , we have

∑
µ∈Y

Pℓ(ν ,κ → µ) = 1. (3.6)

The following proposition shows that the first k partitions (of the N partitions)
depend just on the first k partitions on past time.

Proposition 3.4. For any k = 1,2, . . . ,N,

P
(

µ(1), . . . ,µ(k)
∣∣∣ν(1), . . . ,ν(N)

)
= P

(
µ(1), . . . ,µ(k)

∣∣∣ν(1), . . . ,ν(k)
)
.

Proof. We have

P
(

µ(1), . . . ,µ(k)
∣∣∣ν(1), . . . ,ν(N)

)

= ∑
µ(k+1),...,µ(N)

P




ν(1)

...
ν(N)

→


µ(1)

...
µ(N)




= ∑
µ(k+1),...,µ(N)

N

∏
ℓ=1

Pℓ

(
ν(ℓ),µ(ℓ−1) → µ(ℓ)

)
=

k

∏
ℓ=1

Pℓ

(
ν(ℓ),µ(ℓ−1) → µ(ℓ)

)
∑

µ(k+1),...,µ(N)

N

∏
ℓ=k+1

Pℓ

(
ν(ℓ),µ(ℓ−1) → µ(ℓ)

)
=

k

∏
ℓ=1

Pℓ

(
ν(ℓ),µ(ℓ−1) → µ(ℓ)

) N

∏
ℓ=k+1

∑
µ(ℓ)

Pℓ

(
ν(ℓ),µ(ℓ−1) → µ(ℓ)

)
︸ ︷︷ ︸

=1, by Eq. (3.6)

=
k

∏
ℓ=1

Pℓ

(
ν(ℓ),µ(ℓ−1) → µ(ℓ)

)
= P

(
µ(1), . . . ,µ(k)

∣∣∣ν(1), . . . ,ν(k)
)
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Corollary 3.1. The transitional probability defined in (3.4) defines a Markov chain(
λ (1)(t), . . . ,λ (N)(t)

)
on YN .

Proof. We need to show that

∑
µ(1),...,µ(N)

P




ν(1)

...
ν(N)

→


µ(1)

...
µ(N)


= 1,

that is, the transition matrix is stochastic (now the matrix is YN ×YN). To see this, we
repeat the proof of Proposition 3.4, summing over all sequences (µ(1), . . . ,µ(N)).

To keep in mind the objects we are working with, the Markov chain defined above
is simply a sequence of random vectors consisting of Young diagrams evolving in time, as

→


→


→


→


→ ··· .

Using the time notation for the Markov chain, we consider the update in one unit
of time 

λ (1)(t)
...

λ (N)(t)

=


ν(1)

...
ν(N)

→


µ(1)

...
µ(N)

=


λ (1)(t +1)

...
λ (N)(t +1)

 .

By the following property for condition probability, given by

P(A|BC) =
P(AB|C)

P(B|C)
,

we have for any k = 1,2, . . . ,N,

P
(

µ(k)
∣∣∣ν(1), . . . ,ν(k),µ(1), . . . ,µ(k−1)

)
=

P
(

µ(1), . . . ,µ(k)
∣∣∣ν(1), . . . ,ν(k)

)
P
(

µ(1), . . . ,µ(k−1)
∣∣ν(1), . . . ,ν(k)

)
=

P
(

µ(1), . . . ,µ(k)
∣∣∣ν(1), . . . ,ν(k)

)
P
(

µ(1), . . . ,µ(k−1)
∣∣ν(1), . . . ,ν(k−1)

)
= Pk(ν(k),µ(k−1) → µ(k)),

where we used Proposition 3.4 and Equation (3.4). The calculation above means that the
update of the chain from time t to time t +1 follows the N sequential steps below:

1. First, we update ν(1) → µ(1) with probability P1

(
ν(1),∅→ µ(1)

)
;
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2. Then given µ(1), we update ν(2) → µ(2) with probability P2

(
ν(2),µ(1) → µ(2)

)
;

3. Given µ(2), we update ν(3) → µ(3) with probability P3

(
ν(3),µ(2) → µ(3)

)
;

...

N. Finally, given µ(N−1), we update ν(N)→ µ(N) with probability PN

(
ν(N),µ(N−1) → µ(N)

)
.

Lemma 3.2. The probability measure for the Schur process parametrized by ρ1, . . . ,ρN

and ρ− can be written as

Sρ1,...,ρN ,ρ−

(
λ (1), . . . ,λ (N)

)
= Sρ1∪···∪ρN ,ρ−

(
λ (N)

) N

∏
ℓ=2

p↓λ (ℓ)→λ (ℓ−1) (ρ1 ∪·· ·∪ρℓ−1,ρℓ) .

Proof. Applying Definitions 3.1 and 3.2, the right-hand side is equal to

sλ (N)(ρ1 ∪·· ·∪ρN)sλ (N)(ρ−)

∏(ρ1 ∪·· ·∪ρN ,ρ−)

N

∏
ℓ=2

sλ (ℓ−1)(ρ1 ∪·· ·∪ρℓ−1)

sλ (ℓ)(ρ1 ∪·· ·∪ρℓ)
sλ (ℓ)/λ (ℓ−1)(ρℓ)

=
sλ (1)(ρ1)sλ (2)/λ (1)(ρ2) · · ·sλ (N)/λ (N−1)(ρN)sλ (N)(ρ−)

∏(ρ1,ρ−) · · ·∏(ρN ,ρ−)

after the cancellations. The last expression is exactly the Schur process Sρ1,...,ρN ,ρ− (Defi-
nition 3.3).

Now we proceed to the main result of this section, which states that the Markov
chain defined in (3.4) preserves Schur processes, in analogy to the one-dimensional case
(Proposition 3.2).

Theorem 3.1. Consider the Markov chain on YN defined by (3.4), parametrized by the
specializations ρ1, . . . ,ρN and ρ ′. It maps the Schur process Sρ1,...,ρN ,ρ− to the Schur process
Sρ1,...,ρN ,ρ−∪ρ ′ , for any specialization ρ−. More precisely, we have

∑
λ (1),...,λ (N)

Sρ1,...,ρN ,ρ−


λ (1)

...
λ (N)

P




λ (1)

...
λ (N)

→


µ(1)

...
µ(N)


= Sρ1,...,ρN ,ρ−∪ρ ′


µ(1)

...
µ(N)

 . (3.7)

The corollary below is immediate.

Corollary 3.2. Consider the Markov chain on YN defined by (3.4), parametrized by the
specializations ρ1, . . . ,ρN and ρ ′. After t updates, it maps the Schur process Sρ1,...,ρN ,ρ−

to the Schur process Sρ1,...,ρN ,ρ−∪ρ̂ , for any specialization ρ−, where ρ̂ = ρ ′∪ ·· ·∪ρ ′ (the
union is taken t times).
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Proof. (of Theorem 3.1) Applying Lemma 3.2 and Definition 3.4, the left-hand side of
(3.7) is equal to

∑
λ (1),...,λ (N)

Sρ1∪···∪ρN ,ρ−

(
λ (N)

)
p↑λ (1)→µ(1)(ρ1,ρ ′)

×
N

∏
ℓ=2

p↓λ (ℓ)→λ (ℓ−1)

(
∪ℓ−1

i=1 ρi,ρℓ

) p↑λ (ℓ)→µ(ℓ)(ρ1 ∪·· ·∪ρℓ,ρ ′)p↓µ(ℓ)→µ(ℓ−1)(ρ1 ∪·· ·∪ρℓ−1,ρℓ)

∑ν p↑λ (ℓ)→ν(ρ1 ∪·· ·∪ρℓ,ρ ′)p↓ν→µ(ℓ−1)(ρ1 ∪·· ·∪ρℓ−1,ρℓ)
.

By the commutation relation (Lemma 3.1), we have the matrix identity

p↑(ρ1 ∪·· ·∪ρℓ,ρ ′)p↓(ρ1 ∪·· ·∪ρℓ−1,ρℓ) = p↓(ρ1 ∪·· ·∪ρℓ−1,ρℓ)p↑(ρ1 ∪·· ·∪ρℓ−1,ρ ′),

so we replace the sum on the denominator, obtaining

∑
λ (1),...,λ (N)

Sρ1∪···∪ρN ,ρ−

(
λ (N)

)
p↑λ (1)→µ(1)(ρ1,ρ ′)

×
N

∏
ℓ=2

p↓λ (ℓ)→λ (ℓ−1)

(
∪ℓ−1

i=1 ρi,ρℓ

) p↑λ (ℓ)→µ(ℓ)(ρ1 ∪·· ·∪ρℓ,ρ ′)p↓µ(ℓ)→µ(ℓ−1)(ρ1 ∪·· ·∪ρℓ−1,ρℓ)

∑ν p↓λ (ℓ)→ν(ρ1 ∪·· ·∪ρℓ−1,ρℓ)p↑ν→µ(ℓ−1)(ρ1 ∪·· ·∪ρℓ−1,ρ ′)
.

Ignoring all the terms without λ (1), we get

p↓λ (2)→λ (1)(ρ1,ρ2)p↑λ (1)→µ(1)(ρ1,ρ ′),

so summing over λ (1), we cancel one of the denominators in the product. What remains
is

∑
λ (2),...,λ (N)

Sρ1∪···∪ρN ,ρ−

(
λ (N)

)
p↑λ (2)→µ(2)(ρ1 ∪ρ2,ρ ′)p↓µ(2)→µ(1)(ρ1,ρ2)

×
N

∏
ℓ=3

p↓λ (ℓ)→λ (ℓ−1)

(
∪ℓ−1

i=1 ρi,ρℓ

) p↑λ (ℓ)→µ(ℓ)(ρ1 ∪·· ·∪ρℓ,ρ ′)p↓µ(ℓ)→µ(ℓ−1)(ρ1 ∪·· ·∪ρℓ−1,ρℓ)

∑ν p↓λ (ℓ)→ν(ρ1 ∪·· ·∪ρℓ−1,ρℓ)p↑ν→µ(ℓ−1)(ρ1 ∪·· ·∪ρℓ−1,ρ ′)
.

Ignoring all the terms without λ (2), we obtain

p↓λ (3)→λ (2)(ρ1 ∪ρ2,ρ3)p↑λ (2)→µ(2)(ρ1 ∪ρ2,ρ ′),

so summing over λ (2), we again cancel one of the denominators in the product, obtaining

∑
λ (3),...,λ (N)

Sρ1∪···∪ρN ,ρ−

(
λ (N)

)
p↑λ (3)→µ(3)(ρ1∪ρ2∪ρ3,ρ ′)p↓µ(3)→µ(2)(ρ1∪ρ2,ρ3)p↓µ(2)→µ(1)(ρ1,ρ2)

×
N

∏
ℓ=4

p↓λ (ℓ)→λ (ℓ−1)

(
∪ℓ−1

i=1 ρi,ρℓ

) p↑λ (ℓ)→µ(ℓ)(ρ1 ∪·· ·∪ρℓ,ρ ′)p↓µ(ℓ)→µ(ℓ−1)(ρ1 ∪·· ·∪ρℓ−1,ρℓ)

∑ν p↓λ (ℓ)→ν(ρ1 ∪·· ·∪ρℓ−1,ρℓ)p↑ν→µ(ℓ−1)(ρ1 ∪·· ·∪ρℓ−1,ρ ′)
.
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Repeating this process until the sum over λ (N−1) all the denominators are canceled and
the remaining expression is

∑
λ (N)

Sρ1∪···∪ρN ,ρ−

(
λ (N)

)
p↑λ (N)→µ(N)(ρ1 ∪·· ·∪ρN ,ρ ′)

N

∏
ℓ=2

p↓µ(ℓ)→µ(ℓ−1)(ρ1 ∪·· ·∪ρℓ−1,ρℓ).

By the Schur measure preservation property (Proposition 3.2), this is equal to

Sρ1∪···∪ρN ,ρ−∪ρ ′

(
µ(N)

) N

∏
ℓ=2

p↓µ(ℓ)→µ(ℓ−1)(ρ1 ∪·· ·∪ρℓ−1,ρℓ),

which is exactly Sρ1,...,ρN ,ρ−∪ρ ′

(
µ(1), . . . ,µ(N)

)
, by Lemma 3.2.

This is all the theory we need for now. We show in the next section how to recover
the TASEP model from this framework, justifying all the construction made.

3.4. Application: Block-Push Process and TASEP

3.4.1. Block-Push Markov Chain

In this section, we study a specific example of Markov chain defined in (3.4). Fix
N ∈ N, b > 0 and consider the specializations

ρ1 = · · ·= ρN = ((1,0,0, . . .);000;0);

ρ ′ = (000;(b,0,0, . . .);0);

ρ− = (000;000;0).

By Proposition 2.26, we have for each i = 1, . . . ,N,

sλ/µ (ρi) =

1, if λ/µ is a horizontal strip (µ ≼ λ );

0, otherwise.

Also, by Proposition 2.26,

sλ/µ
(
ρ ′)=

b|λ |−|µ|, if λ/µ is a vertical strip (µ ≼v λ );

0, otherwise.

For the last, we have

sλ/µ
(
ρ−)=

1, if λ = µ;

0, otherwise,
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by Proposition 2.21(g). Consider the Markov chain
(

λ (1)(t), . . . ,λ (N)(t)
)

defined by the
transition probability (3.4) parametrized by ρ1, . . . ,ρN and ρ ′. At time t = 0, assume
that the vector

(
λ (1)(0), . . . ,λ (N)(0)

)
is distributed by the Schur process parametrized by

ρ1, . . . ,ρN and ρ−. By Example 3.5,(
λ (1)(0), . . . ,λ (N)(0)

)
= (∅, . . . ,∅)

almost surely.

Let us consider the transitional probabilities, given by

Pℓ(ν ,κ → µ) =Cℓ(ν ,κ)p↑ν→µ(ρ1 ∪·· ·∪ρℓ,ρ ′)p↓µ→κ(ρ1 ∪·· ·∪ρℓ−1,ρℓ),

where the number Cℓ(ν ,κ) does not depend on µ . So by definition,

Pℓ(ν ,κ → µ) =Cℓ(ν ,κ)
sµ(ρ1 ∪·· ·∪ρℓ)

sν(ρ1 ∪·· ·∪ρℓ)
sµ/ν(ρ ′)

sκ(ρ1 ∪·· ·∪ρℓ−1)

sµ(ρ1 ∪·· ·∪ρℓ)
sµ/κ(ρℓ)

= C̃ℓ(ν ,κ)sµ/ν(ρ ′)sµ/κ(ρk)

= C̃ℓ(ν ,κ)b|µ|−|ν |
1ν≼vµ1κ≼µ ,

where the notations λ ≼v µ and λ ≼ µ mean that µ/λ is a vertical-strip and a horizontal
strip, respectively (see Chapter 1 if you do not remember). The indicator function 1ν≼µ is
defined by 1 if ν ≼ µ and 0 otherwise (similar for 1ν≼vµ). Now for the Markov chain, each
transition probability Pℓ(ν(ℓ),µ(ℓ−1) → µ(ℓ)) is zero unless µ(ℓ−1) ≼ µ(ℓ), by the second
indicator function, so ∅≼ µ(1) ≼ · · ·≼ µ(N). This means that for every t,

∅≼ λ (1)(t)≼ · · ·≼ λ (N)(t),

which implies that
∣∣∣λ (k)(t)

∣∣∣≤ k for every k = 1, . . . ,N. Moreover, using the chain notation
and the definition of vertical-strip, we obtain

P
(

λ (k)(t +1) = µ(k)
∣∣∣λ (k)(t) = ν(k),λ (k−1)(t +1) = µ(k−1)

)
= Pk(ν(k),µ(k−1) → µ(k)) = C̃k(ν(k),µ(k−1))1µ(k−1)≼µ(k)

k

∏
i=1

bµ(k)
i −ν(k)

i 1
µ(k)

i −ν(k)
i ∈{0,1}. (3.8)

Now consider the update of the first partition, which we know that it has length
1, that is, λ (1)(t) =

(
λ (1)

1 (t)
)

. Let m,n ∈ Z+, then by (3.8),

P
(

λ (1)(t +1) = (n)
∣∣∣λ (1)(t) = (m)

)
= P1(λ (1)(t),∅→ λ (1)(t +1)) =C1(m)bn−m

1n−m∈{0,1}.

The probability is non-zero in just two cases: n = m and n = m+1, so

P
(

λ (1)(t +1) = (m+1)
∣∣∣λ (1)(t) = (m)

)
= bC1(m);

P
(

λ (1)(t +1) = (m)
∣∣∣λ (1)(t) = (m)

)
=C1(m),



3.4. Application: Block-Push Process and TASEP 79

thus C1(m) = 1
1+b . We conclude that the first partition is increased by 1 with probability

b
1+b and stays the same with probability 1

1+b .

Going further, we study now the update of the first two partitions
(

λ (1)(t),λ (2)(t)
)

.
Assume λ (1)(t) = (m), λ (2)(t) = (m1,m2), λ (1)(t +1) = (n), λ (2)(t +1) = (n1,n2) and let us
consider the possibilities for n,n1 and n2. By the interlacing property λ (1) ≼ λ (2) for any
t, we have m2 ≤ m ≤ m1 and n2 ≤ n ≤ n1. We have by the definition of the Markov chain,

P
(

λ (1)(t +1) = (n),λ (2)(t +1) = (n1,n2)
∣∣∣λ (1)(t) = (m),λ (2)(t) = (m1,m2)

)
= P

(
λ (2)(t +1) = (n1,n2)

∣∣∣λ (1)(t +1) = (n),λ (2)(t) = (m1,m2)
)

×P
(

λ (1)(t +1) = (n)
∣∣∣λ (1)(t) = (m)

)
and we know that the second factor is the update of the first partition λ (1), which we
computed before. So by (3.8), the probability above is equal to

C2(m,m1,m2)1n2≤n≤n1

2

∏
i=1

bni−mi1ni−mi∈{0,1}

(
b

1+b
1n=m+1 +

1
1+b

1n=m

)
. (3.9)

Assuming n = m or n = m+1, the probability above is zero unless we have n1−m1 ∈ {0,1},
n2 −m2 ∈ {0,1} and n2 ≤ n ≤ n1, so we need to consider the cases below.

1. We first assume n = m.

a) If m2 < m ≤ m1, then the conditions n1 − m1 ∈ {0,1}, n2 − m2 ∈ {0,1} im-
ply the condition n2 ≤ n ≤ n1. The probabilities that (n1,n2)− (m1,m2) =

(0,0),(1,0),(0,1),(1,1) are equal to C2(m,m1,m2) times 1,b,b,b2, respectively,
so we obtain C2(m,m1,m2) =

1
(1+b)2 . Now we can write (3.9) as(

1n1=m1

1+b
+

b1n1=m1+1

1+b

)(
1n2=m2

1+b
+

b1n2=m2+1

1+b

)
1

1+b
,

therefore, each row of λ (2)(t) may increase by 1, independently of each other,
with probability b

1+b .

b) If m2 = m ≤ m1, then the condition n2 ≤ n does not hold when (n1,n2)−
(m1,m2) ∈ {(0,1),(1,1)}, since n2 = 1+ n. So the probability (3.9) is zero un-
less n2 = m2. The probabilities that (n1,n2)−(m1,m2) = (0,0),(1,0) are propor-
tional to 1 and b, respectively, so we obtain C2(m,m1,m2) =

1
1+b . Then (3.9)

equals (
1n1=m1

1+b
+

b1n1=m1+1

1+b

)
1n2=m2

1
1+b

,

and this means that only the first row of λ (2)(t) may grow by 1 with probability
b

1+b . The second row stays the same, since it is blocked by λ (1)(t +1).
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2. Now we consider n = m+1.

a) If m2 ≤ m < m1, then this case is analogous to 1.(a): each row of λ (2)(t) may
increase by 1, independently of each other, with probability b

1+b .

b) If m2 ≤m=m1, then for (n1,n2)−(m1,m2)∈ {(0,0),(0,1)}, the condition n≤ n1

is violated, since n1 = n−1. So (3.9) is zero unless n1 =m1+1. The probabilities
that (n1,n2)− (m1,m2) = (1,0),(1,1) are proportional to b and b2, respectively,
so we obtain C2(m,m1,m2) =

1
b(1+b) . Then (3.9) equals

1n1=m1+1

(
1n2=m2

1+b
+

b1n2=m2+1

1+b

)
b

1+b
.

