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ABSTRACT

CCAMA CUYO, L. R. Complete embedded hypersurfaces in product spaces. 2023. 62 p.
Dissertação (Mestrado em Ciências – Matemática) – Instituto de Ciências Matemáticas e de
Computação, Universidade de São Paulo, São Carlos – SP, 2023.

The hypersurfaces f : Mn →Qn
ε ×R, ε ∈ {−1,0,1}, where Qn

ε denotes a simply connected space
form with curvature ε , which belong to the class A are those for which gradh is a principal
direction of its shape operator A; here h stands for the height function of f . Fundamental
examples of such hypersurfaces are: open subsets of slices of Qn

ε ×R, products Mn−1×R, where
Mn−1 is a hypersurface in Qn

ε , as well as isometric immersions f : Mn →Qn
ε ×R, built up from a

parallel family of hypersurfaces in Qn
ε and a smooth function of one real variable. A remarkable

fact is that any hypersurface that belongs to the class A is whether one of this fundamental
examples or is locally given by the latter isometric immersions. In this work we present the
precise statement behind this fact, as well as prove it. On the other hand, complete hypersurfaces
in H n ×R with positive definite second fundamental form, whose height function has at least
one critical point, are embedded, homeomorphic to either the unit sphere Sn or the Euclidean
space Rn, and bound a convex set, where H stands for a general Cartan-Hadamard manifold.
That is the essential content of a Hadamard-Stoker-type theorem for complete hypersurfaces in
H n ×R, theorem which we also present here. In addition, it is shown that these hypersurfaces
are rigid among the hypersurfaces with the same extrinsic curvature.

Keywords: Hypersurface; class A ; Flat normal bundle; Constant angle; Hadamard-Stoker;
Rigidity.





RESUMO

CCAMA CUYO, L. R. Hipersuperfícies completas e mergulhadas em espaços produto. 2023.
62 p. Dissertação (Mestrado em Ciências – Matemática) – Instituto de Ciências Matemáticas e
de Computação, Universidade de São Paulo, São Carlos – SP, 2023.

As hipersuperfícies f : Mn → Qn
ε ×R, ε ∈ {−1,0,1}, onde Qn

ε denota uma forma espacial
simplesmente conexa com curvatura ε , que pertencem à classe A , são aquelas para as quais
gradh é uma direção principal do seu operador forma A, sendo h a função altura de f . Exemplos
fundamentais de tais hipersuperfícies são: subconjuntos abertos de slices Qn

ε ×R, produtos
Mn−1 ×R, onde Mn−1 é uma hipersuperfície em Qn

ε , além de imersões isométricas f : Mn →
Qn

ε ×R que são construídas utilizando uma família paralela de hipersuperfícies em Qn
ε e uma

função suave de uma variável real. Um fato notável é que qualquer hipersuperfície pertencente
à classe A deve ser ou um destes exemplos fundamentais ou é localmente dado pelas últimas
imersões isométricas. Neste trabalho, apresentamos o enunciado preciso por trás deste fato e
o demonstramos. Por outro lado, hipersuperfícies completas em H n ×R com segunda forma
fundamental definida positiva cuja função altura tem pelo menos um ponto crítico, além de
serem mergulhadas são também homeomorfas à esfera Sn ou ao espaço Euclidiano Rn, e são
a fronteira de um determinado conjunto convexo, onde H denota uma variedade de Cartan-
Hadamard arbitrária. Este é o conteúdo essencial de um teorema do tipo Hadamard-Stoker para
hipersuperfícies completas em H ×R o qual também é apresentado. Além disso, mostraremos
que estas hipersuperfícies são rígidas entre as hipersuperfícies de mesma curvatura extrínseca.

Palavras-chave: Hipersuperfície; Classe A ; Fibrado normal plano; Ângulo constante; Hadamard-
Stoker; Rigidez.
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CHAPTER

1
INTRODUCTION

One fundamental problem in Submanifold theory is determine whether a given Rieman-
nian manifold Mn can be isometrically immersed in other given Riemannian manifold M̃n+p;
and if so, whether this isometric immersion is “unique”. Once an affirmative answer, which is
then referred as a fundamental theorem, for the first question is given, a natural problem to be
attacked is that of classifying these isometric immersions. In recent years, after the emergence
of a fundamental theorem for hypersurfaces in product spaces (Daniel (2009)), the study of
hypersurfaces in Hn ×R and Sn ×R, where Hn and Sn stand for the hyperbolic space and the
unit sphere, respectively, has caught the attention of several geometers, driving to the appearance
of many important classes of such hypersurfaces: rotation hypersurfaces (Dillen, Fastenakels and
Veken (2009)), hypersurfaces with constant sectional curvature and constant angle hypersurfaces
(Manfio and Tojeiro (2011)), and Einstein hypersurfaces (Leandro, Pina and Santos (2021)).

One of such important classes, which contains all previously mentioned classes, is the
one formed by all hypersurfaces for which the gradient of their height function is everywhere
a principal direction of their shape operators. This class was first introduced and classified by
Tojeiro (2010). He also provided an alternative characterization of the hypersurfaces in this class
in terms of flatness of their normal bundles in certain (but natural) flat manifold containing the
ambient space. Nowadays, the class includes not only hypersurfaces, but also submanifolds for
which, roughly speaking, certain vector field is a principal direction of all of its shape operators.

On the other hand, two classical theorems about embeddedness, convexity and rigidity
of surfaces in Euclidean space are the Hadamard-Stoker Theorem and the Cohn-Vossen Rigid-
ity Theorem. Whilst the Hadamard-Stoker Theorem establishes that a complete surface with
positive curvature immersed in Euclidean space is embedded, bounds an open convex set, and
is homeomorphic to a sphere or a plane, the Cohn-Vossen Rigidity Theorem claims that such
surface, but a compact one, is rigid. As time went by, there had appeared some generalisations of
these theorems to submanifolds in more general ambient spaces. First, Sacksteder generalised
them to nonflat hypersurfaces with nonnegative sectional curvature in Euclidean space. Next, in
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1970, do Carmo and Warner extended almost completely the theorems to compact hypersurfaces
in hyperbolic space Hn and the unit sphere Sn — almost as it was the rigidity property of
compact hypersurfaces in Hn which they conjectured but not proved. Later, in 2019, R.F. de
Lima and R.L. de Andrade provided a proof to this conjecture. In 1977, S. Alexander contributed
with an Hadamard-Stoker-type theorem for compact hypersurfaces with positive semi-definite
second fundamental forms in Cartan-Hadamard manifolds H n. After that, a few works brought
generalisations of the Hadamard-Stoker theorem for hypersurfaces in product spaces M̃ ×R,
where M̃ stands for either H n or Sn. Recently, A Hadamard-Stoker-type theorem for complete
hypersurfaces in H n ×R has been established by R. de Lima.

This work has been divided into three chapters excluding this introductory one, and
covers a number of topics as follows. Chapter two contains the basic material of Submanifold
theory that will be used throughout this work. First, in Section 2.1, the fundamental formulas
associated with an isometric immersion, Gauss and Codazzi formulas, are introduced. Then,
in Section 2.2, its basic equations are presented, namely, Gauss, Codazzi and Ricci equations.
Next, in Section 2.3, we state the Fundamental Theorem of submanifolds. After that, Section 2.4
aims to see how this fundamental formulas and basic equations look for hypersurfaces. We end
Chapter two with the Fundamental Theorem for hypersurfaces in space forms.

Chapter three starts introducing the product spaces Qn
ε ×R, where Qn

ε stands for a simply
connected space form: what they are, its shape operator, and its Gauss formula. Then, in Section
3.2, it continues looking at hypersurfaces in Qn

ε ×R: the vector fields ∂

∂ t and its projection T

onto the hypersurface, the angle function, the additional two equations that arise relating this new
ingredients, and the fundamental theorem for hypersurfaces in Qn

ε ×R. After that, Section 3.3 is
dedicated to the main characters of this chapter, the hypersurfaces in the class A . This section
provides some basic examples of such hypersurfaces, and then proves that they are the basic
pieces from which any hypersurface in the class A can be build up. Also, it offers an alternative
characterization of the hypersurfaces (belonging to the class A ) in Qn

ε ×R, ε ∈ {−1,1}, in terms
of flatness of their normal bundles (see Proposition 3.3). In addition, a geometric interpretation
of one of this fundamental pieces is given (cf. Remark 3.11). The chapter ends with a complete
description of the constant angle hypersurfaces in Qn

ε ×R.

Chapter four is dedicated to embeddedness, convexity and rigidity properties of hyper-
surfaces in H ×R and S×R. In Section 4.1, some notions associated to such hypersurfaces
are collected: Cartan-Hadamard manifolds and their properties, definition of top and bottom
ends, notion of horizontal section and its elements, and the definition of normal sections. Section
4.2 treats asymptotic rays in H ×R, their definition and a fundamental property, as well as
the definition of geodesic graphs. In section 4.3, we have compiled some useful results: two
important generalisations of the Hadamard-Stoker theorem, namely do Carmo-Warner and
Alexander Theorems; the statement of the Soul Conjecture; as well as a lemma that tell us that
all hypersurfaces with equal extrinsic curvature share the same shape operator provided that
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one of them has a shape operator with rank ≥ 3 everywhere. Section 4.4 contains one of the
most important results in this chapter, a Hadamard-Stoker-type theorem, roughly speaking, for
complete hypersurfaces in H ×R; it also brings a dual result. Finally, in Section 4.5, we present
a result that states that complete hypersurfaces in either Hn ×R or Sn ×R are rigid, though in
the smaller class of all hypersurfaces with the same extrinsic curvature.
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CHAPTER

2
THE BASIC EQUATIONS OF A

SUBMANIFOLD

In this chapter we recall some basic notions and facts of the theory of submanifolds that
are used in this work. The second fundamental form and normal connection of an isometric im-
mersion are introduced by means of the Gauss and Weingarten formulas, and their compatibility
equations are also presented. We also recall the fundamental theorem of submanifolds. Then we
particularise the theory to the case of hypersurfaces — isometric immersions of codimension
one. In this chapter we follow the notation and results of the excellent book “Submanifold theory
beyond and introduction” by Dajczer and Tojeiro (2019).

2.1 Gauss and Weingarten Formulas

Let Mn and M̃m be connected smooth manifolds. An immersion is a smooth map
f : Mn → M̃m whose differential f∗(x) is injective for all x ∈ Mn. The codimension of f is the
number m− n. Both the immersion f and its image f (Mn) can be referred as an (immersed)

submanifold of M̃. Because an immersion is locally an embedding, locally, M and f (M) can be
identified as well as f can be regarded as the inclusion map. We shall identify likewise Tx M and
f∗(Tx M) for all x ∈ M.

An isometric immersion is an immersion f : Mn → M̃m between Riemannian manifolds
whose differential f∗(x), at each point x ∈ Mn, satisfies for all X , Y ∈ Tx M

⟨X , Y ⟩= ⟨ f∗X , f∗Y ⟩. (2.1)

If f : Mn → M̃m is an immersion from a smooth manifold M to a Riemannian manifold M̃,
equation (2.1) defines a Riemannian metric on M, the metric induced by f , with respect to which
f becomes isometric.
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Let f : Mn → M̃m be an isometric immersion. The vector bundle f ∗T M̃ over M whose
fiber over x ∈ M is Tf (x)M̃ is called the induced vector bundle. The normal space N f M(x) of f

at x is the orthogonal complement of Tx M in Tf (x)M̃. The vector bundle N f M whose fiber over
x ∈ M is N f M(x) is known as the normal bundle of f .

If E is a vector bundle over a smooth manifold M, we denote the set of all its smooth
sections by Γ(E). However, when E is the tangent bundle T M of M, we prefer X(M) to Γ(T M).

The Levi-Civita connection ∇̃ of M̃m induces naturally a unique connection ∇̂ on the
induced bundle f ∗T M̃ which satisfies for all Z ∈ X(M̃), x ∈ M and X ∈ Tx M

∇̂X(Z ◦ f ) = ∇̃X Z.

Henceforth, we shall identify ∇̂ with ∇̃, and thus use only the symbol ∇̃ for both connections.

The induced vector bundle f ∗T M̃ is decomposed as f ∗T M̃ = T M⊕N f M. Thus, given
X , Y ∈ T M, we can also decompose ∇̃X Y with respect to that decomposition as (∇̃X Y )T +

(∇̃X Y )⊥. The tangent component (∇̃X Y )T turns out to be the image of ∇XY by f∗, where
∇ is the Levi-Civita connection of M. The normal component (∇̃X f∗Y )⊥ is the value of a
map α f : X(M)×X(M) → Γ(N f M), called the second fundamental form (or shape tensor)
of f , given by α f (X , Y ) = (∇̃XY )⊥. We omit the superindex of α f when it is clear of which
isometric immersion α is the second fundamental form. Consequently, the first basic formula in
submanifold theory, called the Gauss Formula, is given by

∇̃X Y = ∇XY +α(X ,Y ). (2.2)

The second fundamental form α of f is symmetric, i.e., α(X , Y ) = α(Y, X) for X , Y ∈
X(M), because ∇̃X Y − ∇̃Y X = [X ,Y ]. It is also C∞(M)-bilinear, thus the value of α(X , Y )

at some x ∈ M depends only on Xx, Yx. For that reason, we can think of α as a section of
Hom2(T M, T M; N f M), which amounts to considering α , at x, as a symmetric bilinear map
Tx M×Tx M → N f M(x) for every x ∈ M.

