• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Mémoire de Maîtrise
DOI
10.11606/D.55.2019.tde-03012019-100034
Document
Auteur
Nom complet
Mirianne Andressa Silva Santos
Adresse Mail
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Carlos, 2018
Directeur
Jury
Campos, José Eduardo Prado Pires de (Président)
Bedoya, Natalia Andrea Viana
Mattos, Denise de
Pergher, Pedro Luiz Queiroz
Titre en portugais
O grupo de homotopia de tranças puras no disco é bi-ordenável
Mots-clés en portugais
Grupo de tranças
homotopia
Isotopia
Ordenação
Resumé en portugais
Em Artin (1925), Artin introduziu o estudo do grupo de tranças, o qual está intimamente relacionado ao estudo de nós e enlaçamentos. Em seu outro artigo Theory of Braids Artin (1947), ele questionou se as noções de isotopia e homotopia de tranças são as mesmas ou diferentes. Tal questão foi respondida muito mais tarde em Goldsmith (1974), onde a autora apresenta um exemplo de trança que é homotópica à trança trivial mas não é equivalente à trança trivial, caracterizando, além disso, o grupo de classes de homotopia de tranças puras no disco como um certo quociente do grupo de tranças puras original. Uma área de pesquisa mais recente nesta teoria é o estudo da ordenação destes grupos de tranças. Em Habegger e Lin (1990) os autores mostram que o grupo de classes de homotopia de tranças puras no disco é nilpotente e livre de torção. Resulta que ele é bi-ordenado. Em Yurasovskaya (2008) a autora fornece uma ordem explícita e calculável para este grupo. Neste trabalho discutiremos e apresentaremos os principais resultados neste contexto.
Titre en anglais
The homotopy group of braids over a disc is bi-orderable
Mots-clés en anglais
Braid groups
homotopy
Isotopy
Ordenation
Resumé en anglais
In Artin (1925), Artin introduced the study of braid groups, which is closely related to the study of knots and links. In his other paper Theory of Braids Artin (1947), he asked if the notions of isotopy and homotopy of braids are different or the same. Such question was answered much later in Goldsmith (1974), where the author presents an example of braid that is homotopic to the trivial braid, but it is not equivalent to the trivial braid, characterizing, beyond that, the group of homotopy classes of braids as an certain quotient of the original braid group. One more recent research area on this theory is the study of ordenation of braid groups. In Habegger e Lin (1990) the authors show that the homotopy group classes of pure braids is nilpotent and torsion free. It follows that it is bi-orderable. In Yurasovskaya (2008) the author provides one explicit and evaluable order for this group. In this work, we will discuss and present the main results involved on this context.
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Date de Publication
2019-01-03
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
CeTI-SC/STI
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2022. Tous droits réservés.