This computation shows that, when λ (1)(t) is increased by 1 (which occurs
with probability b

1+b), the row λ (2)
1 (t) is also increased by 1 automatically,

that is, λ (2)
1 is pushed by λ (1)

1 . Also, the second row λ (2)
2 (t) may increase with

probability b
1+b .

Assume we have a coin with probability b
1+b of turning heads and 1

1+b for tails (we
can assume b = 1 for a fair coin). All the computations above say that

(
λ (1)(t),λ (2)(t)

)
evolves with the following block-push dynamics.

1. The first partition λ (1)(t) =
(

λ (1)
1 (t)

)
grows by 1, that is, λ (1)

1 (t +1) = λ (1)
1 (t)+1 if

we obtain heads after flipping the coin;

2. If λ (1)
1 (t +1) is larger that λ (2)

1 (t), then λ (2)
1 (t) is pushed by 1 (case 2.(b));

3. If λ (1)
1 (t + 1) is equal to λ (2)

2 (t), then λ (2)
2 (t) is blocked and stays the same (case

1.(b));

4. The rows that are neither pushed nor blocked grow independently by flipping the
coin.

The evolution of
(

λ (1)(t), . . . ,λ (N)(t)
)

follows the same dynamics recursively. This
is called the block-push process. We now translate this process to the language of
particle systems. For each pair i, j satisfying 1 ≤ i ≤ j ≤ N, we define a particle x j

i that is
positioned at time t at

x j
i (t) := λ ( j)

j+1−i(t)− j+ i.

Since λ ( j)(t) is a partition, we have for each j = 1, . . . ,N and i = 1, . . . , j−1,

x j
i (t) = λ ( j)

j+1−i(t)− j+ i < λ ( j)
j+1−(i+1)(t)− j+ i+1 = x j

i+1(t),
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so for every t, x j
1(t)< x j

2(t)< · · ·< x j
j(t). This property is desired, since we do not want to

have two particles at the same position.

Moreover, for every t, we have the interlacing property

x j+1
i (t)< x j

i (t)≤ x j+1
i+1 (t) (3.10)

for each j = 1, . . . ,N − 1 and i = 1, . . . , j. To see this, we use the interlacing property of
the Markov chain λ ( j)(t)≼ λ ( j+1)(t), which means that, for each i,

λ ( j+1)
i+1 (t)≤ λ ( j)

i (t)≤ λ ( j+1)
i (t).

So we have (omitting the dependence on t)

x j+1
i = λ ( j+1)

j+2−i − ( j+1)+ i < λ ( j)
j+1−i − j+ i = x j

i ,

and for the second inequality,

x j
i = λ ( j)

j+1−i − j+ i ≤ λ ( j+1)
j+1−i − j+ i = λ ( j+1)

( j+1)+1−(i+1)− ( j+1)+(i+1) = x j+1
i+1 .

We can imagine that each partition λ ( j) defines a level of particles x j
1, . . . ,x

j
j. Since

λ ( j)(0) =∅ for each j, the positions at time t = 0 are given by x j
i (0) = i− j. We illustrate

this configuration in Figure 16.

Figure 16 – Block-Push process. Initial condition.

x1
1(0)

x2
1(0)

x3
1(0)

x2
2(0)

x3
2(0) x3

3(0)

x4
2(0) x4

3(0) x4
4(0)x4

1(0)

0−1−2−3
Source: Elaborated by the author.

The particles want to move one unit to the right, staying in the same level. The
movement of the particles that can jump is decided by the flip of a coin (if it turns heads,
the particles move, otherwise it does not). By the definition of the Markov chain, from the
interlacing property (3.10) and from the independence of the movement of some particles,
the updates follow the following rules:

The partial updates go from the bottom to the top and from the right to the left (a
particle cannot move twice in the same update);
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(Push) When a particle moves, the adjacent particle above also moves (imagine that
you have a pile of books, if you slowly push the lower one, the ones above also move);

(Block) A particle is “blocked” by the ones in the level below, that is, the ones with
same i-index can never be at same position.

In Figure 17, we see an example of simulation. Unfortunately, this text is not
written in paper from Harry Potter universe, so we cannot show animated computer
simulations here, but you can check Patrik Ferrari’s website (link in Section 1.1.1).

Remember from the Introduction, that we want to study the totally asymmetric
simple exclusion process (TASEP). In fact, we can recover the TASEP from the Block-
Push process. Moreover, we can use all the results obtained for Schur processes to compute
probabilities for the TASEP. We see this in the next section.

Figure 17 – Simulation of Block-Push process. Read the figures in the order of the numbers in
the right of each one. Particles with same i-index have the same color, to emphasize
the blocking rule. The arrows pointing to the particles indicate which particles we
are updating.
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Source: Elaborated by the author.
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3.4.2. The discrete-time TASEP
Recall the discrete-time TASEP, presented in the Introduction (Section 1.1).

Considering the left-most particles in the block-push process discussed above, which are
given by yi(t) := xi

1(t), we obtain the discrete-time TASEP (see Figure 18). The initial
conditions are yi(0) = 1− i, for each i = 1, . . . ,N. Also, recall that b defines the probability

b
1+b , which is the probability for the jump of a non-blocked particle.

The next result shows how simple is to compute a probability in the TASEP, using
the Schur process framework. We want to compute the probability that all particles have
passed a given point at time t, which is impracticable to do by hand. Note that this
probability is the same as the probability that the last particle yN(t) has passed the point.

Theorem 3.2. Consider the discrete-time TASEP with N particles (yN(t) < · · · < y1(t))

with initial condition yi(0) = 1− i. Then for every ℓ≥ 0, we have

PTASEP(yN(t)−1+N ≥ ℓ) = Sσ1,σ2(νN ≥ ℓ),

where

σ1 = ((1, . . . ,1︸ ︷︷ ︸
N

,0,0, . . .);000;0) and σ2 = (000;(b, . . . ,b︸ ︷︷ ︸
t

,0,0, . . .);0).

Proof. Consider the block-push process discussed in previous section. By Theorem 3.1 (or
Corollary 3.2), the distribution at time t is the Schur process parametrized by ρ1, . . . ,ρN ,σ2,
where

σ2 = ρ−∪ρ ′∪·· ·∪ρ ′︸ ︷︷ ︸
t

= ρ ′∪·· ·∪ρ ′ = (000;(b, . . . ,b︸ ︷︷ ︸
t

,0,0, . . .);0),

that is,

P
((

λ (1)(t), . . . ,λ (N)(t)
)
=
(

µ(1), . . . ,µ(N)
))

= Sρ1,...,ρN ,σ2

(
µ(1), . . . ,µ(N)

)
.

By Proposition 3.3, the one-dimensional marginal with respect to the N-th coordinate is
given by the Schur measure

P
(

λ (N)(t) = µ
)
= Sσ1,σ2(µ),

where
σ1 = ρ1 ∪·· ·∪ρN = ((1, . . . ,1︸ ︷︷ ︸

N

,0,0, . . .);000;0).

Since yN(t) = xN
1 (t) = 1−N +λ (N)

N (t), we have

PTASEP (yN(t)−1+N ≥ ℓ) = P
(
λ N

N (t)≥ ℓ
)
= Sσ1,σ2(νN ≥ ℓ),

as we wanted to prove. Notice that from Example 3.2, the Schur measure Sσ1,σ2 is well-
defined for b ∈ [0,1].
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Figure 18 – We recover the TASEP from the Block-Push process, projecting the left-most par-
ticles into the “ground”.

λ (1)(t)

λ (2)(t)
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TASEP
Source: Elaborated by the author.

Example 3.6. (Continuous-time TASEP) Consider a non-blocked particle in the discrete-
time TASEP. The particle jumps with probability b

1+b and stands still with probability
1

1+b . So the expected waiting-time for the jump is 1+b
b . Let τ := bt be a new variable for

the time, so that the expected waiting time in τ is 1+ b. Making b → 0, we obtain the
continuous-time TASEP, where the expected time for the jumps is 1. You can imagine
that each particle has a independent clock that rings with rate 1. When the clock of a
particle rings, the particle moves if not blocked.

From now on, we are interested in understanding the asymptotics of the TASEP,
that is, we want to study what happens when t → ∞. Nonetheless, we first need to under-
stand a little about Determinantal Point Processes, which we present in the next chapter.



85

CHAPTER

4
DETERMINANTAL POINT PROCESSES

In this chapter, we present the theory of random point processes and how we apply
it to study the TASEP. We are interested in a particular type of random point process:
the determinantal point processes. They have good properties that are applied together
with the Schur process framework to compute probabilities on the TASEP model. Some
theoretical aspects are beyond the scope of this work, since we are mostly interested in
the physical meaning and math properties to work with. We are following (BAIK; DEIFT;
SUIDAN, 2016), which is based on (JOHANSSON, 2005), so the interested reader should
check these references for more details. The lecture notes by Baik (2018) are also widely
used here.

4.1. Summary of the Chapter
Using few words, a random point process is a set of particles distributed ran-

domly in some space, with respect to some probability measure. For example, in Figure
19, we see an example of random configuration of particles on R.

Figure 19 – Illustration of a configuration in X= R.

X= R

Configuration

Particles

Source: Elaborated by the author.

We are interested in counting particles inside sets. Given a set A and a configuration
X , we define NA(X) as the number of particles of X lying on A (Figure 20).
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Figure 20 – The counting function NA.

X= RNA(X) = 3

A
Source: Elaborated by the author.

If we freeze the time t in the TASEP model, what we have is a configuration X of
random particles y1(t)> · · ·> yN(t) on {N−1,N−2, . . .}, that is, a random point process.
Recall the probability

PTASEP(yN(t)−1+N ≥ ℓ) = Sσ1,σ2(νN ≥ ℓ), (4.1)

that we compute using the Schur process. Consider the set A = {N − 1,N − 2, . . . , ℓ−N}.
The probability on the left-hand side of (4.1) is exactly P(NA(X) = 0), which we call a
gap probability.

The gap probabilities are related to the so-called correlation functions, a infinite
set of functions (ρn(x1, . . . ,xn))

∞
n=1 intrinsically present in a random point process (we

show more details later). More precisely, we have a nice formula to compute P(NA(X) = 0)
depending only on the correlation functions. This formula is given by

P(NA(X) = 0) =
∞

∑
n=0

(−1)n

n!

∫
An

ρn(y1, . . . ,yn)µ⊗n(dny). (4.2)

A special type of random point process are the determinantal point processes.
They are characterized by the existence of a two-variable function K(x,y) such that each
correlation function is given by

ρn(x1, . . . ,xn) = det
[
K(xi,x j)

]n
i, j=1

for every n ∈ N. The function K is called correlation kernel. The correlation kernel is
useful since it compresses some information in a single function. For example, the formula
in (4.2) would depend just on K. We will show later that the Schur measure induces a
determinantal point process in Z, so that (4.1) turns to be

PTASEP (yN(t)−1+N ≥ ℓ) = det
[
1−KN,ℓ,t

]
, (4.3)

where KN,ℓ,t(m,n) := 1Aℓ
(m)KN,t(m,n)1Aℓ

(n), with

KN,t(m,n) =
1

(2πi)2

∮
Γ0

∮
Γw,0

wn−1

zm
1

z−w
(1−w)N (1+ b

w

)t

(1− z)N
(
1+ b

z

)t dzdw.

The expression det
[
1−KN,ℓ,t

]
is not a matrix determinant, it is called a Fredholm de-

terminant and we will define it later.

In summary, we join together formulas from Schur processes and point processes
to obtain results for the TASEP.
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4.2. Random Point Processes
Let us denote by X the state space or particle space, it is usually a reasonable

metric space, like R, Rn, Z or some subset of these ones. As the name suggests, it is the
space where some particles lie on. A locally finite subset X ⊂X (i.e. with no accumulation
points) is called a configuration in X (see Figure 19). The set of all configurations in X

is denoted by Conf(X).

Consider a bounded set A ⊂X. Since any X ∈ Conf(X) has no accumulation points,
the intersection A∩X must have finite elements, so the function

NA : Conf(X)→{0,1,2, . . .}

X 7→ NA(X) := |A∩X |

is well-defined, where |A∩X | denotes the number of points in A∩X . The function NA

counts the number of points of X lying on A (see Figure 20). Every time that we say
particle the reader should understand as a particle of some configuration.

Note 4.1. The locally finite property of X is also necessary for physical meaning. To
illustrate, take X = [0,∞] and say that each particle of a configuration X represents the
time that a new person arrives at the queue for lunch at the university restaurant. If X is
not locally finite, we could have the first person arriving at the time t1 = 1/2, the second
at t2 = 3/4, the third at t3 = 7/8 and so on, such that the n-th person arrives at tn = 2n−1

2n .
So we have infinitely many people arriving in the finite interval of time [0,1] (see Figure
21), which clearly is not a realistic situation.

Figure 21 – The locally finite property is important.
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Source: Elaborated by the author.

We equip Conf(X) with the smallest σ -algebra such that the map NB is measurable
for every bounded set B ⊂ X, this σ -algebra is denoted by MX (it is well-defined since
P(X) has the latter property).

Definition 4.1. A random point process on X is a probability space (Conf(X),MX,P)
where P is a probability measure on the measurable space (Conf(X),MX).

Let A be a bounded set. For each n ∈ N, the set

N−1
A ({n}) = {X ∈ Conf(X) : NA(X) = n}
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is measurable, hence it does make sense to calculate P(NA(X) = n), i.e., the probability of
having n points of X lying on A.

Example 4.1. (Poisson Process on R) Let X = R. Consider a configuration X ⊂ R of
particles uniformly distributed with density 1 (that is, there is approximately one particle
in each interval of length one) and a bounded set A ⊂ R. Let us compute P(ξ (A) = n),
for any n ∈ N. For some particle x ∈ X , we cannot directly calculate P(x ∈ A) using the
proportion of lengths |A|

|R| , since |R| = ∞. To solve this problem, take M ∈ N sufficiently
large and set our particle space to be XM = [−M/2,M/2], where A ⊂ XM. Now let X =

{x1, . . . ,xM} be a configuration uniformly distributed. Notice that X has density 1 and
P(xi ∈ A) = |A|/M for every i. Let n ≤ M, so

P(NA(X) = n) =
(

M
n

)(
|A|
M

)n(
1− |A|

M

)M−n
M→∞−−−→ e−|A| |A|

n

n!
,

thus we conclude that NA(X) has the Poisson distribution with parameter |A|. One can also
prove that, if A1 and A2 are disjoint bounded intervals, then the random variables NA1(X)

and NA2(X) are independent. For more details on the Poisson process, see (BILLINGSLEY,
1995, Chapter 23).

In the last example, the careful reader would notice that the Poisson process was
not precisely defined accordingly to Definition 4.1. This is due to the difficulty to calculate
probabilities for arbitrary elements of MX. Although we can compute P(NA(X) = n), it
would be much harder to compute P(Z ⊂ X) or P(primes ⊂ X). Later we discuss a little
about the well-definition of point processes.

Example 4.2. (Bernoulli process) Let X = Z. Given p ∈ (0,1), put a particle on each
point n ∈ Z, independently, with probability p. That gives us a random configuration X ,
and consequently, a random point process.

4.2.1. Correlation Functions

Since it is impracticable to provide any example of random point process using
Definition 4.1, we discuss the main tool for having well-defined random point processes:
the correlations functions. The study of such functions goes back to Lenard (1973). Most
of the proofs in this section are omitted as they go beyond the scope of this work, so see
(LENARD, 1973; LENARD, 1975a; LENARD, 1975b) for more details about this theory.

Considering the state spaces X and Xn, we define the map

Ξn : Conf(X)−→ Conf(Xn)

X 7−→ Ξn(X) = X (n) :=
{
(xi1 , . . . ,xin)|xik 6= xi j

}
,
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where X = {x1,x2, . . .}. That is, X (n) is defined by taking all n-tuples (xi1 , . . . ,xin) of pairwise
distinct points of X (the points are taken distinct to avoid counting problems when proving
some results).

Proposition 4.1. The map Ξn defined above is measurable.

The importance of the last proposition is that if we have a point process on X, the
map Ξn induces a point process (Conf(Xn),MXn ,Pn) on Xn via

Pn(∆) = P
(
Ξ−1

n (∆)
)
, ∆ ∈ MXn .

Given a bounded set B, counting the number of points of X (n) lying on Bn is
straightforward: we have NB(X) possibilities for the first coordinate, NB(X)− 1 for the
second and so on. So we have the following proposition and an immediate corollary.

Proposition 4.2. If B is bounded, then

NBn

(
X (n)

)
= NB(X)(NB(X)−1) · · ·(NB(X)−n+1).

Corollary 4.1. Let B1, . . . ,Bℓ be disjoint bounded sets in X and n1, . . . ,nℓ ∈ N be such
that n1 + · · ·+nℓ = n, we have

NBn1
1 ×···×B

nℓ
ℓ

(
X (n)

)
=

ℓ

∏
i=1

NBi(X)(NBi(X)−1) · · ·(NBi(X)−ni +1).

Definition 4.2. Given a point process on X and a bounded set A ⊂ Xn, the expected
value

Mn(A) := E
[
NA

(
X (n)

)]
is called the n-th correlation measure of the point process.

By Corollary 4.1, the next results are immediate.

Corollary 4.2. For disjoint bounded sets B1, . . . ,Bℓ ⊂ X with n1 + · · ·+nℓ = n, we have

Mn
(
Bn1

1 ×·· ·×Bnℓ
ℓ

)
= E

[
ℓ

∏
i=1

NBi(X)(NBi(X)−1) · · ·(NBi(X)−ni +1)

]
.

Corollary 4.3. The correlations measures are symmetric, that is, for any permutation
σ ∈ Sn, we have

Mn(B1 ×·· ·×Bn) = Mn(Bσ(1)×·· ·×Bσ(n)).

Note 4.2. (BORODIN; GORIN, 2012; SOSHNIKOV, 2000) The n-th correlation measure
has the following characterization: for all bounded Borel function with bounded support,∫

X
f dMn = E

 ∑
xi1 6=···6=xin

f (xi1 , . . . ,xin)


To see this, we first prove it for characteristic functions f = χA and then extend for other
functions, as we usually do in Measure Theory.
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Let µ be a reference measure on X (as the Lebesgue measure on R or the
counting measure on Z). Suppose Mn is absolutely continuous with respect to the product
measure

µ⊗n = µ ×·· ·×µ,

on Xn, denoting this relation by Mn � µ⊗n. By Radon-Nikodym theorem (see (FOLLAND,
1999)), there exists a unique density ρn of Mn with respect to µ⊗n (that means that any
other density is equal to ρn µ-almost everywhere). In other words, we have dMn = ρndµ⊗n.

Definition 4.3. Given a reference measure µ on X such that Mn � µ⊗n on Xn, the density
ρn of Mn with respect to µ⊗n is called the n-th correlation function for the random
point process.

Note 4.3. One can see that ρn is µ-almost everywhere non-negative since Mn is a measure.
Moreover, it can be proven that ρn is symmetric (SOSHNIKOV, 2000).