The shape operator of f at x ∈ M in the direction of ξ ∈ N f M(x) is the self-adjoint
operator Aξ : Tx M → Tx M determined by ⟨Aξ X , Y ⟩= ⟨α(X , Y ), ξ ⟩ for all X , Y ∈ Tx M.

For X ∈ X(M) and ξ ∈ Γ(N f M), we have

⟨∇̃X ξ ,Y ⟩=−⟨ξ , ∇̃XY ⟩= ⟨−Aξ X ,Y ⟩,

that is, the tangent component of ∇̃X ξ is −Aξ X while the normal component is, by definition, the
value of a compatible connection ∇⊥ on N f M, called the normal connection of f , determined by
∇⊥

X ξ =(∇̃X ξ )⊥. Then, the second basic formula in submanifold theory, known as the Weingarten

formula, is expressed as

∇̃X ξ =−Aξ X +∇
⊥
X ξ . (2.3)
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Given an orthonormal basis {X1, ..., Xn} for Tx M, the mean curvature vector of f at x is
the normal vector given by

H(x) =
1
n

n

∑
j=1

α(X j, X j).

It follows from its definition that it satisfies for every ξ ∈ N f M(x)

n⟨H(x), ξ ⟩= trAξ , (2.4)

which shows that H(x) does not depend on the choice of an orthonormal basis for Tx M.

An isometric immersion f : Mn → M̃m is said to be totally geodesic at x ∈ M if and only
if the second fundamental form α(x) is zero. Similarly, a totally geodesic isometric immersion is
a isometric immersion for which the second fundamental form α vanishes everywhere.

2.2 Gauss, Codazzi and Ricci equations
In this section, we present the compatibility equations that any isometric immersion

satisfies. In order to obtain them, the Gauss and Weingarten formulas must be used. We only
introduce these compatibility equations, but for the reader who is interested in studying the
proccess that is followed to derive these equations, we refer to Dajczer and Tojeiro (2019).

Let f : Mn → M̃m be an isometric immersion and X , Y,W, Z ∈ X(M). If the Riemannian
curvature tensors of M and M̃ are denoted by R and R̃, respectively, the Gauss Equation is then
determined by

R(X , Y )Z = (R̃(X , Y )Z)T +Aα(Y,Z)X −Aα(X ,Z)Y, (2.5)

or equivalently,

⟨R(X , Y )Z,W ⟩= ⟨R̃(X , Y )Z,W ⟩+ ⟨α(X ,W ), α(Y, Z)⟩−⟨α(X , Z), α(Y,W )⟩. (2.6)

Similarly, given x ∈ M and orthonormal tangent vectors X , Y ∈ Tx M, if the sectional curvatures
of M and M̃ at x along the linear subspace spanned by X and Y are designated by K(X , Y ) and
K̃(X , Y ), respectively, the Gauss Equation is expressed as

K(X , Y ) = K̃(X , Y )+ ⟨α(X , X), α(Y, Y )⟩− |α(X , Y )|2. (2.7)

Next,we have the Codazzi equation of f

(R̃(X , Y )Z)⊥ = (∇⊥
X α)(Y, Z)− (∇⊥

Y α)(X , Z), (2.8)

where
(∇⊥

X α)(Y, Z) = ∇
⊥
X α(Y, Z)−α(∇XY, Z)−α(Y, ∇X Z),

is the canonical connection in the bundle Hom2(T M, T M; N f M). It has an equivalent form

(R̃(X , Y )ξ )T = (∇Y A)(X , ξ )− (∇X A)(Y, ξ ), (2.9)
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where

(∇Y A)(X , ξ ) = ∇Y Aξ X −Aξ ∇Y X −A
∇⊥

Y ξ
X ,

is the canonical connection in Hom(T M, N f M, T M).

Associated with the normal connection ∇⊥ of f in N f M, we have the normal curvature
tensor R⊥ on N f M given for ξ ∈ Γ(N f M) by

R⊥(X , Y )ξ = ∇
⊥
X ∇

⊥
Y ξ −∇

⊥
Y ∇

⊥
X ξ −∇

⊥
[X ,Y ]ξ .

In this way, the Ricci Equation is written as

(R̃(X , Y )ξ )⊥ = R⊥(X , Y )ξ −α(X , AξY )+α(Aξ X , Y ), (2.10)

or equivalently, if η ∈ Γ(N f M), as

⟨R⊥(X , Y )ξ , η⟩= ⟨R̃(X , Y )ξ , η⟩+ ⟨[Aξ , Aη ]X , Y ⟩, (2.11)

where

[Aξ , Aη ] = Aξ Aη −AηAξ .

2.3 Fundamental theorem of submanifolds
A complete, connected Riemannian manifold with constant sectional curvature is called

a space form. A space form is said to be spherical, euclidean or hyperbolic depending upon
whether its sectional curvature is positive, zero or negative. An n-dimensional simply connected
space form with sectional curvature c is designated by Qn

c . Thus Qn
c stands for Hn

c , Rn or Sn
c

depending on whether c is negative, zero or positive; we just write Hn and Sn when the sectional
curvatures are −1 and 1, respectively.

Suppose f : Mn → M̃m is an isometric immersion. If the ambient manifold M̃ has constant
sectional curvature c, the compatibility equations (2.5), (2.8) and (2.10) take simpler forms since
the ambient curvature tensor fulfils

R̃(X , Y )Z = c(X ∧Y )Z = c(⟨Y, Z⟩X −⟨X , Z⟩Y ).

Thus, the Gauss equation becomes

R(X , Y )Z = c(X ∧Y )Z +Aα(Y,Z)X −Aα(X ,Z)Y, (2.12)

or equivalently,

⟨R(X , Y )Z,W ⟩= c⟨(X ∧Y )Z,W ⟩+ ⟨α(X ,W ),α(Y, Z)⟩−⟨α(X , Z), α(Y,W )⟩, (2.13)

for all X , Y, Z,W ∈ X(M).
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The Codazzi equation is now expressed by

(∇⊥
X α)(Y, Z) = (∇⊥

Y α)(X , Z), (2.14)

or equivalently,
(∇X A)(Y, ξ ) = (∇Y A)(X , ξ ), (2.15)

for all X , Y, Z ∈ X(M) and every ξ ∈ Γ(N f M).

Also, the Ricci equation changes to

R⊥(X , Y )ξ = α(X , AξY )−α(Aξ X , Y ), (2.16)

or equivalently,
⟨R⊥(X , Y )ξ , η⟩= ⟨[Aξ , Aη ]X , Y ⟩, (2.17)

for all X , Y ∈ X(M) and ξ , η ∈ Γ(N f M).

We note that equations (2.13), (2.14) and (2.16) are intrinsic: they involve the metric of M,
a Riemannian vector bundle N f M on M endowed with a compatible connection, and a symmetric
section α of Hom2(T M, T M; N f M). Then a natural question is whether any such data satisfying
(2.13), (2.14) and (2.16) can be regarded as the data associated with an isometric immersion in
some Riemannian manifold with constant sectional curvature. The answer is affirmative and is
established more precisely by the following theorem, known as the Fundamental Theorem of

submanifolds.

Theorem 2.1. Existence: Let Mn be a simply connected Riemannian manifold, let E be a
Riemannian vector bundle of rank p over M with compatible connection ∇E and curvature
tensor RE , and let αE be a symmetric section of Hom2(T M, T M, E). For each ξ ∈ Γ(E) define
AE

ξ
∈ Γ(End(T M)) by

⟨AE
ξ

X , Y ⟩= ⟨αE(X , Y ), ξ ⟩, ∀X , Y ∈ X(M).

Assume that (∇E , αE , AE , RE) satisfies (2.13), (2.14) and (2.16). Then there exists an isometric
immersion f : M −→Qn+p

c and a vector bundle isometry φ : E → N f M such that

∇
⊥

φ = φ∇
E and α

f = φ ◦α
E

Uniqueness: Let f , g : M →Qn+p
c be isometric immersions of a Riemannian manifold. Assume

that there exists a vector bundle isometry φ : N f M → Ng M such that

φ
f
∇
⊥ = g

∇
⊥

φ and φ ◦α
f = α

g.

Then there exists an isometry τ : Qn+p
c →Qn+p

c such that

τ ◦ f = g and τ∗|N f M = φ .

It is worth mentioning that Theorem 2.1 still holds locally if we do not require M to be
simply connected: the isometric immersion f , whose existence is guaranteed by this theorem, is
only defined on a neighbourhood of each x ∈ M.
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2.4 Hypersurfaces
An isometric immersion f : Mn → M̃n+1 of codimension one is called a hypersurface.

Every hypersurface f : Mn → M̃n+1 is locally oriented by a local unit normal. Also, when M is
orientable, there is a global unit normal to f . In addition, in spite of the nature of the unit normal
ξ , locally or globally defined, ξ is the only unit normal up to a sign. For this reason, we will
only write A for the shape operator of f in the direction of ξ .

For a hypersurface f : Mn → M̃n+1, the fundamental formulas can be considerably
simplified as follow. Given X , Y ∈ X(M) and a unit normal ξ , all defined on some open set
U ⊂ M, possibly equal to the whole manifold M, we have

α(X , Y ) = ⟨AX , Y ⟩ξ . (2.18)

Therefore, Gauss formula now reads as

∇̃X Y = ∇XY + ⟨AX , Y ⟩ξ . (2.19)

Since |ξ |= 1 and ∇⊥ is a compatible connection on N f M, we have ∇⊥
X ξ = 0, and the Weingarten

formula for ξ is
∇̃X ξ =−AX . (2.20)

For an arbitrary ψ ∈ Γ(N f M), as ψ = aξ on U for a = ⟨ψ, ξ ⟩, the Weingarten formula for it is
obtained from (2.20) by multiplying both sides by a; thus we only need to consider (2.20) to
work.

The compatibility equations change their appearance for a hypersurface on account of
(2.18) as follows. Let f : Mn → M̃n+1 be a hypersurface with unit normal ξ . The Gauss equation
for f is given by

(R̃(X , Y )Z)T = R(X , Y )Z − (AX ∧AY )Z, (2.21)

or equivalently,

⟨R(X , Y )Z,W ⟩= ⟨R̃(X , Y )Z,W ⟩+ ⟨AX ,W ⟩⟨AY, Z⟩−⟨AX , Z⟩⟨AY,W ⟩, (2.22)

where X , Y, Z,W ∈ X(M). Moreover, for all x ∈ M and orthonormal vectors X , Y ∈ Tx M, in
terms of sectional curvatures, we have

K(X , Y ) = K̃(X , Y )+ ⟨AX , X⟩⟨AY, Y ⟩−⟨AX , Y ⟩2. (2.23)

On the other hand, the Codazzi equation of f for X , Y ∈ X(M) is determined by

(R̃(X , Y )ξ )T = (∇Y A)X − (∇X A)Y, (2.24)

where
(∇Y A)X = ∇Y AX −A∇Y X . (2.25)
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As both sides of the Ricci equation for a hypersurface f vanish identically, there is no
need to consider it.

If the ambient space M̃ has constant sectional curvature c, the Gauss and Codazzi
equations are

R(X , Y )Z = c(X ∧Y )Z +(AX ∧AY )Z, (2.26)

and
(∇Y A)X = (∇X A)Y, (2.27)

respectively.

The Fundamental Theorem for submanifolds, Theorem 2.1, also has a simpler version
for hypersurfaces in simply connected space forms. Before we give the precise statement, let
us point out that given two hypersurfaces in an orientable Riemannian manifold M̃, there exists
exactly two vector bundle isometries between their normal bundles (DAJCZER; TOJEIRO, 2019,
Section 1.4.1).

Theorem 2.2. Existence: Let Mn be a simply connected Riemannian manifold, and A a symmetric
section of End(T M) satisfying (2.26) and (2.27). Then there exists an isometric immersion
f : M →Qn+1

c , and a unit normal ξ to f so that Aξ = A.
Uniqueness: If f ,g : M →Qn+1

c are two hypersurfaces such that

α
g = φ ◦α

f ,

where φ is one of two vector bundle isometries between N f M and NgM, then there exists
τ ∈ Iso(Qn+1

c ) such that
g = τ ◦ f and τ∗|N f M = φ .
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CHAPTER

3
HYPERSURFACES IN PRODUCT SPACES

In this chapter, we summarise some basic notions and results about hypersurfaces Mn in
product spaces Qn

ε ×R. In particular, we present the fundamental equations of such hypersurfaces,
as well as a version of the fundamental theorem for them, due to Daniel (2009) (cf. also Lira,
Tojeiro and Vitório (2010)). The main results of this chapter provide a complete description
of all hypersurfaces M in Qn

ε ×R for which the projection, onto T M, of the unit vector field
∂

∂ t on T (Qn
ε ×R), determined by ∂

∂ t ≡ 1, is a principal direction. For ε ∈ {−1, 1}, these are
all hypersurfaces in Qn

ε ×R that have flat normal bundle when regarded as submanifolds of
codimension two in the underlying flat space En+2, that is Ln+2 or Rn+2 according as ε =−1 or
ε = 1, respectively.

