• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Master's Dissertation
DOI
10.11606/D.55.2018.tde-04102018-104056
Document
Author
Full name
Rosana Sueli da Motta Jafelice
Institute/School/College
Knowledge Area
Date of Defense
Published
São Carlos, 1993
Supervisor
Committee
Táboas, Plácido Zoega (President)
Baroni, Rosa Lucia Sverzut
Godoy, Sandra Maria Semensato de
Title in Portuguese
UM RESULTADO DE PERIODICIDADE PARA UMA EQUAÇÃO INTEGRO-DIFERENCIAL
Keywords in Portuguese
Não disponível
Abstract in Portuguese
Estamos interessados na equação integro-diferencial: x(t) = -2α[1 + x(t)] ∫-1/2-1 x(t + θ)dθ)dθ, α > 0. (E) Nosso objetivo é estudar as soluções periódicas de (E), que estão associadas aos pontos fixos de uma aplicação de retorno A sobre um conjunto fechado convexo do espaço de fase. Nós usamos um Teorema de R. Nussbaum para obter a existência de pontos fixos não triviais de A, quando α varia ao longo de uma sequência.
Title in English
Not available
Keywords in English
Not available
Abstract in English
We are concerned with the integro-differential equation: x(t) = -2α[1 + x(t)] ∫-1/2-1 x(t + θ)dθ)dθ, α > 0. (E) Our aim is to study the periodic solutions of (E), which are associated to fixed points of a return map A on a closed convex set of phase space. We use a fixed point theorem due to R. Nussbaum to accomplish the existence of nontrivial fixed points of A, when α varies along a sequence.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2018-10-04
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2021. All rights reserved.