Example 4.3. Suppose X= R and M1 � m, where m is the Lebesgue measure. We have

E [NA(X)] = M1(A) =
∫

A
ρ1(x)dm. (4.4)

Take a small number ∆x > 0, so we can do the approximation

ρ1(x)∆x ≈
∫ x+∆x

x
ρ1(t)dt = M1 ([x,x+∆x]) = E

[
N[x,x+∆x](X)

]
= ∑

i
P(xi ∈ [x,x+∆x]),

where X = {x1,x2, . . .}. Notice that as ∆x goes small, it is not possible to have more than
one particle on [x,x+∆x], since every point of X is isolated, thus

∑
i
P(xi ∈ [x,x+∆x]) = ∑

i
P(xi ∈ [x,x+∆x],x j /∈ [x,x+∆x] for j 6= i)

= P(there is exactly one particle in [x,x+∆x]).

With this computation, we concluded that ρ1(x) is the density for the probability to find
a particle in x. This makes sense, because integrating ρ1 in some interval A gives the
expected number of particles in A (Equation (4.4)). We also observe this for ρn, where

ρn(x1, . . . ,xn)∆x1 · · ·∆xn = P(there is exactly one particle in each [xi,xi +∆xi]).

Example 4.4. When X is discrete, given any finite set A = {x1, . . . ,xn} ⊂ X, we have
analogously to Example 4.3,

ρn(x1, . . . ,xn) = P(A ⊂ X) = P(there are particles in x1, . . . ,xn).

The last examples show that correlation functions actually have a physical mean-
ing, so it is not a surprise that they can completely determine random point processes
under some conditions. For this reason, Lenard (1973, 1975a, 1975b) was able to find
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necessary and sufficient conditions for a sequence of correlation functions (ρn)
∞
1 to be

associated with a unique random point process. In other words, under mild conditions,
any two distinct point processes on X cannot have the same sequence (ρn)

∞
1 of correlation

functions. We do not enter in such details here.

Theorem 4.1. (LENARD, 1973; LENARD, 1975a; LENARD, 1975b) A random point
process on a discrete space X is uniquely determined by its correlation functions.

To provide good examples of random point processes, we still need some results.
Let ϕ : X→ C be a bounded Borel function, we denote ‖ϕ‖∞ = supx∈X |ϕ(x)|.

Proposition 4.3. Let ϕ : X→C be a bounded Borel function with support in a bounded
set B. If a point process satisfies

∞

∑
n=0

‖ϕ‖n
∞

n!
Mn (Bn)< ∞,

then for a configuration X = {x1,x2, . . .}, we have

E

[
∞

∏
i=1

(1+ϕ(xi))

]
=

∞

∑
n=0

1
n!

∫
Xn

(
∞

∏
i=1

ϕ(yi)

)
ρn(y1, . . . ,yn)µ⊗n(dny).

Proof. (BAIK; DEIFT; SUIDAN, 2016)

Example 4.5. (Gap Probabilities) A problem of interest in random point processes is to
calculate the probability of finding no particles in a bounded set B. Proposition 4.3 helps
us with this task by taking ϕ =−χB. Indeed,

P(NB(X) = 0) = 1 ·P(NB(X) = 0)+0 ·P(NB(X)≥ 1) = E

[
∞

∏
i=1

(1−χB(xi))

]

=
∞

∑
n=0

(−1)n

n!

∫
Bn

ρn(y1, . . . ,yn)µ⊗n(dny),

so we have a nice formula to compute P(NB(X) = 0) depending only on the correlation
functions.

Another application for Proposition 4.3 is in point processes that have a “last
particle”, that is, a point process X on X = R (or X = Z) that satisfies N(t0,∞)(X) < ∞
for some t0 ∈ R. Immediately, N(t,∞)(X) < ∞ for any t ∈ R and there exists a particle
xmax(X) ∈ X such that xmax > x for every particle x ∈ X . When E

[
N(t,∞)(X)

]
< ∞, we say

that X has a last particle almost surely. The next proposition gives a sufficient condition for
a point process to have a last particle, and again it depends on the correlation functions.
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Proposition 4.4. Let X be a point process on R with n-th correlation functions (ρn)
∞
1 .

If for each t ∈ R,
∞

∑
n=0

1
n!

∫
(t,∞)n

ρn(x1, . . . ,xn)µ⊗n(dnx)< ∞,

then the process has a last particle almost surely and

P(xmax(X)≤ t) =
∞

∑
n=0

(−1)n

n!

∫
(t,∞)n

ρn(x1, . . . ,xn)µ⊗n(dnx).

Proof. (BAIK; DEIFT; SUIDAN, 2016) Let m > t be a natural number. Recall that

E
[
N(t,m)(X)

]
= M1((t,m)) =

∫
(t,m)

ρ1(x)dµ(x),

so by continuity from below, E[N(t,m)(X)]
m→∞−−−→E[N(t,∞)(X)]. Moreover, by Monotone Con-

vergence Theorem, ∫
(t,m)

ρ1(x)dµ(x) m→∞−−−→
∫
(t,∞)

ρ1(x)dµ(x),

hence, by uniqueness of limits and by hypothesis, E[N(t,∞)(X)] < ∞, so the process has a
last particle almost surely. For the second claim, we have

P(xmax ≤ t) = P(N(t,∞)(X) = 0) = lim
m→∞

P(N(t,m)(X) = 0)

= lim
m→∞

∞

∑
n=0

(−1)n

n!

∫
(t,m)n

ρn(x1, . . . ,xn)µ⊗n(dnx)

=
∞

∑
n=0

(−1)n

n!

∫
(t,∞)n

ρn(x1, . . . ,xn)µ⊗n(dnx),

by the formula for gap probabilities (Example 4.5) and by Dominated Convergence The-
orem together with the hypothesis.

After all this theory, we can finally provide nice examples of point processes.

Example 4.6. (Symmetric probability densities)(BAIK; DEIFT; SUIDAN, 2016) Let
u(x) = u(x1, . . . ,xN) be a continuous symmetric probability density on RN , that is, we
have ∫

RN
u(x1, . . . ,xN)dx = 1

and for any Borel set B,

Pu(B) =
∫

B
u(x1, . . . ,xN)dx.

Consider the map defined by

Φ : RN → Conf(R)

(x1, . . . ,xN) 7→ {x1, . . . ,xN} .
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If we assume Φ measurable, we can define a point process on R via

P(B) := Pu
(
Φ−1(B)

)
and since u(x) is continuous, we have P(xi = x j, i 6= j) = 0, that is, the points of any
configuration are pairwise distinct almost surely. For any bounded set B and k ≤ N, we
have

P(NB(X) = k) =
(

N
k

)∫
Bk×(Bc)N−k

u(x1, . . . ,xN)dx1 · · ·dxN .

For any ϕ : R→ R with bounded support,

E

[
N

∏
i=1

(1+ϕ(xi))

]
=

N

∑
n=0

1
n!
E

 ∑
xi1 6=···6=xin

ϕ(xi1) · · ·ϕ(xin)


=

N

∑
n=0

1
n!

N!
(N −n)!

∫
RN

ϕ(x1) · · ·ϕ(xn)u(x1, . . . ,xN)dx1 · · ·dxN

=
N

∑
n=0

1
n!

∫
Rn

ϕ(x1) · · ·ϕ(xn)ρn(x1, . . . ,xn)dx1 · · ·dxn,

where
ρn(x1, . . . ,xn) =

N!
(N −n)!

∫
RN−n

u(x1, . . . ,xN)dxn+1 · · ·dxN ,

which is the n-th correlation function, by Proposition 4.3.

Example 4.7. We presented in Chapter 2, the Poissonized Plancherel measure with
parameter t, given by

PPoisson
t (λ ) =

e−t |λ |t dim(λ )
(|λ |!)2 , λ ∈ Y.

Define the measurable map Φ : Y→ Conf(Z) by

Φ(λ ) := {λi − i | i = 1,2, . . . , ℓ(λ )} .

Then, in analogy to the previous example, we define a probability measure on Conf(Z) by

P(A) := PPoisson
t (Φ−1(A)),

so we have a well-defined point process. Again, we notice that the particles are distinct,
since λi − i 6= λ j − j when i 6= j. One can prove that the correlation functions for this
process are given by

ρn(x1, . . . ,xn) = det
[
K(xi,x j)

]n
i, j=1 , n ≥ 1,

for a specific function K : Z×Z→ C (see (BAIK; DEIFT; SUIDAN, 2016) for details).

Correlation functions of the form showed in Example 4.7 are also found in Random
Matrix Theory, motivating the study of a special class of point processes, which we present
now.
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4.3. Determinantal Point Processes
We start defining a specific class of random point processes.

Definition 4.4. A point process on X is called a determinantal point process (DPP)
if there exists a function K : X×X→ C such that the correlation functions (with respect
to a reference measure) are given by

ρn(x1, . . . ,xn) = det
[
K(xi,x j)

]n
i, j=1

for all n ∈ N. The function K is called correlation kernel.

Note 4.4. The correlation kernel of a determinantal point process is not unique. More
precisely, if K : X×X→C is a correlation kernel for a DPP, then for any f : X→C\{0},
the function

K̃(x,y) :=
f (x)
f (y)

K(x,y)

is also a correlation kernel for the same point process. Indeed we have

ρn(x1, . . . ,xn) = det
[
K(xi,x j)

]n
i, j=1

=
n

∏
i=1

f (xi)

f (xi)︸ ︷︷ ︸
=1

det
[
K(xi,x j)

]n
i, j=1

= det
[

f (xi)

f (x j)
K(xi,x j)

]n

i, j=1

= det
[
K̃(xi,x j)

]n

i, j=1
,

so a DPP has infinitely many correlation kernels. The kernel K̃ is called a conjugation
of K.

Example 4.8. Remember the formula for gap probabilities showed in Example 4.5. For
a DPP, we have

P(NB(X) = 0) =
∞

∑
n=0

(−1)n

n!

∫
Bn

det
[
K(yi,y j)

]
µ⊗n(dny)

=
∞

∑
n=0

(−1)n

n!

∫
Xn
1B(y1) · · ·1B(yn)det

[
K(yi,y j)

]
µ⊗n(dny)

=
∞

∑
n=0

(−1)n

n!

∫
Xn
1

2
B(y1) · · ·12

B(yn)det
[
K(yi,y j)

]
µ⊗n(dny)

=
∞

∑
n=0

(−1)n

n!

∫
Xn

det
[
1B(yi)K(yi,y j)1B(y j)

]
µ⊗n(dny).

We may want to rescale the positions of particles in point processes in the future.
The next proposition suits this purpose.
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Proposition 4.5. Let X⊂ R with Lebesgue measure µ , and consider a point process P
in X with configurations X . Define the scaled point process P̂ on the space X̂= 1

b(X−a)

with scaled configurations X̂ = 1
b(X −a), for a ∈ R and b 6= 0. If {ρn} are the correlation

functions for P, then the correlation functions for P̂ are given by

ρ̂n(x̂1, . . . , x̂n) = |b|n ρn(bx̂1 +a, . . . ,bx̂n +a), n ∈ N, x̂1, . . . , x̂n ∈ X̂.

Proof. Let Mn and M̂n be the n-th correlation measures for the processes P and P̂, respec-
tively. For a bounded Borel set B ∈ X̂n, define the characteristic functions f = χB and
g = χbB+a, then by definition we have

M̂n(B) =
∫
X̂n

f dM̂n = E

[
∑

x̂1 6=···6=x̂n

f (x̂1, . . . , x̂n)

]

= E

[
∑

x1 6=···6=xn

f
(

1
b
(x1 −a), . . . ,

1
b
(xn −a)

)]

= E

[
∑

x1 6=···6=xn

g(x1, . . . ,xn)

]
=
∫
Xn

gdMn = Mn(bB+a).

So by definition of correlation functions,

M̂n(B) = Mn(bB+a) =
∫

bB+a
ρn(x1, . . . ,xn)dµ(x),

and changing the variables to xi = bx̂i+a, for i= 1, . . . ,n, we obtain x̂i ∈B and the Jacobian
is |b|n, so

M̂n(B) =
∫

B
|b|n ρn(bx̂1 +a, . . . ,bx̂n +a)dµ(x̂)

as we wanted to prove.

Corollary 4.4. In addition to the assumptions of Proposition 4.5, suppose that P is
determinantal with correlation kernel K(x,y), then the process P̂ is also determinantal
and its correlation kernel is K̂(x̂, ŷ) = |b|K(bx̂+a,bŷ+a).

Proof. Notice that

|b|n ρn(bx̂1 +a, . . . ,bx̂n +a) = det
[
|b|K(bx̂i +a,bx̂ j +a)

]n
i, j=1

and apply Proposition 4.5.

To end the chapter, we discuss some theoretical aspects of DPPs. As we have
already commented, Lenard found conditions for a point process to be determined by its
correlation functions. Soshnikov (2000) did a similar work in the context of DPPs, finding
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conditions for a function K : X×X→ C to induce a DPP on X. These results appear in
(BAIK; DEIFT; SUIDAN, 2016), where we also see some examples. We do not present
the technical details here (in fact, we present later a simpler way to generate DPPs that
will be more useful for us).

We are interested in the answer of the following question: under what conditions a
function K(x,y) does define a DPP? This question is important for this work. To illustrate,
imagine we have a sequence PN of DPPs with correlation kernels KN , respectively. We
would like to know if this sequence converges to a point process P with correlation kernel
K, but we do not have any precise definition for convergence of point processes. If we
manage to prove that some correlation kernels are associated to unique DPPs, then we
may say that PN → P in the sense of the pointwise convergence KN(x,y)→ K(x,y). In this
regard, Soshnikov proved the following result.

Theorem 4.2. (SOSHNIKOV, 2000) Let (X,µ) be a measure space. A Hermitian locally
trace-class operator K ∈ L2(X,µ) defines a determinantal point process with correlation
kernel K if, and only if, 0 ≤ K ≤ 1. Moreover, the corresponding point process is unique.

For the convenience of the reader, we will break the conditions in Theorem 4.2
into parts. First, remember that

L2(X,µ) =
{

f : X→ C | f is measurable,
∫
X
| f (x)|2 dµ(x)< ∞

}
is equipped with the inner product

〈 f ,g〉=
∫
X

f (x)g(x)dµ(x),

so that ‖ f‖2 =
√
〈 f , f 〉 is a norm. A correlation function K :X×X→C defines an operator

K : L2(X,µ)→ L2(X,µ) by

K f (x) =
∫
X

K(x,y) f (y)dµ(y),

provided that ∫
X

∫
X
|K(x,y)|2 dµ(x)dµ(y)< ∞.

The well-definition of the operator K follows by Fubini’s theorem and Cauchy-Schwarz
inequality, since L2 is a Hilbert space. We say that K is Hermitian if K(x,y) = K(y,x) for
any x,y ∈ X. The operator K is called bounded if there exists C > 0 such that ‖K f‖2 ≤
C‖ f‖2 for every f . A trace-class operator is a special class of bounded operators that we
can obtain by the following lemma (that we can use as definition) (BAIK, 2018; BAIK;
DEIFT; SUIDAN, 2016).
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Lemma 4.1. Let (Y,ν) be a measure space and assume

K(x,y) =
∫
Y

L(x,z)R(z,y)dν(z), x,y ∈ X,

for some L : X×Y→ C and R : Y×X→ C satisfying∫
Y

∫
X
|L(x,y)|2 dµ(x)dν(y)< ∞,

∫
X

∫
Y
|R(x,y)|2 dν(x)dµ(y)< ∞,

then K is a trace-class operator on L2(X,µ). If the conditions above hold with X

replaced by any compact B of X, then K is a locally trace-class operator.

The condition 0 ≤ K ≤ 1 means that

0 ≤ 〈K f , f 〉 ≤ ‖ f‖2
2

for every compactly supported smooth function f : X→C. We will use Theorem 4.2 later
to show that the Airy point process is a DPP.

4.3.1. The Airy Point Process
We now discuss a point process that deserves special attention in this work, the

Airy point process. The basic object for the construction of the Airy point process is the
Airy function, so we start discussing it.

Definition 4.5. The Airy function Ai : R→ R is defined by the integral

Ai(x) =
1

2π

∫
γ

ei
(

z3
3 +xz

)
dz,

where the curve γ starts at ∞eiθ1 and ends at ∞eiθ2 , for θ1 ∈
(2π

3 ,π
)

and θ2 ∈
(
0, π

3

)
(see

Figure 22 for the contour).

See Figure 27 for the graph of Ai(x). The notation ∞eiθ represents a point at
infinite with argument θ . Let

f (z) := ei
(

z3
3 +xz

)
,

to ensure that Ai(x) is finite, we need | f (z)| small when |z| is large, so the real part of the
exponent must be (very) negative. Write z = Reiθ , so that z3 = R3e3iθ , we obtain

ℜ
[

i
(

z3

3
+ xz

)]
=−R3 sin(3θ)

3
− xRsinθ .

Since the cubic term R3 dominates the expression as |z| = R → ∞, we need sin(3θ) > 0.
This is satisfied by our choice of θ1 and θ2, so we have exponential decay on the extremes
of γ , hence the integral is finite.
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Figure 22 – Airy function contour. As t →±∞ the curve must not touch the gray area.

θ = π
3θ = 2π

3

γ(t)

Source: Elaborated by the author.

We also have to guarantee that the choice of γ does not matter, as long as the angles
in Definition 4.5 are satisfied. To show this, consider θ1,θ2 ∈ (0, π

3 ) and φ1,φ2 ∈ (2π
3 ,π)

such that θ1 < θ2 and φ1 < φ2. For fixed R > 0, take the curves

γ1(t) = Reit , t ∈ [θ1,θ2] ;

γ2(t) = Reit , t ∈ [φ1,φ2] ;

γ3(t) = any smooth curve connecting the points Reiθ1 and Reiφ2;

γ4(t) = any smooth curve connecting the points Reiφ1 and Reiθ2

and consider the juxtaposition γ of all of them, oriented counter-clockwise (Figure 23).

Figure 23 – γ contour.

γ1(t)
γ2(t)

γ3(t)

γ4(t)

R Reiθ1

Reiθ2

Reiφ2

Reiφ1

Source: Elaborated by the author.
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We claim that the integral of f (z) on the curves γ1 and γ2 vanishes as R → ∞. Let
us show it for γ1. The technique is to find c > 0 and R0 > 0, such that

R3

3
sin(3t)+ xRsin(t)> R3c

for every t ∈ [θ1,θ2] and R > R0. First, notice that there exists a constant d > 0 such that

∀t ∈ [θ1,θ2] , sin t > d > 0 and sin(3t)> d > 0.

Also, we have xd
R2 → 0 when R → ∞, so there exists R0 > 0 such that

∀R ≥ R0, −d
6
<

xd
R2 <

d
6
.

So when R ≥ R0 and t ∈ [θ1,θ2], we have

R3

3
sin(3t)+ xRsin(t)>

R3

3
d + xRd = R3

(
d
3
+

xd
R2

)
> R3

(
d
3
− d

6

)
= R3 d

6
,

thus we get the result by taking c = d
6 . Now we have for z on the curve γ1(t) and R ≥ R0,

| f (z)|=
∣∣∣∣ei
(

z3
3 +xz

)∣∣∣∣= eℜ
(

i
(

z3
3 +xz

))
= e−

R3 sin(3t)
3 −xRsin t < e−R3c,

so ∣∣∣∣∫γ1

f (z)dz
∣∣∣∣≤ sup

z=γ1(t)
| f (z)|ℓ(γ1)≤ e−R3c(θ2 −θ1)R

R→∞−−−→ 0,

where ℓ(γ1) denotes the arc length of γ1. The same happens with the curve γ2. Now, since
f (z) is an entire function, we have by Cauchy Theorem that∫

γ
f (z) =

∫
γ1

f (z)dz+
∫

γ2

f (z)dz+
∫

γ3

f (z)dz+
∫

γ4

f (z)dz = 0,

and when R → ∞, the integrals in γ1 and γ2 vanish, so if the integrals in γ3 and γ4 exist,
they satisfy ∫

γ3

f (z)dz =
∫

γ−1
4

f (z)dz,

where γ−1
4 is the curve γ4 oriented in the opposite direction. After all these considerations,

we conclude that the definition of the Airy function is well posed. It is also possible to
prove that Ai(x) is real-valued.