3.1 The product manifold Qn
ε ×R

Let us recall that Qn
ε stands for the unit sphere Sn, the Euclidean space Rn or the

hyperbolic space Hn, according as ε = 1, ε = 0 or ε = −1, respectively. In order to study
hypersurfaces into Qn

ε ×R, for ε ∈ {−1,1}, our approach is to regard the hypersurface as an
isometric immersion of codimension two into En+2, where En+2 denotes either the Euclidean
space Rn+2 or the Lorentz space Ln+2, according as ε = 1 or ε = −1, respectively. More
precisely, let (x1, . . . ,xn+2) be the standard coordinates on En+2 with respect to which the flat
metric on En+2 is written as

ds2 = ε(dx1)
2 +(dx2)

2 + · · ·+(dxn+2)
2.

Think of En+1 as the hyperplane

En+1 = {(x1, . . . ,xn+2) ∈ En+2 : xn+2 = 0},

and Qn
ε as the quadric

Qn
ε = {(x1, . . . ,xn+1) ∈ En+1 : εx2

1 + · · ·+ x2
n+1 = ε},
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where x1 > 0 if ε =−1. Then, as Qn
ε admits an umbilical inclusion into En+1, we can consider

the canonical inclusion
i : Qn

ε ×R→ En+1 ×R= En+2.

The vector field ξ = π ◦ i is a unit normal vector field to the inclusion i, called the
outward pointing unit normal to Qn

ε ×R, where π : En+1 ×R→ En+1 is the projection onto the
first factor.

The projection πR of Qn
ε ×R onto the second factor is called the height function of

Qn
ε ×R. The gradient of πR, which is a unit parallel vector field on Qn

ε ×R, will be denoted by
∂

∂ t . A simple account shows that it is determined by ∂

∂ t (x,r) = 1 ∈ R, ∀(x,r) ∈Qn
ε ×R.

If D denotes the usual covariant derivative of En+2, we have

DZξ = π∗i∗Z = i∗

(
Z −

〈
Z,

∂

∂ t

〉
∂

∂ t

)
,

hence the shape operator of i in the direction of ξ is given by

Aξ Z =−Z +

〈
Z,

∂

∂ t

〉
∂

∂ t
,

for every Z ∈ X(Qn
ε ×R).

Given any vector field Z ∈ X(Qn
ε ×R), it can be expressed as follows

Z(p,s) = (Zs
1(p),Zp

2 (s)),

where Zs
1 ∈ X(Qn

ε) and Zp
2 ∈ X(R) for all (p,s) ∈Qn

ε ×R. Consequently, the Gauss formula for
i can be written as

DX i∗Y = i∗∇̃XY − ε⟨X1, Y1⟩ξ (3.1)

for all X ,Y ∈ X(Qn
ε ×R), where ∇̃ denotes the Levi-Civita connection of Qn

ε ×R.

3.2 Hypersurfaces in Qn
ε ×R

Let f : Mn →Qn
ε ×R be an oriented hypersurface with unit normal N. Denote by A the

shape operator of f in the direction N, which is given for every X ∈ X(M) by

AX =−∇̃X N.

The height function h of f is the smooth function in C∞(M) determined by

h := πR ◦ f ,

or alternatively by h :=
〈

f , ∂

∂ t

〉
, where we think of the values of f as points in En+2 if

ε ∈ {−1, 1}. On the other hand, the angle function ν of f is the smooth real-valued function on
M given for every x ∈ M by

ν(x) =
〈

N(x),
∂

∂ t

〉
.
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If T ∈ X(M) represents the projection of ∂

∂ t on T M, ∂

∂ t can be written as sum of its
tangent (to f (M)) and normal (to f (M)) components as

∂

∂ t
= T +ν N. (3.2)

Note that T coincides with gradh, as the following computation shows

⟨gradh, X⟩= (πR)∗ f∗X =

〈
∂

∂ t
, f∗X

〉
= ⟨T, X⟩, (3.3)

for all x ∈ M, X ∈ Tx M.

The Gauss and Codazzi equations of f are expressed by

⟨R(X , Y )Z,W ⟩= ⟨AX ,W ⟩⟨AY, Z⟩−⟨AX , Z⟩⟨AY,W ⟩

+ ε(⟨X ,W ⟩⟨Y, Z⟩−⟨X , Z⟩⟨Y,W ⟩

+ ⟨Y, T ⟩⟨W, T ⟩⟨X , Z⟩+ ⟨X , T ⟩⟨Z, T ⟩⟨Y,W ⟩

−⟨X , T ⟩⟨W, T ⟩⟨Y, Z⟩−⟨Y, T ⟩⟨Z, T ⟩⟨X ,W ⟩),

(3.4)

and

∇X AY −∇Y AX −A[X , Y ] = εν(⟨Y, T ⟩X −⟨X , T ⟩Y ). (3.5)

respectively, where X , Y, Z,W ∈ X(M).

Now, because ∂

∂ t is parallel on Qn
ε ×R, it holds

0 = ∇̃X(T +νN) = ∇X T + ⟨AX , T ⟩N −νAX +X(ν)N,

which yields by taking tangential and normal components the following two equations

∇X T = νAX , (3.6)

and

X(ν) =−⟨AX , T ⟩, (3.7)

for all X ∈ X(M).

The Gauss and Codazzi equations above are not sufficient conditions for a Riemannian
manifold Mn to be isometrically immersed in Qn

ε ×R; even if T and ν are given. The reason for
this is simple: the vector field T and the smooth function ν satisfy additionally equations (3.6)
and (3.7). In fact, we need to add these two equations to ensure the existence of an isometric
immersion f : M → Qn

ε ×R. This is the content of the following result, which amounts to a
fundamental theorem for hypersurfaces in Qn

ε ×R, due to Daniel (2009) (see also Lira, Tojeiro
and Vitório (2010)).

Theorem 3.1. Existence: Let M be a simply connected n-dimensional Riemannian manifold,
and ∇ its Levi-Civita connection. Suppose A is a field of self-adjoint operators Ay : Ty M → Ty M,
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y ∈ M, T ∈ X(M), and ν ∈ C∞(M), such that ∥T∥2 +ν2 = 1. If (A, T, ν) satisfies (3.4)-(3.7),
then there exists an isometric immersion f : Mn → Qn

ε ×R such that the shape operator with
respect to the normal associated with f is A and

∂

∂ t
= T +νN.

Uniqueness: Given two isometric immersions f , g : Mn →Qn
ε ×R with unit normals N f and Ng,

respectively, such that the projections Tf and Tg of ∂/∂ t onto T M satisfy Tf = Tg, if there is a
vector bundle isometry φ : N f M → Ng M such that αg = φ ◦α f and Ng = φN f , then there exists
an isometry Φ ∈ Iso(Qn

ε ×R) with g = Φ◦ f .

3.3 The class A

The main theorems in this section provide a complete description of all hypersurfaces
in Qn

ε ×R for which the vector field T is a principal direction. They constitute a theorem first
stated and proved by Tojeiro (2010). Those hypersurfaces belong to a well-known class of
submanifolds, called class A , which is made up of all isometric immersions f : Mm →Qn

ε ×R
with the property that the vector field T is an eigenvector of all shape operators. It is worth
mentioning that products Mn−1 ×R, where Mn−1 is a hypersurface in Qn

ε , which correspond to
the case ν ≡ 0, are particular examples of hypersurfaces in this class. Another simple examples
in this class are: constant angle hypersurfaces that are not open subsets of slices, rotational

hypersurfaces with constant sectional curvature, and hypersurfaces with constant sectional

curvature.

Given an arbitrary hypersurface f : Mn → Qn
ε ×R, ε ∈ {−1, 1}, with a normal vector

field N, let us consider it as an isometric immersion of codimension two into En+2, and restrict
ξ to f (M) to obtain a unit normal to M in En+2. Formally, we identify f with the composition
i◦ f , where i is the inclusion of Qn

ε ×R into En+2, and ξ with the composition ξ ◦ f .

Proposition 3.2. The shape operator Aξ of the composition i◦ f satisfies

Aξ T =−ν
2T and Aξ X =−X (3.8)

for every X ∈ {T}⊥.

Proof. Let X ∈ X(M), then

⟨Aξ T, X⟩= ⟨α(T, X)− ε⟨T1, X1⟩ξ , ξ ⟩=−⟨T1, X⟩.

Since
T1 = T −

〈
T,

∂

∂ t

〉
∂

∂ t
= T −∥T∥2(T +νN) = ν

2T −∥T∥2
νN,

we have
⟨Aξ T, X⟩=−⟨ν2T, X⟩,
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which yields the first identity in (3.8). On the other hand, for X ∈ {T}⊥ and Y ∈ X(M),

⟨Aξ X , Y ⟩=−
〈

X −
〈

X ,
∂

∂ t

〉
∂

∂ t
, Y
〉
=−⟨X , Y ⟩,

which yields the remaining identity in (3.8).

The following proposition establishes that, for ε ∈ {−1, 1}, the hypersurfaces in Qn
ε ×R

which have T as a principal direction turn out to be the hypersurfaces in Qn
ε ×R that have flat

normal bundle when regarded as submanifolds of codimension two in the underlying flat space
En+2, and for which T ̸= 0 everywhere.

Proposition 3.3. Under the hypotheses of Proposition 3.2, if T does not vanish at x ∈ Mn, then
f has flat normal bundle at x ∈ M as an isometric immersion into En+2 if and only if T is a
principal direction of f at x.

Proof. From the Ricci equation (2.11) for f , the isometric immersion i◦ f has flat normal bundle
at x if and only if any two shape operators commute, or equivalently, there exists an orthonormal
basis for TxM with respect to which the matrix representation of each shape operator of f at x is
diagonal. This is equivalent to the fact that the shape operators A and Aξ commute. In fact, an
arbitrary shape operator Aη , η ∈ N f M(x), can be written uniquely as aA+bAξ ; from which it
follows that Aη commutes with both A and Aξ if we suppose A and Aξ commute, which implies
that Aη commutes with any shape operator Aµ , µ ∈ N f M(x). Now A and Aξ commute if and
only if the eigenspaces of Aξ are invariant under A. One direction is immediate: because of the
fact that the matrix representation of A and Aξ are diagonal matrices, the eigenspaces of Aξ are
also eigenspaces of A. Conversely, from (3.8), if we set AT = aT , it follows that Aξ AZ = AAξ Z

for every Z = X +λT ∈ TxM, where X ∈ {T (x)}⊥. Lastly, the eigenspaces of Aξ are invariant
under the action of A as long as T is a principal direction of f at x. In fact, if AT ∈ {T}, for every
X ∈ {T}⊥, it holds ⟨AX , T ⟩= ⟨X , AT ⟩= 0, i.e., AX ∈ {T}⊥.

Given a Riemannian manifold M, a smooth curve β in M is said to be a pre-geodesic if
its arclength reparametrization is a geodesic in M.

Lemma 3.4. If T is a smooth gradient vector field on a Riemannian manifold M such that T

does not vanish anywhere and ∥T∥ is constant along the orthogonal distribution {T}⊥ of T , then
every integral curve of T is a pre-geodesic of M.

Proof. Since T is a gradient vector field and ∥T∥ is constant along {T}⊥, for X ∈ {T}⊥, we
have

⟨∇T T, X⟩= ⟨∇X T, T ⟩= 1
2

X⟨T, T ⟩= ∥T∥(X∥T∥) = 0,

that is, ∇T T is parallel to T . Let γ be an integral curve of T . Its arclenght function

s(r) =
∫ r

a
∥T∥dρ
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is a diffeomorphism as ds
dr = ∥T∥ > 0. If r(s) denotes the inverse function of s(r), then the

arclength reparametrization γ(r(s)) of γ has a velocity vector given by

∥T (γ(r(s)))∥−1T (γ(r(s))). (3.9)

Note that
∇T∥T∥−1T = ∥T∥−1

∇T T +T (∥T∥−1)T,

is parallel to T , and

0 = T (⟨∥T∥−1T, ∥T∥−1T ⟩) = 2⟨∇T∥T∥−1T, ∥T∥−1T ⟩

implies that ∇T∥T∥−1T is also orthogonal to T , i.e., γ(r(s)) is a geodesic of M.

In Theorem 3.9 we will stick with hypersurfaces in Qn
ε ×R which have the vector field

T as a principal direction; the associated orthogonal distribution {T}⊥ is integrable on account
of the following lemma.

Lemma 3.5. If T is an arbitrary gradient vector field on a Riemannian manifold M which does
not vanish everywhere, then {T}⊥ is integrable.

Proof. For any X , Y ∈ {T}⊥,

⟨∇X T, Y ⟩= ⟨∇Y T, X⟩ and ⟨∇XY, T ⟩=−⟨Y, ∇X T ⟩,

which yields
⟨[X , Y ], T ⟩=−⟨Y, ∇X T ⟩+ ⟨X , ∇Y T ⟩= 0.

Now we are in a position to state and prove the following two main theorems of this
section. Let g : Mn−1 → Qn

ε be a hypersurface which admits a unit normal N, and exp the
exponential map of Qn

ε . The parallel hypersurface gs : M →Qn
ε , s ∈ R, of g is determined by

gs(x) = expx (sN(x)),

i.e., gs(x) is the point reached in Qn
ε by traversing a distance |s| along the geodesic in Qn

ε with
initial point g(x) and initial velocity vector sN(x) (CECIL; RYAN, 2015, p. 14). Thus, for each
s ∈ R, gs is given by

gs(x) =Cε(s)g(x)+Sε(s)Nx,

where

Cε(s) =


coss, if ε = 1

1, if ε = 0

coshs, if ε =−1.

and Sε(s) =


sins, if ε = 1

s, if ε = 0

sinhs, if ε =−1.
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Given a smooth function a : I → R with a′ > 0 over the open interval I ⊂ R, define
f : Mn−1 × I →Qn

ε ×R by

f (x, s) = gs(x)+a(s)
∂

∂ t
. (3.10)

Theorem 3.6. The map f in (3.10) defines, at regular points, a hypersurface for which T is a
principal direction.

Proof. Smoothness of f follows immediately from its definition. Let (x, s) ∈ M× I, X ∈ TxM,
and β (r) = (β (r), s) be a smooth curve in M× I such that β (0) = (x, s) and β

′
(0) = X . Thus,

f∗X =
d
dr

∣∣∣
r=0

(
gs(β (r))+a(s)

∂

∂ t

)
= (gs)∗X . (3.11)

Similarly, allow J ⊂ R to be an open interval small enough such that 0 ∈ J and s+ r ∈ I for
all r ∈ J. Then ζ (r) = (x, s+ r), r ∈ J, is a smooth curve in M× I such that ζ (0) = (x, s) and
ζ ′(0) = ∂

∂ s . Thus

f∗
∂

∂ s
=−εSε(s)g(x)+Cε(s)N(x)+a′(s)

∂

∂ t
, (3.12)

and set
Ns(x) =−εSε(s)g(x)+Cε(s)N(x).

Because of equations (3.11) and (3.12), a point (x, s) ∈ M× I is regular for f if and only if gs

is regular at x. In fact, let (x, s) ∈ M× I be a regular point of f . Suppose there is 0 ̸= X ∈ TxM

such that 0 = (gs)∗X , yielding a contradiction on account of (3.11). Suppose now gs is regular at
x ∈ M. Assume that there is 0 ̸= X + r ∂

∂ s ∈ T(x,s) (M× I) such that 0 = f∗(X + r ∂

∂ s) = (gs)∗X +

rNs + ra′(s) ∂

∂ t , which yields the contradiction that gs is not regular at x for wether r = 0 or r ̸= 0.
Now assume (x, s) ∈ M× I is a regular point for f . Then, Ns(x) is a unit normal vector to gs at x.
In fact, the Weingarten formula for g, thought as an isometric immersion with codimension 2
into the En+1 if ε ∈ {1,−1},

N∗ =−g∗AN ,

implies in
(gs)∗X =Cε(s)g∗X −Sε(s)g∗ANX , (3.13)

then

⟨Ns(x), (gs)∗X⟩=⟨−εSε(s)g(x),Cε(s)g∗X⟩+ ⟨εSε(s)g(x), Sε(s)g∗ANX⟩

+ ⟨Cε(s)N(x),Cε(s)g∗X⟩−⟨Cε(s)N(x), Sε(s)g∗ANX⟩= 0,

and

⟨Ns(x), Ns(x)⟩=⟨εSε(s)g(x), εSε(s)g(x)⟩−⟨εSε(s)g(x),Cε(s)N(x)⟩

−⟨Cε(s)N(x),εSε(s)g(x)⟩+ ⟨Cε(s)N(x),Cε(s)N(x)⟩= 1.

Also
η(x, s) =−a′(s)

b(s)
Ns(x)+

1
b(s)

∂

∂ t
, (3.14)
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where b(s) =
√

1+a′(s)2, is a unit normal vector to f at (x, s). In fact,

⟨η(x, s),η(x, s)⟩=
〈

a′(s)
b(s)

Ns(x),
a′(s)
b(s)

Ns(x)
〉
+

1
b(s)2 = 1,

and〈
η , f∗X + r f∗

∂

∂ s

〉
=

〈
−a′(s)

b(s)
Ns(x)+

1
b(s)

∂

∂ t
,(gs)∗X

〉
− r

a′(s)
b(s)

〈
Ns(x), f∗

∂

∂ s

〉
+

r
b(s)

〈
∂

∂ t
, f∗

∂

∂ s

〉
= 0− r

a′(s)
b(s)

+ r
a′(s)
b(s)

= 0.
(3.15)

Notice that

D ∂

∂ s
Ns(x) =−εSε(s)D ∂

∂ s
g(x)− εS′ε(s)g(x)+Cε(s)D ∂

∂ s
N(x)+C′

ε(s)N(x) =−εgs(x),

and (3.1) implies that

DZ
∂

∂ t
= ∇̃Z

∂

∂ t
− ε⟨Z1,0⟩ξ = 0 (3.16)

for every Z tangent vector to Mn−1 × I. Thus,

D ∂

∂ s
η =−

[
a′(s)
b(s)

]′
Ns(x)+ ε

a′(s)
b(s)

gs(x)+
[

1
b(s)

]′
∂

∂ t
.

For that reason,〈
D ∂

∂ s
η , f∗X

〉
=−

〈[
a′(s)
b(s)

]′
Ns,(gs)∗X

〉
+

〈[
1

b(s)

]′
∂

∂ t
,(gs)∗X

〉
+

〈
ε

a′(s)
b(s)

gs,(gs)∗X
〉
= 0,

so 〈
Aη

∂

∂ s
,X
〉
=−⟨D∂/∂ sη , f∗X⟩= 0,

for any X ∈ TxM, i.e., ∂

∂ s is a principal direction since ⟨ f∗X , f∗ ∂

∂ s⟩= 0. Also, since ν = 1
b(s) , we

have

f∗T =
∂

∂ t
− 1

b(s)
η =

a′(s)
b(s)2

(
Ns(x)+a′(s)

∂

∂ t

)
= f∗

(
a′(s)
b(s)2

∂

∂ s

)
,

and so

T =
a′(s)
b(s)2

∂

∂ s
(3.17)

is a principal direction.

Let us now explicit the set of regular points of the map f .

Remark 3.7. The regularity of f at (x, s) is equivalent to the regularity of gs at x. Thus let us
study when the last situation happens. Let λ ∈ R represents an arbitrary principal curvature of
g at x with respect to Nx. If ε = 0 and λ ̸= 0, there is a unique 0 ̸= θ ∈ R such that λ = 1/θ .
When ε = −1 and λ /∈ [−1, 1], there exists a unique 0 ̸= θ ∈ R such that cothθ = λ . Also,
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there is exactly one θ ∈ (0, π) such that cotθ = λ if ε = 1. Consequently, there exists an
strictly increasing finite sequence θ1, . . . , θm(ε) of real numbers such that λ1, . . . , λm(ε) given for
i ∈ {1, . . . , m(ε)} by

λi =


cotθi ,0 < θi < π , if ε = 1

1/θi ,θi ̸= 0, if ε = 0

cothθi ,θi ̸= 0, if ε =−1.

are all the (not neccesarily ordered) principal curvatures of g at x with respect to Nx, distinct from
zero if ε = 0, and not belonging to [−1, 1] if ε =−1. If X ∈ Tx(Mn−1) belongs to the eigenspace
of AN(x) associated with λi, then

(gs)∗X =


sin(θi−s)

sinθi
g∗X , if ε = 1,

θi−s
θi

g∗X , if ε = 0,
sinh(θi−s)

sinhθi
g∗X , if ε =−1.

In fact, equation (3.13) yields (gs)∗X = (Cε(s)− λiSε(s))g∗X , where, for ε = −1, Cε(s)−
λiSε(s) = coshs− cothθi sinhs = sinh(θi − s)/sinhθi; similarly for ε ∈ {0, 1}. For ε =−1, gs

is an immersion at x as long as

0 ̸= sinh(θi − s)
sinh(θi)

for i = 1, . . . , m,

i.e., s ̸= θi for i = 1, . . . , m. Since the argument for ε ∈ {0, 1} is similar, we have that gs is an
immersion at x if and only if s /∈ {θ1, . . . , θm} (respectively, s ̸= θi + πZ for i = 1, . . . , m) if
ε ∈ {0,−1} (respectively, ε = 1). Thus, the set of regular points of the smooth map f is given by

U =

(x, s) ∈ M×R : s /∈ {θi +πZ : i = 1, . . . ,m}, if ε = 1,

(x, s) ∈ M×R : s /∈ {θ1, . . . ,θm}, if ε ∈ {−1, 0}.

A geometric picture of the set U is provided by Figure 1, where the dashed lines do not belong
to the set U . Therefore, if V ⊂ Mn−1, connected open set, is given so that V × I ⊂U , gs is an
immersion on V for every s ∈ I, and so is f on V × I.

Remark 3.8. I should mention that the definition of the set U given here differs from that
provided in Tojeiro (2010, Remark 6.(i)), though this does not represent any problem as all
points belonging to the original set U have been included in the current U . In fact, the initial
choice (a component of the current set U) was made with the objective of having a connected set
U .

The following theorem shows that the (partial) converse of Theorem 3.6 is true.

Theorem 3.9. Any hypersurface f : Mn →Qn
ε ×R, n ≥ 2, for which T is a principal direction

and ν ̸= 0 everywhere, is locally of the form (3.10).
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Figure 1 – The set U .

Proof. If ν < 0, we replace the unit nomal η of f by −η , so that now ν > 0. Thus, we can
assume without lose of generality that ν > 0. Thanks to Lemma 3.5, the orthogonal distribution
{T}⊥ is integrable. Also, the distribution {T} is integrable as each S ∈ {T} is of the form
S = aT , a ∈C∞(M). Thus, because T M = {T}⊥⊕{T} and Dajczer and Tojeiro (2019, p. -59),
there is a diffeomorphism ψ : Mn−1 × I → Mn onto ψ(Mn−1 × I), where I ⊂ R is an open
interval containing 0, such that ψ(x, ·) : I −→ Mn is an integral curve of T for each x ∈ Mn−1,
and ψ(·, r) : Mn−1 −→ Mn is an integral submanifold of {T}⊥ for each r ∈ I. In particular,
ψ∗X ∈ {T}⊥ for any X ∈ TxMn−1. Set F = f ◦ψ . Then for every tangent vector X ∈ T Mn−1

X
〈

F,
∂

∂ t

〉
= ⟨ f∗ψ∗X , f∗T +νη⟩= ⟨ψ∗X , T ⟩= 0,

and so ρ(s) = ⟨F(x, s), ∂

∂ t ⟩ = h(ψ(x, s)) is a smooth real-valued function on I. For every
X ∈ {T}⊥, we get X(ν) = 0 from (3.7), then it also holds X(∥T∥) = 0 since ∥T∥2 + ν2 = 1,
which implies that every integral curve of T is a pre-geodesic of M by Lemma 3.4. The pre-
geodesic γ(r) = ψ(x,r), x ∈ Mn−1 fixed, has velocity vector γ ′ = T (γ) and arc-lenght function
s(r) =

∫ r
0 ∥T (γ)∥dρ , which is a diffeomorphism. If r(s) denotes the inverse function of s(r),

then
dr
ds

=

(
ds
dr

(r(s))
)−1

= ∥T (γ(r(s)))∥−1,

and the arclenght reparametrization γ(r(s)) of γ has velocity vector T (γ(r(s)))/∥T (γ(r(s)))∥,
which we indicate by T̂ (γ(r(s))). We claim that α := Π◦ f ◦ψ(x, ·) : I →Qn

ε is a pre-geodesic
of Qn

ε for any x ∈ Mn−1, where Π : Qn
ε ×R→Qn

ε is the projection onto the first factor. In fact,
the velocity vector is given by

α
′(r) = (Π1)∗ f∗T (γ(r)) = f∗T (γ(r))−

〈
f∗T (γ(r)),

∂

∂ t

〉
∂

∂ t
.
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Also
⟨ f∗T (γ(r)), f∗T (γ(r))⟩= ⟨T (γ(r)),T (γ(r))⟩

and 〈
f∗T (γ(r)),

∂

∂ t

〉
= ⟨T (γ(r)), T (γ(r))⟩,

implies in

∥α
′(r)∥2 = ∥ f∗T (γ(r))∥2 −

∥∥∥〈 f∗T (γ(r)),
∂

∂ t

〉∥∥∥2
= ∥T (γ(r))∥2

ν(γ(r))2,

that is, λ (r) := ∥α ′(r)∥= ∥T (γ(r))∥ν(γ(r))> 0, which implies that the arc lenght function of
α given by s(r) =

∫ r
0 λ (ρ)dρ , is a diffeomorphism. If r(s) denotes the inverse function of s(r),

then
dr
ds

=
[ds

dr
(r(s))

]−1
= (λ (r(s)))−1.

Thus, the arc lenght reparametrization α(r(s)) of α has a velocity vector given by

dr
ds

dα

dr
(r(s)) = (λ (r(s)))−1

α
′(r(s)).

For the sake of clarity, we temporarily avoid writing the arguments of T (γ(r(s))), α ′(r(s)),
ν(γ(r(s))) and λ (r(s)), and thus just write T , α ′, ν and λ , respectively. Now, using (3.1), we
have

DT (γ(r))λ
−1

α
′ = ∇̃T (γ(r))λ

−1
α
′− ε⟨α ′,λ−1

α
′⟩ξ .