Proposition 4.6. The Airy function satisfies Ai′′(x) = xAi(x).
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Proof. By Leibniz rule, we can differentiate with respect to x under the integral sign. We
have

Ai′′(x) =
1

2π

∫
γ
−z2ei

(
z3
3 +xz

)
dz,

then

xAi(x)−Ai′′(x) =
1

2π

∫
γ

(
x+ z2)ei

(
z3
3 +xz

)
dz

=− i
2π

∫
γ

i
(
x+ z2)ei

(
z3
3 +xz

)
dz

=− i
2π

∫
γ

d
dz

ei
(

z3
3 +xz

)
dz

=− lim
a,b→∞

i
2π

ei
(

z3
3 +xz

)∣∣∣∣γ(b)
z=γ(−a)

= 0.

The limit above is zero due to the choice of γ in Definition 4.5.

Definition 4.6. The Airy kernel is the function A : R2 → R given by

A(x,y) =
Ai(x)Ai′(y)−Ai′(x)Ai(y)

x− y
.

Proposition 4.7. The Airy kernel can be expressed as

A(x,y) =
∫ ∞

0
Ai(x+ t)Ai(t + y)dt.

Proof. By a direct computation and Proposition 4.6, we have
d
dt

[
Ai(x+ t)Ai′(t + y)−Ai′(x+ t)Ai(t + y)

y− x

]
= Ai(x+ t)Ai(t + y),

so by the Fundamental Theorem of Calculus,∫ ∞

0
Ai(x+ t)Ai(t + y)dt

= lim
b→∞

Ai(x+b)Ai′(b+ y)−Ai′(x+b)Ai′(b+ y)
y− x

− Ai(x)Ai′(y)−Ai′(x)Ai(y)
y− x

.

Since Ai(s) and Ai′(s) decay as s → ∞, the first parcel above is zero, hence∫ ∞

0
Ai(x+ t)Ai(t + y)dt =

Ai(x)Ai′(y)−Ai′(x)Ai′(y)
x− y

= A(x,y).

Proposition 4.8. We have

A(x,y) =
i

(2π)2

∫
γw

∫
γz

1
z−w

ei
(

z3
3 +xz

)
ei
(

w3
3 +yw

)dzdw,

where the γz is the same contour as for the Airy function and the γw is the reflection of γz

on the real axis.
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Proof. By the change of variables x 7→ x+ t and y 7→ y+ t, we have

d
dt

i
(2π)2

∫ ∫ exp
(

i
(

z3

3 +(x+ t)z− w3

3 − (y+ t)w
))

z−w
dzdw

=
i

(2π)2

∫ ∫
i(z−w)

exp
(

i
(

z3

3 +(x+ t)z− w3

3 − (y+ t)w
))

z−w
dzdw

=− 1
(2π)2

∫
exp
(
−i
(

w3

3
+(y+ t)w

))
dw
∫

exp
(

i
(

z3

3
+(x+ t)z

))
dz.

Also, changing w 7→ −w, the integral in w is the same that defines the Airy function, so
the last expression is equal to

−1
(2π)2 (2π)2 Ai(y+ t)Ai(x+ t) =−Ai(x+ t)Ai(y+ t).

Finally, we apply the Fundamental Theorem of Calculus to obtain that

i
(2π)2

∫
γw

∫
γz

1
z−w

ei
(

z3
3 +xz

)
ei
(

w3
3 +yw

)dzdw =
∫ ∞

0
Ai(x+ t)Ai(y+ t)dt, (4.5)

using the fact that the Airy function decays exponentially in the given contours. By
Proposition 4.7, this is A(x,y).

Proposition 4.9. The Airy kernel defines a unique determinantal point process in R.

Proof. (BAIK, 2018) It suffices to check the conditions of Theorem 4.2. Since A(x,y)
is real-valued, we have A(x,y) = A(y,x) = A(y,x), by Definition 4.6, so A is Hermitian.
Motivated by Proposition 4.7, we define L : [a,∞)× [0,∞)→ R and R : [0,∞)× [a,∞)→ R
by

L(x, t) := Ai(x+ t), R(t,y) := Ai(t + y).

By the asymptotic expansion for Ai(x) (see Section 5.2.2, Example 5.3), we can guarantee
that the integrals ∫ ∞

0

∫ ∞

a
|L(x, t)|2 dxdt,

∫ ∞

a

∫ ∞

0
|R(t,y)|2 dtdy

are finite, since we have exponential decay in the integrands, as x,y, t → ∞. So by Lemma
4.1, A is a locally trace-class operator. The proof that 0 ≤A≤ 1 is more technical and we
do not show here.

4.3.2. Biorthogonal Ensembles

In this section, we discuss a special class of determinantal point processes.
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Definition 4.7. Let (X,µ) be a measure space and consider measurable functions ϕ1, . . .,
ϕN , ψ1, . . ., ψN : X→ C such that

∫
Xϕi(x)ψ j(x)dµ(x)< ∞ for every pair i, j. Also, assume

that

Z =
∫
XN

det
[
ϕi(x j)

]N
i, j=1 det

[
ψi(x j)

]N
i, j=1 dµ(x1) · · ·dµ(xN) 6= 0.

The point process on X induced by the probability density

u(x1, . . . ,xN) =
1
Z

det
[
ϕi(x j)

]N
i, j=1 det

[
ψi(x j)

]N
i, j=1

is called a biorthogonal ensemble.

Note 4.5. The density u(x1, . . . ,xN) is symmetric, since permutations of variables are
permutations of columns in the matrices. Therefore, by Example 4.6, u(x1, . . . ,xN) indeed
induces a point process on X.

Given a biorthogonal ensemble, in the notation of Definition 4.7, the Gram ma-
trix associated is the matrix

G = [Gi j]
N
i, j=1, Gi j :=

∫
X

ϕi(x)ψ j(x)dµ(x). (4.6)

Proposition 4.10 (Andréief’s integration formula). We have

det
[∫

X
ϕi(x)ψ j(x)dµ(x)

]
=

1
N!

∫
XN

det
[
ϕi(x j)

]
det
[
ψi(x j)

]
dµ(x1) · · ·dµ(xN). (4.7)

Proof. (BAIK, 2018) Remember the property for multiple integrals of a product of func-
tions depending on distinct variables:∫ ∫

f (x)g(y)dµ(x)dµ(y) =
∫

f (x)dµ(x)
∫

g(y)dµ(y). (4.8)

By definition of determinant on
[
ψi(x j)

]
, the right-hand side integral on (4.7) is

∫
XN

det
[
ϕi(x j)

](
∑
σ

sgn(σ)
N

∏
j=1

ψσ( j)(x j)

)
dµ(x1) · · ·dµ(xN)

= ∑
σ

sgn(σ)
∫
XN

det
[
ϕi(x j)

]( N

∏
j=1

ψσ( j)(x j)

)
dµ(x1) · · ·dµ(xN)

= ∑
σ

sgn(σ)
∫
XN

det
[
ϕi(x j)ψσ( j)(x j)

]
dµ(x1) · · ·dµ(xN).

Since the integrand is a determinant (i.e. a sum of products of functions depending on
distinct variables), we apply property (4.8) and multilinearity of determinant to see that
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this expression is equal to

∑
σ

sgn(σ)det
[∫

X
ϕi(x)ψσ( j)(x)dµ(x)

]
= ∑

σ
sgn(σ)sgn(σ−1)det

[∫
X

ϕi(x)ψ j(x)dµ(x)
]

= N!det
[∫

X
ϕi(x)ψ j(x)dµ(x)

]
as we wanted to prove.

Corollary 4.5. The Gram matrix G associated to a biorthogonal ensemble is invertible.

Proof. By Andréief’s formula,

0 6= Z =
∫
XN

det
[
ϕi(x j)

]
det
[
ψi(x j)

]
dµ(x1) · · ·dµ(xN)

= N!det
[∫

X
ϕi(x)ψ j(x)dµ(x)

]
= N!detG,

hence detG 6= 0.

Note 4.6. If the sets of functions {ϕi} and {ψi} form a biorthogonal system, in the sense
that

∫
Xϕi(x)ψ j(x)dµ(x) = ci jδi j, then the Gram matrix is easy to invert. That is the reason

for the term biorthogonal ensemble.

Example 4.9. (Generalized Wishart Ensemble) Consider two sets of pairwise distinct
real numbers a1, . . . ,aN and b1, . . . ,bN such that ai+b j > 0 for every pair i, j = 1, . . . ,N. A
simple computation shows that the functions ϕi,ψi : R+ → R given by

ϕi(x) := e−aix, ψi(x) := e−bix,

for i = 1, . . . ,N, satisfy ∫ ∞

0
ϕi(x)ψ j(x)dx =

1
ai +b j

< ∞.

The formula

det
[

1
ai +b j

]
=

∏k<ℓ (aℓ−ak)(bℓ−bk)

∏k,ℓ (ak +bℓ)
6= 0 (4.9)

holds and it is known as the Cauchy determinant. By Andréief’s integration formula
(Proposition 4.10) and by (4.9),∫ ∞

0
· · ·
∫ ∞

0
det
[
ϕi
(
x j
)]

det
[
ψi
(
x j
)]

dx1 · · ·dxN = N!det
[∫ ∞

0
ϕi (x)ψ j (x)dx

]
= N!det

[
1

ai +b j

]
6= 0,

so we have a biorthogonal ensemble.
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The next goal is to prove that the point process induced by a biorthogonal ensemble
is determinantal. For this purpose, we need the following technical lemma.

Lemma 4.2 (Reproducing kernel lemma). Let L : X×X→ C be a function such that

∀x,z ∈ X,
∫
X

L(x,y)L(y,z)dµ(y) = L(x,z) (4.10)

and ∫
X

L(x,x)dµ(x) = k, (4.11)

then for every n > 1,∫
X

det
[
L(xi,x j)

]n
i, j=1 dµ(xn) = (k−n+1)det

[
L(xi,x j)

]n−1
i, j=1 .

Proof. (BAIK, 2018) We are proving for n = 3, since the general case follows the same
idea. Expanding the determinant of

[
L(xi,x j)

]N
i, j=1 along the last row, we obtain

det
[
L(xi,x j)

]N
i, j=1 = L(x3,x1)

∣∣∣∣∣L(x1,x2) L(x1,x3)

L(x2,x2) L(x2,x3)

∣∣∣∣∣
−L(x3,x2)

∣∣∣∣∣L(x1,x1) L(x1,x3)

L(x2,x1) L(x2,x3)

∣∣∣∣∣+L(x3,x3)

∣∣∣∣∣L(x1,x1) L(x1,x2)

L(x2,x1) L(x2,x2)

∣∣∣∣∣ .
Multiplying the constant outside the first two parcels in the last column of the matrices,
we have

det
[
L(xi,x j)

]N
i, j=1 =

∣∣∣∣∣L(x1,x2) L(x1,x3)L(x3,x1)

L(x2,x2) L(x2,x3)L(x3,x1)

∣∣∣∣∣
−

∣∣∣∣∣L(x1,x1) L(x1,x3)L(x3,x2)

L(x2,x1) L(x2,x3)L(x3,x2)

∣∣∣∣∣+L(x3,x3)

∣∣∣∣∣L(x1,x1) L(x1,x2)

L(x2,x1) L(x2,x2)

∣∣∣∣∣ .
Integrating with respect to x3, we use linearity and hypothesis (4.10) and (4.11) to obtain
that

∫
X

det
[
L(xi,x j)

]N
i, j=1 dµ(x3) =

∣∣∣∣∣L(x1,x2) L(x1,x1)

L(x2,x2) L(x2,x1)

∣∣∣∣∣
−

∣∣∣∣∣L(x1,x1) L(x1,x2)

L(x2,x1) L(x2,x2)

∣∣∣∣∣+ k det
[
L(xi,x j)

]2
i, j=1

and this is equal to

k det
[
L(xi,x j)

]2
i, j=1 −2det

[
L(xi,x j)

]2
i, j=1 ,

as we wanted to prove.
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Theorem 4.3. A biorthogonal ensemble is a determinantal point process. More precisely,
the function K : X×X→ C defined by

K(x,y) =
N

∑
i, j=1

ϕi(x)
(
G−T)

i j ψ j(y)

is the correlation kernel of the point process, where G is the Gram matrix associated to
this ensemble.

Proof. (BAIK, 2018) By Corollary 4.5, we have detG 6= 0 and Z =N!detG, so we can write

u(x1, . . . ,xN) =
det
[
ϕi(x j)

]
det
[
ψi(x j)

]
N!detG

=
det
[
ϕi(x j)

]
det
(
G−1)det

[
ψi(x j)

]
N!

=
det
[
K(xi,x j)

]
N!

(4.12)

The last equality above is due to the fact that[
K(xi,x j)

]
=
[
ϕi(x j)

]T G−T [ψi(x j)
]
,

simply by definition of multiplication of matrices. Remember from Example 4.6 that the
correlation functions for a symmetric density function is

ρn(x1, . . . ,xN) =
N!

(N −n)!

∫
XN−n

u(x1, . . . ,xN)dµ (xn+1) · · ·dµ (xN) ,

for n = 1,2,3, . . .. By (4.12),

ρn(x1, . . . ,xN) =
1

(N −n)!

∫
XN−n

det
[
K(xi,x j)

]
dµ (xn+1) · · ·dµ (xN) . (4.13)

For each i = 1, . . . ,N, define Ψi(x) = ∑N
j=1
(
G−T)

i j ψ j(x), so that K(x,y) = ∑N
i=1 ϕi (x)Ψi (y).

Since G−T GT = Id,

δi j =
N

∑
ℓ=1

(
G−T)

iℓ

(
GT)

ℓ j

=
N

∑
ℓ=1

(
G−T

iℓ

)∫
X

ϕ j (x)ψℓ (x)dµ (x)

=
∫
X

ϕ j (x)Ψi (x)dµ (x) ,

thus the sets of functions {ϕi} and {Ψi} form a biorthonormal system. From this, we have∫
X

K (x,x)dµ (x) = N (4.14)
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and ∫
X

K (x,y)K (y,z)dµ(y) =
N

∑
i, j=1

ϕi(x)Ψ j(z)
∫
X

ϕ j (y)Ψi (y)dµ (y)︸ ︷︷ ︸
=δi j

=
N

∑
i=1

ϕi (x)Ψi (z) = K (x,z) . (4.15)

Equations (4.14) and (4.15) are exactly the hypotheses for Lemma 4.2, therefore we have∫
X

det
[
K
(
xi,x j

)]N
i, j=1 dµ (xN) = det

[
K
(
xi,x j

)]N−1
i, j=1 .

We can apply the lemma again, integrating with respect to xN−1, obtaining∫
X2

det
[
K
(
xi,x j

)]N
i, j=1 dµ (xN−1)dµ (xN) = 2det

[
K
(
xi,x j

)]N−2
i, j=1 .

Applying the lemma N −n times, we obtain∫
XN−n

det
[
K(xi,x j)

]N
i, j=1 dµ (xn+1) · · ·dµ (xN) = (N −n)!det

[
K
(
xi,x j

)]n
i, j=1 ,

hence, from (4.13), the nth correlation kernel is given by

ρn (x1, . . . ,xn) = det
[
K
(
xi,x j

)]n
i, j=1 ,

so the point process is determinantal.

In the following sections, we show how to use this theory, together with Schur
process, to study the TASEP model.

4.4. The Schur Measure as a Determinantal Point Pro-
cess

4.4.1. Shifted Schur Measure
We showed in Section 2.5 that any sequence α = (α1 ≥ α2 ≥ ·· · ≥ 0) satisfying

∑i αi < ∞ defines a specialization ρ = (α;000;0), which acts on symmetric functions as the
evaluation map xi 7→ αi (Example 2.35). Take a finite sequence a = (a1 ≥ ·· · ≥ aN) and
consider the Schur-positive specialization

a = ((a1, . . . ,aN ,0,0, . . .);000;0). (4.16)

By the definition of Schur functions (Definition 2.23), evaluating a Schur function in a is
the same as evaluating the Schur polynomial in N variables on the values a1, . . . ,aN , that
is,

sλ (a1, . . .aN ,0,0, . . .) = sλ (a1, . . . ,aN) .
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Let a = (a1, . . . ,aN) and b = (b1, . . . ,bN) with ai,b j ≥ 0 and aib j < 1 for all i, j (we
will justify this assumption later). Considering the corresponding specializations a and b,
as in (4.16), the Schur measure parametrized by a and b is now given in terms of Schur
polynomials, i.e.,

Sa,b(λ ) =
sλ (a)sλ (b)

∏(a,b)
=

sλ (a1, . . . ,aN)sλ (b1, . . . ,bN)

∏(a,b)
, λ ∈ Y,

where ∏(a,b) = ∏1≤i, j≤N
1

1−aib j
. Observe that Sa,b is supported on {λ : ℓ(λ )≤ N} by def-

inition of Schur polynomials.

We would like to define a point process using the Schur measure. For this purpose,
we could assume that each term of a partition λ is a particle on Z+ = {0,1,2, . . .}. But
there is a problem: we may have λi = λ j for i 6= j, so there would be two particles on the
same position. To avoid this situation, define

µi := λi +N − i, i = 1, . . . ,N,

where ℓ(λ )≤ N, so that µ1 > µ2 > · · ·> µN ≥ 0, thus

XN(λ ) := (µ1, . . . ,µN)

is a configuration in Z+.

Definition 4.8. Let a = (a1, . . . ,aN) and b = (b1, . . . ,bN) with ai,b j > 0 and aib j < 1 for
every pair i, j. The shifted Schur measure parametrized by a and b is the probability
measure on ZN

+ given by

SShift
a,b (x1, . . . ,xN) =

det
[
ax j

i
]

det
[
bx j

i
]

N!det
[
a j−1

i

]
det
[
b j−1

i

]
∏(a,b)

, (x1, . . . ,xN) ∈ ZN
+,

where all the matrices above are N ×N.

We have some remarks about the above definition.

Note 4.7. The function SShift
a,b is non-negative and symmetric, since permutations of vari-

ables are permutations on columns of the matrices.

Note 4.8. If xi = x j for some i 6= j, them column vectors axi and ax j are equal, so
SShift

a,b (x1, . . . ,xN) = 0. This is an essential property since it means that we almost surely do
not have two particles at the same position.

Note 4.9. Given XN(λ ) = (µ1, . . . ,µN) for ℓ(λ )≤ N, we have by Note 4.7,

∑
x∈σ(XN(λ ))

SShift
a,b (x1, . . . ,xN) = N!SShift

a,b (µ1, . . . ,µN) =
sλ (a)sλ (b)

∏(a,b)
= Sa,b(λ )

where σ(XN(λ )) denotes the set of all permutations of XN(λ ). In other words, the sym-
metrized version of SShift

a,b is the Schur measure.
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By the remarks above, we can guarantee that the shifted Schur measure is indeed
a probability measure in ZN

+, since

∑
x∈ZN

+

SShift
a,b (x1, . . . ,xN) = ∑

x1 6=···6=xN

SShift
a,b (x1, . . . ,xN)

= ∑
λ

∑
x∈σ(XN(λ ))

SShift
a,b (x1, . . . ,xN) = ∑

λ
Sa,b(λ ) = 1.

Since it is a symmetric measure, it induces a N-point process on Z+ as we showed in
Example 4.6. This process is a biorthogonal ensemble (compare the Definitions 4.7 and
4.8) and consequently it is a DPP (Theorem 4.3). Moreover, we obtain a nice formula for
the correlation kernel, given by a complex double integral, as we show next.