Then, for ε ∈ {−1, 1}, if we prove that DT (γ(r))λ
−1α ′ is in the direction of ξ , we will obtain

0 = ∇̃T (γ(r))λ
−1

α
′ = ∇

1
α ′λ

−1
α
′,

that is, α(r(s)) is a geodesic, where ∇1 is the Levi-Civita connection of Qn
ε . Therefore, let us

compute

DT λ
−1

α
′ = DT

(
f∗(λ−1T )−

〈
f∗(λ−1T ),

∂

∂ t

〉
∂

∂ t

)
. (3.18)

First, notice that

DT f∗(λ−1T ) = DT ν
−1 f∗T̂ = T (ν−1) f∗T̂ +ν

−1DT f∗T̂ , (3.19)

where T̂ = T/|T |. Now, since T̂ is a parallel vector field along γ (see (3.9)),

DT f∗T̂ = ∇T T̂ +α
i◦ f (T, T̂ ) = ⟨AT, T̂ ⟩η + ⟨Aξ T, T̂ ⟩ξ = ν

−1T (∥T∥)η −ν
2∥T∥ξ , (3.20)

where the third equality holds for (3.8) and the following

0 = T (∥T∥2 +ν
2) = 2(∥T∥T (∥T∥)+ν(T ν)), (3.21)

⟨AT, T̂ ⟩=−∥T∥−1T (ν) = ν
−1T (∥T∥), (3.22)

where we have used (3.7). Now

0 = T (νν
−1) = νT (ν−1)+ν

−1T ν =⇒ −ν
−2T ν = T (ν−1),
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and (3.21) implies in

T (ν−1) =−ν
−3

νT (ν) = ν
−3∥T∥T (∥T∥),

which in turn together with (3.19) as well as (3.20) establish

DT f∗(λ−1T ) = ν
−3∥T∥T (∥T∥) f∗T̃ +ν

−2T (∥T∥)η −ν∥T∥ξ

= ν
−3T (∥T∥) ∂

∂ t
−ν∥T∥ξ .

On the other hand, as ⟨ f∗(λ−1T ), ∂

∂ t ⟩= ν−1∥T∥, we have

T (ν−1∥T∥) = T (ν−1)∥T∥+ν
−1T (∥T∥) = ν

−3T (∥T∥)(∥T∥2 +ν
2) = ν

−3T (∥T∥).

Using also (3.16), it follows that

DT ( f∗(λ−1T )−⟨ f∗(λ−1T ),
∂

∂ t
⟩ ∂

∂ t
) =−ν∥T∥ξ , (3.23)

and so α(r(s)) is a geodesic of Qn
ε . We claim that

g := Π◦ f ◦ψ(·, 0) : Mn−1 →Qn
ε ,

is a hypersurface. In fact, g is smooth and g∗ is injective, because ⟨ f∗(ψ(·, 0))∗X ,∂/∂ t⟩ = 0
which implies g∗X = (π1)∗ f∗(ψ(·, 0))∗X = f∗(ψ(·, 0))∗X ; and g is also isometric since ⟨X , Y ⟩=
⟨ f∗(ψ(·, 0))∗X , f∗(ψ(·, 0))∗Y ⟩= ⟨g∗X , g∗Y ⟩. Also, the set of velocity vectors

d
ds

∣∣∣
s=0

(Π◦ f ◦ψ)(x,r(s)), x ∈ Mn−1

yield a unit normal to g, so the existence of the parallel hypersurface gs is guaranteed. Therefore,
gs(x) = Π◦ f ◦ψ(x,r(s)). Also, set

a(s) :=
〈

f ◦ψ(x,r(s)),
∂

∂ t

〉
= ρ(r(s)),

which is then a smooth function on J := s(I). Thus, we have

f (ψ(x, r(s)) = gs(x)+a(s)
∂

∂ t
, (3.24)

for any (x, s) ∈ Mn−1 × J. From (3.17) we obtain a′(s) ̸= 0. If a′ < 0, let s(σ) be the diffeomor-
phism that ’walks’ over J from the bigger end point to the smaller end point, so that ds/dσ < 0.
Then, replacing s by s(σ) in the expressions of gs and a(s), we will obtain now da/dσ > 0.

Remark 3.10. A fundamental step for the proof of Theorem 3.9 is to prove that α := Π◦ f ◦
ψ(x, ·) is a pre-geodesic of Qn

ε . Even though we have only presented the proof to that fact for
the cases ε ∈ {−1,1}, it also holds for ε = 0. In fact, omitting the terms involving ξ from (3.19)
to (3.23), it is demonstrated that the covariant derivative in (3.18) is identically zero, i.e., α is
likewise a geodesic of Qn

ε for ε = 0.
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Remark 3.11. The hypersurface f can be geometrically interpreted: first, assume ε ∈ {1,−1}
and regard g as an isometric immersion with codimension 3 of Mn−1 into En+2 by composing
g first with the inclusion i : Qn

ε ↪→ En+1, and then with the inclusion j : En+1 ↪→ En+2. Thus,
for a given x ∈ Mn−1, the normal space Ng M(x) is a Lorentzian or Riemannian vector space of
dimension 3, according as ε =−1 or ε = 1, respectively, spanned by g(x), N(x) and ∂

∂ t . In fact,
for ε = −1, span{g(x)} is a 1-dimensional subspace restricted to which the inner product of
Ng M(x) is negative definite; and span{Nx,

∂

∂ t } is a 2-dimensional subspace of Ng M(x) restricted
to which the inner product is positive definite. The analogous statement for ε = 1 is evident.
Also, the sections g, N and ∂/∂ t of Ng M are parallel, as the following computations show,

j◦i◦g
∇
⊥
X N =i◦g

∇
⊥
X N =−⟨X ,N⟩g(x) = 0,

j◦i◦g
∇
⊥
X g =i◦g

∇
⊥
X g = 0,

j◦i◦g
∇
⊥
X

∂

∂ t
= 0.

On the one hand, for each x ∈ M,

f (x,s) =Cε(s)g(x)+Sε(s)Nx +a(s)
∂

∂ t
(3.25)

can be thought as a smooth curve f (x, ·) in a cylinder Q1
ε ×R⊂ Ng M(x)—it is enough to notice

that Cε(s)g(x)+Sε(s)Nx ∈Q1
ε ⊂ E2. On the other hand, for s ∈ I fixed, f (·,s) can be thought

as a curve in Ng M. Since, Cε(s)g+Sε(s)N +a(s) ∂

∂ t is a parallel vector field along f (·,s), f is
obtained by parallel transporting the curve f (x, ·), x ∈ Mn−1, in Ng M. Now for ε = 0, regard
g as an isometric immersion with codimension 2 of Mn−1 into Rn+1 by composing g with the
inclusion Rn ↪→ Rn ×R. In this case, the map f in (3.25) simplifies its aspect to

f (x,s) = g(x)+ sN(x)+a(s)
∂

∂ t
,

and Ng M(x), x ∈ M, is a Riemannian vector space of dimension 2, spanned by N(x) and ∂

∂ t . Also,
as before, N and ∂

∂ t , sections of Γ(Ng M), are parallel. On the one hand, for x ∈ M, f (x, ·) can
be thought as a curve in the normal space Ng M(x). On the other hand, for s ∈ I, f (·,s) can be
thought as a curve in Ng M along of which g+ sN +a(s) ∂

∂ t is parallel. Therefore, f is obtained
by parallel transporting this curve f (x, ·) in Ng M.

As a consequence of theorems 3.6 and 3.9, we obtain a complete description of constant

angle hypersurfaces f : Mn →Qn
ε ×R — hypersurfaces whose angle function is constant.

Corollary 3.12. Given an open interval I ⊂ R and A,B ∈ R, A > 0, set a(s) = As+B, s ∈ I.
Then the hypersurface given by (3.10), restricted to regular points, has constant angle function.
Conversely, any constant angle hypersurface f : Mn →Qn

ε ×R is either an open subset of some
slice Qn

ε ×{t0}, an open subset of Mn−1×R, where Mn−1 ↪→Qn
ε is a hypersurface, or it is locally

given by (3.10) with a(s) = As+B, s ∈ I, for some A,B ∈ R, A > 0.
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Proof. Let us first show that f has constant angle function. As a(s) = As, we have a′(s) = A and
the unit normal η to f , determined by (3.14), becomes

η(x, s) =− A√
1+A2

Ns(x)+
1√

1+A2

∂

∂ t
,

and thus the angle function

θ(x, s) =
〈

η ,
∂

∂ t

〉
=

1√
1+A2

,

is constant. Conversely, if ν = 0, f (Mn)⊂ Mn−1 ×R is an open subset, where Mn−1 ↪→Qn
ε is

a hypersurface. Also, when ν = 1, f (Mn) ⊂ Qn
ε ×{t0} is an open subset of a slice for some

t0 ∈ R (MANFIO; TOJEIRO, 2011, Proposition 2.1). Now, for ν /∈ {0, 1}, f : Mn →Qn
ε ×R

is a hypersurface with nowhere vanishing angle function and T ̸= 0 everywhere. In addition,
0 = ⟨AT, X⟩ holds from (3.7) for any X ∈ T M, which yields AT = 0 = 0 ·T , i.e., T is a principal
direction. Thus, thanks to Theorem 3.9, f is locally given by (3.10), and

A := a′(s) =
√

b(s)2 −1 =
√

ν−2 −1

is a positive real number. Consequently, a(s) = As+B, for some B ∈ R.
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CHAPTER

4
EMBEDDEDNESS, CONVEXITY AND

RIGIDITY OF HYPERSURFACES IN H n×R
AND Sn×R

In this chapter, we present a result, Theorem 4.10, which is a generalisation to hy-
persurfaces in H n ×R, where H represents an arbitrary Cartan-Hadamard manifold, of the
well-known Hadamard-Stoker Theorem for complete surfaces immersed in R3. Also, it is shown,
Theorem 4.13, that these hypersurfaces are rigid among the hypersurfaces with the same extrinsic
curvature. Both of these results, as well as another ones in this chapter are due to Lima (2021).

4.1 Preliminaries

A complete, simply connected n-dimensional Riemannian manifold with nonpositive
sectional curvature is called a Cartan-Hadamard manifold, and denoted by H n. Euclidean
and hyperbolic spaces are simple examples. We shall remember that every Cartan-Hadamard
manifold is diffeomorphic to Rn. Consequently, given two arbitrary distinct points x, y ∈ H ,
there exists a unique geodesic γxy of H joining x and y: in fact, because expx : TxH → H is a
diffeomorphism, there is a unique w ∈ TxH such that y = expxw = γw(1); then it is sufficient to
set γxy := γw. A subset C of H is said to be convex when γxy ⊂C for any two different points
x, y ∈C.

In Section 3.1 we introduced some ideas for the product manifold Qn
ε ×R: projections on

both factors, decomposition of vector fields Z ∈Qn
ε ×R as a pair of horizontal and vertical vector

fields (Z1,Z2), and the vector field ∂

∂ t . Since all of these ideas are amenable to generalisation to
arbitrary product manifolds M̃×R, we will use them throughout this chapter.

Given t ∈ R, the embedded submanifold M̃t := M̃×{t} ⊂ M̃×R will be called the slice

of M̃×R at level t. Every slice M̃t is a totally geodesic submanifold of M̃×R isometric to M̃, so
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we identify the Levi-Civita connections of both M̃ and an arbitrary slice M̃t , as well as use the
symbol ∇1 to denote both of them. A geodesic of M̃×R contained in a slice is called horizontal

while one that is tangent to ∂

∂ t is called vertical.

Given a hypersurface f : Mn → M̃n×R that admits a unit normal N, for all X ,Y ∈X(M),
we have

⟨α(X , Y ), N⟩= ⟨AX , Y ⟩=−⟨∇̃X N, Y ⟩= ⟨∇̃XY, N⟩. (4.1)

We shall remember (Section 3.2) that the vector field T is a gradient vector field. Thus, from
(3.2), a point x ∈ M is a critical point of h as long as N(x) =± ∂

∂ t , or equivalently ν(x) =±1. It
also follows from (3.2) that

∇̃X gradh =−ν∇̃X N − (Xν)N

for X ∈ X(M). Because of this and (4.1), for X , Y ∈ X(M),

Hessh(X , Y ) = ⟨∇̃X gradh, Y ⟩=−⟨ν∇̃X N, Y ⟩= ν⟨α(X , Y ), N⟩. (4.2)

Given an open subset Ω⊂M, an integral curve of gradh in Ω is a smooth curve ϕ : I →Ω

such that ϕ ′ = gradh(ϕ) on I. If Ω̄ contains only one critical point of h, then either

lim
r→−∞

ϕ(r) = x0 or lim
r→+∞

ϕ(r) = x0

according as x0 is a local minimum or a local maximum, respectively; in the former case it is said
that ϕ is issuing from x0 and in the latter one that ϕ is going into x0 (LIMA, 2021, Section 2.1).

Note that for X ∈ T M,

Xν =

〈
∇̃X N,

∂

∂ t

〉
=−⟨AX , gradh⟩,

which in turn implies that

gradν =−Agradh. (4.3)

Next, we define the notion of a top or bottom end for a complete hypersurface f : Mn → M̃n ×R.

Definition 4.1. A complete hypersurface f : Mn → M̃n ×R is said to have a top end E ⊂ M

(respectively, bottom end) if E is unbounded, and h(xk)→+∞ (respectively, h(xk)→−∞) for
every divergent sequence (xk)

∞
k=1 in E.

Another key concept present in the proof of Theorem 4.10 is that of horizontal sections
of a hypersurface. If a hypersurface f : Mn → M̃n ×R is transversal to a slice M̃t of M̃×R, in
which case f−1(M̃t) = h−1(t) is an embedded (n−1)-dimensional submanifold of M, we call
the restriction ft := f |Mt : Mt → M̃t , where Mt is a component of h−1(t), a horizontal section of f

at level t. It follows immediately that horizontal sections are hypersurfaces of the corresponding
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slices from the fact that f is a hypersurface. Any horizontal section is also oriented by the unit
normal given by

η =
N −ν∂/∂ t
∥N −ν∂/∂ t∥

=
N −ν∂/∂ t√

1−ν2
. (4.4)

Furthermore, if x0 ∈ M is a critical point of the height function of f , a normal section for x0 is a
horizontal section ft : Mt → M̄t of f at a level t > 0 which satisfies the following two conditions

• Mt is homeomorphic to Sn−1 and the boundary of an open set Ωt ⊂ M, called normal

region for x0, such that the only critical point of h in Ωt is x0.

• There is a homeomorphism B̄ → Ω̄t taking ∂B into Mt , where B ⊂ Rn is an open ball.

The level t is called normal value for x0.

We shall remember that the (vertical) graph Γ(u) of a smooth function u defined on some
open set D ⊂ M̃, is an embedded n-dimensional hypersurface of M̃×R. It admits a unit normal
given via

N =
−gradu+∂/∂ t√

1+∥gradu∥2
, (4.5)

where gradu := gradu(π), and π : M̃ ×R → M̃ is the projection onto the first factor. In fact,
it is unit as ∥− gradu+ ∂/∂ t∥2 = 1+ ∥gradu∥2. If φ(p) = (p, u(p)), p ∈ D, are the graph
coordinates on Γ(u), then for any Z ∈ Tφ(p)Γ(u), there exists a unique X ∈ Tp M̃ such that
Z = φ∗X = X +Xu. Thus,

⟨N, Z⟩= 1√
1+∥gradu∥2

(−Xu+Xu) = 0,

i.e., N is indeed normal to Γ(u). And, the angle function is

ν =
1√

1+∥gradu∥2
. (4.6)

Also, from (3.2), (4.5) and (4.6) the horizontal component of gradh is parallel to gradu:

gradh =
∂

∂ t
−νN =

1
1+∥gradu∥2 gradu+

∥gradu∥2

1+∥gradu∥2
∂

∂ t
.

Consequently, the projection π ◦ γ of an integral curve γ of gradh onto M̃ is parallel to gradu —
in fact, (π ◦ γ)′ = π∗gradh — and thus orthogonal to all level sets Σt := u−1(t), t ∈ u(D), of u.

In order to consider the right-hand side of the Gauss Equation (2.23), excluding K̃(X , Y ),
we define a linear operator AXY on span{X ,Y} determined for orthonormal tangent vectors X , Y

to M at x ∈ M by

AXY := πXY A|span{X ,Y},

where πXY is the projection of Tx M to span{X , Y}.
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Proposition 4.2. AXY is a linear operator on span{X ,Y} with determinant

⟨AX ,X⟩⟨AY,Y ⟩−⟨AX ,Y ⟩2.

Proof. By Gram-Schmidt algorithm, we can obtain an orthonormal basis {X1, . . . , Xn} for Tx M,
where X1 = X and X2 = Y . Any Z ∈ Tx M is thus written as Z = ⟨Z, X1⟩X1 + · · ·+ ⟨Z, Xn⟩Xn.
Then, πXY is given by

πXY Z = ⟨Z, X⟩X + ⟨Z, Y ⟩Y, (4.7)

which implies in πXY being linear, and so is AXY . The matrix representation of AXY with respect
to the basis {X ,Y} is (

⟨AX , X⟩ ⟨AY, X⟩
⟨AX , Y ⟩ ⟨AY, Y ⟩

)
which yields the remaining assertion.

Let λ1, . . . , λn denote the principal curvatures of f at x ∈ M, and let X1, . . . , Xn be an
orthonormal basis of principal directions for Tx M so that AXi = λiXi for every i ∈ {1, . . . , n}. It
holds

λi ≥ c ≥ 0 ∀ i ∈ {1, . . . , n}⇒ detAXY ≥ c2 for all orthonormal vectors X ,Y ∈ Tx M,

where the last inequality is strict if the first one is as well (LIMA, 2021, equation 9).

4.2 Asymptotic rays
If H n is a Cartan-Hadamard manifold, so is the Riemannian product H n ×R. A

geodesic ray in H n is a geodesic of the form γ : [0,+∞) → H n. Two geodesic rays γ, σ :
[0,+∞)→ H n ×R parametrized by arc length are said to be asymptotic if there exists c ∈ R
such that d(γ(r), σ(r))≤ c for all r ≥ 0, where d represents the Riemannian distance function
on H n ×R. A remarkable property is that given p ∈ H n ×R and a geodesic ray γ in H n ×R
parametrized by arc length, there exists a unique geodesic ray σp parametrized by arc length
asymptotic to γ with σp(0) = p (JOST, 2011, Lemma 5.8.11). Also the map p 7→ σ ′

p(0) is a
(continuous) vector field on H n ×R.

Proposition 4.3. Let H n be a Cartan-Hadamard manifold. Then, being asymptotic is an equiva-
lence relation on the class of all geodesic rays parametrized by arc length in H .

Proof. Every geodesic ray γ parametrized by arc length is asymptotic to itself as d(γ(s), γ(s))≡
0. Let γ, σ , and β be geodesic rays parametrized by arc length in H . If γ is asymptotic to σ ,
there exists c ∈ R such that d(γ(s), σ(s)) = d(σ(s), γ(s))≤ c for all s ≥ 0, so σ is asymptotic
to γ . Finally, suppose that there are c, d ∈ R satisfying d(γ(s), σ(s))≤ c and d(σ(s), β (s))≤ d

for every s ≥ 0. By the triangle inequality, we have d(γ(s), β (s))≤ c+d for all s ≥ 0.
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Figure 2 – A geodesic graph in H ×R.

It is worth mentioning that the set of all equivalence classes is called the asymptotic

boundary of H , though we will not employ this terminology.

Now, let γ : R→ H n ×R be a geodesic parametrized by arc length. Then

d
ds

〈
γ
′(s),

∂

∂ t

〉
=

〈
∇̃γ ′γ

′,
∂

∂ t

〉
= 0.

that is, the angle between γ ′ and ∂

∂ t is constant along γ . Thus, any geodesic γ of H n×R is either
horizontal or transversal to all slices of H n ×R.

Asymptotic rays allow us to define geodesic graphs in H n ×R.

Definition 4.4. Let U be a subset of a slice H n
b of H n ×R. A subset G ⊂ H n ×R is said to

be a geodesic graph over U if there is a bijection U ∋ q 7→ p(q) ∈ G such that

• For each pair (q, p(q)), there is a geodesic ray σq parametrized by arc length emanating
from q and intersecting G only at p.

• For all q, q′ ∈U , σq and σq′ are asymptotic.

Figure 2 was taken from Lima (2021) and provides a geometric picture of this definition.

4.3 Helpful facts
In this section we present some useful results that will help us to prove the main results

in the following section. First, we have a theorem for hypersurfaces in Sn+1 and Hn+1 obtained
by do Carmo and Warner (1970).

Theorem 4.5. Let f : Mn → Sn+1, n ≥ 2, be a nontotally geodesic hypersurface, where M is a
compact, connected, and orientable Riemannian manifold with sectional curvature K ≥ 1. Then,
the following hold:
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a. f is an embedding, and M is homeomorphic to Sn.

b. f (M) bounds a closed convex set contained in an open hemisphere of Sn+1.

c. f is rigid.

Moreover, the assertion a. and the convexity property in b. still hold if one replaces the sphere
Sn+1 by the hyperbolic space Hn+1, and assume that K ≥−1.

Secondly, we have a theorem for compact hypersurfaces in Cartan-Hadamard manifolds
established by Alexander (1977).

Theorem 4.6. Let f : Mn → H n+1, n ≥ 2, be a compact, connected, and oriented hypersurface
in a Hadamard manifold H n+1. If the second fundamental form of f is positive semi-definite,
then f is an embedding, M is homeomorphic to Sn, and f (M) bounds an open convex set in
H n+1.

Thirdly, here is a fact associated to the Soul Theorem, first formulated by Cheeger and
Gromoll (1972), and proved by Perelman (1994).

Theorem 4.7. If Mn is a complete noncompact Riemannian manifold with nonnegative sectional
curvature, and there exists a point p ∈ M where all sectional curvatures are positive, then M is
diffeomorphic to Rn.

Finally, we have two crucial lemmas for the proof of Theorem 4.10.

Lemma 4.8. Suppose f : Mn → M̃n ×R is a hypersurface with unit normal N and positive
definite (respectively, semi-definite) second fundamental form α . Then, any horizontal section
ft : Mt → M̃t of f has positive definite (respectively, semi-definite) second fundamental form if
it is oriented by (4.4).

Proof. Because every slice M̃t is totally geodesic, for all Y ∈ X(M̃t),

∇̃YY = ∇
1
YY.

Now, for every X ∈ X(Mt)

⟨AηX , X⟩= ⟨α ft (X , X), η⟩= ⟨∇X X , η⟩= 1√
1−θ 2

⟨∇̃X X , N⟩

= ⟨α f (X , X), N⟩= ⟨AX ,X⟩.

Thus, α ft is either positive definite or positive semi-definite depending on whether α f is positive
definite or positive semi-definite, respectively.
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Let f : Mn → M̃n+1 be a hypersurface. From the Gauss Equation (2.23) for f , the extrinsic

curvature Kext( f ) of f at x ∈ M along the plane span{X ,Y}, where X , Y ∈ Tx M are orthornormal,
is defined via

Kext( f )(X , Y ) = K(X , Y )− K̃(X , Y ) = detAXY .

By Cext( f ) we denote the class of all hypersurfaces g : Mn → M̃n+1 whose extrinsic curvature
coincides with that of f , i.e., for all x ∈ M, and all orthonormal vectors X , Y ∈ TxM,

Kext( f )(X ,Y ) = Kext(g)(X ,Y ).

Notice that Cext( f ) includes all hypersurfaces g : Mn → M̃n+1 when M̃ has constant sectional
curvature, space forms for instance.

Given a hypersurface f : Mn → Qn
ε ×R, it is said to be rigid in Cext( f ) if for any

hypersurface g : Mn →Qn
ε ×R in Cext( f ), there exists Φ ∈ Iso(Qn

ε ×R) such that g = Φ◦ f . On
the other hand, if we use (4.7) and suppose f admits a unit normal N, we can rewrite the Gauss
equation 3.4 for f as

K(X , Y ) = detAXY + ε(1−∥πXY gradh∥2). (4.8)

Lemma 4.9. Let f : Mn →Qn
ε ×R, n ≥ 3, ε ∈ {−1,1}, be an oriented hypersurface whose shape

operator A f has rank at least 3 everywhere. If g : Mn → Qn
ε ×R is a hypersurface in Cext( f ),

there exists a unit normal Ng ∈ Γ(Ng M) such that the shape operator Ag, the height function hg

and the angle function νg of g satisfy

A f = Ag, ∥gradh f ∥= ∥gradhg∥ and ν
2
f = ν

2
g

Proof. Because g ∈ Cext( f ), K̃( f∗X , f∗Y ) = K̃(g∗X , g∗Y ) for all x ∈ M and orthonormal vectors
X , Y ∈ Tx M; and thus

⟨R̃( f∗X , f∗Y ) f∗Z, f∗W ⟩= ⟨R̃(g∗X , g∗Y )g∗Z, g∗W ⟩,

as the sectional curvatures determines the curvature tensor (LEE, 2018, Proposition 8.31). So,
from Gauss equations (2.6) for f and g, it follows that

⟨α f (X ,W ),α f (Y,Z)⟩−⟨α f (X ,Z),α f (Y,W )⟩= ⟨αg(X ,W ),αg(Y,Z)⟩−⟨αg(X ,Z),αg(Y,W )⟩,

for all X , Y, Z,W ∈X(M). Since the rank of A f is at least 3, there exists a vector bundle isometry
φ : N f M → Ng M with αg = φ ◦α f (DAJCZER et al., 1990, Proposition 6.10). In particular,
Ng := φN f is a unit normal to g. If we set Ag for the shape operator of g in the direction Ng, we
have for all X , Y ∈ X(M)

⟨AgX , Y ⟩Ng = α
g(X , Y ) = φ(⟨A f X , Y ⟩N f ) = ⟨A f X , Y ⟩Ng,

which implies that A f = Ag on M. Consequently, from equation (4.8) we obtain

∥πXY gradh f ∥= ∥πXY gradhg∥



52 Chapter 4. Embeddedness, convexity and rigidity of hypersurfaces in H n ×R and Sn ×R

for every orthonormal tangent vectors X , Y to M. Given x ∈ M, X1, . . . ,Xn an orthonormal basis
for Tx M, if we write gradh f = a1X1 + · · ·+anXn and gradhg = b1X1 + · · ·+bnXn, the last equa-
tion yields a2

i + a2
j = b2

i + b2
j for all 1 ≤ i ̸= j ≤ n; which in turn implies that

∥gradh f ∥2 = a2
1 + · · ·+a2

n = b2
1 + · · ·+b2

n = ∥gradhg∥2.