Proposition 4.11. The N-point process induced by the shifted Schur measure SShift
a,b is

determinantal and the correlation kernel is given by

K(x,y) =
1

(2πi)2

∮
Γb

∮
Γa

zxwy

1− zw

N

∏
i=1

(1−bkz)(1−akw)
(z−ak)(w−bk)

dzdw (4.17)

where the contours Γa and Γb are disjoint and enclose all the singularities ai’s and b j’s,
respectively. More precisely, we take w= reit and z= seit , for r >max{bi} and s>max{ai},
such that rs < 1 and s < r.

Proof. Assume Z+ is equipped with the standard counting measure. By definition,

SShift
a,b (x1, . . . ,xN) =

1
Z

det
[
ax j

i
]

det
[
bx j

i
]
,

where Z =N!det
[
a j−1

i

]
det
[
b j−1

i

]
∏(a,b). Considering the functions ϕi(x) = ax

i and ψi(x) =

bx
i , for i, j = 1, . . . ,N, we see that PShift

a,b is a biorthogonal ensemble in Z+, since

∀i, j,
∫
Z+

ϕi(x)ψ j(x)dµ(x) =
∞

∑
n=0

an
i bn

j < ∞.

by the assumption that
∣∣aib j

∣∣ < 1 for every i, j. Therefore, by Theorem 4.3, this point
process is determinantal with correlation kernel given by

K(x,y) =
N

∑
i, j=1

ax
i by

j(G
−t)i j (4.18)

where G = (Gi j) with

Gi j =
∞

∑
n=0

an
i bn

j =
1

1−aib j
.

To obtain an explicit formula for K(x,y) we need to compute G−t . By Andréief’s formula
(Proposition 4.10),

Z =
∫
ZN
+

det
[
ϕi(x j)

]
det
[
ψi(x j)

]
dµ⊗N(x)

= N!det
[∫

Z
ϕi(x)ψ j(x)dµ(x)

]
= N!detG,
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so

det
[
Gi j
]
= det

[
a j−1

i

]
det
[
b j−1

i

]
∏(a,b) =

∏
1≤k<ℓ≤N

(ak −aℓ)(bk −bℓ)

∏
1≤k,ℓ≤N

(1−akbℓ)
. (4.19)

By Cramer’s rule, (
G−T)

i j = (−1)i+ j detG(i, j)

detG

where G(i, j) is the matrix obtained removing the i-th row and the j-th column of the
matrix G. Notice that G(i, j) is a matrix of the same type of G, so we can compute detG(i, j)

with a similar formula as seen in (4.19). After some computation, we conclude that

(
G−T)

i j =

N

∏
k=1

(1−aibk)(1−akb j)

(1−aib j)∏
k 6=i

(ai −ak)∏
k 6= j

(b j −bk)
.

Now we apply the Residue Theorem to compute the integral in (4.17), obtaining exactly
the kernel in (4.18). The contours are possible to find, since aib j < 1 for every pair i, j.

Corollary 4.6. The correlation kernel obtained in Proposition 4.11 can be also written
as

K(x,y) =
1

(2πi)2

∮
Γb

∮
Γw,0

wy−N

vx−N+1
1

v−w
H(a,v)H(b,w−1)

H(a,w)H(b,v−1)
dvdw

where Γb encloses all the b j’s and Γw,0 encloses the point 0 and the variable w (which
is fixed when integrating in v). Also, we denote H(a,u) = ∏N

k=1
1

1−aku and the same for
H(b,u).

Proof. In the kernel obtained in Proposition 4.11, consider the change of variable z 7→ 1
v ,

so that dz = −dv
v2 and the v-contour is a circle of radius 1

s > r oriented clockwise. The
w-contour is in the interior of the v-contour, so the integral is well-posed. Since the v-
contour is oriented clockwise, we change its orientation, multiplying the integral by −1,
hence canceling the sign of −dv

v2 . We have

K(x,y) =
1

(2πi)2

∮
Γb

∮
Γw,0

v−xwy

1−wv−1

N

∏
k=1

(1−bkv−1)(1−akw)
(v−1 −ak)(w−bk)

dv
v2 dw

=
1

(2πi)2

∮
Γb

∮
Γw,0

wy

vx+1
1

v−w
w−N

v−N

N

∏
k=1

(1−bkv−1)(1−akw)w
(v−1 −ak)(w−bk)v

dvdw

and we get the result by noticing that

H(a,v)H(b,w−1)

H(a,w)H(b,v−1)
=

(1−bkv−1)(1−wak)w
(v−1 −ak)(w−bk)v

.
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4.4.2. The Schur measure is a DPP

In this section, we show that the Schur measure induces a determinantal point
process and we obtain a nice formula for the correlation kernels, which is a indispensable
tool for the asymptotic analysis on the next chapter.

Consider the state space X= Z with the standard counting measure. Let λ range
over Y and define the map Φ : Y→ Conf(Z) by

λ 7→ Φ(λ ) := X(λ ) = {λi − i+1}∞
i=1 ,

which is measurable and the points of X(λ ) are distinct. Given specializations ρ1 and ρ2,
the probability measure given by

P(A) = Sρ1,ρ2

(
Φ−1(A)

)
, A ∈ MConf(Z)

defines a point process on Z. From now on, we will refer to this process just as configura-
tions X(λ ) = {λi − i+1}∞

i=1.

Theorem 4.4. (OKOUNKOV, 2001) The point process X(λ ) = {λi − i+ 1}∞
i=1 ⊂ Z in-

duced by Sρ1,ρ2 is determinantal and the correlation kernel is

K(i, j) =
1

(2πi)2

∮
Γw

∮
Γz

w j−1

zi
1

z−w
H(ρ1,z)H(ρ2,w−1)

H(ρ1,w)H(ρ2,z−1)
dzdw,

where

H(ρ,v) =
∞

∑
k=0

hk(ρ)vk = eγz ∏
i

1+βiv
1−αiv

, ρ = (α,β ,γ).

Also, the contours are |w|= R1 and |z|= R2 with R1 < R2 so that the functions H(ρ,v−1)

and H(ρ,v) are analytic in R1 − ε < |v|< R2 + ε .

Proof. We present the main ideas of a proof by Johansson (2001b). By the expression for
correlation functions on discrete case (see Example 4.4), we need to prove that, for every
finite set A = {a1, . . . ,an} ⊂ Z,

det
[
K(ai,a j)

]n
i, j=1 = ρn(a1, . . . ,an) = P(A ⊂ X(λ ))

= ∑
λ :A⊂X(λ )

Sρ1,ρ2(λ ) = ∑
λ :A⊂X(λ )

sλ (ρ1)sλ (ρ2)

∏(ρ1,ρ2)
.

For this purpose, it suffices to show that, for indeterminates x = {x1,x2, . . .} and y =

{y1,y2, . . .}, the formal identity

det
[
K̂(ai,a j)

]n

i, j=1
= ∑

λ :A⊂X(λ )

sλ (x)sλ (y)
∏(x,y)

(4.20)
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is valid, where K̂ is K with the specializations ρ1 = (x;000;0) and ρ2 = (y;000;0). One can show
that it suffices proving (4.20) for finite variables, that is, we assume x= {x1, . . . ,xN ,0,0, . . .}
and y = {y1, . . . ,yN ,0,0, . . .}. Since sλ (x1, . . . ,xN) = 0 when ℓ(λ )> N, we can also suppose
that we have only N particles, so the configuration is {λi − i+1}N

i=1. The reason why this
assumption works is the fact that the particles of X(λ ), with index i > N, are determin-
istically distributed when ℓ(λ ) ≤ N, so they do not affect the correlation function. By a
shift of N − 1, we may even work with the configuration XN(λ ) = {λi +N − i}N

i=1 ⊂ Z+.
This one is exactly the point process induced by the shifted Schur measure SShift

x,y , which
we know by Corollary 4.6, that it is a determinantal point process with correlation kernel

K̃(i, j) =
1

(2πi)2

∮
Γy

∮
Γw,0

w j−N

vi−N+1
1

v−w
H(x,v)H(y,w−1)

H(x,w)H(y,v−1)
dvdw

This means that the n-th correlation functions for the process XN(λ ) induced by SShift
x,y are

given by

ρ̃n(a1, . . . ,an) = det
[
K̃(ai,a j)

]N

i, j=1
,

therefore, the nth correlation functions for the process {λi − i+1}N
i=1 is

ρ̂n(a1, . . . ,an) = P
(
{a1, . . . ,an} ⊂ {λi − i+1}N

i=1

)
= P({a1 +N −1, . . . ,an +N −1} ⊂ XN(λ ))

= ρ̃n (a1 +N −1, . . . ,an +N −1)

= det
[
K̃(si +N −1,s j +N −1)

]n

i, j=1
,

hence,

K̂(i, j) = K̃(i+N −1, j+N −1)

=
1

(2πi)2

∮
Γy

∮
Γw,0

w j−1

vi
1

v−w
H(x,v)H(y,w−1)

H(x,w)H(y,v−1)
dvdw

as we wanted to prove in (4.20).

4.4.3. TASEP and DPPs
Now we come back to the TASEP. Remember the last results obtained in Chapter

3. We consider the following definition that for now just simplifies the notation.

Definition 4.9. Let (X,µ) be a measure space and K : X×X → C. The Fredholm
determinant of K is defined by

det [1+ zK] := 1+
∞

∑
n=1

zn

n!

∫
Xn

det
[
K(xi,x j)

]n
i, j=1 dµ⊗n(x),

when this sum converges.
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We can now rewrite Theorem 3.2 in the following form.

Theorem 4.5. Let t ≥ N and Aℓ = {−N +1,−N +2, . . . , ℓ−N −1, ℓ−N}. We have

PTASEP (yN(t)−1+N ≥ ℓ) = det
[
1−KN,ℓ,t

]
,

where KN,ℓ,t(m,n) := 1Aℓ
(m)KN,t(m,n)1Aℓ

(n), with

KN,t(m,n) =
1

(2πi)2

∮
Γ0

∮
Γw,0

wn−1

zm
1

z−w
(1−w)N (1+ b

w

)t

(1− z)N
(
1+ b

z

)t dzdw.

The contours are |w|= R1 < R2 = |z|, such that the z-contour contains the singularities w

and 0 (and not −b), and the w-contour contains 0.

Proof. (BAIK, 2018) Since sλ (σ1) = sλ (1, . . . ,1) and t ≥ N, the Schur measure Sσ1,σ2 in
Theorem 3.2 is supported on partitions with ℓ(λ ) ≤ N. So we may assume that the
point process {λi − i+1}∞

1 ⊂ Z induced by Sσ1,σ2 is a N-point process in {λi − i+1}N
1

on X = {−N +1,−N +2, . . .}, because the particles on the left of 1−N are deterministi-
cally distributed. Now λN −N+1 is the left-most particle, so P(λN −N +1 ≥ ℓ−N +1) is
the gap probability for having no particles in Aℓ = {−N +1,−N +2, . . . , ℓ−N}. So from
Example 4.8,

P(λN −N +1 ≥ ℓ−N +1) = P(NAℓ
(X(λ )) = 0)

=
∞

∑
n=0

(−1)n

n!

∫
Xn

det
[
1Aℓ

(mi)KN,t(mi,m j)1Aℓ
(m j)

]n
i, j=1 dµ⊗n(m)

where

KN,t(m,n) =
1

(2πi)2

∮ ∮ wn−1

zm
1

z−w
H(σ1,z)H(σ2,w−1)

H(σ1,w)H(σ2,z−1)
dzdw.

Notice that

H(σ1,z) =
(

1
1− z

)N

and H(σ2,z−1) =

(
1+

b
z

)t

,

so

KN,t(m,n) =
1

(2πi)2

∮
Γ0

∮
Γw,0

wn−1

zm
1

z−w
(1−w)N(1+ b

w)
t

(1− z)N(1+ b
z )

t
dzdw.

Here, the contours are |w| = R1 and |z| = R2, where R1 < R2, such that the z-contour
contains the singularities w and 0 (and not −b), and the w-contour contains 0. Thus, by
definition of Fredholm determinant with z =−1,

P(λN(t)−N +1 ≥ ℓ−N +1) = det
[
1−KN,ℓ,t

]
.

Noticing that yN(t) = λN(t)−N +1, we finally obtain

P(yN(t)−1+N ≥ ℓ) = P(λN(t)−N +1 ≥ ℓ−N +1) = det
[
1−KN,ℓ,t

]
,

as we wanted.
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Scaling the time to be τ = bt and making b → 0, we obtain the continuous-time
TASEP (Example 3.6). For any v ∈ C, we have(

1+
b
v

)t

=

(
1+

v−1

b−1

) τ
b b→0−−→ e

τ
v (4.21)

and this remark leads to the next proposition.

Proposition 4.12. For continuous-time TASEP, the gap probability computed in Theo-
rem 4.5 holds for the kernel

KN,τ(m,n) =
1

(2πi)2

∮
Γ0

∮
Γ1

wn−1

zm
1

w− z
(1−w)N

(1− z)N e
τ
w−

τ
z dzdw.

Proof. By (4.21), we have

KN,τ(m,n) =
1

(2πi)2

∮
Γ0

∮
Γw,0

wn−1

zm
1

z−w
(1−w)N

(1− z)N e
τ
w−

τ
z dzdw,

so we just need to deform the z-contour. The only singularity outside the z-contour is 1, so
taking a contour Γ1 containing 1 oriented clockwise does not affect the integral (provided
that the residue at infinity is zero), that is

KN,τ(m,n) =
1

(2πi)2

∮
Γ0

∮
Γ1

wn−1

zm
1

z−w
(1−w)N

(1− z)N e
τ
w−

τ
z dzdw.

Now, changing the orientation of Γ1 we get

KN,τ(m,n) =
1

(2πi)2

∮
Γ0

∮
Γ1

wn−1

zm
1

w− z
(1−w)N

(1− z)N e
τ
w−

τ
z dzdw.

The expression for this kernel is similar to the correlation kernel for the Laguerre
Unitary Ensemble (LUE), a biorthogonal ensemble from Random Matrix Theory. This
emsemble, when rescaled, converges to the Airy point process (BAIK, 2018). Motivated
by this, we wonder if we can find a scaled version for the continuous-time TASEP that
converges to the Airy point process, in the sense of convergence of the underlying kernels.
The answer is yes! We do this in the final chapter.
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CHAPTER

5
ASYMPTOTICS

The goal of this final chapter is simple but not easy to achieve: we want to study
the behavior of the particles in the TASEP model in large time scale. As a consequence of
all the work we have done until now, this task is reduced to understanding a kernel K(x,y)

that depends on time. We rescale the positions of the particles and then use asymptotic
methods to prove that this scaled version of the model is closely related to the Airy point
process, giving rise to the Tracy-Widom distribution.

5.1. Summary of the Chapter
In this chapter, the last one, we use asymptotic methods to understand the TASEP

in large time scale. We first study some useful asymptotic methods: the Laplace method
and the Steepest Descent method. They are used to approximate a function f (x),
defined by a “strange” formula, by a simpler function g(x), for x large. For example, the
Stirling’s formula for factorial, given by

n! '
√

2πn
(n

e

)n
,

for n large, is obtained by Laplace’s method.

After understanding the asymptotic methods, we explore their usage to see what
happens to the formula (4.3), as t → ∞. Since the formula depends just on the kernel KN,t ,
we must analyze it.

If we simply send t to infinity in KN,ℓ,t , it will probably diverge. So we have to rescale
the positions of the particles, defining new particles x̂ = 1

β (x−α), for suitable constants
α and β . With this procedure, we obtain a rescaled point process with a rescaled kernel
K̂ξ ,t (where ξ depends on ℓ), so that equation (4.3) can be rewritten as

P
(

yN(t)−α
β

≤ ξ
)
= det

[
1− K̂ξ ,t

]
.
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A proper choice for α and β is fundamental. They are defined by

α = c1t2/3 + c3t1/3 and β = c2t1/3.

The specific powers t1/3 and t2/3 are due to the so-called KPZ scaling, they do not appear
here simply by chance, there is a physical interpretation behind them. The constants c1,
c2 and c3 will be showed later. Now, for t large, we have

P
(

yN(t)−α
β

≤ ξ
)
' P

(
yN(t)− c1t2/3

c2t1/3 ≤ ξ

)
, (5.1)

where the notation ' indicates that for t → ∞ the term with t2/3 is much larger than the
term with t1/3, so we discard the latter one.

Now we invite the reader to recall the Central Limit Theorem, which states that,
for a sequence {X1,X2, . . .} of i.i.d. random variables, the quantity Sn−µ

σ converges in distri-
bution to the Gaussian distribution, where Sn = X1 + · · ·+Xn and µ and σ2 are the mean
and the variance of each Xi, respectively. Looking back at (5.1), we notice a expression
similar to Sn−µ

σ . So we are trying to find a “Central Limit Theorem” for fluctuations of
the particles in the TASEP model.

The main result we obtain in this chapter (using the steepest descent method) is
the pointwise convergence of the scaled kernel K̂ξ ,t to the kernel Aξ of the Airy point
process, a well-known point process in the literature. At the end we show some ideas on
how to improve this convergence to obtain the convergence of Fredholm determinants

det
[
1− K̂ξ ,t

]
→ det

[
1−Aξ

]
.

The expression on the right-hand side on the latter equation is the celebrated Tracy-
Widom distribution F2(ξ ).

5.2. Asymptotic Methods
Given complex valued sequences u(n) and v(n), we write u(n)' v(n) if lim u(n)

v(n) = 1
as n → ∞, and we say that u(n) converges to v(n) asymptotically.

The reader should also understand the big O notation, used to describe the limiting
behavior of a function close to a point (or close to infinity). For functions f ,g : R→R, we
write f (x) = O(g(x)) as x → c, if there exist M > 0 and δ > 0 such that

∀x ∈ (c−δ ,c+δ ), | f (x)| ≤ M |g(x)| .

Analogously, we have f (x) = O(g(x)) as x → ∞, if there exist M > 0 and x0 ≥ 0 such that

∀x ≥ x0, | f (x)| ≤ M |g(x)| .

For complex functions, the definitions are analogous.
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Example 5.1. Let f (x) = 13x4 +2x3 −54x+2. For M = 71 and x0 = 1, we have for every
x > x0,

| f (x)| ≤ 13
∣∣x4∣∣+2

∣∣x3∣∣+54 |x|+2

≤ 13
∣∣x4∣∣+2

∣∣x4∣∣+54
∣∣x4∣∣+2

∣∣x4∣∣
= 71

∣∣x4∣∣ ,
thus f (x) = O

(
x4) as x → ∞.

Example 5.2. We can write the exponential near 0 as

ex = 1+ x+
x2

2!
+

x3

3!
+

x4

4!
+ · · ·

= 1+ x+
x2

2!
+O

(
x3) as x → 0

= 1+ x+O
(
x2) as x → 0

= 1+O(x) as x → 0.

We now proceed to an overview of the main asymptotic methods we need.

5.2.1. Laplace Method
Some functions are defined by integrals, as the Gamma function and the Airy

function discussed in Section 4.3.1, so it may be not easy to understand the behavior
of such functions. For this reason, Laplace’s method helps us to approximate such
functions by simpler ones. More precisely, we are interested in approximating integrals of
the type

I(N) =
∫ b

a
eN f (x)dx (5.2)

as N → ∞, where a and b can be ±∞. We are looking for a less complicated function g

such that I(N) ' g(N). The function g is called an asymptotic expansion for I(N). A
well-known asymptotic expansion is the Stirling’s formula for factorial, which states that

n! '
√

2πn
(n

e

)n
.

This is obtained by Laplace’s method, Figure 24 shows how good this approximation is.