Finally, (3.2) implies ∥gradh f ∥2 +ν2
f = ν2

g +∥gradhg∥2, from which we obtain the last claim.

4.4 Embeddedness and convexity theorems

In this and the following section we present some results about embeddedness, convexity
and rigidity of hypersurfaces in H n ×R and Sn ×R. These results were first stated and proved
by Lima (2021). In order to treat hypersurfaces in H n×R and Sn×R as one group, allow M̃n to
denote either a Cartan-Hadamard manifold H n or the unit sphere Sn. However, when we want
to restrict attention to a specific class of hypersurfaces, we deliberately use the corresponding
notation for the ambient space, for instance H n ×R, rather than the more general notation
M̃n ×R.

Suppose f : Mn → M̃n ×R is a complete connected hypersurface oriented by a unit
normal N, that its second fundamental form is positive definite, and that its height function h

has at least one critical point. It follows that h is a Morse function, i.e., every critical point is
nondegenerate: for each critical point x0 of h, it follows from (4.2) that

Hessh(X ,Y ) = 0,∀Y ∈ Tx0 M ⇔ X = 0 ∈ Tx0 M.

Equation (4.2) also implies that the Hessh at x0 is positive definite or negative definite according
as ν = 1 or ν =−1, respectively. Thus, every critical point is either a strict local minimum or a
strict local maximum point of h.

Let us assume that x0 is a strict local minimum point of h, and that h(x0) = 0. Then,
there is a smooth chart (U, (x1, . . . ,xn)) for M centered at x0 such that the local representation
of h is x2

1 + · · ·+ x2
n. For t > 0 small enough, f is transversal to M̃t ; thus if Mt denotes the set

{(x1, ...,xn)∈U ; x2
1+ · · ·+x2

n = t}, ft := f |Mt : Mt → M̃t is a horizontal section of f , for instance.
Also, Mt is homeomorphic to the sphere x2

1 + · · ·+ x2
n = t in Rn, and so homeomorphic to Sn−1.

In addition, it is also the boundary of the open set

Ωt := {(x1, ...,xn) ∈U ; x2
1 + · · ·+ x2

n < t} ⊂ M,

which contains no critical point other than x0. Restricting the smooth chart (xi) to Ωt , we obtain
a homeomorphism from Ωt onto ϕ(Ωt), the closed ball x2

1 + · · ·+ x2
n ≤ t in Rn, whose inverse

takes ∂ (ϕ(Ωt)) onto Mt . Therefore, ft : Mt → M̃t is a normal section for x0.
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Next, set I = (0, t∗) := {t ∈R+ : t is a normal value for x0} and Ω := ∪t∈I Ωt , where t∗

might be either a finite positive real number or +∞. Since we have shown that ft is a normal
section for t > 0 near enough to 0, Ω is a nonempty open subset of M; and it is also homeomorphic
to Rn. Note that there are three mutually exclusive possibilities for Ω:

i. Ω = M; and thus ∂Ω = /0.

ii. Ω ̸= M, and ∂Ω contains critical points of h.

iii. Ω ̸= M, and ∂Ω contains no critical point of h.

Thanks to Lemma 4.8, each normal section ft for x0 has positive definite second fun-
damental form. In addition, Theorem 4.6 asserts that each normal section ft : Mt → Ht is an
embedding, and that ft(Mt)⊂ Ht is the boundary of an open convex set in Ht , which together
with ft(Mt) is compact as it is contained in a (compact) closed ball of Ht (LEE, 2018, Lemma
12.16). Do Carmo-Warner theorem yields likewise that every normal section ft : Mt → Sn

t is an
embedding, and that ft(Mt)⊂ Sn

t is the boundary of a compact convex set in Sn
t . Also, as Mt is

compact, normal sections ft : Mt → M̃t are proper embeddings. Since Ωt is compact and M̃×R
is Hausdorff, f |

Ωt
is proper, and so is f |Ωt as Ωt is saturated with respect to f |

Ωt
(LEE, 2011,

Proposition 4.93). It also holds that f |Ωt is injective: if f (x) = f (y) for x, y ∈ Ωt , we obtain
h(x) = h(y) and x, y ∈ Mh(x); thus x = y as f |Mh(x) is an embedding. So, for each t ∈ I, f |Ωt is
a proper embedding (LEE, 2012, Proposition 4.22); and f (Ωt) separates M̃ × [0, t) into two
components.

For M̃ = H , one of these components is bounded, which is designated by Λt . For
M̃ = Sn, both of them are bounded, so we denote by Λt the one to which N(x0) points. Since
N(x0) =

∂

∂ t , the unit normal N points towards Λt , and so does the mean curvature vector H

along Ωt , as follows from (2.4) if we take ξ = N. Also, since f |Ωt is an oriented embedded
hypersurface that is infinitesimally convex — with positive semi-definite second fundamental
form — then it is strictly locally convex (BISHOP, 1974/75), meaning that for each x ∈ Ωt , there
is a neighbourhood V of 0 ∈ TxM such that exp f (x)V ∩Λt = { f (x)}, where exp is the exponential
map of M̃×R.

Suppose there are distinct points p, q ∈ Λt such that the unique geodesic of H ×R
joining p and q is not contained in Λt . Let β : [0, 1] → Λt be a smooth curve with β (0) =
p, β (1) = q and σs the unique geodesic of H n ×R from p to β (s) for each s ∈ (0, 1]. Some
points of σ1 do not belong to Λt , while all points of σs are in Λt for s> 0 near enough to zero. Thus
there is s0 ∈ (0, 1] such that σs0 is tangent to f (Ωt), at some point f (y0) = σs0(t0), and contained
in Λt . Because f |Ωt is strictly locally convex, there exists V ⊂ Ty0 M neighbourhood of 0 ∈
Ty0 M such that exp f (y0)

V ∩Λt = { f (y0)}. However, for s > 0 small enough, exp f (y0)
sσ ′

s0
(t0) ∈

exp f (y0)
V ∩Λt , yielding a contradiction. Consequently, Λt is convex.
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Theorem 4.10. Let f : Mn → M̃n ×R, n ≥ 3, be a complete connected oriented hypersurface
with positive definite second fundamental form. If its height function h has a critical point, then
the following hold

1. f is an embedding, a proper one when M̃ = H , and M is homeomorphic to either Sn or
Rn. In the latter case, f has a bottom or a top end, and f (M) is a geodesic graph over an
open subset of a slice of H ×R when M̃ = H .

2. f (M) is the boundary of a convex subset of H ×R.

Proof. We divide the proof considering the three possibilities for Ω.
Case i.
M(= Ω) is homeomorphic to Rn. Since each f |Ωt : Ωt → M̃n ×R is proper, the immersion f

is proper; it is also an embedding as it is injective (LEE, 2012, Proposition 4.22). In fact, if
f (x) = f (y), then h(x) = h(y), and both x and y belong to Mh(x) on which f is an embedding;
consequently x = y. Also, f (M)⊂H ×R is the boundary of the open set Λ := ∪t∈I Λt , which is
also convex: given p, q ∈ Λ, there is t ∈ I such that p, q ∈ Λt ; and so γpq is contained in (Λt ⊂)Λ.
In addition, I must be unbounded. In fact, suppose I is bounded. If f (M)∩Ht∗ ̸= /0, whether f

is transversal to Ht∗ or not. If it is, by continuity there is some ℓ > t∗ near enough to t∗ such that
f is transversal to Hℓ, yielding the contradiction that t∗ ̸= supt∈I t. If f is not transversal to Ht∗ ,
there is x ∈ M such that f∗Tx M = Tf (x)Ht∗; thus x is another critical point of h which belongs
to some Ωt , yielding a contradiction. Therefore, f (M)∩Ht∗ = /0; and Ht∗ ⊂ Λ. Let (pk)

∞
k=1

be a divergent sequence in Ht∗ , and γk : [0, ak]→ Λ the geodesic parametrized by arc length
of H ×R joining f (x0) to pk for each k ∈ N. Since (γ ′k(0))

∞
k=1 is a sequence of unit vectors in

Tf (x0)H ×R, it admits a convergent subsequence. Therefore, we can assume that (γ ′k(0))
∞
k=0 con-

verges to a unit vector Z0 ∈ Tf (x0)H ×R. Let γ : [0,+∞)→ H ×R represent the geodesic ray
parametrized by arc length with γ(0) = f (x0), γ ′(0) = Z0. Because, for all k ∈N, γk([0, ak])⊂ Λ,
it follows γ([0,+∞)) ⊂ Λ. If γ was not horizontal, it would be transversal to Ht∗ and not be
contained in Λ; thus γ must be horizontal. In fact, since γ(0) = f (x0) and Λ∩H0 = { f (x0)}, it
follows that γ ≡ f (x0), yielding a contradiction as well. Consequently, I is unbounded. On the
other hand, M is a top end for f : Mn → M̃n ×R: if M was bounded, M would be compact, and
so would be Rn; also if there existed a divergent sequence (pk)

∞
k=1 in M such that h(pk)↛+∞,

we can obtain some Ωt and a subsequence (pmk)
∞
k=1 of (pk)

∞
k=1 with f (pmk) ∈ Λt , from which

we arrive to a contradiction, proceeding as above. Now, let (pk)
∞
k=1 be a divergent sequence in Λ.

As we did above, we obtain a geodesic ray parametrized by arc length γ : [0,+∞)→ Λ. Assume
there is t0 ∈ (0,+∞) with γ(t0) ̸= f (x0) and γ(t0) ∈ ∂Λ ⊂ H ×R, then γ(t0) = f (y0) for some
y0 ∈ M, and γ ′(t0) = f∗X for some X ∈ Ty0 M, which yields as before the contradiction that f

is not strictly locally convex; thus γ(x0) is the only point of γ in ∂Λ. Given x ∈ M, there exists
a unique geodesic ray σx parametrized by arc length with σx(0) = f (x), asymptotic to γ (see
Section 4.2). Like γ , σx([0,+∞))⊂ Λ and σx([0,+∞))∩∂Λ = { f (x)}. Because f (Mh(x)) is the
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boundary of a compact convex set in Hh(x), the entire geodesic γx containing σx cannot be hori-
zontal. Thus it intersects H0 at some point q(x). Set U := {q(x) : x ∈ M} and consider the map
G : f (M) ∋ f (x)→ q(x) ∈U . For x ∈ M, allow d := d( f (x), H0) and β (s) := γx(s−d), s ≥ 0.
As β ′(s) = γ ′

x (s−d), β is a geodesic ray parametrized by arc length that intersects f (M) only at
f (x). Let C be the number that claims that σx and γ are asymptotic, C̃ := max[0,d] d(β (s), γ(s))

and D := max{C̃,C + d}, then d(β (s), γ(s)) ≤ D, i.e., β is asymptotic to γ , from which we
obtain in particular that G is bijective. Consequently, f (M) is a geodesic graph over U . Note that

G( f (x)) = exp f (x)(−d( f (x),H0)σ
′
x(0));

in fact, G is a homeomorphism. As a consequence, U is open.

Case ii.
The interval I is bounded; otherwise there would not exist critical points in ∂Ω. If x1 ∈ ∂Ω is a
critical point of h, we have h(x1) = t∗. In fact, if h(x1)> t∗, by continuity there is a neighbour-
hood U of x1 in M such that t∗ < h(x) for all x ∈U . Nevertheless, because x1 ∈ ∂Ω, there exists
x ∈U ∩Ω with h(x)< t∗. Also, if h(x1)< t∗, x1 would belong to some normal section of f , and
thus not be a critical point. If N(x1) =

∂

∂ t , x1 would be a strict local minimum point of h; then
there would be a neighbourhood U ⊂ M of x1 such that h(x)> t∗ for every x1 ̸= x ∈U , which is
a contradiction as x1 ∈ ∂Ω. Thus N(x1) =− ∂

∂ t , and x1 is a strict local maximum point of h. In
particular, f (M)∩ M̃t∗ = { f (x1)}, which implies that M = Ω, and so M is compact. As a result,
h is a Morse function with only two critical points, hence M is homeomorphic to Sn (MILNOR,
1973, Theorem 4.1). For M̃ = H , thanks to Alexander theorem, f is a proper embedding and
f (M) is the boundary of a convex set in H ×R. For M̃ = Sn, since f is injective and M is
compact, it follows that f is an embedding (LEE, 2012, Proposition 4.22).

Case iii.
We show that this possibility does not actually happen. In fact, first notice that Mt∗ := ∂Ω is
a connected (n− 1)-dimensional submanifold of M. As before, Mt∗ ⊂ h−1(t∗). Also, since
each normal section ft : Mt → M̃t , t ∈ (0, t∗) is a proper embedding, so is the restriction
f |

Ω̄
: Ω̄ → M̃ ×R. If the convex subset Λ̄ ⊂ H ×R were unbounded, there would exists a

divergent sequence (pk)
∞
k=1 in Λ̄, from which we obtain, as before, a geodesic ray parametrized

by arc length γ emanating from f (x0) and contained in Λ̄. This γ must be horizontal, otherwise
it will not be contained in Λ̄. Nevertheless, Λ̄∩H0 = { f (x0)}, yielding the contradiction that
γ ≡ f (x0). Therefore, Λ̄ is bounded, and so compact. Since f |

Ω̄
: Ω̄ → M̃×R is a proper embed-

ding, and both Λ̄ ⊂ H ×R and Sn
t∗ are compact, we have that Mt∗ ⊂ M is compact. For a given

t ∈ (0, t∗), the flow of gradh from Mt to Mt∗ is a homeomorphism (see proof of Theorem 3.1 in
Milnor (1973)). Thus, following the flow across Mt∗ , we arrive to a normal section Mt̄ for x0,
with t̄ > t∗ near enough, yielding a contradiction.

Definition 4.11. Given a hypersurface f : Mn → H n ×R, it is said to be cylindrically bounded

if there exists a closed geodesic ball B ⊂ H such that f (M)⊂ B×R.
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The following theorem is a dual to Theorem 4.10, in the sense that here we assume the
height function does not have critical points at all.

Theorem 4.12. Suppose f : Mn → M̃n ×R, n ≥ 3, is a proper connected and oriented hypersur-
face with positive semi-definite second fundamental form whose height function has no critical
points. Suppose also that it is cylindrically bounded only if M̃ = H . Then f is an embedding
and f (M) = Σ×R, where Σ ⊂ M̃×{0} is a submanifold homeomorphic to Sn−1 which bounds
an open convex set in M̃×{0}.

Proof. Note that Bt := B×{t} and Sn
t := Sn×{t} are compact. If h(M)⊂ [a,b]⊂R, then f (M)

would be contained in either Sn × [a,b] or B× [a,b] according as M̃ is equal to Sn or H . Then,
as f is proper, M would be compact, yielding the contradiction that h has a critical point; thus h

is unbounded above and bellow on M. Thus every horizontal section ft : Mt → M̃t is compact on
account of the properness of f and of the fact that ft(Mt) is contained in either Bt or Sn

t ; also
M =

⋃
t∈RMt . Lemma 4.8 ensures that every horizontal section ft of f has positive semi-definite

second fundamental form. Then, Alexander (4.6) and do Carmo-Warner (4.5) theorems apply
and guarantee that Mt is homeomorphic to Sn−1, ft is an embedding, and ft(Mt) bounds an open
convex subset of M̃t . Thus, M is homeomorphic to Sn−1 ×R; as well as f is an embedding, for
it is proper and an injective smooth immersion (LEE, 2012, Proposition 4.22). If M̃ = H , as
in the proof of theorem (4.10), the mean convex side Λ of f — one of the regions on which
H ×R is divided by f (M) and to which the mean curvature vector H points — as well as
its closure Λ̄ turn out to be convex. For t ∈ R, x0 ∈ Mt and a divergent sequence (xk)

∞
k=1 in M

such that h(xk) tends to either +∞ or −∞, the geodesic segment γk parametrized by arc length
of H ×R joining f (x0) to f (xk) is contained in Λ̄. Also, the limit geodesic ray γ of (γk)

∞
k=1,

is contained in Λ̄. If γ is not vertical, then it reachs the boundary of B×R at some point and
get out of it, yielding the contradiction that γ ̸⊂ Λ̄. Thus γ is vertical and tangent to f (M) at
f (x0). Because both t ∈ R, x0 ∈ Mt are arbitrary, f (M) = f (M0)×R. If M̃ = Sn, the sectional
curvature K of M and the extrinsic curvature Kext( f ) of f are nonnegative as f has positive
semi-definite second fundamental form and the sectional curvature of S×R is nonnegative
too. Since h does not have critical points, M is not compact. Then, for each x ∈ M, there exists
orthonormal vectors X , Y ∈ Tx M such that K(X , Y ) = 0; otherwise, by the Soul conjecture,
M would be homeomorphic to Rn, yielding the contradiction that Sn−1 ×R is homeomorphic
to Rn. Next, from (4.8), we have ∥ΠXY gradh∥= detAXY +1 ≥ 1, which implies 1 = ∥gradh∥.
Consequently, f (M) = f (M0)×R.

4.5 Rigidity theorems

We start this section mentioning two important results on rigidity of hypersurfaces.
First, the classic Beez-Killing Theorem, which asserts that hypersurfaces of dimension ≥ 3
in space forms, whose shape operator have rank ≥ 3, are rigid (DAJCZER; TOJEIRO, 2019).
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And secondly, H. Rosenberg and R. Tribuzy rigidity result which roughly speaking claims that
complete surfaces immersed in homogeneous 3-manifolds, which include the spaces Q2

ε ×R,
ε ∈ {−1,1}, are rigid among the surfaces with the same extrinsic curvature (ROSENBERG;
TRIBUZY, 2012). As the focus of this work are hypersurfaces in product spaces, a natural
problem to be studied is the rigidity of hypersurfaces in Qn

ε ×R, ε ∈ {−1,1}.

Note that, unlike hypersurfaces in space forms Qn
ε , Theorem 3.1 tells us that the fact that

two hypersurfaces in Qn
ε ×R have the same shape operator is in general insufficient to guarantee

that they are congruent. Consequently, we treat rigidity of hypersurfaces f : Mn → Qn
ε ×R,

ε ∈ {−1,1}, on the more restricted class Cext( f ). More precisely, we have

Theorem 4.13. Under the hypotheses of Theorem 4.10, though for M̃ denoting Qn
ε , ε ∈ {−1,1},

the hypersurface f : Mn →Qn
ε ×R is rigid in Cext( f ).

Proof. Let g : M → Qn
ε ×R be a complete connected hypersurface in Cext( f ). Because α f is

positive definite, the shape operator A f of f has rank greater than or equal to three: for each
x ∈ M, if there exists 0 ̸= X ∈ Tx M such that A f X = 0, then 0 = ⟨α f (X , X), N⟩, yielding the
contradiction that α f is not positive definite. Thanks to Lemma 4.9 and its proof, there exists
Ng = φN f ∈ Γ(Ng M) such that A f = Ag, |gradh f |= |gradhg| and ν2

f = ν2
g , where φ : N f M →

Ng M is the vector bundle isometry that satisfies αg = φ ◦α f (cf. proof of Lemma 4.9). The
hypersurface g has positive definite second fundamental form since 0 < ⟨A f X , X⟩= ⟨AgX , X⟩
for all x ∈ M and 0 ̸= X ∈ Tx M. The set of critical points of hg is the same as that of h f :

(h f )∗(x) = 0 ⇔ ⟨gradh f (x), Y ⟩= 0, ∀Y ∈ Tx M ⇔∥gradh f (x)∥= 0 = ∥gradhg(x)∥

⇔ ⟨gradhg(x), Y ⟩= 0, ∀Y ∈ Tx M ⇔ (hg)∗(x) = 0.

Thus g shares with f all properties declared in items 1. and 2.) of the Theorem 4.10. Set
A = A f = Ag. Given ϕ : R→ M and integral curve of gradh f , by (4.3) we have

d
ds

ν f (ϕ(s)) = ⟨gradν f (ϕ(s)), ϕ
′(s)⟩=−⟨Aϕ

′(s), ϕ
′(s)⟩ ≤ 0. (4.9)

Similarly for νg; thus ν f and νg are decreasing along integral curves of gradh f and gradhg,
respectively. Using (4.3), we compute the differential of both sides ν2

f = ν2
g for x ∈ M, X ∈ Tx M

ν f (ν f )∗X = νg(νg)∗X ⇒ ⟨ν f gradν f , X⟩= ⟨νggradνg, X⟩ ⇒ ν f gradh f = νggradhg

If x0 is a strict local minimum point of hg (and so of h f ), it holds ν f (x0) = 1 = νg(x0). Because
ν f (x) =±νg(x), there exists a neighbourhood U ⊂ M of x0 such that ν f = νg on U ; otherwise
there will exist a sequence (xk)

∞
k=1 in M converging to x0 with ν f (xk) = −νg(xk), yielding a

contradiction. After shrinking this neighbourhood, if necessary, we have ν f = νg > 0 on U ;
consequently gradh f = gradhg on U as well. Thus the integral curves of gradh f and gradhg

coincide on U . Because of ν f and νg are decreasing along these common integral curves, U can
be taken to be the entire M. Then we have

A f = Ag, ν f = νg and gradh f = gradhg on M.
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Finally, since all conditions in the uniqueness part of Theorem 3.1 are satisfied, there exists an
isometry Φ such that g = Φ◦ f .

A hypersurface S in M̃×R is called a rotational sphere with axis L if its horizontal sec-
tions are translated geodesic spheres of M̃, to suitable heights, centered at L. The following result
is a consequence of Theorem 4.10 and also a Hilbert-Liebmann-type theorem for hypersurfaces
in product spaces.

Corollary 4.14. Suppose f : Mn
c →Qn

ε ×R, ε ∈ {−1, 1}, is an isometric immersion of a com-
plete connected oriented n(≥ 3)-dimensional Riemannian manifold Mn

c with constant sectional
curvature c > (1+ ε)/2. Then f is congruent to an embedded rotational sphere.

Proof. Thanks to Myers theorem, M is compact and has finite fundamental group. The maximum
value of the sectional curvature of M in Qn

ε ×R is (1+ ε)/2: in fact, from (4.8) we see that the
maximum value of the sectional curvature of M in Qn

ε ×R is 1 (resp., 0), and it happens when
gradh is orthogonal (resp., equal to ∂

∂ t and tangent) to span{X ,Y} for ε = 1 (resp., ε = −1).
Because of this and the hypothesis on c, if λi and Xi, i = 1, . . . ,n, denote a principal curvature
and a associated principal direction, respetively, Gauss equation (2.23) implies λiλ j > 0 for all
1 ≤ i ̸= j ≤ n. After posibly changing the orientation of f , we obtain that all λi > 0, i.e., the
second fundamental form α of f is positive definite. Since M is compact, the height function
h of f has a critical point. Therefore, thanks to theorem 4.10, f is an embbeding and M is
homeomorphic to the sphere Sn; so M = Sn

c . As in the proof of theorem 4.10, since M is compact,
h has just two critical points — a minimum x0 and a maximum x1. Let us assume, as before,
h(x0) = 0 and note that ν(x0) = +1, ν(x1) =−1. By Manfio and Tojeiro (2011, Lemma 3.1),
gradh is a principal direction on M \{x0, x1}. Since N is a normal to any horizontal section Mt

of f , we obtain

⟨X ,gradh⟩=
〈
( ft)∗X ,

∂

∂ t

〉
−ν⟨ f∗X ,N⟩= 0

for every tangent vector X to Mt , that is, tangent vectors to horizontal sections are orthogonal
to gradh. Because of this, equation (4.3) and the fact that gradh is a principal direction, we
obtain X(ν) = ⟨−Agradh,X⟩ = 0 for every tangent vector X to Mt , i.e., the angle function ν

is constant along horizontal sections Mt . As gradh does not vanish on M \{x0, x1}, its integral
curves cover this set. Also, these integral curves issue from x0 and goes into x1 (see Section
4.1). The angle function ν decreases along them from +1 to −1 on account of (4.9). Therefore,
there is a point x ∈ M \ {x0, x1} on which ν(x) = 0, which implies ν ≡ 0 on the horizontal
section Mt0 , t0 := h(x), and positive on Mt for t ∈ [0, t0). Set Σ := { f (x) : x ∈ M, h(x) < t0}
and D := π(Σ). We claim that π|Σ is bijective. In fact, given distinct points x,y ∈ f−1(Σ)⊂ M,
if they belong to the same normal section Mh(x) of f , we have π( f (x)) ̸= π( f (y)). If they do
not, suppose π( f (x)) = π( f (y)). Then, the 2-dimensional subspace P of En+2 containing the
points 0,π( f (x)) and f (x), intersects Σ on a curve passing throw the points f (x) and f (y) (see
Figure 3). There exists a point f (z) on this curve where ν = 0, yielding the contradiction that
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f (z) /∈ Σ. Thus, π|Σ is injective and u := πR ◦ (π|Σ)−1 : D → R is a smooth function for which Σ

is its (vertical) graph. The level sets Σt := u−1(t) = π( f (Mt)), t ∈ (0, t0) are (homeomorphic to)
(n−1)-spheres. From equation (4.6), since the angle function is constant along the horizontal
sections Mt of f , it follows that |∇u| is constant along every level sphere Σt . We note that
π( f (x0)) is the only critical point of u (cf. equation 4.6), thus D\{π( f (x0))} ⊂Qn

ε is an open
set without critical points of u whose boundary contains only one critical point of u, the minimum
point π( f (x0)) of u. Also, thanks to Lemma 3.4, each integral curve of ∇u is a geodesic of Qn

ε ,
after reparametrizing by arc lenght. Consequently, all geodesics of Qn

ε in U issue from f (x0)

and are orthogonal to all level spheres Σt . As a result, each level sphere Σt is a geodesic sphere
of Qn

ε centered at f (x0). For t ∈ (0, t0), because horizontal sections of f are the translate of
those geodesic spheres to suitable heights in Qn

ε ×R, it follows that Σ is rotational with axis
π( f (x0))×R, and boundary f (Mt0). Similarly, the set Σ′ of all points of f (M) at a height strictly
larger than t0 turns out to be rotational with axis π( f (x1))×R and boundary f (Mt0). Then, since
Σ′ and Σ share the same boundary, their axes must coincide and f (M) = Σ∪Σ′ is in fact an
embedded rotational sphere.

Figure 3 – The instersection curve of Σ and P .
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