Let us briefly review how the method works. Assume f (in (5.2)) has a unique
maximum at xc ∈ (a,b). Since f (x) < f (xc) for any x 6= xc, the number eN f (x) becomes
exponentially smaller than eN f (xc), as N →∞. Fix a small neighborhood V = [xc −δ ,xc +δ ],
then the integral is much smaller in [a,b]\V than in V , thus we expect

I(N) =
∫ b

a
eN f (x)dx '

∫ xc+δ

xc−δ
eN f (x)dx.
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Figure 24 – Comparision between Γ(x+1) and Stirling’s formula. Remember that n! = Γ(n+1).
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Source: Elaborated by the author.

Since the integral is computed on a small interval around xc, we can approximate f near
xc by its Taylor series. We also have f ′(xc) = 0 and f ′′(xc)≤ 0 (because xc is a maximum
point). Consider for now f ′′(xc)< 0, so that

f (x)≈ f (xc)+
f ′′(xc)

2
(x− xc)

2

for x near xc, thus

I(N)' eN f (xc)
∫ xc+δ

xc−δ
eN f ′′(xc)

2 (x−xc)
2
dx.

One may notice that the last integral is an approximation for the gaussian integral. Chang-
ing the variable to u =

√
−N f ′′(xc)(x− xc), we obtain

I(N)' eN f (xc)
1√

−N f ′′(xc)

∫ ∞

−∞
e
−u2

2 du = eN f (xc)

√
2π

−N f ′′(xc)
.

Of course we would need rigorous estimations to check the precision of these approxima-
tions, this is just the intuition about the method. Also, if we had f ′′(xc) = 0, we would
have to approximate f by a third-degree polynomial and find another formula, so there
are no clear rules to follow. See (BAIK; DEIFT; SUIDAN, 2016) or the books (BENDER;
ORSZAG; ORSZAG, 1999; WONG, 2001) for more details.

5.2.2. Steepest Descent Method
We now extend Laplace’s method for complex valued functions. Consider the in-

tegral (very similar to (5.2)), given by

I(N) =
∫

γ
g(z)eN f (z)dz (5.3)
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where f and g are complex analytic functions and γ is a contour. The main idea here is
to deform γ to a new contour γ̃ , which is a level curve Im f (z) = c for some c ∈ R. If we
find such contour, we obtain

I(N) = eiNc
∫

γ̃
g(z)eN Re f (z)dz

and then we apply Laplace’s method in the last integral, in both real and imaginary parts.
As we saw before, to apply Laplace’s method, Re f (z) must achieve a maximum point on
γ̃ . It may not be easy to find γ̃ , so the method of steepest descent helps us with this
task.

We may try to understand what properties γ̃ must have, to know what we are
looking for. Consider the parametrization γ̃(t) = x(t)+ iy(t) and write

f (z) = f (x+ iy) = u(x,y)+ iv(x,y),

where Re f = u and Im f = v. Assuming Im f constant on γ̃ , we have for all t,

0 =
d
dt

v(x(t),y(t)) = vxx′+ vyy′.

Moreover, assuming that Re f achieves a maximum on γ̃ at some point zc = γ̃(t0), we have

0 =
d
dt

u(x(t0),y(t0)) = uxx′+uyy′.

We then have the linear systemux(zc)x′(t0)+uy(zc)y′(t0) = 0;

vx(zc)x′(t0)+ vy(zc)y′(t0) = 0.

Requiring γ̃ to be smooth at zc, we look for non-trivial solutions (x′,y′). Such solutions
exist when

det

[
ux uy

vx vy

]
= uxvy −uyvx = 0.

By Cauchy-Riemann equations (recall that f = u+ iv is analytic), the above condition
holds when v2

y + v2
x = 0, which is equivalent to vx = vy = ux = uy = 0. So we finally obtain

f ′(zc) = ux(zc)+ ivx(zc) = 0, that is, zc is a critical point of f .

We concluded that γ̃ must pass through a critical point (or more than one). In
some cases it may be easy to find such level curves for Im f (z) explicitly, but in other
cases it may not. It depends on the expression of f . So now we enter in the essence of the
method.

Recall the definition of gradient of multivariable functions, denoted by ∇u= (ux,uy)

and ∇v = (vx,vy). By Cauchy-Riemann equations,

∇u ·∇v = uxvx +uyvy = 0,
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so ∇u and ∇v are orthogonal vectors in R2. A well-known result from Calculus says that
the gradient ∇v on the points of a level curve v(x,y) = c must be perpendicular to the
curve, so ∇u is tangent to this level curve (see Figure 25).

Figure 25 – Gradients ∇u and ∇v on the level curve v(x,y) = c.

v(x,y) = c
∇v

∇u

Source: Elaborated by the author.

So to obtain the level curves of v(x,y), it suffices to follow the streamlines of the
gradient field ∇u. Remember we want the curve v(x,y) = c passing through zc in such a
way that zc is a maximum point for u(x,y), therefore, we should look for streamlines of
the gradient field ∇u pointing towards zc, since the gradient points towards the direction
of greatest increase of u. This is the so-called steepest descent path, because we are
choosing the path passing at zc such that u(x,y) has the fastest rate of decrease outwards
zc. So if we cannot compute the level curves v(x,y) = c explicitly, we may plot the gradient
field ∇u to visualize it and find the proper deformation for γ .

To summarize, we have the following steps:

1. Find the critical points of f ;

2. Deform the contour of integration to a level curve of Im f passing through a critical
point zc. If such curve is hard to compute explicitly, we use the fact that they are
streamlines of ∇u;

3. Apply Laplace’s method.

Example 5.3. Let us compute the Airy function asymptotics as x→∞, using the steepest
descent method. Remember from Definition 4.5, that

Ai(x) =
1

2π

∫ ∞eiθ2

∞eiθ1
ei
(

z3
3 +xz

)
dz,

where θ1 ∈
(2π

3 ,π
)

and θ2 ∈
(
0, π

3

)
. First we define z = x

1
2 w and t = x

3
2 to obtain

Ai
(

t
2
3

)
=

t
1
3

2π

∫
γ

ei
(

tw3
3 +tw

)
dw =

t
1
3

2π

∫
γ

et f (w)dw,

where f (w) = i
(

w3

3 +w
)

and the contour γ is the anterior one scaled by x−
1
2 . Since f ′(w) =

i(w2 +1), the critical points are w± =±i. We have

Re f (w) =
y3

3
− y− x2y, Im f (w) =

x3

3
+ x− xy2,
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so the level curves of Im f (z) passing the critical points are given by Im f (z) = Im f (±i) = 0
and we obtain the explicit formulas

x = 0,
x2

3
− y2 +1 = 0.

The second equation is the equation for a hyperbola with two leaves (Figure 26a). Plotting
the gradient field Re f (w) (Figure 26b), we notice streamlines near the upper leaf of the
hyperbola pointing to the critical point w1 = i, so this is the level curve γ̃ we want. Also,

2 0 2
3

2

1

0

1

2

3

(a) Level curves x = 0 and x2

3 − y2 +1 = 0.

2 0 2
3

2

1

0

1

2

3

(b) Gradient field for Re f (w).

we can deform γ to γ̃ without changing the value of the integral, by the definition of the
Airy function. Finally, we apply Laplace’s method. Since f (i) = −2

3 and f ′′(i) = −2, we
have

f (w)≈−2
3
− (w− i)2,

for w near i. So ∫
γ̃

et f (w)dw ' e−
2
3 t
∫

γ̃
e−(w−i)2tdw, as t → ∞.

Since e−(w−i)2 is analytic and it decays exponentially fast as |w| → ∞, we can deform γ̃ to
R (using Cauchy’s Theorem), then∫

γ̃
et f (w) ' e−

2
3 t
∫ ∞

−∞
e−(w−1)2

dw = e−
2
3 t
√

π
t
,

using the change of variable z =
√

t(w− i) and the Gaussian integral. Returning to the
variable x = t

2
3 , we obtain the asymptotic expansion for the Airy function, which is given

by

Ai(x)' 1
2
√

πx1/4 e−
2
3 x3/2

, as x → ∞.

Notice again that we did not provide precise estimations for these approximations, but in
Figure 27 we can see how good this approximation is as x → ∞. With appropriate detailed
analysis, it is also possible to turn the formal calculations above to rigorous statements,
but our goal here was to illustrate the methods.
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Figure 27 – Airy function and its asymptotic expansion as x → ∞.
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Source: Elaborated by the author.

The way we apply this method changes according to the function f in (5.3), so
it is hard to provide general results: we have to analyze each case individually (and
carefully). In the next section, we apply the steepest descent method to study the large-
time asymptotics in TASEP, providing more rigorous details.

5.3. Large-time asymptotics in TASEP

5.3.1. Rescaled TASEP and the Airy Point Process

For continuous-time TASEP, we have by Proposition 4.12,

P(yN(t)−1+N ≥ ℓ) = det
[
1−KN,ℓ,t

]
,

where KN,ℓ,t(m,n) = 1Aℓ
(m)KN,t(m,n)1Aℓ

(n), for Aℓ = {−N +1, . . . , ℓ−N} and

KN,t(m,n) =
1

(2πi)2

∮
Γ0

∮
Γ1

wn−1

zm
1

w− z
(w−1)N

(z−1)N e
t
w−

t
z dzdw. (5.4)

We now discuss what happens to KN,t when time gets large. If we simply send t

to infinity the expression will diverge, so we rescale the variables. First, consider a new
variable u such that

N =
t
4
+u
( t

2

)2/3
.

Note that N = O(t) as t → ∞, so the number of particles increases to infinity. We rescale
the positions of the particles, transforming a configuration X to a new configuration
X̂ = 1

β (X −α), where

β =−
( t

2

)1/3
and α =−2u

( t
2

)2/3
+u2

( t
2

)1/3
. (5.5)
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As it turns out, this scaling will provide a non-trivial limit. The precise powers t1/3 and
t2/3 also admit interpretation on physical grounds, see (FERRARI, 2019).

By Corollary 4.4, the rescaled point process X̂ has kernel

K̂t(x,y) = |β |KN,t(βx+α,βy+α)

and after a direct computation, we obtain

K̂t(x,y) =
( t

2

)1/3 1
(2πi)2

∮
Γ0

∮
Γ1

et f0(w)+( t
2)

1/3
f1(w,u,y)+( t

2)
2/3

f2(w,u)

et f0(z)+( t
2)

1/3
f1(z,u,x)+( t

2)
2/3

f2(z,u)

w−1

w− z
dzdw, (5.6)

where

f0(v) =
1
v
+

1
4

log(v−1);

f1(v,u,s) = (u2 − s) logv;

f2(v,u) = u log(v−1)−2u logv.

The next theorem relates the TASEP to the Airy point process. Recall from Note 4.4
that correlation kernels are not unique and we can conjugate K̂t without changing the
correlation function of the process X̂ . Also, recall Definition 4.6 (the Airy kernel).

Theorem 5.1. The kernel K̂t converges pointwise (after a conjugation) to the Airy kernel,
as t → ∞.

The proof for the above theorem follows the notes from Ferrari (2019). We break
the proof in several parts (Lemma 5.1; Propositions 5.1, 5.2 and 5.3), which we present
later.

By Theorem 5.1, we can say that the scaled version of continuous-time TASEP
converges to the Airy point process, in the sense of convergence of the kernel. Its proof
is quite long, so we break it in some steps. We first present the main ideas and later we
provide rigorous details. The goal is to compute the asymptotics for K̂t as t → ∞, applying
the steepest descent method.

(Step 1) The term exp(t f0(v)) in the integral 5.6 suggests the use of the steepest
descent method, so we apply it considering the function f0(v). Even though this integral
is different from the one in (5.3) (it is even a double integral), it is still possible to use the
ideas of the method. This fact illustrates how versatile and powerful the steepest descent
method is, having no exact rules to follow (here mathematicians can do their art). We
have

f ′0(v) =− 1
v2 +

1
4

1
v−1

=
(v−2)2

4v2(v−1)
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so vc = 2 is the only critical point. We need to find the paths of steepest descent for w

and z, passing through vc = 2 (note that for z we consider − f0(z)). Plotting the gradient
field for

∇Re f0(x+ iy) =
x

x2 + y2 +
1
8

ln
(
(x−1)2 + y2)

(see Figures 28a and 28b), we find such paths. It is possible to deform the contours Γ0

(resp. Γ1) to a new contour γ0 (resp. γ1) in such a way that the value of the integral stays
the same, the function Im f0(w) is constant on γ0 (resp. Im− f0(z) is constant on γ1) and
Re f0(w) achieves a unique maximum on γ0 at vc = 2 (resp. Re− f0(z) achieves a unique
maximum on γ1 at vc).

1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5

2

1

0

1

2

(a) Streamlines for ∇Re f0(w). The black dot is
the critical point, the blue circle is the con-
tour Γ0 and the red curve is the new de-
formed contour γ0 on a path of steepest de-
scent.
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(b) Streamlines for ∇−Re f0(z). The black dot
is the critical point, the blue circle is the
contour Γ1 and the red curve is the new
deformed contour γ1 on a path of steepest
descent.

In this part, we have some technical issues:

The term (w− z)−1 introduces a problem: to deform Γ0 to γ0 we pass through the
singularity w = z, since γ0 contains Γ1, so we must subtract a residue. At this point,
the kernel in (5.4) turns to be

1
(2πi)2

∮
Γ̄1

∮
Γ̄0

wn−1

zm
1

w− z
(w−1)N

(z−1)N e
t
w−

t
z dwdz− 1

2πi

∮
Γ̄1

zn−m−1dz.

The contour γ0 does not contain the singularity w = 0, so we have to redefine γ0 in
a small neighborhood of zero, to maintain the value of the integral.
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Since γ0 and γ1 pass through the critical point vc, we again have a problem with the
term (w− z)−1 when w = z. So we must deform the curves in a small neighborhood
of 2 so that they do not intersect.

In summary, we obtain contours Γ̄0 and Γ̄1 that mostly agree with the steepest descent
paths, except for small neighborhoods of 0 and 2 (see 31). Moreover, we claim that it is
possible to deform Γ0 and Γ1 to these contours without changing the value of the integral.

Following the steepest descent method, we should then prove that the absolute
value of the integral is exponentially small in t for w and z far from vc = 2. More precisely,
for any small δ > 0, we write Γ̄0 = Γ̄δ

0 ∪ Γ̄′
0, where Γ̄δ

0 (resp. Γ̄′
0) consists of the points

w ∈ Γ̄0 such that |w−2| ≤ δ (resp. |w−2|> δ ). Analogously, we define Γ̄δ
1 and Γ̄′

1. So we
claim that the integral in Γ̄′

0 × Γ̄′
1 is O (e−ct) for some c depending on δ . Now the kernel

in (5.6) is

O
(
e−ct)+( t

2

)1/3 1
(2πi)2

∮
Γ̄δ

0

∮
Γ̄δ

1

et f0(w)+( t
2)

1/3
f1(w,u,y)+( t

2)
2/3

f2(w,u)

et f0(z)+( t
2)

1/3
f1(z,u,x)+( t

2)
2/3

f2(z,u)

w−1

w− z
dzdw.

(Step 2) Now we estimate the contribution in Γ̄δ
0 × Γ̄δ

1 (near the critical point) for
t large. For this purpose, we approximate f0, f1 and f2 by their Taylor expansions around
vc = 2. We have

f0(v)− f0(2) = 1
48(v−2)3 +O

(
(v−2)4) as v → 2;

f1(v,u,s)− f1(2,u,s) = 1
2

(
u2 − s

)
(v−2)+O

(
(v−2)2) as v → 2;

f2(v,u)− f2(2,u) = u
4(v−2)2 +O

(
(v−2)3) as v → 2,

so

t( f0(v)− f0(2)) = t
48(v−2)3 +O

(
t(v−2)4) as v → 2;( t

2

)1/3
( f1(v,u,s)− f1(2,u,s)) = 1

2

( t
2

)1/3 (u2 − s
)
(v−2)+O

(
t1/3(v−2)2

)
as v → 2;( t

2

)2/3
( f2(v,u)− f2(2,u)) =

( t
2

)2/3 u
4(v−2)2 +O

(
t2/3(v−2)3

)
as v → 2.

Defining

h(s,u) := et f0(2)+(t/2)1/3 f1(2,u,s)+(t/2)2/3 f2(u,2), (5.7)

and having in mind, from Note 4.4, that we can conjugate the kernel by h(y,u)
h(x,u) , we obtain

the kernel

( t
2

)1/3 1
(2πi)2

∫
Γ̄δ

0

∫
Γ̄δ

1

et( f0(w)− f0(2))+( t
2)

1/3
( f1(w,u,y)− f1(2,u,y))+( t

2)
2/3

( f2(w,u)− f2(2,u))

et( f0(z)− f0(2))+( t
2)

1/3
( f1(z,u,x)− f1(2,u,x))+( t

2)
2/3

( f2(z,u)− f2(2,u))

w−1

w− z
dzdw.

The angles for which the steepest descent paths arrive at the critical point suggest that
we may find Airy asymptotics (Figure 29).
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Figure 29 – The steepest descent path γ0 (in red) “arrives” at the critical point with angles
between

(π
6 ,

π
2

)
and

(
−π

2 ,−
π
6

)
. For the path γ1 (in blue), we have the same but

reflected. That is why we find Airy asymptotics.
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Source: Elaborated by the author.

So in order to find the term v3/3 (that appears in the Airy function), we do the
change of variables

v−2 = 2V
( t

2

)−1/3 (5.8)

for v = w,z and V =W,Z, so that

t( f0(v)− f0(2)) = V 3

3 +O
(

V 4t−1/3
)

as V → 0;( t
2

)1/3
( f1(v,u,s)− f1(2,u,s)) = (u2 − s)V +O

(
V 2t−1/3

)
as V → 0;( t

2

)2/3
( f2(v,u)− f2(2,u)) =−uV 2 +O

(
V 3t−1/3

)
as V → 0.

With the new variables, we obtain

w−1

w− z
=

(
1+W

( t
2

)−1/3
)−1

4
( t

2

)−1/3
(W −Z)

=

(
1+O

(
Wt−1/3

))−1

4
( t

2

)−1/3
(W −Z)

as W → 0,

and we also have

dzdw = 4
( t

2

)−2/3 dZdW.

To understand the new contours, notice that since |v−2| ≤ δ , we have |V | ≤ cδ t1/3, where
c = 2−4/3. Replacing all these expressions in the kernel, we obtain

1
(2πi)2

∫ cδ t1/3eiθ2

cδ t1/3eiθ1

∫ cδ t1/3eiϕ2

cδ t1/3eiϕ1

(
1+O

(
Wt−1/3

))−1

W −Z

× e
W3

3 +O(W 4t−1/3)−uW 2+O(W 3t−1/3)+(u2−y)W+O(W 2t−1/3)

e
Z3
3 +O(Z4t−1/3)−uZ2+O(Z3t−1/3)+(u2−x)Z+O(Z2t−1/3)

dZdW.
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The contours are translated to be centered around zero and multiplied by a factor ct1/3

(see Figure 30). The terms with O can be removed, obtaining a error of order O
(

t−1/3
)

(we will prove this later), so the kernel is

O
(

t−1/3
)
+

1
(2πi)2

∫ cδ t1/3eiθ2

cδ t1/3eiθ1

∫ cδ t1/3eiϕ2

cδ t1/3eiϕ1

e
W3

3 −uW 2−(y−u2)W

e
Z3
3 −uZ2−(x−u2)Z

dZdW
W −Z

.

Figure 30

v = 0

ΓWΓZ

(Step 3) Finally, we are able to complete the proof. First, a direct computation
shows that

V 3

3 −uV 2 −
(
y−u2)V = (V−u)3

3 − y(V −u)+ u3

3 − yu.

So after the change of variables W = w+u and Z = z+u, we have

e
u3
3 −yu

e
u3
3 −xu

1
(2πi)2

∫ cδ t1/3eiθ2−u

cδ t1/3eiθ1−u

∫ cδ t1/3eiϕ2−u

cδ t1/3eiϕ1−u

e
w3
3 −yw

e
z3
3 −xz

dzdw
w− z

. (5.9)

Sending t to infinity and after the change z 7→ iz and w 7→ iw, the last integral becomes
the Airy kernel A(x,y) (up to a conjugation term, recall Proposition 4.8). The translation
of contours by u does not affect the angles of the curves at infinity.

Now we present a rigorous argument in a series of propositions. We use the same
notation we have presented so far in this section. First, we solve the technical issues about
the deformations of contours (Step 1) in the following lemma.

Lemma 5.1. The contours Γ0 and Γ1 can be deformed to the contours Γ̄0 and Γ̄1 of
Figure 31 without changing the value of KN,t(m,n).

Proof. Before going through the proof, see Figure 31 to see how the contours Γ̄0 and
Γ̄1 look like. This deformation is not straightforward: because of the term 1

w−z , we must
subtract a residue to deform Γ0 to Γ̄0. Changing the order of integration, we write

KN,t(m,n) =
1

(2πi)2

∮
Γ1

e−
t
z

zm(z−1)N dz
∮

Γ0

wn−1(w−1)N

w− z
e

t
w dw,
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Figure 31 – Contours Γ̄0 and Γ̄1.
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Source: Elaborated by the author.

so that we fix z ∈ Γ1 to solve the integral in w. Since w = z is a simple pole, we obtain

Res
(

wn−1(w−1)N

w− z
e

t
w

∣∣∣∣w = z
)
= lim

w→z
(w− z)

wn−1(w−1)N

w− z
e

t
w = zn−1(z−1)Ne

t
z .

The deformation from Γ1 to Γ̄1 does not have any residue to subtract, so we have

KN,t(m,n) =
1

(2πi)2

∮
Γ̄1

∮
Γ̄0

wn−1

zm
1

w− z
(w−1)N

(z−1)N e
t
w−

t
z dwdz− 1

2πi

∮
Γ̄1

zn−m−1dz.

Now zn−m−1 only admits singularities at z = 0, which is outside the contour Γ̄1, so the
second integral vanishes. Note that Γ̄0 and Γ̄1 do not intersect, so the factor (w− z)−1 is
not a problem.

Now we present a proposition that completes Step 1, proving that the integral
K̂t(x,y) is exponentially small on the parts of the contours far from the critical point.

Proposition 5.1. For δ sufficiently small, the integral

∫
Γ̄0\Γ̄δ

0

∫
Γ̄1\Γ̄δ

1

et( f0(w)− f0(2))+( t
2)

1/3
( f1(w,u,y)− f1(2,u,y))+( t

2)
2/3

( f2(w,u)− f2(2,u))

et( f0(z)− f0(2))+( t
2)

1/3
( f1(z,u,x)− f1(2,u,x))+( t

2)
2/3

( f2(z,u)− f2(2,u))

w−1

w− z
dzdw

is O (e−c0t) for some c0 depending on δ .

Proof. Since vc = 2 is the unique global maximum for Re f0(w) in γ0, for any δ > 0 suffi-
ciently small, we can find η1 such that 0 < η1 <

1
2 = Re f0(2) and

w ∈ γ0, |w−2|> δ ⇒ Re f0(w)≤ Re f0(2)−η1. (5.10)

Remember we have some freedom to choose the curve Γ̄0, so we assume γ0 ≡ Γ̄0 on Γ̄0 \ Γ̄δ
0

and we replace γ0 by Γ̄0 in (5.10). Also, even though Γ̄0 6≡ γ0 in a neighborhood of w = 0,
we have Re f0(w) is negative in this part of the curve, so that (5.10) still holds. Indeed, γ0
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arrives at w = 0 with an angle θ ∈
(π

2 +κ, 3π
2 −κ

)
, so −1 ≤ cosθ < −η for some η > 0.

In polar coordinates, we have

Re f0

(
reiθ

)
=

cosθ
r

[
1+

1
8

r
cosθ

log
(
(r cosθ −1)2 + r2 sin2 θ

)]
,

so for small r, the term cosθ
r goes to −∞ while the term inside the square brackets remains

bounded and positive, so Re f0(w)< 0 in a region of γ0 close to w = 0.

Analogously, there exists η2 > 0 such that

z ∈ γ1, |z−2|> δ ⇒ −Re f0(z)≤−Re f0(2)−η2.

The functions f1(w,u,y) and f2(w,u) are bounded in Γ̄0, so assuming y in a compact
set, there exists a constant M > 0 such that

∀w ∈ Γ̄0, |Re f1(w,u,y)−Re f1(2,u,y)| , |Re f1(w,u)−Re f1(2,u)| ≤ M.

A similar result holds for − f1(z,u,x) and − f2(z,u). The term
∣∣∣w−1

w−z

∣∣∣ is also bounded in
Γ̄0 × Γ̄1. Now for w ∈ Γ̄0 such that |w−2|> δ , we have

Re
(

t( f0(w)− f0(2))+
( t

2

)1/3
( f1(w)− f1(2))+

( t
2

)2/3
( f2(w)− f2(2))

)
≤−tη1 +M1

(
t1/3 + t2/3

)
= t
(
−η +M1

(
t−2/3 + t−1/3

))
= t
(
−η +O

(
t−1/3

))
,

so for t sufficiently large, we obtain η3 > 0 such that the last expression is ≤−tη3, thus∣∣∣exp
(

t( f0(w)− f0(2))+
( t

2

)1/3
( f1(w)− f1(2))+

( t
2

)2/3
( f2(w)− f2(2))

)∣∣∣≤ e−tη3 .

Analogously, for t large, z ∈ Γ̄1 and |z−2|> δ , we find η4 > 0 such that∣∣∣exp
(
−t( f0(z)− f0(2))−

( t
2

)1/3
( f1(z)− f1(2))−

( t
2

)2/3
( f2(z)− f2(2))

)∣∣∣≤ e−tη4 .

Finally, by all remarks above, we obtain∣∣∣∣∣∣
∫

Γ̄0\Γ̄δ
0

∫
Γ̄1\Γ̄δ

1

et( f0(w)− f0(2))+( t
2)

1/3
( f1(w,u,y)− f1(2,u,y))+( t

2)
2/3

( f2(w,u)− f2(2,u))

et( f0(z)− f0(2))+( t
2)

1/3
( f1(z,u,x)− f1(2,u,x))+( t

2)
2/3

( f2(z,u)− f2(2,u))

w−1

w− z
dzdw

∣∣∣∣∣∣
≤C′e−tη3e−tη4 = O

(
e−c0t) ,

as we wanted to prove.

We also need to show that the contribution of the integral in Γ̄δ
0 ×
(

Γ̄1 \ Γ̄δ
1

)
and(

Γ̄0 \ Γ̄δ
0

)
× Γ̄δ

1 is exponentially small.
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Proposition 5.2. For δ sufficiently small, the integral

∫
Γ̄0\Γ̄δ

0

∫
Γ̄δ

1

et( f0(w)− f0(2))+( t
2)

1/3
( f1(w,u,y)− f1(2,u,y))+( t

2)
2/3

( f2(w,u)− f2(2,u))

et( f0(z)− f0(2))+( t
2)

1/3
( f1(z,u,x)− f1(2,u,x))+( t

2)
2/3

( f2(z,u)− f2(2,u))

w−1

w− z
dzdw

is O (e−c1t) for some c1 depending on δ . The same holds for the integral in Γ̄δ
0 ×
(

Γ̄1 \ Γ̄δ
1

)
.

Proof. The analysis is similar to what we have done in Proposition 5.1, so we do not do
it again.

The last proposition shows that the relevant contribution to the integral of the
kernel comes from the part of the contours Γ̄0 and Γ̄1 near the critical point vc = 2, as
t gets large. It also shows how we can adapt the steepest descent method to even more
complicated integrals, despite some technical issues.

Lemma 5.2. For every z ∈ C, we have |ez −1| ≤ |z|e|z|.

Proof. We have

|ez −1|=
∣∣∣∣∫ z

0
ewdw

∣∣∣∣≤ |z−0| sup
w∈[0,z]

|ew|= |z|e|z|,

where the integral is over the segment [0,z] that connects 0 and z.

Now let us make Step 2 rigorous. We obtain an asymptotic evaluation for the same
integral on the contours Γ̄δ

0 and Γ̄δ
1 (close to the critical point).

Proposition 5.3. For δ > 0 sufficiently small, the integral

Iδ (t) =
( t

2

) 1
3 1
(2πi)2

∫
Γ̄δ

0

∫
Γ̄δ

1

et( f0(w)− f0(2))+( t
2)

1
3 ( f1(w,u,y)− f1(2,u,y))+( t

2)
2
3 ( f2(w,u)− f2(2,u))

et( f0(z)− f0(2))+( t
2)

1
3 ( f1(z,u,x)− f1(2,u,x))+( t

2)
2
3 ( f2(z,u)− f2(2,u))

w−1

w− z
dzdw

is

O
(

t−1/3
)
+

1
(2πi)2

∫ cδ t1/3eiθ2

cδ t1/3eiθ1

∫ cδ t1/3eiϕ2

cδ t1/3eiϕ1

e
W3

3 −uW 2−(y−u2)W

e
Z3
3 −uZ2−(x−u2)Z

dZdW
W −Z

, as t → ∞.

Proof. (This proof is an adaptation of ideas found in (BORODIN; FERRARI; SASAMOTO,
2008)) After the change of variables (5.8), we showed before that

Iδ (t) =
1

(2πi)2

∫ cδ t1/3eiθ2

cδ t1/3eiθ1

∫ cδ t1/3eiϕ2

cδ t1/3eiϕ1

(
1+O

(
Wt−1/3

))−1

W −Z

× e
W3

3 +O(W 4t−1/3)−uW 2+O(W 3t−1/3)+(u2−y)W+O(W 2t−1/3)

e
Z3
3 +O(Z4t−1/3)−uZ2+O(Z3t−1/3)+(u2−x)Z+O(Z2t−1/3)

dZdW,
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where θ1 ∈
(
−π

2 ,−
π
6

)
and θ2 ∈

(π
6 ,

π
2

)
. The angles ϕ1 and ϕ2 are the reflection of θ1 and

θ2 on the y-axis, respectively. We show now that it is possible to remove the terms with
O from the integral, obtaining an error of order O

(
t−1/3

)
.

Since 1+O
(

Wt−1/3
)
= eO(Wt−1/3) as W → 0, we have

Iδ (t) =
1

(2πi)2

∫ cδ t1/3eiθ2

cδ t1/3eiθ1

∫ cδ t1/3eiϕ2

cδ t1/3eiϕ1

e
W3

3 +O(W 4t−1/3)−uW 2+O(W 3t−1/3)+(u2−y)W+O(W 2t−1/3)+O(Wt−1/3)

e
Z3
3 +O(Z4t−1/3)−uZ2+O(Z3t−1/3)+(u2−x)Z+O(Z2t−1/3)

dZdW
W −Z

.

The error is given by

R = Iδ (t)−
1

(2πi)2

∫ cδ t1/3eiθ2

cδ t1/3eiθ1

∫ cδ t1/3eiϕ2

cδ t1/3eiϕ1

e
W3

3 −uW 2−(y−u2)W

e
Z3
3 −uZ2−(x−u2)Z

dZdW
W −Z

= 1
(2πi)2

∫ cδ t1/3eiθ2

cδ t1/3eiθ1

∫ cδ t1/3eiϕ2

cδ t1/3eiϕ1

e
W3

3 −uW 2−(y−u2)W

e
Z3
3 −uZ2−(x−u2)Z

(
et−

1
3 O(W 4,W 3,W 2,W,Z4,Z3,Z2)−1

)
dZdW
W −Z

.

Using the inequality |ez −1| ≤ |z|e|z| from Lemma 5.2, we obtain

|R| ≤C
∫ cδ t1/3eiθ2

cδ t1/3eiθ1

∫ cδ t1/3eiϕ2

cδ t1/3eiϕ1

∣∣∣∣∣∣e
W3

3 −uW 2−(y−u2)W

e
Z3
3 −uZ2−(x−u2)Z

t−1/3O (⋆)et−1/3O(⋆)

∣∣∣∣∣∣ |dZ| |dW |
|W −Z|

,

where
O (⋆) = O

(
W 4,W 3,W 2,W,Z4,Z3,Z2) .

Now we bound the integrand by a factor that does not depend on t and decays at the
extremes. Since |W | ≤ cδ t1/3, we have

t−1/3 |W | ≤ cδ , t−1/3 ∣∣W 2∣∣≤ cδ |W | , t−1/3 ∣∣W 3∣∣≤ cδ
∣∣W 2∣∣ , t−1/3 ∣∣W 4∣∣≤ cδ

∣∣W 3∣∣ ,
so

O
(

t−
1
3W
)
≤ cδ , O

(
t−

1
3W 2

)
≤ cδ |W | , O

(
t−

1
3W 3

)
≤ cδ

∣∣W 2∣∣ , O
(

t−
1
3W 4

)
≤ cδ

∣∣W 3∣∣ .
For Z we have similar inequalities. Now let W = reiθ , we have for instance∣∣∣∣eW3

3 +O(t−1/3W 4)
∣∣∣∣≤ eRe W3

3 +cδ |W 3| = er3( 1
3 cos(3θ)+cδ).

and we have analogous boundaries for the other exponentials in W . More precisely, we
can find X1(y,u,δ ,θ) and X2(u,δ ,θ), such that the part of the integrand depending on W

is bounded by

er3( 1
3 cos(3θ)+cδ)+r2X2+rX1+cδ .
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Analogously, for Z = seiϕ , we find Y1 and Y2 such that the exponential in Z is bounded by

e−s3( 1
3 cos(3ϕ)−cδ)−s2Y2−sY1 .

After these remarks, we obtain

|R| ≤Ct−1/3
∫ cδ t1/3eiθ2

cδ t1/3eiθ1

∫ cδ t1/3eiϕ2

cδ t1/3eiϕ1

er3( 1
3 cos(3θ)+cδ)+r2X2+rX1+cδ

es3( 1
3 cos(3ϕ)−cδ)+s2Y2+sY1

∣∣∣∣ 1
W −Z

O(⋆)

∣∣∣∣ |dZ| |dW | ,

where r = |W |, s = |Z|, θ = arg(W ) and ϕ = arg(Z). The last integral depends on t only in
the contours of integration. We can remove this dependence by sending t to ∞, so that

|R| ≤Ct−1/3
∫ ∞eiθ2

∞eiθ1

∫ ∞eiϕ2

∞eiϕ1

er3( 1
3 cos(3θ)+cδ)+r2X2+rX1+cδ

es3( 1
3 cos(3ϕ)−cδ)+s2Y2+sY1

∣∣∣∣ 1
W −Z

O(⋆)

∣∣∣∣ |dZ| |dW | .

however, we need to guarantee that this integral is well-defined. For instance, notice that
when W → ∞eiθ1 , we have r → ∞ and θ → θ1. In this case, we have cos(3θ) < 0, so if
we choose δ small enough, we obtain 1

3 cos(3θ)+ cδ < 0. Now for large r, the term in W

becomes exponentially small, since the exponent r3 dominates the decayment. We have a
similar argument for Z, choosing δ sufficiently small such that 1

3 cos(3ϕ)−cδ > 0. We then
obtain the convergence for the integral, since the integrand decays exponentially in the
boundaries of integration. Therefore, we proved that |R| ≤ c2t−1/3, so R = O

(
t−1/3

)
.

To end the section, we enunciate Theorem 5.1 in a quantified version.

Theorem 5.2. For δ sufficiently small,

h(y,u)
h(x,u)

K̂t(x,y) = O
(

t−1/3
)
+

1
(2πi)2

∫ cδ t1/3eiθ2

cδ t1/3eiθ1

∫ cδ t1/3eiϕ2

cδ t1/3eiϕ1

e
w3
3 −yw

e
z3
3 −xz

dzdw
w− z

,

as t → ∞, where

h(s,u) = et f0(2)+(t/2)1/3 f1(2,u,s)+(t/2)2/3 f2(u,2)+su

defines the conjugation term.

Proof. The proof follows from the explicit expression for K̂t in (5.6) and a combination
of Lemma 5.1, with Propositions 5.1, 5.2 and 5.3. The conjugation term is obtained from
(5.7) and (5.9).

Note 5.1. After the change z 7→ iz and w 7→ iw, the integral in Theorem 5.2 becomes the
Airy kernel A(x,y) when t → ∞, recovering Theorem 5.1.
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5.3.2. Convergence of Fredholm Determinants
Let us understand a little more about this rescaled version of the TASEP. Before

the scaling, we had from Proposition 4.12,

P(yN(t)−1+N ≥ ℓ) = det
[
1−KN,ℓ,t

]
,

for

KN,ℓ,t(m,n) = 1[−N+1,ℓ−N](m)KN,t(m,n)1[−N+1,ℓ−N](n), m,n ∈ Z. (5.11)

Here yN(t) is the position of the left-most particle at time t. After the scaling, the position
corresponding to yN(t) is given by

ŷN(t) = 1
β (yN(t)−α),

and ŷN is the right-most particle, since β < 0 (see (5.5)), so we denote ŷN = ŷmax.

The scaled state space is X̂= 1
β (Z−α) (still discrete), so yN(t) = β ŷmax +α . Now,

we have

yN(t)−1+N ≥ ℓ ⇐⇒ β ŷmax(t)+α −1+N ≥ ℓ

⇐⇒ ŷmax(t)≤
ℓ−α +1−N

β
⇐⇒ ŷmax(t)≤ ξ ,

where we are choosing ℓ= βξ +α +N −1, for any ξ ∈ R, since ℓ is a free parameter. We
showed in the last section that KN,t turns to be K̂t after the scaling (see (5.6)). The last
remark is for the indicators functions in (5.11). For m = βx+α , we have

−N +1 ≤ m ≤ ℓ−N ⇐⇒ ξ −β−1 ≤ x ≤ −N +1−α
β

=: MN , (5.12)

so 1[−N+1,ℓ−N](m) = 1[ξ−β−1,MN ]
(x). Notice that MN > ξ −β−1 for N sufficiently large, so

the interval is well defined. We conclude that the scaled kernel is

K̂ξ ,t(x,y) = 1[ξ−β−1,MN](x)K̂t(x,y)1[ξ−β−1,MN](y) (5.13)

So for the scaled TASEP, we have by the gap probability formula (Example 4.5),

P(ŷmax(t)≤ ξ ) = P
(

N(ξ ,∞)

(
X̂
)
= 0
)
= det

[
1− K̃ξ ,t

]
,

for

K̃ξ ,t(x,y) = 1(ξ ,∞)(x)K̂ξ ,t(x,y)1(ξ ,∞)(y), x,y ∈ X̂.

However, since
[
ξ −β−1,MN

]
⊂ (ξ ,∞), we have K̃ξ ,t = K̂ξ ,t , so

P(ŷmax(t)≤ ξ ) = det
[
1− K̂ξ ,t

]
.
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Lastly, remember that N = O(t), β = −
( t

2

)1/3 and K̂t → A pointwise as t → ∞
(Theorem 5.1), so for every x,y ∈ X̂,

K̂ξ ,t(x,y)
t→∞−−−→ Aξ (x,y) := 1(ξ ,∞)(x)A(x,y)1(ξ ,∞)(y).

Now we wonder if we have the convergence of Fredholm determinants

det
[
1− K̂ξ ,t

]
t→∞−−−→ det

[
1−Aξ

]
, (5.14)

since the expression on the right-hand side is a well-known distribution from Random
Matrix Theory.

Definition 5.1. The function F(x) := det [1−Ax] is called the Tracy-Widom distribu-
tion.

The Tracy-Widom distribution was first introduced in (TRACY; WIDOM, 1994)
and it describes fluctuations in several models that do not seem to be related to the
TASEP (JOHANSSON, 2000; BORODIN; OKOUNKOV; OLSHANSKI, 2000; JOHANS-
SON, 2001a; BAIK; DEIFT; JOHANSSON, 1999; PRäHOFER; SPOHN, 2002).

The convergence in (5.14) is not straightforward, since K̂ξ ,t is defined in a discrete
space, while Aξ is in a continuous space. Remember from the definition of Fredholm
determinants (Definition 4.9) that we have

det [1−K] = 1+
∞

∑
n=1

(−1)n

n!

∫
Xn

det
[
K(xi,x j)

]n
i, j=1 dµ⊗n(x),

so for K = K̂ξ ,t , the integrals become sums over
[

1
β (Z−α)

]n
. For K = Aξ , we have usual

integrals in Rn, thus, we need to figure out a way to “immerse” the discrete space into
the continuous one. To solve this problem and also prove the convergence (5.14), we use
some results in the theory of trace-class operators.

5.3.3. Trace-Class Operators and Fredholm Determinants
In this section, we present basic properties about Trace-class operators and Fred-

holm determinants. We show their close relation to kernels. This theory is quite advanced
and the details are beyond the scope of this work, so we just present the necessary lan-
guage and results, without proofs. We follow the results presented in (BAIK; DEIFT;
SUIDAN, 2016), so see it for more details.

First we establish some notation. We denote by H a separable Hilbert space,
as ℓ2(I) (for a index set I) or L2(M,µ), for a measure space (M,µ). A linear operator
A : H1 → H2 is called bounded if there exists C > 0 such that ‖A f‖H2

≤ C‖ f‖H1
for

all f ∈ H1. The space of all bounded linear operators from H1 to H2 is denoted by
L (H1,H2), or simply L (H ) when H = H1 = H2.
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We are specially interested in trace-class operators and their relation with Hilbert-
Schmidt operators. The definition of such objects is evolved for the purposes of this work,
so we use results from the established theory as definitions. Furthermore, we present such
results considering only spaces as L2 or ℓ2, the ones that we need.

We denote B2(H1,H2) ⊂ L (H1,H2) as the space of Hilbert-Schmidt oper-
ators from H1 to H2 (Definition 5.2). The subspace B1(H ) ⊂ L (H ) is the space of
Trace-class operators in H , the definition of such operators is evolved, so we use
Proposition 5.4 to obtain them. Both B1(H ) and B2(H1,H2) have norms ‖·‖1 and ‖·‖2.

Definition 5.2. Let H1 = L2(M1,µ1) and H2 = L2(M2,µ2). If K : M1 ×M2 → C is such
that ∫

M2

∫
M1

|K(x,y)|2 dµ1(x)dµ2(y)< ∞ (5.15)

then the operator K : H2 → H1 defined by

K f (x) :=
∫

M2

K(x,y) f (y)dµ2(y), f ∈ H2 (5.16)

is called a Hilbert-Schmidt operator. Moreover, we have ‖K‖2
2 given by the expression

(5.15). The same is true if we replace L2 by ℓ2

The next proposition shows the relation between trace-class operators and Hilbert-
Schmidt operators. There is also a useful relation between the norms ‖·‖1 and ‖·‖2. We
use this as definition of trace-class operators.

Proposition 5.4. Let B : H2 →H1 and C : H1 →H2 be Hilbert-Schmidt operators, then
the composition A = BC is trace-class in H1 (A ∈ B1(H1)). Moreover, these operators
satisfy ‖A‖1 ≤ ‖B‖2 ‖C‖2.

Note 5.2. Proposition 5.4 is basically the same as Lemma 4.1. In the proposition above,
we have for f ∈ H2 and g ∈ H1,

B f (x) =
∫

M2

B(x,s) f (s)dµ2(s), Cg(s) =
∫

M1

C(s,y)g(y)dµ1(y),

so

BC f (x) =
∫

M2

B(x,s)C f (s)dµ2(s)

=
∫

M2

B(x,s)
∫

M1

C(s,y) f (y)dµ1(y)dµ2(s)

=
∫

M2

∫
M1

B(x,s)C(s,y) f (y)dµ2(s)dµ1(y).

So A is in the form A f (x) =
∫

M1
A(x,y) f (y)dµ1(y) for A(x,y) =

∫
M2

B(x,s)C(s,y) f (y)dµ2(s).
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Example 5.4. The Airy kernel A defines a trace-class operator in L2(ξ ,∞), for every
ξ ∈ R. The proof is the same as in Proposition 4.9.

Example 5.5. The kernel K̂ξ ,t for the scaled TASEP (see (5.13)) is a trace-class operator
in ℓ2

(
X̂ξ ,N

)
, where X̂ξ ,N := X̂∩

[
ξ −β−1,MN

]
(see (5.12) and remember that N depends

on t). We write the kernel in the form

K̂t(x,y) =
( t

2

)1/3 1
(2πi)2

∮
Γ0

∮
Γ1

F(y,w)
F(x,z)

w−1

w− z
dzdw,

where

F(s,v) = e−t f0(v)−( t
2)

1/3
f1(v,u,s)−( t

2)
2/3

f2(v,u).

Since Rez > Rew in the contours, we have
1

w− z
=−

∫ ∞

0
e−s(z−w)ds = i2

∫ ∞

0
e−s(z−δ−(w−δ )),

for some δ ∈ (0,1) such that Rew < δ < Rez. Inserting this in the expression of K̂t , we
obtain

K̂t(x,y) =
∫ ∞

0

[( t
2

)1/6 1
2π

∮
Γ1

1
F(x,z)

e−s(z−δ )dz
][( t

2

)1/6 1
2π

∮
Γ0

F(y,w)w−1es(w−δ )dw
]

ds.

Define the functions L̂ξ ,t : X̂ξ ,N × [0,∞)→ C and R̂ξ ,t : [0,∞)× X̂ξ ,N → C by

L̂ξ ,t(x,s) :=
( t

2

) 1
6 1

2π

∮
Γ1

1
F(x,z)

e−s(z−δ )dz and R̂ξ ,t(s,y) :=
( t

2

) 1
6 1

2π

∮
Γ0

F(y,w)
w

es(w−δ )dw,

so that

K̂ξ ,t(x,y) =
∫ ∞

0
L̂ξ ,t(x,s)R̂ξ ,t(s,y)ds, x,y ∈ X̂ξ ,N .

Now we show that L̂ξ ,t and R̂ξ ,t are Hilbert-Schmidt operators, that is,∫ ∞

0

∫
X̂ξ ,N

∣∣∣L̂ξ ,t(x,s)
∣∣∣2 dxds < ∞ and

∫
X̂ξ ,N

∫ ∞

0

∣∣∣R̂ξ ,t(s,y)
∣∣∣2 dsdy < ∞.

The integrals in X̂ξ ,N are finite sums, so we only need to prove that, for all x,y ∈ X̂ξ ,N ,∫ ∞

0

∣∣∣L̂ξ ,t(x,s)
∣∣∣2 ds < ∞ and

∫ ∞

0

∣∣∣R̂ξ ,t(s,y)
∣∣∣2 ds < ∞.

Fix some x, since F(s,v) is bounded in both contours, there exists a constant C > 0 such
that ∣∣∣L̂ξ ,t(x,s)

∣∣∣2 ≤C
∫

Γ1

e−s(Rez−δ ) |dz| ,

and the integrand above decays exponentially as s → ∞, because we have chosen δ such
that Rez− δ > 0, so the integral for L̂ξ ,t is finite. The same happens for R̂ξ ,t . So we
conclude that K̂ξ ,t is trace-class in ℓ2(X̂ξ ,N), since we have decomposed it as a product of
Hilbert-Schmidt operators.
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The definition of Fredholm determinants can be extended for trace-class operators.
For A∈B1(H ) we have a more general Fredholm determinant det [1−A]H that preserves
Definition 4.9 in some cases. The next results are definitely useful for us.

Proposition 5.5. The map A 7→ det [1+A]H is continuous in B1(H ).

Proposition 5.6. Let H1 and H2 be two Hilbert spaces. If A : H1 →H2 and B : H2 →H1

are bounded operators such that AB ∈ B1(H2) and BA ∈ B1(H1), then det [1−AB]H2
=

det [1−BA]H1
.

Now in order to obtain the convergence (5.14), we need to improve the pointwise
convergence K̂ξ ,t → Aξ to a convergence in trace-class norm ‖·‖1, then we apply Propo-
sition 5.5 to obtain the convergence det

[
1− K̂ξ ,t

]
→ det

[
1−Aξ

]
. The careful reader may

have noticed that K̂ξ ,t is defined in a discrete space, so it cannot be seen as an operator
in L2(ξ ,∞), the space where Aξ is defined. We provide ideas to handle this problem in
the next section.

5.3.4. Next Step: The Convergence to the Tracy-Widom Distribution
In this final section, we indicate how to improve the convergence K̂ξ ,t → Aξ to

trace-class convergence. By doing this, we reproduce the convergence of the distribution
of fluctuations in the TASEP to the Tracy-Widom distribution, a well established result
in the literature (JOHANSSON, 2000; BORODIN; GORIN, 2012).

We saw that a kernel K : X×X→C of a DPP can be seen as an integral operator
in L2 (X) (continuous case). In discrete case, take an enumeration X = {xn,n ∈ N} and
denote each f ∈ ℓ2 (X) by f = ( f (xn))xn∈X or simply f = ( f (xn)). Considering the standard
counting measure, K f = (K f (xn))xn∈X where (5.16) turns to be

K f (xn) = ∑
xm∈X

K(xn,xm) f (xm)

for each xn ∈ X.

In X̂ = 1
β (Z−α), consider an ordered enumeration X̂ = {xk,k ∈ Z}. The distance

between any two consecutive points xk and xk+1 is |β |−1 (remember that β = −
( t

2

)1/3).
For any ξ ∈R, define X̂ξ := X̂∩ (ξ ,∞). Let U : ℓ2(X̂ξ )→ L2 (ξ ,∞) be the linear map given
for each f = ( f (xn))xn∈X̂ξ

by

U f (x) := ∑
xn∈X̂ξ

|β |1/2
1xk(x) f (xk),

where 1xk := 1[xk,xk+1).

Proposition 5.7. The map U is well-defined and it is an isometry. In particular, U is
continuous and injective.
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Proof. We have

∫
(ξ ,∞)

|U f (x)|2 dx =
∫
(ξ ,∞)

 ∑
xk∈X̂ξ

|β |1/2
1xk(x) f (xk)

2

dx

= ∑
xk∈X̂ξ

|β | f (xk)
2
∫
(ξ ,∞)

1xk(x)dx︸ ︷︷ ︸
=|β |−1

= ∑
xk∈X̂ξ

f (xk)
2 < ∞,

so ‖U f‖L2 < ∞ and ‖U f‖L2 = ‖ f‖ℓ2 .

Consider the inner product 〈 f ,g〉L2 =
∫ ∞

ξ f (x)g(x)dx. The set of functions
{
|β |1/2

1xk

}
xk∈X̂ξ

is orthonormal in L2(ξ ,∞) with respect to this inner product, so it provides a basis for the
subspace E = Span

{
|β |1/2

1xk

}
xk∈X̂ξ

. Also, let E⊥ be the orthogonal complement of E, that

satisfies L2(ξ ,∞) = E ⊕E⊥, that is, every g ∈ L2(ξ ,∞) is uniquely written as g = f + f⊥,
for f ∈ E and f⊥ ∈ E⊥. Remember that

〈
f , f⊥

〉
L2 = 0.

Since U is injective, we now look for a map V : L2(ξ ,∞)→ ℓ2(X̂ξ ) such that VU =

Idℓ2 . For this purpose, we define V by

g = ∑
xk∈X̂ξ

f (xk) |β |1/2
1xk + f⊥ 7−→V g := ( f (xk))xk∈X̂ξ

.

It is straightforward that ImU = E and VU = Idℓ2 , so V |E = U−1. Therefore V |E is an
isometry, since it is the inverse of the isometry U . We can at least guarantee that V is
continuous, since for any g = f + f⊥,

‖V g‖ℓ2 = ‖V f‖ℓ2 = ‖ f‖L2 ≤ ‖ f‖L2 +
∥∥∥ f⊥

∥∥∥
L2

= ‖g‖L2 .

Now let us explain the idea behind the operators U and V . For a kernel operator
K in ℓ2(X̂ξ ), we obtain the operator UKV in L2(ξ ,∞). We are “conjugating” the discrete
operator K by U and V to obtain an “equivalent” operator in the continuous space (Figure
32).

Proposition 5.8. If K is a kernel operator in ℓ2(X̂ξ ), then UKV is a kernel operator in
L2(ξ ,∞). More precisely, we have for all g ∈ L2(ξ ,∞),

UKV g(x) =
∫ ∞

ξ
K̃(x,y)g(y)dy (5.17)

with

K̃(x,y) := ∑
xm,xn

|β |1m(x)K(xm,xn)1xn(y).
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Figure 32 – Action of operators U and V .

L2(ξ ,∞) L2(ξ ,∞)

ℓ2(X̂ξ ) ℓ2(X̂ξ )

UV

K

Source: Elaborated by the author.

Proof. For g = f + f⊥, we have

∫ ∞

ξ
K̃(x,y)g(y)dy =

∫ ∞

ξ
K̃(x,y) f (y)dy+

∫ ∞

ξ
K̃(x,y) f⊥(y)dy,

where

∫ ∞

ξ
K̃(x,y) f⊥(y)dy = ∑

xm,xn

|β |1/2
1xm(x)K (xm,xn)

∫ ∞

ξ
|β |1/2

1n(y) f⊥(y)dy︸ ︷︷ ︸
=0, since f⊥⊥|β |1/2

1xn

= 0.

Also, writing f = ∑xk
f (xk) |β |1/2

1xk , we obtain

∫ ∞

ξ
K̃(x,y) f (y)dy =

∫
R

∑
xk,xm,xn

|β |1xm(x)K(xm,xn)1xn(y) |β |
1/2

1xk(y) f (xk)︸ ︷︷ ︸
6=0 ⇐⇒ xn=xk

dy

=
∫ ∞

ξ
∑

xm,xn

|β |1xm(x)K(xm,xn)1xn(y) |β |
1/2 f (xk)dy.

So

∫ ∞

ξ
K̃(x,y)g(y)dy =

∫ ∞

ξ
∑

xm,xn

|β |1xm(x)K(xm,xn)1xn(y) |β |
1/2 f (xk)dy.

On the other hand, we have

(UKV )g =UK
(
( f (xk))xk

)
=U

(
∑
xn

K(xm,xn) f (xn)

)
xm

= ∑
xm

|β |1/2
1xm ∑

xn

K(xm,xn) f (xn),



140 Chapter 5. Asymptotics

so for each x ∈ R,

(UKV )g(x) = ∑
xm

|β |1/2
1xm(x)∑

xn

K(xm,xn) f (xn)

= ∑
xm

|β |1/2
1xm(x)∑

xn

K(xm,xn)
∫ ∞

ξ
|β |1xn(y) f (xn)dy︸ ︷︷ ︸

= f (xn)

=
∫ ∞

ξ
∑

xm,xn

|β |1xm(x)K(xm,xn)1xn(y) |β |
1/2 f (xk)dy

=
∫ ∞

ξ
K̃(x,y)g(y)dy

as we wanted to prove.

This construction is quite technical but very necessary for our approach to prove
the convergence (5.14). In our case, since VU = Idℓ2 , we have by Proposition 5.6,

det
[
1− K̂ξ ,t

]
ℓ2
= det

[
1−VUK̂ξ ,t

]
ℓ2
= det

[
1−UK̂ξ ,tV

]
L2
. (5.18)

This means that our determinant, which is in ℓ2(X̂ξ ), can be written as a determinant in
L2(ξ ,∞), the same space where the Airy operator is defined. Therefore, the convergence
(5.14) can be studied from the point of view of trace-class operators.

We have already proved in Examples 5.4 and 5.5 that Aξ and K̂ξ ,t are trace-class
in L2(ξ ,∞) and ℓ2(X̂ξ ), respectively. Now we want to prove that K̃ξ ,t := UK̂ξ ,tV is also
trace-class in L2(ξ ,∞). By Proposition 5.8, we have for every f ∈ L2(ξ ,∞) and x ∈ (ξ ,∞),

K̃ξ ,t f (x) =
∫ ∞

ξ
K̃ξ ,t(x,y) f (y)dy

where

K̃ξ ,t(x,y) = ∑
xm,xn

|β |1xm(x)K̂ξ ,t(xm,ym)1xn(y).

Notice that we are using the same notation for the function K̃ξ ,t and for the operator K̃ξ ,t .

In Example 5.5, we obtained the decomposition K̂ξ ,t = L̂ξ ,t R̂ξ ,t , for Hilbert-Schmidt
operators L̂ξ ,t : L2(0,∞)→ ℓ2(X̂ξ ) and R̂ξ ,t : ℓ2(X̂ξ )→ L2(0,∞). So we have

K̃ξ ,t =UK̂ξ ,tV =UL̂ξ ,t R̂ξ ,tV,

and we now denote L̃ξ ,t :=UL̂ξ ,t and R̃ξ ,t := R̂ξ ,tV .

To conclude the objective, we would like to prove the next two propositions, but
we were not able to prove them yet.

Proposition 5.9. The operators L̃ξ ,t : L2(0,∞)→ L2(ξ ,∞) and R̃ξ ,t : L2(ξ ,∞)→ L2(0,∞)

are Hilbert-Schmidt. Consequently, K̃ξ ,t is also trace-class in L2(ξ ,∞).
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Proposition 5.9 is expected to be true, because U and V are isometries.

Proposition 5.10. Consider the decomposition Aξ = Lξ Rξ given in Proposition 4.9. We
have L̃ξ ,t → Lξ and R̃ξ ,t → Rξ pointwise as t → ∞. Moreover, such convergences hold in
Hilbert-Schmidt norm ‖·‖2.

To prove Proposition 5.10, we would have to adapt the arguments of Theorem 5.1,
but the details are not clear for us yet. With the last two propositions, we would obtain
the trace-class convergence and them the convergence of Fredholm determinants, as we
see next.

Proposition 5.11. We have K̃ξ ,t
t→∞−−−→ Aξ in trace-class norm ‖·‖1.

Proof. By Proposition 5.4,∥∥∥K̃ξ ,t −Aξ

∥∥∥
1
=
∥∥∥L̃ξ ,t R̃ξ ,t −Lξ Rξ

∥∥∥
1

=
∥∥∥L̃ξ ,t

(
R̃ξ ,t −Rξ

)
+
(

L̃ξ ,t −Lξ

)
Rξ

∥∥∥
1

≤
∥∥∥L̃ξ ,t

(
R̃ξ ,t −Rξ

)∥∥∥
1
+
∥∥∥(L̃ξ ,t −Lξ

)
Rξ

∥∥∥
1

≤
∥∥∥L̃ξ ,t

∥∥∥
2

∥∥∥R̃ξ ,t −Rξ

∥∥∥
2
+
∥∥∥L̃ξ ,t −Lξ

∥∥∥
2

∥∥Rξ
∥∥

2 .

Since
∥∥∥R̃ξ ,t −Rξ

∥∥∥
2
→ 0 and

∥∥∥L̃ξ ,t −Lξ

∥∥∥
2
→ 0 (Proposition 5.10), we obtain

∥∥∥K̃ξ ,t −Aξ

∥∥∥
1
→

0.

Corollary 5.1. The Fredholm determinant det
[
1− K̂ξ ,t

]
ℓ2

converges to the Tracy-Widom
distribution, as t → ∞.

Proof. Since K̃ξ ,t →Aξ in trace-class norm, we use Equation (5.18) and apply Proposition
5.5 to obtain the convergence

det
[
1− K̂ξ ,t

]
ℓ2
= det

[
1− K̃ξ ,t

]
L2

→ det
[
1−Aξ

]
,

where the term on the right-hand side is the Tracy-Widom distribution F(ξ ) (see Defini-
tion 5.1).
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